
Script Tools 1.3
Reference Guide

Script Tools 1.3-1 and Script Tools 1.3 Reference Guide
Copyright © 1993-1994 Mark Alldritt
All Rights Reserved

1571 Deep Cove Road
North Vancouver, B.C.
CANADA V7G - 1S4

Internet: alldritt@wimsey.com

The Regular Expression processing software used in this package was
written by Henry Spencer and is Copyright © 1986 by University of
Toronto.

Apple, the Apple Logo, Macintosh, AppleScript, System 7 are trademarks
of Apple Computer, Inc.

NOTICE:

The Script Tools software and this document are provided AS IS. The
author is not responsible for any damages caused either directly or
indirectly by the Script Tools software.

Table Of Contents

Introduction iii
About this guide iii

What you need to get started iii

Using and copying Script Tools iii

Installing Script Tools on your Macintosh iv

Script Tools Examples iv

Script Tools Libraries v

Script Tools Additions 1
Choose Folder 1

Choose New File 2

Choose Several Files 3

Choose Several Folders 4

Get Default Folder 6

Set Default Folder 6

Shutdown 7

Open File 7

Close File 8

Create File 9

Create Folder 9

Delete File 10

Rename File 11

Exchange File 12

Move File 12

Read File 13

Write File 14

Get File Position 14

Position File 15

Get Length 16

Lengthen File 16

Compile Regular Expression 17

Match Regular Expression 18

Substitute Regular Expression 19
Replacements for Regular Expressions 20

Speak 20

List Voices 21

Get Voice 22

Get Gestalt 23

List Processes 24

Get Process 24

Get Foreground Process 26

Get Current Process 27

List Screens 27

Addition/Command Cross Reference 1

Introduction

The ScriptTools package contains a series of additions to AppleScript,

Apple’s new scripting language for the Macintosh. If you are trying to

automate any type of activity with AppleScript then Script Tools is a

must. Many of the features of ScriptTools allow you to do things which

simply cannot be done with AppleScript alone.

About this guide
This guide provides reference material describing each of the Script Tools
AppleScript additions.

This guide assumes you are already familiar with the Macintosh and
have some experience with AppleScript. If you’re unfamiliar with these
skills, refer to the manuals that came with your computer and AppleScript.

What you need to get started
To use Script Tools, your Macintosh computer must be running system
software version 7.0 or later; have at least 4 megabytes of memory; and
have AppleScript 1.0 or later installed.

To use the Speech AppleScript addition you will require version 1.1.1
of Apple's Speech Manager software.

Using and copying Script Tools
Please feel free to distribute Script Tools to friends and colleagues.
However, Script Tools may not appear as part of any promotional offer or
commercial product without the author's expressed written

permission. Commercial re-distribution licenses are available through the
author.

When distributing Script Tools, please distribute the entire package as
you received it.

Installing Script Tools on your Macintosh
To install Script Tools, copy the contents of the Additions folder to the
Scripting Additions folder within the Extensions folder in your System
Folder.

Script Tools Examples
The Examples folder contains a series of example AppleScript scripts
showing how to use the new commands provided by Script Tools.

Choose Folder Example
This short example shows the Script Tools Choose Folder
command in use.

Choose File In Prefs Folder
This example shows how the use the Set Default Folder
and Get Default Folder commands to control the starting
folder presented by the Choose File command.

Choose New File Example
This short example shows the Script Tools Choose New
File command in use.

Choose Several Files Example
This short example shows the Script Tools Choose Several
Files command in use.

Choose Several Folders Example
This short example shows the Script Tools Choose Several
Folders command in use.

Backup Folders This script uses the Script Tools Choose Several
Folders and Choose Folder command to identify a series of
folders that are to be backed up and a folder where the
backup is to be stored. The backup is performed using
StuffIt Lite via AppleEvent commands.

Shutdown This example illustrates the use of the Script Tools
Shutdown command.

File IO Example This example creates a text file and writes a short
message to it using the Script Tools File IO commands.

File IO Example II
This example opens a text file and displays the contents of
the file line by line.

Regular Expression Example
This example uses the Script Tools Regular Expression
commands to modify the names of all the files in a folder
(note the file names are not actually changed).

Regular Expression Example II
This example uses Regular Expression and File IO
commands to read and parse a simple text file.

List Folders This example uses the Choose Several Folders and the File
IO commands to produce a listing of the files stored in
folders.

Check For Speech Mgr
This example uses the Get Gestalt command to check for
the presents of the Speech Manager.

Quit All Applications
This example illustrates how to use the List Processes, Get
Process and Get Current Process commands to quit all the
non-essential applications running on your Macintosh.

All of these examples are stored as Script Editor text files with the
exception of Folder Watcher and List Folders which are compiled
AppleScript application. The examples stored as text files can be opened
using the AppleScript Script Editor or any text editor which can read
TEXT files. The Folder Watcher and List Folders scripts can only be
viewed using the Script Editor.

Script Tools Libraries
The Libraries folder contains the following AppleScript libraries.

gestalt Selector Lib
This library defines the Gestalt selectors which are
documented in Inside Macintosh volume VI.

Script Tools Additions

This chapter describes each of the AppleScript commands in the
ScriptTools package. ScriptTools implements these new commands using
AppleScript additions . AppleScript additions are a special type of
software which adds new features to the AppleScript language.

Choose Folder
The Choose Folder command allows the user to choose a folder by
displaying a dialog box like the one below.

Syntax
choose folder

[with prompt promptString]

Parameters
promptString This parameter is a string which is displayed in the dialog

box. If you omit the with prompt parameter, no prompt
is displayed.

Result
The result is an alias to the folder selected by the user.

Example
choose folder ¬
 with prompt "Please select a backup folder"

Choose New File
The Choose New File command presents the standard Macintosh new file
selection dialog box.

Syntax
choose new file

[with prompt promptString]
[default name nameString]

Parameters
promptString This parameter is a string which is displayed in the dialog

box. If this parameter is omitted the string "Save As:" is
displayed.

nameString This parameter is a string which is offered as the default
name for the new file. If this parameter is omitted no
default name is presented.

Result
The result of the Choose New File is a record containing three values:

filename returned
This value is a string representing the name of the new file.

folder returned
This value is an alias to the folder where the new file is to
be placed.

replacing This Boolean value indicates whether or not the new file
replaces an existing file (TRUE = Yes, FALSE = No).

Example
-- Ask the user for a new file
set newFile to choose new file ¬
 with prompt "Select a new archive file:" ¬
 default name "Testing"

-- Show the result on the Script Editor result window
{ (folder returned of newFile as string), ¬
 (name returned of newFile) }

Choose Several Files
The Choose Several Files command presents a modified standard file
selection dialog box allowing the user to choose several files at one time.

Syntax
choose several files

[with prompt promptString]
[of type typeList]
[starting with fileList]

Parameters
promptString This parameter is a string which is displayed in the dialog

box. If you omit the with prompt parameter, no prompt
is displayed.

typeList This parameter is a list of strings specifying the file types
of the files to be displayed in the dialog box. Each string is
a four-character code for the file type, such as "TEXT",
"APPL", "PICT" or "PNTG". If you omit the of type
parameter, all files are displayed. You may specify up to
four file types.

fileList This parameter is a list of aliases referring to files which
are to be displayed as already selected. If you omit the
starting with parameter, the selected files list is left
empty.

Result
The result is a list of aliases referring to the files selected by the user.

Example
choose several files ¬
 with prompt "Select files to be archived:" ¬
 of type {"APPL", "TEXT" } ¬
 starting with { alias "Hard Disk:Disinfectant" }

Choose Several Folders
The Choose Several Folders command presents a modified standard file
selection dialog box allowing the user to choose several folders at one
time.

Syntax
choose several folders

[with prompt promptString]
[starting with folderList]

Parameters
promptString This parameter is a string which is displayed in the dialog

box. If you omit the with prompt parameter, no prompt
is displayed.

folderList This parameter is a list of aliases referring to folders which
are to be displayed as already selected. If you omit the
starting with parameter, the selected folders list is left
empty.

Result
The result is a list of aliases referring to the folders selected by the user.

Example
choose several folder ¬
 with prompt "Select files to be archived:" ¬
 starting with ¬
 { alias "HD:System Folder:" ¬
 alias "HD:System Folder:Extensions:" }

Get Default Folder
The Get Default Folder command returns the current folder used by the
Choose File and Choose Folder commands in this package and those
provided by Apple as part of AppleScript.

Syntax
get current folder

Result
This command returns an alias to the current default folder.

Example
set saveFolder to get default folder
set default folder path to preferences
choose file
set default folder saveFolder

Set Default Folder
The Set Default Folder command changes the current folder used by the
Choose File and Choose Folder commands in this package and those
provided by Apple as part of AppleScript.

Syntax

set default folder folderPath

Result
This command returns no result.

Parameters
folderPath This parameter is an alias to the folder which is to become

the default folder. If you provide an alias to a file, the
folder containing the file becomes the default folder.

Example
set default folder path to preferences
choose file

Shutdown
The Shutdown command shuts down and optionally restarts your
Macintosh.

Syntax
shutdown

[with restart]

Result
This command returns no result.

Example
set result to display dialog ¬

"Are you sure you want to shutdown?" ¬
buttons {"Shutdown", "Restart", "Cancel"} ¬ default

button "Cancel"
if button returned of result = "Shutdown" then ¬ shutdown
if button returned of result = "Restart" then ¬ shutdown
with restart

Open File
The Open File command opens a text file for reading and/or writing. This
command, when used with the Read File and Write File commands,
allows you to process text files within scripts without the aid of a
scriptable text editor application.

Syntax

open file file
[for reading|update|writing]

Parameters
file This parameter is a alias to the file which is to opened.

Result
The result a file reference number. You must provide this number to all
other commands you issue when processing the file.

Example
set filePath to choose file ¬

with prompt "Select a file to open:" ¬
of type "TEXT"

set refNum to open file filePath for reading
close file refNum

Notes
When the optional for is not specified, the file is opened for update.

Be careful to ensure you close all the files you open. Due to the nature of
AppleScript additions, the Open File command does not ensure the file is
closed when a script aborts without first closing the file with the Close
File command.

Errors
This command can return any of the errors which are returned by the
ToolBox HOpen routine.

Close File
The Close File command closes a file previously opened with the Open
File command.

Syntax

close file fileRefNum

Parameters
fileRefNum This parameter is the reference number of a file. This

value is returned by the Open File command.

Result
none

Example
set filePath to choose file ¬

with prompt "Select a file to open:" ¬
of type "TEXT"

set refNum to open file filePath for reading
close file refNum

Errors
This command can return any of the errors which are returned by the
ToolBox FSClose routine.

Create File
The Create File command creates a new TEXT file.

Syntax

create file fileName
[in folder]
[owner signature]

Parameters
fileName This parameter is the new file’s name.

folder This parameter is an alias to the folder where the new file
is to be placed. If this parameter is omitted the file is
created in the current default folder.

signature This parameter is a list of aliases referring to folders which
are to be displayed as already selected. If you omit the
owner parameter, the new file is given the signature
‘????’.

Result
none.

Example
set newFile to choose new file ¬

with prompt "Pick a new file name:"

create file (filename returned of newFile) ¬
in (folder returned of newFile) ¬
owner "ttxt" -- TeachText

Errors
This command can return any of the errors which are returned by the
ToolBox HCreate routine.

Create Folder
The Create Folder command creates a new folder.

Syntax

create folder folderName
[in folder]

Parameters
folderName This parameter is the new folder's name.

folder This parameter is an alias to a folder where the new folder
is to be placed. If this parameter is omitted the file is
created in the current default folder.

Result
none.

Example
set newFolder to choose new file ¬

with prompt "Pick a new folder name:"

create folder (filename returned of newFolder) ¬
in (folder returned of newFolder)

Errors
This command can return any of the errors which are returned by the
ToolBox DirCreate routine.

Delete File
The Delete File command deletes a file without placing it in the Trash.

Syntax
delete file folders

[with prompt promptString]
[starting with folderList]

Parameters
promptString This parameter is a string which is displayed in the dialog

box. If you omit the with prompt parameter, no prompt
is displayed.

folderList This parameter is a list of aliases referring to folders which
are to be displayed as already selected. If you omit the
starting with parameter, the selected folders list is left
empty.

Result
The result is a list of aliases referring to the folders selected by the user.

Example
choose several folder ¬
 with prompt "Select files to be archived:" ¬
 starting with ¬
 { alias "HD:System Folder:" ¬
 alias "HD:System Folder:Extensions:" }

Errors
This command can return any of the errors which are returned by the
ToolBox HDelete routine.

Rename File
The Rename File command changes a files name.

Syntax

rename file file to newName

Parameters
file This parameter is a alias which identifies the file whose

name is being changed.

newName This parameter is a text string containing the file's new
name.

Result
none.

Example
rename file (choose file) to "Backup"

Errors
This command can return any of the errors which are returned by the
ToolBox PBHRename routine.

Exchange File
The Exchange File command swaps the data stored in two files.

Syntax

exchange file firstFile with secondFile

Parameters
firstFile This parameter is a alias which identifies the first of the

two files.

secondFile This parameter is a alias which identifies the second of the
two files.

Result
none.

Example
exchange file (choose file) with (choose file)

Errors
This command can return any of the errors which are returned by the
ToolBox PBExchangeFiles routine.

Move File
The Move File command moves a file or a folder from one folder to
another.

Syntax

rename file fileOrFolder to destination

Parameters
fileOrFolder This parameter is an alias which identifies the file or folder

being moved.

destination This parameter is an alias referring to the destination folder
for fileOrFolder.

Result
none.

Note
The file or folder being moved and the destination folder must be on the
same volume.

Example
move file (choose file) to (choose folder)

Errors
This command can return any of the errors which are returned by the
ToolBox PBCatMove routine.

Read File
The Read File command reads a “line” of text from a file opened with the
Open File command. A line in this case means all characters up to the
next carriage return in the file. This is refereed to as a paragraph in some
applications since these lines may wrap around a number of times when
displayed in a window.

Syntax

read file fileRefNum
[maximum length maxLength]

Parameters
fileRefNum This parameter is the reference number of a file. This

value is returned by the Open File command.

maxLength This integer parameter specifies the maximum number of
characters you wish to read. Normally the Read File
command reads a maximum of 1024 characters. The
practical maximum for this value is limited only by the
memory available.

Result
The result is a string representing the data read from the file.

Example
set myFile to choose file ¬

with prompt "Select a text file:" ¬
of type "TEXT"

set refNum to open file myFile
set inputLine to read file refNum
display dialog inputLine
close file refNum

Errors
This command can return any of the errors which are returned by the
ToolBox PBRead routine.

Write File
The Write File command writes a line to a text file.

Syntax

write file fileRefNum text data

Parameters
fileRefNum This parameter is the reference number of a file. This

value is returned by the Open File command.

data This parameter is the line of text to be written to the file.

Result
none.

Example
set refNum to open file "Sample Test"
write file refNum text "Sample Test"
close file refNum

Errors
This command can return any of the errors which are returned by the
ToolBox FSWrite routine.

Get File Position
The Get File Position command obtains the current position of a file's
marker. A file marker represents the address within a file where the next
read or write will begin.

Syntax

get file position fileRefNum

Parameters
fileRefNum This parameter is the reference number of a file. This

value is returned by the Open File command.

Result
The result is a number representing the address of the files marker.

Example
-- haven't thought of a good one yet

Errors
This command can return any of the errors which are returned by the
ToolBox GetFPos routine.

Position File
The Position File command changes the current position of a file's marker.
A file marker represents the address within a file where the next read or
write will begin.

Syntax

position file fileRefNum at filePosition

Parameters
fileRefNum This parameter is the reference number of a file. This

value is returned by the Open File command.

filePosition This parameter is the new address for the files marker.

Result
none.

Example
-- position the marker at the end of the file so
-- data can be appended to the file
position file refNum to (get length refNum)

Errors
This command can return any of the errors which are returned by the
ToolBox SetFPos routine.

Get Length
The Get Length command obtains the length (in bytes) of the file.

Syntax

get length fileRefNum

Parameters
fileRefNum This parameter is the reference number of a file. This

value is returned by the Open File command.

Result
The number of bytes stored in the file.

Example
-- position the marker at the end of the file so
-- data can be appended to the file
position file refNum to (get length refNum)

Errors
This command can return any of the errors which are returned by the
ToolBox GetEOF routine.

Lengthen File
The Lengthen File command changes the length of a file. You can use the
Lengthen command to shorten or extend the size of a file.

Syntax

lengthen file fileRefNum length fileLength

Parameters
fileRefNum This parameter is the reference number of a file. This

value is returned by the Open File command.

fileLength This parameter is the new length of the file.

Result
none.

Example
-- empty the contents of a file
lengthen file refNum length 0

Compile Regular Expression
The Compile Regular Expression command compiles a pattern string.
Compiled Regular Expressions are used by the Match Regular Expression
and Substitute Regular Expression commands.

Syntax

compile regular expression patternString

Parameters
patternString This parameter is a string which is displayed in the dialog

box. If you omit the with prompt parameter, no prompt
is displayed.

For a description of the syntax of pattern strings see the
documentation for the UNIX grep command. Information
about Regular Expressions is also available in the THINK
C User's Guide.

Result
The result is a compiled version of the patternString. This compiled
pattern is used with the Match Regular Expression and Substitute Regular
Expression commands.

Example
set pattern to

compile regular expression "(.*):(*)"

Errors
V1.2 of Compile Regular Expression does not report any errors. If there
is a problem with the pattern string a null expression ("") is returned.
Future releases will return errors indicating the type of problem found
with the pattern string.

Match Regular Expression
The Match Regular Expression command matches a string to a Regular
Expression and returns the portions of the string which match the regular
expression.

Syntax

match regular expression compiledExpression
to candidateString

Parameters
compiledExpression

This parameter is a compiled regular expression. This
value is returned by the Compiler Regular Expression
command.

candidateString
This parameter is the string that is to be matched to the
regular expression.

Result
The result of the Match Regular Expression command is a record
containing the following values:
matched

This Boolean value indicates if there was a match.
match string

This string value represents largest match found.

match 1 This string value represents the portion of the string
matching the first () expression.

match 2 This string value represents the portion of the string
matching the second () expression.

match 3 This string value represents the portion of the string
matching the third () expression.

match 4 This string value represents the portion of the string
matching the fourth () expression.

match 5 This string value represents the portion of the string
matching the fifth () expression.

match 6 This string value represents the portion of the string
matching the sixth () expression.

match 7 This string value represents the portion of the string
matching the seventh () expression.

match 8 This string value represents the portion of the string
matching the eighth () expression.

match 9 This string value represents the portion of the string
matching the ninth () expression.

Example
set pattern to ¬

compile regular expression "This (.*) test"
set result to match regular expression pattern ¬

to "This is a test"
{ result }

Output formatted for this document:

{
matched : TRUE,
matched string: "This is a test",
match 1: "is a"

}

Substitute Regular Expression
The Substitute Regular Expression command extracts the elements from a
candidate string which match the patterns of a Regular Expression and
then substitutes the extracted elements into a template string.

Syntax

substitute regular expression compiledExpression
of candidateString
with templateString

Parameters
compiledExpression

This parameter is a compiled Regular Expression pattern.
Regular Expressions are compiled using the Compile
Regular Expression command.

candidateString
This parameter is a string representing the text which is to
be compared to the Regular Expression and then modified.

templateStringThis parameter is a string representing a template for the
substitutions which are to be performed. See the section
titled "Replacements for Regular Expressions" below for a
description of the format of this string.

Result
The result is the substituted string.

Example
set pattern to ¬

compile regular expression "This (.*) test"
substitute regular expression pattern ¬

of "This is a test" with "---\1---"

Result:

---is a---

Replacements for Regular Expressions
Within a template string the following conventions apply:

• A backslash quotes the following character. The special characters
within a template string are '&' and '\'; these are the only characters
that need to be quoted. The construct "\&" produces a single '&' and
the construct "\\" produces a single backslash.

• An ampersand (&) indicates the entire matched regular expression.
For example, the replacement "&&" would consist of two copies of
the matched expression.

• The sequence "\n", where n is a single digit, indicates the text
matching the nth parenthesized component of the regular expression

Speak
The Speak command uses the Apple Macintosh Speech Manager to speak
text strings. Note that because of its dependency on the Speech Manager,
this command only operates on Macintoshes which have the Speech
Manager installed.

Syntax

speak message
[voice voice]
[rate rate]
[pitch pitch]

Parameters
message This parameter is the text you want to have spoken.

voice This optional parameter allows you to specify the name of
the voice you want used when the message is spoken.

rate This optional parameter specifies the rate at which your
message is spoken. Express the rate as a number
representing words per minute.

pitch This optional parameter specifies the pitch at which your
message is spoken.

Result
none.

Example
speak "The wind blows mainly in the plains"

List Voices
The List Voices command obtains a list of the names of the voices
available. Note that because of its dependency on the Speech Manager,
this command only operates on Macintoshes which have the Speech
Manager installed.

Syntax
list voices

Parameters
none.

Result
The result is a list of strings representing the names of all the Speech
Manager voices.

Example
list voices

Result:

{"Mr. Hughes", "Xero", "Votron", "Otis", "RoboVox",
"Boris", "Mariel", "Ben", "Brenda", "Marvin"}

Get Voice
The Get Voice command returns detailed information about a particular
Speech Manager voice. Note that because of its dependency on the
Speech Manager, this command only operates on Macintoshes which have
the Speech Manager installed.

Syntax

get voice voice

Parameters
voice This parameter specifies the name of the voice you want

information about.

Result
The result of the Get Voice command is a record containing the following
values:
voice version

This integer value represents the voice's version number.
voice name

This string is the voice's name.

comment This string further describes the voice.

gender This integer value defines the gender of the voice—1 =
neuter, 2 = male and 3 = female.

age This integer value represents the approximate age of the
voice.

voice script
This integer corresponds the voice's script code.

language This integer value is the voice's language code.

Example
get voice (first item of (list voices))

Output formatted for this document:

{
 version:65536,
 name:"Mr. Hughes",
 comment:"Adult male voice.",
 gender:1,
 age:30,
 script:0,
 language:0,
 region:0
}

Get Gestalt
The Get Gestalt command gets information about the operating
environment.

Syntax

get gestalt selector]
[bit bitNumber]
[with/without report missing selectors]

Parameters
selector This parameter is a string representing the type of

operating environment information you want. This
parameter must be a 4-character code. The gestalt
Selectors Lib file defines all of the Gestalt selectors
documented in Inside Macintosh volume VI as well as
selectors for Apple's Speech Manager.

bitNumber This optional parameter defines which bit of the selectors
value to test. If this parameter is specified the command
returns a Boolean value. If the parameter is omitted the
command returns the entire selector value.

Result
The result of this command is either the selector's integer value when the
bit parameter is not specified. When the bit parameter is specified a
Boolean value is returned.

Notes
When the optional with report missing selectors is specified,
the Get Gestalt command reports errors associated with unknown
selectors Otherwise a value of 0 is returned.

Example
-- verify that the Speech Mgr is present

property gestaltSpeechAttr : "ttsc"
property gestaltSpeechMgrPresent : 0

if get gestalt gestaltSpeechAttr ¬
 bit gestaltSpeechMgrPresent then
 display dialog "Speech Mgr Present"
else
 display dialog "Speech Mgr Missing"
end if

List Processes
The List Processes command obtains a list of the names of the
applications running on your Macintosh. This includes normal Macintosh
applications, desk accessories and faceless-background-only applications.

Syntax
list processes

Parameters
none.

Result
The result is a list of strings representing the names of all the running
applications.

Example
list processes

Result:

{"PrintMonitor", "Scheduler", "File Sharing Extension",
"Finder", "Eyes", "Monitor", "Script Editor"}

Get Process
The Get Process command obtains detailed information about a running
application.

Syntax

get process processName

Parameters
processName This parameter specifies the name of the process you want

information about.

Result
The result of the Get Process command is a record containing the
following values:

process name
This string is the process's name.

process number
This value represents the process's serial number.
AppleScript translates this value into an application object
automatically.

application type
This string is the application's four character file type.
Normally this value is "APPL".

signature This string is the application's four character signature.
partition size

This integer value represents the amount of memory the
application occupies.

free memory
This integer value represents the amount of free memory
within the application's partition.

launcher This string is the name of the application which launched
this application. If its blank then the application is no
longer running.

launch date
This integer value represents the data and time when the
application was launched.

active time
This integer value is the amount of CPU time used by the
application since it was launched. The units for this value
are ticks (1/60th of a second).

application file
This value is a reference to the application's file.

deskAccessory

multiLaunch

needSuspendResume

canBackground

activateOnForegroundSwitch

compatible32Bit

onlyBackground

getFrontClicks

getApplicationDiedEvents

highLevelEventAware

localAndRemoteEvents

stationeryAware

useTextEditServices
These Boolean values represent the application's mode
flags.

Example
get process (first item of (list processes))

Output formatted for this document:

{
 process name:"PrintLauncher",
 process number:application "PrintLauncher",
 application type:"appe",
 signature:"PRLN",
 partition size:40960,
 free memory:5018,
 launch date:date "Saturday, September 11, 1993
10:23:45 AM",
 active time:19605,
 application file:file "System Disk:System
Folder:Extensions:PrintLauncher",
 deskDccessory:false,
 multiLaunch:false,
 needSuspendResume:true,
 canBackground:true,
 activateOnForegroundSwitch:true,
 onlyBackground:true,
 getFrontClicks:false,
 getApplicationDiedEvents:false,
 compatible32Bit:true,
 highLevelEventAware:true,
 localAndRemoteEvents:false,
 stationeryAware:false,
 useTextEditServices:false,
 launcher:""
}

Get Foreground Process
The Get Foreground Process command gets name of the foreground
application. The foreground application is the application whose
windows are presently active. Note that the foreground application is not
necessarily the current application (see the Get Current Application
command).

Syntax
get foreground process

Parameters
None.

Result
The result of this command is string representing the name of the
foreground application.

Example
get foreground process

Result:

"Script Editor"

Get Current Process
The Get Current Process command gets name of the currently executing
application. This command is useful for finding the name of the process
executing a script. The value returned by the Get Current Process
command is different from the value returned by the Get Foreground
Process command when the current process is in the background.

Syntax
get current process

Parameters
None.

Result
The result of this command is string representing the name of the
currently executing application.

Example
get current process

Result:

"Script Editor"

List Screens
The List Screens command obtains detailed information about each of the
Macintosh's display screens.

Syntax
list screens

Result
The result of the List Screens command is a list of records. Each record
describes a different display screen. The records contain the following
values:
main screen

This Boolean value indicates weather or not the screen is
the main screen. The main screen is the screen containing
the menu bar.

bit depth This value represents the number of bits in the display
screen.

bounds This value is the screens bounding rectangle.

Example
list screens

Output formatted for this document:

{
 {
 main screen:true,
 bit depth:1
 bounds:{0, 0, 1152, 882}
 },
 {
 main screen:false,
 bit depth:1
 bounds:{-512, 356, 0, 698}
 }
}

Addition/Command Cross Reference

The following table lists the commands defined in each of the ScriptTools
additions:

Choose Files & Folders Choose Folder
Choose New File
Choose Several Folders
Choose Several Files

File IO Open File
Close File
Create File
Create Folder
Delete File
Rename File
Exchange File
Move File
Read File
Write File
Get File Position
Position File
Lengthen File
Get Length

Shutdown Showdown

Regular Expressions Compile Regular Expression
Match Regular Expression
Substitute Regular Expression

Speech Speak
List Voices
Get Voice

Gestalt Get Gestalt

Processes List Processes
Get Process
Get Current Process
Get Foreground Process

List Screens List Screens

