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Abstract

We describe version 2.0 of the Test Matrix Toolbox forMatlab 4. The toolbox con-

tains a collection of test matrices, routines for visualizing matrices, and miscellaneous

routines that provide useful additions to Matlab's existing set of functions. There

are 58 parametrized test matrices, which are mostly square, dense, nonrandom, and

of arbitrary dimension. The test matrices include ones with known inverses or known

eigenvalues; ill-conditioned or rank de�cient matrices; and symmetric, positive de�nite,

orthogonal, defective, involutary, and totally positive matrices. The visualization rou-

tines display surface plots of a matrix and its (pseudo-) inverse, the �eld of values,

Gershgorin disks, and two- and three-dimensional views of pseudospectra. We explain

the need for collections of test matrices and summarize the features of the collection

in the toolbox. We give examples of the use of the toolbox and explain some of the

interesting properties of the Frank and Pascal matrices, and of random, magic square

and companion matrices. The leading comment lines from all the toolbox routines are

listed.

Key words. test matrix,Matlab, pseudospectrum, visualization, Frank matrix,

Pascal matrix, companion matrix, magic square matrix, random matrix
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1. Distribution

If you wish to distribute the toolbox please give exact copies of it, not selected routines.

2. Installation

The Test Matrix Toolbox is distributed as a Unix shar �le, available by anonymous ftp from

The MathWorks at Internet address ftp.mathworks.com (144.212.100.10) in directory

pub/contrib/linalg as �le testmatrix.sh. This document is testmatrix.ps in the same

location.

To install the toolbox, download the shar �le into your main Matlab directory, then

type

sh testmatrix.sh

A directory testmatrix will be created containing the M-�les in the toolbox.

The toolbox is also available from vtx.ma.man.ac.uk (130.88.16.2) in directory

pub/higham as the compressed Unix tar �le �le testmatrix.tar.Z. This document is

narep237.ps.Z in the same location. To install the toolbox from this location, down-

load the tar �le (in binary mode) into a testmatrix directory (matlab/testmatrix is

recommended). Then uncompress the tar �le and untar it:

uncompress testmatrix.tar.Z

tar xvf testmatrix

To try the toolbox from within Matlab, change to the testmatrix directory and run

the demonstration script by typing tmtdemo. For serious use it is best to put the testmatrix

directory on the Matlab path before the matlab/toolbox entries|this is because several

toolbox routines have the same name asMatlab routines and are intended to replace them

(namely, compan, cond, hadamard, hilb, kron and pascal).

This document describes version 2.0 of the toolbox, dated November 14 1993.

3. Quick Reference Tables

This section contains quick reference tables to the Test Matrix Toolbox. All the M-�les in

the toolbox are listed by category, with a short description. More detailed documentation

is given in Section 8, or can be obtained on-line by typing help M-file_name.
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Demonstration

tmtdemo Demonstration of Test Matrix Toolbox.

Test Matrices, A{K

augment Augmented system matrix.

cauchy Cauchy matrix.

chebspec Chebyshev spectral di�erentiation matrix.

chebvand Vandermonde-like matrix for the Chebyshev polynomials.

chow Chow matrix|a singular Toeplitz lower Hessenberg matrix.

circul Circulant matrix.

clement Clement matrix|tridiagonal with zero diagonal entries.

compan Companion matrix.

condex `Counter-examples' to matrix condition number estimators.

cycol Matrix whose columns repeat cyclically.

dingdong Dingdong matrix|a symmetric Hankel matrix.

dorr Dorr matrix|diagonally dominant, ill-conditioned, tridiagonal.

dramadah A (0; 1) matrix whose inverse has large integer entries.

fiedler Fiedler matrix|symmetric.

forsythe Forsythe matrix|a perturbed Jordan block.

frank Frank matrix|ill-conditioned eigenvalues.

gallery Famous, and not so famous, test matrices.

gearm Gear matrix.

gfpp Matrix giving maximal growth factor for Gaussian elimination

with partial pivoting.

grcar Grcar matrix|a Toeplitz matrix with sensitive eigenvalues.

hadamard Hadamard matrix.

hanowa A matrix whose eigenvalues lie on a vertical line in the complex

plane.

hilb Hilbert matrix.

invhess Inverse of an upper Hessenberg matrix.

invol An involutory matrix.

ipjfact A Hankel matrix with factorial elements.

jordbloc Jordan block.

kahan Kahan matrix|upper trapezoidal.

kms Kac{Murdock{Szeg�o Toeplitz matrix.

krylov Krylov matrix.
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Test Matrices, L{Z

lauchli Lauchli matrix|rectangular.

lehmer Lehmer matrix|symmetric positive de�nite.

lesp A tridiagonal matrix with real, sensitive eigenvalues.

lotkin Lotkin matrix.

makejcf A matrix with given Jordan canonical form.

minij Symmetric positive de�nite matrix min(i; j).

moler Moler matrix|symmetric positive de�nite.

neumann Singular matrix from the discrete Neumann problem (sparse).

ohess Random, orthogonal upper Hessenberg matrix.

orthog Orthogonal and nearly orthogonal matrices.

parter Parter matrix|a Toeplitz matrix with singular values near �.

pascal Pascal matrix.

pdtoep Symmetric positive de�nite Toeplitz matrix.

pei Pei matrix.

pentoep Pentadiagonal Toeplitz matrix (sparse).

poisson Block tridiagonal matrix from Poisson's equation (sparse).

prolate Prolate matrix|symmetric, ill-conditioned Toeplitz matrix.

rando Random matrix with elements �1, 0 or 1.

randsvd Random matrix with pre-assigned singular values.

redheff A matrix of 0s and 1s of Redhe�er.

riemann A matrix associated with the Riemann hypothesis.

rschur An upper quasi-triangular matrix.

smoke Smoke matrix|complex, with a `smoke ring' pseudospectrum.

tridiag Tridiagonal matrix (sparse).

triw Upper triangular matrix discussed by Wilkinson and others.

vand Vandermonde matrix.

wathen Wathen matrix|a �nite element matrix (sparse, random entries).

wilk Various speci�c matrices devised/discussed by Wilkinson.

Visualization

fv Field of values (or numerical range).

gersh Gershgorin disks.

ps Dot plot of a pseudospectrum..

pscont Contours and colour pictures of pseudospectra.

see Pictures of a matrix and its (pseudo-) inverse.

Decompositions and Factorizations

cholp Cholesky factorization with pivoting of a positive semi-de�nite

matrix.

cod Complete orthogonal decomposition.

ge Gaussian elimination without pivoting.

gecp Gaussian elimination with complete pivoting.

poldec Polar decomposition.

signm Matrix sign decomposition.
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Miscellaneous

bandred Band reduction by two-sided unitary transformations.

chop Round matrix elements.

comp Comparison matrices.

cond Matrix condition number in 1, 2, Frobenius, or in�nity norm.

cpltaxes Determine suitable axis for plot of complex vector.

dual Dual vector with respect to H�older p-norm.

eigsens Eigenvalue condition numbers.

house Householder matrix.

kron Kronecker tensor product (Matlab 4.1 version).

matrix Test Matrix Toolbox information and matrix access by number.

matsignt Matrix sign function of a triangular matrix.

pnorm Estimate of matrix p-norm (1 � p � 1).

qmult Pre-multiply by random orthogonal matrix.

rq Rayleigh quotient.

seqa Additive sequence.

seqcheb Sequence of points related to Chebyshev polynomials.

seqm Multiplicative sequence.

show Display signs of matrix elements.

skewpart Skew-symmetric (skew-Hermitian) part.

sparsify Randomly sets matrix elements to zero.

sub Principal submatrix.

symmpart Symmetric (Hermitian) part.

trap2tri Unitary reduction of trapezoidal matrix to triangular form.
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4. Test Matrices

Numerical experiments are an indispensable part of research in numerical analysis. We do

them for several reasons:

� To gain insight and understanding into an algorithm that is only partially understood

theoretically.

� To verify the correctness of a theoretical analysis and to see if the analysis completely

explains the practical behaviour.

� To compare rival methods with regard to accuracy, speed, reliability, and so on.

� To tune parameters in algorithms and codes, and to test heuristics.

One of the di�culties in designing experiments is �nding good test problems|ones that

reveal extremes of behaviour, cover a wide range of di�culty, are representative of practical

problems, and (ideally) have known solutions. In many areas of numerical analysis good

test problems have been identi�ed, and several collections of such problems have been

published. For example, collections are available in the areas of nonlinear optimization [39],

linear programming [16], [36], ordinary di�erential equations [13], and partial di�erential

equations [43].

Probably the most proli�c devisers of test problems have been workers in matrix com-

putations. Indeed, in the 1950s and 1960s it was common for a whole paper to be devoted

to a particular test matrix: typically its inverse or eigenvalues would be obtained in closed

form. An early survey of test matrices was given by Rutishauser [45]; most of the matrices

he discusses come from continued fractions or moment problems. Two well-known books

present collections of test matrices. Gregory and Karney [20] deal exclusively with the topic,

while Westlake [55] gives an appendix of test matrices. In the 24 years since these books

appeared several interesting matrices have been discovered (and in fact both books omit

some worthy test matrices that were known at the time).

The Test Matrix Toolbox contains an up-to-date, well documented and readily accessible

collection of test matrices. The matrices are given in the form of self-documenting Matlab

M-�les. For some of the matrices we give mathematical formulas for the matrix elements

in comment lines; in other cases the formulas can be reconstructed from the Matlab code.

We do not give exhaustive descriptions of matrix properties, or proofs of these properties;

instead, in the comment lines we list a few key properties and give references where further

details can be found.

With a few exceptions each of the 58 matrices satis�es the following requirements:

� It is a square matrix with one or more variable parameters, one of which is the dimen-

sion. Thus it is actually a parametrized family of matrices of arbitrary dimension.

� It is dense.

� It has some property that makes it of interest as a test matrix.
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The �rst criterion is enforced because it is often desirable to explore the behaviour of

a numerical method as parameters such as the matrix dimension vary. The third criterion

is somewhat subjective, and the matrices presented here represent the author's personal

choice. Note that we have omitted plausible matrices that we thought not \su�ciently

di�erent" from others in the collection. Although all but two of our test matrices are usually

real, those with an arbitrary parameter can be made complex by choosing a non-real value

for the parameter.

As well as their obvious application to research in matrix computations we hope that

the matrices presented here will be useful for constructing test problems in other areas,

such as optimization (see, for example, [3]) and ordinary di�erential equations.

We mention some other collections of test matrices that complement ours. The Harwell-

Boeing collection of sparse matrices, largely drawn from practical problems, is presented by

Du�, Grimes and Lewis [8], [9]. Bai [2] is building a collection of test matrices for the large-

scale nonsymmetric eigenvalue problem. Zielke [58] gives various parametrized rectangular

matrices of �xed dimension with known generalized inverses. Demmel and McKenney [6]

present a suite of Fortran 77 codes for generating random square and rectangular matrices

with prescribed singular values, eigenvalues, band structure, and other properties. This

suite is part of the testing code for LAPACK [1]. Our focus is primarily on non-random

matrices but we include a class of random matrices randsvd that has some of the features

of the Demmel and McKenney test set.

Where possible, we have chosen the names of the test matrices eponymously, since it is

easier to remember, for example, \the Kahan matrix", than \Example 3.8". For portability

reasons we restrict all M-�le names in the toolbox to eight characters (since this is the limit

in the MSDOS operating system, under which the Microsoft Windows version of Matlab

runs). We have written a routine matrix that accesses the matrices by number rather than

by name; this makes it easy to run experiments on the whole collection of matrices (with

parameters other than the matrix dimension set to their default values.)

The matrices described here can be modi�ed in various ways while still retaining some or

all of their interesting properties. Among the many ways of constructing new test matrices

from old are:

� Similarity transformations A X

�1

AX .

� Unitary transformations A UAV , where U

�

U = V

�

V = I .

� Kronecker products A A
 B or B 
 A (for which Matlab has a routine kron).

1

� Powers A A

k

.

For a discussion of these techniques, and others, see [20, Chapter 2]. Techniques for ob-

taining a triangular, orthogonal, or symmetric positive de�nite matrix that is related to a

given matrix include

� Bandwidth reduction using unitary transformations (see toolbox routine bandred).

1

The toolbox includes the version of kron supplied with Matlab 4.1 which, unlike the Matlab 4.0 kron

function, generates sparse output for sparse input.
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� LU , Cholesky, QR and polar decompositions (see lu, chol, qr and, from the toolbox,

cholp, ge, gecp and poldec.)

See [18] for details of these techniques.

Another way to generate a new matrix is to perturb an existing one. One approach is to

add a random perturbation. Another is to round the matrix elements to a certain number

of binary places; this can be done using the toolbox routine chop.

Our programming style is as follows. Each M-�le foo begins with comment lines that

are displayed when the user types help foo. The �rst comment line, the H1 line, is a self-

contained statement of the purpose of the routine; the H1 lines are searched and displayed

by Matlab's lookfor command (e.g., lookfor toeplitz). Any further comments and

references follow a blank line and so are not displayed by help. As far as possible, every

routine sets default values for any arguments that are not speci�ed. In particular, for most

test matrix routines testmat, A = testmat(n) is a valid way to generate an n� n matrix.

In general we have strived for conciseness, modularity, speed, and minimal use of temporary

storage in our Matlab codes. Hence, where possible, we used matrix or vector constructs

instead of for loops and have used calls to existing M-�les.

Some of those matrices that are banded with a small bandwidth are given the sparse

storage format, to allow large matrices to be generated. The full function can be used

to convert to non-sparse storage (e.g., A = full(tridiag(32))). We check for errors in

parameters in some, but not all, cases. A few of the test matrix routines do not properly

handle the dimension n = 1 (for example, they halt with an error, or return an empty

matrix). We decided not to add extra code for this case, since the routines are unlikely to

be called with n = 1.

The �rst release of this toolbox (version 1.0, July 4 1989) was described in a technical

report [25]. The collection was subsequently published as ACM Algorithm 694 [27]. Prior

to the current version, version 2.0, the most recent release was version 1.3, November 14

1991, which was available from netlib [7] and from the author by anonymous ftp. Version

2.0 incorporates many additions and improvements over version 1.3 and takes full advantage

of the features of Matlab 4.

Tables 4.1 and 4.2 provide a summary of the properties of the test matrices. The column

headings have the following meanings:

Inverse: the inverse of the matrix is known explicitly.

Ill-cond: the matrix is ill-conditioned for some values of the parameters.

Rank: the matrix is rank-de�cient for some values of the parameters (we exclude \trivial"

examples such as vand, which is singular if its vector argument contains repeated

points). Note that there are some matrices that are mathematically rank-de�cient

but behave as ill-conditioned full rank matrices in the presence of rounding errors;

these are listed only as rank-de�cient (for example, chebspec).

Symm: the matrix is symmetric for some values of the parameters.

Pos Def: the matrix is symmetric positive de�nite for some values of the parameters.
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Orth: the matrix is orthogonal, or a diagonal scaling of an orthogonal matrix, for some

values of the parameters.

Eig: something is known about the eigensystem (or the singular values), ranging from

bounds or qualitative knowledge of the eigenvalues to explicit formulas for some or all

eigenvalues and eigenvectors.

We summarise further interesting properties possessed by some of the matrices. Recall

that A is a Hankel matrix if the anti-diagonals are constant (a

ij

= r

i+j

), idempotent if

A

2

= A, normal if A

�

A = AA

�

(or, equivalently, A is unitarily diagonalizable), nilpotent if

A

k

= 0 for some k, involutary if A

2

= I , totally positive (nonnegative) if the determinant of

every submatrix is positive (nonnegative), and a Toeplitz matrix if the diagonals are constant

(a

ij

= r

j�i

). A totally positive matrix has distinct, real and positive eigenvalues and its ith

eigenvector (corresponding to the ith largest eigenvalue) has exactly i� 1 sign changes [15,

Theorem 13, p. 105]; this property is important in testing regularization algorithms [21],

[22]. See [31] for further details of these matrix properties.

defective: chebspec, gallery, gear, jordbloc, triw

Hankel: dingdong, hilb, ipjfact

Hessenberg: chow, frank, grcar, ohess, randsvd

idempotent: invol

involutary: invol, orthog, pascal

normal (but not symmetric or orthogonal): circul

nilpotent: chebspec, gallery

rectangular: chebvand, cycol, kahan, krylov, lauchli, rando, randsvd, triw,

vand

Toeplitz: chow, dramadah, grcar, kms, parter, pentoep, prolate

totally positive or totally nonnegative: cauchy

2

, hilb, lehmer, pascal, vand

3

tridiagonal: clement, dorr, gallery, lesp, randsvd, tridiag, wilk

inverse of a tridiagonal matrix: kms, lehmer, minij

triangular: dramadah, jordbloc, kahan, pascal, triw

Finally, we note that several of the test matrices are related to those supplied with

Matlab. The functions hadamard and pascal were in the �rst release of the toolbox and

were subsequently included by The MathWorks in the Matlab distribution. The toolbox

version of hadamard is the same as the one in Matlab 4.0 except for the addition of an

2

cauchy(x,y) is totally positive if 0 < x

1

< � � � < x

n

and 0 < y

1

< � � � < y

n

[48, p. 295].

3

vand(p) is totally positive if the p

i

satisfy 0 < p

1

< � � � < p

n

[15, p. 99].
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Matrix Inverse Ill-cond Rank Symm Pos Def Orth Eig

augment

p p

cauchy

p p p p

chebspec

p p

chebvand

p p

chow

p p

circul

p p p

clement

p p p p

compan

p p p

condex

p

cycol

p

dingdong

p p

dorr

p

dramadah

p

�edler

p p p

forsythe

p p p

frank

p p

gallery

p p p p p p

gearm

p p

gfpp

p p

grcar

p

hadamard

p p p

hanowa

p

hilb

p p p p

invhess

p p p p p

invol

p p p

ipjfact

p p

jordbloc

p p p p

kahan

p p p

kms

p p p p

krylov

p

Table 4.1: Properties of the test matrices, A{K.
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Matrix Inverse Ill-cond Rank Symm Pos Def Orth Eig

lauchli

p

lehmer

p p p

lesp

p

lotkin

p p p

minij

p p p p

moler

p p p p

neumann

p p

ohess

p p p

orthog

p p p

parter

p

pascal

p p p p p

pdtoep

p p p p p

pei

p p p p p

pentoep

p p p p

poisson

p p p p

prolate

p p p p

rando

randsvd

p p p p p

redhe�

p

riemann

p

rschur

p p

smoke

p p

tridiag

p p p p p p

triw

p p

vand

p p

wathen

p p p

wilk

p p p p

Table 4.2: Properties of the test matrices, L{Z.
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Figure 5.1: see(chebvand(8)).

H1 line, whereas the toolbox version of pascal contains more informative comment lines

than the Matlab 4.0 version and produces a di�erent pascal(n,2) matrix

4

(but one

that is still a cube root of the identity). The toolbox routine compan is more versatile

than the Matlab 4.0 version. Similarly, the toolbox routine vand is more versatile than

Matlab 4.0's vander. The toolbox version of hilb is coded di�erently and contains more

informative comments than the one in Matlab 4.0. The toolbox routine augment is similar

toMatlab 4.0's spaugment, but produces a non-sparse matrix instead of a sparse one. The

toolbox function cond supports the 1, 2, 1 and Frobenius norms, whereas Matlab 4.0's

cond supports only the 2-norm.

5. Visualization

The toolbox contains �ve routines for visualizing matrices. The routines can give insight

into the properties of a matrix that is not easy to obtain by looking at the numerical entries.

They also provide an easy way to generate pretty pictures!

The routine see displays a �gure with four subplots (strictly speaking four \axes", in

Matlab terminology) in the format

mesh(A) mesh(pinv(A))

semilogy(svd(A)) fv(A)

4

The new pascal(n,2) is generated by a call to rot90 and is \reverse upper triangular" instead of

\reverse lower triangular" as in the Matlab 4.0 version.
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Figure 5.2: see(wathen(7,7)).

An example for the chebvand matrix is given in Figure 5.1. Matlab's mesh command

plots a three-dimensional, coloured, wire-frame surface, by regarding the entries of a matrix

as specifying heights above a plane. We use axis('ij'), so that the coordinate system

for the plot matches the (i; j) matrix element numbering. pinv(A) is the Moore{Penrose

pseudo-inverse A

+

of A, which is the usual inverse when A is square and nonsingular.

semilogy(svd(A)) plots the singular values of A (ordered in decreasing size) on a loga-

rithmic scale; the singular values are denoted by circles, which are joined by a solid line to

emphasise the shape of the distribution. From Figure 5.1 we can see that chebvand(8) has

a 2-norm condition number of about 10

5

and that the largest elements of its inverse are

in the lower triangle. For a sparse Matlab matrix, see simply displays a spy plot, which

shows the sparsity pattern of the matrix. The user could, of course, try see(full(A)) for a

sparse matrix, but for large dimensions the storage and time required would be prohibitive.

Figure 5.2 displays the result of applying see to the Wathen matrix|a symmetric positive

de�nite sparse matrix that comes from a �nite element problem.

The routine fv plots the �eld of values of a square matrix A 2 C

n�n

(also called the

numerical range), which is the set of all Rayleigh quotients,

�

x

�

Ax

x

�

x

: 0 6= x 2 C

n

�

;

the eigenvalues of A are plotted as crosses. The �eld of values is a convex set that contains

the eigenvalues. It is the convex hull of the eigenvalues when A is a normal matrix. If A is

Hermitian, the �eld of values is just a segment of the real line. For non-Hermitian A the �eld
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Figure 5.3: Fields of values (fv).

of values is usually two-dimensional and its shape and size gives some feel for the behaviour

of the matrix. Trefethen [52] notes that the �eld of values is the largest reasonable answer

to the question \Where in C does a matrix A `live' ?" and the spectrum is the smallest

reasonable answer.

Some examples of �eld of values plots are given in Figure 5.3. The circul matrix is

normal, hence its �eld of values is the convex hull of the eigenvalues. For an example of

how the �eld of values gives insight into the problem of �nding a nearest normal matrix

see [44]. An excellent reference for the theory of the �eld of values is [32, Chapter 1].

The routine gersh plots the Gershgorin disks for an A 2 C

n�n

, which are the n disks

D

i

= f z 2 C : jz � a

ii

j �

n

X

j=1

j 6=i

ja

ij

j g

in the complex plane. Gershgorin's theorem tells us that the eigenvalues of A lie in the union

of the disks, and an extension of the theorem states that if k disks form a connected region

that is isolated from the other disks, then there are precisely k eigenvalues in this region.

Thus the size of the disks gives a feel for how nearly diagonal A is, and their locations give

information on where the eigenvalues lie in the complex plane. Four examples of Gershgorin

disk plots are given in Figure 5.4; Gershgorin's theorem provides nontrivial information only

for the third matrix, ipjfact(8,1).

The last two routines, ps and pscont, are concerned with pseudospectra. The �-
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Figure 5.4: Gershgorin disks (gersh).

pseudospectrum of a matrix A 2 C

n�n

is de�ned, for a given � > 0, to be the set

�

�

(A) = f z : z is an eigenvalue of A +E for some E with kEk

2

� � g:

In other words, it is the set of all complex numbers that are eigenvalues of A+E for some

perturbation E of 2-norm at most �. For a normal matrix A the �-pseudospectrum is the

union of the balls of radius � around the eigenvalues of A. For nonnormal matrices the

�-pseudospectrum can take a wide variety of shapes and sizes, depending on the matrix and

how nonnormal it is. Pseudospectra play an important role in many numerical problems.

For full details see the work of Trefethen|in particular, [51] and [52].

The routine ps plots an approximation to the �-pseudospectrum �

�

(A), which it obtains

by computing the eigenvalues of a given number of random perturbations ofA. The eigenval-

ues are plotted as crosses and the pseudo-eigenvalues as dots. Arguments to ps control the

number and type of perturbations. Figure 5.5 gives four examples of 10

�3

-pseudospectra,

all of which involve the pentadiagonal Toeplitz matrix pentoep.

Another characterization of �

�

(A), in terms of the resolvent (zI � A)

�1

, is

�

�

(A) = f z : k(zI � A)

�1

k

2

� �

�1

g:

An alternative way of viewing the pseudospectrum is to plot the function

f(z) = k(zI �A)

�1

k

2

= �

min

(zI � A)

over the complex plane, where �

min

denotes the smallest singular value [52]. The routine

pscont plots log

10

f(z)

�1

and o�ers several ways to view the surface: by its contour lines
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Figure 5.5: Pseudospectra (ps).

alone, or as a coloured surface plot in two or three dimensions, with or without contour

lines. (The two-dimensional plot is the view from directly above the surface.) Two di�erent

pscont views of the pseudospectra of the triangular matrix triw(11) are given in Figures 5.6

and 5.7. Since all the eigenvalues of this matrix are equal to 1, there is a single point

where the resolvent is unbounded in norm|this is the \bottomless pit" in the pictures.

The spike in Figure 5.7 should be in�nitely deep; since pscont evaluates f(z) on a �nite

grid, the spike has a �nite depth dependent on the grid spacing. Also because of the grid

spacing chosen, the contours are a little jagged. Various aspects of the plots can be changed

from the Matlab command line upon return from pscont; for example, the colour map

(colormap), the shading (shading), and the viewing angle (view). For Figure 5.6 we set

shading interp and colormap copper.

Both pseudospectrum routines are computationally intensive, so the defaults for the ar-

guments are chosen to produce a result in a reasonable time (under 20 seconds on a SPARC-2

processor or equivalent); for plots that reveal reasonable detail it is usually necessary to

override the defaults.

6. Miscellaneous Routines

In addition to the test matrices and visualization routines, the Test Matrix Toolbox provides

several routines that can be used to manipulate matrices or compute matrix functions or

decompositions.

The decomposition functions o�ered are as follows.
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Figure 5.6: pscont(triw(11), 0, 30, [-0.5 1.5 -1 1]).
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Figure 5.7: pscont(triw(11), 2, 15, [-2 2 -2 2]).


