
5.1 NCSA DataScope

Chapter 5 Programs That Run on Remote Hosts

Chapter Overview

Networking Introduction

Installing Your Network

Checking Your Networking Setup

Using DataScope for Remote Computing: Delivering Data to
DataScope with TCP/IP

Generating an Image Automatically

Making Movies with a Sequence of Arrays

Making Faster Movies

Saving to Disk

Command Summary

Using a Remote Network Server for Notebook Functions

Basics

Writing Your Own Functions

Writing FORTRAN Functions

Using a Sample Program

DataScope's Interactions with a Remote Host

Programs Run on Remote Hosts 5.1

5.2 NCSA DataScope

Chapter Overview
This chapter describes DataScope's networking capabilities and its relationship with Telnet
2.3MacTCP.

Networking Introduction

Installing Your Network
NCSA DataScope version 2.0 can be used with or without a TCP/IP network connection. If you
do not install the network functions, all local functions of DataScope continue to work as before.
However, if you do install it, you must set up MacTCP correctly on your Macintosh.

NOTE: You should install NCSA Telnet 2.3 -MacTCP- on your Macintosh before attempting to
use any of the DataScope network capabilities. The configuration file is used by DataScope to
resolve the addresses of remote machines.

After installing NCSA Telnet 2.3 -MacTCP-, make sure you can connect to the appropriate host
machines with NCSA Telnet, and that you can log in via Telnet. If you cannot, consult the NCSA
Telnet documentation, contact your local networking support organization, or contact NCSA to
get NCSA Telnet working first. (See the Bugs and ReadMe pages of this document.)

NOTE: NCSA DataScope does not support name server functions. If the name of the machine
is not in the config.tel file explicitly, you will have to use the machine's Internet address.

The only change you may want to make to the config.tel file is to include all names and IP
addresses of machines you wish to connect to from DataScope.

NOTE: You should place your config.tel file from NCSA Telnet 2.3 -MacTCP- in the system
folder. If you don't, an error message stating that there is a problem with the config.tel file will
appear on the screen.

DataScope 2.0 is no longer limited to the processing power of the Macintosh alone. Notebook
functions, which you may not have used before because they were too slow or you didn't have
access to a local compiler, can now automatically be executed on a remote compute server.
Although you do have to wait for the data to be sent there and back, this inconvenience is
negligible when compared to the increased computational speed of the supercomputer.

If you have an existing FORTRAN or C application running on a supercomputer or other UNIX
computer with the TCP/IP network protocols, DataScope can be used as a flexible, interactive
output device for two dimensional arrays. When the program or a specific time step finishes, a
simple subroutine call transfers the array to your Macintosh.

Programs Run on Remote Hosts 5.2

5.3 NCSA DataScope

Figures 5.1 and 5.2 show the new network functions in DataScope 2.0. There are two
completely separate functions which may be used. You can:

• send datasets from your mainframe to DataScope on demand from a mainframe application
that you've written.

• use a remote compute server to access notebook functions that are too time-consuming to
calculate or that you cannot compile on your Macintosh.

Figure 5.1 One-way Passage of Data from a Remote Host to DataScope on the Mac

DataScope
1.2

Cray or Sun
Application
FORTRAN or C
linked with special
DataScope library calls
sends arrays to the
Macintosh with TCP/IP
protocols

Notebook

One Way

Figure 5.2 Two-way Passage of Data from a Remote Host to DataScope on the Mac

DataScope 1.2

Notebook

Cray or Sun Server

FORTRAN or C
subroutines linked
with DataScope
library calls.

Round Trip

Programs Run on Remote Hosts 5.3

5.4 NCSA DataScope

One-Way Process
An example of a one-way process in DataScope (Figure 5.1) would be a FORTRAN application
used to simulate a growing, moving thunderstorm. After each simulation time step, your
application might send out one or more arrays which "pop up" in the background of your
Macintosh screen. This is a one way transfer; the data originates in your remote simulation and
ends up in DataScope on your Macintosh.

Two-Way Process
The need for a two-way process of data in the program (Figure 5.2) might come later when you
are looking at your array in DataScope and need to perform a Fourier Transform on one of the
arrays to analyze it in frequency space. Once you've prepared a FFT routine on a
supercomputer, all you have to do is select the Calculate From Notes command from the
Numbers menu on the following notebook formula. (See Chapter 4, "Notebook Calculations.")

transform = fft(mydata)

This kind of compute serving requires a round trip for the data. DataScope delivers the array to
the remote computer, waits for the response, and then receives the answer back.

Checking Your Networking Setup
NCSA DataScope does not contain diagnostics or error messages concerning the operation of
the network. Therefore, your best bet to debug any network problem is to make sure NCSA
Telnet works first.

NOTE: In the worst case, you may have to enter the IP address of the machine to connect to. If
NCSA Telnet can connect to a machine by name, you can always connect to the machine from
NCSA DataScope by using its IP number.

DataScope provides two kinds of diagnostics to let you know whether the network has been
initialized successfully or not.

• In the About DataScope dialog under the Apple menu, the information includes an indicator of
"Network Enabled" or "Network Disabled".

• If the network is disabled and you attempt to execute a notebook function which is not local,
the "Use Network Server" button will be dimmed and cannot be selected.

Programs Run on Remote Hosts 5.4

5.5 NCSA DataScope

Using DataScope for Remote Computing:

Delivering Data to DataScope with TCP/IP

Most supercomputer simulations write out results into ASCII or binary data files, which you then
can use to print out or create graphs or images from the numbers. With DataScope 2.0, you can
bypass viewing the intermediate data file since the program displays the data on your screen
immediately, as values are generated. The following section describes this process and give
examples.

In order to display an array, DataScope needs the data information listed in Table 5.1.

Table 5.1 Required Information to Display an
Array

• name the name of the variable to display
• flags the array's purpose (Flags specifies what is to be done with the
data when returned to DataScope.)
• nrows the number of rows in the array
• ncolsthe number of columns in the array
• rows the scale values (independent variable), one for each row
• cols the scale values (independent variable), one for each column
• max the largest value of interest in the array
• min the smallest value of interest in the array
• vals the array of floating-point data values

With the appropriate linkable library (source provided on DataScope 2.0 distribution disk), you
can write a FORTRAN program which combines all of this information into one call statement as
shown in Figure 5.3.

Figure 5.3 FORTRAN Call Statement
call
ds_send(mac,name,flags,max,min,nrows,ncols,rows,cols,vals)

The additional "mac" parameter is present so that the remote computer can indicate which
Macintosh is ready to receive the array. This call may be used anywhere in a FORTRAN or C
program written for a UNIX host computer where the special DataScope linkable library will
operate.

The ds_send call connects the remote computer to your Macintosh and sends all of the
relevant information over the TCP/IP connection to DataScope. When DataScope finishes
receiving all of the data, the array window appears on the screen, just as if you had used the
"Open" command on a data file. Of course this means that DataScope 2.0 must be ready and
waiting, running under MultiFinder before the transfer attempt starts.

Programs Run on Remote Hosts 5.5

5.6 NCSA DataScope

Generating an Image Automatically
DataScope 2.0 can generate an image each time it receives a data array from another
computer. The flags field from the ds_send command is used to indicate that an image should
be generated as soon as the whole data array arrives. For example, you can use the 'G' flag to
generate an image by entering the boxed code segment in Figure 5.4.

Figure 5.4 Call Statement using 'G' Flag
flags = 'G'
call
ds_send(mac,name,flags,max,min,nrows,ncols,rows,cols,vals)

As soon as this array arrives in DataScope, the "Generate Image" command is invoked just as if
you had selected it from the Image menu. The new image window appears on top of the text
window.

Making Movies with a Sequence of Arrays
The 'R' flag performs a special "replace" operation in DataScope. When using the 'R' flag, all of
the members of its associated sequence must be the same size (cols,rows), and they must have
the same or similar names. In your FORTRAN program, use the same ds_send call and add
the 'R' flag to the flags parameter (Figure 5.5). This flag causes any previously sent dataset to
be replaced by subsequently sent datasets.

Figure 5.5 ds_send Call with 'R' Flag
flags = 'RG'
call
ds_send(mac,name,flags,max,min,nrows,ncols,rows,cols,vals)

DO Loop
Using a DO loop around this same ds_send call with different arrays of the same size cycles
each array through the same DataScope window(s). You can easily create a movie effect with a
top speed of approximately one frame every two seconds by using small (50 x 50) arrays and
high-speed Ethernet links. (See the this chapter's section, "Making Faster Movies" for more
information.)

Variable Names
A special component of the movie sequencing is the use of the variable name.

A sequence of variable names can be created from a base name and an extension. The base
name must be identical in each variable name entry for the replace flag to work, but the
extension may be arbitrary (e.g., _001, _002, _003, etc.). For example, with a base name of
"pressure" and numbers used as extensions, the sequence of names in Figure 5.6 can be
generated and used to create a movie sequence in DataScope .

Programs Run on Remote Hosts 5.6

5.7 NCSA DataScope

Figure 5.6 Example Code to Create a Movie
Sequence

pressure_001
pressure_002
pressure_003
...

The separator between the base name and the extension can be any non-alphanumeric
character. A period, underscore, or even a space may be used. An underscore is recommended
since DataScope translates all non-alphanumerics to underscores before using the specified
name.

To sum up:

• If you use the identical variable name for ds_send, then the replace flag works as expected
with each new array appearing in the same window.

• If you use a brand new name, a new window appears whether the 'R' flag is used or not.

• If you use the replace flag with more than one variable name alternately, you allow two
movies to proceed in two different windows at the same time. DataScope matches the
windows by variable name.

Making Faster Movies
A primary factor in the delay between frames is the time it takes to make a network connection
between the remote computer and the Macintosh. With a slight variation on the ds_send call,
you can remove the need to open and close the connection between each frame of a movie
sequence. This new form involves the ds_send1 call. The "mac" parameter has been moved to
a new call, ds_open. Your code would resemble that in Figure 5.7.

Figure 5.7 Using ds_send1 and ds_open for
Faster Movies

mac = '192.17.20.10'
call ds_open(mac)
flags = 'RGS'
do 100 i=1,10
c calculate new vals array
c
100 call ds_send1(name,flags,max,min,nrows,ncols,rows,cols,vals)

call ds_close

Saving to Disk
To save an array, use the flag 'S' for Save. Each time an array arrives with the 'S' flag set, the
array and/or image(s) will be displayed on the screen as usual, and then saved to disk in an
HDF file. This save operation is identical to selecting the Save command from the File menu.

NOTE: If you repeat the use of a variable name, the new file will be saved on top of the old file,
thus replacing the former file. Use a

Programs Run on Remote Hosts 5.7

5.8 NCSA DataScope

base name plus an extension as discussed in this chapter's section "Making Movies with a
Sequence of Arrays" to avoid overwriting files while saving a movie.

With the 'G' flag to generate an image, the 'R' flag to cause a replacement each time, and the 'S'
flag to save the files to disk, the remote FORTRAN or C program can create an entire animated
movie sequence on disk. This sequence may be animated from disk with NCSA Image, NCSA
ImageIP, or other programs in the NCSA suite of Macintosh software, which can redisplay the
animation while adjusting speed and direction of the animation.

To make the use of NCSA Image easier, run the animation once without the 'S' flag on. Then
save the last frame, or a representative frame, into an empty folder. This sets up the default
folder for the movie sequence. Run the animation again with the 'S' flag and DataScope fills that
folder with a complete set of animation files.

Command Summary
Listed below is a summary of the routines used in DataScope.

DS_SEND
The ds_send call is shown in Figure 5.8, as defined in FORTRAN.

Figure 5.8 ds_send in FORTRAN
SUBROUTINE DS_SEND(MAC,NAME,FLAGS,MAX,MIN,NROWS,NCOLS,ROWS,COLS,VALS)

CHARACTER *80 MAC,NAME,FLAGS
INTEGER NROWS,NCOLS
REAL MAX,MIN,ROWS(NROWS),COLS(NCOLS),VALS(NCOLS,NROWS)

where:

• mac the name or IP address of the Macintosh to connect with

• name the name of the variable to display

• flags the function of the array (Flags specifies what is to be done with the data when
its returned to DataScope.)

• max the largest value of interest in the array

• min the smallest value of interest in the array

• nrows the number of rows in the array

• ncols the number of columns in the array

Programs Run on Remote Hosts 5.8

5.9 NCSA DataScope

• rows the scale values (independent variable), one for each row

• cols the scale values (independent variable), one for each column

• vals the array of floating-point data values

DS_SEND1
The DS_SEND1 version of the ds_send call is the same, except for the MAC parameter. The
MAC parameter is used in the separate DS_OPEN call (Figure 5.9).

Figure 5.9 ds_send1 in FORTRAN
SUBROUTINE DS_SEND1(NAME,FLAGS,MAX,MIN,NROWS,NCOLS,ROWS,COLS,VALS)
SUBROUTINE DS_OPEN(MAC)
SUBROUTINE DS_CLOSE

Flag Summary
The flags field gives the remote computer application several options about what DataScope
should do after it has received an array. The fields are all set by using upper-case letters
corresponding to the Command-keys in the DataScope menus. Except for the addition of the
'R' replace flag, the capital letters have the same functions as the menu commands they
represent.

Table 5.2 Flags and Their Functions
Flags Function

G Generate Image
I Interpolated Image
P Polar Image
S Save
R Replace

Flags may be used in any combination and in any order. The entire flags string is scanned for
the occurrence of these letters. To disable a function, omit it from the flags string. The default
performs none of these functions.

Using C Calls
The C form of the ds_send call (Figure 5.10) has the same parameters as the FORTRAN call.
Below is the C syntax. Strings are zero-terminated C strings of any (appropriate) length.

Figure 5.10 ds_send in C
ds_send(mac,name,flags,max,min,nrows,ncols,rows,cols,vals)

char *mac,*name,*flags;
int nrows,ncols;
float max,min,*rows,*cols,*vals;

Programs Run on Remote Hosts 5.9

5.10 NCSA DataScope

ds_open, ds_send1, and ds_close are similar to their FORTRAN counterparts as shown in
Figure 5.11.

Figure 5.11 ds_open, ds_send, ds_close in C
ds_open(mac)

char *mac;
ds_close()

ds_send1(name,flags,max,min,nrows,ncols,rows,cols,vals)
char *name,*flags;
int nrows,ncols;
float max,min,*rows,*cols,*vals;

NOTE: You may only have one connection open at a time. Entering COMMAND-period (-.) at⌘
any time will interrupt the network activity and reset the network.

Linking in dscall.o
The ds_send calls for both FORTRAN and C are contained in the same object file, dscall.o
compiled from the C source in dscall.c. You should include this file on the cc or f77 compile
lines directly. On UNICOS, dscall.o references routines in libnet.a, so it requires that you
include that library on the link line. To create dscall.o on any UNIX system, just compile it with
the -c flag.

To compile dscall.o on Sun and UNICOS systems, enter the commands in Figure 5.12.

Figure 5.12 Code to Compile dscall.o
cc -DSUN -c dscall.c
cc -DUNICOS -c dscall.c

UNICOS compile examples (Figure 5.13):

Figure 5.13 UNICOS Compile Examples
cc myprog.c dscall.o -lnet -o myprog
cf77 myprog.f dscall.o -lnet -o myprog

Sun UNIX compile examples, direct version (Figure 5.14):

Figure 5.14 UNIX Compile Examples
cc myprog.c dscall.o -o myprog
f77 myprog.c dscall.o -o myprog

Array Order
The declaration order of the arrays must be arranged according to the storage order of the
language you are working with. The network connection to DataScope transfers the array in
storage order, across from left to right as you go down the page (the same as reading English
text). The matching declarations for the vals array in FORTRAN and C are presented in
Figures 5.15 and 5.16, respectively.

Programs Run on Remote Hosts 5.10

5.11 NCSA DataScope

Figure 5.15 Vals Array in FORTRAN
REAL VALS(NCOLS,NROWS)

Figure 5.16 Vals Array in C
float vals[nrows][ncols];

Using a Remote Network Server for Notebook Functions

Basics
Thus far we've discussed DataScope's capacity for remote computing. The second network
function available in NCSA DataScope 2.0 is the ability to off-load Notebook computations to
another computer. Previous versions of NCSA DataScope had several built-in functions which
could manipulate arrays in local memory. They could combine the arrays to make more powerful
formulas, but there was a limit to the number of functions provided and a limit to the processing
power of the Macintosh. Now, as in previous versions, you may write external functions for
DataScope which perform calculations that you write and compile for yourself. In addition,
DataScope 2.0 allows access to functions which are compiled and run on other computers.

DataScope's server routines run on Cray UNICOS and Sun UNIX. They are written in portable C
and use the rexecd mechanism provided by many UNIX systems, so they should be portable
to other types of computers. As a user, you do not have to work with the communications
routines directly. You write the function subroutines in FORTRAN or C as described below and
then DataScope takes care of transferring the arrays back and forth.

NOTE: SunOS version 4.0 and later will not allow communication to be established with the
rexecd daemon UNLESS the machine attempting to connect is in the remote machine's hosts
file. Talk to your Sun administrator to get an entry for your Macintosh made in the hosts file.

DS_serve, the DataScope Server
DS_serve is the name of the program which DataScope accesses on your remote computer.
For UNIX, the Makefile and example subroutines are provided on the DataScope distribution
disk. When DataScope invokes the remote server, it looks for a program called DS_serve in
your home directory and runs it. This program must be set up to receive DataScope function
calls with the special DS_serve library provided in DataScope.

On the NCSA systems, home directories are limited in their space allocation. You can easily
create a tiny shell script called DS_serve in your home directory which selects the proper
DS_serve program in another directory. This arrangement only requires one line in the shell
script; i.e., the full path name of the actual program to run (Figure 5.17).

Programs Run on Remote Hosts 5.11

5.12 NCSA DataScope

Figure 5.17 Making a Shell Script with DS_serve
/scr4/u14013/DS_serve

Using Remote Functions in DataScope
Remote functions in DataScope are initiated the same way that local functions are initiated. To
use remote functions, write a formula in the Notebook window and select it. Then choose the
"Calculate From Notes" command in the Numbers menu. Any function name encountered in the
formula which is on the list of local functions is performed locally while any other name is a
candidate for an external or network function.

When a function name is not on the local list, DataScope leaves it up to the user to find the
function. For example, if you were not satisfied with the speed at which DataScope calculates
the mean of an array locally, you might define a remote function called remote_mean() to do
the same task as the local mean() function. When DataScope looks for remote_mean(), it
presents the choices in the dialog shown in Figure 5.18.

Figure 5.18 External Function Library Dialog Box

Select the top button if you have accidentally misspelled a function name or want to exit the
dialog box. Press the Select Library File button when you have programmed an external
function on your Macintosh. The new option, the Use Network Server button, invokes DS_serve
over the network. Each of these options proceeds with the appropriate dialog boxes or returns
you back to the notebook.

Figure 5.19 shows the Network Server dialog box. The information you enter in it is the same
information you've entered when you logged into the remote machine using NCSA Telnet. When
you

Programs Run on Remote Hosts 5.12

5.13 NCSA DataScope

enter your password, it will echo with dummy characters. Backspace deletes the entire
password, not just one character. Press OK or hit return to initiate the remote server function.

Figure 5.19 Network Server Dialog Box

NOTE: If the host you intend to connect to is not in your config.tel file, you will have to enter the
IP address of the host rather than its name.

When you start the remote function, the appearance of the watch cursor indicates that the
network transfers are taking place. The cursor continues to tick while the remote computer
works on the problem and returns the answer. Then the new array pops up on the screen, just
as it does for local computations.

NOTE: If at any time you want to cancel the operation, press COMMAND-period (-.), the ⌘
universal Macintosh cancel key.

Problems with rexecd
The rexecd mechanism can fail for many reasons. NCSA DataScope attempts to capture the
error message and display it for you. Some of the more common errors are listed below.

• Cannot connect
The remote function server cannot be reached over the network. Check that you have
entered the name correctly and that NCSA Telnet can reach this host.

• Login incorrect
The user name provided is not valid for the remote computer.

• Password incorrect
The password given is not valid for the user to log in.

• No remote directory
The home directory of the user could not be located.

Programs Run on Remote Hosts 5.13

5.14 NCSA DataScope

• Command failed
DS_serve cannot be found. It must be placed in the user's home directory.

• Function not found
DS_serve does not have a function of the name you requested. Check your spelling and
make sure the correct version of DS_serve is available in your home directory. Also check
the declarations of your functions as described below.

NOTE: If at any time you want to cancel the operation, press COMMAND-period (-.), the ⌘
universal Macintosh cancel key.

Writing your own functions
Writing C functions for remote UNIX systems is exactly the same as writing DataScope external
functions for the Macintosh. See Chapter 4 "Notebook Calculations" for an example. The
structures passed to and from the user-written subroutine are defined in the file DScope.h. In
fact, most C functions written for DataScope compile and run the same unmodified source code
on Apple Macintosh, Sun UNIX, and Cray UNICOS systems.

The only extra step needed is to declare your function to the DS_serve program and compile it
in with the provided Makefile. The declaration file is dsfn.h, an example is shown in Figure
5.20.

Figure 5.20 dsfn.h File
/*
* Declarations for externally callable routines for the DataScope server
* on UNIX machines.
*
* Add your external function to each of the lists.
* The internal routine, when compiled, will automatically register the
* routine name and which function to call.
*
* The routine name does not need to match the function name string.
*/

int
 NORM(), /* FORTRAN declaration */
 exmean(), /* C declaration */
 puts(); /* dummy entry, anchors list */

struct flist {
 char *namestring;
 int (*fncall)();

};

struct flist dsc[] = { /* C calls list */
 "remote_mean",exmean,
 "",puts

Programs Run on Remote Hosts 5.14

5.15 NCSA DataScope

Figure 5.20 dsfn.h File (Continued)
 };

 "norm",NORM,
 "",puts

 };

Each of your functions must appear in the C calls list in order to have it be available as a remote
call in DataScope. The function name does not have to be the same as the compiled function
name as shown in the example. exmean() is the name of the function, but it is referenced by
the string "remote_mean".

Compiling and linking
The Makefile provided for Cray UNICOS is shown in Figure 5.21.

Figure 5.21 Makefile for UNICOS
DS_serve: dsfn.h DScope.h dsfns.c DS_serve.c dsfnF.o

cc -DUNICOS DS_serve.c dsfns.c dsfnF.o -lf -lu -lm
-lnet -o DS_serve

dsfnF.o: dsfnF.f
cf77 -c dsfnF.f

The Makefile provided for Sun UNIX is shown in Figure 5.22.

Figure 5.22 Makefile for UNIX
DS_serve: DS_serve.c dsfns.c dsfn.h DScope.h dsfnF.o

cc -D SUN DS_serve.c dsfns.c dsfnF.o -lF77 -lI77 -lm -f68881 -o
DS_serve

dsfnF.o: dsfnF.f
f77 dsfnF.f -c -o dsfnF.o

This compile and link process references three source files.

DS_serve.c
DS_serve.c is the only file used without modification. It contains the number translation and
array transfer code which communicates with DataScope on the Macintosh. The -DUNICOS or
-DSUN flags in the Makefile are used by DS_serve.c to determine whether to use code
specific to either UNICOS or Sun UNIX systems. DS_serve.c contains the main() routine, so
you should not include any other main() in your other C files.

Programs Run on Remote Hosts 5.15

5.16 NCSA DataScope

dsfns.c
dsfns.c is the example C source file that contains example functions. Add your own functions
to this file, or create similar files and link them in. Make sure you declare these functions in
dsfn.h first.

dsfnF.f
dsfnF.f is the example FORTRAN source file that contains an example function. Add your
own functions to this file, or create similar files and link them in. Make sure you declare these
functions in dsfn.h first.

Once these three files are compiled and linked together as the executable program DS_serve,
install DS_serve in your home directory on the remote computer. You can use the UNIX ln, mv
or cp commands to put DS_serve in place. It is now ready to be accessed as described in the
section above.

Writing FORTRAN Functions
FORTRAN functions are declared in the same file as the C functions: dsfn.h. The organization
of the data for the subroutine call is quite different, because FORTRAN cannot use structures.
You also cannot use COMMON since the arrays are of variable size. The call is complex, but
well-organized, so you should start by taking the example FORTRAN source and copying it for
your own functions.

An example FORTRAN function is shown in Figure 5.23. It simply divides every element of an
array by 254 and returns the result. It contains the full declaration of the arrays which can be
used to perform a variety of one-parameter and two-parameter calculations.

Figure 5.23 Example FORTRAN Function
subroutine norm(vals,rows,cols,nrows,ncols,maxr,maxc,p)
integer maxr,maxc,p
integer nrows(0:p),ncols(0:p)
real vals(maxc,maxr,0:p)
real rows(maxr,0:p), cols(maxc,0:p)

do 100 j=1,nrows(0)
 do 100 i=1,ncols(0)
 vals(i,j,0) = vals(i,j,1)/255.0
100 continue
return
end

The arrays are laid out to allow for any size of two dimensional array(s) to be used. The
arguments of the call all depend on p, the number of parameters to the notebook function.
Figure 5.24 shows a pictorial representation of some of the arrays in a FORTRAN function.

Programs Run on Remote Hosts 5.16

5.17 NCSA DataScope

• vals
Vals represents all data. This matrix is three-dimensional, even though DataScope is
dealing only with two-dimensional data sets. Like the other dimensions, the third dimension is
used to store values that you provided as parameters (datasets) to the original notebook
function call. In addition, it stores the result values. The first plane of the third dimension is
used to store the result of the computation.

Figure 5.24 Arrays in a FORTRAN Function

1.1 1.2 1.3

2.1

3.1

p = # of planes - 1
or # of notebook function parameters

nrows

ncols

= true # of rows

= true # of columns2.52 2.73

3.72 4.03

etc.

etc.

vals

= 1st dimension
(result)

= 2nd dimension
(1st parameter
 to the notebook
 function)

= 3rd dimension
(2nd parameter
 to the notebook
 function)

The following arrays individually determine the mesh spacing characteristics for each of the
planes of the vals matrix.

• rows
This array has an one-dimensional array for each of the parameters to the DataScope
function. Each one-dimensional array contains the offset values for each row of each plane in
the vals matrix.

• cols
This array also has an array for each of the planes in the vals matrix. Each array contains
the offset values for each column of each plane in the vals matrix.

Programs Run on Remote Hosts 5.17

5.18 NCSA DataScope

The next two arguments determine the true size of each plane in the vals matrix.

• nrows
This array contains the number of rows in each plane of the vals matrix.

• ncols
This array contains the number of columns in each plane of the vals matrix.

NOTE: Often, nrows(1) and ncols(1) will be equal to one. This indicates that the value in
the plane is a constant. If there is only one row and one column, then there can only be one
value. If your function returns a constant value, set nrows(0) and ncols(0) equal to one. The
flexibility in the size of the planes in the vals matrix make matrix operations on matrix of different
sizes possible.

• maxr,maxc
These arrays represent the maximum number of rows and columns in any plane of the vals
matrix. Use the nrows() and ncols() arrays for loop indices, but don't be surprised if
nrows(0) is equal to maxr and ncols(0) is equal to maxc. However, make sure your code
handles the cases where they are not equal.

• p
This value is the number of notebook function parameters and is equal to the number of
planes in vals minus 1 (the result plane will always be there). DataScope supports 0, 1, or 2
parameter notebook function calls, so p is used to dimension the vals array and the
associated scales.

NOTE: The maximum value for p is 2 in NCSA DataScope 1.2. DataScope currently can only
support two parameters for each function.

Using a Sample Program

This section outlines a sample program (Figure 5.25) which you can run on a remote host and
from which you can route the resulting output back to DataScope on your Macintosh. Examples
provided with DataScope include dsfnF.f, a sample FORTRAN simulation of a propagating
wave. The output from dsfnF.f creates a movie sequence in DataScope. Instructions to
compile and link dsfnF.f are included in the source file.

Also included in the sample program is hdf2ds.c, the source code for an HDF utility which
demonstrates calling ds_send from C. This code requires NCSA's HDF library to be linked in
and works only on HDF files.

Programs Run on Remote Hosts 5.18

5.19 NCSA DataScope

Figure 5.25 Source Code for dsfnF.f

subroutine norm(vals,rows,cols,nrows,ncols,maxr,maxc,p)
integer maxr,maxc,p
integer nrows(0:p),ncols(0:p)
real vals(maxc,maxr,0:p)
real rows(maxr,0:p), cols(maxc,0:p)

c
c this example takes the first parameter array #1 and computes
c the answer and places that in answer #0
c

do 100 j=1,nrows(0)
 do 100 i=1,ncols(0)

vals(i,j,0) = vals(i,j,1)/255.0
100 continue
return
end

DataScope's Interactions with a Remote Host
Ultimately, it is your responsibility to be familiar with the remote host. Each different host and
each different operating system may have characteristics that will affect the way that DataScope
works. For example, when using FORTRAN subroutines called from C on Sun systems,
references to the FORTRAN subroutines within the C code must have an underscore appended
to the name (thus, a subroutine named "norm" would be referred to as "norm_" in C code). Also
in reference to the Sun OS 4.0, data is passed back and forth between DataScope on the
Macintosh and the Sun via the rexecd system call; this call REQUIRES that the Macintosh's IP
number be hardcoded in the system's host table.

Programs Run on Remote Hosts 5.19

