
LIBFTP User's guide

Oleg Orel

October 28, 1993

INTRODUCTION

The basic orientation of this library is making user's programs which trans-

port �les via TCP/IP network. It contains set of functions, starting from prim-

itive, such as opening FTP connection to the server, and �nishing by high-level

functions, such as functions which retrieve �les via network, making and clos-

ing channels to the server. All functions have prototypes in common header

�le named FtpLibrary.h, which must be available in standard headers direc-

tory. Those prototypes almost fully describe orientation and arguments of all

functions, but common ideology and library components should be mentioned.

This library is a client and uses standard FTPD from the other side.

There are problems of errors processing in UNIX including input/output

errors. The mutual mechanism of value returning of all functions is used in this

library. (EXIT macros, de�ned in �le FtpLibrary.h). This mechanism allows,

after the de�nition of the error processing functions, write programs, considering

the conditions to be ideal. Data transfer functions have possibility to preset data

stream expectation timeout. When the set time expires, previously set function

will be called.

The �rst function, which should be called for work with library is FtpConnect

or FtpLogin. They make connection to FTP server and return pointer to FTP

date structure.

1 The FTP data structure

int sock | descriptor of a command channel to

the server;

FILE *data | pointer to data structure, which de-

scribes data channel to the server;

int errno | last returned value. When value is

lower than 1, an error occurred;

char mode | type of transfer;

int ch | help variable. Is used to convert

ASCII �les;

Connection/Disconnection with server

STATUS (*func)() | pointer to an error handler. It is

called when status from the server is

bad;

STATUS (*debug)() | pointer to a debug handler. Is called

from functions of sending/receiving

messages to/from server;

STATUS (*IO)() | pointer to Input/Output error han-

dler. Is called when channel to server

is broken.

2 Connection/Disconnection with server

STATUS FtpConnect(FTP **, char *hostname

1

)

Makes channel to the server, at the \hostname" machine. Creates FTP data

structure and returns pointer to it. If the procedure FtplibDebug(1) was previ-

ously called, FtpConnect calls automaticallyFtpDebug for the debug mode

to be turned on. (Chapter 3, page 3).

STATUS FtpUser(FTP *, char *user)

Sends the name of the user to the server. The connection must be done

before it.

STATUS FtpPassword(FTP *, char *password)

Sends password to the server. The function FtpUsermust be called before

it.

STATUS FtpAccount(FTP *, char *acct)

Sends a name of the account to the server. The name of the account is not

standard attribute for many systems, so this function is used very seldom. The

function FtpPassword must be called before it.

STATUS FtpLogin(FTP **, char *hostname, char *user, char *pass-

word, char *account)

Executes functions FtpConnect, FtpUser, FtpPassword, FtpAccount

(if necessary) consistently. If the name of the account is absent, replaces it with

the NULL value.

STATUS FtpBye(FTP *)

Finishes work with the server and closes all channels.

2

1

The name of the host may be symbolic (for example dxcern.cern.ch) or numeric (for

example 128.141.201.96)

2

You can see from the description of connect/disconnect functions, that you can create

more than one connection to servers simultaneously.

2

The debugging

3 The debugging

There is a possibility to prede�ne three functions, such as:

3

FtpSetDebugHandler(FTP *,function)

Prede�nes function of protocol debugging. After the function is prede-

�ned, it is called with every sending/receiving messages from the server. The

function, de�ned as a debug handler must do returns to the calling functions

(FtpSendMessage/FtpGetMessage), but can also abort the program.

FtpSetErrorHandler(FTP *,function)

Prede�nes error handler. If the server's answer means, that the operation is

not �nished correctly, this function will be called. The result code is negative,

if an error is occurs.

FtpSetIOHandler(FTP *,function)

Prede�nes handler of Input/Output processing. This function is called, when

a connection to the server is broken. For example, when the network or the

remote host is down. This handler also is called after the timeout of one

character waiting expires.

FtpDebug(FTP *)

Turns on all standard debugging functions. FtpDebugError

| prints a string, taken from the

server, and aborts the program;

FtpDebugDebug | prints a string, taken from the

server;

FtpDebugIO | prints string strerror(errno) and

aborts the program.

All function for debugging have three arguments:

1. Pointer to FTP data structure;

2. Last returned value from the server. When errors occur, the value is less

than 1;

3. Diagnostic string.

FtplibDebug(1 or 0)

Turns on/o� autostart debug mode, when connection is established.

3

If the NULL value is transferred as a parameter \function" to the functions, described

below, the debugging will be turned o�.

3

Data transfer procedures to the server

4 Data transfer procedures from the server

STATUS FtpRetrTimeout(FTP *, char *command, char *inp, char *out

4

, long time)

Sends a command to the server, if command contains substring %s it will be

replaced by string inp. Creates data transfer channel, and copying data from

this channel to a local �le out. If during time period \time" no characters

are obtained from the server, this connection will be closed, and Input/Output

error status will be returned. When timeout=0, timeout in library level will

be turned o�, but procedures may be aborted by the kernel of TCP/IP, when

the kernel's timeout expires.

5

FtpRetr(FTP *, char *command, char *inp, char *out)

Calls FtpRetrTimeout, with turned o� timeout.

FtpGetTimeout(FTP *, char *inp, char *out, long time)

Transfers �le inp from the server to the local �le out, with timeout=time.

FtpGet(FTP *, char *in, char *out)

Calls FtpGetTimeout, with turned o� timeout.

FtpDirectory(FTP *, char *pat

6

, char *out)

Transfers �les listing from the server, described by pat, to the local �le out.

FtpDir(FTP *, char *out)

Transfers �les listing of the current directory from the server to the local �le

out.

5 Data transfer procedures to the server

FtpStorTimeout(FTP *, char *command, char *inp, char *out,

long time)

Sends body of the local �le inp to the server, and stores it in the �le out.

The \time", is maximum time needed to transfer one character to the server.

FtpStor(FTP *, char *command, char *inp, char* out)

4

When the name of the local �le is *STDIN*, *STDOUT*, *STDERR*, then the

current stream is redirected to these channels

5

In di�erent kernels timeout is di�erent

6

This is the �rst argument for \ls" command

4

Server's �les read/write procedures

Calls FtpStorTimeout, without timeout.

FtpPutTimeout(FTP *, char *in, char *out, long time)

Transfers data from the local �le inp to the server and stores it in the �le

out.

FtpPut(FTP *, char *in, char *out)

Calls FtpPutTimeout with turned o� timeout.

6 Server's �les read/write procedures

This library contains special functions for remote �les reading and writing,

without precopying them to local �les. The functions, which are described

below, do it. After the data channel to a remote �le is created, it becomes

possible to read and write characters using standard Input/Output functions,

or using special functions FtpRead/FtpWrite, which reorganize stream for

standard text �le, under condition that the ASCII mode is set.

7

FtpData(FTP *, char *command, char *param, char *mode)

Makes data transfer channel, with presending command composed from

command and param. The mode must be \r" or \w"

FtpOpenRead(FTP *,char *�lename)

Opens �le named �lename for reading on server

FtpOpenWrite(FTP *,char *�lename)

Creats and opens �le named �lename for writing on server

FtpOpenAppend(FTP *,char *�lename)

Creats and opens �le named �lename for appending on server

FtpOpenDir(FTP *, char *�les)

Creats channel for directory list reading, described by argument �les.

int FtpRead(FTP *)

Reads character from data stream. If ASCII mode is set

8

converts new line

markers. When the end of �le is detected or channel is broken, returns EOF

FtpGetString(FTP *, char *str)

Reads one string from data stream using FtpRead

7

Of course, such functions as seek, ioctl, can not be used.

8

By default

5

Other commands for server

FtpWrite(FTP *, char c)

Writes single character to stream, if ASCII mode is set converts new line

markers. When channel is broken, returns EOF

FtpClose(FTP *)

Closes opened channel to server

7 Other commands for server

FtpCommand(FTP *, char *command, char *param, int ok1, ok2,

ok3, ..., okN, EOF)

Sends a command, composed from command and param using sprintf

function. Reads an answer from the server. When return code from the server

is not included to ok-list(ok1,ok2...) the sign of code will be inverted.

FtpType(FTP *,char *mode)

Sets transfer mode, such as \A","I","S"

FtpBinary(FTP *)

Sets binary mode

FtpAscii(FTP *)

Sets ASCII mode

FtpMkdir(FTP *,char *dirname)

Makes directory on server

FtpChdir(FTP *,char *dirname)

Changes working directory on server

FtpRm(FTP *,char *�lename)

Removes �le on server

char *FtpPwd(FTP *)

Returns the name of working directory on server

FtpMove(FTP *,char *old�lename, char *new�lename)

Renames �le from old�lename to new�lename

FtpGetFile(FTP *,char *�lename)

Sends start transfer �le command to server. Does not make data channel

FtpPutFile(FTP *,char *�lename)

6

High-level functions

Sends start transfer �le command to the server. Does not make data channel

FtpPort(FTP *, int a, int b, int c, int d, int e, int f)

A command for the server for making a new data channel. a.b.c.d is an IP

address of a client(i.e. your IP address), e*256+f is a port number

8 Subprograms for sending/receiving control mes-

sages to/from server

FtpSendMessage(FTP *, char *message)

Sends a message to the server

int FtpGetMessage(FTP *)

Receives a message from the server.

FtpMessage(int Number)

Gets a message by code.

9 High-level functions

FILE *FtpFullOpen(char *�lename,char *mode)

Parses string �lename, which must contain a string in format or

host/user/password:�lename or �lename, what corresponds to remote or

local �le. The second argument is the type of opening, divided into two charac-

ters: �rst | the mode of opening \r", \w" or \a", second is the transfer type

, if contains character \b", then the mode is binary.

STATUS FtpFullClose(FILE *stream)

Closes an opened �le

7

Index

data, 2

EOF, 6

errno, 2

FtpAccount, 3

FtpAscii, 7

FtpBinary, 7

FtpBye, 3

FtpChdir, 7

FtpClose, 6

FtpCommand, 7

FtpConnect, 2

FTPD, 1

FtpData, 6

FtpDebug, 4

FtpDebugDebug, 2, 4

FtpDebugError, 2, 4

FtpDebugIO, 2, 4

FtpDir, 5

FtpDirectory, 5

FtpFullClose, 8

FtpFullOpen, 8

FtpGet, 5

FtpGetFile, 7

FtpGetMessage, 8

FtpGetString, 6

FtpGetTimeout, 5

FtplibDebug, 2, 4

FtpLibrary.h, 1

FtpLogin, 3

FtpMessage, 8

FtpMkdir, 7

FtpMove, 7

FtpOpenAppend, 6

FtpOpenDir, 6

FtpOpenRead, 6

FtpOpenWrite, 6

FtpPassword, 2

FtpPort, 7

FtpPut, 5

FtpPutFile, 7

FtpPutTimeout, 5

FtpPwd, 7

FtpRead, 6

FtpRetr, 5

FtpRetrTimeout, 4

FtpRm, 7

FtpSendMessage, 8

FtpSetDebugHandler, 3

FtpSetErrorHandler, 3

FtpSetIOHandler, 3

FtpStor, 5

FtpStorTimeout, 5

FtpType, 7

FtpUser, 2

FtpWrite, 6

mode, 2

sock, 2

STATUS, 3

timeout, 4

CONTENTS CONTENTS

Contents

1 The FTP data structure 1

2 Connection/Disconnection with server 2

3 The debugging 3

4 Data transfer procedures from the server 4

5 Data transfer procedures to the server 4

6 Server's �les read/write procedures 5

7 Other commands for server 6

8 Subprograms for sending/receiving control messages to/from

server 7

9 High-level functions 7

9

