
MPOOL(3) 1991 MPOOL(3)

NAME

mpool − shared memory buffer pool

SYNOPSIS

#include <db.h>

#include <mpool.h>

MPOOL *

mpool_open (DBT *key, int fd, pgno_t pagesize, pgno_t maxcache);

void

mpool_filter (MPOOL *mp, void (*pgin)(void *, pgno_t, void *),

void (*pgout)(void *, pgno_t, void *), void *pgcookie);

void *

mpool_new (MPOOL *mp, pgno_t *pgnoaddr);

void *

mpool_get (MPOOL *mp, pgno_t pgno, u_int flags);

int

mpool_put (MPOOL *mp, void *pgaddr, u_int flags);

int

mpool_sync (MPOOL *mp);

int

mpool_close (MPOOL *mp);

DESCRIPTION

Mpool is the library interface intended to provide page oriented buffer management of files. The buffers

may be shared between processes.

The function mpool_open initializes a memory pool. The key argument is the byte string used to negotiate

between multiple processes wishing to share buffers. If the file buffers are mapped in shared memory, all

processes using the same key will share the buffers. If key is NULL, the buffers are mapped into private

memory. The fd argument is a file descriptor for the underlying file, which must be seekable. If key is non-

NULL and matches a file already being mapped, the fd argument is ignored.

The pagesize argument is the size, in bytes, of the pages into which the file is broken up. The maxcache

argument is the maximum number of pages from the underlying file to cache at any one time. This value is

not relative to the number of processes which share a file’s buffers, but will be the largest value specified by

any of the processes sharing the file.

The mpool_filter function is intended to make transparent input and output processing of the pages possi-

ble. If the pgin function is specified, it is called each time a buffer is read into the memory pool from the

backing file. If the pgout function is specified, it is called each time a buffer is written into the backing file.

Both functions are are called with the pgcookie pointer, the page number and a pointer to the page to being

read or written.

The function mpool_new takes an MPOOL pointer and an address as arguments. If a new page can be allo-

cated, a pointer to the page is returned and the page number is stored into the pgnoaddr address. Other-

wise, NULL is returned and errno is set.

The function mpool_get takes a MPOOL pointer and a page number as arguments. If the page exists, a

pointer to the page is returned. Otherwise, NULL is returned and errno is set. The flags parameter is not

currently used.

The function mpool_put unpins the page referenced by pgaddr. Pgaddr must be an address previously

12, September 1



MPOOL(3) 1991 MPOOL(3)

returned by mpool_get or mpool_new. The flag value is specified by or’ing any of the following values:

MPOOL_DIRTY

The page has been modified and needs to be written to the backing file.

Mpool_put returns 0 on success and -1 if an error occurs.

The function mpool_sync writes all modified pages associated with the MPOOL pointer to the backing file.

Mpool_sync returns 0 on success and -1 if an error occurs.

The mpool_close function free’s up any allocated memory associated with the memory pool cookie. Modi-

fied pages are not written to the backing file. Mpool_close returns 0 on success and -1 if an error occurs.

ERRORS

The mpool_open function may fail and set errno for any of the errors specified for the library routine mal-

loc(3).

The mpool_get function may fail and set errno for the following:

[EINVAL] The requested record doesn’t exist.

The mpool_new and mpool_get functions may fail and set errno for any of the errors specified for the

library routines read(2), write(2), and malloc(3).

The mpool_sync function may fail and set errno for any of the errors specified for the library routine

write(2).

The mpool_close function may fail and set errno for any of the errors specified for the library routine

free(3).

SEE ALSO

dbopen(3), btree(3), hash(3), recno(3)

12, September 2


