
BISON++(1) COMMANDS BISON++(1)

NAME
bison++ – generate a parser in c or c++.

SYNOPSIS
bison++ [–dltvyVu] [–b file–prefix] [–p name–prefix] [–o outfile] [–h headerfile] [–S skeleton] [–H

]
[
header–skeleton] [––debug] [––defines] [––fixed–output–files] [––no–lines] [––verbose] [––version
––yacc] [––usage] [––help] [––file–prefix=prefix] [––name–prefix=prefix] [––skeleton=skeletonfile]

D

[––headerskeleton=headerskeletonfile] [––output=outfile] [––header–name=header] grammar–file

ESCRIPTION
Generate a parser. Based on bison version 1.19. See bison(1) for details of main functionality. Only

Y

changes are reported here.

ou now generate a C++ class if you are compiling with a C++ compiler. The generated header is far

g
more rich than before, and is made from a skeleton–header. The code skeleton is also richer, and the
enerated code is less important compared to the skeletons. It permit you to modify much things only

I

by changing the two skeletons.

n plain C, the bison++ is compatible with standard bison.

OPTIONS
––name–prefix=prefix

–p prefix
Set prefix of names of yylex,yyerror. keeped for compatibility, but you should prefer %define

–

LEX newname, and similar.

–skeleton=skeleton

–S skeleton
Set filename of code skeleton. Default is bison.cc.

–

––headerskeleton=header–skeleton

H header–skeleton
Set filename of header skeleton. Default is bison.h.

–

––header–name=header

h header
Set filename of header skeleton. Default is y.tab.h, or prefix.h if option –b is used or

r
h
cibasename.h if –o is used. .c, .cc, .C, .cpp, .cxx options for output files are replaced by .h fo

eader name.

DECLARATIONS
These are new declarations to put in the declaration section :

%name parseriname
Declare the name of this parser. User for C++ class name, and to render many names unique.

%

default is parse. Must be given before %union and %define, or never.

define defineiname content...
Declare a macro symbol in header and code. The name of the symbol is

e
YYii’parseriname’ii’defineiname’. The content if given after, as with #define. Newline can be
scaped as with #define. Many symbols are proposed for customisation.

%union
as with bison generate a union for semantic type. The difference is that the union is named
yyii’parseriname’iistype.

r%pureiiparse
As with bison in C. In C++ generate a parser where yylval, and yylloc (if needed) are passed

.
N
as parameter to yylex, and where some instance variable are local to yyparse (like yydebug...)

ot very useful, since you can create multiple instances for reentering another parser.

1GNU and RDT Last change: 3/3/93

BISON++(1) COMMANDS BISON++(1)

%header{{
Like %{{, but include this text both in the header, and in the code. End with %}}. When put in

o
t
declaration section, the text is added before the definitions. It can be put in the last section s
hat the text is added after all definition in the header, and in the last section at the current

N

position in the code.

ote that the order of these declaration is important, since they are translated into preprocessor sym-

n
pols, typedef or code depending on their type. For example use %name before any %define, since the

ame is needed to compose the name of the define symbols. Order of %header and %union is impor-

D

tant, since type may be undefined.

ECLARATION DEFINE SYMBOLS
These are the symbols you can define with %define in declaration section, or that are already defined.

B

Remind that they are replaced by a preprocessor ##define YYii’parseriname’ii’name.

ISON defined to 1 in the code. used for conditional code. Don’t redefine it.

hiiincluded
defined in the code, and in the header. used for include anti–reload. Don’t redefine it.

COMPATIBILITY
Indicate if obsoleted defines are to be used and produced. If defined to 0, indicate no compati-

i
bility needed, else if defined to non–0, generate it. If it is undefined, default is to be compatible
f classes are not used.

PURE Indicate that %pureiiparser is asked... Don’t redefine it.

LSPiiNEEDED
if defined indicate that @ construct is used, so LLOC stack is needed. Can be defined to force

DEBUG

use of location stack.

if defined to non–0 activate debugging code. See YYDEBUG in bison.

ERRORiiVERBOSE
if defined activate dump parser stack when error append.

nSTYPE the type of the semantic value of token. defined by %union. default is int. See YYSTYPE i
bison. Don’t redefine it, if you use a %union.

LTYPE
The token location type. If needed default is yyltype. See YYLTYPE in bison. default yyltype

L

is a typedef and struct defined as in old bison.

LOC The token location variable name. If needed, default is yylloc. See yylloc in bison.

C

LVAL The token semantic value variable name. Default yylval. See yylval in bison.

HAR The lookahead token value variable name. Default yychar. See yychar in bison.

P

LEX The scanner function name. Default yylex. See yylex in bison.

ARSE The parser function name. Default yyparse. See yyparse in bison.

PARSEiiPARAM
The parser function parameters declaration. Default void in C++ or ANSIC, nothing if old C.

.
D
In ANSIC and C++ contain the prototype. In old–C comtaim just the list of parameters name

on’t allows default value.

PARSEiiPARAMiiDEF
The parser function parameters definition, for old style C. Default nothing. For example to use

A
an int parameter called x, PARSEiPARAM is x, and PARSEiPARAMiDEF is int x;. In

NSIC or C++ it is unuseful and ignored.

G

ERROR

NU and RDT Last change: 3/3/93 2

)BISON++(1) COMMANDS BISON++(1

The error function name. Default yyerror. See yyerror in bison.

NERRS
The error count name. Default yynerrs. See yynerrs in bison.

DEBUGiiFLAG
The runtime debug flag. Default yydebug. See yydebug in bison.

C

These are only used if class is generated.

LASS The class name. default is the parser name.

INHERIT
The inheritance list. Don’t forget the : before, if not empty list.

MEMBERS
List of members to add to the class definition, before ending it.

LEXiiBODY
The scanner member function boby. May be defined to =0 for pure function, or to an inline
body.

YERRORiiBOD
The error member function boby. May be defined to =0 for pure function, or to an inline body.

CONSTRUCTORiiPARAM
List of parameters of the constructor. Dont allows default value.

CONSTRUCTORiiINIT
List of initialisation befor constructor call. If not empty dont’t forget the : before list of initiali-

C

sation.

ONSTRUCTORiiCODE
Code added after internal initialisation in constructor.

OBSOLETED PREPROCESSOR SYMBOLS
if you use new features, the folowing symbols should not be used, though they are proposed. The sym-

-
o
bol COMPATIBILITY control their disponibility. Incoherence may arise if they are defined simultane
usly with the new symbol.

YYLTYPE
prefer %define LTYPE.

YYSTYPE
prefer %define STYPE.

YYDEBUG
prefer %define DEBUG.

YYERRORiiVERBOSE
prefer %define ERRORiiVERBOSE.

YYLSPiiNEEDED
prefer %define LSPiiNEEDED.

yystype Now a preprocessor symbol instead of a typedef. prefer yyii’parseriname’iistype.

CONSERVED PREPROCESSOR SYMBOLS
These symbols are kept, and cannot be defined elsewhere, since they control private parameters of the

t
generated parser, or are actually unused. You can ##define them to the value you need, or indirectly to
he name of a %define generated symbol if you want to be clean.

YYINITDEPTH
initial stack depth.

YYMAXDEPTH
stack overflow limit depth.

GNU and RDT Last change: 3/3/93 3

)BISON++(1) COMMANDS BISON++(1

yyoverflow
instead of expand with alloca, realloc manualy or raise error.

OTHER ADDED PREPROCESSOR SYMBOLS
YYiiUSEiiCLASS

indicate that class will be produced. Default if C++.

C++ CLASS GENERATED
To simplify the notation, we note %SYMBOLNAME the preprocessor symbol generated with a

N

%define of this name. In fact see the use of %define for it’s real name.

ote that there is sometime symbols that differ from only an underscore ii, like yywrap and yyiiwrap.

m
They are much different. In this case yyiiwrap() is a virtual member function, and yywrap() is a

acro.

General Class declaration
T

p

{

class %CLASS %INHERI

ublic: /∗ static const int token ... ∗ /

s

/

// here come the const declaration for token

/ for example :

;

s

static const TOKENiFIRST

tatic const TOKENiNEXT;

/

static const ANDiSOiON;

/ ...

public:

int %PARSE (%PARSEiPARAM);

;

#

virtual void %ERROR(char ∗ msg) %ERRORiBODY

ifdef %PURE

// if %PURE , we must pass the value and (eventually) the location explicitely

/

#ifdef %LSPiNEEDED

/ if and only if %LSPiNEEDED , we must pass the location explicitely

;

#

virtual int %LEX (%STYPE ∗ %LVAL,%LTYPE ∗ %LLOC) %LEXiBODY

else

virtual int %LEX (%STYPE ∗ %LVAL) %LEXiBODY;

#else

#endif

// if not %PURE , we must declare member to store the value and (eventually) the location

/

explicitely

/ if not %PURE ,%NERRS and %CHAR are not local variable to %PARSE, so must be

v

member

irtual int %LEX() %LEXiBODY;

#

%STYPE %LVAL;

ifdef %LSPiNEEDED

#

%LTYPE %LLOC;

endif

GNU and RDT Last change: 3/3/93 4

)BISON++(1) COMMANDS BISON++(1

int %NERRS;

#

#endif

int %CHAR;

if %DEBUG != 0

int %DEBUGiFLAG; /∗ nonzero means print parse trace ∗ /

p

#endif

ublic:

%CLASS(%CONSTRUCTORiPARAM);

%

public:

MEMBERS

/

};

/ here are defined the token constants

c

// for example:

onst %CLASS::TOKENiFIRST=1;

%

// here is the construcor

CLASS::%CLASS(%CONSTRUCTORiPARAM) %CONSTRUCTORiINIT

#

{

if %DEBUG != 0

;

#

%DEBUGiFLAG=0

endif

%CONSTRUCTORiCODE;

D

};

efault Class declaration
// Here is the default declaration made in the header when you %define nothing

t

// typical yyltype

ypedef struct yyltype

i

{

nt timestamp;

i

int firstiline;

nt firsticolumn;

i

int lastiline;

nt lasticolumn;

}

char ∗ text;

yyltype;

n

c

// class definitio

lass parser

p

{

ublic: /∗ static const int token ... ∗ /

GNU and RDT Last change: 3/3/93 5

)BISON++(1) COMMANDS BISON++(1

// here come the const declaration for tokens

s

// for example :

tatic const TOKENiFIRST;

s

static const TOKENiNEXT;

tatic const ANDiSOiON;

p

// ...

ublic:

int yyparse (yyparseiPARAM);

;

#

virtual void yyerror(char ∗ msg)

ifdef YYiparseriPURE

#ifdef YYiparseriLSPiNEEDED

;

#

virtual int yylex (int ∗ yylval,yyltype ∗ yylloc)

else

virtual int yylex (int ∗ yylval) ;

#else

#endif

virtual int yylex() %LEXiBODY;

#

int yylval;

ifdef YYiparseriLSPiNEEDED

#

yyltype yylloc;

endif

int yynerrs;

#

#endif

int yychar;

if YYiparseriDEBUG != 0

#

int yydebug;

endif

:

p

public

arser();

}

public:

;

// here are defined the token constants

c

// for example:

onst parser::TOKENiFIRST=1;

p

// here is the constructor code

arser::parser()

#

{

if YYiparseriDEBUG != 0

GNU and RDT Last change: 3/3/93 6

)BISON++(1) COMMANDS BISON++(1

yydebug=0;

}

#endif

;

USAGE
Should replace bison, because it generate a far more customisable parser, still beeing compatible.

U

You should always use the header facility.

se it with flex++ (same author).

EXEMPLES
This man page has been produced through a parser made in C++ with this version of bison and our ver-

FILES

sion of flex++ (same author).

bison.cc
main skeleton.

.

b

bison.h header skeleton

ison.hairy
old main skeleton for semantic parser. Not adapted to this version. Kept for future works.

D
ENVIRONNEMENT

IAGNOSTICS
SEE ALSO

bison(1), bison.info (use texinfo), flex++(1).

B
DOCUMENTATION

UGS
Tell us more !

The %semanticiiparser is no more supported. If you want to use it, adapt the skeletons, and maybe
-

p
bison++ generator itself. The reason is that it seems unused, unuseful, not documented, and too com

lex for us to support. tell us if you use, need, or understand it.

e
p
Header is not included in the parser code. Change made in the generated header are not used in th
arser code, even if you include it volontarily, since it is protected against include. So don’t modify it.

e
o
For the same reasons, if you modify the header skeleton, or the code skeleton, report the changes in th
ther skeleton if applicable. If not done, incoherent declarations may lead to unpredictable result.

,
b
Use of defines for YYLTYPE, YYSTYPE, YYDEBUG is supported for backward compatibility in C

ut should not be used with new features, as %defines or C++ classes. You can define them, and use

P

them as with old bison in C only.

arameters are richer than before, and nothing is removed. POSIX compliance can be enforced by not

F

using extensions. If you want to forbide them, there is a good job !

UTUR WORKS
!

S

tell us

upport semantic parser. Is it really used ?

U

POSIX compliance. is’nt it good now ?

se lex and yacc (flex/bison) to generate the scanner/parser. It would be comfortable for futur works,

I

though very complicated. Who feel it good ?

NSTALLATION
With this install the executable is named bison++. rename it bison if you want, because it could replace

G

bison.

NU and RDT Last change: 3/3/93 7

)

T

BISON++(1) COMMANDS BISON++(1

ESTS
AUTHORS

Alain Coe
..
tmeur (coetmeur@icdc.fr), R&D department (RDT) , Informatique–CDC, France.

RESTRICTIONS
The words ’author’, and ’us’ mean the author and colleages, not GNU. We don’t have contacted GNU

t
y
about this, nowaday. If you’re in GNU, we are ready to propose it to you, and you may tell us wha
ou think about.

Based on GNU version 1.19 of bison. Modified by the author.

8GNU and RDT Last change: 3/3/93

