
x1 GUSI 1.3.0 Reference ACKNOWLEDGEMENTS 1

1. Introduction. GUSI is an extension and partial replacement of the MPW runtime library. Its main

objective is to provide a more or less simple and consistent interface across the following communication

domains:

. Files Ordinary Macintosh �les and MPW pseudo devices.

. Unix Memory based communicationwithin a single machine (This name exists for historical

reasons).

. Appletalk ADSP (and possibly in the future DDP) communication over a network.

. PPC Local and remote connections with the System 7 PPC Toolbox

. Internet TCP and UDP connections over MacTCP.

. PAP Connections with the Printer Access Protocol, typically to a networkedPostScript

printer.

Additionally, GUSI adds some UNIX library calls dealing with �les which were missing, like chdir (), getcwd (),

symlink (), and readlink(), and changes a few other library calls to behave more like their UNIX counterparts.

The most recent version of GUSI may be obtained by anonymous ftp from nic.switch.ch in the directory

software/mac/src/mpw_c.

There is also a mailing list devoted to discussions about GUSI. You can join the list by sending email to

<gusi-request@iis.ee.ethz.ch>.

2. Copying.

Copyright c
 1992, 1993 Matthias Neeracher

Permission is granted to anyone to use this software for any purpose on any computer system, and to

redistribute it freely, subject to the following restrictions:

. The author is not responsible for the consequences of use of this software, no matter how awful,

even if they arise from defects in it.

. The origin of this software must not be misrepresented, either by explicit claim or by omission.

. Altered versions must be plainly marked as such, and must not be misrepresented as being the

original software.

3. Design Objectives. GUSI was developed according to at least three mutually con
icting standards:

. The de�nition of the existing C library.

. The behavior of the corresponding UNIX calls.

. The author's judgement, prejudices, laziness, and limited resources.

In general, the behavior of the corresponding UNIX library call was implemented, since this faciliates porting

UNIX utilities to the Macintosh.

4. Acknowledgements. I would like to thank all who have agreed to beta test this code and who have

provided feedback.

The TCP/IP code in GUSIINET.cp, GUSITCP.cp, and GUSIUDP.cp is derived from a socket library written

by Charlie Reiman <creiman@ncsa.uiuc.edu>, which in turn is based on code written by Tom Milligan

<milligan@madhaus.utcs.utoronto.ca>.

The PAP code in GUSIPAP.cp is derived from code written by Sak Wathanasin <sw@nan.co.uk>.

Many of the header �les in the :include: subdirectory are borrowed from BSD Unix, therefore: This product

includes software developed by the University of California, Berkeley and its contributors.

x5 GUSI 1.3.0 Reference INSTALLING AND USING GUSI 2

5. Installing and using GUSI. This section discusses how you can install GUSI on your disk and use

it for your programs.

6. To install GUSI, change in the MPW Shell to its directory and type:

BuildProgram Install <Enter>

This will install all necessary �les in {CIncludes}, {CLibraries}, and {RIncludes}, respectively. It will

also install /etc/services in your preferences folder, prompting you if you have an older version there.

7. To use GUSI, include one or more of the following header �les in your program:

GUSI.h The main �le. This includes almost everything else.

TFileSpec.h FSSpec manipulation routines.

dirent.h Routines to access all entries in a directory.

netdb.h Looking up TCP/IP host names.

netinet/in.h The address format for TCP/IP sockets.

sys/errno.h The errors codes returned by GUSI routines.

sys/ioctl.h Codes to pass to ioctl ().

sys/socket.h Data types for socket calls.

sys/stat.h Getting information about �les.

sys/types.h More data types.

sys/uio.h Data types for scatter/gather calls.

sys/un.h The address format for Unix domain sockets.

unistd.h Prototypes for most routines de�ned in GUSI.

8. GUSI expects the Macintosh Toolbox to be initialized. This will happen automatically if you're writing

an MPW tool or if you are linking with SIOW and are forcing a write to standard output or standard error

before you are using any non-�le GUSI routines. Otherwise, you should init the Toolbox in the following way:

InitGraf ((Ptr)&qd :thePort);

InitFonts();

InitWindows ();

InitMenus ();

TEInit ();

InitDialogs(nil);

InitCursor ();

x9 GUSI 1.3.0 Reference INSTALLING AND USING GUSI 3

9. You have to link your program with the GUSI library, {CLibraries}GUSI.o, and optionally one or

several con�guration �les. Currently, the following con�guration �les exist:

GUSI_Everything.cfg Include code for everything de�ned in GUSI.

GUSI_Appletalk.cfg Include code for AppleTalk sockets.

GUSI_Internet.cfg Include code for MacTCP sockets.

GUSI_PAP.cfg Include code for PAP sockets.

GUSI_PPC.cfg Include code for PPC sockets.

GUSI_Unix.cfg Include code for Unix domain sockets.

If you don't specify any con�guration �les, only the �le related routines will be included. It's important that

these �les appear before all other libraries. Linking with GUSI doesn't free you from linking in the standard

libraries, typically:

{Libraries}Runtime.o

{Libraries}Interface.o

{CLibraries}StdCLib.o

{Libraries}ToolLibs.o

You will get lots of warning messages about duplicate de�nitions, but that's ok (Which means I can't do

anything about it).

10. You should also rez your program with GUSI.r. The section \Resources" below discusses when and

how to add your own con�guration resource to customize GUSI defaults.

x11 GUSI 1.3.0 Reference PROMPTING THE USER FOR AN ADDRESS 4

11. Overview. This section discusses the routines common to all, or almost all communicationdomains.

These routines return �1 if an error occurred, and set the variable errno to an error code. On success, the

routines return 0 or some positive value.

Some common error codes are:

EBADF The descriptor number you passed doesn't refer to a valid �le or socket.

ENOMEM Some memory error occurred.

EINTR The user interrupted a lengthy operation by pressing Command-Period.

ENOTCONN The socket is not connected and must be connected for this operation.

12. Creating and destroying sockets. A socket is created with socket () and destroyed with close ().

13. int socket (int af ; int type ; int protocol) creates an endpoint for communication and returns a

descriptor. af speci�es the communication domain to be used. Valid values are:

AF UNIX Communication internal to a single Mac.

AF INET TCP/IP, using MacTCP.

AF APPLETALK Appletalk, using ADSP.

AF PPC The Program-to-Program Communication Toolbox.

type speci�es the semantics of the communication. The following two types are available:

SOCK STREAM A two way, reliable, connection based byte stream.

SOCK DGRAM Connectionless, unreliable messages of a �xed maximum length.

protocol would be used to specify an alternate protocol to be used with a socket. In GUSI, however, this

parameter is always ignored.

Error codes:

EINVAL The af you speci�ed doesn't exist.

EMFILE The descriptor table is full.

14. void close (int fd) removes the access path associated with the descriptor, and closes the �le or socket

if the last access path referring to it was removed.

15. Prompting the user for an address. To give the user the opportunity of entering an address

for a socket to be bound or connected to, the choose () routine was introduced in GUSI. This routine has no

counterpart in UNIX implementations.

x16 GUSI 1.3.0 Reference ESTABLISHING CONNECTIONS BETWEEN SOCKETS 5

16. int choose (int dom ; int type ; char �prompt ; void �constraint ; int
ags ; void �name ; int �nlen)

puts up a modal dialog prompting the user to choose an address. dom speci�es the communication domain,

like in socket . type may be used by future communication domains to further di�erentiate within a domain,

but is ignored by current domains. prompt is a message that will appear in the dialog. constraint maybe used

to restrict the types of acceptable addresses (For more information, consult the section of the communication

domain). The following two
ags are de�ned for most socket types:

CHOOSE DEFAULT O�er the contents passed in name as the default choice.

CHOOSE NEW Prompt for a new address, suitable for passing to bind (). Default is prompting for

an existing address, to be used by connect ().

name on input contains a default address if CHOOSE DEFAULT is set. On output, it is set to the address

chosen.

Error codes:

EINVAL One of the
ags is not (yet) supported by this communications domain. This error

is never reported for CHOOSE DEFAULT , which might get silently ignored.

EINTR The user chose \Cancel" in the dialog.

17. Establishing connections between sockets. Before you can transmit data on a stream socket,

it must be connected to a peer socket. Connection establishment is asymmetrical: The server socket registers

its address with bind (), calls listen () to indicate its willingness to accept connections and accepts them by

calling accept(). The client socket, after possibly having registered its address with bind () (This is not

necessary for all socket families as some will automatically assign an address) calls connect() to establish a

connection with a server.

It is possible, but not required, to call connect () for datagram sockets.

18. int bind (int s; const struct sockaddr �name ; int namelen) binds a socket to its address. The

format of the address is di�erent for every socket family. For some families, you may ask the user for an

address by calling choose ().

Error codes:

EAFNOSUPPORT name speci�es an illegal address family for this socket.

EADDRINUSE There is already another socket with this address.

19. int listen (int s; int qlen) turns a socket into a listener. qlen determines how many sockets can

concurrently wait for a connection, but is ignored for almost all socket families.

20. int accept (int s; struct sockaddr �addr ; int �addrlen) accepts a connection for a socket on a new

socket and returns the descriptor of the new socket. If addr is not NULL, the address of the connecting

socket will be assigned to it.

You can �nd out if a connection is pending by calling select () to �nd out if the socket is ready for reading.

Error codes:

ENOTCONN You did not call listen () for this socket.

EWOULDBLOCK The socket is nonblocking and no socket is trying to connect.

x21 GUSI 1.3.0 Reference TRANSMITTING DATA BETWEEN SOCKETS 6

21. int connect (int s; const struct sockaddr �addr ; int addrlen) tries to connect to the socket whose

address is in addr . If the socket is nonblocking and the connection cannot be made immediately, connect ()

returns EINPROGRESS . You can �nd out if the connection has been established by calling select() to �nd

out if the socket is ready for writing.

Error codes:

EAFNOSUPPORT name speci�es an illegal address family for this socket.

EISCONN The socket is already connected.

EADDRNOAVAIL There is no socket with the given address.

ECONNREFUSED The socket refused the connection.

EINPROGRESS The socket is nonblocking and the connection is being established.

22. Transmitting data between sockets. You can write data to a socket using write(), writev (),

send (), sendto (), or sendmsg (). You can read data from a socket using read(), readv (), recv(), recvfrom(),

or recvmsg().

23. int read (int s; char �bu�er ; unsigned bu
en) reads up to bu
en bytes from the socket. read() for

sockets di�ers from read () for �les mainly in that it may read fewer than the requested number of bytes

without waiting for the rest to arrive.

Error codes:

EWOULDBLOCK The socket is nonblocking and there is no data immediately available.

24. int readv (int s; const struct iovec �iov ; int count) performs the same action, but scatters the input

data into the count bu�ers of the iov narray, always �lling one bu�er completely before proceeding to the

next. iovec is de�ned as follows:

struct iovec f

caddr t iov base ; =� Address of this bu�er �=

int iov len ; =� Length of the bu�er �=

g;

25. int recv(int s; void �bu�er ; int bu
en ; int
ags) is identical to read (), except for the
ags

parameter. If the MSG OOB
ag is set for a stream socket that supports out-of-band data, recv() reads

out-of-band data.

26. int recvfrom(int s; void �bu�er ; int bu
en ; int
ags ; void �from; int �fromlen) is the equivalent

of recv() for unconnected datagram sockets. If from is not NULL, it will be set to the address of the sender

of the message.

27. int recvmsg(int s; struct msghdr �msg ; int
ags) is the most general routine, combining the

possibilities of readv() and recvfrom(). msghdr is de�ned as follows:

struct msghdr f

caddr t msg name ; =� Like from in recvfrom() �=

int msg namelen ; =� Like fromlen in recvfrom() �=

struct iovec �msg iov ; =� Scatter/gather array �=

int msg iovlen ; =� Number of elements in msg iov �=

caddr t msg accrights ; =� Access rights sent/received. Not used in GUSI�=

int msg accrightslen ;

g;

x28 GUSI 1.3.0 Reference GETTING AND CHANGING PROPERTIES OF SOCKETS 7

28. int write(int s; char �bu�er ; unsigned bu
en) writes up to bu
en bytes to the socket. As opposed

to read(), write() for nonblocking sockets always blocks until all bytes are written or an error occurs.

Error codes:

EWOULDBLOCK The socket is nonblocking and data can't be immediately written.

29. int writev (int s; const struct iovec �iov ; int count) performs the same action, but gathers the

output data from the count bu�ers of the iov narray, always sending one bu�er completely before proceeding

to the next.

30. int send (int s; void �bu�er ; int bu
en ; int
ags) is identical to write(), except for the
ags

parameter. If the MSG OOB
ag is set for a stream socket that supports out-of-band data, send () sends

an out-of-band message.

31. int sendto (int s; void �bu�er ; int bu
en ; int
ags ; void �to ; int �tolen) is the equivalent of

send () for unconnected datagram sockets. The message will be sent to the socket whose address is given in

to .

32. int sendmsg (int s; const struct msghdr �msg ; int
ags) combines the possibilities of writev () and

sendto ().

33. I/O multiplexing.

34. int select(int width ; fd set �readfds; fd set �writefds ; fd set �exceptfds ; struct timeval �timeout)

examines the I/O descriptors speci�ed by the bit masks readfs, writefs, and exceptfs to see if they are ready

for reading, writing, or have an exception pending. width is the number of signi�cant bits in the bit mask.

select () replaces the bit masks with masks of those descriptors which are ready and returns the total number

of ready descriptors. timeout , if not NULL, speci�es the maximum time to wait for a descriptor to become

ready. If timeout is NULL, select () waits inde�nitely. To do a poll, pass a pointer to a zero timeval value

in timeout . Any of readfds, writefds , or exceptfds may be given as NULL if no descriptors are of interest.

Error codes:

EBADF One of the bit masks speci�ed an invalid descriptor.

35. The descriptor bit masks can be manipulated with the following macros:

FD ZERO (fds); =� Clear all bits in �fds �=

FD SET (n; fds); =� Set bit n in �fds �=

FD CLR(n; fds); =� Clear bit n in �fds �=

FD ISSET (n; fds); =� Return 1 if bit n in �fds is set, else 0 �=

36. Getting and changing properties of sockets. You can obtain the address of a socket and

the socket it is connected to by calling getsockname () and getpeername() respectively. You can query and

manipulate other properties of a socket by calling ioctl (), fcntl (), getsockopt (), and setsockopt (). You can

create additional descriptors for a socket by calling dup () or dup2 ().

37. int getsockname (int s; struct sockaddr �name ; int �namelen) returns in �name the address the

socket is bound to. �namelen should be set to the maximumlength of name and will be set by getsockname ()

to the actual length of the name.

x38 GUSI 1.3.0 Reference GETTING AND CHANGING PROPERTIES OF SOCKETS 8

38. int getpeername(int s; struct sockaddr �name ; int �namelen) returns in �name the address of the

socket that this socket is connected to. �namelen should be set to the maximum length of name and will

be set by getpeername() to the actual length of the name.

39. int ioctl (int d; unsigned int request ; long �argp) performs various operations on the socket,

depending on the request. The following codes are valid for all socket families:

FIONBIO Make the socket blocking if the long pointed to by argp is 0, else make it nonblocking.

FIONREAD Set �argp to the number of bytes waiting to be read.

Error codes:

EOPNOTSUPP The operation you requested with request is not supported by this socket family.

40. int fcntl (int s; unsigned int cmd ; int arg) provides additional control over a socket. The following

values of cmd are de�ned for all socket families:

F DUPFD Return a new descriptor � arg which refers to the same socket.

F GETFL Return descriptor status
ags.

F SETFL Set descriptor status
ags to arg .

The only status
ag implemented is FNDELAY which is true if the socket is nonblocking.

Error codes:

EOPNOTSUPP The operation you requested with cmd is not supported by this socket family.

41. int getsockopt (int s; int level ; int optname ; void �optval ; int �optlen) is used to request information

about sockets. It is not implemented in GUSI.

42. int setsockopt (int s; int level ; int optname ; void �optval ; int optlen) is used to set options

associated with a socket. It is not implemented in GUSI.

43. intdup (int fd) returns a new descriptor referring to the same socket as fd . The old and new descriptors

are indistinguishible. The new descriptor will always be the smallest free descriptor.

44. int dup2 (int oldfd ; int newfd) closes newfd if it was open and makes it a duplicate of oldfd . The old

and new descriptors are indistinguishible.

x45 GUSI 1.3.0 Reference ROUTINES SPECIFIC TO THE FILE SYSTEM 9

45. Detail Description. This section discusses for each socket domain the routines that behave

di�erent from their description in the previous section and a few calls speci�c to one domain.

46. File system calls. Files are unlike sockets in many respects: Their length is never changed by

other processes, they can be rewound. There are also many calls which are speci�c to �les.

47. Di�erences to generic behavior.

48. The following calls make no sense for �les and return an error of EOPNOTSUPP :

socket ()

bind ()

listen()

accept()

connect()

getsockname ()

getpeername()

getsockopt ()

setsockopt ()

49. The following calls will work, but might be frowned upon by your friends (besides, UNIX systems

generally wouldn't like them):

recv()

recvfrom()

recvmsg()

send ()

sendto ()

sendmsg ()

50. choose () returns zero terminated C strings in name . It accepts an additional
ag CHOOSE DIR . If

this is set, choose () will select directories instead of �les.

You may restrict the �les presented for choosing by passing a pointer to the following structure for the

constraint argument:

typedef struct f

short numTypes ; =� Number of legitimate �le types �=

SFTypeList types ; =� The types, like 'TEXT' �=

g sa constr �le ;

51. select() will give boring results. File descriptors are always considered ready to read or write, and

never give exceptions.

52. ioctl() and fcntl () don't support manipulating the blocking state of a �le descriptor or reading the

number of bytes available for reading, but will accept lots of other requests|Check with your trusty MPW

C documentation.

53. Routines speci�c to the �le system. In this section, you'll meet lots of good old friends.

x54 GUSI 1.3.0 Reference ROUTINES SPECIFIC TO THE FILE SYSTEM 10

54. int stat (const char �path ; struct stat �buf) returns information about a �le. struct stat is de�ned

as follows:

struct stat f

dev t st dev ; =� Volume reference number of �le �=

ino t st ino ; =� File or directory ID �=

u short st mode ; =� Type and permission of �le �=

short st nlink ; =� Always 1 �=

short st uid ; =� Set to 0 �=

short st gid ; =� Set to 0 �=

dev t st rdev ; =� Set to 0 �=

o� t st size ;

time t st atime ; =� Set to st mtime �=

time t st mtime ;

time t st ctime ;

long st blksize ;

long st blocks ;

g;

55. st mode is composed of a �le type and of �le permissions. The �le type may be one of the following:

S IFREG A regular �le.

S IFDIR A directory.

S IFLNK A �nder alias �le.

S IFCHR A console �le under MPW or SIOW.

S IFSOCK A �le representing a UNIX domain socket.

Permissions consist of an octal digit repeated three times. The three bits in the digit have the following

meaning:

4 File can be read.

2 File can be written.

1 File can be executed, i.e., its type is `APPL', `MPST' or `TEXT'

56. int lstat (const char �path ; struct stat �buf) works just like stat (), but if path is a symbolic link,

lstat () will return information about the link and not about the �le it points to.

57. int fstat (int fd ; struct stat �buf) is the equivalent of stat () for descriptors representing open �les.

While it is legal to call fstat () for sockets, the information returned is not really interesting. The �le type

in st mode will be S IFSOCK for sockets.

58. int utime (const char ��le ; const struct utimbuf �tim) changes the modi�cation time of a �le.

struct utimbuf is de�ned as:

struct utimbuf f

time t actime ; =� Access time �=

time t modtime ; =� Modi�cation time �=

g;

59. tim ! actime is ignored, as the Macintosh doesn't store access times. The modi�cation of �le is set

to tim ! modtime .

60. int isatty (int fd) returns 1 if fd represents a terminal (i.e. is connected to "Dev:StdIn" and the like),

0 otherwise.

x61 GUSI 1.3.0 Reference ROUTINES SPECIFIC TO THE FILE SYSTEM 11

61. long lseek (int ; long ; int) works the same as the MPW routine, and will return ESPIPE if called

for a socket.

62. int remove(const char ��lename) removes the named �le. If �lename is a symbolic link, the link will

be removed and not the �le.

63. int unlink (const char ��lename) is identical to remove(). Note that on the Mac, unlink () on open

�les behaves di�erently from UNIX.

64. int rename(const char �oldname ; const char �newname) renames and/or moves a �le. oldname

and newname must specify the same volume, but as opposed to the standard MPW routine, they may specify

di�erent folders.

65. int open (const char �; int
ags) opens a named �le. The
ags consist of one of the following modes:

O RDONLY Open for reading only.

WR ONLY Open for writing only.

O RDWR Open for reading and writing.

Optionally combined with one or more of:

O APPEND The �le pointer is set to the end of the �le before each write.

O RSRC Open resource fork.

O CREAT If the �le does not exist, it is created.

O EXCL In combination with O CREAT , return an error if �le already exists.

O TRUNC If the �le exists, its length is truncated to 0; the mode is unchanged.

O ALIAS If the named �le is a symbolic link, open the link, not the �le it points to (This is

most likely an incredibly bad idea).

66. int creat(const char �name) is identical to open (name ; O WRONLY + O TRUNC + O CREAT).

If the �le didn't exist before, GUSI determines its �le type and creator of the according to rules outlined in

the section \Resources" below.

67. int faccess(const char ��lename ; unsigned int cmd ; long �arg) works the same as the correspond-

ing MPW routine, but respects calls to chdir () for partial �lenames.

68. void fget�leinfo (char ��lename ; unsigned long �newcreator ; unsigned long �newtype) returns

the �le type and creator of a �le.

69. void fset�leinfo(char ��lename ; unsigned long newcreator ; unsigned long newtype) sets the �le

type and creator of a �le to the given values.

70. int symlink (const char �linkto ; const char �linkname) creates a �le named linkname that contains

an alias resource pointing to linkto . The created �le should be indistinguishible from an alias �le created by

the System 7 Finder. Note that aliases bear only super�cial similiarities to UNIX symbolic links, especially

once you start renaming �les.

71. int readlink(const char �path ; char �buf ; int bufsiz) returns in buf the name of the �le that path

points to.

72. int mkdir (const char �path) creates a new directory.

x73 GUSI 1.3.0 Reference DIFFERENCES TO GENERIC BEHAVIOR 12

73. int rmdir (const char �path) deletes an empty directory.

74. int chdir (const char �path) makes all future partial pathnames relative to this directory.

75. char �getcwd (const char �buf ; int size) returns a pointer to the current directory pathname. If

buf is NULL, size bytes will be allocated using malloc().

Error codes:

ENAMETOOLONG The pathname of the current directory is greater than size .

ENOMEM buf was NULL and malloc() failed.

76. A number of calls facilitate scanning directories. Directory entries are represented by following

structure:

struct dirent f

u long d �leno ; =� �le number of entry �=

u short d reclen; =� length of this record �=

u short d namlen ; =� length of string in d name �=

#de�ne MAXNAMLEN 255

char d name [MAXNAMLEN + 1]; =� name must be no longer than this �=

g;

77. DIR �opendir (const char �dirname) opens a directory stream and returns a pointer or NULL if

the call failed.

78. struct dirent �readdir(DIR�dirp) returns the next entry from the directory or NULL if all entries

have been processed.

79. long telldir (const DIR �dirp) returns the position in the directory.

80. void seekdir (DIR �dirp ; long loc) changes the position.

81. void rewinddir(DIR �dirp) restarts a scan at the beginning.

82. int closedir(DIR �dirp) closes the directory stream.

83. int scandir (const char �path ; struct dirent ���entries ; int (�want)(struct dirent �); int (�sort)

(const void � ; const void �)) scans a whole directory at once and returns a possibly sorted list of

entries. If want is not NULL, only entries for which want returns 1 are returned. If sort is not NULL,

the list is sorted using qsort () with sort as a comparison function. If sort is NULL, the list will be sorted

alphabetically on a Mac, but not necessarily on other machines.

84. int truncate(const char �path ; o� t length) causes a �le to have a size equal to length bytes,

shortening it or extending it with zero bytes as necessary.

85. int ftruncate(int fd ; o� t length) does the same thing with an open �le.

86. Unix domain sockets. This domain is quite regular and supports all calls that work on any

domain, except for out-of-band data.

87. Di�erences to generic behavior.

x88 GUSI 1.3.0 Reference DIFFERENCES TO GENERIC BEHAVIOR 13

88. Addresses are �le system pathnames. GUSI complies to the Unix implementation in that it doesn't

require the name to be terminated by a zero. Names that are generated by GUSI, however, will always be

zero terminated (but the zero won't be included in the count).

struct sockaddr un f

short sun family ; =� Always AF UNIX �=

char sun path [108]; =� A pathname to a �le �=

g;

89. choose () works both for existing and new addresses, and no restriction is possible (or necessary).

90. Appletalk sockets. Currently, only stream sockets (including out-of-band data) are supported.

91. Di�erences to generic behavior.

92. Two classes of addresses are supported for AppleTalk. The main address type speci�es numeric

addresses.

struct sockaddr atlk f

short family ; =� Always AF APPLETALK �=

AddrBlock addr ; =� The numeric AppleTalk socket address �=

g;

93. For bind () and connect (), however, you are also allowed to specify symbolic addresses. bind () registers

an NBP address, and connect() performs an NBP lookup. Registered NBP adresses are automatically

released when the socket is closed. No call ever returns a symbolic address.

struct sockaddr atlk sym f

short family ; =� Always ATALK SYMADDR �=

EntityName name ; =� The symbolic NBP address �=

g;

94. choose () currently only works for existing sockets. The peer must have registered a symbolic address.

To restrict the choice of addresses presented, pass a pointer to the following structure for the constraint

argument:

typedef struct f

short numTypes ; =� Number of allowed types �=

NLType types ; =� List of types �=

g sa constr atlk ;

95. PPC sockets. These provide authenticated stream sockets without out-of-band data.

96. Di�erences to generic behavior.

97. PPC socket addresses have the following format:

struct sockaddr ppc f

short family ; =� Always AF PPC �=

LocationNameRec location; =� Check your trusty Inside Macintosh �=

PPCPortRec port ;

g;

x98 GUSI 1.3.0 Reference ROUTINES SPECIFIC TO TCP/IP SOCKETS 14

98. choose () currently only works for existing sockets. To restrict the choice of addresses presented, pass

a pointer to the following structure for the constraint argument:

typedef struct f

short
ags ;

Str32 nbpType;

PPCPortRec match ;

g sa constr ppc ;

99.
ags is obtained by or'ing one or several of the following constants:

PPC CON NEWSTYLE Always required for compatibility reasons.

PPC CON MATCH NBP Only display machines that have registered an entity of type nbpType .

PPC CON MATCH NAME Only display ports whose name matches match :name .

PPC CON MATCH TYPE Only display ports whose type matches match :u:portType.

nbpType speci�es the machines to be displayed, as explained above. match contains the name and/or type

to match against.

100. connect() will block even if the socket is nonblocking. In practice, however, delays are likely to be

quite short, as it never has to block on a higher level protocol and the PPC ToolBox will automatically

establish the connection.

101. Internet sockets. These are the real thing for real programmers. Out-of-band data only works

for sending. Both stream (TCP) and datagram (UDP) sockets are supported.

102. Di�erences to generic behavior.

103. Internet socket addresses have the following format:

struct in addr f

u long s addr ;

g;

struct sockaddr in f

u char sin len ; =� Ignored �=

u char sin family ; =� Always AF INET �=

u short sin port ; =� Port number �=

struct in addr sin addr ; =� Host ID �=

char sin zero [8];

g;

104. Routines speci�c to TCP/IP sockets. There are several routines to convert between numeric

and symbolic addresses.

105. Hosts are represented by the following structure:

struct hostent f

char �h name ; =� O�cial name of the host �=

char ��h aliases ; =� A zero terminated array of alternate names for the host �=

int h addrtype ; =� Always AF INET �=

int h length ; =� The length, in bytes, of the address �=

char ��h addr list ; =� A zero terminated array of network addresses for the host �=

g;

x106 GUSI 1.3.0 Reference PAP SOCKETS 15

106. struct hostent �gethostbyname (char �name) returns an entry for the host with the given name

or NULL if a host with this name can't be found.

107. struct hostent �gethostbyaddr (const char �addrP ; int ; int) returns an entry for the host with

the given address or NULL if a host with this name can't be found. addrP in fact has to be a struct in addr

�. The last two parameters are ignored.

108. char �inet ntoa (struct in addr inaddr) converts an internet address into the usual numeric string

representation (e.g., 0x8184023C is converted to "129.132.2.60")

109. struct in addr inet addr (char �address) converts a numeric string into an internet address (If x is

a valid address, inet addr (inet ntoa (x)) � x).

110. int gethostname (char �machname ; long bu
en) gets our name into bu�er .

111. Services are represented by the following data structure:

struct servent f

char �s name ; =� o�cial service name �=

char ��s aliases ; =� alias list �=

int s port ; =� port number �=

char �s proto ; =� protocol to use ("tcp" or "udp") �=

g;

112. void setservent (int stayopen) rewinds the �le of services. If stayopen is set, the �le will remain open

until endservent () is called, else it will be closed after the next call to getservbyname () or getservbyport().

113. void endservent () closes the �le of services.

114. struct servent �getservent () returns the next service from the �le of services, opening the �le �rst if

necessary. If the �le is not found (/etc/services in the preferences folder), a small built-in list is consulted.

If there are no more services, getservent () returns NULL.

115. struct servent �getservbyname (const char �name ; const char �proto) �nds a named service

by calling getservent () until the protocol matches proto and either the name or one of the aliases matches

name .

116. struct servent �getservbyport (int port ; const char �proto) �nds a service by calling getservent ()

until the protocol matches proto and the port matches port .

117. Protocols are represented by the following data structure:

struct protoent f

char �p name ; =� o�cial protocol name �=

char ��p aliases ; =� alias list (always NULL for GUSI) �=

int p proto ; =� protocol number �=

g;

118. struct protoent �getprotobyname (char �name) �nds a named protocol. This call is rather

unexciting.

x119 GUSI 1.3.0 Reference BSD MEMORY ROUTINES 16

119. PAP sockets. PAP, the AppleTalk Printer Access Protocol is a protocol which is almost

exclusively used to access networked printers. The current implementation of PAP in GUSI is quite narrow

in that it only implements the workstation side of PAP and only in communication to the currently selected

LaserWriter. It is also doomed, as it depends on Apple system resources that probably won't be supported

anymore in Apple's forthcoming new printing architecture, but if there is enough interest, the current

implementation is probably going to be replaced until then.

120. Routines speci�c to PAP sockets. While PAP sockets behave in most respects like other

sockets, they can currently not be created with the socket () call, but are opened with open ().

121. int open ("Dev:Printer" ; int
ags) opens a connection to the last selected LaserWriter.
ags is

currently ignored.

122. Communication with LaserWriters is somewhat strange. The three main uses of PAP sockets are

probably interactive sessions, queries, and downloads, which will be discussed in the following sections. As

in all other socket families, GUSI does no �ltering of the transmitted data, which means that lines sent by

the LaserWriter will be separated by linefeeds (ASCII 10) rather than carriage returns (ASCII 13), which

are used for this purpose in most other Mac contexts. For data you send, it doesn't matter which one you

use.

123. You start an interactive session by sending a line "executive" after opening the socket. This will put

lots of LaserWriters (certainly all manufactured by Apple, but probably not a Linotronic) into interactive

mode. If you want to, you can now play terminal emulator and use your LaserWriter as an expensive desk

calculator.

124. A query is some PostScript code you send to a LaserWriter that you expect to be answered. This is

quite straightforward, except that LaserWriters don't seem to answer until you have indicated to them that

no more data from you will be coming. Therefore, you have to call shutdown (s; 1) to shut the socket down

for writing after you have written your query and before you try to read the answer. The following code

demonstrates how to send a query to the printer:

int s open ("Dev:Printer"; O RDWR);

write(s; "FontDirectory /Gorilla-SemiBold exch known..."; len);

=� We won't write any more �=

shutdown (s; 1);

while (read(s; buf ; len) > 0)

do something ();

close (s);

125. If you want to simply download a �le, you can also ignore the LaserWriter's response and simply close

the socket after downloading.

126. Miscellaneous.

127. BSD memory routines.

128. void bzero(void �from; int len) zeroes len bytes, starting at from .

129. b�ll (void �from; int len ; int x) �lls len bytes, starting at from with x.

x130 GUSI 1.3.0 Reference RESOURCES 17

130. void bcopy(void �from; void �to ; int len) copies len bytes from from to to .

131. int bcmp(void �s1 ; void �s2 ; int len) compares len bytes at s1 against len bytes at s2 , returning

zero if the two areas are equal, nonzero otherwise.

132. Blocking calls. Since the Macintosh doesn't have preemptive task switching, it is important that

other applications get a chance to run during blocking calls. This section discusses the mechanism GUSI uses

for that purpose.

133. While a routine is waiting for a blocking call to terminate, it repeatedly calls a spin routine with the

following parameters:

typedef enum spin msg f SP MISC ;

=� some weird thing, usually just return immediately if you get this �=

SP SELECT ; =� in a select call �=

SP NAME ; =� getting a host by name �=

SP ADDR ; =� getting a host by address �=

SP STREAM READ ; =� Stream read call �=

SP STREAM WRITE ; =� Stream write call �=

SP DGRAM READ ; =� Datagram read call �=

SP DGRAM WRITE ; =� Datagram write call �=

SP SLEEP ; =� sleeping, passes ticks left to sleep �=

SP AUTO SPIN =� Automatically spinning, passes spin count �=

g spin msg ;

typedef int (�GUSISpinFn) (spin msg msg ; long param) ;

134. You can modify the spin routine with the following calls:

int GUSISetSpin (GUSISpinFn routine);

GUSISpinFn GUSIGetSpin (void) ;

135. Usually, however, the default spin routine will do what you want: It spins a cursor and occasionally

calls GetNextEvent () or WaitNextEvent (). By default, only mouse down and suspend/resume events are

handled, but you can change that by passing your own GUSIEvtTable to GUSISetEvents ().

int GUSISetEvents (GUSIEvtTable table);

GUSIEvtHandler �GUSIGetEvents (void);

136. A GUSIEvtTable is a table of GUSIEvtHandlers , indexed by event code. Presence of a non-nil entry

in the table will cause that event class to be allowed for GetNextEvent () or WaitNextEvent (). GUSI includes

one event table to be used with the SIOW library.

typedef void (�GUSIEvtHandler)(EventRecord�ev);

typedef GUSIEvtHandler GUSIEvtTable [24];

extern GUSIEvtHandler GUSISIOWEvents [];

x137 GUSI 1.3.0 Reference RESOURCES 18

137. Resources. A few GUSI routines (currently primarily choose()) need resources to work correctly.

These are added if you Rez your program with GUSI.r. On startup, GUSI also looks for a preference resource

with type `GU�I' and ID GUSIRsrcID , which is currently de�ned as follows:

#ifndef GUSI PREF VERSION

#de�ne GUSI PREF VERSION '0102'

#endif

type `GU�I' f

literal longint text 'TEXT '; =� Type for creat'ed �les �=

literal longint mpw 'MPS '; =� Creator for creat'ed �les �=

byte noAutoSpin ; autoSpin ; =� Automatically spin cursor ? �=

#if GUSI PREF VERSION �'0110'

boolean useChdir ; dontUseChdir ; =� Use chdir() ? �=

boolean approxStat ; accurateStat ; =� statbuf.st nlink = # of subdirectories ? �=

boolean noTCPDaemon ; isTCPDaemon ; =� Inetd client ? �=

boolean noUDPDaemon ; isUDPDaemon ;

�ll bit [4];

literal longint GUSI PREF VERSION ;

#if GUSI PREF VERSION �'0120'

integer $$Countof (Su�xArray);

wide array Su�xArray f literal longint ; =� Su�x of �le �=

literal longint ; =� Type for �le �=

literal longint ; =� Creator for �le �=

g ;

#endif

#endif

g ;

138. To keep backwards compatible, the preference version is included, and you are free to use whatever

version of the preferences you want by de�ning GUSI PREF VERSION .

139. The �rst two �elds de�ne the �le type and creator, respectively, to be used for �les created by GUSI.

The type and creator of existing �les will never be changed unless explicitely requested with fset�leinfo().

The default is to create text �les (type `TEXT') owned by the MPW Shell (creator `MPS '). If you request a

preference version of 1.2.0 and higher, you are also allowed to specify a list of su�xes that are given di�erent

types. An example of such a list would be:

f' SYM ' ; ' MPSY ' ; ' sade ' g

140. The autoSpin value, if nonzero, makes GUSI call the spin routine for every call to read(), write(),

send (), or recv(). This is useful for making an I/O bound program MultiFinder friendly without having to

insert explicit calls to SpinCursor (). If you don't specify a preference resource, autoSpin is assumed to be

1. You may specify arbitrary values greater than one to make your program even friendlier; note, however,

that this will hurt performance.

x141 GUSI 1.3.0 Reference RESOURCES 19

141. The useChdir
ag tells GUSI whether you change directories with the toolbox calls PBSetVol ()

or PBHSetVol () or with the GUSI call chdir (). The current directory will start with the directory your

application resides in or the current MPW directory, if you're running an MPW tool. If useChdir is speci�ed, the

current directory will only change with chdir () calls. If dontUseChdir is speci�ed, the current directory will

change with toolbox calls, until you call chdir () the �rst time. This behaviour is more consistent with the

standard MPW library, but has IMHO no other redeeming value. If you don't specify a preference resource,

useChdir is assumed.

142. If approxStat is speci�ed, stat () and lstat () for directories return in st nlink the number of items in

the directory +2. If accurateStat is speci�ed, they return the number of subdirectories in the directory. The

latter has probably the best chances of being compatible with some Unix software, but the former is often a

su�cient upper bound, is much faster, and most programs don't care about this value anyway. If you don't

specify a preference resource, approxStat is assumed.

143. The isTCPDaemon and isUDPDaemon
ags turn GUSI programs into clients for David Petersons

inetd, as discussed below. If you don't specify a preference resource, noTCPDaemon and noUDPDaemon

are assumed.

x144 GUSI 1.3.0 Reference ADDING YOUR OWN COMMUNICATION FAMILIES 20

144. Advanced techniques. This section discusses a few techniques that probably not every user of

GUSI needs.

145. Writing daemons. David Peterson <david@stealth.usc.edu> has written an Internet daemon for

the Macintosh. This is a program that listens on various ports for a connection, and if one arrives, launches

a server program to handle it. GUSI contains code that makes it extremely easy to interface with inetd: All

you have to do is to set the tcpDaemon and/or the udpDaemon
ag in the con�guration resource. GUSI and

inetd will then conspire to have �le descriptors 0, 1, and 2 connected to the incoming socket. Therefore, all

you have to do is to read and write from and to 0, 1, 2 (or stdin, stdout, and stderr, if you're using stdio).

inetd is available by anonymous ftp from the following locations:

usc.edu pub/davidp

nic.switch.ch software/mac/src/mpw_c

146. FSSpec routines. If you need to do complicated things with the Mac �le system, the normal

GUSI routines are probably not su�cient, but you still might want to use the internal mechanism GUSI uses.

This mechanism is provided in the header �le TFileSpec.h, which de�nes both C and C++ interfaces.

147. Adding your own communication families. It is rather easy to add your own socket types to

GUSI:

. Pick an unused number between 17 and GUSI MAX DOMAINS to use for your address family.

. Include GUSI_P.h.

. Write a subclass of SocketDomain and override choose () and either open () or socket (). If you

override open (), you have to write your own routine to create sockets of this type.

. Write a subclass of Socket and override whatever you want. If you override recvfrom() and

sendto (), read() and write() are automatically de�ned.

. For more information, study the code in GUSIDispatch.cp and GUSISocket.cp, which imple-

ment the generic socket code. The easiest actual socket implementation to study is probably

GUSIUnix.cp.

x148 GUSI 1.3.0 Reference KNOWN PROBLEMS, WORDS OF WARNING 21

148. Known problems, words of warning.

. O NRESOLVE , as introduced in the E.T.O #8 Prerelease libraries, is interpreted the same way

as O ALIAS , i.e. intermediate aliases are silently resolved. On the other hand, I can't think of a

good reason why anybody would use O NRESOLVE .

. getsockname () for TCP/IP sockets for which neither bind () with a nonzero port number nor

connect () or listen () have been called returns zero.

. bind () for TCP/IP sockets doesn't check for duplicate port numbers.

x149 GUSI 1.3.0 Reference REFERENCES 22

149. References. The following books might provide you with more information about various aspects

of GUSI.

[Appl85] Apple Computer, Inc., Inside Macintosh Volume I{VI, Addison Wesley, 1985{91

[Appl88] Apple Computer, Inc., Macintosh Programmer's Workshop C, 1988

[Crow13] Aleister Crowley, The Book of Lies, 1913

[Holz91] David A. Holzgang, Programming the LaserWriter, Addison-Wesley 1991

[LMKQ89] Samuel J. Le�er, Marshall Kirk McKusick, Michael J. Karels, John S. Quarterman,

The Design and Implementation of the 4.3BSD UNIX Operating System, Addison

Wesley, 1989

[Stev90] W. Richard Stevens, UNIX Network Programming, Prentice Hall, 1990

[Stev92] W. Richard Stevens, Advanced Programming in the UNIX Environment, Prentice

Hall, 1992

[Sun88] Sun Microsystems, Inc., SunOS Reference Manual, 1988

x150 GUSI 1.3.0 Reference INDEX 23

150. Index.

accept : 17, 20, 48.

accurateStat : 137, 142.

actime : 58, 59.

addr : 20, 21, 92.

AddrBlock : 92.

address : 109.

addrlen : 20, 21.

addrP : 107.

af : 13.

AF APPLETALK : 13, 92.

AF INET : 13, 103, 105.

AF PPC : 13, 97.

AF UNIX : 13, 88.

approxStat : 137, 142.

arg : 40, 67.

argp : 39.

array : 137.

ATALK SYMADDR : 93.

autoSpin : 137, 140.

bcmp : 131.

bcopy : 130.

b�ll : 129.

bind : 16, 17, 18, 48, 93, 148.

bit : 137.

boolean: 137.

buf : 54, 56, 57, 71, 75, 124.

bu�er : 23, 25, 26, 28, 30, 31, 110.

bu
en : 23, 25, 26, 28, 30, 31, 110.

bufsiz : 71.

byte : 137.

bzero : 128.

caddr t : 24, 27.

chdir : 1, 67, 74, 141.

choose : 15, 16, 18, 50, 89, 94, 98, 147.

CHOOSE DEFAULT : 16.

CHOOSE DIR : 50.

CHOOSE NEW : 16.

close : 12, 14, 124.

closedir : 82.

cmd : 40, 67.

connect : 16, 17, 21, 48, 93, 100, 148.

constraint : 16, 50, 94, 98.

count : 24, 29.

Countof : 137.

creat : 66.

d �leno : 76.

d name : 76.

d namlen : 76.

d reclen: 76.

de�ne : 76, 137.

dev t : 54.

DIR : 77, 78, 79, 80, 81, 82.

dirent : 76, 78, 83.

dirname : 77.

dirp : 78, 79, 80, 81, 82.

do something : 124.

dom : 16.

dontUseChdir : 137, 141.

dup : 36, 43.

dup2 : 36, 44.

EADDRINUSE : 18.

EADDRNOAVAIL: 21.

EAFNOSUPPORT : 18, 21.

EBADF : 11, 34.

ECONNREFUSED : 21.

EINPROGRESS : 21.

EINTR : 11, 16.

EINVAL: 13, 16.

EISCONN : 21.

EMFILE : 13.

ENAMETOOLONG : 75.

endif : 137.

endservent : 112, 113.

ENOMEM : 11, 75.

ENOTCONN : 11, 20.

EntityName : 93.

entries : 83.

EOPNOTSUPP : 39, 40, 48.

errno : 11.

ESPIPE : 61.

ev : 136.

EventRecord: 136.

EWOULDBLOCK : 20, 23, 28.

exceptfds : 34.

exceptfs : 34.

F DUPFD : 40.

F GETFL: 40.

F SETFL: 40.

faccess : 67.

family : 92, 93, 97.

fcntl : 36, 40, 52.

fd : 14, 43, 57, 60, 85.

FD CLR : 35.

FD ISSET : 35.

FD SET : 35.

fd set : 34.

FD ZERO : 35.

fds : 35.

x150 GUSI 1.3.0 Reference INDEX 24

fget�leinfo : 68.

�le : 58, 59.

�lename : 62, 63, 67, 68, 69.

�ll : 137.

FIONBIO : 39.

FIONREAD : 39.

ags : 16, 25, 26, 27, 30, 31, 32, 65, 98, 99, 121.

FNDELAY : 40.

from : 26, 27, 128, 129, 130.

fromlen : 26, 27.

fset�leinfo : 69.

FSSpec: 7.

fstat : 57.

ftruncate : 85.

getcwd : 1, 75.

gethostbyaddr : 107.

gethostbyname : 106.

gethostname : 110.

GetNextEvent : 135, 136.

getpeername: 36, 38, 48.

getprotobyname : 118.

getservbyname : 112, 115.

getservbyport : 112, 116.

getservent : 114, 115, 116.

getsockname : 36, 37, 48, 148.

getsockopt : 36, 41, 48.

GUSI MAX DOMAINS : 147.

GUSI PREF VERSION : 137, 138.

GUSIEvtHandler : 135, 136.

GUSIEvtHandlers : 136.

GUSIEvtTable : 135, 136.

GUSIGetEvents : 135.

GUSIGetSpin : 134.

GUSIRsrcID : 137.

GUSISetEvents : 135.

GUSISetSpin : 134.

GUSISIOWEvents : 136.

GUSISpinFn : 133, 134.

h addr list : 105.

h addrtype : 105.

h aliases : 105.

h length : 105.

h name : 105.

hostent : 105, 106, 107.

ifndef : 137.

in addr : 103, 107, 108, 109.

inaddr : 108.

inet addr : 109.

inet ntoa : 108, 109.

InitCursor : 8.

InitDialogs : 8.

InitFonts : 8.

InitGraf : 8.

InitMenus : 8.

InitWindows : 8.

ino t : 54.

integer : 137.

ioctl : 7, 36, 39, 52.

iov : 24, 29.

iov base : 24.

iov len : 24.

iovec : 24, 27, 29.

isatty : 60.

isTCPDaemon : 137, 143.

isUDPDaemon : 137, 143.

len : 124, 128, 129, 130, 131.

length : 84, 85.

level : 41, 42.

linkname : 70.

linkto : 70.

listen : 17, 19, 20, 48, 148.

literal : 137.

loc : 80.

location : 97.

LocationNameRec: 97.

longint : 137.

lseek : 61.

lstat : 56, 142.

machname : 110.

malloc : 75.

match : 98, 99.

MAXNAMLEN : 76.

mkdir : 72.

modtime : 58, 59.

MPS : 137.

MPSY : 139.

mpw : 137.

msg : 27, 32, 133.

msg accrights : 27.

msg accrightslen : 27.

msg iov : 27.

msg iovlen : 27.

msg name : 27.

msg namelen : 27.

MSG OOB : 25, 30.

msghdr : 27, 32.

name : 16, 18, 21, 37, 38, 50, 66, 93, 99, 106,

115, 118.

namelen : 18, 37, 38.

nbpType : 98, 99.

x150 GUSI 1.3.0 Reference INDEX 25

newcreator : 68, 69.

newfd : 44.

newname : 64.

newtype : 68, 69.

nil : 8.

nlen : 16.

NLType: 94.

noAutoSpin : 137.

noTCPDaemon : 137, 143.

noUDPDaemon : 137, 143.

NULL: 20, 26, 34, 75, 77, 78, 83, 106, 107,

114, 117.

numTypes : 50, 94.

O ALIAS : 65, 148.

O APPEND : 65.

O CREAT : 65, 66.

O EXCL: 65.

O NRESOLVE : 148.

O RDONLY : 65.

O RDWR : 65, 124.

O RSRC : 65.

O TRUNC : 65, 66.

O WRONLY : 66.

o� t : 54, 84, 85.

oldfd : 44.

oldname : 64.

open : 65, 66, 120, 121, 124, 147.

opendir : 77.

optlen : 41, 42.

optname : 41, 42.

optval : 41, 42.

p aliases : 117.

p name : 117.

p proto : 117.

param: 133.

path : 54, 56, 71, 72, 73, 74, 83, 84.

PBHSetVol : 141.

PBSetVol : 141.

port : 97, 116.

portType: 99.

PPC CON MATCH NAME : 99.

PPC CON MATCH NBP : 99.

PPC CON MATCH TYPE : 99.

PPC CON NEWSTYLE : 99.

PPCPortRec: 97, 98.

prompt : 16.

proto : 115, 116.

protocol: 13.

protoent : 117, 118.

Ptr : 8.

qd : 8.

qlen : 19.

qsort : 83.

read : 22, 23, 25, 28, 124, 140, 147.

readdir : 78.

readfds : 34.

readfs : 34.

readlink : 1, 71.

readv : 22, 24, 27.

recv : 22, 25, 26, 49, 140.

recvfrom: 22, 26, 27, 49, 147.

recvmsg : 22, 27, 49.

remove : 62, 63.

rename : 64.

request : 39.

rewinddir : 81.

rmdir : 73.

routine : 134.

s addr : 103.

s aliases : 111.

S IFCHR: 55.

S IFDIR : 55.

S IFLNK : 55.

S IFREG : 55.

S IFSOCK : 55, 57.

s name : 111.

s port : 111.

s proto: 111.

sa constr atlk : 94.

sa constr �le : 50.

sa constr ppc : 98.

sade : 139.

scandir : 83.

seekdir : 80.

select : 20, 21, 34, 51.

send : 22, 30, 31, 49, 140.

sendmsg : 22, 32, 49.

sendto : 22, 31, 32, 49, 147.

servent : 111, 114, 115, 116.

setservent : 112.

setsockopt : 36, 42, 48.

SFTypeList : 50.

shutdown : 124.

sin addr : 103.

sin family : 103.

sin len : 103.

sin port : 103.

sin zero: 103.

size : 75.

SOCK DGRAM : 13.

x150 GUSI 1.3.0 Reference INDEX 26

SOCK STREAM : 13.

sockaddr : 18, 20, 21, 37, 38.

sockaddr atlk : 92.

sockaddr atlk sym : 93.

sockaddr in : 103.

sockaddr ppc : 97.

sockaddr un : 88.

Socket : 147.

socket : 12, 13, 16, 48, 120, 147.

SocketDomain : 147.

sort : 83.

SP ADDR : 133.

SP AUTO SPIN : 133.

SP DGRAM READ : 133.

SP DGRAM WRITE : 133.

SP MISC : 133.

SP NAME : 133.

SP SELECT : 133.

SP SLEEP : 133.

SP STREAM READ : 133.

SP STREAM WRITE : 133.

spin msg : 133.

SpinCursor : 140.

st atime : 54.

st blksize : 54.

st blocks : 54.

st ctime : 54.

st dev : 54.

st gid : 54.

st ino : 54.

st mode : 54, 55, 57.

st mtime : 54.

st nlink : 54, 142.

st rdev : 54.

st size : 54.

st uid : 54.

stat : 54, 56, 57, 142.

stayopen : 112.

Str32 : 98.

Su�xArray: 137.

sun family : 88.

sun path : 88.

SYM : 139.

symlink : 1, 70.

s1 : 131.

s2 : 131.

table : 135.

tcpDaemon : 145.

TEInit : 8.

telldir : 79.

text : 137.

TEXT : 137.

thePort : 8.

tim : 58, 59.

time t : 54, 58.

timeout : 34.

timeval : 34.

to : 31, 130.

tolen : 31.

truncate : 84.

type : 13, 16.

types : 50, 94.

u char : 103.

u long : 76, 103.

u short : 54, 76, 103.

udpDaemon : 145.

unlink : 63.

useChdir : 137, 141.

utimbuf : 58.

utime : 58.

WaitNextEvent : 135, 136.

want : 83.

wide : 137.

width : 34.

WR ONLY : 65.

write : 22, 28, 30, 124, 140, 147.

writefds : 34.

writefs : 34.

writev : 22, 29, 32.

GUSI | Grand Uni�ed Socket Interface

Section Page

Introduction . 1 1

Copying . 2 1

Design Objectives . 3 1

Acknowledgements . 4 1

Installing and using GUSI . 5 2

Overview . 11 4

Creating and destroying sockets . 12 4

Prompting the user for an address . 15 4

Establishing connections between sockets . 17 5

Transmitting data between sockets . 22 6

I/O multiplexing . 33 7

Getting and changing properties of sockets . 36 7

Detail Description . 45 9

File system calls . 46 9

Di�erences to generic behavior . 47 9

Routines speci�c to the �le system . 53 9

Unix domain sockets . 86 12

Di�erences to generic behavior . 87 12

Appletalk sockets . 90 13

Di�erences to generic behavior . 91 13

PPC sockets . 95 13

Di�erences to generic behavior . 96 13

Internet sockets . 101 14

Di�erences to generic behavior . 102 14

Routines speci�c to TCP/IP sockets . 104 14

PAP sockets . 119 16

Routines speci�c to PAP sockets . 120 16

Miscellaneous . 126 16

BSD memory routines . 127 16

Blocking calls . 132 17

Resources . 137 18

Advanced techniques . 144 20

Writing daemons . 145 20

FSSpec routines . 146 20

Adding your own communication families . 147 20

Known problems, words of warning . 148 21

References . 149 22

Index . 150 23

