
RasMol: A Program for Fast, Realistic Rendering of

Molecular Structures with Shadows

Roger Sayle and Andrew Bissell

November 11, 1993

Abstract

This paper details the development of an interactive program for the

visualisation of proteins and nucleic acids. The paper �rst reviews current

techniques for displaying the three dimensional structures of molecules and

methods for the determination of their cast shadows.

The paper then goes on to describe an e�cient hybrid ray tracing al-

gorithm for molecular graphics based upon uniform spatial subdivision.

Results are then presented for implementations of this algorithm on both

Transputer based multiprocessors and UNIX workstations under the X-

Window System. Both versions are believed to have the fastest rendering

times for shadowed union-of-spheres surfaces published to date. Finally de-

tails of work currently in progress and future directions are given.

Introduction

Computer graphics has long been a useful tool in the understanding of the three

dimensional structure of molecules. The earliest drawings were no more than

`wireframes', with straight line segments representing the bonds between atoms.

More recently the study of molecular surfaces has become important in order

to understand the interactions between molecules, such as the e�ects of a drug

or hormone on a receptor site. Modern protein biochemists are concerned with

secondary and higher order structure where the areas of interest are the shape,

orientation and accessibility of the active sites of proteins, rather than the indi-

vidual bonds or atoms themselves. Visualisation of these features calls for more

complex molecular surface representations with colouring and other e�ects playing

a major role [12].

By far the most common raster representation of molecular structures is the

space-�lling model. This representation is based the plastic Corey-Pauling-Koltun

(CPK) models used by chemists for representing small molecules. In this scheme

each atom is depicted by a sphere with a radius equal to the atom's van der Waals

radius, and a molecule is represented as the union of intersecting spheres. The



contact between two molecules is shown by the contact between their space �lling

models because the preferred contact distance between two nonbonded atoms is

the sum of their van der Waal radii.

As the demands placed on molecular graphics have grown, the algorithms

used to render them have become more and more complex. To obtain a true

impression of depth with modern raster displays, the displayed molecule must

cast shadows and re
ect highlights as one would expect of a real solid object, yet

be rotated and deformed interactively. When the observer's position is coincident

with the light source no shadows are seen. As the positions of the light source

and the observer separate, shadows appear. It is not just the occlusion of hidden

surfaces that create a perception of depth but also how shadows move across

illuminated surfaces under rotation. Determining the shadows cast by a general

surface is a very computationally expensive procedure, often requiring hours to

generate a single frame. This is far from satisfying the requirement for real-time

manipulation.

Most existing programs avoid this problem in a number of ways. The �rst

and most obvious method is to ignore shadows altogether and render the molecule

without them. The second is to assume that the observer is always coincident

with the light source, implying that there are never any shadows visible to the

viewer. This technique has the added advantage that the shading of a given atom

consists of concentric circles of varying intensity, allowing the use of small lookup

tables to avoid time spent calculating the shading on each atom. The last method

is called hither-and-yon shading, which simply draws the molecules furthest from

the viewer in a darker shade than those nearer, providing a slight feeling of depth.

Previous Work

Several algorithms have been proposed to calculate projected shadows, however,

all of these methods greatly increase the amount of time required to render a

molecule, especially when the number of atoms in the scene can be in the order

of tens of thousands. These methods fall into two main categories; those that are

based upon the use of shadow maps and those that perform ray tracing.

Shadow Maps

Shadow mapping is an extension of depth bu�er algorithms to enable them to

be rendered with shadowing [24]. These algorithm works by drawing two or more

views of the scene. First the visible surfaces from the viewpoint of each of the light

sources are determined using a depth bu�er algorithm. Only the Z values and not

the shading values need to be computed and stored. The scene is then rendered

from the observer's viewpoint. At each visible pixel, a linear transformation is

used to map the observed co-ordinate (x; y; z) into each light sources reference

frame. This generates an co-ordinate (X;Y;Z) which is the position and depth



of the pixel being drawn in the light's depth map. By comparing the appropriate

entry in the depth map with the obtained depth, the pixel being tested may be

determined to be visible or in shadow.

An good example of a shadow mapping implementation for molecular graphics

is given by David Bacon's Raster3D program [1]. In his implementation, the

depth bu�er algorithm divides the screen up into a set of regular tiles, so that the

objects visible in that tile may be stored as a sorted list. The advantage of using

this division is that there are relatively few spheres associated with each tile.

Gwilliam and Max [9] also use a shadow mapping technique. Their method

�rst generates resolution independent decompositions of the scene for the view-

points of the observer and light sources and uses these decompositions to compute

the �nal image. The decompositions consist of a collection of \trapezoids" with

straight vertical sides and possibly curved top and bottom edges. Initially each

sphere is approximated by two tapezoids which are then truncated and subdivided

by intersections with other spheres. Although the Gwilliam-Max algorithm con-

tains several restrictions on the environment and uses several approximations, it

produces respectable images with cast shadows. The major advantage of the tech-

nique is that it is almost independent of the number of pixels in the �nal image.

The fastest implementation of a rendering program to shadow space-�lling

molecules previously described is Huang et al.'s Conic [10]. It also uses an e�cient

shadow mapping approach which does not constrain the observer and light sources

to be positioned in�nitely distant. This is done by using a scan conversion routine

based on conic sections.

Ray Tracing

The use of ray tracing for generating photorealistic images was �rst introduced by

Whitted [23]. The principle is that an observer views an object by means of light

which travels in a straight line from its surface. Simple extension of this principle

allows the `global illumination' model that accounts for re
ection of one object in

another, refraction, transparency and shadow e�ects. Ray tracing algorithms �nd

shadows by tracing a ray from each visible surface point towards the light source

and testing whether the ray encounters any opaque surface before it gets there.

The major bottleneck in the algorithm is the object intersection tests. In the naive

algorithm every object in the scene has to be tested against each ray in order to

determine that a visible pixel is not in shadow. Whitted determined that a brute

force ray tracing routine spends 75%-95% of its e�ort determining intersections.

An introduction to the principles of ray tracing is given in Glassner's book [7] and

its application to molecular graphics is discussed by Palmer et al. [14].

The speeding up of ray tracing for realistic image synthesis has been an import-

ant research issue since its inception and to date a signi�cant number of proposals

have been put forward to improve upon the original naive algorithm. The three

most popular acceleration techniques are based upon bounding volumes, regular

spatial decomposition and adaptive spatial decomposition.



The use of bounding volume hierarchies to speed up exhaustive ray tracing

was �rst described by Rubin and Whited [18]. By enclosing a group of objects

within a large bounding volume (also called an `extent' or `closure') it is possible

to eliminate many objects from further consideration with a single intersection

check. Only if a ray intersects a `parent volume', do the objects within it need

to be tested for intersection. A hierarchy is then formed by recursive application

of this principle, and in this way large numbers of objects may very rapidly be

rejected from consideration. The application of this method to molecular graphics

has been presented by Jones [11].

Spatial decomposition methods establish coherence another way. The entire

3D object space is divided into a number of small regions and for each the set of

objects that intersect the region are found. Usually space subdivision divides the

complete object space up into non-overlapping axis aligned rectangular prisms or

cuboids called \voxels". Ray tracing proceeds by �nding the voxel which contains

the origin of the ray and iteratively determining the next voxel along the ray's

path. At each step, each object contained in the voxel is tested for intersection

and the algorithm stops at the �rst voxel in which an object is hit or when the ray

leaves the scene. The algorithm used to calculate the next voxel a ray propagates

to is called the voxel traversal algorithm.

Adaptive or nonuniform spatial decomposition techniques are those which dis-

cretize space into regions of varying size in order to conform to features of the

environment. This variation in size allows more subdivision to be performed in

densely populated regions and, conversely, large voxels to cover sparse or com-

pletely empty regions. Glassner [6] described the �rst use of the octree data struc-

ture in ray tracing to describe the connectivity between voxels. Octrees recursively

divide voxels into eight octants until the voxel is sparsely populated or some num-

ber of subdivisions has occurred.

Uniform or regular spatial subdivision was �rst introduced by Fujimoto et

al. [5]. In this approach object space is divided up into a 3D grid or lattice of

voxels, which require no explicit data structures to describe their connectivity.

Because the partitioning is completely independent of the scene being described,

large numbers of voxels may be left empty which is much less e�cient on storage.

The major advantage of regular subdivision is in the e�cient voxel traversal al-

gorithms that have been developed for them. These algorithms such as Fujimoto's

original three dimensional digital di�erence analyser (3DDDA) are based on raster

line drawing algorithms and are far more e�cient than the recursive methods of

traversing octrees.

The RasMol algorithm

The RasMol program uses a hybrid rendering algorithm to achieve high speed

display of molecular surfaces. The algorithm conceptually works in two stages;

the �rst calculates the visible surfaces of the atoms in the scene using a scanline



based algorithm and the second stage determines which of the visible pixels are in

shadow using ray tracing.

Scan Conversion

The scan conversion algorithm used by the RasMol program uses a scanline z-

bu�er algorithm similar to the one described by Porter [16]. The choice of a

scanline algorithm over the more usual full depth bu�er method is primarily to

reduce the memory overhead of the program. The use of a scanline algorithm is

also advantageous for the shadowing and parallel implementations of the program

as described below. By treating each atom as a single sphere primitive, rather

than decomposing it into a surface of polygons, far fewer transformations and

rendering calculations are performed per frame.

Before each frame is rendered, a y-bucket is generated by determining the

highest scan line intersected by each atom and placing it in a list of atoms that

begin on that scan line. This allows an active list of spheres that intersect the

current line to be maintained as the frame is rendered. The contents of the ap-

propriate bucket entry are appended to the active list before drawing each scan

line and each atom is removed from the list once the last line on which it appears

has been processed.

On each scan line it remains to solve the following equation for each atom:

(x� x

0

)

2

+ (y � y

0

)

2

+ (z � z

0

)

2

= r

2

0

where (x

0

; y

0

; z

0

) are the coordinates of the sphere center, r

0

is the radius of the

sphere and y is the y ordinate of the current scan line.

The RasMol program performs this calculation e�ciently by maintaining a

lookup table of integer values

p

x

2

� y

2

where both x and y are small positive

integers. These values are stored in a triangular matrix, since x � y otherwise

the result is unde�ned. The representation of this data structure in C is an array

of pointers to arrays of integers. Using C syntax, the table entry LookUp[x][y]

contains the required value. An active atom is rendered by �rst calculating drad,

the projected radius of the sphere on the current scan plane. This is given by the

value LookUp[rad][dy], where rad is the integer radius of the sphere and dy is

the absolute value of y � y

0

(notice that dy � rad for active atoms). Hence this

atom is visible on the current scanline drad pixels to either side of x

0

. For each

value dx less than drad, the depth of the appropriate pixel is found by adding

LookUp[drad][dx] to z

0

.

This method is clearly faster than those implementations that require the cal-

culation of square roots at each pixel, such as ray tracing and Pearl's \cpk" pro-

gram [15]. It also has several advantages over Porter's algorithm [16] which uses

Bresenham's incremental circle generator [2] to calculate the depth of each pixel

on a sphere's visible intersection with a scanline. Firstly, the use of a moderate

sized lookup table is faster than the incremental calculation and secondly Porter's

method requires several iterations of Bresenham's algorithm for some pixels when



the displayed spheres have large radii. The size of the table is quite small requiring

only n(n + 1)=2 entries, where n is the largest radius in the scene. The current

RasMol implementation allocates 8kbytes to the table, allowing spheres with up

to 125 pixel radius to be drawn. This is a huge memory saving over template

based approaches which precompute a large array of depth values for each sphere

size in the scene [13, 20].

Shadowing Algorithm

The calculation of projected shadows in RasMol is based upon ray tracing, or to

be completely accurate shadow tracing. Performance analysis of pure ray tracing

programs reveals that tracing the shadow rays requires far less time than the

primary or initial rays and it is this di�erence in complexity that motivated the

RasMol algorithm. The principle is to use a fast image space scan conversion

algorithm to determine the visible surfaces in the scene and then shadow trace

the results. This relatively overlooked approach was �rst described by Weghorst,

Hooper and Greenberg [22].

RasMol implements the interface between these two algorithms by using an

item bu�er to record the visible object in addition to the depth at each pixel.

The scan conversion acts as a �rst pass, and all shading and lighting model cal-

culations are deferred until the second pass. The advantages with this approach

are that unnecessary computation is avoided, the method is independent of the

number of light sources and `surface acne' [7] may be avoided by knowing which

object is visible. The disadvantage is that values calculated during scan conversion

must either be stored at great expense (one value per pixel) or reevaluated dur-

ing shading. Because the RasMol program is intended primarily for space �lling

representations, recalculating values for the sphere primitives has very little over-

head. The use of a scanline instead of a full depth bu�er in the rendering phase

also reduces the memory required by the item bu�er.

Given the depth of a pixel on the screen, the �rst step in determining whether

that pixel is in shadow or not, involves calculating the world space co-ordinates

of that point. This is done by multiplying the image space co-ordinate vector

by the inverse of the current transformation matrix. The current transformation

matrix is a square 4 � 4 matrix that transforms the world space co-ordinates of

the atomic centres into the �nal screen co-ordinates and depth of the atom on the

display. This matrix permits the rotation, scaling and translation of the model.

When the shadowing option is enabled, the RasMol program calculates the inverse

transformation matrix using standard numerical methods, but while the molecule

is being manipulated the inverse matrix is maintained by applying the inverse of

the current transformation to the inverse transformation matrix. If the shadowing

option is disabled the inverse matrix does not have to be kept up to date. This

enables the inverse matrix to be maintained at very low overhead and not degrade

the rendering times for scenes without shadows.

RasMol uses the uniform space decomposition approach to detect whether the



visible pixels are in shadow or not. The decision to use a regular over an adaptive

subdivision technique was determined by the application area. For CPK repres-

entations of macromolecules, the world database consists of a very large number

of densely packed objects, all of approximately the same size. Hence the principle

advantage of adaptive octree based approaches, the reduced storage requirement,

is less e�ective because the scene is uniformly populated. For ray tracing more

general scenes, it is likely that octree approaches are more e�cient. The actual

voxel traversal method implemented is based upon the algorithm described by

Cleary and Wyvill [3]. Their algorithm requires a maximum of eight integer op-

erations (additions or comparisons) to determine the next voxel on the ray's path

in the current implementation.

One major advantage of the use of an object space based method is that the

data structures need only be constructed once, as a preprocessing step, and require

no further modi�cations between frames. Hence, as a molecule is rotated about

it's axis, the shadow casting algorithm need only calculate the new position of the

light sources relative to the original reference frame. Image space based shadow

casting, such as shadow maps, require the positions of each of the atoms to be

calculated relative to the light sources, which requires far more calculations as the

number of atoms is generally larger than the number of light sources. This is the

potential speed advantage of ray tracing approaches over shadow mapping.

Parallel Implementation

The RasMol program program was originally developed for execution on distrib-

uted memory multiprocessors, such as Transputer arrays or networks of worksta-

tions. To this end, several potential parallel versions of the basic algorithm were

implemented based on both object and image space parallelism [8].

The mode of parallelism used by the program is referred to as image space

parallelism. This means that the scene description is duplicated on each processor

and di�erent processors concurrently work on separate parts of the image. This

can provide almost linear speedup as processors are added since the processors

only communicate in order to output results and possibly to balance the load

between processors.

The many object space parallelism methods presented in the literature were

considered unsuitable for the application due to the architectures of the machines

on which the program was intended to be executed. Object space parallelism is

particularly well suited for large arrays of small processors, where distributing the

scene database amongst the processors at the expense of interprocessor commu-

nication is a reasonable tradeo�. However, all the considered MIMD architectures

had su�cient memory to duplicate the entire scene database on each processor and

therefore the primary goal was to minimize communication between processors to

achieve maximum performance/speed-up.

One of the main issues in parallel algorithm design is the balance of the work-



load between processors as one heavily loaded processor may drastically reduce

the speed up of the whole system. The most common approach to image space

load balancing is to preallocate equal numbers of pixels amongst the available

processors, often referred to as static task allocation. The problem with such a

scheme, is that using ray tracing di�erent pixels may have di�erent complexity

because the number of intersection calculations required is not known in advance.

If this is the case, some processors will �nish long before others and have to

wait idly until the system is ready to proceed to the next frame. One way to

avoid this problem is to use dynamic task allocation where new tasks are alloc-

ated to processors once they have completed their current work. This leads to

a much better sharing of the available work between processors at the expense

of increased communication between processors. Implementations of these load

balancing strategies for ray tracing on Transputer arrays have been discussed by

various researchers [17, 21, 25].

Due to the details of the scan conversion phase of the RasMol algorithm, the

parallel implementations use a scan line as the `granularity' or quantum of work

that is performed by a processor. The performance �gures gained from several im-

plementations indicated that the best performance was achieved using a scattered

static task allocation policy. For a parallel machine with N processors, scattered

preallocation gives every N

th

scan line to each processor. Because complex scan

lines (i.e. those that take longer to calculate) tend to be clustered together in

an image, scattered allocation more evenly distributes the workload than `block'

allocation. Block allocation evenly divides the screen horizontally into N equal-

height multiples of scan lines. The advantage of less interprocessor communication

than dynamically allocating tasks has greater bene�ts than the disadvantage of

suboptimal load balancing.

The implementation of the scan conversion algorithm may also be tailored to

exploit the use of scattered static task allocation. Typically, parallel algorithms

which are based on dynamic task allocation cannot be guaranteed to be given

consecutive lines to calculate. Hence parallel scanline methods su�er from an

overhead of maintaining the active list even over lines that they do not process.

Realising in advance that the processor will only ever calculate every N

th

line

enables the y-buckets to be tailored to maintain lists of the atoms that commence

on or before each N

th

line. During rendering, atoms are removed from the active

list if they do not appear on the next line rendered by the processor. In this way

spheres that are less than N pixels in diameter may not even appear in some

processor's y-buckets.



Results

Uniprocessor Results

The key to RasMol's performance is the combination of an image space hidden

surface algorithm and an object space accelerated shadow tracer. The shadow

tracer uses a regular object space subdivision, allocating atoms to the appropriate

voxels of a cubic lattice, to reduce the required number of ray-sphere intersections.

The order (number of voxels along each axis) of the voxel structure is critical

to the performance of the shadow tracer. As voxel order increases the optimum

performance will occur where the reducing cost of fewer ray-sphere intersections

balances the increasing cost of stepping rays through more voxels.

To evaluate the optimum voxel order, measurements were taken for three pro-

teins from the Brookhaven Protein Data Bank [4]: Crambin (1CRN), the smallest

protein in the database with 327 atoms; Krait Venom Neurotoxin (2ABX), a

typical protein of 1,118 atoms; and Glyceraldehyde 3 Phosphate Dehydrogenase

(1GD1), one of the largest proteins in the database with 10,984 atoms.

RasMol was tested on a SUN SPARCStation 1+ in a 512 � 512 X11 window.

Wall clock timings, taken at 4 unit intervals in voxel order, were averaged over 10

frames taken from equally spaced viewpoints on a circle around the z-axis. This

approach implies that all coordinate transformation, database traversal, rendering

and window update times are included. Thus the �gures accurately re
ect the

performance that a user would see.

6

8

10

12

14

16

18

20

20 30 40 50 60 70 80

Time

(Secs)

Voxel Order

Minimum Frame Generation Times

1GD1
3

3

3

3

3

3

3

33

33

3

33

3

3

3

3

33

33

3

3

3

3

3

3

3

3

3

3

3

2ABX

+

+

+

+

+

+ +

+

+

++

+

++

+

+

+

+

+ +

+ +

+

+

1CRN
2

2

2

2

22

2
2

2
2
2
2

2

2

22

2

2

2

2

2

2 2

2

2

2

2

Minina

The results indicate that at low voxel orders performance is poor but improves

rapidly with increasing voxel order. The curve becomes relatively 
at over the

mid-range (30 to 100) dropping to a minimum and then rising slowly. This range

was sampled in unit voxel order steps, with run-time averaged over twenty frames,

to obtain an exact minimum for each molecule. Large databases show degraded

performance above voxel order 100 due to the size of the voxel array causing



memory system paging.

Choosing a generic voxel order which will work for all molecules is relatively

simple once we recognize that the central sections of all the curves are very nearly


at, and that the 
at sections overlap on all the molecules. A generic voxel order

of 50 has been chosen as this is not far from optimal for the largest and smallest

molecules and is at a minimum for our chosen typical protein.

Another set of measurements characterised performance and pixel cover for

di�erent sized molecules. The pixel cover �gure is the fraction of potential pixels

in a window which were actually assigned when drawing the molecule.

Molecule Description PDB Entry Atoms Pixel Cover Time (sec)

Crambin 1CRN 327 35.5% 8.7

Cobra Venom 1CTX 541 28.6% 8.2

Deoxyribonucleic Acid 3ZNA 756 20.8% 7.0

Krait Venom Neurotoxin 2ABX 1118 33.5% 9.3

Ribonuclease A 5RSA 2229 38.5% 11.9

Human Hemoglobin 2HCO 2282 45.6% 13.4

Penicillopepsin 2APP 2366 39.2% 12.3

Human Hemoglobin V 2LHB 2620 36.6% 10.8

Human Immunoglobin 2FB4 3407 34.9% 11.8

GA3P Dehydrogenase 1GD1 10984 40.0% 13.7

The table shows run-time to be relatively independent of molecule size, al-

though with a trend towards longer run-times for larger molecules. Calculating

the average time the program takes to generate each assigned pixel we obtain �g-

ures ranging from 93:5�sec per pixel for 1CRN to 130:5�sec per pixel for 1GD1.

Thus run-time per displayed pixel only rises by 1.4 times over a 33-fold increase

in molecule size.

Measurements of performance in di�erent sized windows were also taken. They

are not presented in full here, but indicated run-time increased linearly with num-

ber of pixels for a given molecule. For example a shadowed frame of 1CRN is

produced in 8.70 seconds at 512 � 512 resolution, and a non-shadowed frame in

1.35 seconds. At 256 � 256 the times are 2.22 and 0.36 seconds respectively. At

128 � 128 the times are 0.58 and 0.10 seconds respectively.

Together these results indicate that the run-time of RasMol is determined

almost entirely by shadow tracing time (where the number of shadow rays are

equal to the number of visible pixels in the image) and that run-time is very

nearly linear in the number of pixels. This is very close to the ideal result of

constant time ray tracing (for a given window size) predicted for uniform spatial

subdivision techniques by Fujimoto et al. [5]. These are important results as they

give us con�dence in RasMol's ability to handle the increasingly large proteins

whose structures are being determined.

A �nal set of measurements were taken for comparison with the results pub-

lished by Huang et al. [10] which are the fastest �gures published to date. We ran



a 10 frame sequence for 5RSA at 1280 � 1024 resolution on a MIPS R2000 based

Evans and Sutherland ESV 3+ workstation. Our run-time of 16.7 seconds per

frame is over three times faster than their 51.4 CPU seconds. We therefore have

some con�dence in asserting that RasMol is the fastest uniprocessor shadowed

molecule renderer to date.

Multiprocessor Results

Full results and analyses for an implementation of the algorithm on a Meiko InSUN

board with four Inmos T800 Transputers are given elsewhere [19]. Important res-

ults which were drawn from this work indicated that very nearly linear speed-up of

the sequential algorithm was possible when parallelising it using image parallelism

with scattered static task allocation.

More recently the program has been ported to the Edinburgh Concurrent Su-

percomputer at the Edinburgh Parallel Computing Centre. This is a Meiko Com-

puting Surface containing domains of T800 Transputers varying in size from 1

to 131 processors. Results from this implementation have con�rmed that a near

linear speed-up is possible, however actual observed performance is constrained

by a sequential bottleneck in the system. The graphics boards in the system are

limited in the rate at which they can accept and display in-coming pixels, and as

such place a hard limit on performance of around one frame (800�500) every two

seconds, which is reached at only 8 Transputers for 1CRN.

We are not aware of any other multiprocessor shadowed molecule renderer

which is currently faster than RasMol. The potential exists, once the bottleneck

is removed to achieve real-time, full frame performance. This has provided the

motivation for ongoing work to implement the RasMol algorithms within a high

performance graphics hardware architecture being developed by Andrew Bissell

Technology.

Conclusion

In this paper, we present an algorithm designed speci�cally for fast rendering

of union-of-spheres representations of large molecules such as proteins and nuc-

leic acids. The method may also determine the shadows cast from an arbitrary

number of light sources. Our current implementation of this algorithm has been

incorporated into a general molecular graphics package and is several times faster

than all other results published to date. Both 8 bit and 24 bit frame bu�er ver-

sions of this package exist and are being used by several university biochemistry

and molecular biology departments.

References

[1] David Bacon and Wayne F. Anderson. A fast algorithm for rendering



space-�lling molecule pictures. Journal of Molecular Graphics, 6(4):219{220,

December 1988.

[2] J. E. Bresenham. A linear algorithm for incremental display of circular arcs.

Communications of the ACM, 20:100{106, 1977.

[3] J. Cleary and G. Wyvill. Analysis of an algorithm for fast ray tracing using

uniform space subdivision. The Visual Computer, 4:65{83, 1988.

[4] Frances C. Bernstein et al. The Protein Data Bank: A computer-based

archival �le for macromolecular structures. Journal of Molecular Biology,

112:535{542, 1977.

[5] A. Fujimoto, T. Tanaka, and K. Iwata. Arts: Accelerated ray tracing system.

IEEE Computer Graphics and Applications, 4:15{21, 1986.

[6] Andrew S. Glassner. Space subdivision for fast ray tracing. IEEE Computer

Graphics and Applications, 4:15{22, October 1984.

[7] Andrew S. Glassner, editor. An introduction to ray tracing. Academic Press,

1989.

[8] Stuart Green. Parallel Processing for Computer Graphics. Pitman, 1991.

[9] Michael Gwilliam and Nelson Max. Atoms with shadows { an area-based

algorithm for cast shadows on space-�lling molecular models. Journal of

Molecular Graphics, 7(1):54{59, March 1989.

[10] Conrad C. Huang, Eric F. Pettersen, Teri E. Klein, Thomas E. Ferrin, and

Robert Langridge. Conic: A fast renderer for space-�lling molecules with

shadows. Journal of Molecular Graphics, 9(4):230{236, December 1991.

[11] David T. Jones. The application of fractal clustering to e�cient molecular ray

tracing on low-cost computers. Journal of Molecular Graphics, 9(4):249{253,

December 1991.

[12] Nelson Max. Computer representation of molecular surfaces. IEEE Computer

Graphics and Applications, pages 21{29, August 1983.

[13] Thomas C. Palmer and Frederick H. Hausheer. Context-free spheres: A new

method for rapid CPK image generation. Journal of Molecular Graphics,

6(3):149{154, September 1988.

[14] Thomas C. Palmer, Frederick H. Hausheer, and Je�rey D. Saxe. Applications

of ray tracing in molecular graphics. Journal of Molecular Graphics, 7(3):160{

164, September 1989.

[15] Laurence H. Pearl. Calculating CPK images on a UNIX workstation. Journal

of Molecular Graphics, 6(2):109{111, June 1988.



[16] Thomas Porter. Spherical shading. In Computer Graphics Vol. 12, pages

282{285, 1978.

[17] Owen F. Ransen. The art of ray tracing. BYTE, pages 238{242, February

1990.

[18] S. Rubin and T. Whitted. A three-dimensional representation for fast ren-

dering of complex scenes. In Computer Graphics Vol. 14, pages 110{116,

1980.

[19] Roger Sayle. Parallel algorithms for molecular graphics. B.Sc(Eng) Project

Report, Department of Computing, Imperial College, June 1990.

[20] Chris Schafmeister. Fast algorithm for generating cpk images on graphics

workstations. Journal of Molecular Graphics, 8(4):201{206, December 1990.

[21] Paul Walker. Ray tracing with an array of transputers. BYTE, pages 224{225,

May 1985.

[22] H. Weghorst, G. Hooper, and D. Greenberg. Improved computational meth-

ods for ray tracing. ACM Transactions on Computer Graphics, 3:52{69, Janu-

ary 1984.

[23] J. T. Whitted. An improved illumination model for shaded display. Commu-

nications of the ACM, 23:343{349, 1980.

[24] Lance Williams. Casting curved shadows on curved surfaces. Computer

Graphics, 12(3), August 1978.

[25] J. R. Woodwark. A multiprocessor architecture for viewing solid models.

Displays Journal, 5:97{103, 1984.


