
PENNYWISE™
APPLICATION
FRAMEWORK

COPYRIGHT 1994 PETER KAPLAN & PENNYWISE SOFTWARE

Introduction

PennyWise Application Framework is a development framework which makes implementing a
Macintosh application much easier. The framework handles all the details of how to dispatch events and
to whom they should be dispatched. This will make implementing a Macintosh application a much less
daunting task, particularly to the new programmer.

While I feel that this framework will be a large asset to the new programmer, this is by no means a
lightweight beginners framework. This framework model is a high powered application core that I have
yet to find a project that was not made easier by using it. More than anything else, it is, simply put, just a
good design. This is what I wish I had available when I started Macintosh development.

Additionally, this framework does not do things it’s own way, forcing you to learn a custom interface
system rather then the Macintoshes. It hides very little from the user, but rather enforces a structure that
makes building complex applications much simpler. This framework will not avoid the need to learn the
Macintosh Toolbox; it will make learning, understanding and using it easier.

The three major concerns while developing this framework were ease of use, speed of execution, and
flexibility. I believe I've succeeded in all three areas.

PennyWise Application Framework was built using Think Project Manager so that is the form that the
framework takes. As time goes on and as demand arises it will be ported to other platforms.

NOTE: This document should explain all the intricacies of using the PennyWise Application
Framework. However, documentation is far from my specialty. It may be easier to understand if you
were to try to build the sample project and then read this document. Yeah, you heard me right, do it first,
then read the directions.

Price

A great deal of time and effort went into making this framework a viable development tool. I would like
nothing more than to say “I don’t need the money,” unfortunately that is not the case. Therefore pricing
is as follows:

Individual—$25 This license fee grants one individual the right to use PennyWise Application
Framework for any and/or all software development projects.

Group—$100/6 This license fee grants the same rights as the individual license fee, but gives a
discount for groups working together. The licensing is $100 for up to 6 individuals and $15 for each
additional person, up to a maximum of $200.

Site—$200 This license give all people within your organization the right to use PennyWise
Application Framework.

Tutorial—?? If you have no intention of using PennyWise Application Framework for development,
but found it to be a valuable learning tool. The tutorial fee is whatever you think it is worth. (a postcard
would be nice).

NOTE: Please read the License Agreement for the details.

License Agreement

When the above mentioned fee has been paid, PennyWise grants the use of PennyWise Application
Framework on a single computer for each license bought. Licensees may use the PennyWise Application
Framework to create freeware, shareware, or commercial software provided that 1) Credit is given to
PennyWise Software in an appropriate place in the software and/or documentation. 2) Only applications
are distributed—not source and/or object code.

You may not include any part of PennyWise Application Framework in a product for which you are or
have given up your rights to the source code.[Contract Developers] If you which to use PennyWise
Application Framework in such a product the individual or company who will acquire your code must
buy an additional license.

Payment should be sent to:

PennyWise Software
PO Box 32153
Raleigh, NC 27622

Checks should be made payable to: Peter Kaplan

Overview
The PennyWise Application Framework is broken into 4 parts. It is written this way to allow the
greatest flexibility. While they are built to be used together you can decide what parts make sense in
your development methodology.
1 • The PWFramework.LIB.

The PWFramework.LIB is the application core. This library is a very tightly written, flexible event
handler. It does all of the behind the scenes work handling and/or dispatching events to the proper
places. The inclusion of this library adds about 3K of code to your project. But it is code that would
have to be written anyway.
2 • The PennyWise Application Framework Project Model.

The PennyWise Application Framework Project Model is a Think Project Manager Project Model
which uses the PWFramework.LIB and implements a working Application around it. This is the best
starting point for your projects. This allows you to start new projects with a working skeleton already
implemented. This requires PWFramework.LIB to work.
4 • The Window Templates.

The Window Templates are stationary pad files that implement the different window types. To add
window types to your application simply open the appropriate template and make changes to fit your
new window type. Step by step directions are given at the top of the template's source file to make
implementing new WindowIDs as painless as possible.
3 • The Utility Libraries.

The Utility Libraries are utility routines that would be of use to all Macintosh programmers. All
experienced programmers probably already have similar libraries. They can be used either with the
PWFramework.LIB or separately, in other projects; there are no interdependencies with
PWFramework.LIB. This set of utilities is far from a robust programming library. It will increase with
each revision of the PennyWise Application Framework. (If you can think of other routines that you
would like to see added let me know and I'll try to include them).

PWFramework.LIB

To make the PWFramework.LIB work you must assign each kind of window a separate ID. The IDs start
at 1 and work upwards to the maximum number of window types your application handles. (0 is
reserved for default behavior). At your application’s initialization you register each WindowID’s
handlers with the PWFramework.LIB. Along with each WindowID’s handlers you must select what type
of window it will be. (Described Below).

NOTE: WindowIDs are not individual windows, but rather kinds of windows. You can have many
windows of the same ID open at the same time.

Additionally, each WindowID is assigned a Window Type. For each Window Type there are proper
methods of interaction. All of the proper methods of interaction are handled by the PWFramework.LIB.
All that you as the programmer need to do is assign the proper Type to your WindowIDs. The list of
supported window Types is maintained by PWFramework.LIB, but that does not mean the “look” of the
window is controlled; only the actions. The “look” of a window is controlled by the WDEF. See Inside
Macintosh: Macintosh Toolbox Essentials for details.

The currently available window Types are:

kWINDOW_TYPE_APPLICATION
This will behave as a standard Macintosh window, it supports all the dragging, sizing and switching you
would expect. It conforms completely with the Guidelines laid out in Macintosh Human Interface
Guidelines.

kWINDOW_TYPE_MOVABLE_MODAL
This will behave like kWINDOW_TYPE_APPLICATION in all situations except when the user tries to
select another window in your application. Instead of bringing the other window forward the user will
just get a beep.

kWINDOW_TYPE_DIALOG
This will behave like kWINDOW_TYPE_MOVABLE_MODAL in all situations except when the user tries
to switch out of your application. Instead of switching out of your application the user will just get a
beep.

kWINDOW_TYPE_BACKGROUND,
This window is not like the others, it will not come to the foreground when the user click in it. It stays
where it was. This is not a standard Macintosh Type of window. Possible uses are: if you want a Logo
screen to always be behind your running application. The only reason I implemented this is a customer
wanted all other applications to disappear while working in his system (Even the trashcan); so I made a
virtual desktop window the size of the screen and just filled it with the desktop pattern.

kWINDOW_TYPE_FLOATING.
This window is a floating palette window, It will reside in a layer above the application windows.
NOTE: To implement a floating window you must use the TextServices utility windows. THIS
SYSTEM DOES NOT IMPLEMENT ITS OWN FLOATING PALETTES.

NOTE: kWINDOW_TYPE_FLOATING windows have not yet been fully implemented.

PWFramework.LIB Functions:

These four functions must be called by your application at the proper time. They are the heart of the PWFramework system.
Implementing them is simple, two of the four get called right from the main segment of your code. The other two get called at
very well defined times. These routines are already properly implemented in the PennyWise Application Framework Project
Model.

void PWInitMac(short masters, Size growStack, short noOfWindowTypes);

This function initializes all of the Macintosh Managers and the PWFramework itself. It allocates all memory for the window
handlers and allocates the gMouseMovedRgn global variable.

short
masters
The number of times MoreMasters should be called by your Application. This will determine how many Master Pointer
Blocks are allocated in your Application's Heap.

Size
growStack
This is how many bytes you would like to increase the stack size by. This is handled in the method outlined in Inside
Macintosh: Memory. Unless you have large stack requirements you should leave this 0.

short
noOfWindowTypes
This is the number of different WindowIDs your Application uses. If you do everything correctly, passing in the value
kMAX_WINDOW_IDS will work.

void PWMainEventLoop(long sleepValue, Boolean AllowGlobalIdle);

Call this routine after calling PWInitMac, initializing all the window handlers, and doing any other things at startup your
application may need. This routine starts the PWFramework.LIB event processing. You do not ever come out of this call so
any code after this call in main will never get called.

long
sleepValue
This is the value that will be passed into WaitNextEvent for the sleep parameter. This is the maximum number of ticks that
your application agrees to give up to background applications while no events need processing.

Boolean
AllowGlobalIdle
The PWFramework allows you a high degree of flexibility in event processing by giving you access to the event before the
PWFramework handles it. This is done by implementing a GlobalIdle routine. However, because most applications do not
need this flexibility it can be turned off by passing false in this parameter. NOTE: You must still have a GlobalIdle routine,
but it will never get called.

void PWQuitApplication(void);

Call this routine when the user selects Quit from the menu. It will go about asking all the windows to shut down and if they
all agree to do so it calls ExitToShell.

short PWCallClose(EventRecord *theEvent, WindowPtr theWindow);

Call this function when the user selects Close from the menu. This function will get called by the framework automatically
when the user clicks in the goAway box.

Developer Provided Functions:

These functions must be provided by you, the developer. Even if you are not going to use them, they must be defined or a
link error will occur. These routines are already properly implemented in the PennyWise Application Framework Project
Model. In the Project Model they do nothing, but they are there.

short GlobalIdle(EventRecord *theEvent);

This function can be used to get access to the event before the PWFramework handles it. You can do as little or as much
preprocessing as you like. If the return value is TRUE the framework will assume that your GlobalIdle function handled the
event and it will do nothing. If the return value is FALSE the PWFramework.LIB will handle the event.

NOTE: If you pass ALLOW_GLOBAL_IDLE to PKMainEventLoop this function will get called once at the beginning of
each new event, if you pass !ALLOW_GLOBAL_IDLE this routine will never get called. It was done this way because very
few applications will need that kind of access so if it will not be used why waste time in the main event loop calling it.

void GlobalPreMenu(void);

This function will be called after a user presses the mouse button in the menu bar, but before a call is made to MenuSelect.
This is a good place to build a “Windows” menu.

void GlobalPostMenu(void);

This function will be called directly after the MenuSelect call. Here you would undo any changes you made in the
GlobalPreMenu call.

NOTE: Toggling menu items depending on which window is front most should not be done here. Each window has a Handler
to do just that.

PWFramework Global Variable:

This global variable is the only public access global for the PWFramework.LIB. In fact, the Framework only uses 10 bytes of
global space. Additionally, speaking of memory, when InitMac is called the PWFramework.LIB will allocate one handle for
use by the framework. The handle size will vary depending on how many window IDs you have implemented. This is the
only memory requirements made by PWFramework.LIB

RgnHandle gMouseMovedRgn;

This Rgn is allocated and initialize in the InitMac function. It is used as the mouseRgn in the call to WaitNextEvent. This is
the Rgn that moving the mouse will not cause an event. See WaitNextEvent in Inside Macintosh:Macintosh Toolbox
Essentials for the details. Your window will want to alter this from the ThisWindowCursorCall.

NOTE: It sounds backwards, but it make sense to do it this way.

Window Handlers:

For each window ID you will have to create handler routines that will get called when a given event belongs to your window.
Additionally, you will have to register each handler with the PWFramework.LIB. (This will be explained in the next section).
If your window does not have to do anything for a particular event it you can pass in an empty routine. (The same empty
routine can be reused for all empty handlers—This will save space).

void ThisWindowCreate(EventRecord* theEvent, WindowPtr theWindow);

This routine creates a new window. It should create the window in the most generic way possible. Unless your window needs
no input parameters you will want to write a different “Create” routine that can take parameters of your choosing. There is no
routine in the PennyWise framework that currently calls this routine, it is included for completeness only.

Regardless of what routine actually creates the window it must perform certain tasks. It must allocate a handle to its private
data structure and install it in the refCon field of the WindowPtr. The first field of this data structure MUST be the
PWFramework Window Header. (This is explained in the templates and demos).

(NOTE: What I do is write a Create routine for all my windows using the parameters that are appropriate for that window ID
and then just make this routine a wrapper where it calls my custom routine with generic parameters).

The parameters, theEvent and theWindow, are irrelevant and are only supplied for uniformity.

short ThisWindowDispose(EventRecord* theEvent, WindowPtr theWindow);

This routine will close and dispose of the window specified in the parameter theWindow. It will return TRUE if the window
was closed and FALSE if it remains open.

The common thing for this routine to do is check to see if changes have been made to this window (Is_Dirty Flag); if changes
have been made, present the user with a save changes dialog. If they say save it save the data and dispose of the window, if
they say cancel exit without saving and return FALSE.

This routine will be called by PWCloseCall.

void ThisWindowZoomIn(EventRecord* theEvent, WindowPtr theWindow);

The PW Application Framework will do the actual Tacking and Zooming of the window. This routine gets called directly
before the framework Zooms the window in. So you can do any pre-processing that you would like. (I have yet to find a need
to do anything here, but you never know).

void ThisWindowZoomOut(EventRecord* theEvent, WindowPtr theWindow);

The PW Application Framework will do the actual Tacking and Zooming of the window. This routine gets called directly
before the framework Zooms the window out. So you can do any pre-processing that you would like. (This is useful when
you want to ask the print manager about the size of the page, so you can force that to be the size “Zoomed” to.

void ThisWindowResize(EventRecord* theEvent, WindowPtr theWindow);

This routine gets called whenever the user resizes the window (GrowBox or ZoomBox). It must reposition controls, lists etc.
according to the new size.

void ThisWindowClick(EventRecord* theEvent, WindowPtr theWindow);

This routine will get called when the user clicks in the content region of your window. You must process the click
appropriately.

void ThisWindowUpdate(EventRecord* theEvent, WindowPtr theWindow);

This routine will get called for an Update Event in your window. You must draw the window and controls in your window.
NOTE: When it gets called from the PW Application framework it is already between calls to BeginUpdate and EndUpdate;
So you need not make those calls. (And you should NOT make them).

void ThisWindowActivate(EventRecord* theEvent, WindowPtr theWindow);

This routine will get called for an Activate event in your window. You must Activate controls and such.

void ThisWindowDeactivate(EventRecord*theEvent, WindowPtr theWindow);

This routine will get called for an Deactivate event in your window. You must Deactivate controls and such.

void ThisWindowDrag(EventRecord* theEvent, WindowPtr theWindow);

This routine gets called when the user drags this window to a different position on screen. It gets called directly after the drag
takes place. (I have yet to find a reason to do something here.) The dragging will be based on screenBits.bounds.

void ThisWindowIdle(EventRecord* theEvent, WindowPtr theWindow);

This routine will get called on NULL events. Only the front most window will receive this call (Even if the application is in
the background). You can perform periodic tasks here. But, don’t use this to adjust the mouse cursor, use the Cursor routine
via gMouseMovedRgn.

void ThisWindowCursor(EventRecord* theEvent, WindowPtr theWindow);

This routine gets called when there is a mouse moved event. In this routine you must determine what cursor to display based
on the mouse’s position and manipulate the gMouseMovedRgn global variable to reflect the move. On exit the mouse must
be showing the correct cursor and the gMouseMovedRgn should be set to the Rgn where the mouse movements should NOT
cause mouse moved events. (NOTE: This was a bit confusing to me at first, but it makes perfect sense to do it this way; If
you need clarification look in Inside Macintosh: Processes)

void ThisWindowKeyDown(EventRecord* theEvent, WindowPtr theWindow);

This routine gets called when the user presses a key (one that is not a Command Key combination). You must do what is
appropriate for your window.

void ThisWindowPreMenu(EventRecord* theEvent, WindowPtr theWindow);

This routine gets called directly before a call to MenuSelect. So if your window wants to enable, disable or change names of
menu items here is where you should do it. (Ex. Make ‘Close’ read ‘Close “untitled”’ or turn on Cut, Copy, Paste as
appropriate). REMINDER: theWindow is the front most window when this is called so you have access to the window and its
data to make the changes appropriately.

short ThisWindowDoMenu(EventRecord*theEvent, WindowPtr theWindow,
short theMenu, short theItem,short theWindowID);

This routine gets called when the user selects a valid item from the menu (or a
command key). When this routine is called you must either handle the event entirely
and return TRUE or not handle it at all and return FALSE. (If you return false it
will be given to the defaultMenuDispatch (GlobalMenuDispatch) after which it is
assumed handled no matter what the return value is.

void ThisWindowPostMenu(EventRecord* theEvent, WindowPtr theWindow);

This routine gets called directly after the call to MenuSelect. So you can clean up
the changes you made in ThisWindowPreMenu.

void ThisWindowBackground(EventRecord*theEvent, WindowPtr theWindow);

This routine will only get called if theWindow IS NOT the front most window. It is
intended for background processing. If you need a procedure to get called while
both in the background and in the foreground make it an Idle and Background
procedure.

NOTE: if you do not wish to do any background processing you can set this routine
to NULL in the WindowList.

THIS IS THE ONLY ROUTINE YOU CAN SET TO NULL. Others just supply an empty routine
if nothing is to be done.

void ThisWindowGrowRect(EventRecord* theEvent, WindowPtr theWindow,
Rect* theRect);

This gets called before the Framework calls the GrowWindow procedure. What this
routine must pass back in theRect is theRect->top = min height of window, theRect-
>left = min width of window, theRect->bottom = max height or window, and theRect-
>right = max width of window. If you wish to handle the GrowWindow call yourself
pass back a Rect of 0,0,0,0.

void ThisWindowGetScrap(EventRecord*theEvent, WindowPtr theWindow);

This routine will be called on a resume event when the convertClipboard bit is set.
What you must do is convert the system scrap to your private scrap.

void ThisWindowPutScrap(EventRecord*theEvent, WindowPtr theWindow);

This routine will be called on a suspend event . What you must do is convert your
private scrap to the system scrap.

INSTALL FUNCTIONS:

This is the way you register your WindowIDs with PWFramework.LIB. These install
functions must get called before you create or access any windows. For each
WindowID you must call these routines with the WindowID and the proper parameter.

This sets the window Type for this WindowID.
void PWInstallWindowType (short id, short theType);

All the remaining functions install the proper handlers. They have the format:

void PWInstallCreate (short id, ProcPtr proc);
void PWInstallDispose (short id, ProcPtr proc);
void PWInstallZoomIn (short id, ProcPtr proc);
void PWInstallZoomOut (short id, ProcPtr proc);
void PWInstallResize (short id, ProcPtr proc);
void PWInstallClick (short id, ProcPtr proc);
void PWInstallUpdate (short id, ProcPtr proc);
void PWInstallActivate (short id, ProcPtr proc);
void PWInstallDeactivate (short id, ProcPtr proc);
void PWInstallIdle (short id, ProcPtr proc);
void PWInstallCursor (short id, ProcPtr proc);
void PWInstallKeyDown (short id, ProcPtr proc);
void PWInstallDrag (short id, ProcPtr proc);
void PWInstallPreMenu (short id, ProcPtr proc);
void PWInstallMenu (short id, ProcPtr proc);
void PWInstallPostMenu (short id, ProcPtr proc);
void PWInstallGrowRect (short id, ProcPtr proc);
void PWInstallBackground (short id, ProcPtr proc);
void PWInstallScrap2Appl (short id, ProcPtr proc);
void PWInstallAppl2Scrap (short id, ProcPtr proc);

MENUS

A great deal of time and effort went into developing methods for handling menus,
but all of the methods tried only made working with menus more obfuscated. So what
the framework does is dispatches menu selections to your routines to handle.

Of course, menu dispatching is all automatic, but it is up to you to install the
menus at startup and up to your routines to handle the menu selections. Each window
has its own handlers for doing just that. (ThisWindowDoMenu—As described in the
previous sections).

PennyWise Application Framework Project Model

The PennyWise Application Framework Project Model is a skeleton project that
implements the PWFramework.LIB. This is the best starting point for your
PWFramework.LIB projects. It is a complete application that will compile and run
without any modification. (Although it does nothing). From this skeleton you can
build your application. All that you need to do is install your window handlers and
it will work. Then, as the need arises, you can modify the skeleton into your full
blown Macintosh Application.

Once properly installed all that you need to do in order to use the Project Model
is

1) Start a New Project in Think Project Manager.

2) When the New Project dialog appears select PennyWise Application Framework from the
list and press Create.
3) Name and Save your new project wherever you keep your projects.

That’s it! Now the project will compile to a running framework without any
modification.

Window Templates

In order to make implementing your application as painless as possible several
templates have been written for the different window types defined by PennyWise
Application Framework. These templates will be placed in the folder with a new
project started from the PennyWise Application Framework Project Model. They are
stationary pad files so they will open in untitled windows; this way you can name
your files as you need without destroying the originals.

These templates have all the handler routines already written and have general
instructions on how to incorporate them into your project. You can start from these
templates and then modify the routines to fit your needs as you add then to your
project.

UTILITY LIBRARIES

ALSO INCLUDED WITH THE PENNYWISE APPLICATION
FRAMEWORK IS A SET OF UTILITY LIBRARIES. THE SET OF
LIBRARIES WILL INCREASE WITH EACH REVISION OF THE
PENNYWISE APPLICATION FRAMEWORK. THE HEADERS ARE IN
THE PENNYWISE INCLUDES FOLDER IN THE SAME FOLDER AS THINK
PROJECT MANAGER. THE LIBRARIES ARE IN THE PENNYWISE LIBRARIES

FOLDER ALSO IN THE SAME FOLDER AS THINK PROJECT
MANAGER.

THE CURRENT LIBRARIES ARE DIALOGUTILS, WINDOWUTILS,
MENUUTILS, PRINTUTILS, AND PREFSMGR.

DIALOGUTILS

DIALOGUTILS IMPLEMENTS SEVERAL COMMON ROUTINES THAT
ARE PERFORMED WITHIN THE CONTEXT OF DIALOG BOXES.
SEVERAL OF THE DRAWING ROUTINES RELY UPON WINDOWUTILS.
SO INCLUDING THIS FILE MEANS INCLUDING THAT ONE AS WELL.

PASCAL OSERR SETDIALOGDEFAULTITEM (DIALOGPTR
THEDIALOG, SHORT NEWITEM);

PASCAL OSERR SETDIALOGCANCELITEM (DIALOGPTR
THEDIALOG, SHORT NEWITEM);

THESE ROUTINES ARE IMPLEMENTED BY APPLE AS PART OF THE
MACINTOSH DIALOG MANAGER. THE HEADERS SUPPLIED WITH
MY COPY OF THINK C DID NOT HAVE THEM DEFINED. SO I PUT
THEM HERE. IF YOUR HEADERS ALREADY HAVE THEM DEFINED
REMOVE THEM FROM THIS FILE. TO SEE HOW THEY WORK LOOK
TO INSIDE MACINTOSH: TOOLBOX ESSENTIALS.

SHORT GETDITEMTYPE(WINDOWPTR THEDIALOG, SHORT
THEITEM);

HANDLE GETDITEMHANDLE(WINDOWPTR THEDIALOG,
SHORT THEITEM);

RECT GETDITEMRECT(WINDOWPTR THEDIALOG, SHORT
THEITEM);

GIVEN A DIALOGPTR AND ITEM NUMBER THESE ROUTINES WILL
RETURN THE DIALOG ITEM TYPE, HANDLE, OR RECT
RESPECTIVELY.

BOOLEAN ISBUTTON(WINDOWPTR THEDIALOG, SHORT
THEITEM);

BOOLEAN ISRADIO(WINDOWPTR THEDIALOG, SHORT
THEITEM);

BOOLEAN ISCHECKBOX(WINDOWPTR THEDIALOG, SHORT
THEITEM);

BOOLEAN ISOTHERCONTROL(WINDOWPTR THEDIALOG,
SHORT THEITEM);

GIVEN A DIALOGPTR AND ITEM NUMBER THESE ROUTINES WILL
RETURN TRUE IF THE ITEM IS A BUTTON, RADIO BUTTON ,
CHECKBOX, OR CUSTOM CONTROL RESPECTIVELY.

VOID FLASHBUTTON(WINDOWPTR THEDIALOG, SHORT
THEITEM);

THIS ROUTINE WILL HIGHLIGHT THE BUTTON FOR AN INSTANT
AND THEN RETURN IT TO ITS PREVIOUS STATE. THIS IS USEFUL FOR
WHEN YOU WANT A KEYSTROKE TO SIMULATE PRESSING A
BUTTON.

VOID HILITEDITEM(WINDOWPTR THEDIALOG, SHORT
THEITEM, SHORT VALUE);

THIS ROUTINE SETS THE HIGHLIGHT STATE OF A DIALOG ITEM.

VOID FRAMEITEM(WINDOWPTR THEDIALOG, SHORT

THEITEM, LONG COLOR);

THIS ROUTINE DRAWS A FRAME AROUND THE RECTANGLE OF A
GIVEN DIALOG ITEM. THE FRAME WILL BE DRAWN IN THE COLOR.
(OLD QUICKDRAW COLORS)

VOID DRAWBUTTONOUTLINEITEM(WINDOWPTR THEDIALOG,
SHORT THEITEM, LONG COLOR);

THIS ROUTINE DRAWS A BOLD OUTLINE AROUND THE BUTTON AT
THE GIVEN DIALOG ITEM. THE FRAME WILL BE DRAWN IN THE
COLOR. (OLD QUICKDRAW COLORS)

VOID ERASEBUTTONOUTLINEITEM(WINDOWPTR
THEDIALOG, SHORT THEITEM);

THIS ROUTINE ERASES A BOLD OUTLINE AROUND THE BUTTON AT
THE GIVEN DIALOG ITEM.

VOID DRAWFOCUSITEM(WINDOWPTR THEDIALOG, SHORT
THEITEM, LONG COLOR);

THIS ROUTINE DRAWS A FOCUS OUTLINE AROUND THE GIVEN
DIALOG ITEM. THE FRAME WILL BE DRAWN IN THE COLOR. (OLD
QUICKDRAW COLORS)

VOID ERASEFOCUSITEM(WINDOWPTR THEDIALOG,
SHORT THEITEM);

THIS ROUTINE ERASES A FOCUS OUTLINE AROUND THE GIVEN
DIALOG ITEM.

VOID GETDTEXT(DIALOGPTR THEDIALOG, SHORT THEITEM,
UNSIGNED CHAR* THESTRING);

VOID SETDTEXT(DIALOGPTR THEDIALOG, SHORT THEITEM,
UNSIGNED CHAR * THESTRING);

These routines will get or set the text of a dialog item. The item must be either a static text or edit

text item.

void SetDValue(DialogPtr theDialog, short theItem, short theValue);
short GetDValue(DialogPtr theDialog, short theItem);

These routines will get or set the value of a dialog item. The item must be a control.

void GetPopUpItemString(WindowPtr theDialog, short theItem, unsigned char *
theString);

This routine will get a string from a PopupMenu control. The string will be the currently selected item in
the popup menu.

PrefsMgr

PrefsMgr implements a uniform way for your application to access a preferences file held in the
Preferences folder (or sub folder). This manager requires System 7.0 or better to run. It uses 2 bytes of
global data space, but has no other memory requirements. The PrefsMgr routines will move memory if
the equivalent Resource Manager routine moves memory.

short OpenPrefsFile(char *dirName, char *fileName, NewRoutine newProc,
OSType theCreator);

This routine will open a preferences file named fileName. If you would like the preference file to be in a
sub directory supply the directory name in dirName (If not pass NULL). The file will be of type ‘pref’
and have a creator code of theCreator. Upon exit the PrefsMgr will have been initialized and be ready to
use. If the call was unable to open the preferences file it will return NULL. All other values mean it was
successful.

The preferences manager remains active until you call ClosePrefsFile. However, calls to the resource
manager will not be sent to the preferences file; but rather your application. Only calls to the PrefsMgr
routines will get and save resources to the preferences file.

If the prefs file does not exist this file will create one and then call the routine you supply in
NewRoutine. NewRoutine must be of the format void NewRoutine(short). When your routine gets called
your preferences file will be the Current Res File and the short that gets passed in will be the
oldCurrentResFile (Your Applications Res File). It is then up to your routine to set up any needed
resources in the prefs file.

void ClosePrefsFile(void);

This routine will close the currently opened Prefs file. After this call is made you can not use the prefs
manager routines again (unless you open another prefs file).

long GetOrMakeDir(short theVolume , long parID, char *theName);

This routine is provided because it is useful outside the realm of preferences. It will return the dirID of
the directory at theVolume with parID of the name theName. If one does not exist it will be created.

The remainder of the routines are directly analogous to the Resource Manager routines, but they will
only look in preferences file. The routines are as follows:

Handle GetPrefsResource(ResType theType, short theID);
Handle GetPrefsNamedResource(ResType theType, char * theName);
Handle GetPrefsIndResource (ResType theType,short theIndex);
void GetPrefsIndType (ResType *theType,short theIndex);
short CountPrefsTypes (void);
short CountPrefsResources (ResType theType);
void RmvePrefsResource (Handle theHandle);
short UniquePrefsID (ResType theType);
void AddPrefsResource (Handle theHandle, ResType theType,short

theID, char * theName);

MenuUtils

These routines are for customizing menu items at run time. They can be used to make Close become
Close this Document and then change it back to Close when thisDocument is no longer open. (See
PennyView for an example).

void AddNameToMenu(MenuHandle theMenuHandle, short theItem, unsigned
char* theNameString, Boolean elipse, Boolean quotes);

This routine will add the string pointed to by theNameString to the end of the menu item at theItem in
menu theMenuHandle. The parameter elipse should be true if the item has an elipse at the end. The
parameter quotes should be true if you want theNameString in quotes.

void SetMenuItemToIndString(short theID, short theIndex, MenuHandle
theMenu);

This routine will get a string from STR# resource number theID at index theIndex and make it the menu
item theIndex in menu theMenu.

PrintUtils

The PrintUtils hides a great deal of the detail of the printing manager from you. It is good for printing if
you don’t have very elaborate needs. It uses four bytes of global space and allocates only the required
data structures for printing.

void DoPageSetup(void);

Call this routine when someone selects PageSetup from the File Menu. It will do the right thing.

Boolean DoPrintDialog(void);

Call this routine to get a Print Job Dialog box. It will do the right thing. If the user selected cancel it will
return FALSE, if the user selected OK it will return TRUE.

void GetPageSize(Rect *theRect);

This routine will return the Rect of the page that is currently selected in the Page Setup.

void GetPageSizeWhileOpen(Rect *theRect);

This routine does the same thing as the previous one, but you call this one if you are currently printing.
(Between StartPrinting and StopPrinting calls).

void StartPrinting(void);

This call will initialize printing, and set the current port to the printing port. Whatever Quickdraw calls
you now make are going to a printed page.

void StopPrinting(void);

This call will close the print page and end printing. Then it will send the print job off to be printed.

void NextPage(void);

This routine will close the current print page and open a new one. Call this when you fill up a page and
want to go on to the next.

WindowUtils

The window utilities have several routines that are of general interest for windows. The
WindowUtils.LIB relies on PrefsMgr.LIB so inclusion of these windows routines means including
PrefsMgr as well.

void DrawButtonOutlineRect(WindowPtr theWindow,Rect*theRect,long color);

This routine will draw a default button outline around the given Rect. It will draw the outline in the
color. (Old Quickdraw colors)

void EraseButtonOutlineRect(WindowPtr theWindow, Rect *theRect);

This routine will Erase a default button outline around the given Rect.

void DrawFocusRect(WindowPtr theWindow, Rect *theRect, long color);

This routine will draw a Focus Rect around the given Rect. It will draw the focus in the color. (Old
Quickdraw colors)

void EraseFocusRect(WindowPtr theWindow, Rect *theRect);

This routine will erase a Focus Rect around the given Rect.

void SetWindowPosition(WindowPtr theWindow, short theID);

This routine will set the window position of the window with theID. (The ID is usually a ResID). It will
move the window to that position if that position is not offscreen. This routine relies on the PrefsMgr, so
it must be available and initialized with a prefs file.

void ChangeWindowPosition(WindowPtr theWindow, short theID);

This routine will tell the prefs file that the user has moved with window with theID. (The ID is usually a
ResID). It will update the prefs file accordingly. This routine relies on the PrefsMgr, so it must be
available and initialized with a prefs file.

void CascadePosition(WindowPtr theWindow);

This routine will move theWindow slightly to the right and down from the current FrontWindow. It will

only do this if the windows would otherwise be in the same place.

Final Word

I hope that you find PennyWise Application Framework as useful as I do. I think it is a good learning
tool and a good development tool.

What is in the future for PennyWise Application Framework? This is entirely up to market
demand. So, if you can think of something that you want implemented tell me. I think the next
thing I’d like implemented would be the Drag and Drop Manager. Additionally, I’ll be adding
new Utility routines.

If you have any questions, comments, concerns, praise or insults feel free to contact me:

AOL: PennyWs SW
eWorld:MacRTP

PennyWise Software
PO Box 32153

Raleigh, NC 27622

