
TransSkel Programmer’s Note 13 Universal Headers and Power Macintosh

TransSkel
Programmer’s Notes

13: Universal Header and Power Macintosh Support

Who to blame: Paul DuBois, dubois@primate.wisc.edu
Note creation date:11/18/94
Note revision: 1.00
Last revision date:
TransSkel release: 3.18

This Note describes the changes made to TransSkel release 3.18 to support use of the
universal header files and generation of native mode PowerPC code on the Power
Macintosh.

Beginning with release 3.18, TransSkel is written to be compatible with the universal
header files. The source has been changed to use universal procedure pointers based on
the UniversalProcPtr type defined in those headers. Use of universal procedure
pointers allows conformance to the procedural interface expected when running on the
PowerPC chip, so that native mode PPC code can be generated.

Interface Changes

TransSkel now uses universal procedure pointer (UPP) types where appropriate, i.e.,
when routine descriptors rather than function pointers might be necessary depending on
the type of code being generated (68K vs. PowerPC). This change affects the interface in
the following ways:

The SkelInitParams structure has changed slightly. It used to be:

struct SkelInitParams
{

short skelMoreMasters;
GrowZoneProcPtr skelGzProc;
SkelResumeProcPtr skelResumeProc;
Size skelStackAdjust;

};

The grow zone member is now a UPP, so the structure looks like this:

struct SkelInitParams
{

short skelMoreMasters;

Page 1

TransSkel Programmer’s Note 13 Universal Headers and Power Macintosh
GrowZoneUPP skelGzProc;
SkelResumeProcPtr skelResumeProc;
Size skelStackAdjust;

};

Use of the SkelInitParams structure in the PowerPC environment is discussed in TPN 5.

The following functions now have different prototypes because they require UPP’s instead of function pointers:

Page 2

TransSkel Programmer’s Note 13 Universal Headers and Power Macintosh
Old:

pascal ModalFilterProcPtr
SkelDlogFilter (ModalFilterProcPtr filter, Boolean doReturn);
pascal ModalFilterYDProcPtr
SkelDlogFilterYD (ModalFilterYDProcPtr filter, Boolean doReturn);
pascal short
SkelAlert (short alrtResNum, ModalFilterProcPtr filter, short positionType);
pascal void
SkelSetDlogProc (DialogPtr d, short item, SkelDlogItemProcPtr proc);
pascal SkelDlogItemProcPtr
SkelGetDlogProc (DialogPtr d, short item);

New:

pascal ModalFilterUPP
SkelDlogFilter (ModalFilterU 10/09/93 11/18scal ModalFilterYDUPP
SkelDlogFilterYD (ModalFilterYDUPP filter, Boolean doReturn);
pascal short
SkelAlert (short alrtResNum, ModalFilterUPP filter, short positionType);
pascal void
SkelSetDlogProc (DialogPtr d, short item, UserItemUPP proc);
pascal UserItemUPP
SkelGetDlogProc (DialogPtr d, short item);

For compiling 68K code, the impact of these changes is negligible since the new UPP types are equivalent to the old non-UPP types. For
instance, ModalFilterProcPtr and ModalFilterUPP are the same in the 68K environment. For compiling in the PowerPC
environment, you’ll need to change your application since you must pass routine descriptors instead of function pointers for UPP
parameters.

Examples of the way the function calls listed above are used for the PowerPC environment can be seen in the source for the Button,
DialogSkel, Filter, and MultiSkel demonstration applications. Search the source files for the skelPPC symbol.

Header File Compatibility Problems

The universal headers create universal procedure pointer (UPP) types as routine
descriptors for PowerPC code generation and as ProcPtr types for 68K code
generation. Relying on UPP type availability is a problem for people that don’t have or
don’t use the universal headers, because UPP types aren’t defined anywhere in the old
Apple headers. One way to deal with this would be to stipulate that TransSkel no longer
supports compilation with the older Apple headers. I felt that was an unreasonable
constraint (at least for now), so instead TransSkel defines compatibility types and macros
if the universal headers are unavailable. This works as follows:

• TransSkel.h first determines whether or not the universal headers are being used. It
defines the symbol skelUnivHeaders as 1 if universal headers (and thus
UniversalProcPtr’s) are available, 0 otherwise. The value of
skelUnivHeaders is determined by testing whether or not
USESROUTINEDESCRIPTORS is defined, since that macro is defined in the
universal headers but not in the old Apple headers.

Page 3

TransSkel Programmer’s Note 13 Universal Headers and Power Macintosh

• When skelUnivHeaders is 0, it’s assumed that the types and macros associated
with UPP’s are unavailable and compatibility workarounds are defined to compensate.
TransSkel.h typedef’s some of the UPP types needed in the TransSkel source code
to the equivalent non-UPP types and defines macros that emulate UPP-manipulation
macros:

Page 4

TransSkel Programmer’s Note 13 Universal Headers and Power Macintosh

if !skelUnivHeaders

typedef ProcPtr UniversalProcPtr;
typedef GrowZoneProcPtr GrowZoneUPP;
typedef ModalFilterProcPtr ModalFilterUPP;
typedef ModalFilterYDProcPtr ModalFilterYDUPP;
typedef pascal void (*UserItemUPP) (DialogPtr d, short item);

define NewModalFilterProc(proc) (ModalFilterUPP)(proc)
define NewModalFilterYDProc(proc) (ModalFilterYDUPP)(proc)

define DisposeRoutineDescriptor(upp) /* as nothing */

endif /* !skelUnivHeaders */

This is done primarily for UPP types needed for interface function arguments or return values.

If you need to test for universal headers in your own code, you can do so like this:

#if skelUnivHeaders
/* universal headers are being used */

else
/* universal headers are not being used */

endif

The symbol skelUnivHeaders is tested rather than USESROUTINEDESCRIPTORS for several reasons:

• I believe that testing USESROUTINEDESCRIPTORS is a valid way of testing whether or not the universal headers are in use, but if
that turns out not to be true, I can fix all code that needs to know about universal headers by changing the way skelUnivHeaders
gets its value. If USESROUTINEDESCRIPTORS were tested directly, it would be necessary to edit each such test.

• You can override the value of skelUnivHeaders if you like by setting it in your prefix code. This is not true for
USESROUTINEDESCRIPTORS, which should be left alone. One use for this would be if you want to require compilation using the
universal headers: you can cause the compiler to complain when they are not used by defining skelUnivHeaders as 1, since this
will cause errors whenever UPP types are encountered in your source.

• Testing whether or not universal headers are used is a stopgap measure until they are truly used “universally.” Right now THINK C
can be used with universal headers or the old Apple headers which know nothing about UPP’s. Eventually (say, one or two years
hence) I may just assume the universal headers are used. At that point I’ll just unconditionally define skelUnivHeaders as 1 in
TransSkel.h.

PowerPC Code Generation

If you need to know whether you’re generating PowerPC code, the macro skelPPC can
be used.
skelPPC is 1 if compiling PowerPC code, 0 if compiling 68K code. A value of 1 also
implies that the universal headers are available, since no non-universal header method
exists for generating PowerPC code. (A value of 0 implies nothing, however.)

skelPPC is simply a shorthand. The usual way to test for PowerPC code generation is:

Page 5

TransSkel Programmer’s Note 13 Universal Headers and Power Macintosh

#if defined(powerc) || defined (__powerc)
#endif

But it’s easier to write:

#if skelPPC
#endif

Here’s an example that shows how to compile code conditionally for the PowerPC or 68K environments. It comes from MSkelHelp.c in the
MultiSkel demonstration application. The example shows how to pass a control action procedure to TrackControl(), in this case a
scroll bar tracking procedure.

The action procedure is declared according to following prototype:

static pascal void
TrackScroll (ControlHandle theScroll, short partCode);

In order to pass the action procedure to TrackControl(), a pointer to the procedure is stored in either a routine descriptor or a scalar
variable as follows:

/*
* Set up a variable to point to the scroll tracking procedure. For 68K code this
* is just a direct pointer to TrackScroll(). For PowerPC code it is a
* routine descriptor into which the address of TrackScroll() is stuffed.
*/

if skelPPC /* PowerPC code */

static RoutineDescriptor trackDesc =
BUILD_ROUTINE_DESCRIPTOR(uppControlActionProcInfo, TrackScroll);

static ControlActionUPP trackProc = (ControlActionUPP) &trackDesc;

else /* 68K code */

static ControlActionUPP trackProc = TrackScroll;

endif

The preceding code sets trackProc to the value appropriate for the type of code being generated. To use trackProc, just pass it to
TrackControl():

partCode = TrackControl (helpScroll, pt, trackProc);

Page 6

