
C.1 NCSA UIFlow

Appendix C Standard DTM Routines

Overview

This appendix lists some standard DTM routines described by DTM's creator, Jeff Terstriep. All
DTM documentation is available via FTP. Refer to Appendix C, "Obtaining NCSA Software," for
those instructions.

DTMmakeInPort
int DTMmakeInPort(portname)
char *portname;

DTMmakeInPort creates an input port. Portname is pointer to a string with the format
'hostname:port'. 'Hostname' is optional and will always be replaced with the local host's name.
Portname represent the address where the system will listen for incoming messages. If
portname is ':0' then the system will assign the TCP port number, the value can be retrieved
with DTMgetPortAddr (see below).

If DTMmakeInPort suceeds, it returns a portid. The portid is a small integer used to refer

to the port in all subsequent DTM calls. If there is any problem DTMmakeInPort will return
DTMERROR.

Possible errors are returned by DTMmakeInPort:

DTMNOPORT No more open DTM ports.

DTMMEM Insufficient memory for port.
DTMHUH Illegal port name.

DTMmakeOutPort
int DTMmakeOutPort(portname)
char *portname;

DTMmakeOutPort creates an output port. Portname is pointer to a string with the format

'hostname:port'. Portname represents the address where outgoing messages will be sent.
Therefore, 'hostname' is any legal host name or IP address. 'Port' is a TCP port number where
an application is listening, possably through the use of DTMmakeInPort.

If DTMmakeOutPort suceeds, it returns a portid. The portid is a small integer used to
refer to the port in all subsequent DTM calls. If there is any problem DTMmakeOutPort will

Standard DTM Routines C.1

C.2 NCSA UIFlow

return DTMERROR.

Standard DTM Routines C.2

C.3 NCSA UIFlow

Possible errors are returned by DTMmakeOutPort:

DTMNOPORT No more open DTM ports.

DTMMEM Insufficient memory for port.

DTMHUH Illegal port name.

DTMgetPortAddr
int DTMgetPortAddr(portid, address, size)
int portid
char *address;
int size;

DTMgetPortAddr returns the IP address of DTM port. This is typically used in conjunction
with DTMmakeInPort(":0") to retrieve the TCP port number and report it to connecting
programs.

Portid is value returned on a previous call to DTMmakeInPort. Address is a buffer where

the address in the form 'hostname:port' will be stored. Size is the size of the Address buffer.

Possible errors are returned by DTMgetPortAddr:

DTMPORTINIT invalid value for portid.

DTMavailRead
int DTMavailRead(portid)
int portid;

DTMavailRead performs a non-blocking check for a message on the input port portid.
DTMavailRead returns TRUE (1) if a message is available and FALSE (0) if not.
DTMavailRead will return DTMERROR if a problem is encountered. Since DTMERROR
also represents a TRUE value, an application can check for the possibility of an error by
examining DTMerrno, for a non-zero state, after the call.

Possible errors are returned by DTMavailRead:

DTMPORTINIT invalid value for portid.
DTMSOCK problem creating connection.

DTMavailWrite
int DTMavailWrite(portid)
int portid;

DTMavailWrite performs a non-blocking check, on the output port portid, to determine if
the receiving program has processed the previous message. DTMavailWrite returns
TRUE (1) if a message is available and FALSE (0) if not. DTMavailWrite will return

Standard DTM Routines C.3

C.4 NCSA UIFlow

DTMERROR if a problem is encountered. Since DTMERROR also represents a TRUE value, an
application can check for the possibility of an error by examining DTMerrno, for a non-zero
state, after the call.

Standard DTM Routines C.4

C.5 NCSA UIFlow

Possible errors are returned by DTMavailWrite:

DTMPORTINIT invalid value for portid.
DTMSOCK problem creating connection.

DTMbeginRead
int DTMbeginRead(portid, header, size)
int portid;
char *header;
int size;

DTMbeginRead receives a message from the input port portid. The message header is

placed in the buffer header. If no message is currently available, this call will block. A non-
blocking check for a pending message may be performed with DTMavailRead (see above).

Size indicates the size of the buffer allocated to hold the incoming header.
DTM_MAX_HEADER is defined to be the largest legal header length and may be used to
allocate the header buffer. If the incoming header is larger than the header buffer,
DTMbeginRead will fill the header buffer, discard the remaning header and return
DTMERROR. In this case DTMerrno will be set to DTMHEADER.

Possible errors are returned by DTMbeginRead:

DTMPORTINIT invalid value for portid.
DTMSOCK problem creating connection.
DTMREAD problem reading from connection.
DTMHEADER incoming header exceeds buffer

size.

DTMbeginWrite
int DTMbeginWrite(portid, header, size)
int portid;
char *header;
int size;

DTMbeginWrite writes the header of a message to the output port portid. If the previous
message has not been received this call will block. A non-blocking check to determine if the
previous message has been received is available with DTMavailWrite (see above).

Header is a buffer containing the header of the message to be written. Size is the length of
the header, it may be calculated with DTMheaderLength(header).

Possible error condition from DTMbeginWrite:

DTMPORTINIT Invalid value for portid.
DTMSOCK Problem creating connection.
DTMTIMEOUT Time-out waiting for receiver.

Standard DTM Routines C.5

C.6 NCSA UIFlow

DTMWRITE Error writing header.

Standard DTM Routines C.6

C.7 NCSA UIFlow

DTMrecvDataset
int DTMrecvDataset(portid, buffer, num_elements, type)
int portid;
char *buffer;
int num_elements;
DTMTYPE type;

DTMrecvDataset reads the data section of a message from the input port portid. This call
is optional, if it is used it must be preceeded by a call to DTMbeginRead.
DTMrecvDataset will attempt to fill the buffer with number of elements of the specified

type, automatic type conversion will be performed where necessary. Buffer is assumed to be
large enough to hold the amount of data requested.

In the absence of errors, DTMrecvDataset returns the number of elements actually read.
The process may call DTMrecvDataset as often as required to receive the message in its
entirety, the value returned from DTMrecvDataset will equal 0 at the end of the message.

Possible error conditions from DTMrecvDataset:

DTMCALL DTMbeginRead must preceed this call.
DTMREAD Error reading message.

DTMsendDataset
int DTMsendDataset(portid, buffer, num_elements, type)
int portid;
char *buffer;
int num_elements;
DTMTYPE type;

DTMsendDataset writes the data section of a message to the output port portid. This call
is optional, if it is used it must be preceeded by a call to DTMbeginWrite.
DTMsendDataset will write the number of elements of the specified type from the buffer,
automatic type conversion will be performed where necessary. DTMsendDataset may be
called as often as necessary to complete the message.

Possible error conditions from DTMsendDataset:

DTMCALL DTMbeginWrite must preceed call.
DTMWRITE Error writing message.

DTMendRead
int DTMendRead(portid)
int portid;

DTMendRead marks the end of the current message and prepares for the next message on the
input port portid. Any data remaining in the message is discarded. There must be a matching

Standard DTM Routines C.7

C.8 NCSA UIFlow

DTMendRead for every call to DTMbeginRead.

Standard DTM Routines C.8

C.9 NCSA UIFlow

Possible error conditions from DTMendRead:

DTMCALL DTMbeginRead must preceed call.

DTMendWrite
int DTMendWrite(portid)
int portid;

DTMendWrite marks the end of the current message. There must be a matching
DTMendWrite for every call to DTMbeginWrite.

Possible error conditions from DTMendWrite:

DTMCALL DTMbeginWrite must preceed call.

DTMdestoryPort
int DTMdestoryPort(portid)
int portid;

DTMdestroyPort closes all connections associated with the port portid and frees the
entry in the port table. This call, although optional, is recommended since it may assist
connected processes in proceeding correctly.

Possible error conditions from DTMdestroyPort:

DTMPORTINIT Invalid portid.

Standard DTM Routines C.9

