
Listing 4

The Problem . x1

The Solution . x2

Processing input lines . x6

Command line options . x17

Error messages . x21

References . x24

Index . x25

Copyright
c

 1994 by Lee Wittenberg

1. The Problem. Rather than make up a problem, we'll attempt

to solve an exercise from The C Programming Language [1] using CWEB

rather than plain C. In particular, we've chosen the following problem

from page 34 of the second edition:

�

Exercise 1{22. Write a program to \fold" long input lines into

two or more shorter lines after the last non-blank character that

occurs before the n-th column of input. Make sure your program

does something intelligent with very long lines, and if there are no

blanks or tabs before the speci�ed column.

This seems to imply that n = 80 requires output lines to contain at

most 79 columns. It seems a bit more logical to let the user specify the

maximum number of columns in the output, so that n = 80 will give

us output lines of � 80 characters. Since the problems are isomorphic

(a solution to either is an \o� by one" error for the other), we choose

to solve the latter.

2. The Solution. The structure of our program is fairly standard,

and doesn't need a lot of explanation. After processing any command

line options, we copy input lines to the standard output, folding them

when necessary.

Since we process all the options before we process any �les, di�erent

options cannot be used for separate �les.

hHeader �les 3 i

hGlobal variables 5 i

hFunctions 7 i;

main (int argc ; char �argv [])

f

h Scan command line options 19 i;

hAllocate space for the input bu�er 4 i;

hCopy the input to the standard output, folding lines as

necessary 6 i;

return EXIT_SUCCESS;

g

3. hHeader �les 3 i �

#include <stdlib.h> =� for EXIT_SUCCESS �=

See also sections 8 and 14.

This code is used in section 2.

�

A similar problem appears on page 31 of the �rst edition.

Listing 4 (continued)

4. Since we don't want to place any unnecessary restrictions on line

length, or on allowable values of n, we allocate space for the input

bu�er dynamically. We grab one character more than we need for a

line, just in case a line contains exactly fold column characters or we

have a space in exactly the perfect spot (plus a byte for the '\0', of

course).

Since this is the only memory allocation we do, the malloc shouldn't

fail, but you never can tell.

hAllocate space for the input bu�er 4 i �

bu�er (char �) malloc (fold column + 2);

if (bu�er � �) f

hAnnounce that we ran out of heap space 22 i;

exit (EXIT_FAILURE);

g

This code is used in section 2.

5. Unless the user speci�es otherwise, we assume that folding will

occur after the 80th column.

#de�ne DEFAULT_FOLD 80

U

hGlobal variables 5 i �

char �bu�er ;

size t fold column DEFAULT_FOLD;

See also section 18.

This code is used in section 2.

6. Processing input lines. We assume that once we're ready to

deal with input lines, the contents of argv have been \normalized"|

that all arguments that do not represent �lenames have been replaced

with null pointers. This will make our job a bit easier.

We also assume that the string "-" used as a �lename refers to the

standard input.

hCopy the input to the standard output, folding lines as

necessary 6 i �

if (hNo �le names were speci�ed 17 i)

fold �le ("-");

else f

int i;

for (i 1; i < argc ; i

++

) f

if (argv [i] 6= �)

fold �le (argv [i]);

g

g

This code is used in section 2.

Listing 4 (continued)

7. The actual line-folding is done by the function fold �le, which takes

the name of a �le to be folded as its only argument. The �lename "-"

is taken to mean \use the standard input."

hFunctions 7 i �

void fold �le (const char ��lename)

f

FILE �in�le ;

hLocal variables for fold �le 10 i;

if (strcmp(�lename ; "-") � 0)

in�le stdin ;

else f

in�le fopen (�lename ; "r");

if (in�le � �) f

hWarn the user that we couldn't open �lename 21 i;

return;

g

g

hCopy in�le to stdout, folding lines as necessary 9 i;

if (in�le 6= stdin)

fclose(in�le);

g

This code is used in section 2.

8. hHeader �les 3 i +�

#include <stdio.h>

#include <string.h>

9. Whenever we fold an input line, we leave the portion after the

fold in bu�er. We use left overs to let us know how much of bu�er

has already been used, and consequently, how much space is available

for reading the rest of the line. The extra 2 characters speci�ed in

\fold column � left overs + 2" are for the '\n' and '\0'.

hCopy in�le to stdout, folding lines as necessary 9 i �

while (fgets (bu�er + left overs ; fold column � left overs + 2;

in�le) 6= �) f

hFold input line in bu�er, if necessary 11 i;

g

if (left overs 6= 0) =� incomplete last line �=

fprintf (stdout ; "%.*s"; (int) left overs ; bu�er);

This code is used in section 7.

10. hLocal variables for fold �le 10 i �

size t left overs 0;

This code is used in section 7.

Listing 4 (continued)

11. Only lines that over�ll the bu�er need to be folded.

hFold input line in bu�er, if necessary 11 i �

if (strlen (bu�er) � fold column _ bu�er [fold column] � '\n') f

fputs (bu�er ; stdout);

left overs 0;

g else f

hDetermine an appropriate folding point, and fold the line 12 i;

g

This code is used in section 9.

12. We use an auxiliary pointer, ptr, to �nd an appropriate place to

fold the line.

hDetermine an appropriate folding point, and fold the line 12 i �

f

char �ptr ; =� pointer to the folding point �=

hPoint ptr at the appropriate place in bu�er for the fold 13 i;

hFold bu�er at the place speci�ed by ptr 16 i;

g

This code is used in section 11.

13. We de�ne \appropriate place" as \just after the leftmost non-

blank preceding the rightmost space in the bu�er." The �rst loop �nds

the rightmost space; the second �nds the non-blank.

hPoint ptr at the appropriate place in bu�er for the fold 13 i �

for (ptr bu�er + fold column ; ptr > bu�er ^ :isspace (�ptr);

ptr

��

) ;

for (; ptr > bu�er ^ isspace (�ptr); ptr

��

) ;

++

ptr ; =� point after the non-blank �=

hDeal with speci�cation
aw 15 i;

This code is used in section 12.

14. hHeader �les 3 i +�

#include <ctype.h>

15. There is a
aw in the original problem speci�cation. We must

do something intelligent if there are no blanks in the input line, but

what if there are no non-blanks? A number of alternatives present

themselves, none of them very pretty. We choose to set things up so a

line of spaces gets printed, regardless of the consequences should this

program be ported to an operating system that insists on removing

trailing blanks from text lines.

hDeal with speci�cation
aw 15 i �

if (ptr � bu�er + 1 ^ isspace (bu�er [0]))

ptr bu�er + fold column ;

This code is used in section 13.

Listing 4 (continued)

16. If ptr does not point to a space, it can only mean there was no

space in an appropriate column, so we print the maximum characters

allowed, and leave the extra character (bu�er [fold column]) for the next

line. Otherwise, we print the characters before the fold, move the

characters after the fold to the front of the bu�er, and set left overs

accordingly.

The problem does not specify what we should do with the blanks

that occur \on the fold." We pass them through after the fold, but if

we want to remove them, we can add \ while (isspace (ptr)) ptr

++

; "

before the strcpy.

hFold bu�er at the place speci�ed by ptr 16 i �

if (:isspace (�ptr)) f

fprintf (stdout ; "%.*s\n"; (int) fold column ; bu�er);

bu�er [0] bu�er [fold column];

left overs 1;

g else f

fprintf (stdout ; "%.*s\n"; (int) (ptr � bu�er); bu�er);

strcpy (bu�er ; ptr);

left overs strlen(bu�er);

g

This code is used in section 12.

17. Command line options. In section 6, we need to know if

any �lenames are speci�ed on the command line. We use opt count to

keep track of the number of arguments that are options rather than �le

names. Thus, opt count equal to argc implies there were no �le names

on the command line.

hNo �le names were speci�ed 17 i �

(opt count � argc)

This code is used in section 6.

18. We treat argv [0] as if it were an option|it certainly isn't the

name of an input �le|to make the above formula work. We therefore

initialize opt count to 1 rather than 0.

hGlobal variables 5 i +�

int opt count 1;

Listing 4 (continued)

19. Any command line argument that begins with '-', except for the

string "-", is considered an option. Since we process all the options in

a single loop, con
icts are resolved in favor of the option speci�ed later

in the argument list.

#de�ne is option (v) (�(v) � '-' ^ �(v + 1) 6= '\0')

h Scan command line options 19 i �

f

int i;

for (i 1; i < argc ; i

++

) f

if (is option (argv [i])) f

hProcess the option in argv [i] 20 i;

++

opt count ;

argv [i] �; =� \normalize" the arg list �=

g

g

g

This code is used in section 2.

20. The only option we support (at present) is `-n', where n is a

number that speci�es the maximum number of columns allowed on an

output line.

hProcess the option in argv [i] 20 i �

if (isdigit (argv [i][1])) f

fold column (size t) strtoul (argv [i] + 1;�; 10);

g else f

hTell user about unknown option in argv [i] 23 i;

g

This code is used in section 19.

21. Error messages. In a literate program, it is often helpful to

the reader if all of the error handling code is described in the same

place. This also helps the programmer make sure that the style of the

messages is consistent throughout the program.

hWarn the user that we couldn't open �lename 21 i �

fprintf (stderr ; "I couldn't open the file \"%s\"\n."; �lename);

This code is used in section 7.

22. hAnnounce that we ran out of heap space 22 i �

fprintf (stderr ;

"I couldn't allocate needed memory. Sorry.\n");

This code is used in section 4.

23. hTell user about unknown option in argv [i] 23 i �

fprintf (stderr ;

"I don't know the '%s' option; I'll ignore it.\n";

argv [i]);

This code is used in section 20.

24. References.

[1] Brian W. Kernighan and Dennis M. Ritchie. The C Programming

Language. Prentice-Hall, second edition, 1988.

Listing 4 (continued)

25. Index.

"-" as a �lename: 6, 7, 19.

argc : 2, 6, 17, 19.

argv : 2, 6, 18, 19, 20, 23.

argv normalization: 6, 19.

bu�er : 4, 5, 9, 11, 13, 15, 16.

DEFAULT_FOLD: 5.

exit : 4.

EXIT_FAILURE: 4.

EXIT_SUCCESS: 2, 3.

fclose : 7.

fgets : 9.

�lename : 7, 21.

fold column : 4, 5, 9, 11, 13,

15, 16, 20.

fold �le : 6, 7.

fopen : 7.

fprintf : 9, 16, 21, 22, 23.

fputs : 11.

i: 6, 19.

incomplete speci�cations: 15,

16.

in�le : 7, 9.

is option : 19.

isdigit : 20.

isspace : 13, 15, 16.

left overs : 9, 10, 11, 16.

main : 2.

malloc : 4.

opt count : 17, 18, 19.

paranoid error checks: 4.

portability problems: 15.

possible improvements: 16, 20.

ptr : 12, 13, 15, 16.

stderr : 21, 22, 23.

stdin : 7.

stdout : 9, 11, 16.

strcmp : 7.

strcpy : 16.

strlen : 11, 16.

strtoul : 20.

hAllocate space for the input bu�er 4 i Used in section 2.

hAnnounce that we ran out of heap space 22 i Used in section 4.

hCopy the input to the standard output, folding lines as necessary 6 i

Used in section 2.

hCopy in�le to stdout, folding lines as necessary 9 i Used in section 7.

hDeal with speci�cation
aw 15 i Used in section 13.

hDetermine an appropriate folding point, and fold the line 12 i Used

in section 11.

hFold input line in bu�er, if necessary 11 i Used in section 9.

hFold bu�er at the place speci�ed by ptr 16 i Used in section 12.

hFunctions 7 i Used in section 2.

hGlobal variables 5, 18 i Used in section 2.

hHeader �les 3, 8, 14 i Used in section 2.

hLocal variables for fold �le 10 i Used in section 7.

hNo �le names were speci�ed 17 i Used in section 6.

hPoint ptr at the appropriate place in bu�er for the fold 13 i Used in

section 12.

hProcess the option in argv [i] 20 i Used in section 19.

h Scan command line options 19 i Used in section 2.

hTell user about unknown option in argv [i] 23 i Used in section 20.

hWarn the user that we couldn't open �lename 21 i Used in section 7.

