
USENET Macintosh Programmer's Guide

Chapter 11 QuickDraw™ & Graphics

Copybits and the colortable..140
Piccomment and technote 175...140
Sync Drawing (with Code)..141
THINK C & 32-bit quickdraw (interfaces for 32bit quickdraw)...143
THINK C & 32-bit quickdraw (.c) (interfaces for 32bit quickdraw)..145
How do I get the slot of the main screen?..149
Drawing to an off screen bitmap (with code)...150
Color Quickdraw and copybits glitches
 (ps to colorqQD with Code).. 151
Finding the size of the screen under Multifinder/Color QD
 (gdevices)... 156
Bitmap not showing up in scrapbook (cliprect)...157
Finding the size of the screen under Multifinder/Color QD..157,158
Marquee Help? (with Code)..158
How to get the QD globals outside of an application..162
Marquee Help?... 163
Finding the size of the screen under Multifinder/Color QD..163,164
PICT resource to BitMap (with code)..165
Writing large PICT files???...166
How's the screen cleaned after _SysError?..166
Optimizing Copybits (good Information with code)... 167
Fast Copybits suggestions needed, other questions..169
How does one set up an offscreen buffer...169
Rotate Bit Map CCW (full source code)..171
Aligning bitmaps? (with code).. 182,184
ThePort and TENew (problem with font)...184
FatBits,thinbits and MapPt()... 185
32-bit QuickDraw scaling behavior...185
Need help creating a Quickdraw picture...186
Still need help creating a QuickDraw picture..187
Need help animating with 24 bit card.. 187
Setting up CLUTs - Advise???????.. 188
Bad pixmap data written by OpenPicture & CopyBits...188
Fading ...(dissolve effect).. 189
Drawing all over the desktop.. 189
PICT hacking question.. 190
Wanted- a window that comes up in black..190,191
Dragging Bitmaps?... 191
Wanted- a window that comes up in black..192
Dragging Bitmaps?... 192
2-16-256-million color mode...192
Reading PICT's revisited..193
How to read a Pict into a scrollable window...197

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

From: Larry Rosenstein, Apple Computer, Inc.
Subject:Copybits and the colortable

In article <3084@ur-cc.UUCP> tonyg@merlin.cvs.rochester.edu (Tony Giaccone) writes:

> So if that's the case why doesn't the copybits install a copy of the
> current color table into the PICT2. Or, if it does how come PICTViewer
> doesn't use that Color Table when it displays the file? It certainly seems
> to use the color tables in other PICT2 files. I don't get it.

If you were to dump the picture, I think you would find that your custom color table was present. A pixmap always has an
associated color table.

What happens is that the CopyBits from your picture to the screen follows the normal Color QuickDraw rules. That is, Color
QuickDraw maps the desired colors to the closest ones that the display can show. Color QuickDraw never modifies the
current color table in the process of drawing. If you were using a 24-bit display, then you would get the desired colors,
because all colors are achievable.

This is a known weakness in the PICT format. What programs needs to do is get the "appropriate" color table for the
picture, set up that palette, and then draw the picture. The problem is that there is no standard for getting the "appropriate"
color table.

Some programs store the CLUT as a separate resource, and read that resource to construct the palette. (You could use the
resource type understood by the Palette Manager.)

Another approach is to scan through the picture and build up a CLUT based on the colors actually used. For a bitmap image
this is OK, since the CLUT is stored in the pixmap. For an arbitrary picture it is not as easy to do.

-
Larry Rosenstein, Apple Computer, Inc.,Object Specialist

•••
From: Tom Dowdy
Subject: Piccomment and technote 175

I've watched lots of interesting postings on peoples theories on how to make this work, but I haven't yet seen what I consider
the best answer.

In article <UZB_yoW00UzxQ1R4wY@andrew.cmu.edu> ba0k+@andrew.cmu.edu (Brian Patrick Arnold) writes:

> [Recommends use of :]
> "SetLineWidth" described in Tech Note #175.

This is a correct way to get thin lines from a LaserWriter. Note that this PicComment is only currently interpreted on the
LaserWriter and you gain nothing on other printers.

BUT:
There is a way to get thin lines and device positioning from *all* printer drivers. This is to use the PrGeneral calls
GetRslData and SetRsl, as documented in Tech Note 128. When you make these calls, your app is said to be "imaging at
device resolution."

This means that within your print record you will see the page expressed in terms of the resolution that you specified. This
means that you can then place/draw objects within the coordinate space of the device, rather than the coordinate space of
72 dpi, which is what normally happens.

The reason this approach is better is that owners of LaserWriter SCs, DeskWriters (and this is a growing number),
ImageWriter LQs, and even lowly ImageWriters will be able to draw things to best possible output for their device. Everyone
is happy! And you didn't have to write any PostScript, or mess with the Enlarge/Reduce box in the dialog, or even use
PicComments.

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

Please note that you do not need to use these calls if you application is simply trying to get "smooth looking circles" from the
LaserWriter. The drivers take care of that for you. You only need to make this call if you need to draw lines at device
resolution, or you need to be able to place dots or objects within the coordinate space of the device.

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

If you'd like to make these calls, please refer to the Tech Note for information on when/how to call GetRslData and SetRsl.
Those of you with Volume V of Inside Mac can also find the information there in the chapter on the Printing Manager, the
information looks the same, although in general I tend check the Tech Notes first because they are updated more often.

Tom Dowdy Internet: dowdy@apple.COM

•••
From:Dave ?
Subject:Sync Drawing (with Code)

To do synched drawing on a Mac II, you want to use a technique analogous to that of watching TickCount() on the MacPlus,
but you have to make your own VBL counter. This should be done with VBLTask tied to the video slot so you really get video
synching.

To illustrate this, here is some code (in Think C):

 Dave

/* my globals */
extern long VBLcounter;
extern short videoSlot;
extern VBLTask drawtask;

/**

 Before we do anything, we have to know which slot the
 card is in. Use this routine. (See Start Manager in
 IM V.)

*/

FindVideoSlot()
{
 DefVideoRec defvidrec;

 GetVideoDefault(&defvidrec);
 videoSlot = defvidrec.sdSlot;
}

/***

 Then we have to install a VBL Task. This is the one
 I'll use. To use global variables you must setup the
 A5 register. To do this in MultiFinder requires
 a special trick, which is demonstrated with the
 CacheA5 function.

*/

pascal void ScreenDrawTask()
{
/*
* WARNING! - this is self-modifying code, but it is
* necessary to run under MultiFinder...see Tech Note 180
*/
 long oldA5;

 asm {
 move.l a5,oldA5

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

 move.l #0,a5 ; this will be replaced with
 ; CurrentA5 by the CacheA5 function at runtime
 }

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

 VBLcounter += 1;
 drawtask.vblCount = 1;
 asm {
 move.l oldA5,a5
 }
}

pascal void CacheA5(addr)
long addr;
/*
* This function will place CurrentA5 into the beginning of task
* functions which start as:
* pascal void FooTask()
* {
* long junk;
*
* asm {
* move.l a5,junk
* move.l #0,a5 ;this will be replaced by CurrentA5
*
*
* See Tech Note #180
*/
{
 asm {
 move.l addr,a0
 add.w #2,a0 ; move past JMP instruction
 move.l (a0),a0
 add.w #0xa,a0 ; move past first part of function
 move.l CurrentA5,(a0)
 ; puts CurrentA5 in (*addr)() dc.l location
 }
}

/**

 This function actually sets up the VBL Task.

*/

StartCounter()
{
 CacheA5(ScreenDrawTask);
 VBLcounter = 0;
 drawtask.vblAddr = ScreenDrawTask;
 drawtask.qType = vType;
 drawtask.vblCount = 1;
 drawtask.vblPhase = 0;
 SlotVInstall(&drawtask,videoSlot);
}

/***

 This function removes the VBL Task.

*/

RemoveCounter()
{
 SlotVRemove(&drawtask,videoSlot);
}

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

/***

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

 This function holds everything until it's
 time to draw. Note that it could be replaced by
 a #define macro (make VBLjunk a global).

*/

WAIT_FOR_SCREEN()
{
 long VBLjunk;

 VBLjunk = VBLcounter;
 do {} while (VBLcounter == VBLjunk);
 /* this is used to synch drawing to screen */
}

/**

 Now, putting this altogether into a program

*/

main()
{

 /* do your init stuff */

 FindVideoSlot();
 StartCounter();

 /* now, whenever you want to draw something, do this... */
 WAIT_FOR_SCREEN();
 DrawMyThing();

 /* when you're done...*/

 RemoveCounter();

}

•••
From: oster@dewey.soe.berkeley.edu (David Phillip Oster)
Subject: THINK C & 32-bit quickdraw (interfaces for 32bit quickdraw)

As my way of saying thank you, here are the interfaces for 32-bit Quickdraw for THINK C. You may want to save this file
and upload it,since it contains tabs and fairly long lines.:

--- David Phillip Oster -master of the ad hoc odd hack.

(cut here, call this QuickDraw32Bit.h).
/* let's get a real juicy 32 bit discussion going based on this maybe !!
 by bhamlin@well.sf.ca.us (Brian M. Hamlin)
 from oster@well.sf.ca.us (David Phillip Oster)
*/

/* I think that's it - check it out, write something fun. Remember: You
don't have to have a 32bit video card, just Sys 6.0.3 or greater on
a color-capable machine and the 32bit Quickdraw INIT in your system
folder to use these calls !

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

*/
/* hoo-boy, well ANYWAY thanks to Sam Roberts for assembler tweaking. */

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

#ifndef _QuickDraw32Bit_
#define _QuickDraw32Bit_

#ifndef _Quickdraw_
#include <Quickdraw.h>
#endif

#ifndef _Color_
#include <Color.h>
#endif

/* New Constants for 32-Bit QuickDraw */

#define ditherCopy 64 /* Dither mode for Copybits */
#define RGBDirect 16 /* 16 & 32 bits/pixel pixelType value */

/* New error codes */

#define rgnOverflowErr -147 /* Region accumulation failed. Resulting
region may be currupt */
#define pixmapTooDeepErr -148 /* Pixmap is not 1-bit/pixel for BitmapToRegion */
#define insufficientStackErr -149 /* QuickDraw could not complete the operation */
#define cDepthErr -157 /* invalid pixel depth passed to NewGWorld or
UpdateGWorld */

#define pixPurgeMask 1
#define noNewDeviceMask 2

/* Flag bits passed to or returned by Offscreen routines */

enum {
pixPurgeBit = 0,
nowNewDeviceBit = 1,
pixelsPurgeableBit = 6,
pixelsLockedBit = 7,

mapPixBit = 16, /* set if color table mapping occurred */
newDepthBit = 17, /* set if pixels were scaled to a different depth */
alignPixBit = 18, /* set if pixels were realigned to screen alignment */
newRowBytesBit = 19, /* set if pixmap was reconfigured in a new rowBytes */
reallocPixBit = 20, /* set if offscreen buffer had to be reallocated */
clipPixBit = 28, /* set if pixels were or are to be clipped */
stretchPixBit = 29, /* set if pixels were or are to be stretched/shrinked */
ditherPixBit = 30,
gwFlagErrBit = 31

};

typedef enum {
pixPurge = 1L << pixPurgeBit,
nowNewDevice = 1L << nowNewDeviceBit,
pixelsPurgeable = 1L << pixelsPurgeableBit,
pixelsLocked = 1L << pixelsLockedBit,
mapPix = 1L << mapPixBit,
newDepth = 1L << newDepthBit,
alignPix = 1L << alignPixBit,
newRowBytes = 1L << newRowBytesBit,
reallocPix = 1L << reallocPixBit,
clipPix = 1L << clipPixBit,
stretchPix = 1L << stretchPixBit,
ditherPix = 1L << ditherPixBit,
gwFlagErr = 1L << gwFlagErrBit

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

}GWorldFlag;

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

typedef long GWorldFlags;

/* Type definition of a GWorldPtr */

typedef CGrafPtr GWorldPtr;

/* Function Prototypes (necessary to get automatic type coercion -- see LSC User's Manual
p.125)
*/
pascal OSErr BitmapToRegion(RgnHandle, BitMap *);
pascal QDErr NewGWorld(GWorldPtr *, short, Rect *, CTabHandle, GDHandle, GWorldFlags);
pascal Boolean LockPixels(PixMapHandle);
pascal void UnlockPixels(PixMapHandle);
pascal GWorldFlags UpdateGWorld(GWorldPtr *, short, Rect *, CTabHandle, GDHandle,
GWorldFlags);
pascal void DisposeGWorld(GWorldPtr);
pascal void GetGWorld(CGrafPtr *, GDHandle *);
pascal void SetGWorld(CGrafPtr, GDHandle);
pascal void CTabChanged(CTabHandle);
pascal void PixPatChanged(PixPatHandle);
pascal void PortChanged(GrafPtr);
pascal void GDeviceChanged(GDHandle);
pascal void AllowPurgePixels(PixMapHandle);
pascal void NoPurgePixels(PixMapHandle);
pascal GWorldFlags GetPixelsState(PixMapHandle);
pascal void SetPixelsState(PixMapHandle, GWorldFlags);
pascal Ptr GetPixBaseAddr(PixMapHandle);
pascal QDErr NewScreenBuffer(Rect *, Boolean, GDHandle *, PixMapHandle *);
pascal void DisposeScreenBuffer(PixMapHandle);
pascal GDHandle GetGWorldDevice(GWorldPtr);

#endif

•••
From: oster@dewey.soe.berkeley.edu (David Phillip Oster)
Subject:Re: THINK C & 32-bit quickdraw (.c) (interfaces for 32bit quickdraw)

As my way of saying thank you, here are the interfaces for 32-bit Quickdraw for THINK C. You can save this, compile it, then
get at all the 32-bit quickdraw traps from THINK C. You may want to save this file and upload it, since it contains tabs and
fairly long lines.:

>--- David Phillip Oster -master of the ad hoc odd hack.

(cut here, call this QuickDraw32Bit.c).
#include <QuickDraw32Bit.h>

/* let's get a real juicy 32 bit discussion going based on this maybe !!
 by bhamlin@well.sf.ca.us (Brian M. Hamlin)
 from oster@well.sf.ca.us (David Phillip Oster)
*/

/* BitmapToRegion -
*/
pascal OSErr BitmapToRegion(region, bmap)

RgnHandle region;
BitMap *bmap;{

asm {
SUBQ.L #2,SP

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

MOVE.L region(A6),-(SP)
MOVE.L bmap(A6),-(SP)
DC.W 0xA8D7
MOVE.W (SP)+,D0

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

}
}

/* NewGWorld -
*/
pascal QDErr NewGWorld(offscreenGWorld, pixelDepth, boundsRect, cTable, aGDevice, flags)

GWorldPtr *offscreenGWorld;
short pixelDepth;
Rect *boundsRect;
CTabHandle cTable;
GDHandle aGDevice;
GWorldFlags flags;{

asm {
SUBQ.L #2,SP
MOVE.L offscreenGWorld(A6),-(SP)
MOVE.W pixelDepth(A6),-(SP)
MOVE.L boundsRect(A6),-(SP)
MOVE.L cTable(A6),-(SP)
MOVE.L aGDevice(A6),-(SP)
MOVE.L flags(A6),-(SP)
MOVEQ #0,D0
DC.W 0xAB1D
MOVE.W (SP)+,D0

}
}

/* LockPixels -
*/
pascal Boolean LockPixels(pm)PixMapHandle pm;{

asm {
SUBQ.L #2,SP
MOVE.L pm(A6),-(SP)
MOVEQ #1,D0
DC.W 0xAB1D
MOVE.B (SP)+,D0

}
}

/* UnlockPixels -
*/
pascal void UnlockPixels(pm)PixMapHandle pm;{

asm {
MOVE.L pm(A6),-(SP)
MOVEQ #2,D0
DC.W 0xAB1D

}
}

/* UpdateGWorld -
*/
pascal GWorldFlags UpdateGWorld(offscreenGWorld, pixelDepth, boundsRect, cTable, aGDevice,
flags)

GWorldPtr *offscreenGWorld;
short pixelDepth;
Rect *boundsRect;
CTabHandle cTable;
GDHandle aGDevice;
GWorldFlags flags;{

asm {
SUBQ.L #4,SP
MOVE.L offscreenGWorld(A6),-(SP)

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

MOVE.W pixelDepth(A6),-(SP)
MOVE.L boundsRect(A6),-(SP)
MOVE.L cTable(A6),-(SP)

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

MOVE.L aGDevice(A6),-(SP)
MOVE.L flags(A6),-(SP)
MOVEQ #3,D0
DC.W 0xAB1D
MOVE.L (SP)+,D0

}
}

/* DisposeGWorld -
*/
pascal void DisposeGWorld(offscreenGWorld)GWorldPtr offscreenGWorld;{

asm {
MOVE.L offscreenGWorld(A6),-(SP)
MOVEQ #4,D0
DC.W 0xAB1D

}
}

/* GetGWorld -
*/
pascal void GetGWorld(port, gdh)CGrafPtr *port;GDHandle *gdh;{

asm {
MOVE.L port(A6),-(SP)
MOVE.L gdh(A6),-(SP)
MOVEQ #5,D0
DC.W 0xAB1D

}
}

/* SetGWorld -
*/
pascal void SetGWorld(port, gdh)CGrafPtr port;GDHandle gdh;{

asm {
MOVE.L port(A6),-(SP)
MOVE.L gdh(A6),-(SP)
MOVEQ #6,D0
DC.W 0xAB1D

}
}

/* CTabChanged -
*/
pascal void CTabChanged(ctab)CTabHandle ctab;{

asm {
MOVE.L ctab(A6),-(SP)
MOVEQ #7,D0
DC.W 0xAB1D

}
}

/* PixPatChanged -
*/
pascal void PixPatChanged(ppat)PixPatHandle ppat;{

asm {
MOVE.L ppat(A6),-(SP)
MOVEQ #8,D0
DC.W 0xAB1D

}
}

/* PortChanged -
*/
pascal void PortChanged(port)GrafPtr port;{

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

asm {
MOVE.L port(A6),-(SP)
MOVEQ #9,D0

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

DC.W 0xAB1D
}

}

/* GDeviceChanged -
*/
pascal void GDeviceChanged(gdh)GDHandle gdh;{

asm {
MOVE.L gdh(A6),-(SP)
MOVEQ #0x0A,D0
DC.W 0xAB1D

}
}

/* AllowPurgePixels -
*/
pascal void AllowPurgePixels(pm)PixMapHandle pm;{

asm {
MOVE.L pm(A6),-(SP)
MOVEQ #0x0B,D0
DC.W 0xAB1D

}
}

/* NoPurgePixels -
*/
pascal void NoPurgePixels(pm)PixMapHandle pm;{

asm {
MOVE.L pm(A6),-(SP)
MOVEQ #0x0C,D0
DC.W 0xAB1D

}
}

/* GetPixelsState -
*/
pascal GWorldFlags GetPixelsState(pm)PixMapHandle pm;{

asm {
SUBQ.L #4,SP
MOVE.L pm(A6),-(SP)
MOVEQ #0x0D,D0
DC.W 0xAB1D
MOVE.L (SP)+,D0

}
}

/* SetPixelsState -
*/
pascal void SetPixelsState(pm, state)PixMapHandle pm;GWorldFlags state;{

asm {
MOVE.L pm(A6),-(SP)
MOVE.L state(A6),-(SP)
MOVEQ #0x0E,D0
DC.W 0xAB1D

}
}

/* GetPixBaseAddr -
*/
pascal Ptr GetPixBaseAddr(pm)PixMapHandle pm;{

asm {
SUBQ.L #4,SP
MOVE.L pm(A6),-(SP)

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

MOVEQ #0x0F,D0
DC.W 0xAB1D
MOVE.L (SP)+,D0

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

}
}

/* NewScreenBuffer -
*/
pascal QDErr NewScreenBuffer(globalRect, purgeable, gdh, offscreenPixMap)

Rect *globalRect;
Boolean purgeable;
GDHandle *gdh;
PixMapHandle *offscreenPixMap;{

asm {
SUBQ.L #2,SP
MOVE.L globalRect(A6),-(SP)
MOVE.B purgeable(A6),-(SP)
MOVE.L gdh(A6),-(SP)
MOVE.L offscreenPixMap(A6),-(SP)
MOVEQ #0x10,D0
DC.W 0xAB1D
MOVE.W (SP),D0

}
}

/* DisposeScreenBuffer -
*/
pascal void DisposeScreenBuffer(offscreenPixMap)PixMapHandle offscreenPixMap;{

asm {
MOVE.L offscreenPixMap(A6),-(SP)
MOVEQ #0x11,D0
DC.W 0xAB1D

}
}

/* GetGWorldDevice -
*/
pascal GDHandle GetGWorldDevice(offscreenGWorld)GWorldPtr offscreenGWorld;{

asm {
SUBQ.L #4,SP
MOVE.L offscreenGWorld(A6),-(SP)
MOVEQ #0x12,D0
DC.W 0xAB1D
MOVE.L (SP)+,D0

}
}

•••
From: oster@dewey.soe.berkeley.edu (David Phillip Oster)
Subject: Re: How do I get the slot of the main screen?

In article <334@6sigma.UUCP> blm@6sigma.UUCP (Brian Matthews) writes:

>I can't figure out how to get the slot number of the main screen.

Re-read the graphic device chapter of Inside Mac Vol 5. Them write code similar to:

GDHandle curgd;

if(world->hasColorQD){
for(curgd = GetDeviceList();curgd != NIL;curgd = GetNextDevice(curgd)){

if(TestDeviceAttribute(curgd, screenDevice) &&

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

TestDeviceAttribute(curgd, screenActive) &&
TestDeviceAttribute(curgd, mainScreen)){

return curgd; /* found it */
}

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

}
}

}
}

--- David Phillip Oster

•••
From: austing@Apple.COM (Glenn L. Austin)
Subject:Re: Drawing to an off screen bitmap (with code)

In article <8912070531.AA07560@cadman.nyu.edu> deragon@CADMAN.NYU.EDU (John Deragon) writes:

> Hi folks,
> I did a small animation program on my Macintosh Plus,
>it steps through drawing each frame. The problem is, it is damn slow.
>So, faced with the fact that I cant afford a Mac IIcx, I would like to
>know how I could draw frames to an offScreen Bitmap. I am using LSC 4.0.

Drawing into an off-screen bitmap is really quite easy, if you follow a few rules:

1) The rowBytes *MUST* be even, otherwise the odd rows will be on an odd byte, just begging for address error!
2) Create a GrafPort for the new bitmap by calling OpenPort on a newly created GrafPort structure.
3) Save the current port and restore it after drawing to the off-screen port.

Some sample code (off the top of my head) in C:

 BitMap bm; /* my off-screen bitmap */
 GrafPort gp; /* my "off-screen grafport */
 GrafPtr oldPort; /* the current grafport */

 GetPort(&oldPort); /* get the current grafport */
 bm.rowBytes = 20; /* 160 pixels / 8 = 20 bytes */
 SetRect(&bm.bounds, 0, 0, 160, 160); /* set the bounds (remember l,t,r,b!) */
 bm.baseAddr = NewPtrClear(20 * 160); /* create a new ptr and zero the mem */
 if (bm.baseAddr != nil)
 {
 OpenPort(&gp); /* create a new, temporary grafport */
 SetPortBits(&bm); /* set the portBits to our bitmap */
 BlockMove((Ptr) &bm.bounds, (Ptr) &gp.portRect, sizeof(Rect)); /* copy the
 rect from bounds to portRect */
 RectRgn(gp.visRgn, &bm.bounds); /* change the visRgn to match */
 SetPort(&gp); /* use our port */

 /* Draw in the port just like you would draw on the screen! */

 SetPort(oldPort); /* restore the old port before disposing our ours! */
 ClosePort(&gp); /* so that the port memory is released *
 /* The bitmap is still around and valid and contains a bitmap of your */
 /* drawing */

 DisposPtr(bm.baseAddr); /* dispose of our off-screen bitmap memory */
 }

It couldn't be easier! In fact, if you specify the port returned from the PrOpenPage with a SetPort, you are actually drawing
into an off-screen bitmap that gets sent to the printer!

Glenn L. Austin

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

•••

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

From: oster@dewey.soe.berkeley.edu (David Phillip Oster)
Subject: Re: Color Quickdraw and copybits glitches (ps to colorqQD with Code)

Once again, here is a short example of using color quickdraw. This program takes a text file called "bush.ps" which is a
postscript 16-gray level bitmap of president bush, reads it in and displays it in a window. This example is missing a few
resources, and the actual "bush.ps" file.

/* ShowBush.c - short program to display a postscript picture of Bush.
 in color quickdraw. You also get Bush on your clipboard.

 by David Phillip Oster.

 Copy and use this in any way you see fit.

Basically an example of the pain you have to go through to actually
use color quickdraw.

In old quickdraw, you had some data and a window, and you CopyBit()s the data to
the window.

In color quickdraw, you have as your source:
a.) the data.
b.) a color table.
c.) a "pixmap" that connects the data to the color table.

as your destination, you have:
a.) a color window
b.) a palette, that informs the window manager of which colors you'll be

using, so the color manager can change the color table in the video
board to make those color available.

This program works best with at least 16 colors!

*/
#include <ColorToolbox.h>

#define HEIGHT 200
#define WIDTH 200

#define NIL 0L
#define NOT !

SysEnvRec *world;
Handle myPixels;
WindowPtr myWin;
PixMapHandle myPixMap;
CTabHandle myCTable;
PaletteHandle myPm;

enum {
READERROR = 1,
NEEDSCOLORQD, /* this demo needs color quickdraw */
NOPIXMAP,
NOPIXELS,
NOCTABLE,
NOPALETTE,
PIXDATACHANGED

};

enum {
UNDOI = 1,
COPYI = UNDOI + 1

};

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

main(){
EventRecord myEvent;

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

Init();
for(;;){

if(GetNextEvent(everyEvent, &myEvent)){
HandleEvent(&myEvent);

}
}

}

Init(){
PaletteHandle oldPm;

FlushEvents(everyEvent, NIL);
InitGraf((Ptr) &thePort);
InitFonts();
InitWindows();
InitCursor();
InitDialogs(NIL);
InitMenus();
TEInit();

world = (SysEnvRec *) NewPtr(sizeof(SysEnvRec));
SysEnvirons(1, world);
if(NOT world->hasColorQD){

Error(NEEDSCOLORQD, "");
}

myWin = GetNewCWindow(128, NIL, -1L); /* set up the window */
SetPort(myWin);
ClipRect(&thePort->portRect);

myPixMap = NewPixMap(); /* allocate the
pixmap */

if(NIL == myPixMap){
Error(NOPIXMAP, "");

}
myPixels = NewHandle(((long) HEIGHT/2)*WIDTH); /* allocate the pixel data */
if(NIL == myPixels){

Error(NOPIXELS, "");
} /* allocate the color

table */
myCTable = (CTabHandle) NewHandle(sizeof(ColorTable) + 15L*sizeof(ColorSpec));
if(NIL == myCTable){

Error(NOCTABLE, "");
}
InitPixels(myPixels); /* set up the pixel data */
InitCTable(myCTable); /* set up the color table */

(**myPixMap).bounds.left = 0; /* set up the pixmap */
(**myPixMap).bounds.top = 0;
(**myPixMap).bounds.right = WIDTH;
(**myPixMap).bounds.bottom = HEIGHT;
(**myPixMap).rowBytes = 0x8000 | (WIDTH/2);
if(NIL != (**myPixMap).pmTable)

DisposHandle((**myPixMap).pmTable);
(**myPixMap).pmTable = myCTable;
(**myPixMap).pixelSize = 4;

myPm = NewPalette(16, myCTable, pmTolerant, 0); /* set up the palette */
if(NIL == myPm){

Error(NOPALETTE, "");
}

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

if(NIL != (oldPm = GetPalette(thePort))){

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

DisposePalette(oldPm);
}
SetPalette(thePort, myPm, TRUE);
ActivatePalette(thePort);

}

/* SwapMove - copy from src to dest, moving scan lines from top to bottom
as you go (postscript images are upside down compared to quickdraw images)

*/
SwapMove(src, dest, cnt)Ptr src, dest;long cnt;{

register short i, j;

for(i = 0;i <200;i++){
BlockMove(src + (i*(WIDTH/2)), dest + ((199-i)*(WIDTH/2)), WIDTH/2);

}
}

/* InitPixels- initialize our handle to the bush data
SwapMove since Postscript is upside down from Mac.

*/
InitPixels(h)Handle h;{

register Ptr p, pMax;
register short i;
Handle h2, GetBush();

h2 = GetBush();
SwapMove(*h2, *h, GetHandleSize(h));

}

/* InitCTable - initialize our color table to uniform gray
*/
InitCTable(ct)CTabHandle ct;{

short i;

(**ct).ctSeed = GetCTSeed();
(**ct).ctFlags = 0;
(**ct).ctSize = 15;
for(i = 0;i < 16;i++){

(**ct).ctTable[i].value = i;
(**ct).ctTable[i].rgb.red =
(**ct).ctTable[i].rgb.green =
(**ct).ctTable[i].rgb.blue = (unsigned) i * 16*257;

}
}

/* Error - print the error message
*/
Error(i, s1)short i;Str255 s1;{

Str255 s;

GetIndString(s, 128, i);
ParamText(s, s1, "", "");
Alert(129, NIL);
ExitToShell();

}

/* HandleEvent - quit on mouse or key event
*/
HandleEvent(event)EventRecord *event;{

switch(event->what){
case mouseDown:
case keyDown: ExitToShell();

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

case updateEvt: GoUpdate(event); break;
}

}

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

/* GoUpdate - handle update event, paste it to clipboard
*/
GoUpdate(event)EventRecord *event;{

SetPort(event->message);
BeginUpdate(thePort);
CopyMyBits();
EndUpdate(thePort);

}

/* CopyMyBits - put bits to screen, put bits to clipboard
*/
CopyMyBits(){

Rect r, r2;
PicHandle ph;

HLock(myPixels);
HLock(myPixMap);
(**myPixMap).baseAddr = *myPixels;
r.left = 0;
r.top = 0;
r.right = WIDTH;
r.bottom = HEIGHT;
r2 = r;
r2.top *= 2;
r2.left *= 2;
r2.right *= 2;
r2.bottom *= 2;

ph = OpenPicture(&r);
CopyBits(*myPixMap, &thePort->portBits, &r, &r, srcCopy, NIL);
ClosePicture();
CopyBits(*myPixMap, &thePort->portBits, &r, &r2, srcCopy, NIL);

HUnlock(myPixMap);
HUnlock(myPixels);

ZeroScrap();
HLock(ph);
PutScrap(GetHandleSize(ph), 'PICT', *ph);
SystemEdit(COPYI-1); /* so multifinder will take the scrap */
KillPicture(ph);

}

/* GetBush
*/
Handle GetBush(){

OSErr val;
short ref;
Handle h;
long len;
Str255 s;

ref = 0;
h = NIL;
val = FSOpen("\pbush.ps", 0, &ref);
if(noErr == val)val = GetEOF(ref, &len);
if(noErr == val)h = NewHandle(len - 4);
if(noErr == val && NIL != h){

HLock(h);
len = GetHandleSize(h);
if(noErr == val)val = FSRead(ref, &len, *h);
HexToBin(h);

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

HUnlock(h);
}
if(0 != ref){

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

FSClose(ref);
}
if(noErr != val){

NumToString(val, s);
Error(READERROR, s);
if(NIL != h){

DisposHandle(h);
h = NIL;

}
}
return h;

}

/* SkipHeader - advance p to point to data
*/
unsigned char *SkipHeader(p)register unsigned char *p;{

while(NOT (p[0] == '\r' && p[1] == '0'))
p++;

return &p[1];
}

/* HexToBin - h is a locked handle containing text. turn it into binary
Sorry about this. It is a quick and dirty hex ascii to binary routine.

*/
HexToBin(h)Handle h;{

register unsigned char *src, *srcMax, *dest;

src = dest = (unsigned char *) *h;
src = SkipHeader(src);
srcMax = src + GetHandleSize(h);
while(src < srcMax){

if(*src >= '0' && *src <= '9'){
*dest = (*src++ - '0') << 4;

if(*src >= '0' && *src <= '9'){
*dest++ |= *src++ - '0';

}else if(*src >= 'A' && *src <= 'F'){
*dest++ |= *src++ - 'A' + 10;

}else if(*src >= 'a' && *src <= 'f'){
*dest++ |= *src++ - 'a' + 10;

}
}else if(*src >= 'A' && *src <= 'F'){

*dest = (*src++ - 'A' + 10) << 4;

if(*src >= '0' && *src <= '9'){
*dest++ |= *src++ - '0';

}else if(*src >= 'A' && *src <= 'F'){
*dest++ |= *src++ - 'A' + 10;

}else if(*src >= 'a' && *src <= 'f'){
*dest++ |= *src++ - 'a' + 10;

}
}else if(*src >= 'a' && *src <= 'f'){

*dest = (*src++ - 'a' + 10) << 4;

if(*src >= '0' && *src <= '9'){
*dest++ |= *src++ - '0';

}else if(*src >= 'A' && *src <= 'F'){
*dest++ |= *src++ - 'A' + 10;

}else if(*src >= 'a' && *src <= 'f'){
*dest++ |= *src++ - 'a' + 10;

}
}else{

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

src++;
}

}

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

SetHandleSize(h, dest - (unsigned char *) *h);
}

•••
From: oster@dewey.soe.berkeley.edu (David Phillip Oster)
Subject: Re: Finding the size of the screen under Multifinder/Color QD (gdevices)

In article <10139@saturn.ucsc.edu> sirkm@ssyx.ucsc.edu (Greg Anderson) writes:

>TN #117 says to look at the QuickDraw variable screenbits.bounds to
>find the size of the screen, but on my Mac IIx, this rectangle is
>always (0,0,0,0) when MultiFinder is installed (color or b&w).

Tim Maroney is right, it should return the bounding rectangle of the CRT that has the menu bar. It always has for me.

>First question: what _is_ a gDevice? Is there one & only one gDevice
>per monitor (/other display device) hooked up to the Mac, or might there
>be multiple devices referencing a single monitor? If the later, why?

There should only be one at a time. Some video boards change the number of pixels they display depending on what mode
they are in: i.e, they might be 640x480 in 8-bit per pixel mode, by 1024x1204 withe one bit per pixel. In addition, since
graphic devices hold the inverse color table data structures (used for color matching when you do a CopyBits of a pixmap
with one color table to a pixmap with a different table) there may be graphic devices that aren't connected to screens.

>The reason I wish to know the size of the screen is simply to center my
>dialogs on the screen. Given this purpose, should I just look at one
>gDevice (namely, the one returned by GetGDevice)? Once I have this handle,
>how should I determine the screen bounds? Get the PixMap from
>(*gDev)->gdPMap and then look at pixMap.bounds?

use screenBits.bounds.

Here _is_ a use for gDevices:

I redefine the zoom box, so that windows zoom to the full size of the CRT they are on, rather than Apple's default. There is
nothing more annoying than working with a two-monitor system, clicking on the zoom box of a window, and have it leap to
the other, smaller montior.

Here is a code fragment:

/* GetBiggestZoom - set r to the dimensions of the largest
 extern SysEnvRec world;

 biggdh = NIL;
 if(world.hasColorQD){
 for(gdh = GetDeviceList(); gdh != NIL; gdh = GetNextDevice(gdh)){
 if(TestDeviceAttribute(gdh, screenDevice) &&
 TestDeviceAttribute(gdh, scrnActive)){
 if(biggdh == NIL || (**gdh).gdRect.bottom - (**gdh).gdRect.top >
 (**biggdh).gdRect.bottom - (**biggdh).gdRect.top){
 biggdh = gdh;
 }
 }
 }
 }
 if(biggdh == NIL){
 *r = screenBits.bounds;
 r->top += GetMBarHeight();
 }else{
 *r = (**biggdh).gdRect;

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

 if(TestDeviceAttribute(biggdh, mainScrn)){

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

 r->top += GetMBarHeight();
 }
 }
}

--- David Phillip Oster

•••
From: trebor@biar.UUCP (Robert J Woodhead)
Subject: Re: Bitmap not showing up in scrapbook (cliprect)

legg@sirius.ucs.adelaide.edu.au (Christian Legg) writes:

> A friend of mine is having problems with displaying a bitmap that he has
>saved in the scrapbook. He uses copybits to copy the bitmap into a PICT
>resource which he then saves into the scrapbook. The scrapbook indicates
>in the lower right hand corner that the item is a PICT, but does not display
>it.

Thou hast been bitten by that most egregious of monsters, the Immense ClipRect. When you create the grafport that you
draw into to generate the picture, always set it's cliprect to just surround the area that will be drawn. Otherwise you get a
huge cliprect (-32768,-32768,32767,32767) and the scrapbook and other programs go a little bonkers because of it.

--
Robert J Woodhead, Biar Games, Inc. !uunet!biar!trebor | trebor@biar.UUCP

•••
From: tim@hoptoad.uucp (Tim Maroney)
Subject: Re: Finding the size of the screen under Multifinder/Color QD

In article <10139@saturn.ucsc.edu> sirkm@ssyx.ucsc.edu (Greg Anderson) writes:

>>>TN #117 says to look at the QuickDraw variable screenbits.bounds to
>>>find the size of the screen, but on my Mac IIx, this rectangle is
>>>always (0,0,0,0) when MultiFinder is installed (color or b&w).

In article <9429@hoptoad.uucp> tim@hoptoad.UUCP (Tim Maroney) writes:
>>Uh, I really don't think so. Check again.

In article <1102@urbana.mcd.mot.com> willcox@urbana.mcd.mot.com
(David A Willcox) writes:

>This sounds a bit like what happened when I tried to use screenBits
>from within an XCMD. The problem, of course, was that I hadn't called
>InitGraf() (I hope that's the right name) from within my XCMD, and I
>was seeing a local copy of screenBits that had not been initialized.
>(I'm using Think C 3.0.)

When I first read this, I though, "Of course!" But now, I'm not sure this makes sense. The XCMD should be called using
HyperCard's A5, and its QD globals are initialized already. Maybe the problem is that LSC has a bug that looks for the QD
globals off A4 if you are linking a code resource? That wouldn't be too surprising. But the LSC code resource glue doesn't
mess about with the caller's A5, which should remain constant throughout.

>I tried calling InitGraf() within my XCMD, and that gave me valid
>values for screenBits, but things rapidly went to hell on return to
>HyperCard, since HyperCard's quickdraw globals didn't work any more.
>(Obvious, in hindsight.)

Sort of. This seems to be compatible with the A4-bug hypothesis,assuming that the code generated was using offsets from

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

A4 and you passed a pointer to thePort which was also A4-relative.

>Can anyone tell me, is there a better way to get at global variables

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

>such as screenBits from within an XCMD?

Tell me, did you try the ugly way of accessing QD globals from assembly language, from IM I-163? I bet it would work.
--
Tim Maroney, Mac Software Consultant, sun!hoptoad!tim, tim@toad.com

•••
From: oster@dewey.soe.berkeley.edu (David Phillip Oster)
Subject: Re: Finding the size of the screen under Multifinder/Color QD (with C code)

In article <10164@saturn.ucsc.edu> sirkm@ssyx.ucsc.edu (Greg Anderson) writes:

>I know it's illegal to call InitGraf() from within XCMD's, but can I
>call it from within a DA?

No, you can't call it from a DA either.

>If I cannot call InitGraf() from within my DA, then how can I find the
>size of the screen?

Here is how you access the quickdraw globals from a non-application, assuming that _some_ application has set them up by
calling InitGraf: (A safe assumption for D.A.s, CDEFs, MDEFs, WDEFs, CDEVs, & FKEYs)

/* QuickDraw - access to globals from a code resource
brought to you by David Phillip Oster
(oster@well.sf.ca.us or oster@dewey.soe.berkeley.edu)
You may use this as you see fit.

*/
typedef struct QuickDraw {

LongInt randSeed;
BitMap screenBits;
Cursor arrow;
Pattern dkGray;
Pattern ltgray;
Pattern gray;
Pattern black;
Pattern white;
GrafPtr thePort;

} QuickDraw;

/* DisableSelf - this is from a CDEF I wrote, it dims the control.
*/
DisableSelf(ch)ControlHandle ch;{

QuickDraw *qd;
Rect r;

qd = (QuickDraw *) (*(Byte **) CurrentA5 - (sizeof(QuickDraw) -
sizeof(GrafPtr)));

r = (**ch).contrlRect;
PenMode(patBic);
PenPat(qd->gray); /* <-- Note, a QD global! */
PaintRect(&r);
PenNormal();

}

David Phillip Oster

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

•••
From: tim@hoptoad.uucp (Tim Maroney)

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

Subject: Re: Marquee Help? (with Code)

In article <18304@dartvax.Dartmouth.EDU> sean@eleazar.dartmouth.edu (Sean P. Nolan) writes:

>I saw on here recently a passing mention that someone was using code that
>produced the MacPaint-like Marquee around a selection. The Johnny Carson theme
>comes to mind. But I have been trying, off-and-on, to figure out how to do
>just that, given a selection rectangle and a nifty slot to do its thing in
>my Event loop.
>
>If anybody has the ah-ha insight on how to do this, I'd really appreciate a
>note. Currently I shoved the problem aside and just InvertRect the selection,
>which is uuuuuuuugly.

Might as well just post dwb's code that I got from a local BBS:

;
; (c) Copyright 1987, David W. Berry
;

case object
string pascal

load 'MacStuff'

export MarqueeRect, MoveMarqueeRect

patterns record entry,decr
marqueePat dc.l $0f87c3e1, $f0783c1e
shiftPat dc.l $88442211, $88442211

endr

;
; Frame rectangle, using marquee pattern. The rect is drawn in xor mode.
; This procedure should be called to draw the marquee initially, then
; MoveMarqueeRect should be called repeatedly to move the pattern.
; Finally, call MarqueeRect again to erase the marquee. The display
; will end up the same as it was before.
;

MarqueeRect proc export

Frame record {a6link},decr
rect ds.l 1
return ds.l 1
a6link ds.l 1
state ds.b psRec
locals equ *

endr

with Frame

link a6,#locals
pea state(a6)
_GetPenState

_PenNormal

pea patterns.marqueePat
_PenPat

move.w #patXor,-(a7)
_PenMode

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

move.l rect(a6),-(a7)
_FrameRect

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

pea state(a6)
_SetPenState

unlk a6
rts

endproc

;
; Frame rectangle, using pattern that moves the marquee. Then shift
; the pattern and the marquee pattern, to keep the two in sync.
; This procedure must be called repeatedly to achieve the effect of
; motion.
;

MoveMarqueeRect proc export

Frame record {a6link},decr
rect ds.l 1
return ds.l 1
a6link ds.l 1
state ds.b psRec
locals equ *

endr

with Frame

link a6,#locals

pea state(a6)
_GetPenState

_PenNormal

pea patterns.shiftPat
_PenPat

move #patXor,-(a7)
_PenMode

move.l rect(a6),-(a7)
_FrameRect

pea state(a6)
_SetPenState

; shift the marquee pattern 1 slot to the left
lea patterns.marqueePat,a0
bsr.s rotate

; likewise the shift pattern
lea patterns.shiftPat,a0
bsr.s rotate

unlk a6
rts

rotate: move.l (a0),d1
move.l 4(a0),d0
rol.l #8,d0
rol.l #8,d1
move.b d0,d2
move.b d1,d0

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

move.b d2,d1
move.l d1,(a0)
move.l d0,4(a0)

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

rts

endproc

end

End of quoted code marquee.a.

Here's MPW C code I use for the same effect. I'm afraid it's rather environment-dependent, but you should still be able to
break it to your will.

static void RotatePatterns(Pattern marquee, Pattern shift)
{ unsigned char c;

c = marquee[0];
BlockMove(marquee + 1, marquee, 7);
marquee[7] = c;
c = shift[0];
BlockMove(shift + 1, shift, 7);
shift[7] = c;

}

static void
click(WindowPtr window, DocStorage **storage, EventRecord *event,
 Boolean *changed, Boolean *selected)
{ Point start, now; Rect r, r2; short tmp;

DocInfo doc; Pattern marquee, shift; PenState pen;
#pragma unused (changed)

unselect(window, storage);
GetDocInfo(window, &doc);
start = now = event->where;
GetPenState(&pen);
PenNormal();
BlockMove((Ptr)(*storage)->marquee, (Ptr)marquee, 8);
BlockMove((Ptr)(*storage)->shift, (Ptr)shift, 8);
PenPat(marquee);
PenMode(patXor);
SetRect(&r, start.h, start.v, now.h, now.v);
FrameRect(&r);
while (WaitMouseUp()) {

PenPat(shift);
FrameRect(&r);
RotatePatterns(marquee, shift);
GetMouse(&now);
SetRect(&r2, start.h, start.v, now.h, now.v);
if (r2.left > r2.right)

{ tmp = r2.left; r2.left = r2.right; r2.right = tmp; }
if (r2.top > r2.bottom)

{ tmp = r2.top; r2.top = r2.bottom; r2.bottom = tmp; }
if (EqualRect(&r, &r2)) continue;
PenPat(marquee);
FrameRect(&r);
FrameRect(&r2);
r = r2;

}
if (*selected = !EmptyRect(&r))

OffsetRect(&r, GetCtlValue(doc.hScroll), GetCtlValue(doc.vScroll));
else { PenPat(marquee); FrameRect(&r); SetRect(&r, 0, 0, 0, 0); }
BlockMove((Ptr)marquee, (Ptr)(*storage)->marquee, 8);
BlockMove((Ptr)shift, (Ptr)(*storage)->shift, 8);
(*storage)->selRect = r;
SetPenState(&pen);

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

}

static void idle(WindowPtr window, DocStorage **storage)
{ Pattern marquee, shift; Rect r; PenState pen; DocInfo doc;

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

r = (*storage)->selRect;
if (EmptyRect(&r)) return;
GetDocInfo(window, &doc);
GetPenState(&pen);
PenNormal();
BlockMove((Ptr)(*storage)->marquee, (Ptr)marquee, 8);
BlockMove((Ptr)(*storage)->shift, (Ptr)shift, 8);
PenPat(shift);
PenMode(patXor);
OffsetRect(&r, -GetCtlValue(doc.hScroll), -GetCtlValue(doc.vScroll));
FrameRect(&r);
RotatePatterns(marquee, shift);
BlockMove((Ptr)marquee, (Ptr)(*storage)->marquee, 8);
BlockMove((Ptr)shift, (Ptr)(*storage)->shift, 8);
SetPenState(&pen);

}

And in Rez, the patterns are:

resource 'PAT#' (33) { {
$"0f 87 c3 e1 f0 78 3c 1e" ,
$"88 44 22 11 88 44 22 11"

} };
--
Tim Maroney, Mac Software Consultant, sun!hoptoad!tim, tim@toad.com

•••
From: ari@eleazar.dartmouth.edu (Ari Halberstadt)
Subject: How to get the QD globals outside of an application

Several people have been curious about how to access the QuickDraw globals from within an XCMD or XFCN. Here's a little
routine I wrote for THINK C which you can call when you initialize your XCMD or XFCN. If I remember correctly, MPW uses a
single global structure to store the QuickDraw globals. Thus, one BlockMove would suffice to implement this routine in MPW.

/* QuickDraw global offsets off of A5 */
#define THEPORT 0 /* GrafPtr */
#define WHITE THEPORT-8 /* Pattern */
#define BLACK WHITE-8 /* Pattern */
#define GRAY BLACK-8 /* Pattern */
#define LTGRAY GRAY-8 /* Pattern */
#define DKGRAY LTGRAY-8 /* Pattern */
#define ARROW DKGRAY-68 /* Cursor */
#define SCREENBITS ARROW-14 /* BitMap */
#define RANDSEED SCREENBITS-4 /* long */

/* Setup the QuickDraw globals by getting them from their offsets off of A5 */
/* By Ari Halberstadt, 1990 */
static void
SetupQDGlobals()
{

Ptr p;

p = *((Ptr *) CurrentA5);
thePort = (GrafPtr) (THEPORT + p);
BlockMove(WHITE + p, white, sizeof(Pattern));
BlockMove(BLACK + p, black, sizeof(Pattern));
BlockMove(GRAY + p, gray, sizeof(Pattern));
BlockMove(LTGRAY + p, ltGray, sizeof(Pattern));
BlockMove(DKGRAY + p, dkGray, sizeof(Pattern));
BlockMove(ARROW + p, &arrow, sizeof(Cursor));

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

BlockMove(SCREENBITS + p, &screenBits, sizeof(BitMap));
randSeed = (long) (RANDSEED + p); /*I hope this line is correct...*/

}

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

--
Ari Halberstadt

•••
From: lsr@Apple.COM (Larry Rosenstein)
Subject: Re: Marquee Help?

>PenMode(patXor); /* I'm not sure this is either the correct

If you are doing this in a bitmap, then you should use patCopy. patXOR might look better in a structured graphics program,
where there is always a lot of white space. (If you use patCopy then to erase the marquee you have to redraw the contents
of the rectangle.0

>PenPat(patterns[patNum++]);
>patNum &= 3;
>FrameRect(pRect); /* Draw a rectangle */
>while (TickCount() - t < 4) /* Wait a bit */

Another way to do this is to choose the pattern based on the value of TickCount % 4 (or TickCount % 8 if you use 8
patterns). The advantage is that the ants will move at the same speed regardless of the size of the rectangle. The
disadvantage is that you may get jerky motion if your loop can't keep up.

--
Larry Rosenstein, Object Specialist

•••
From: jmunkki@kampi.hut.fi (Juri Munkki)
Subject: Re: Finding the size of the screen under Multifinder/Color QD

In article <9530@hoptoad.uucp> tim@hoptoad.UUCP (Tim Maroney) writes:

>Nope. The OpenPort strategy doesn't work on color systems, at least
>not in the simple way you seem to be suggesting. If you just look at
>port.portBits.bounds, you'll be looking at something weird (a handle
>followed by two integers) on color systems.

Nope. You are confusing OpenCPort and OpenPort. OpenPort opens a regular grafport with a normal bitmap. I don't think
that you bothered to look, but I did and even if I set my Mac II to 8 color, I get a rowBytes of 128 and a bounds of
(0,0,480,640).

Creating a pixmap for offscreen grafports would have created an enormous amount of incompatibility. OpenPort fakes a
bitmap that looks just as if you had a 1-bit screen. That's why the old MacPaint and SuperPaint painted all over the top of the
screen. They got a rowBytes of 128 when it actually is 8 times that much. (Although the screen is 640 pixels wide, Apple
throws away a few bytes and uses 1024 pixels per row of which only 640 are displayed.)

Juri Munkki jmunkki@hut.fi jmunkki@fingate.bitnet

•••
From: beard@ux1.lbl.gov (Patrick C Beard)
Subject: Re: Finding the size of the screen under Multifinder/Color QD

In article <9530@hoptoad.uucp> tim@hoptoad.UUCP (Tim Maroney) writes:

#Nope. The OpenPort strategy doesn't work on color systems, at least
#not in the simple way you seem to be suggesting. If you just look at

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

#port.portBits.bounds, you'll be looking at something weird (a handle
#followed by two integers) on color systems.
#
if ((port->portBits.rowBytes & 0x8000) == 0)
screen = port->portBits.bounds;

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

else { PixMapHandle pm = ((CGrafPtr) port)->portPixMap;
screen = (*pm)->bounds;
}

I've used the OpenPort strategy before and it does work. In fact, if you just open a classic GrafPort, you don't need to go
through the tests you show above. I have also just used the portRect field of the GrafPort to give me the same information:

ScreenSize(Rect *r)
{

GrafPort aPort;
OpenPort(&aPort);
*r = aPort.portRect;
ClosePort(&aPort);

}

Another method is to just use the Window Manager port. Instead of the OpenPort call above, and instead of allocating a
GrafPort on the stack you only need a GrafPtr.

ScreenSize(Rect *r)
{

GrafPtr aPort;

GetWMgrPort(&aPort);
*r = aPort->portRect;

}

This seems to work on all systems I've tried.

Patrick Beard, Macintosh Programmer (beard@lbl.gov)

•••
From: ech@cbnewsk.ATT.COM (Ned Horvath)
Subject: Re: Finding the size of the screen under Multifinder/Color QD

From article <10164@saturn.ucsc.edu>, by sirkm@ssyx.ucsc.edu (Greg Anderson):
> [quoted references to invalid screenbits.bounds deleted]

> I know it's illegal to call InitGraf() from within XCMD's, but can I
> call it from within a DA? It seems like I would have the same problems
> you experienced.
>
> If I cannot call InitGraf() from within my DA, then how can I find the
> size of the screen?

>>Can anyone tell me, is there a better way to get at global variables
>>such as screenBits from within an XCMD?

> Sort of -- make callbacks to HyperCard. This won't always get you what you
> want, but it can often be very helpful...

Assuming that the A5 you "inherit" is valid, and that InitGraf has been called by your host application (which had pretty well
ALWAYS be true!), there are a couple of answers.

1. GrafPort myPort; OpenPort (&myPort);...your code here...ClosePort(&myPort); This gives you access to some of
the variables you crave.

2. More generally, the low memory global CurrentA5 (long integer at 0x904) contains the address of the address of
thePort (the last quickdraw variable) for the current application. So the following code snippet will get you a way to
PEEK (never, never, NEVER poke!) at the QD globals:

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

struct qdvars { /* note that the order is the reverse */
long randSeed; /* of that on IM I-204 */
BitMap screenBits;

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

Cursor arror;
Pattern dkGray;
Pattern ltGray;
Pattern gray;
Pattern black;
Pattern white;
GrafPtr thePort;

} *myGlobals;

myGlobals = (struct qdvars *) (
 (**(long**)0x904) - /* address of thePort */
 (long)&((struct qdvars *)0)->thePort /* offset of thePort */
);

I presume that if you're not using C you can figure out how to translate that nasty stuff into your own argot. The ugly part
with 0x904 gets the address of thePort; the even more bizarre second term evaluates to a constant (at compile time) which is
the offset of thePort in the full set of Quickdraw globals. You can now reference myGlobals->screenBits.bounds,
for example.

The second example works whenever the host application has called InitGraf(), even at interrupt time; most APPLs call
InitGraf within micro seconds after launch, so you should be safe.

=Ned Horvath=

•••
From: oster@dewey.soe.berkeley.edu (David Phillip Oster)
Subject:Re: PICT resource to BitMap (with code)

In article <oZkwPji00WB5E_IkpG@andrew.cmu.edu> es2q+@andrew.cmu.edu (Erik Warren Selberg) writes:
>I'm having loads of problems trying to figure out how to grab a PICT
>resource, turn it into a bitmap, and then use CopyBits with it (actually, my
>problem is that I can't seem to turn said resource into a bitmap). Does

Write it yourself, it'll improve your mac programming skills, and there isno single system call to do it anyway. You'll do
basically

BitMap *PictToBitMap(myPic)PicHandle myPic;{
GrafPtr savePort, myPort;
GrafPort myPortRec;
static BitMap myBitMap; /* so we can return it */
Rect r;

GetPort(&savePort);
myPort = &myPortRec;
OpenPort(myPort);
SetPort(myPort);
myBitMap.bounds.top = myBitMap.bounds.left = 0;
myBitMap.bounds.right = BIGENOUGHFORTHIS;
myBitMap.bounds.bottom = ALSOBIGENOUGH;
/* must be big enough an even. */
myBitMap.rowBytes = ((myBitMap.bounds.right + 15) / 16) * 2);
myBitMap.baseAddr = NewPtr(myBitMap.rowBytes * (long) myBitMap.bounds.bottom);
SetPortBits(&myBitMap);
/* next 2 lines necessary is PICT bigger than Mac's screen. */
ClipRect(&myPort->portRect);
CopyRgn(myPort->clipRgn, myPort->visRgn);

r = (**myPic).picFrame; /* 'cause it might move during draw */
DrawPicture(myPic, &r);
SetPort(savePort);

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

ClosePort(myPort);
return &myBitMap;

}

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

The above is from memory, and may have errors in it. The caller is responsible for deallocating my BitMap.baseAddr.

Handling color PICTs is left as an exercise to the reader. Oh, the above will _work_, but if you want the color table of the
returned pixmap to be minimal (i.e., only as deep as necessary, with only the colors that are actually used by the PICT.) you
either need to 1.) allocate a 32-bit deep grafport, draw the picture into that, then search its pixmap to see what colors it used,
if it used less than 256 colors, but more than 16, build an 8 bit deep grafport, with an appropriate color table, and CopyBits
from the 32-bit deep one to the 8-bit one, discard the 32-bit one, and return the 8. or 2.)

Write a parser for PICTs, search it for color tables and 16-bit or 32-bit deep pixmaps, and figure out the final color table
yourself. This has the advantage that, at the cost of re-implementing color quickdraw yourself, it can be made to work even
on a MacPlus, and the disadvantage that it is likely to break the next time Apple changes quickdraw. I would go with method
1, or just blow off the whole question and handle all color pixmaps as 32-bit deep.

David Phillip Oster

•••
From: rcfische@polyslo.CalPoly.EDU (Raymond C. Fischer)
Subject: Re: Writing large PICT files???

In article <22163.25d040f6@kuhub.cc.ukans.edu> brownrigg@kuhub.cc.ukans.edu writes:
>Can someone describe for me how to create a PICT file consisting of only
>a bitMap?

This is from memory, so check the calls against Inside Mac.
Assuming the existence of a GrafPort that has your BitMap in it ...

SetPort (your GrafPtr);
OpenPicture
CopyBits (thePort^.portBits, thePort^.portBits,

 thePort^.portRect, thePort^.portRect,
 srcCopy, NIL);

ClosePicture

This will create a PICT that has nothing but the bitmap in it. To turn this into a PICT file, create a file of type PICT, write 512
bytes of zeros, then write entire handle contents returned from the OpenPicture/ClosePicture.

Make sure that at some time after opening the port and BEFORE calling OpenPicture, you set the ClipRgn of the port. One
way to do this is

ClipRect (thePort^.portRect);

If you have only a BitMap and no GrafPort, then open a GrafPort, set the portBits to the bitmap record (using SetPortBits?),
set the portRect (as in: thePort^.portRect := thePort^.portBits.bounds), and set the ClipRgn. The do the above CopyBits and
then close the port;

If the GrafPort is a CGrafPort, this will produce a type 2 PICT (color) which won't work with any Mac that doesn't have color
quickdraw.

Of course, GrafPort is synonymous with WindowRecord in this example.
Any questions?

Ray Fischer rcfische@polyslo.calpoly.edu

•••
From: ephraim@think.com (Ephraim Vishniac)
Subject: Re: How's the screen cleaned after _SysError?

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

In article <6959@internal.Apple.COM> lsr@Apple.COM (Larry Rosenstein) writes:
>In article <34252@news.Think.COM> ephraim@Think.COM (Ephraim Vishniac)

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

>writes:
>> How is the screen restored after a call to _SysError?

>There's a low memory global called DSAlertRect. In GetMouse, if the high
>bit of DSWndUpdate is 1, then the system refreshes the rectangle stored in
>DSAlertRect.

GetMouse doesn't do this on my Mac II (6.02, Multifinder off). I disassembled it and found that the only subroutine call was
to a journaling routine which exits immedidately if journaling is off.

Also, DSWndUpdate seems to be $FF most of the time (i.e., the high bit is always set).

>Since this doesn't seem to be documented, use at your own risk.

Not documented? Not so! Please refer to "Low Memory in Alphabetical Order" dated 12 Apr 85. (You did keep every scrap
of paper from the Macintosh Software Supplements, right?) DSWndUpdate is at least as well documented as the famous
MrMacHook. Notice the line that reads:

DSWndUpdate .EQU $15D ;01 GNE not to paintBehind DS AlertRect? [byte]

This suggests that it's GetNextEvent, not GetMouse, and painting will occur when the bit is cleared, not set. I haven't
actually tried this out yet - it took me a while to find the right documentation.

--
Ephraim Vishniac ephraim@think.com ThinkingCorp@applelink.apple.com

•••
From: jackiw@cs.swarthmore.edu (Nick Jackiw)
Subject: Optimizing Copybits (good Information with code)

[This is a repost of some comments of mine that appeared here last month.]

--

In Inside Mac V and in various places in the techNotes, it states that CopyBits is optimized for cases in which rowBytes is a
multiple of four and in which the bitmaps are aligned. I recently did some testing on a (wide) sample of arbitrary bitmaps,
and came up with the following interesting timings:

• Worst case ranges from about 102-105% of average case.
 (Which is to say: the average case is about as bad as you can get)
• Best case (perfect alignment) ranges from about 54-72% of average case.
 (i. e. Alignment has a *substantial* payoff.)

Remember, alignment (keeping the bit-index the same between corresponding bits in the source bitmap and the destination)
is only useful under several conditions:

• You're always copying part of the source into one and only one corresponding part of the destination.
• The source and destination are at the same bitdepth, if you're working in color.

• For any given copy, the srcRect and destRect are of the same dimension (though not necessarily the same
coordinates).

A good example of when alignment is useful: storing an offscreen bitmapcontaining the image to be painted into a window.
Alignment will only change (and the offscreen map be recomputed) if the window is moved.

A good example of when alignment won't help at all: storing the image of a spaceship offscreen which can be copyBitted
anywhere into the window. ("Anywhere"=any of 32 bit positions=alignment will only help you in 1/32 of your copies. Of
course, you could store 32 differently-aligned spaceship copies offscreen, and choose the appropriate one to blit based on
the dest rect.)

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

The following function might be useful for cases when you want to create an offscreen bitmap for copying to a window.
Specify the window (which must already be created and in its proper location) in destWindow, and the bounds of the desired
offscreen window (in the local coordinate system of destWindow). InitAlignedBitmap will generate the bitmap, tacking
enough "slack" onto the left edge of the bitmap (i. e. by extending the bounds) to guarantee that any bit in theBits is aligned
with the corresponding bit in the window's local coordinate system. This will guarantee you best case performance.

Lastly, a note or two:

• If User moves the window, you'll need to recompute and redraw the bitmap. You can dispose the old one and call
this function again, if you like, or you can modify this one to SetPtrSize on the existing baseAddr ptr. You may want
to change the code to generate handles, instead of ptrs, but remember to lock and derefence them before drawing.
Growing a window doesn't change the alignment (e. g. local [0,0] is still in the same place as it was pre-grow;
therefore so is offscreen [0,0].)

• Color doesn't complicate things (multiply by pixDepth before determining rowBytes, and don't forget to set the high
bit), but multiple screens and multiple pixel depths do. In that you can only be in alignment with one of the multiple
screens at a time (or only *guarantee* that you'll be so), you'll have to choose between aligning for the screen which
is deepest (which you'll want to do if your offscreen bitmap should be complexly colored), or for the screen which
has the maximum destWindow area on it (which will optimize for speed over color fidelity). Once,you've figured out
which GDevice to align to, plug in its pixMap for screenBits, below.

Enjoy.

function InitAlignedBitMap(var theBits:Bitmap;destWindow:WindowPtr):boolean;

{By Nick Jackiw}
{Allocates storage for a bitmap the bounds of which have been set before}
{calling. The bitmap will be long-word aligned with the coordinate system}
{of the bit image which contains the destWindow.}

 var
 oldPort: GrafPtr;
 aPoint: point;
 bitOffset: integer; {# of bits we need to expand the offscreen map by}

begin
 GetPort(oldPort); {Switch to desired port, for local->global conversion}
 SetPort(destWindow);
 aPoint := theBits.bounds.topLeft;
 LocalToGlobal(aPoint);

 bitOffset := (aPoint.h - ScreenBits.bounds.left) mod 32;
 if bitOffset < 0 then
 bitOffset := 32 + bitOffset;

 with theBits.bounds do
 left := left - bitOffset;{Expand dest bitmap by appropriate # of bits}

 with theBits do
 with bounds do
 begin
 rowBytes := ((right - left + 31) div 32) * 4;
 baseAddr := NewPtr(rowBytes * (bottom - top));
 InitAlignedBitMap := baseAddr <> nil
 end;
 SetPort(oldPort)
end;

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

--

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

Nick Jackiw | Visual Geometry Project | Math Department

•••
From: jackiw@cs.swarthmore.edu (Nick Jackiw)
Subject: Re: Fast Copybits suggestions needed, other questions

chris@ADMS-RAD.Unisys.COM (Chris Sterritt) writes:
> Someone a few weeks ago posted quite a long and informative post
> on making CopyBits go really fast. I didn't keep it then (in my almost
> infinite stupidity :-), so I'd like a copy now.

Other e-mail requests suggest to me that a repost would be welcome.
I'll post it separately.

> In case it doesn't answer these questions, I'll ask them now:
> (Background: I'm working on a game with animation, that I'd like
> to go as fast as possible).
>
> The game is (for now) black and white, will CopyBits do the
> right thing if it's run on a 4 or more bits deep screen (i.e., copying a
> 1-bit bitmap)? Or should I special-case the code for color?

Special-case. For every B&W pixel you draw on a four-bit screen, Color Quick- draw is going to have to convert it into a 4-bit
pixel, and map it to the appropriate color. Though these might seem trivial, multiplied by a zillion pixels they amount to an
incredible delay.

The cheesy thing to do would be to insist that user run in B&W mode. Better would be, at start-up, to allocate an offscreen
pixmap at the current depth of the screen, draw all of your b&w bitmaps onto it, and then dispose the 1-bit bitmaps. Then
use the curdepth pixmap as your library in the actual game. This keeps the task of translating depths isolated in your
initialization code, not duplicated every time you draw an object onscreen.

--
Nick Jackiw

•••
From:-Kelesi
Subject:How does one set up an offscreen buffer

>How does one set up an offscreen buffer so that CopyBits may be used to
>refresh the window when responding to an update event?

This is really a rather simple procedure. The idea is to draw into an offscreen port and then CopyBits the wanted information
to the desired window. To setup an offscreen port for drawing, you can do something like this...

In Pascal (LSP):

Function SetupPort : GrafPtr;
var
 tmpPort, myPort : GrafPtr;
begin
 GetPort(tmpPort);
 { Need to allocate memory for the port }
 myPort := GrafPtr(NewPtr(sizeof(GrafPort));
 { -- Error checking for nil pointer goes here -- }
 { Create the internal structures for the port }
 OpenPort(myPort);
 { Now we need to set aside enough memory to draw into }

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

 with myPort^.portBits do
 begin
 baseAddr := NewPtr(rowBytes * (bounds.bottom - bounds.top));
 { -- Error checking for nil pointer goes here -- }

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

 { Don't need to initialize any of the rest of the fields in }
 { the port because Quickdraw has done all we need already. }
 end;
 { And return the resulting port, voila, an offscreen graph port! }
 SetPort(tmpPort);
 SetupPort := myPort;
end;

or, for them (LS)C buffs...

#define myBM myPort->portBits
GrafPtr SetupPort()
{
 GrafPtr tmpPort;
 register GrafPtr myPort;

 GetPort(&tmpPort);
 myPort = (GrafPtr) NewPtr(sizeof(GrafPort));
 /* -- Error checking for nil pointer goes here -- */
 /* Create the internal structures for the port */
 OpenPort(myPort);
 /* Now we need to set aside enough memory to draw into */
 myBM.baseAddr = NewPtr(myBM.rowBytes * (myBM.bounds.bottom -
 myBM.bounds.top));
 /* -- Error checking for nil pointer goes here -- */
 /* And return the resulting port, voila, an offscreen graph port! */
 SetPort(tmpPort);
 return myPort;
}
#undef myBM

There are several problems with the program as it stands above. 1) it does not have any error conditions. 2) It eats up
about 6K of the heap everytime it's called (or more if your doing color, but if that's the case, you'll _need_ to look at
Macintosh Technote #120)

Notice that I saved the current port on entry, this is because I didn't really want SetupPort to change my current graph port. If
you don't care, you can remove these lines (but you may never know when you may need them, I spent several hours
tracking down a single missing SetPort once...not a pleasant experience.)

You can save memory by passing a window to the procedure and then resizing the port to the window size. If you do this
though, you have to resize the port everytime you resize the window, something of a bother. Enough of this, let's describe
how to draw, etc.

The procedure to draw into the newly created port may look something like this (in Pascal):

Procedure DrawInMyPort(port : GrafPtr);
var
 tmpPort : GrafPtr;
begin
 GetPort(tmpPort);
 SetPort(port);
 { various Quickdraw calls here }
 SetPort(tmpPort);
end;

And in C...

DrawInMyPort(port)
GrafPtr port;
{
 GrafPtr tmpPort;

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

 GetPort(&tmpPort);
 SetPort(port);
 /* various Quickdraw calls here */
 SetPort(tmpPort);

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

}

Pretty easy huh? The way the port is setup, you have the entire 'screen' to draw into, we'd have to do a few more calls if the
window are 'larger' than the screen (e.g. paint programs). Finally, we want to do an update event, drawing from the offscreen
port to a window:

Procedure UpdateWind(wind : WindowPtr; port : GrafPtr);
var
 tmpPort;
begin
 GetPort(tmpPort);
 SetPort(wind);
 BeginUpdate(wind);
 CopyBits(port^.portBits, wind^.portBits, port^.portRect,
 wind^.portRect, srcCopy, nil);
 EndUpdate(wind);
 SetPort(tmpPort);
end;

or

#define NIL (0L)
UpdateWind(wind, port);
WindowPtr wind;
GrafPtr port;
{
 GrafPtr tmpPort;

 GetPort(&tmpPort);
 SetPort(wind);
 BeginUpdate(wind);
 CopyBits(&port->portBits, &wind->portBits, &port->portRect,
 &wind->portRect, srcCopy, NIL);
 EndUpdate(wind);
 SetPort(tmpPort);
}

These are all pretty much basic routines here but they should work. If you have any more questions, you might refer to the
Macintosh technical notes. (You might be able to find the most recently distributed tn's on comp.mac.sources
(comp.sources.mac?)) Specifically, TN#120 (which I know was uploaded recently) Hope this helps!

-Kelesi

•••
From:Written by John Olsen to go CCW, optimized by Mike Morton, and unknown
Subject: Rotate Bit Map CCW (full source code)

int RotateBMapCCW(srcBMap, dstBMap)
BitMap *srcBMap, *dstBMap;

/* Given a source and destination bitMap, rotate it CCW 90°.
* Bitmap can be of any size, will also align on word boundaries.
* Written by John Olsen, optimized by Mike Morton, adapted to C by me.
*
* This routine has a little problem. The width of the destBMap is based
* on its rowBytes, not its bounds rect, for speed reasons… but this
* pretty much guarantees garbage in the no-man's land between the
* bounds.right and the rowBytes. This causes a problem when counting
* pixels in the caller routine, so the caller must take pains to
* reclear this area.
*

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

* Returns FALSE if memory allocation problems, else returns TRUE.
*
* See MacTutor, V.4-N.11-p.86 for more details.
*/

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

{ int colmCount;
long currentWord;
long lowerLeft;
int wordCount;

asm
{ movem.l d3-d7/a2-a5,-(sp) ; save registers

; Initialize destination bitMap, etc.
; a0 = result of _NewPtr call | d0 = size of bitMap allocate
; a1 = ptr to srcBMap | d1 = width / 2 (source)
; a2 = ptr to dstBMap | d2 = height / 2 (source)
; a3 = dest bits | d3 = left | top
; a4 = copy of dest bits | d4 = ctrPt.h
; a5 = not used | d5 = ctrPt.v

move.l srcBMap(a6),a1 ; point to the source BitMap
move.l dstBMap(a6),a2 ; point to the destination BitMap

; Compute height of source BitMap rounded up to nearest word.
move.w bds + bo(a1),d7 ; bottom into d7
sub.w bds + to(a1),d7 ; bottom - top = height, put in d7
move.w d7,d0 ; save copy of height for later

; rnd = (height + 15) / 16, follows:
addi.w #15,d7 ; add #15 to height, put in d7
lsr #4,d7 ; divide by 16
lsl #1,d7 ; Multiply by 2 = rowBytes of dstBMap

; d7 now contains rowBytes of dstBMap. Now compute the dstRect for
; dstBMap.
;
; Compute the center point of srcRect, note the center points are
; not necessarily the same in the vertical direction relative to
; srcBMap becuz of rounding that follows, (i.e., height of srcBMap
; is directly proportional to rowBytes of dstBMap).
lsr #1,d0 ; divide height by 2
move.w d0,d2 ; make a copy of height/2 for later
move.w bds + to(a1),d5 ; get 'top' of srcRect
add.w d0,d5 ; d5 contains vert compnt of ctr pt

; Compute the width of srcRect & put in d4
move.w bds + ri(a1),d3 ; get right and put in d3
sub.w bds + le(a1),d3 ; right - left = width, put in d3
lsr #1,d3 ; divide width by 2
move.w d3,d1 ; make a copy of width/2 for later
move.w bds + ri(a1),d4 ; get right of srcRect
sub.w d3,d4 ; d4 contains horiz compnt ctr pt

; Now get center point and compute bounds for dstBMap.
; Height and width are reversed now for the 2 BitMaps.
;
; left := ctrPt.h - height / 2;
; top := ctrPt.v - width / 2;
; right := ctrPt.h + height / 2;
; bottom := ctrPt.v + width / 2;
;
; Put data in direct to avoid overhead of SetRect.
; Compute 'top'.
move.w d5,d3 ; get a copy of ctrPt.v and put in d3
sub.w d1,d3 ; ctrPt.v - width / 2 = 'top' in d3
swap d3 ; move 'top' to hiword

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

; Compute 'left'.
move.w d4,d3 ; get a copy of ctrPt.h & put in loword d3

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

sub.w d2,d3 ; ctrPt.h - height / 2 = 'left' in loword d3

; We now have 'top' in hiword & 'left' in loword d3.
; Compute 'bottom'.
move.w d5,d6 ; get a copy of ctrPt.v in d3
add.w d1,d6 ; ctrPt.v + width / 2 = 'bottom' in d3
swap d6 ; move 'bottom' to hiword

; Compute 'right'.
move.w d4,d6 ; get a copy of ctrPt.h and put in loword d6
add.w d2,d6
; We now have 'bottom' in hiword & 'right' in loword d6.
;
; Assign data to dstBMap structure directly.
move.w d7,rB(a2) ; put in rowBytes of dstBMap
move.l d3,bds + topLOff(a2) ; put the coord pair in direct
move.l d6,bds + botROff(a2) ; put the coord pair in direct
move.w d7,d0 ; put rowBytes in d0
mulu rB(a1),d0 ; multiply rowBytes src*dst = d0
lsl #3,d0 ; multiply d0 by 8 for size of dstBMap
_NewPtr CLEAR ; allocate size of dstBMap (a2 pts to it)
cmp.l #0,a0 ; succesful?
bne @cont ; yes, continue
clr.l d0 ; no, return FALSE & …
return; ; …exit

cont:
move.l a0,bA(a2) ; move a0 to baseAddr field of dstBMap

;---
; a0 = not used | d0 = rowBytes of srcBMap
; a1 = points to bits of srcBMap | d1 = width / 2 (source)
; a2 = ptr to dstBMap | d2 = height / 2 (source)
; a3 = dest Bits | d3 = current word scrBMap
; a4 = | d4 = copy of width of srcBMap
; a5 = not used | d5 = current dstBMap
; a6 = not used | d6 = insideLoop count (current bit)
; a7 = not used | d7 = rowBytes of dstBMap
;---
; **
; *
; * Start of actual rotation of bitMaps
; *
; **
; Assumptions:
; height of destination bitMap = rowBytes of srcBMap
;

; initialize d0 to contain the pointer to the srcBMap
move.w rB(a1),d0 ; get rowBytes of srcBMap

; get regs pointing to bits
move.l (a1),a1 ; a1 pts to BITS of srcBMap
move.l (a2),a3 ; a3 pts to BITS of dstBMap

; Compute the lower left corner of the dstBMap - this maps to
; the upper left corner of the srcBMap and will be used as base
; from which to offset into the dstBMap when we need to set a bit.
clr.l d1 ; clear d1
move.w d0,d1 ; load rowBytes of srcBMap

; (rowBytes of srcBMap = ht of dstBMap)
lsl.w #3,d1 ; multiply by 8 to get ht of dstBmap when rot'd
mulu.w d7,d1 ; multiply by rowBytes(dstBMap) = #words in
sub.w d7,d1 ; dstBMap less one row

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

add.l a3,d1 ; add the computed offset to the baseAddr of
dstBMap

move.l d1,lowerLeft ; init lower left

;---
; a0 = not used | d0 = rowbytes of srcMap
; a1 = points to bits of src bitMap | d1 = SCRATCH
; a2 = currentWord | d2 = colmCounter
; a3 = dest bits | d3 = current srcMap word
; a4 = SCRATCH | d4 = colmBitLoop counter
; a5 = not used | d5 = current word destMap
; a6 = not used | d6 = insideLoop count (current bit)
; a7 = not used | d7 = rowBytes of dest bitMap
;---
;

; init wordCount to zero
;
move.w #0,wordCount ; set wordCount to one before we start
;
; init colmLoop counter
;
move.w d7,d2 ; get rowBytes(dest)
lsr #1,d2 ; divide by 2 - d2 now contains the outer counter
move.w d2,colmCount ; put the max value away for reference
moveq.l #0,d2 ; set d2 to zero since we use it for the counter

colmLoop:
;
; this is the outside loop
;
move.w #15,d4 ; init colmBitLoop counter to 15
move.l lowerLeft,a2 ; a2 is currentWord, init it

colmBitLoop:
;
; this is the loop that does the bit counting in the destMap - it is really a
; misuse of the 'dbra' instruction since it is not an independent loop but it
; is a quite cheap method of doing our counting
;

cmp.w #7,d4 ; are we doing high byte or low?
bgt @doByte1 ; skip if high byte
addq #1,a2 ; else point to low byte

doByte1:
rowLoop:

;
; loop across each row in the srcMap and keep count each time we do a row
; this 'rowCount' will used to compute the offset from 'lowerLeft'
;
move.w (a1)+,d3 ; get a word to rotate into d3
addq.w #2,wordCount ; add 1 for each word ---jdo---

add.w d3,d3 ; test next bit in the current source word
bcc.s @noBitToChange ; if bit’s not set, skip to next
bset d4,(a2) ; set proper bit in high or low byte in

currentWord

noBitToChange:
sub.l d7,a2 ; subtract rowBytes(destMap) from current word

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

; Do the same as above, fifteen more times.

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

add.w d3,d3
bcc.s @1
bset d4,(a2)

@1 sub.l d7,a2

add.w d3,d3
bcc.s @2
bset d4,(a2)

@2 sub.l d7,a2

add.w d3,d3
bcc.s @3
bset d4,(a2)

@3 sub.l d7,a2

add.w d3,d3
bcc.s @4
bset d4,(a2)

@4 sub.l d7,a2

add.w d3,d3
bcc.s @5
bset d4,(a2)

@5 sub.l d7,a2

add.w d3,d3
bcc.s @6
bset d4,(a2)

@6 sub.l d7,a2

add.w d3,d3
bcc.s @7
bset d4,(a2)

@7 sub.l d7,a2

add.w d3,d3
bcc.s @8
bset d4,(a2)

@8 sub.l d7,a2

add.w d3,d3
bcc.s @9
bset d4,(a2)

@9 sub.l d7,a2

add.w d3,d3
bcc.s @10
bset d4,(a2)

@10 sub.l d7,a2

add.w d3,d3
bcc.s @11
bset d4,(a2)

@11 sub.l d7,a2

add.w d3,d3
bcc.s @12
bset d4,(a2)

@12 sub.l d7,a2

add.w d3,d3
bcc.s @13
bset d4,(a2)

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

@13 sub.l d7,a2

add.w d3,d3

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

bcc.s @14
bset d4,(a2)

@14 sub.l d7,a2

add.w d3,d3
bcc.s @15
bset d4,(a2)

@15 sub.l d7,a2

;
; at this point we've just completed a word from the srcMap
;
cmp wordCount,d0 ; cmp wordCount to rowBytes-are we done with a row ?
bne @rowLoop ; no - do another word

cmp.w #7,d4 ; did we do high byte or low?
bgt @dobyte2 ; skip if high byte
subq #1,a2 ; else undo the fudge to a2

dobyte2:

;
; we just completed a row so add 2 to the count
;
move.w #0,wordCount ; ---jdo--- reset wordCount to zero

;
; the following use of dbra keeps track of our destMap bit for us
;
move.l lowerLeft,a2 ; re-init currentWord

; set the currentWord to the lowerLeft(current)
; lowerLeft is moved over (right) by a word each

; time we do a row in the srcMap
dbra d4,@colmBitLoop ; go thru the bits (15->0) in the

; destMap - then exit and do it
; again for rowBytes/2 times

;
; were done counting thru the bits of a destMap word - at this point we have
; actually finished a column in the destMap. The column is a multiple of
; 16 bits wide (and being at least 1 colm) and as tall as the destMap is
; (which is also equal to rowBytes of the srcMap)
;
addq.l #2,lowerLeft ; this moves us into the next

; 'column' of bits in the destMap
addq.w #1,d2 ; add 1 to the colmLoop counter
cmp colmCount,d2 ; are we done yet ?
bne @colmLoop ; no - do it again

; else we're done

move.l #1,d0 ; return TRUE, all ok
movem.l (sp)+,d3-d7/a2-a5 ; restore registers, bye!

}
} /* RotateBMapCCW */

int RotateBMapCW(srcBMap, dstBMap)
BitMap *srcBMap, *dstBMap;

/* Given a source and destination bitMap, rotate it CW 90°.
* Bitmap can be of any size, will also align on word boundaries.
* Written by John Olsen to go CCW, optimized by Mike Morton,
* and adapted to C by me.
*
* Revised 2/26/89 by me to do CW rotation.

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

*

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

* This routine has a little problem. The width of the destBMap is based
* on its rowBytes, not its bounds rect, for speed reasons… but this
* pretty much guarantees garbage in the no-man's land between the
* bounds.right and the rowBytes. This causes a problem when counting
* pixels in the caller routine, so the caller must take pains to
* reclear this area.
*
* Returns FALSE if memory allocation problems, else returns TRUE.
*
* See MacTutor, V.4-N.11-p.86 for more details.
*/
{ int colmCount;

long currentWord;
long lowerLeft;
int wordCount;
int srcHeight; /* pixel height of source bitMap */

asm
{ movem.l d3-d7/a2-a5,-(sp) ; save registers

; Initialize destination bitMap, etc.
; a0 = result of _NewPtr call | d0 = size of bitMap allocate
; a1 = ptr to srcBMap | d1 = width / 2 (source)
; a2 = ptr to dstBMap | d2 = height / 2 (source)
; a3 = dest bits | d3 = left | top
; a4 = copy of dest bits | d4 = ctrPt.h
; a5 = not used | d5 = ctrPt.v

move.l srcBMap(a6),a1 ; point to the source BitMap
move.l dstBMap(a6),a2 ; point to the destination BitMap

; Compute height of source BitMap rounded up to nearest word.
move.w bds + bo(a1),d7 ; bottom into d7
sub.w bds + to(a1),d7 ; bottom - top = height, put in d7
move.w d7,d0 ; save copy of height for later

; rnd = (height + 15) / 16, follows:
addi.w #15,d7 ; add #15 to height, put in d7
lsr #4,d7 ; divide by 16
lsl #1,d7 ; Multiply by 2 = rowBytes of dstBMap

; d7 now contains rowBytes of dstBMap. Now compute the dstRect for
; dstBMap.
;
; Compute the center point of srcRect, note the center points are
; not necessarily the same in the vertical direction relative to
; srcBMap becuz of rounding that follows, (i.e., height of srcBMap
; is directly proportional to rowBytes of dstBMap).
lsr #1,d0 ; divide height by 2
move.w d0,d2 ; make a copy of height/2 for later
move.w bds + to(a1),d5 ; get 'top' of srcRect
add.w d0,d5 ; d5 contains vert compnt of ctr pt

; Compute the height of srcRect & put in srcHeight - rcy 2/26/89
move.w bds + bo(a1),d3 ; get bottom and put in d3
sub.w bds + to(a1),d3 ; bottom - top = height, put in d3
move.w d3,srcHeight ; store here, need later…

; Compute the width of srcRect & put in d4
move.w bds + ri(a1),d3 ; get right and put in d3
sub.w bds + le(a1),d3 ; right - left = width, put in d3
lsr #1,d3 ; divide width by 2
move.w d3,d1 ; make a copy of width/2 for later

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

move.w bds + ri(a1),d4 ; get right of srcRect
sub.w d3,d4 ; d4 contains horiz compnt ctr pt

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

; Now get center point and compute bounds for dstBMap.
; Height and width are reversed now for the 2 BitMaps.
;
; left := ctrPt.h - height / 2;
; top := ctrPt.v - width / 2;
; right := ctrPt.h + height / 2;
; bottom := ctrPt.v + width / 2;
;
; Put data in direct to avoid overhead of SetRect.
; Compute 'top'.
move.w d5,d3 ; get a copy of ctrPt.v and put in d3
sub.w d1,d3 ; ctrPt.v - width / 2 = 'top' in d3
swap d3 ; move 'top' to hiword

; Compute 'left'.
move.w d4,d3 ; get a copy of ctrPt.h & put in loword d3
sub.w d2,d3 ; ctrPt.h - height / 2 = 'left' in loword d3

; We now have 'top' in hiword & 'left' in loword d3.
; Compute 'bottom'.
move.w d5,d6 ; get a copy of ctrPt.v in d3
add.w d1,d6 ; ctrPt.v + width / 2 = 'bottom' in d3
swap d6 ; move 'bottom' to hiword

; Compute 'right'.
move.w d4,d6 ; get a copy of ctrPt.h and put in loword d6
add.w d2,d6 ; ctrPt.h + height / 2 = 'right' in loword d6

; We now have 'bottom' in hiword & 'right' in loword d6.
;
; Assign data to dstBMap structure directly.
move.w d7,rB(a2) ; put in rowBytes of dstBMap
move.l d3,bds + topLOff(a2) ; put the coord pair in direct
move.l d6,bds + botROff(a2) ; put the coord pair in direct
move.w d7,d0 ; put rowBytes in d0
mulu rB(a1),d0 ; multiply rowBytes src*dst = d0
lsl #3,d0 ; multiply d0 by 8 for size of dstBMap

_NewPtr CLEAR ; allocate size of dstBMap (a2 pts to it)
cmp.l #0,a0 ; succesful?
bne @cont ; yes, continue
clr.l d0 ; no, return FALSE & …
return; ; …exit

cont:
move.l a0,bA(a2) ; move a0 to baseAddr field of dstBMap

;---
; a0 = not used | d0 = rowBytes of srcBMap
; a1 = points to bits of srcBMap | d1 = width / 2 (source)
; a2 = ptr to dstBMap | d2 = height / 2 (source)
; a3 = dest Bits | d3 = current word scrBMap
; a4 = | d4 = copy of width of srcBMap
; a5 = not used | d5 = current dstBMap
; a6 = not used | d6 = insideLoop count (current bit)
; a7 = not used | d7 = rowBytes of dstBMap
;---
; **
; *
; * Start of actual rotation of bitMap
; *
; **
; Assumptions:
; height of destination bitMap = rowBytes of srcBMap

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

;

; initialize d0 to contain the pointer to the srcBMap

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

move.w rB(a1),d0 ; get rowBytes of srcBMap

; get regs pointing to bits
move.l (a1),a1 ; a1 pts to BITS of srcBMap

; The original CCW rotate started with the upper leftmost word of the
; srcBMap and went contiguously down thru memory. To go CW instead I have
; to do the opposite, start at the end and go up.
;
; The a3 reg points to the word to get next and in this case I must set it
; to the end, so what does the 'end' mean here? It means use the actual
; pixel height of the srcBMap, as determined by the bounds, multiplied by
; the srcBMap.rowBytes, added to the start, which will make a3 point to 1
; word past the end. Since the 1st fetch does a pre-decrement, this points
; us at the last real word, huzzah-huzzah…
;
; 1 prob, remains, the orginal CCW routine assumed
; - rcy 2/26/89
clr.l d1
move.w d0,d1 ; load rowBytes of srcBMap
mulu.w srcHeight,d1 ; times height of srcBMap = total wrds + 1
add.l d1,a1 ; a1 now pts 1 word beyond end of srcBMap

move.l (a2),a3 ; a3 pts to BITS of dstBMap

; Compute the lower left corner of the dstBMap - this maps to
; the lower right corner of the srcBMap and will be used as base
; from which to offset into the dstBMap when we need to set a bit.
clr.l d1 ; clear d1
move.w d0,d1 ; load rowBytes of srcBMap

; (rowBytes of srcBMap = ht of dstBMap)
lsl.w #3,d1 ; multiply by 8 to get ht of dstBmap when rot'd
mulu.w d7,d1 ; multiply by rowBytes(dstBMap) = #words in
sub.w d7,d1 ; dstBMap less one row
add.l a3,d1 ; add the computed offset to the baseAddr of dstBMap
move.l d1,lowerLeft ; init lower left

;---
; a0 = not used | d0 = rowbytes of srcMap
; a1 = points to bits of src bitMap | d1 = SCRATCH
; a2 = currentWord | d2 = colmCounter
; a3 = dest bits | d3 = current srcMap word
; a4 = SCRATCH | d4 = colmBitLoop counter
; a5 = not used | d5 = current word destMap
; a6 = not used | d6 = insideLoop count (current bit)
; a7 = not used | d7 = rowBytes of dest bitMap
;---
;

; init wordCount to zero
;
move.w #0,wordCount ; set wordCount to one before we start
;
; init colmLoop counter
;
move.w d7,d2 ; get rowBytes(dest)
lsr #1,d2 ; divide by 2 - d2 now contains the outer counter
move.w d2,colmCount ; put the max value away for reference
moveq.l #0,d2 ; set d2 to zero since we use it for the counter

colmLoop:
;

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

; this is the outside loop
;
move.w #15,d4 ; init colmBitLoop counter to 15
move.l lowerLeft,a2 ; a2 is currentWord, init it

colmBitLoop:
;
; this is the loop that does the bit counting in the destMap - it is really a
; misuse of the 'dbra' instruction since it is not an independent loop but it
; is a quite cheap method of doing our counting
;

cmp.w #7,d4 ; are we doing high byte or low?
bgt @doByte1 ; skip if high byte
addq #1,a2 ; else point to low byte

doByte1:
rowLoop:

;
; loop across each row in the srcMap and keep count each time we do a row
; this 'rowCount' will used to compute the offset from 'lowerLeft'
;
move.w -(a1),d3 ; get a word to rotate into d3 - rcy 2/26/89
addq.w #2,wordCount ; add 1 for each word ---jdo---

lsr.w #1,d3 ; test next bit in the current source word - rcy
2/26/89

bcc.s @noBitToChange ; if bit’s not set, skip to next
bset d4,(a2) ; set proper bit in high or low byte in currentWord

noBitToChange:
sub.l d7,a2 ; subtract rowBytes(destMap) from current word

; Do the same as above, fifteen more times.
lsr.w #1,d3
bcc.s @1
bset d4,(a2)

@1 sub.l d7,a2

lsr.w #1,d3
bcc.s @2
bset d4,(a2)

@2 sub.l d7,a2

lsr.w #1,d3
bcc.s @3
bset d4,(a2)

@3 sub.l d7,a2

lsr.w #1,d3
bcc.s @4
bset d4,(a2)

@4 sub.l d7,a2

lsr.w #1,d3
bcc.s @5
bset d4,(a2)

@5 sub.l d7,a2

lsr.w #1,d3
bcc.s @6
bset d4,(a2)

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

@6 sub.l d7,a2

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

lsr.w #1,d3
bcc.s @7
bset d4,(a2)

@7 sub.l d7,a2

lsr.w #1,d3
bcc.s @8
bset d4,(a2)

@8 sub.l d7,a2

lsr.w #1,d3
bcc.s @9
bset d4,(a2)

@9 sub.l d7,a2

lsr.w #1,d3
bcc.s @10
bset d4,(a2)

@10 sub.l d7,a2

lsr.w #1,d3
bcc.s @11
bset d4,(a2)

@11 sub.l d7,a2

lsr.w #1,d3
bcc.s @12
bset d4,(a2)

@12 sub.l d7,a2

lsr.w #1,d3
bcc.s @13
bset d4,(a2)

@13 sub.l d7,a2

lsr.w #1,d3
bcc.s @14
bset d4,(a2)

@14 sub.l d7,a2

lsr.w #1,d3
bcc.s @15
bset d4,(a2)

@15 sub.l d7,a2

;
; at this point we've just completed a word from the srcMap
;
cmp wordCount,d0 ; cmp wordCount to rowBytes-are we done with a row ?
bne @rowLoop ; no - do another word

cmp.w #7,d4 ; did we do high byte or low?
bgt @dobyte2 ; skip if high byte
subq #1,a2 ; else undo the fudge to a2

dobyte2:

;
; we just completed a row so add 2 to the count
;
move.w #0,wordCount ; ---jdo--- reset wordCount to zero

;
; the following use of dbra keeps track of our destMap bit for us

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

;
move.l lowerLeft,a2 ; re-init currentWord

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

; set the currentWord to the lowerLeft(current)
; lowerLeft is moved over (right) by a word each
; time we do a row in the srcMap

dbra d4,@colmBitLoop ; go thru the bits (15->0) in the
; destMap - then exit and do it
; again for rowBytes/2 times

;
; were done counting thru the bits of a destMap word - at this point we have
; actually finished a column in the destMap. The column is a multiple of
; 16 bits wide (and being at least 1 colm) and as tall as the destMap is
; (which is also equal to rowBytes of the srcMap)
;
addq.l #2,lowerLeft ; this moves us into the next

; 'column' of bits in the destMap
addq.w #1,d2 ; add 1 to the colmLoop counter
cmp colmCount,d2 ; are we done yet ?
bne @colmLoop ; no - do it again

; else we're done

move.l #1,d0 ; return TRUE, all ok
movem.l (sp)+,d3-d7/a2-a5 ; restore registers, bye!

}
} /* RotateBMapCW */

•••
From: jmunkki@kampi.hut.fi (Juri Munkki)
Subject: Re: Aligning bitmaps? (with code)

In article <3791@ncsuvx.ncsu.edu> jnh@ecemwl.UUCP (Joseph N. Hall) writes:

>What is the most straightforward procedure for ensuring that a window's
>portBits begin on a word boundary? What I would like to do is check after
>the user creates or resizes a graphics window and shift the window horizontally
>(if necessary) so that it will be aligned for later updates from an offscreen
>bitmap.
>
>Also, how much speed difference is there between an aligned and unaligned
>one-to-one CopyBits? I assume that performance is no better for an
>odd-byte-aligned bitmap than it is for a totally unaligned bitmap, right?

The speed difference is visible. I assume that you have an offscreen bitmap that you regularly copy into a window. The best
solution for alignment is to shift the bitmap instead of forcing the window. You will only waste a few bytes for the extra margin
necessary.

Here are a few code fragments:

/*
>> AdjustVidPort adjusts the offscreen bitmap so that
>> CopyBits can always work in 32 bit alignment.
>>
>> Call AdjustVidPort whenever your window has moved.
>>
>> The method was originally suggested by Larry Rosenstein
>> from Apple's Advanced Technology Group.
*/
void AdjustVidPort()
{

BitMap temporary;
GrafPtr saved;

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

GetPort(&saved);
SetPort(&VidPort);

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

/* Save old port location:
*/

temporary=VidPort.portBits;

/* Align port with magic formula:
*/

MovePortTo((HMARGIN-VTWind->portBits.bounds.left) & 31,0);

/* Align image:
*/

CopyBits(&temporary, &VidPort.portBits,
&VidPort.portRect, &VidPort.portRect,
0,srcCopy);

SetPort(saved);
}

/* Open an offscreen grafport for VT100 screen
** Make it 32 pixels wider than absolutely necessary.
*/

RowBytes= ((ts.hsize*ts.charwidth+47)/16)*2;
...

VidPort.portBits.bounds.left=0;
VidPort.portBits.bounds.right=ts.hsize*ts.charwidth+32;
VidPort.portBits.bounds.top=0;
VidPort.portBits.bounds.bottom=ts.vsize*ts.lineheight;

VidPort.portRect=VidPort.portBits.bounds;
VidPort.portRect.right-=32;
RectRgn(VidPort.visRgn,&VidPort.portRect);
RectRgn(VidPort.clipRgn,&VidPort.portRect);

The above code makes sure that all your drawing is long word aligned. My terminal program doubled speed in cases where
the window was badly positioned. All this has no effect on color screens, because I'm using a B&W bitmap even when the
screen is in color. You would have to make small changes to apply the same technique to color pixmaps.

Juri Munkki jmunkki@hut.fi jmunkki@fingate.bitnet

•••
From:Larry Rosenstein
Subject: Re: Aligning bitmaps?

In article <15288@dartvax.Dartmouth.EDU> earleh@eleazar.dartmouth.edu (Earle R. Horton) writes:

> In article <3791@ncsuvx.ncsu.edu> jnh@ecemwl.UUCP (Joseph N. Hall) writes:
> >What is the most straightforward procedure for ensuring that a window's
> >portBits begin on a word boundary? What I would like to do is check after
> >the user creates or resizes a graphics window and shift the window horizontally
> >(if necessary) so that it will be aligned for later updates from an offscreen
> >bitmap.
>
> I don't know what you mean by straightforward, but ANDing the
> horizontal coordinate with NOT-0x0F before calling MoveWindow() should
> work fine. Resize and create should not be a problem, but moving the

As someone noticed, Hypercard grids the window position and shows this by gridding the gray outline.

Another approach is to perform the alignment offscreen by allocating an offscreen bitmap that is 16 bits wider than
necessary. Then you use a similar calculation to Earl's and align the offscreen buffer before copying it on the screen. I used

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

this technique in the old MacApp Paint program and it worked very well. (And it looked much better than doing unaligned
CopyBits.) In this case, you don't have to worry about non-standard window behavior.

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

I'm positive that alignment is important for 1-bit deep bitmaps on a 68000-based machine. (It might be that on a 68020
machine it's not necessary.) As I recall, it required 1/2 second on a MacPlus to align a MacPaint image offscreen. I did this
by calling CopyBits with the same bitmaps as source and destination.

Also, notice that what counts is the global coordinates of the destination. If you use my trick of aligning the offscreen bitmap,
then you will need to compute the global coordinates of your window. To do this first call SetPort(yourWindow), assign (0, 0)
to a Point, and use LocalToGlobal.

Finally, I'm not sure that a word boundary is optimal alignment for Color Quickdraw. I think you might want to use longword
alignment. I haven't done any stuff with offscreen pixmaps, so I don't know for sure.

> and the screen depth is greater than one. Byte alignment seems to be
> all that's necessary. Where did you get your information that word
> alignment is needed?

I don't know about color, but for 1-bit deep images, word alignment alows QuickDraw to fetch and store longwords at a time
(except for the edges). If you are only byte aligned then it may have to fetch things a byte at a time. (On a 68000 you can't
fetch and store a word on an odd boundary; on a 68020 you can fetch and store on odd byte boundaries, but you pay a
speed penalty.)

> I don't notice any difference between aligned or non-aligned
> BitMaps with a black and white screen. On the other hand, these are
> subjective results since I haven't done formal timing.

On a MacPlus it is noticeable, although I haven't done any formal measurements, either.

Larry Rosenstein, Apple Computer, Inc. Object Specialist

•••
From:earleh@eleazar.dartmouth.edu (Earle R. Horton)
Subject: Re: Aligning bitmaps?

In article <3967@internal.Apple.COM> lsr@Apple.COM (Larry Rosenstein) writes:
>In article <15288@dartvax.Dartmouth.EDU> earleh@eleazar.dartmouth.edu
>(Earle R. Horton) writes:
...
>Finally, I'm not sure that a word boundary is optimal alignment for Color
>Quickdraw. I think you might want to use longword alignment. I haven't
>done any stuff with offscreen pixmaps, so I don't know for sure.
...
>> I don't notice any difference between aligned or non-aligned
>> BitMaps with a black and white screen. On the other hand, these are
>> subjective results since I haven't done formal timing.
>
>On a MacPlus it is noticeable, although I haven't done any formal
>measurements, either.

 OK, I broke out the old Timex, and actually timed some big screen animation on the Mac II using 1, 2, and 4 bits screen
depth with big offscreen PixMaps. My conclusion after about a half hour of testing was that the only alignment that makes
any difference to Color QuickDraw CopyBits() is longword alignment. The performance increase when both PixMaps are
longword-aligned is what I would call spectacular, too. It's about 2 to 1! There does appear to be little, if any, performance
increase for byte or word alignment over random alignment, so I wasn't totally wrong before.

 Sorry for any confusion my earlier posting might have caused.

Earle R. Horton

•••

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

From: awd@dbase.UUCP (Alastair Dallas)
Subject: ThePort and TENew (problem with font)

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

The problem that had me tearing my hair out was incredibly simple as it turned out. I can keep it to myself, or I can share it
at the risk of appearing inexperienced. Here it is--you won't care now, but maybe this will settle into a niche at the back of
your brain and when you trip over this problem, you'll think of me.

I created an edit field with a call to TENew() and I set some text into it. Then, at update time, I call TEUpdate(). It didn't
display anything. I made sure that the port was set correctly at update time. Still nothing. I did a FrameRect() before the
TEUpdate()--I got the rect, but no text. I dumped the TERec--perfect. I fiddled with the clipRgn. Finally, in desperation, I
single-stepped through TEUpdate().

Do you know why I wasn't seeing text? The port must be correct at TENew() time, not TEUpdate(). You can be set to
anything and still update your TEs, but you have to make sure the port is right when you create the TE. In most apps, you
switch ports when you open windows and your calls to TENew() come after that, so everything's fine. In my case, the port
was wrong at init time, but I fixed it up later.

Hope it helps somebody somewhere sometime.

/alastair/

•••
From: nicholas jackiw
Subject: Re: FatBits,thinbits and MapPt()

JON@wehi.dn.mu.oz (Jon Eaves) writes:
> I draw on the squash in the inverse colour (aaarrrgggh), 2 pixels get
> toggled horizontally and on the 'FatBits' version 1.5 fatPixels gets
> toggled.
>
> Why does this happen? I am pretty sure I am using MapPt() correctly
> and it works to draw the fatbits initially.
> --

Why don't you try posting your code? Sounds like an arithmetic error someplace, not a MapPt problem.

One thing you might want to consider doing, which is tremendously easy, is to do all drawing to just one of your two pictures,
and then use CopyBits to scale it to the other. CopyBits is a whole lot faster than doing a bunch of FillcRects on your FatBits
image, and all of the scaling is automated by quickdraw.

The one disadvantage is you can't display the "grid" in your fatbits image, unless you superimpose it after CopyBitsing.

-Nick
--
 nicholas jackiw \jackiw%campus.swarthmore.edu@swarthmr.bitnet

•••
From: ftanaka@Apple.COM (Forrest Tanaka)
Subject: Re: 32-bit QuickDraw scaling behavior
Keywords: 32-bit Color QuickDraw scaling DrawPicture PenSize printing

In article <41276@apple.Apple.COM> ftanaka@Apple.COM (Forrest Tanaka) writes:

> The old characteristic of not scaling pen sizes when a picture was scaled
>was a bug in Quickdraw that's been fixed by 32-Bit Quickdraw. Since it's a
>bug fix, we thought that everyone would like it and no one would want to go
>back to the old way. So, there's no way right now to disable the fix aside
>from not using 32-Bit Quickdraw. It turned out that a few people depended on
>this bug, so there might be a way to disable pen size scaling in the future.
>I kind of doubt it, but it's not up to me.

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

 Judging by the mail I've gotten, it looks like more people than I'd realized thought that this bug was pretty cool. So, I tried
out something that I suspected might work for some people to fix the fix, and it does work.

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

 If y'all turn to page 197 of Inside Macintosh I, you'll see a discussion about Quickdraw bottlenecks. By making your own
bottlenecks, you can customize almost everything that Quickdraw does. When you call LineTo, StdLine is called to do the
drawing. By providing your own routine to replace StdLine, you can make almost anything you want happen when LineTo is
called. The same applies to all the others you see on the next couple of pages. Your StdLine replacement can even call
StdLine, and it can even do things after calling StdLine--a non-breakable form of tail-patching if you want to think of it that
way.

 When you call DrawPicture, these bottlenecks are called to actually draw the contents of the Picture. So if the picture has
a line in it, StdLine or your StdLine replacement will be called to draw the line. That's the key to fixing the fix.

 What you can do is to create your picture in the usual way. Then before you call DrawPicture, replace the StdLine,
StdRect, StdRRect, StdOval, StdArc, StdPoly, and StdRgn bottlenecks with your own bottlenecks. Except the StdLine case,
the typical bottleneck will look something like:

if the verb is 'frame' then
 call PenSize(1,1)
call the standard bottleneck

 That's it! It doesn't make sense for StdLine to take a verb, so you can just call PenSize(1,1) and then call the standard
bottleneck in that case. What this is saying is that if the programmer or the picture calls Frame<X>, then set the pen size to 1
before calling the routine that actually draws the <X>.

 The downside of this for some of you is that if you export your picture to another program, the pen sizes will be scaled
again because they won't know to put in their own bottlenecks to set the pen size to 1 before drawing the objects. But, there
is sort of a way around this even if you know what scale you want the result to be. In more pseudo-code, the operation could
look something like this:

original picture = OpenPicture(small rectangle)
Draw some framed things
ClosePicture

Replace bottlenecks with the 'PenSize(1,1)' bottlenecks
scaled picture = OpenPicture (big rectangle)
DrawPicture (original picture, big rectangle)
ClosePicture
Set the bottlenecks back to what they were

 Now, 'scaled picture' will contain a scaled version of 'original picture', but all the lines and frames will still have a pen size of
1 because you replaced the bottlenecks. Of course, if you scale 'scaled picture' larger, then the pen sizes will again be
scaled unless you again replace the bottlenecks.

 I doubt that this is practical in every case, but it sounds like some of you can do something like this.

 Another option that I thought of as I was typing this is to patch PenSize. After giving it about three seconds of thought, I
don't see what would be wrong with this. If any of you see a problem with this or the bottleneck method, or if you have a
better way, please please please post it.

--
Forrest Tanaka Macintosh Developer Technical Support Apple Computer, Inc.

•••
From: lsr@Apple.COM (Larry Rosenstein)
Subject: Re: Need help creating a Quickdraw picture

In article <7366@jarthur.Claremont.EDU> mwilkins@jarthur.Claremont.EDU (Mark Wilkins) writes:

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

> Every time I've done it copying from a bitmap to itself, it's given me an
> empty picture definition.

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

Perhaps QuickDraw only records operations that involve the current grafPort's portBits. If you copy from one offscreen
bitmap to another then the operation wouldn't involve the portBits. You might try installing your offscreen bitmap into a
grafPort and use that port for creating the picture.

Larry Rosenstein, Apple Computer, Inc.

•••
From: kaufman@Neon.Stanford.EDU (Marc T. Kaufman)
Subject: Re: Still need help creating a QuickDraw picture

In article <2223@dftsrv.gsfc.nasa.gov> seiler@amarna.gsfc.nasa.gov writes:
... (stuff deleted)
>SetPort(windPtr);
>picHndl = OpenPicture(&(windPtr->portRect));
>CopyBits(&(windPtr->portBits), &(windPtr->portBits),
> &(windPtr->portRect), &(windPtr->portRect), srcCopy, NULL);
>ClosePicture();

>no copybits opcode shows up, but the sequence: version op, version, header op,
>size, fBBox, <4 bytes reserved>, DefHilite, Clip, opEndPic occurs.

Let me try (after all, everyone else has :-)). I don't see why you are changing ports. Why not just do the OpenPicture on
your screen grafPort? The picture traps will catch everything.

If you really want to use another port, you need to make sure that the portRect, clipRgn, and visRgn are correct. You do
NOT need to worry about the portBits.bounds, and indeed, you do not need any bitMap/Pixmap actually allocated for a port
that is only used for capturing a picture.

Marc Kaufman (kaufman@Neon.stanford.edu)

•••
From: pierce@radius.com (Pierce T. Wetter III)
Subject: Re: Need help animating with 24 bit card

>I wrote a program about 2 years back which needed to
>change the color of circles on the screen at a very fast rate. I
>accomplished this by calling AnimatePallette. Of course this limited
>me to a maximum of 254 objects at any time due to our 8 bit card. I
>now need to write a similar application which does the same thing except
>with many more objects... in the range of about a thousand.

>I thought it might be possible to do the same thing except with a
>24 bit card.

 Funny you should ask about this, I just did this for PrecisionColor (radius'sMonitor calibration gizmo, that I am responsible
for writing the software to)

 You can animate colors on a 24 bit board, but there are some caveats:

 1: You can only do 256 arbitrary colors at at time.
 2: Other colors besides the one you wish to animate will animate as well.
 3: For non arbitrary colors, you can animate 256 shades of red, 256 of blue and 256 of green.

The necessary technique is to use the gamma table to do your animation for you. All the 24-bit cards on the mac have an 8-
bit by 8-bit table in front of the dac. One way to animate a color is to pick an entry in all three of these tables. Lets pick
(0xFE,0xFE,0xFE) as an example. If I draw a circle in that color and then change those particular entries in the gamma table
to whatever color I want, the circle will change to that color. (This is how the not-yet-released Turbo Precision Color works.)

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

This still limits you to 254 colors (assuming you don't animate full white and full black). However, you can do more by
animating your circles to just red, and just green and just blue. If you do that, then you can use all the colors (N, 0, 0) &
(0,N,0) and (0,0,N). If you don't mind your circles overlapping when you animate (for instance, you could have an indicator
LED colored (N,N,0). You can then animate red to be indicating one variable, and green to be the other variable. The LED
will then take on any shade from red to green to yellow. This lets you have more animating circles, but you can still only have
3x254=762 INDEPENDENT circles.

 Of course, this probably won't help you any, but I had fun talking about what I was doing.

Pierce

P.S.: Since I mentioned it, its only fair to say that the new software is just a minor upgrade to support the 8..24 and 8..24GC.
While I was at it I made it 3x faster, but that's beside the point.
--
My postings are my opinions, and my opinions are my own not that of my employer.

•••
From: russotto@eng.umd.edu (Matthew T. Russotto)
Subject: Re: Setting up CLUTs - Advise???????

In article <24664.266d7b29@kuhub.cc.ukans.edu> brownrigg@kuhub.cc.ukans.edu writes:
>Can anyone suggest the general mechanism one needs to use to display a
>pixMap with PRECISELY CHOSEN colors?? I've read and re-read the relevent
>chapters of IMV5 and am still confused and frustrated as to what to do.

Yep. In fact, I can suggest TWO ways. One is to put a 'pltt' resource id 0 in your application resource file. The resource
should contain valid pltt data with only two colors: black, and white. Then just use SetEntries from the color manager
chapter to put YOUR colors in. Of course, be careful to SaveEntries and RestoreEntries at suspend and resume time under
multifinder, so other applications don't get their colors messed up, and you don't have yours messed up. You also have to be
very careful in a multi-screen environment using this method.

The second, and far superior method (IMO) is to use NewPalette to create a palette with the 254 colors you need, plus black
and white in the first two entries (yes, I know some quantizers don't always put out a black and white. Tough.). Black and
white should be marked as pmCourteous, all the other colors should be pmTolerant with a tolerance of 0 (pmIntolerant?).
Then SetPalette(yourwindow, yourpalette, TRUE); ActivatePalette(yourwindow); to make the window automatically keep your
color environment;

(the reason black and white should be set to pmCourteous is that the Palette manager used to reserve an additional index
for them, in addition to the standard positions at the beginning and end of the color table. I don't know if this is still the case
or if it is correct behavior, but setting them to courteous won't hurt)
--
Matthew T. Russotto russotto@eng.umd.edu

•••
From: russotto@eng.umd.edu (Matthew T. Russotto)
Subject: Re: ? Bad pixmap data written by OpenPicture & CopyBits

In article <1990Jun13.181220.1@dev8j.mdcbbs.com> astor@dev8j.mdcbbs.com writes:

>My application has an offscreen pixmap, and I'm trying to copy the
>pixmap onto the scrap as a simple PICT.
>
>I use OpenPicture, CopyBits, ClosePicture, ZeroScrap, and PutScrap.

Try OpenPicture, CopyBits,ClosePicture,ZeroScrap,HLock,PutScrap.

--

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

Matthew T. Russotto russotto@eng.umd.edu russotto@wam.umd.edu

•••
From: ccc_ldo@waikato.ac.nz (Lawrence D'Oliveiro, Waikato University)

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

Subject: Re: Fading ...(dissolve effect)

I had a play once with the idea of doing a "dissolve" effect using absolutely standard QuickDraw calls. It turns out that the
CopyMask operation (Inside Mac page IV-24) is almost custom-designed for this sort of thing.

What I did was create a number of off-screen bitmaps, all the same size as the window in which the pictures will be
displayed. The number of bitmaps corresponds to the number of "stages" in which the dissolve will take place: more stages
makes the dissolve smoother, but takes longer.

If you look at a particular pixel position in all of these bitmaps, you will find that the corresponding bit is 1 in exactly one of the
bitmaps, and zero in all the others. Thus the way you use them is by making repeated calls to CopyMask, each time
specifying the complete new picture (drawn into an offscreen buffer) as the SrcBits argument, the PortBits for the window in
which the display will appear as the DstBits, and a different one of the "stage" bitmaps as the MaskBits argument. The 1 bits
in MaskBits select which pixels get copied from SrcBits to DestBits; once you've gone through all the stage bitmaps, the
window will be displaying the complete new picture.

Of course, the distribution of 1 bits within each stage bitmap has to be reasonably random. The way I ensured this was, for
each pixel position, to generate a random integer in the range 1 to the number of stages, and use that number to select the
bitmap which would get the 1 bit (all the rest would get 0 for that pixel).

This random-number generation turned out to take quite a long time; to speed things up, I changed it to operate on just a
32*32 portion of the bitmap, and then simply replicated that bit pattern "cell" by "tiling" across and down with CopyBits until
I'd covered the entire bitmap. Another way would be to store the pregenerated 32*32 bit patterns in a resource and just read
them into memory when the program runs.

Though I looked for it, I couldn't see any visible effect of repeating the same 32*32 pattern of bits--the distribution of the
newly-appearing pixels still looked completely random. I didn't experiment to see if I could get away with a smaller cell size.

Another nice thing is that this technique also works with Color QuickDraw, and should also look good on a 24-bit-per-pixel
display. For maximum speed, you should make SrcBits a PixMap with the same depth and colour table as DstBits, but
MaskBits is still a plain, ordinary bitmap.

Speed? On 1-bit-per-pixel displays, with 6 dissolve stages, the result was quite presentable, even on a Mac Plus (though not
as fast as HyperCard, which manages to use 12 stages). 8 bits per pixel on a vintage Mac II was actually slower than 1 bit
per pixel on a Plus--but at least it worked!

Lawrence D'Oliveiro

•••
From: h+@nada.kth.se
Subject: Re: Drawing all over the desktop

larsen@ginger.Princeton.EDU writes:

I know that Apple doesn't want applications to draw all over the desktop.
Since I'm doing it anyway, though, I need advice in order to do it as cleanly
as possible. At the moment I'm checking screen depth and writing into video
memory, but I would prefer a quickdraw solution.

The stuff to do is drawing into the WMgrPort. This is as compatible as it gets, though that isn't very. You have to be VERY
careful to restore everything as it was before you call {Get/Wait}NextEvent. This means ony XORing, among other things.
(Well, if it's a game and you don't want it to be MF compatible nor System 7 compatible, you don't have to restore the
drawings, just the state of the WMgrPort)

I have written an INIT that, among other things, needs to draw in the WMgrPort, called SetWindow INIT. The source and the
init is available via FTP from rascal.ics.utexas.edu, and is in the directory mac/hacking (if memory serves me right, might be
programming or somewhere completely else...)

Generally, it is a VERY BAD idea to draw outside of windows. Only newly-converted MS-DOS programmers try and do this

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

without a good reason. (And I mean GOOD)

Happy hacking,

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

h+

•••
From: hildreth@cg-atla.agfa.com (Lon Hildreth)
Subject: Re: PICT hacking question
Keywords: PICT

In article <1732@mountn.dec.com> minow@bolt.enet.dec.com (Martin Minow) writes:

>The original image was scanned at 300 dpi. When I look at the output
>image (even without processing), it is clearly at a coarser resolution
>(probably 72 dpi).
>
>Could anyone tell me how I get the actual image at its intended resolution
>(both into my program and out to a new PICT file)? Inside-Mac and the
>TechNotes stack don't seem to have anything relevant.

You need to put yourself in the StdBits bottleneck during playback. The hRes and vRes fields of the srcBits passed in
contain the horizontal and vertical resolution of the image in dots per inch. They're Fixed point numbers, so you can call
Fix2Long on them to get usable numbers. First, make sure that srcBits is a PixMap by checking the high bit of rowBytes.

For creating a new PICT, make sure that the hRes and vRes fields of your source pixmap is set properly. Also, the dest rect
of the CopyBits call should be at 72 dpi.

--
Lon Hildreth ...!{decvax,uunet,samsung}!cg-atla!hildreth

•••
From: keith@Apple.COM (Keith Rollin)
Subject: Re: Wanted- a window that comes up in black

In article <23026@dartvax.Dartmouth.EDU> anarch@eleazar.dartmouth.edu (The Anarch) writes:

> Apologies if this is an elementary question; I'm still pretty new to Mac
>programming. Anyway, I'm trying to get a window to come up onscreen with a
>black content region. Now I know that I can easily do NewWindow and then
>PaintRect the window's body, but that causes a brief white flash, which I'd
>like to avoid but have been unable to get rid of. What I *have* tried:
>changing the bkColor and bkPat for the window in various ways before a
>ShowWindow; I haven't gotten any positive results.

Here's one for the oneliners file:

The window Mgr doesn't use your window's bkPat when erasing the content region.

No. That would be too simple, too easy. Instead, since the content region is drawn in the WMgrPort, the Window Manager
uses the WMgrPort's bkPat. Since this is always white, your window's content region is always drawn in white when it is
updated.

There are several not-so-good ways around this. As I recall, if you have a color window, the window's rgbBkColor IS
respected, and you can have your window updated in any color you want (but not pattern). You can also try munging around
with the PaintWhite low-memory global, which can be used to prevent the window manager from clearing your content region
to any color at all, allowing you to do it. However, there are problems with that, as Inside Mac I-297 points out. Finally, you
could write a WDEF wherein the entire window is a structure region, and where there is no content region. Since the WDEF
is solely responsible for drawing the strucRgn, you will have total control over how it gets redrawn.

--

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

Keith Rollin --- Apple Computer, Inc. --- Developer Technical Support

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

•••
From: jwwalker@usceast.UUCP (Jim Walker)
Subject: Re: Wanted- a window that comes up in black

I thought of another "not so good way" that Keith Rollin didn't mention: Before showing your window, temporarily change the
bkPat of the Window Manager port to black. Be sure to change it back to white once the window is drawn! You may also
need to set the window's bkPat to black to prevent a flash. And you would probably need a custom WDEF that can draw its
frame properly when the bkPat is black. (I did enough experimentation with this to convince myself that it could be made to
work.)
--

 Jim Walker jwwalker@cs.scarolina.edu 76367.2271@compuserve.com

•••
From: jackiw@cs.swarthmore.edu (Nick Jackiw)
Subject: Re: Dragging Bitmaps?

siegel@endor.harvard.edu (Rich Siegel) writes:

> Does anyone have any suggestions on how to drag small bitmaps around, in the
> same fashion as MacPaint? Currently I drag outlines around, but it would be
> much nicer to move the object as a whole.
>
> R.

Sure: you'll need to use some offscreen bitmaps though. The major design decisions that affect the process are: (1) do you
want it to be really smooth? (2) must your bitmaps be of eccentric shape or can they be limited to rects?

(1) For rectangles

The Cheap Way:

Get two offscreen bitmaps the size of the one to drag, and fill them both with the bitimages. Call these SOURCE and
BUFFER. Now watch the mouse. Every time it moves, calculate the new location (presumably you measure the offset into
the bitmap at which the mouse went down, and then calculate the new location based on this offset and the vector of mouse
movement, so the mouse "sticks" to the same part of the rectangle). Copy BUFFER to the old location, copy the rect of
"underlaid" bits at the new location to BUFFER, and then copy SOURCE to the new location. Repeat until mouseup.

The problem with this is that you'll have flicker--you'll be overwriting background bits with source bits and source bits with
background bits.

The more expensive way:

Get an offscreen copy of the area in which you wish to permit dragging, without the dragable image in it. Call this
BACKBITS. Now get an offscreen copy of the draggable image, call this SOURCE. Now get a third bitmap, the size of
BACKBITS, left blank; call this SCRATCH. For each new mouse move, copy the UnionRect of the oldLocation and the
newLocation from BackBits to Scratch, and then throw in (to Scratch) a copy of the SOURCE at new location. Copy this
unionRect to the screen.

(2) For irregularly-shaped bitmaps

You know about BitMap2Rgn, I presume. It's on the DTS cds in object code, or you can count on it being available if you'll
only run on 32Bit QD machines. (There may be licensing hassles concerning the object code; read the docs or write your
own.) With BitMap2Rgn, get a region that includes/excludes the appropriate parts of your SOURCE. On a blank bitmap the
size of SOURCE, do a FillRgn(bitsRgn,black). This gives you a mask, which you should use in either of the above schemes:
wherever you formerly did CopyBits(source,somePlace...) now do a CopyMask(source, somePlace,maskBits,...).

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

If you want source code, I can whip something up. There are slightly more efficient ways to do it than the above, but that's
the basic scheme as I understand it.

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

Call this BACKBITS.

--
 nicholas jackiw | jackiw%campus.swarthmore.edu@swarthmr.bitnet

•••
From: dowdy@apple.com (Tom Dowdy)
Subject: Re: Wanted- a window that comes up in black

Here's YET ANOTHER way to do this. You can judge if it is less or more terrible than those already suggested. I call it about
even, but the one effect that it relies on IS documented.

I place it behind the WDEF approach, and ahead of hitting fields in the WMgrPort in the cleaniness rankings.

a) Open a port (PORT, not window) in the location where the window will be.
b) Fill port with black
c) Dispose of port.
d) Slam low memory PaintWhite ($9DC) to be zero (this keeps the window manager from filling the window with white,

but leaves what is behind it, ie black), save the old copy.
e) Open your window, which will get the black area, and will NOT be filled with white.
f) Restore PaintWhite.

Tom Dowdy Internet: dowdy@apple.COM

•••
From: lsr@Apple.COM (Larry Rosenstein)
Subject: Re: Dragging Bitmaps?

In article <3398@husc6.harvard.edu> siegel@endor.harvard.edu (Rich Siegel) writes:
>
>Does anyone have any suggestions on how to drag small bitmaps around, in the
>same fashion as MacPaint? Currently I drag outlines around, but it would be
>much nicer to move the object as a whole.

The basic approach is to cache the image behind the moving bitmap, and use that cache to erase the bitmap before it
moves. So the basic code would be to use 1 CopyBits to erase the old bitmap, and 1 CopyBits to draw the bitmap in its new
position. (This assumes that you have cached the entire view beforehand. This is always better than copying the bits from
the screen.)

You will get better results if you do both steps with 1 CopyBits. To do this you need another offscreen bitmap the size of the
union of the old and new rectangles. You initialize this bitmap from the larger cache, and draw the moving bitmap in its
desired position. Then you use 1 CopyBits to copy everything onto the screen at once.

--
 Larry Rosenstein, Object Specialist

•••
From: beard@ux1.lbl.gov (Patrick C Beard)
Subject: Re: 2-16-256-million color mode
Keywords: standards, color, monitors

In article <1037@swan.ulowell.edu> jkeegan@hawk.ulowell.edu (Jeff Keegan) writes:
#Is there ANY "acceptible" way to change the color mode other than telling

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

#someone to go change it?

There is a new call that is documented in the latest batch of Tech Notes called "SetDepth()". This lets you do precisely this
from software.

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

On the other hand, the user interface guidelines for this aren't really spelled out. I think that an application should notify the
user that it is about to change the depth of the monitor, and allow the user to quit if that is not what he wants to do.

- Patrick Beard, Macintosh Programmer (beard@lbl.gov) -

•••
From: minow@mountn.dec.com (Martin Minow)
Subject: Reading PICT's revisited.

Thanks for all the good replies to my question on reading a 300 dpi PICT into a (72 dpi) window. Here's the code I use to
read and write PICTs into an offscreen GrafPort.

Martin Minow
minow@bolt.enet.dec.com

/* ReadPicture.c */
/*
* Picture I/O
*
* For some reason, the PICT dimensions do not correctly
* describe the picture: it loses its 300 dpi resolution
* when read in. MAGIC scales the PICT by a factor of 4.
* We should get the "real" scale factor by inserting
* our function into the StdBits bottleneck.
*/
#include "CleanPICT.h"
#include <SysErr.h>
#define MAGIC(size) ((((long) size) * (4 * 72)) / 72)

/*
* See TechNote 27 (original format), and the Essential
* MacTutor, vol 3, p 417. (This is now unused.)
*/
typedef struct {
 OSType fType; /* 'DRWG' for MacPaint files */
 short hdrID; /* 'MD' for MacPaint format */
 short version; /* File version */
 short prRec[60]; /* 120 byte print record */
 Fixed xOrigin; /* Drawing origin */
 Fixed yOrigin; /* Drawing origin */
 Fixed xScale; /* Screen resolution */
 Fixed yScale; /* Screen resolution */
 short atrState[31]; /* Drawing attribute state */
 short lCnt; /* Top-level objects */
 short lTot; /* Total number of objects */
 long lSiz; /* Total size of list */
 Long top; /* Box enclosing all objects */
 Long left;
 Long bottom;
 Long right;
 short filler1[141]; /* 282 bytes unused */
} MacDrawHdrRec;

static int PICTfile; /* The file ioRefNum */

/*
* Use this to peek into the bitmap as it is read in.
* The peeking is done by jumping into the Debugger.
*/
pascal void myStdBits(

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

 BitMap *, Rect *, Rect *, int, RgnHandle);
pascal void read_picture_data(Ptr, int);
pascal void write_picture_data(Ptr, int);

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

/*
* read_picture() reads the picture from the PICT file,
* constructing the window at the proper size.
* "window" is really a document structure:
* typedef struct {
* WindowRecord window;
* GrafPtr pictPort; -- offscreen grafport
* Rect pictSize; -- true PICT size
* } DocumentRecord;
* The DOC macro handles type casting and dereferencing.
*/
OSErr
read_picture(window, theFile)
WindowPtr window; /* Read into this document */
int theFile; /* From this open PICT file */
{
 PicHandle handle;
 QDProcs procedures;
 OSErr status;
 long size;
 long place;
 Rect box;
 GrafPtr oldPort;
 MacDrawHdrRec header;

 PICTfile = theFile;
 handle = (PicHandle) NewHandle(sizeof (Picture));
 if (handle == NIL) {
 DebugStr("\pCan't get memory for picture");
 return (MemError());
 }
 /*
 * Read the MacDraw header record -- that was a
 * good idea, but it didn't work as the headers
 * are garbage in the PICT I'm using.
 */
 if (sizeof header != 512)
 DebugStr("\pMacDrawHdrRec wrong size!");
 read_picture_data((Ptr) &header, sizeof header);
 HLock(handle);
 read_picture_data((Ptr) *handle, sizeof (Picture));
 HUnlock(handle);
 box = (**handle).picFrame;
 DOC.pictSize = box;
 box.right = MAGIC(box.right);
 box.bottom = MAGIC(box.bottom);
 GetPort(&oldPort);
 /*
 * Create an offscreen GrafPort. See TechNote 41.
 */
 DOC.pictPort = CreateOSGrafPort(box);
 if (DOC.pictPort == NIL) {
 DebugStr("\pNo memory for picture");
 SetPort(oldPort);
 return (MemError());
 }
 SetStdProcs(&procedures);
 DOC.pictPort->grafProcs = &procedures;
 procedures.getPicProc = (Ptr) read_picture_data;
/* procedures.bitsProc = (Ptr) myStdBits; -- unused */
 DrawPicture(handle, &box);
 DOC.pictPort->grafProcs = NIL;

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

 DisposHandle((Handle) handle);
 SetPort(oldPort);
 /*

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

 * Check for errors by getting the file position and
 * checking that it is at the end of file.
 */
 if ((status = GetEOF(PICTfile, &size)) != noErr
 || (status = GetFPos(PICTfile, &place)) != noErr) {
 DebugStr("\pCan't get EOF or file position");
 return (status);
 }
 if (size != place) {
 DebugStr("\pDidn't read entire picture");
 return (dsSysErr);
 }
 /*
 * Ok so far. Now, change the window size so the
 * picture fills the window -- but keep the proportions
 * as close to the original as possible.
 */
 SetRect(
 &box,
 2,
 GetMBarHeight() * 2,
 width(DOC.pictSize) + 2,
 GetMBarHeight() * 2 + height(DOC.pictSize)
);
 if (box.bottom > (screenBits.bounds.bottom - 2)) {
 box.bottom = screenBits.bounds.bottom - 2;
 size = height(box);
 box.right = box.left
 + ((long) width(box) * size) / height(DOC.pictSize);
 }
 if (box.right > (screenBits.bounds.right - 2)) {
 box.right = screenBits.bounds.right - 2;
 size = width(box);
 box.bottom = box.top
 + ((long) height(box) * size) / width(DOC.pictSize);
 }
 SizeWindow(window, width(box), height(box), TRUE);
 InvalRect(&window->portRect);
 ShowWindow(window);
 return (MemError());
}

/*
* This should implement a "vanilla" StdBits -- for some
* reason, though, it "bombs" when it runs to completion:
* probably because its called with a NULL argument at
* eof. It was only used to check that the created
* "MAGIC" bitmap is the same size as the bitmap inside
* of the PICT -- by running the function under the
* debugger.
*/
pascal void
myStdBits(srcBits, srcRect, dstRect, mode, maskRgn)
BitMap *srcBits;
Rect *srcRect;
Rect *dstRect;
short mode;
RgnHandle maskRgn;
{
 CopyBits(
 srcBits,
 &thePort->portBits,
 srcRect, dstRect,

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

 mode,
 maskRgn
);

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

}

/*
* Called indirectly to read a chunk of picture data.
*/
pascal void
read_picture_data(data_ptr, byte_count)
Ptr data_ptr;
int byte_count;
{
 OSErr status;
 long count;

 count = byte_count;
 status = FSRead(PICTfile, &count, data_ptr);
 if (status != noErr)
 DebugStr("\pReading picture");
}

/*
* write_picture() writes the current picture to a
* specified (open) file. It should be redone to
* add error handling.
*/
void
write_picture(window, theFile)
WindowPtr window;
int theFile;
{
 PicHandle picHandle;
 QDProcs procedures;
 int i;
 long temp;
 Picture header;
 GrafPtr tempPort;
 GrafPtr oldPort;

 GetPort(&oldPort);
 PICTfile = theFile;
 /*
 * Write a dummy MacPaint header
 */
 temp = 0L;
 for (i = 0; i < 512; i += sizeof temp)
 write_picture_data((Ptr) &temp, (int) sizeof temp);
 header.picSize = 0;
 header.picFrame = DOC.pictSize;
 write_picture_data((Ptr) &header, (int) sizeof header);
 /*
 * Write the picture by creating a GrafPort with the
 * same dimensions as the original, then drawing the
 * cleaned up picture. Can this be done without
 * creating a new GrafPort?
 */
 tempPort = CreateOSGrafPort(DOC.pictSize);
 if (tempPort == NIL) {
 DebugStr("\pNo space for temp port");
 return;
 }
 SetStdProcs(&procedures);
 tempPort->grafProcs = &procedures;
 procedures.putPicProc = (Ptr) write_picture_data;
 picHandle = OpenPicture(&tempPort->portRect);

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

 CopyOSGrafPort(DOC.pictPort, tempPort);
 ClosePicture();
 KillPicture(picHandle);

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

 DeleteOSGrafPort(tempPort);
 DOC.pictPort->grafProcs = NIL;
 SetPort(oldPort);
}

/*
* Called indirectly to write a chunk of picture data.
*/
pascal void
write_picture_data(data_ptr, byte_count)
Ptr data_ptr;
int byte_count;
{
 OSErr status;
 long count;

 count = byte_count;
 status = FSWrite(PICTfile, &count, data_ptr);
 if (status != noErr)
 DebugStr("\pWriting picture");
}

•••
From: minow@mountn.dec.com (Martin Minow)
Subject: How to read a Pict into a scrollable window

In article <1990Jun29.215003.26596@Neon.Stanford.EDU> jhsu@Neon.Stanford.EDU (Jeffrey H. Hsu) writes:

>Can somebody tell me how to read a PICT document into a scrollable window? I
>can deal with the PICT as a resource but not as a file.

I can't help with the scrollable part, but here's some code I use to read a PICT file into an offscreen bitmap. (The code is
incomplete, but it should give you the basic structure.) There's a Tech Note that explains what's going on.

extern int picture_file; /* PICT file, already open */

void read_background_picture(void);
pascal void read_picture_data(Ptr, int);

/*
* Called indirectly to read a chunk of picture data.
*/
pascal void
read_picture_data(data_ptr, byte_count)
Ptr data_ptr;
int byte_count;
{

OSErr status;
long count;

count = byte_count;
status = FSRead(picture_file, &count, data_ptr);
if (status != noErr)
 status_error("\pReading background picture", status);

}

void
read_background_picture()
{

PicHandle handle;

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

QDProcs procedures;
OSErr status;
long size;
long place;

QuickDraw™ & Graphics

USENET Macintosh Programmer's Guide

int picture_width, picture_height;
int screen_width, screen_height;
Rect box;

SetStdProcs(&procedures);
((GrafPtr) overhead_window)->grafProcs = &procedures;
/*
 * Use our function to read chunks of picture data
 */
procedures.getPicProc = (Ptr) read_picture_data;
handle = (PicHandle) NewHandle(sizeof (Picture));
/*
 * Rewind the file and skip over the MacDraw header block.
 */
if ((status = SetFPos(picture_file, fsFromStart, 512L)) != noErr) {
 status_error("\pCan't rewind picture file", status);
 return;
}
HLock(handle);
/*
 * Start by reading the header information.
 */
read_picture_data((Ptr) *handle, sizeof (Picture));
HUnlock(handle);
/*
 * Center the picture in the window and read it in.
 */
box = (*handle)->picFrame;
OffsetRect(/* Normalize topleft to 0,0 */
 &box,
 -box.left,
 -box.top
);
screen_width = thePort->portRect.right - thePort->portRect.left;
screen_height = thePort->portRect.bottom - thePort->portRect.top;
picture_width = box.right - box.left;
picture_height = box.bottom - box.top;
OffsetRect(/* Now, center it nicely */
 &box,
 (screen_width - picture_width) / 2,
 (screen_height - picture_height) / 2
);
DrawPicture(handle, &box);
((GrafPtr) overhead_window)->grafProcs = NIL;
DisposHandle((Handle) handle);
/*
 * Check for errors by getting the file position and
 * checking that it is at the end of file.
 */
if ((status = GetEOF(picture_file, &size)) != noErr
 || (status = GetFPos(picture_file, &place)) != noErr)
 status_error("\pCan't get EOF or file position", status);
if (size != place)
 status_error("\pDidn't read entire picture, lost", size - place);

}

Martin Minow

•••

QuickDraw™ & Graphics

