
B.1 NCSA UIFlow

Appendix B DTM Documentation

Overview

This appendix outlines the Data Transfer Mechanism (DTM) as written by its creator, Jeff 
Terstriep, at the National Center for Supercomputing Applications. Refer to Appendix E for a list 
of standard DTM Routines. The DTM documentation is also available via FTP. Refer to 
Appendix C, "Obtaining NCSA Software," for those instructions.

Introduction

DTM is a message passing facility. It is designed to facilitate the creation of sophisticated 
distributed applications. To do this, DTM provides a method to interconnect applications at run-
time, a reliable message passing with synchronization and transparent data conversion. DTM 
has been optimized for large messages containing from 100 Kbytes's to several megabytes, but 
it's effective for smaller messages as well.

The DTM message is an abstract class and no true instances of this class ever exist. Rather, all 
messages are instances of a sub-class to the DTM message. These classes inherit the ability to 
be sent or received between applications from the super-class, but typically add their own 
specialized functions to access the data. Several predefined classes are in use at NCSA1, but 
programmers are free to define their own for special applications.

All messages are exchanged through DTM ports. A DTM port is a logical unidirectional 
communications channel. Applications may define as many DTM ports as are appropriate for 
their function. For example, a simulation may define an output port for each dataset it produces, 
filter programs may have one input and one output port and a viewing program may have an 
input port for each window or object. DTM port connectivity is typically listed on the command 
line, allowing the interconnections to be defined at run-time.

1See the write-up on Multi-Dimensional Data sets (MDD) and Surface Description Language (SDL).
DTM Documentation B.1



B.2 NCSA UIFlow

DTM Messages

The DTM message has two parts, a header and a data section. Two features distinguish the 
sections. First, the header is sent or received in its entirety on the call to DTMbeginWrite 
or DTMbeginRead. Secondly, no data conversion is provided for the header. The DTM 
library assumes the header consists of unsigned bytes.

Since data conversion is not provided for the header, the programmer must be prepared to 
make the header machine independent if the message will travel between architectures. The 
easiest method is to create the header as an ASCII string2 or as an XDR buffer3.

DTM messages should be self describing. The header is designed to contain information about 
the attributes of data stored in the data section. This information may include the class of the 
message, the type of the data (char, int, float), a title or any other information relevant to 
the data section.

The data section can be thought of as a delimited stream of elements. Elements are generally 
primitive data types such as characters, integers or floating-point numbers, although more 
complex types are possible. The stream is delimited, so the application may receive up to the 
end of a message, but may not continue without receiving the end of message mark with 
DTMendRead.

Because each message is delimited, an application need not know the number of elements that 
will be contained in the message apriori. An application that is writing a message may call 
DTMwriteDataset as many times as desired within the message. A receiving application 
may call DTMreadDataset a often as necessary to receive the entire message. The buffer 
size, or the number of elements sent or received at one time, may differ and each application 
may choose of size that is appropriate for its task.

Both the header and data sections of a message are optional. Many control message only send 
the header. And it is possible to have applications that communicate using only the data section. 
Hence, the smallest legal DTM message is two 4 byte integers, both are zero indicating the 
header length is zero and the data length is zero.

Since both sections are optional, many applications may decide to ignore either the header or 
data section when receiving a message. To keep the stream consistent, any data remaining in 
the header is discarded after the call to DTMbeginRead. Similarly, any data in 

2The NCSA provided message classes MDD and SDL use ASCII headers.
3See RFC-1014 for more information about XDR.
DTM Documentation B.2



B.3 NCSA UIFlow

the data section is discarded when the message is finished with a call to DTMendRead.

DTM Ports

A DTM port is a unidirectional synchronized communication channel through which DTM 
message may be sent or received. DTM ports are based on a reliable communication service 
such as TCP/IP and have been implemented on UNIX machines on top of the Berkeley sockets. 
In the current version, each DTM port corresponds to a TCP/IP connection.4

DTM ports are created with a call to DTMmakeInPort or DTMmakeOutPort. Both calls 
requires a DTM port address, the format of which is "hostname:port". For output ports 
hostname represents the host where the data will be sent. The hostname is optional, if it is 
missing the local host name is assumed. For input ports, the hostname is always replaced with 
the name of the local host.

The port number represents the TCP port number to be used. For output ports, this number 
represents the port where an application will attempt to connect. For input ports, the port is 
where the system will listen for incoming connections.

DTM messages are sent by calling the DTMbeginWrite and DTMendWrite pair. 
Similarly, DTM messages are received by calling DTMbeginRead and DTMendRead. After 
each message is received, an acknowledgement is returned to the sender. If the sender 
attempts to write a new message before the acknowledgement has been returned, it will block.

This acknowledgement system is equivalent to setting the message queue length to one. 
Limiting the number of pending messages was done for two reasons. First, because DTM was 
designed to support interactive applications. Allowing only one message to be buffered reduces 
the latency a user will have between altering a parameter and perceive the results. Secondly, 
DTM messages frequently hold multidimensional arrays of floating-point numbers. It is not 
unusual for these messages to be several megabytes in size. Buffering several of these 
messages would strain system memory and could cause thrashing.

An application may define a DTM port for each class of message it will send or receive, this is 
known as port level multiplexing. Port level multiplexing is most effective for output ports. For 
example, if an application is going to produce three types of datasets, providing a port for each 
type will allow each dataset to be routed to separate applications. The datasets can then be 
operated on in parallel. This arrangement is more efficient than serializing the 

4Future releases of the DTM library will remove this restriction.
DTM Documentation B.3



B.4 NCSA UIFlow

messages down a single port since each application must examine all messages and copy 
messages not intended for it to its output for other applications to work on.

In contrast, input ports seem to be most effective when they are not types according to the 
message they expect to receive. Rather, input ports should be treated identically and each 
message should be examined and handled correctly based on the message's class and the 
information it contains. This is known as message level multiplexing.

Message level multiplexing works well with DTM messages since only the header is returned on 
the call to DTMbeginRead. The header may be examined to determine the message class 
and other relevant information. After the header has been decoded the appropriate routine may 
be called to receive and process the data section of the message.

DTM Applications

DTM applications typically receive connectivity information from the command line. The DTM 
port address is preceded on the command line by the flag "-DTMIN" for input port or "-
DTMOUT" for output ports. Application should follow this convention since it will make 
invocation easier for users and for automatic configuration managers.

As stated above, the DTM port address should be specified at run-time and not hard-coded into 
the application. There are two exceptions to this rule. The first case is a server which is 
designed to listen at a well known address. Typically, a server of this type will register itself in 
the system services table5.

The second case, has to do with the special DTM port address ":0". When this address is used, 
the system will assign an unused TCP port number. The application may retrieve the new DTM 
port address and specify it on the command line when invoking other applications, register it 
with a name server or otherwise communicate it to other applications.

Since no special priority is assigned to DTM applications they may be started in any order. If an 
application attempts to read from a port before a writer has connected, it will block and wait for a 
connection. If an application attempts to write to a port before a reader is listening, it will loop 
attempting to make connection once a second. In both cases a time-out will occur and an error 
will be returned after two minutes.

5Under UNIX this would be in /etc/services.
DTM Documentation B.4



B.5 NCSA UIFlow

DTM Networks

DTM networks are multiple DTM applications connected and working in harmony. A simple 
example of this would be an application split into two parts. The "front-end" would be running on 
the user's workstation and handle user interaction and graphical output. The "back-end" could 
run on a supercomputer and provide number crunching capabilities.

More complex networks are possible. DTM has a feature that allows running networks to be 
changed. During each call to DTMbeginRead, the port check for new connections. If a new 
connection is pending the old connection is closed and a message is read from the new 
connection. This reconnection strategy is known as "bumping".

In addition to specifying connectivity at run-time, at any time a new process may be started that 
'bumps' an old process. The ability to reconnect dynamically allows new configurations of 
modules without the necessity of killing the old configuration and starting a new one. 
Reconfiguring in this manner is important in a shared environment to prevent all users from 
perceiving a "glitch" when the configuration is changed.

Bumping is used to re-configure running networks of applications. For example, one view 
controller may be controlling several viewers running on various workstations. After a period of 
time, a user may wish to grab control of his viewer. By invoking his own view controller, he is 
capable of bumping the old view controller and taking command of his own viewer. The other 
viewer and users are unaffected by this re-configuration.

DTM Documentation B.5


