
A.1 NCSA UIFlow

Appendix A UIFlow2D Documentation

Overview

UIFlow2D is a computer code which simulates the flow of turbulent, isothermal or reacting flows in 2-D complex geometries.
UIFlow2D is based on a finite volume discretization of the time mean steady governing equations in body fitted coordinates
(Thompson, et. al., 1974). The discretization is based on the use of a colocated grid for velocities and pressure (Rodi, et. al.,
1987). Use of a colocated grid facilitates solution of flow problems in reverse flow geometries (e.g. reverse flow annular
combustor) and avoids the problem of curvature terms encountered when solving for grid oriented velocities. UIFlow2D uses
the unconditionally stable hybrid differencing scheme.

UIFlow2D incorporates a multi-grid solution technique to solve the coupled system of equations governing fluid flow.
UIFlow2D currently uses a FMG-FAS acceleration technique to enhance the convergence rate of the calculation. At present,
the continuity and momentum equations are efficiently solved using a V cycle. Additional scalar equations are solved in a
single grid fashion on the finest grid (Vanka, et. al., 1989).

UIFlow2D incorporates the standard k-e turbulence model with wall functions in order to simulate turbulent flows (Launder
and Spalding, 1974). A turbulent diffusion flame model based on the assumptions of infinitely fast chemistry and equal specie
diffusivities is incorporated in UIFlow2D (Bilger, 1980). UIFlow2D is also capable of simulating turbulent premixed flames.
The model for premixed flames is based on a one step description of kinetics (Westbrook and Dryer, 1981) with a
combination Arrhenius rate / eddy break up expression used for the time mean reaction rate (see Magnussen and Hjertager,
1976 for EBU expression). UIFlow2D is currently capable of solving for only low Mach number flames which are adiabatic.
The current version of UIFlow2D does not incorporate models for radiation or liquid fuel sprays.

What Equations Does UIFlow2D Solve ?

UIFlow2D solves a discrete form of the governing equations in general curvilinear coordinates (x,h). A description of the flow
geometry in terms of body fitted coordinates facilitates the accurate solution of flows in complex geometries such as are
found in combustion chambers. The form of the general conservation equation in curvilinear coordinates is given below for
the case of a transformation from axisymmetric (z,r)

UIFlow2D Documentation A.1

A.2 NCSA UIFlow

coordinates to general (x,h) coordinates. For additional information on coordinate transformations, see Fletcher, 1988.

\f(∂,∂ξ) (ρUφ) + \f(∂,∂η) (ρVφ) = \f(∂,∂ξ) \b\lc\[\rc\](Γ q11 \f(∂φ,∂ξ)) + \f(∂,∂η) \b\lc\[\rc\](Γ q22 \f(∂φ,∂η))

+ \f(∂,∂ξ) \b\lc\[\rc\](Γ q12 \f(∂φ,∂η)) + \f(∂,∂η) \b\lc\[\rc\](Γ q21 \f(∂φ,∂ξ))

+ r | J | Sφ (ξ,η)
1.2.1)

U = r (urη - vzη)

(1.2.2)

V = r (vzξ - urξ)

(1.2.3)

q11 = \f(r,| J |) (rη
2 + zη

2)
(1.2.4)

q22 = \f(r,| J |) (rξ
2 + zξ

2)
(1.2.5)

q21 = q12 = - \f(r,| J |) (rξrη + zξzη)
(1.2.6)

| J | = (zξrη - zηrξ)

(1.2.7)

The governing equations of fluid flow may be written in terms of a general conservation equation as given above (for more
information, see Patankar, 1980). The source terms and diffusive exchange coefficients associated with any given variable
are given in Table 1, where S\s(f,TR) is the transformation source term and includes the cross derivative diffusion terms.

UIFlow2D Documentation A.2

A.3 NCSA UIFlow

Table 1: Values of diffusive exchange coefficient and source term for variables used in simulation of turbulent reacting flow.

φ Γeff Sφ

1 0 0

\o(u,
~

) μ+μT S\s(u,TR) - (a11 \f(∂P,∂ξ) + a21 \f(∂P,∂η))

\o(v,
~

) μ+μT S\s(v,TR) - (a12 \f(∂P,∂ξ) + a22 \f(∂P,∂η)) + |J| (- 2Γeff \f(\o(v,
~

),r2) + \f(\o(ρ,
-
)\o(w,

~
)2,r))

\o(w,
~

) μ+μT S\s(w,TR) - \b\lc\[\rc\](\f(ρ\o(v,
~

)\o(w,
~

),r) - Γeff\f(\o(w,
~

),r2) - \f(\o(w,
~

),r) \f(∂Γeff,∂r)) | J |

k μ + \f(μT,Pr k) (Pk - ρε) | J | + S\s(k,TR)

ε μ + \f(μT,Pr ε) \f(ε,k) (C1 Pk - C2 ρε) | J | + S\s(ε,TR)

\o(f,
~

) μ + \f(μT,Pr f) S\s(f,TR)

\o(g,
~

) μ + \f(μT,Pr g) Cg1μT \b\lc\{\rc\}(\b\lc\[\rc\](\f(∂f,∂z))
2
 + \b\lc\[\rc\](\f(∂f,∂r))

2
) | J | - \f(Cg2ρgε,k) | J | + S\s(g,TR)

\o(Y,
~

)FUμ + \f(μT,Pr Y) \x\to(\o(ω,
.
)) | J | + S\s(Y,TR)

\o(h,
~

)o μ + \f(μT,Pr ho) S\s(ho,TR) - | J | \i\su(i=1,N,\x\to(\o(ω,
.
))i h\s(o,i))

UIFlow2D Documentation A.3

A.4 NCSA UIFlow

1.3. How Does UIFlow2D Solve The Flow Equations ?

UIFlow2D is based on a decoupled or segregated solution (Cope, 1991) of the governing flow
equations. The discrete form of the u momentum equation is solved first, followed by the solution of the
v momentum equation. The discrete continuity equation is written as a pressure correction equation
(Patankar, 1980). The solution of the pressure correction equation is followed by an update of pressure,
velocities, and mass fluxes.

The solution of all scalar quantities such as k, e, etc. is obtained next. The calculation of thermodynamic
and transport properties completes one iteration. Due to the coupled nature of the equations to be
solved, numerous sweeps through this sequence of equation solving must be performed. Typical single
grid schemes can require thousands of iterations before a converged solution is obtained.

UIFlow2D uses a FMG-FAS multi-grid scheme to accelerate the convergence rate of the calculation (Brandt, 1977). In the
current version of UIFlow2D , the continuity and momentum equations are solved in a V cycle. The scalar equations are
solved in a single grid manner on the finest grid. One iteration on the finest grid thus involves performing one sweep of the V
cycle, followed by successive solutions of each scalar equation. A flowchart of the calculation procedure used by UIFlow2D
is given in Figure 1.

UIFlow2D Documentation A.4

A.5 NCSA UIFlow

CALL LAMVIS - Calculate laminar viscosity
from Sutherland's law expression for air.

CALL TVIS - Calculate eddy viscosity.

CALL MOMENT - Perform one V cycle on
the continuity and momentum equations.

CALL SCALRS - Solve for all appropriate
scalar quantities.

CALL EXTPRL - Enforce extrapolative
boundary conditions on properly designated
boundaries.

CALL PROPS - Calculate thermodynamic
properties based on ideal gas law.

CALL OUTPUT - Output converged solution
to UIFlow.out.

CALL PLOUT - Output converged solution
to UIFlow.plt.

SOLUTION CONVERGED ?

YES !

NO !

Figure 1: Flowchart of solution routine used by UIFlow.

UIFlow2D Documentation A.5

A.6 NCSA UIFlow

1.4. Using UIFlow2D

UIFlow2D requires five (5) files in order to compile and execute. UIFlow2D requires three (3) files for its
execution:

1) UIFlow (Executable file, i.e. compiled version of code).

2) UIFlow.In (Input file which describes the flow problem).

3) UIFlow.Grid (Grid file).

Two (2) additional files are required in order to compile UIFlow2D :

1) UIFlow.com (Common block for program).

2) UIFlow.indx (Index file)

Prior to executing the code, the problem description must be given in UIFlow.In. A description of flow
parameters found in UIFlow.In is given in the appendix along with some sample input files. An
appropriate grid must also be generated and stored in UIFlow.Grid.

To facilitate easy use of UIFlow2D , a pre-processor has been developed by NCSA at the University of Illinois, Urbana-
Champaign. The pre-processor allows the user to create an input file and grid by simply making selections from various
menus and by drawing a grid. No file editing is therefore required. Section 2 of this manual gives a complete description of
the pre-processor.

1.5. What Output Does UIFlow2D Give?

UIFlow2D generates two (2) output files. UIFlow.out presents the converged values of all desired flow variables. It also gives
a convergence history of the calculation and shows the flow parameters which were used in solving the flow problem.
UIFlow.plt gives the converged values of u, v, and w in the format appropriate for use with Plot3d software developed at
NASA Ames. In addition, an HDF file containing raster images readable by NCSA Image is produced. Other flow variables
can also be printed in this format.

1.6. Solving Convergence Problems in UIFlow2D

UIFlow2D incorporates several procedures which improve its rate of convergence. UIFlow2D is not foolproof however and it
may at times exhibit oscillatory convergence or it may even diverge. The following advice should prove useful in resolving
convergence problems.

1. Check the input file (UIFlow.In). If the data in the input file is not self consistent, divergence will result.
For example, if one specifies that there are two segments on the x-minus boundary and only one set
of

UIFlow2D Documentation A.6

A.7 NCSA UIFlow

data is given, then insufficient information is being supplied to the code. Also, the number of cells used in
the x and y directions must be consistent with the number of cells found in the grid file (UIFlow.Grid).
If the pre-processor is used to generate the input file, then problems caused by an improper input file
will be minimized.

2. If the convergence history of UIFlow2D exhibits a diverging oscillatory nature (i.e. the residuals
oscillate between high and low values but increase with iteration number), then the specified
relaxation factors may be too high. Under NO circumstances should the relaxation factor exceed a
value of 1.0. Divergence will be the result. Also, relaxation below 0.3 for all variables is an indication
that the convergence problem does not involve underrelaxation.

A relaxation of 0.6 on velocities, 0.4 on pressure, and 0.7 - 0.8 on k and e has been found to work
well for most problems. For reacting flow problems, a density relaxation factor of 0.5 - 0.6 and a
temperature relaxation of 0.6 - 0.7 are most likely appropriate. As a general rule, a lower relaxation
factor is required for flows at higher Reynolds numbers and for grids with many cells.

3. If the solution diverges very early in the solution, then the problem may be the initially estimated flow
parameters. This problem is most pronounced for reacting flows, and especially the premixed flame
calculations. In general, the estimated flow variables should be as close as possible to the expected
solution. In other words, if one is calculating a premixed flame, a guessed temperature field of 300 K
is not a good choice. A temperature of approximately 1500 K is closer to the temperatures expected.
In some respects, guessing the temperature is analogous to "igniting" the flow. A spark of only 300 K
would not ignite a fuel-air mixture. A guessed temperature of 300 K will not result in reaction if an
Arrhenius rate expression is used to describe the reaction rate.

For turbulent flow calculations, the information given in Nallasamy, 1987 may be used to prescibe
initial estimates of k and e. Use of a small length scale (0.03 R) leads to an estimate of e which may
be somewhat large. This has been observed to be beneficial to the convergence rate in that the
turbulent kinetic energy is "damped" early on in the calculation procedure.

4. The grid used in calculating the flow may also lead to convergence difficulties. If the prescribed outlet
boundary is placed within a recirculation region, divergence will result. The outflow boundary
condition specifies the flow as being "fully-developed" . If the flow is recirculating at the outflow plane,
a fully developed flow does not exist, and problems in solving the flow equations will result. Also,
regions of high gradient (i.e. shear layers, flame surfaces, etc.) should be sufficiently resolved.
Resolution of recirculation regions is particularly important. Insufficient resolution of flow recirculation
may result in the flow being predicted as recirculatory at the outflow plane.

UIFlow2D Documentation A.7

A.8 NCSA UIFlow

5. Use of integral mass adjustments (kadj = 1) may impede the convergence rate for reacting flow
calculations and for flows exhibiting significant recirculation (e.g. high swirl number flow). The
calculation procedure is convergent without use of integral mass adjustments. Mass adjustments are
only used to enhance the convergence rate. If they do not enhance convergence, or if it is suspected
that they impede convergence, simply do not use integral mass adjustments.

6. If the grid used in the calculation is highly non-orthogonal (included angle between grid lines less
than 30 degrees), then additional terms may be needed in the pressure correction equation. Use of
knorth = 1 includes these terms. It has been found that for most internal flow geometries, these terms
are not needed. If the additional terms are included, the convergence rate will be enhanced but more
computational effort will be expended in evaluating these non-orthogonal terms. In general, a lower
relaxation factor on pressure is required for highly non-orthogonal grids if the additional terms are
NOT included.

7. Performing more sweeps through the ADI for any given flow variable should help the convergence. In
general, more iterations are required on the pressure correction equation than on other equations (10
- 20 iterations should suffice).

8. Under NO circumstances is an outflow segment to be specified along with any other segment at a
given boundary. For example, if the x-plus boundary is the boundary at which outflow occurs, then
ALL of the boundary must be an outflow. A wall segment could not be specified at the x-plus
boundary along with the outflow.

UIFlow2D Documentation A.8

A.9 NCSA UIFlow

References

Bilger, R. W. (1980). "Turbulent Flows with Nonpremixed Reactants." in Turbulent Reacting Flows.
eds. P. A. Libby and F. A. Williams. pp. 65-113. Springer-Verlag. Berlin.

Brandt, Achi. (1977). "Multi-Level Adaptive Solutions to Boundary-Value Problems." Mathematics of
Computation. Vol. 31. No. 138. pp. 333-390.

Cope, Wm. Kevin. (1991). On the Numerical Simulation of Turbulent Flows in Complex
Geometries. M.S. Thesis. University of Illinois, Urbana-Champaign. Dept. of Mechanical and Industrial
Engineering.

Fletcher, C. A. J. (1988). Computational Techniques for Fluid Dynamics. Vol. 2. Springer-
Verlag. Berlin.

Launder, B. E. and Spalding, D. B. (1974). "The Numerical Computation of Turbulent Flows."
Computer Methods in Applied Mechanics and Engineering. Vol. 3. pp. 269-289.

Magnussen, B. F. and Hjertager, B. H. (1976). "On Mathematical Modelling of Turbulent Combustion
with Special Emphasis on Soot Formation and Combustion." Sixteenth Symposium (International) on
Combustion. pp. 719-729.

Nallasamy, M. (1987). "Turbulence Models and Their Applications to the Prediction of Internal Flows: A
Review." Computers and Fluids. Vol. 15. No. 2. pp. 151-194.

Patankar, S. V. (1980). Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing
Company.

Rodi, W., Majumdar, S., and Schonung, B. (1987). "Finite Volume Methods for Two Dimensional
Incompressible Flows with Complex Boundaries." Paper presented at the 8th International Conference
on Computing Methods in Applied Sciences and Engineering. Versailles, France. December 14-17,
1987.

Thompson, Joe F., Thames, Frank C., and Mastin, C. Wayne (1974). "Automatic Numerical Generation
of Body-Fitted Curvilinear Coordinate System for Field Containing Any Number of Arbitrary Two-
Dimensional Bodies." Journal of Computational Physics. Vol. 15. pp. 299-319.

Vanka, S. P., Krazinski, J. L., and Nejad, A. S. (1989). "Efficient Computational Tool for Ramjet
Combustor Research." Journal of Propulsion and Power. Vol. 5. No. 4. pp. 431-437.

Westbrook, Charles K. and Dryer, Frederick L. (1981). "Simplified Reaction Mechanisms for the
Oxidation of Hydrocarbon Fuels in Flames." Combustion Science and Technology. Vol. 27. pp.
31-43.

UIFlow2D Documentation A.9

A.10 NCSA UIFlow

Glossary of Variables

UIFlow.In is an input file required by UIFlow2D for its execution. UIFlow.In provides a description of the problem to be solved.

Information regarding boundary conditions, flow type (reacting or isothermal), relaxation factors, etc. is included in UIFlow.In.

Given below is a complete description of the variables which are to be defined in UIFlow.In.

VARIABLE DESCRIPTION

klam klam specifies whether the flow is laminar or turbulent.
Specify: klam = 1 if flow is laminar

klam = 0 if flow is turbulent

kcomp kcomp specifies whether the flow is incompressible or compressible (currently
this option is inactive).
Specify: kcomp = 1 if compressible

kcomp = 0 if incompressible

kswrl kswrl specifies a swirling or non-swirling flow.
Specify: kswrl = 1 if swirl is involved

kswrl = 0 if no swirl is involved

kpgrid kpgrid specifies whether the grid being used was generated from the pre-
processor.
Specify: kpgrid = 1 if pre-processor grid

kpgrid = 0 if other

model model specifies the type of problem being solved.
Specify: model = 0 isothermal and incompressible.

model = 1 compressible air flow.
model = 2 premixed flame.
model = 3 diffusion flame.

kfuel kfuel specifies the type of fuel which is being burned.
Specify: kfuel = 0 for propane

kfuel = 1 for methane
kfuel = 2 for "town gas"

knorth knorth specifies whether the grid used is highly non-orthogonal. If knorth =
1, then additional terms are added to the pressure correction equation so as to
account for the non-orthogonality.
Specify: knorth = 1 for highly non-orthogonal grid.

knorth = 0 for orthogonal grid.

UIFlow2D Documentation A.10

A.11 NCSA UIFlow

kplax kplax designates whether the flow geometry is planar symmetric or
axisymmetric
Specify: kplax = 1 for planar symmetry

kplax = 0 for axisymmetric

kadj kadj indicates whether integral mass adjustments are to be used.
Specify: kadj = 1 for mass adjustments

kadj = 0 for no adjustments

ngrid ngrid specifies the number of grid levels to be used in the multi-grid solution
Specify: ngrid = 1, 2, 3, 4, or 5

ncelx ncelx designates the total number of cells on the finest grid which are used in
the x direction. The value given for ncelx must be consistent with the number of
cells generated in the x direction by the grid generator.

ncely ncely designates the total number of cells on the finest grid which are used in
the y direction. The value given for ncely must be consistent with the number of
cells generated in the y direction by the grid generator.

nsxm nsxm designates the number of different boundary types found on the x - minus
(left) boundary.
Specify: nsxm = Any integer from 1 to 5 depending on the problem.

kbxm kbxm is an array which specifies the boundary type for any given segment. As
such, a value of kbxm must be given for each segment.
Specify: kbxm = 1 for a wall

kbxm = 2 for an inlet
kbxm = 3 for a symmetry boundary
kbxm = 4 for a ZERO derivative outlet condition

jfxm, jlxm jfxm and jlxm are the numbers of the first cell at a given boundary type and
the last cell at a given boundary type, respectively. For example, consider that
20 cells span the x - minus boundary and two (2) segments are present on this
boundary. If the first 10 cells correspond to an inlet, then jfxm = 1 and jlxm = 10
for the inlet segment and jfxm = 11, jlxm = 20 for the other segment.

ubxm ubxm is the value of the u component of velocity at a particular x - minus
segment.

UIFlow2D Documentation A.11

A.12 NCSA UIFlow

vbxm vbxm is the value of the v component of velocity at a particular x - minus
segment.

wbxm wbxm is the value of the w component of velocity at a particular x - minus
segment.

vscxm vscxm is the value of the molecular viscosity at a particular x - minus segment.
This value does not need to be prescribed. UIFlow2D will prescribe a value
based on the temperature.

txm txm is the value of the static temperature at a particular x - minus segment.

rhxm rhxm is the value of the fluid density at a particular x - minus segment.

fxm fxm is the value of the mixture fraction at a particular x - minus segment.

gxm gxm is the value of the concentration fluctuation at a particular x - minus
segment.

tkxm tkxm is the value of the turbulent kinetic energy at a particular x - minus
segment.

tdxm tdxm is the value of the turbulent dissipation rate (e) at a particular x - minus
segment.

fuxm fuxm is the value of the fuel mass fraction at a particular x - minus segment.

co2xm co2xm is the value of the carbon dioxide mass fraction at a particular x - minus
segment.

h2oxm h2oxm is the value of the water mass fraction at a particular x - minus segment.

o2xm o2xm is the value of the oxygen mass fraction at a particular x - minus segment.

wmxm wmxm is the value of the mixture molecular weight at a particular x - minus
segment.

nsxp, kbxp, jfc, jlc, ubxp,
vbxp, wbxp, vscxp, txp, rhxp,
fxp, gxp, tkxp,tdxp, fuxp, Values at x - plus (right) boundary segment.
co2xp,h2oxp, o2xp, wmxp

nsym, kbym, ifc, ilc, ubym,
vbym, wbym, vscym, tym,
rhym, fym, gym, tkym, Values at y - minus (bottom) boundary segment
tdym, fuym, co2ym, h2oym,
o2ym, wmym

UIFlow2D Documentation A.12

A.13 NCSA UIFlow

nsyp, kbyp, ifc, ilc, ubyp,
vbyp, wbyp, vscyp, typ,
rhyp, fyp, gyp, tkyp, tdyp, Values at y - plus (top) boundary segment
fuyp, co2yp, h2oyp, o2yp,
wmyp

ugs Initial estimate of the u component of velocity.

vgs Initial estimate of the v component of velocity.

wgs Initial estimate of the w component of velocity.

rhgs Initial estimate of the fluid density.

tgs Initial estimate of the fluid temperature.

tkgs Initial estimate of the turbulent kinetic energy (k).

tdgs Initial estimate of the turbulent dissipation rate (e).

fgs Initial estimate of the mixture fraction (f).

ggs Initial estimate of the turbulent concentration fluctuation (g).

fugs Initial estimate of the fuel mass fraction.

tfuel The temperature of the inlet fuel stream. This parameter is important for
simulation of adiabatic diffusion flames.

tair The temperature of the inlet air stream. This parameter is important for
simulation of adiabatic diffusion flames.

For the variables prl, prt, relx, nswp, and iprint, different values exist for different variables. Each variable has been
assigned a number according to the following list:

Variable Number of variable (nv)
u 1
v 2
P 3
w 4
h,T 5
k 6
e 7
f 8
fu 9
g 10
r 11

UIFlow2D Documentation A.13

A.14 NCSA UIFlow

prl prl is the laminar Prandtl number array. Eleven (11) values of this parameter
are to be specified. One value for each dependent variable solved by
UIFlow2D.

prt prt is the turbulent Prandtl number array. Eleven (11) values of this parameter
are to be specified. One value for each dependent variable solved by
UIFlow2D.

relx relx is the relaxation parameter array. Eleven (11) values of this parameter are
to be specified. One value for each dependent variable solved by UIFlow2D.

nswp nswp is the variable which specifies the number of ADI sweeps to perform on
any given variable. Eleven (11) values of this parameter are to be specified.
One value for each dependent variable solved by UIFlow2D.

iprint iprint is the array which designates whether a given variable is to be printed.
Twelve values of this parameter must be supplied. The twelfth value
corresponds to mass fractions relevant to the premixed flame simulation. If
iprint(12) = 1, then these mass fractions will be printed.
Specify: iprint = 1 for printing the variable

iprint = 0 for no printing

maxitn maxitn specifies the maximum number of allowable iterations which will be
performed before program execution is terminated.

rin rin is the offset radius specified for axisymmetric problems. rin is the distance
from the y-minus boundary to the actual symmetry axis.

pref pref is the reference pressure for the system. For low mach number flows, this
pressure determines the thermodynamic state of the fluid.

vscty vscty is the molecular viscosity of the fluid. For isothermal flows, this value is
not calculated in the program. For variable density flows, subroutined lamvis
will calculate this quantity as a function of temperature.

tolr tolr is the prescribed tolerance for declaring a converged solution. A value of 1x10-4 requires that the mass residual on
the finest grid be reduced by four orders of magnitude before convergence is obtained.

UIFlow2D Documentation A.14

