
C

++

Search Class Library

Peter Bouthoorn

3 December 1993

1 Introduction

One of our daily activities is solving problems of any kind. AI-research has

shown that a lot of these problems can equally well or sometimes more easily

be solved by computer programs. To be able to write such a problem-solving

program it is necessary to give an exact description of the problem to be

solved and to know how it can be de�ned in terms that facilitate the transla-

tion of the problem into a computer program. In this paper we �rst explain

the theory of problem-solving in AI and next describe an implementation of

some of the ideas presented (the description of the implementation, called

the search class library, will be quite rough, because we will concentrate on

how the search class library must be used. For details on the implementation

see the comments accompanying the source code).

2 Problem representation and search techniques

2.1 State space representation and problem reduction

In this section, we will describe two methods commonly used in problem

representation. As a sample problem the 8-puzzle will be used. The 8-

puzzle consists of 8 numbered, movable tiles set in a 3 X 3 frame. One of

the cells of the frame is always empty, which makes it possible to move the

tiles.

A sample 8-puzzle is given in �g. 1. Consider the problem of transforming

the �rst con�guration into the second one, our goal.

To solve this puzzle we try out various moves producing new con�gurations

until we produce the goal con�guration. To give a more formal de�nition of

this problem we say that we are trying to reach a certain goal con�guration

1

2 1 6 1 2 3

4 0 8 8 0 4

7 5 3 7 6 5

Figure 1: The 8-puzzle.

starting with an initial con�guration by using some set of operators . An

operator transforms one con�guration into another, in the case of the 8-

puzzle it is most natural to think of 4 such operators, each corresponding

to moving the empty tile: move empty tile left, move empty tile right, move

empty tile up, move empty tile down.

What we just have done is de�ning the problem of solving the 8-puzzle

in terms of a state space search . In a state space search the object is to

reach a certain goal state starting with an initial state. In the case of the

8-puzzle the start and goal state are the con�gurations given in �g. 1. More

generally we can say that every con�guration we produce when trying to

solve the 8-puzzle corresponds to one state in the state space. All these

states together, i.e., all possible con�gurations make up the state space. It

is possible of course to de�ne the state space without explicitly enumerating

all states. Indeed, most of the time this is impossible and the state space

will be de�ned implicitly by providing rules specifying how each state can

be derived from another. The state space may be small as in the case of the

8-puzzle, but for most every day problems or other board games it is quite

large (e.g., in chess the total number of possible board con�gurations, this

is the total number of possible states, equals roughly 10

120

). Obviously it

would be impossible to explore the entire state space and often this is not

needed, because we are interested in �nding only one solution to a problem,

i.e., only one path leading from the start state to the goal state. This means

that we do not have to search the state space exhaustively , but a small(er)

portion instead. The problem of course is, which portion?

But before we are going to discuss this point it will be helpful to look

somewhat further at the approach we have described so far. We said that

to solve a problem it is necessary to represent the problem as a state space

search. That is, we de�ne a start state, a goal state and a set of operators

that transform one state into another. The actual search consists in moving

around in the state space, looking for a path from the initial state to the

goal state. In this case the search process proceeds forward because we start

with the initial state and move towards the goal state. Hence it is called

a forward reasoning system . The opposite behaviour is also possible: a

2

system starting the search with the goal state and moving backward to the

initial state. In this method, often called backchaining we reason backward

from the goal states. These two techniques can be combined, resulting in

a bidirectional search . In the case of the 8-puzzle it does not make much

di�erence if we move forward or backward, because about the same number

of paths will be generated in either case, but some problems can be solved

more e�ciently when searching in one direction rather than the other (see

Rich (1983), p.58).

A di�erent technique, or rather a di�erent way to represent problems,

that has not been mentioned so far is that of problem reduction . In this

type of representation each operator used may divide the problem into a set

of sub-problems that each have to be solved seperately. Additionally, there

may be restrictions on the order in which these sub-problems have to be

solved

1

. The object of problem reduction is to eventually produce a set of

primitive problems whose solutions are regarded as trivial: at this stage the

process of dividing problems into sub-problems halts.

These two approaches, state space search and problem reduction, are

two of the most common methods used in problem representation, although

variations of these approaches, as used in, e.g., game-playing are also possible

(see Barr(1981), p.84�., Ritch(1983), p.113�., Nilsson(1971), p.137�).

2.2 Trees and graphs

So far we have seen that a state space representation consists of the following

components:

� The state descriptions.

� A start state, describing the situation from which the problem-solving

process may start.

� A goal state, describing an acceptable solution to the problem.

� A set of operators describing how to transform one state into another.

Also, we said that to solve a problem we do not need to search the entire

state space but only that part which leads to a solution, i.e., we need to

search for an appropriate operator sequence, transforming the initial state

1

In the search class library it is assumed that sub-problems must be solved in the order

in which they are generated.

3

`

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�

�

�

�

Q

Q

Q

Q

J

J

J

J

J

J

a

b

c

d

e

f

g

Figure 2: Start of a search tree

through a number of intermediate states into the goal state. To perform this

search systematically we need a control strategy that decides which operator

to apply next during the search. These strategies are commonly represented

using trees

2

: construct a tree with the initial state as its root, next generate

all the o�spring of the root by applying all of the applicable operators to the

initial state, next for every leaf node generate its successors by applying all

of the applicable operators, etc. When these steps are performed a structure

as displayed in �g. 2 structure will arise. In this representation every leaf

node corresponds to a state, with the root node representing the initial state.

Each operator application is represented by a connection between two nodes.

Trees are a special case of a more general structure called a graph

3

.

A tree is a graph each of whose nodes has a unique parent (except for the

root node, which has no parent). Searching a tree is easier than searching

a graph, because when a new node is generated in the tree we can be sure

it has not been generated before. This is true because every node has only

one parent, so there cannot be two or more di�erent paths leading to the

same node. In a graph, however, nodes usually have more than one parent.

Therefore, when searching a graph one should make provisions to deal with

these situations. Saying that a node has more than one parent means that

the node is generated by a di�erent sequence of the same operators. That is,

the same node may be part of several paths, and continuing the processing of

both these nodes (which are really the same node) would be redundant and

a waste of e�ort. This can be avoided at the price of additional bookkeeping.

2

See Knuth(1979), p.305�. for the concept of trees in computer science.

3

See Nilsson(1971), p.22, Barr(1981), p.25/26, Ritch(1983), p.63

4

��

��

��

��

��

��

��

��

��

��

��

��

�

�

�

�

�

�

�

L

L

L

L

L

L

a

b

c

d

e

f

(
(

�

�

�

�

�

�

\

\

\

\

\

\

\

l

l

Figure 3: A structure showing alternative sets of subproblems for A.

Instead of traversing a tree we traverse a directed graph

4

: every time a node

is generated we examine the set of nodes generated so far to see if this node

already exists in the graph. If it does, we throw it away (note: see page 8

for exceptions to this rule), if not, we add it to the graph.

This way we will also avoid a related problem: if we did not check

whether a node had been generated before, the search process would very

likely end up in a cycle , in which the same set of nodes is generated over

and over again. For instance, when we apply operator 'move empty tile

left', next 'move empty right' and next move 'empty tile left' etc. to the 8-

puzzle, the problem-solving process would go on producing the same nodes

without end. When we modify the search procedure as described above,

this situation will never arise, because we try to look up every node that is

generated, before it is added to the graph.

A special kind of graph is the AND/OR graph that is used in problem-

solving methods involving problem reduction. In the case of a normal graph,

each node represents a di�erent alternative state to be chosen next and

the search process may continue along one of these nodes arbitratily. In a

problem-reduction representation, however, we also need to deal with op-

erators that divide the original problem into a set of sub-problems each of

which need to be solved, instead of any of them. For example, suppose

problem A can be solved either by solving problems B and C or by solving

problems D and E or by solving problem F. This situation is depicted in

�g. 3. In �g. 3 the nodes which form a set that has to be solved entirely are

indicated by a special mark linking their incoming arcs. It is usual, however,

4

Knuth(1979), p.371.

5

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

b

c

d

e

�

�

A

A

�

�

A

A

,

,

,

,

,

l

l

l

l

l

a

n m

f

Figure 4: An AND/OR graph

to introduce some extra nodes into the structure so that each set containing

more than one successor problem is grouped below its own parent node.

With this convention the structure of �g. 3 becomes as shown in �g. 4. In

this �gure the added nodes labelled N and M serve as exclusive parents for

sets fB,Cg and fD,Eg, respectively. This way one can think of N and M

and F as OR nodes, because any of them may be solved to solve node A.

Problem N, however, is reduced to a single set of sub-problems B and C, and

each of these sub-problems must be solved to solve N. For this reason nodes

B, C, D and E are called AND nodes. In �g. 4 AND nodes are indicated by

a mark on their incoming arcs.

2.3 Basic search methods - depth-�rst, breadth-�rst

In section 2 we described the process of generating a search tree, in this

section we will give a more precise description of this process.

� A start node is associated with the initial state description.

� The successors of a node are generated by applying all of the applicable

operators to the state description associated with the node. We will

call this procedure the expansion of a node.

� Pointers are setup from each successor back to its parent node. These

pointers indicate the solution path in the game tree, leading from the

goal node, once it is �nally found, back to the start.

6

� Every successor node is checked to see if it is a goal node. When a

goal node has been found the process of expanding nodes �nishes and

we trace back the solution path through the pointers.

These are the basic elements of a problem-solving process, but the order

in which nodes are to be expanded is still left open. We may choose, for

instance, to search one entire branch of the tree before examining nodes in

the other branches. Alternatively, we may decide to expand all nodes that

are on the same level, in di�erent branches. The �rst option would result

in what is called a depth-�rst search: the most recently generated node

gets expanded �rst. In a breadth-�rst search, the second option, nodes are

expanded in the order in which they are generated.

2.4 Finding an optimal solution, uniform-cost search

It should be noted that for some problems we are not interested in �nding

any solution, but rather the optimal or best one. What 'best' means depends

on the problem at hand, but for now we will call a solution path optimal

if it contains the least possible number of nodes leading to the goal node.

Later on we will re�ne our de�nition to include a di�erent, but related type

of problems. In the case of a depth-�rst search we cannot guarantee that

the best solution will be found. This is because every branch is examined

seperately, so if the search process �nds a goal node in one branch it will

terminate. But it may well be that a better solution is located in a di�erent

branch. Breadth-�rst search on the other hand is guaranteed to �nd the

shortest path, because it expands all nodes on one level before advancing to

the next.

For some problems, however, �nding the best solution does not mean

�nding the shortest path, but rather the cheapest path. This is true for

instance when we need to �nd the shortest path from one city to another.

In this case there may be several routes that can be used to get from city

A to city B, visiting other cities along the way. Now suppose the cities are

nodes in a search tree, clearly what we want is not the smallest number of

nodes (cities) that make up a path from A to B, but the shortest route. To

solve problems like this one we need to associate costs with the arcs in the

tree (in this case the costs will represent the distances between the cities).

The object is to �nd a path having the least cost.

A more general version of the breadth-�rst method, called the uniform-

cost search method is guaranteed to �nd a path of minimal cost from the

7

start node to a goal node. Instead of expanding paths of equal length like the

breadth-�rst method, this method expands paths of equal cost. To compute

the cost of a path s to a node n we will use the function g(n) . The cost

associated with a node will consist of the cost associated with its parent

plus the cost of getting from the parent to this node. Using this method to

order the set of nodes we are sure the uniform-cost method expands nodes

in order of increasing g(n).

One should note that the graph search technique that we described ear-

lier must be modi�ed when we are looking for an optimal solution. We said

that during a graph search every node that is generated twice can simply

be thrown away. If we would use this technique in a uniform-cost search

we could never guarantee to �nd the cheapest path. As said, in a graph

there may be multiple paths leading to the same node. But each of these

has its own (possibly di�erent) cost. So if we throw away a node without

paying attention to this fact we may be missing a better solution without

ever noticing. Therefore, the graph search procedure must be modi�ed in

the following way: every time a new node is generated we check whether it

already exists in the graph. If not, we add it. If it does, we compare the

cost of the old node and the cost of the newly generated node. If the old

node is better (cheaper) nothing has to be done, if it is worse we change its

cost and direct its pointer to the parent on the least costly path that has

just been found.

2.5 Blind search vs heuristic search, best-�rst search

All of the methods described so far are called blind-search procedures because

they do not use any speci�c information about the problem to be solved,

i.e, the search process just continues until it happens on a solution: it is not

directed in some way to the goal. The advantage of blind-search procedures

is that they are easy to implement and may �nd a solution quickly for small

problems. The obvious disadvantage of these methods is that they may be

led astray, expanding a lot of nodes that are not part of the solution path.

For example, when traversing a tree in depth-�rst order we dive into the left

most branch, this is �ne if we happen to �nd a solution there. But suppose

the goal node is located in a di�erent part of the tree, e.g., at the right most

branch. In this case we will have searched the entire tree before getting on

the right track. It would have been much better if we had known in advance

which way to go. But of course, this is impossible; if we had known this

we would never have to search for a solution. Still, there may be situations

8

where we do not know exactly where to go, but can give an estimate of how

far a node is removed from the goal node and hence determine if it is on the

(best) solution path. Using this information it is possible to improve the

e�ciency of the search process. Here, we have introduced the idea of using

a heuristic .

A heuristic is a rule of thumb, a technique that improves the e�ciency of

a search process, possibly by sacri�cing claims to completeness [Rich 1983,

35]. This means that, like all rules of thumb, heuristics may lead the search

in the most promising way, �nding a solution quickly, but also that they

may take a wrong turn (but still leading to the goal) or lead to deadends.

A good way to use heuristic information is by means of a heuristic function

that evaluates every node that is being generated, i.e. that determines the

goodness or badness of a node. Using a heuristic function it will be possible

to conduct the search in the most pro�table direction, by suggesting which

path to follow �rst when more than one is available.

We will de�ne a heuristic function f(n) being the sum of two components

g(n) and h(n) :

f(n) = g(n) + h(n)

Function g(n) is the same as the one described in section 2.4: a measure of

the cost of getting from the initial state to the current node. The function

h(n) is an estimate of the additional cost of getting from the current node to

a goal state. Put di�erently, h(n) is the function in which the real heuristic

knowledge is imbedded. Using f(n) we are able to order the set of nodes

waiting for expansion, by convention this will be done this in increasing

order. An algorithm can then be used to select the node having the smallest

f(n) value next for expansion. One of the methods that uses this technique

is the best-�rst search method or A

�

algorithm .

It is important to keep in mind that most heuristics are imperfect and

that, inevitably, the search process will be a�ected by this. In general, a

search algorithm is called admissible if for any graph it terminates in an

optimal path to a goal whenever a path exists. Using a heuristic function to

conduct the search process we cannot always make this claim because the

behaviour of the search will depend on how accurately the function evaluates

nodes. If we use a perfect heuristic function we are guaranteed to �nd an

optimal solution, but heuristics having this property are hard to �nd. Fur-

thermore, the di�culty of computing the function's result a�ects the total

computational e�ort of the search process. Also, it may be less important

to �nd a solution whose cost is absolutely minimal than to �nd a solution

9

of reasonable cost within a reasonable amount of time. In this case one may

prefer a heuristic function that evaluates nodes more accurately in most

cases, but sometimes overestimates the distance to the goal, thus resulting

in an inadmissible algorithm. Most of the time we need to make this sort of

compromise: the e�ciency of the search process needs to be improved at the

sacri�ce of admissibility (see Barr(1981), p.65/66, Nilsson(1971), p.59�.)

3 The search class library

3.1 Why C

++

?

One of the things to be explained will be the reason why we decided to

use C

++

for programming an AI-type problem while so many specialized AI

programming languages are available. For one thing, we wanted to know

how much more e�ort it would be to use a lower level programming lan-

guage (lower compared to AI programming languages like Prolog, that is)

to program this type of problem. C

++

seemed excellent for this job because

it is based on C, a third generation programming language, and also because

it follows the object oriented paradigm, meaning that it supports a higher

level of abstraction, in the case of OOP: the combination of procedural and

data abstraction. But the main reason why we decided to use C

++

is that

it supports inheritance . This feature makes it possible to easily make use

of existing software when developing new applications. Combined with the

possibility to de�ne virtual functions this makes it possible to design foun-

dation classes that are of no use in themselves, but can be easily extended

for real applications.

The main objective was to seperate the problem-solving process that we

described above and the representation of the problem itself. In chapter 2

we showed that a lot of problems can be solved using standard techniques,

e.g., the state space representation and search. It seemed useful therefore, to

develop some basic routines o�ering a number of search methods that could

easily be used when designing problem-solving software. And this is exactly

what the foundation classes are for. Each of them implements a particular

search algorithm while leaving open the exact nature of the problem to be

solved. So, using these classes it will be possible, just like in, e.g., Prolog, to

concentrate on the representation of the problem at hand without worrying

about how it has to be solved. But unlike Prolog the user need not make

use of a �xed search method (in Prolog: depth-�rst), but may choose one

that suits the problem best.

10

3.2 Techniques used, hierarchy of the search classes.

In this section we describe a basic technique used in the di�erent search

classes and explain how these classes relate to each other.

In writing the search engine we followed the procedure outlined in sec-

tion 2.2 except that we do not build an actual tree-like structure. Instead,

we use two lists, called OPEN and CLOSED. OPEN is a list containing

nodes ready for expansion and CLOSED a list of those nodes that already

have had the expansion procedure applied to them. The algorithm forming

the search procedure consists of the following steps:

1. Put the start node on OPEN.

2. Get the �rst node from OPEN. If OPEN is empty exit with failure,

otherwise continue.

3. Remove this node from OPEN and put it on CLOSED; call this node

n .

4. Expand node n , generating all of its successors. This is done by calling

function do operator() or expand().

5. Provide every successor with a pointer back to n and pass it to function

add() that may or may not put the node on OPEN.

6. Check each successor to see if it is a goal node. If so exit, otherwise

go to 2.

5

The algorithm that we just described can be found in function solve() which

is a member-function of class SEARCH and also of class BISEARCH and

of class AOSEARCH . These three classes are the most important classes in

the search class hierarchy, each implements basic routines needed by di�erent

search algorithms, as follows:

� SEARCH : basic class for uni-directional search routines.

� BISEARCH : basic class for bi-directional search routines.

� AOSEARCH : basic class for AND/OR search routines.

5

This step is not done in the bidirectional and AND/OR search algorithms. They have

a di�erent way of determining whether the problem is solved or not.

11

The names of these three classes correspond to three di�erent kinds of

search techniques that are o�ered to the user to solve di�erent kinds of prob-

lems: uni-directional, i.e., normal search, bi-directional search and AND/OR

search. However, these classes should never be used for direct derivation,

they must be thought of as skeleton classes that outline the overall search

method. Other classes, derived from these three basic classes, implement the

actual search algorithms, but before we are going to describe these classes

we must �rst introduce another important class, class NODE ,.

Class NODE speci�es a general structure that is to be processed by

class SEARCH (and by class BISEARCH). Class NODE is itself derived

from class SVOBJECT (sortable object), which, in turn, is derived from

class VOBJECT . Class NODE may be thought of as an abstraction of the

nodes in a search tree or, equivalently, of the states in a state space. When

designing problem-solving software most time will be spent in �nding a good

representation of these nodes/states. Once this representation is found it

must be turned into a class that is derived from class NODE (or from one

of its derivatives, depending on the search algorithm that is used, see later),

like this:

class PNODE_ : public NODE_

{

...

};

As said, class SEARCH , BISEARCH and AOSEARCH are the most

fundamental search classes and it should never be necessary to derive directly

from these classes, but rather from one of the following classes, each derived

from class SEARCH :

� DEPTH TREE and DEPTH GRAPH . These two classes implement

a depth-�rst search, by creating a search tree or graph, respectively.

� BREADTH TREE and BREADTH GRAPH . These two classes im-

plement a breadth-�rst search, by creating a search tree or graph,

respectively.

� UNICOST TREE and UNICOST GRAPH . These two classes im-

plement a uniform-cost search, by creating a search tree or graph,

respectively.

� BEST . This class implements a best-�rst search.

12

Or from one of the following classes, derived from class BISEARCH :

� BIDEPTH TREE and BIDEPTH GRAPH . These two classes im-

plement a depth-�rst bidirectional search, by creating two search trees

or graphs, respectively.

� BIBREADTH TREE and BIBREADTH GRAPH . These two classes

implement a bidirectional breadth-�rst search, by creating two search

trees or graphs, respectively.

Or from one of the classes derived from class AOSEARCH :

� AODEPTH TREE . This class implements a depth-�rst AND/OR

search, by creating a depth-�rst AND/OR tree.

� AOBREADTH TREE . This class implements a breadth-�rst AND/OR

search, by creating a breadth-�rst AND/OR tree.

To make use of any of the search algorithms that the search class library

o�ers the user must derive a class from one of the classes above, for instance:

class PUZZLE_ : public DEPTH_GRAPH_

{

...

};

The �rst four sets of classes, DEPTH TREE , DEPTH GRAPH , BREADTH TREE

and BREADTH GRAPH and also the the classes derived fromBISEARCH ,

i.e., BIDEPTH TREE , BIDEPTH GRAPH , BIBREADTH TREE and

BIBREADTH TREE must be used in conjuntion with class NODE . This

means that when performing, for instance, a depth-�rst search the class

that is used to represent the nodes in the search tree must be derived from

NODE (see �rst example above and also demo one and demo two).

Class UNICOST TREE , UNICOST GRAPH and BEST require the

nodes to have some special features. They must be used in conjunction

with a derivative of class NODE , class UNI NODE or class BEST NODE ,

respectively (see demo four and �ve for classes that are derived from one of

these two).

Lastly, class AODEPTH TREE and AOBREADTH TREE must be

used in conjunction with classes ORNODE , a derivative from class AON-

ODE , which is derived from class NODE (see demo seven for a class derived

13

from class ORNODE). Another derivative from class AONODE is class

ANDNODE , but this class should never be used for derivation, its use will

be explained later.

To summarize:

� The depth-�rst and breadth-�rst search routines (both uni-directional

and bi-directional) must be used in combination with class NODE .

� The uniform-cost search routines must be used in combination with

class UNI NODE .

� The best-�rst search routine must be used in combination with class

BEST NODE .

� The AND/OR search routines must be used in combination with class

ORNODE .

3.3 How to use the search class library.

Now that we have introduced the search classes and have outlined their

hierarchy we will explain how they can and should be used. As said, class

SEARCH

6

is one of the most important and most basic classes. One of the

tasks of class SEARCH is to keep track of the number of operators that

may be applied to the nodes (in the expansion procedure). It receives this

information through its constructor, therefore, every class that is derived

from SEARCH must call SEARCH 's constructor, passing to it the number

of operators, as an integer. The node representing the initial state and the

node representing the goal state must also be passed to this constructor,

except when deriving from class AOSEARCH , in this case only the start

node and number of operators should be passed

7

. But as we never derive

directly from class SEARCH we do not pass this information to SEARCH

directly, but through one of its derivatives, using the constructor of the

derived class. Suppose we build a class called PUZZLE , derived from class

DEPTH GRAPH , then this could be a constructor of PUZZLE :

6

we will take this class as an example, what we tell here applies also to class

BISEARCH and class AOSEARCH ; important di�erences will be discussed later.

7

A problem that is to be solved using the problem reduction representation, i.e., using

an AND/OR search algorithm, does not have a goal state, because to solve the problem

we do not look for a goal state, but need to divide the problem into sub-problems that

may or may not be solvable.

14

PUZZLE_::PUZZLE_(PNODE_ *start, PNODE_ *goal)

:DEPTH_GRAPH_(start, goal, 4)

{ // pass start node, goal node and number of

} // of operators to DEPTH_GRAPH_ 's construc-

// tor (that will pass them on to SEARCH_)

As PUZZLE is ultimately derived from SEARCH it must implement all

virtual functions (in SEARCH) that are still left unde�ned (i.e., that are not

instantiated by one of SEARCH 's derivatives). In the case of the DEPTH

and BREADTH classes there are none. But some of the other search classes

have a couple of virtual functions that must implemented by the user. Class

UNICOST TREE and UNICOST GRAPH require the implementation of

funcion compute g() and class BEST of both this function and of function

compute h(). Both of these functions serve to compute a cost associated with

a node: compute g() computes the cost of getting from a node's parent to

the node itself, i.e. the cost associated with the arc connecting both nodes,

and compute h() computes the heuristic value of a node (see section 2.4

and section 2.5, but note that function compute g() must only compute the

second half of g(n)):

int compute_g(const NODE_ &) // computes cost of getting from

// node's parent to node itself

int compute_h(const NODE_ &) // computes heuristic value of

// a node

The search classes derived from BISEARCH do not have any non-

de�ned virtual functions left. But the last set of classes, AODEPTH TREE

and AOBREADTH TREE , require the implementation of function is terminal()

which checks whether a node represents a terminal node:

8

int is_terminal(const AONODE_ &) // node is terminal node?

// 1 : yes, 0 : no

Just like class SEARCH class NODE also has a number of virtual

functions that must be implemented by the user. One of the most important

of these is do operator() that is used for node expansion (step 4 in the

algorithm).

NODE_ *do_operator(int) const // apply operator n and

// return new node or NULL

8

a terminal node is a node that represents a primivite problem in a problem reduction

presentation, see section 2.1

15

Note that the object returned by do operator() must have been allocated in

memory. Function do operator() is called by SEARCH ::solve(), that passes

do operator() an integer representing one of the operators. This way the

operators are numbered, starting at 0 and ending at number of operators

minus 1. If the operator can be applied do operator() should return a new

node (allocated by new), if not, it should return NULL. This is one way a

node may be expanded. Another possibility is by use of funtion expand().

This function is similar to do operator(), except that it returns a linked

list of all of its successors, instead of one successor at a time. This is useful

when dealing with problems that do not use operators or that have a variable

number of operators.

NODE_ *expand(int) const // expand node and return all of

// its successors in a linked list

The linked list that expand() returns must be built using the next-pointer

�eld in NODE (NODE *next). An example of how funtion expand() may

be used and how to build the linked list is given in demo �ve.

Apart from do operator() there are two other functions, which are virtual

in class NODE , that must be implemented. One of these, equal(), tests

whether two nodes are the same, it must return 1 if true and 0 if not. The

other one, display() is used to display a node:

int equal(const VOBJECT_ &) const // nodes are the same node?

// 1 : true, 0 : false

void display() const // display the node

Note that the argument in equal() is VOBJECT and not NODE , this is

because equal() is inherited by NODE from VOBJECT .

Using these funtions the implementation of user-de�ned problems should

be straightforward. Still, it will be helpful to make some remarks concern-

ing the the AND/OR search classes. In section 2.2 we explained how an

AND/OR graph may be created and we introduced the concept of AND-

nodes and OR-nodes. The meaning of these terms is slightly di�erent in the

implementation of the AND/OR search classes. Here we will call all nodes

OR-nodes, except those nodes that connect a set of sub-problems (nodes N

and M in �g. 4), which are to be called AND-nodes. This relates to the

AND/OR search classes in the following way. As said, the user-de�nable

objects that serve to represent the nodes in the search tree must be derived

from class ORNODE . But now suppose that some node A may be reduced

16

to the set of sub-problems fB,C,Dg. Normally we would call B, C and D

AND-nodes, but here, as said, they are called OR-nodes. The next step is

to create a node that connects nodes B, C and D and this node is called an

AND-node. This AND-node must created by calling new ANDNODE ()

and adding to this node all of its successors, in this case node B, C and D,

by calling addsucc(), like this:

ANDNODE_ *andnode;

andnode = new ANDNODE_; // it must be allocated

andnode->addsucc(node_a);

andnode->addsucc(node_b);

andnode->addsucc(node_c);

return(andnode);

When the number of successors is known in advance a di�erent possibility

is to pass this number to the constructor of ANDNODE and then using

setsucc() to pass the successors, like this:

AND_NODE_ *andnode;

andnode = new ANDNODE_(3); // we will add 3 nodes

andnode->setsucc(0, node_a); // we start counting at 0

andnode->setsucc(1, node_b);

andnode->setsucc(2, node_c);

return(andnode);

The only problem that may, and most of the time will, arise is that we

don't know before hand what kind of node will be produced, an AND-node

or and OR-node, so we do not know if we need and AND NODE or an

OR NODE pointer (this is especially true when building a linked list of

nodes as in expand()). But this is easily solved when we use a AONODE

pointer, because both AND NODE and OR NODE are derived from this

class, and next casting the result if needed. An example of this technique is

given in demo seven.

One thing has not been mentioned yet: how must the search be started?

This is done by a call to function generate(), a member function of class

SEARCH . For example:

17

PUZZLE_

puzzle;

....

puzzle.generate(); // start looking for a solution

3.4 Include and library �les.

In this section we describe which �les must be included and which �les must

be linked when developing problem solving software using the search class

library.

All include �les needed by the search class library are in directory /in-

clude. Most of these are used internally and the only two �les the user needs

to consult are tree.h and graph.h:

� tree.h. Include this �le when using one of the tree search algorithms.

� graph.h. Include this �le when using one of the graph search algo-

rithms.

Library �les are located in directory /lib which contains two library �les

(only one in UNIX):

� searchs.lib. Library containing all objects needed by the di�erent

search classes, compiled in the small memory model.

� searchc.lib. Idem, but compiled in the compact memory model.

4 Bibliography

Winston, P.H. (1984), Arti�cial Intelligence (2nd ed.), London: Addison-

Wesley.

Barr, A., Feigenbaum, E.A. (1983), The Handbook of Arti�cial Intelligence,

Los Altos: Kaufmann.

Nillson, N.J. (1971), Problem Solving Methods in Arti�cial Intelligence , New

York: McGraw-Hill.

Nillson, N.J. (1986), Principles of Arti�al Intelligence , Los Altos: Kauf-

mann.

Knuth, D.E. (1979), The Art of Computer Programs (2nd ed.). London:

18

Addison-Wesley.

Pearl, J. (1984), Heuristics: Intelligent Strategies for Computer Problem

Solving , London: Addison-Wesley.

Rich, E. (1983), Arti�cial Intelligence , New York: McGraw-Hill.

19

