
Listing 5

A C++ String Class . x1

Representing an Xstring . x4

Construction and Destruction . x5

Assignment . x12

Miscellaneous Operations . x14

References . x18

Index . x19

Copyright
c

 1994 by Lee Wittenberg

Portions copyright
c

 1991 by AT&T Bell Telephone Laboratories, Inc.

1. A C++ String Class. To demonstrate the use of CWEB for C++

programming, we adapt the string class described by Stroustrup [1,

pages 248{251]. Explanations in slanted type (including inline com-

ments, when possible) are direct quotes from the original. We make a

few minor changes along the way, but on the whole, we stick to Strous-

trup's design.

2. We put the interface part of our class in the header �le xstring.h.

We call our class \Xstring" rather than \string" to avoid confusion

with the original and other (more useful) string classes. We restrict our-

selves to a lowercase �le name to maintain portability among operating

systems with case-insensitive �le names.

h xstring.h 2 i �

#ifndef XSTRING_H

#de�ne XSTRING_H == prevent multiple inclusions

class Xstring f

hPrivate Xstring members 4 i

public:

hPublic Xstring members 5 i

g;

#endif

This code is cited in section 3.

This code is used in section 3.

3. We implement the class members in a single \unnamed chunk"

that will be tangled to xstring.c (or xstring.cc or xstring.cpp,

depending on your compiler's preference). We include the contents of

h xstring.h 2 i directly, rather than relying on #include, because

we can.

hHeader �les 8 i

h xstring.h 2 i

hXstring members and friends 6 i

Listing 5 (continued)

4. Representing an Xstring. The internal representation of an

Xstring is simple. It counts the references to a string to minimize

copying and uses standard C++ character strings as constants.

hPrivate Xstring members 4 i �

struct srep f

char �s; == pointer to data

int n; == reference count

srep() f n 1; g

g;

srep �p;

See also section 16.

This code is used in section 2.

5. Construction and Destruction. The constructors and the de-

structor are trivial. We use the null string as a default constructor ar-

gument rather than a null pointer to protect against possible string.h

function anomalies.

hPublic Xstring members 5 i �

Xstring(const char �s ""); == Xstring x "abc"

Xstring(const Xstring &); == Xstring x Xstring : : :

�Xstring();

See also sections 12, 14, and 15.

This code is used in section 2.

6. An Xstring constructed from a standard string needs space to

hold the characters:

hXstring members and friends 6 i �

Xstring ::Xstring(const char �s)

f

p new srep;

hAllocate space for the string and put a copy of s there 7 i;

g

See also sections 9, 10, 13, and 17.

This code is used in section 3.

7. There is always the possibility that a client will try something like

\Xstring x �." We substitute the null string whenever we are given

a null pointer.

hAllocate space for the string and put a copy of s there 7 i �

if (s � �) s "";

p

~

s new char [strlen(s) + 1];

strcpy (p

~

s; s);

This code is used in sections 6 and 13.

8. hHeader �les 8 i �

#include <string.h> == Standard C header for strcpy

This code is used in section 3.

9. On the other hand, to build an Xstring from another Xstring,

we only have to increment the reference count:

Listing 5 (continued)

hXstring members and friends 6 i +�

Xstring ::Xstring(const Xstring &x)

f

x:p

~

n

++

;

p x:p;

g

10. The destructor also has to worry about the reference count:

hXstring members and friends 6 i +�

Xstring ::�Xstring()

f

hDecrement reference count, and remove p if necessary 11 i;

g

11. hDecrement reference count, and remove p if necessary 11 i �

if (

��

p

~

n � 0) f

delete []p

~

s;

delete p;

g

This code is used in sections 10 and 13.

12. Assignment. As usual, the assignment operators are similar

to the constructors. They must handle cleanup of their �rst (left-hand)

operand:

hPublic Xstring members 5 i +�

Xstring &operator (const char �);

Xstring &operator (const Xstring &);

13. hXstring members and friends 6 i +�

Xstring &Xstring ::operator (const char �s)

f

if (p

~

n > 1) f == disconnect self

p

~

n

��

;

p new srep;

g else == free old string

delete []p

~

s;

hAllocate space for the string and put a copy of s there 7 i;

return �this;

g

Xstring &Xstring ::operator (const Xstring &x)

f

x:p

~

n

++

; == protect against \st st"

hDecrement reference count, and remove p if necessary 11 i;

p x:p;

return �this;

g

Listing 5 (continued)

14. Miscellaneous Operations. We provide a conversion opera-

tor to translate Xstring's into ordinary strings. This allows us to pass

them to standard functions like strlen (and gives us an output operator

for free). We convert to const strings to prevent strange things from

happening if a client should try to use a standard function like strcat

to modify an Xstring.

hPublic Xstring members 5 i +�

operator const char �() f return p

~

s; g

15. The subscript operator is provided for access to individual char-

acters. The index is checked. However, we depart from the original

design by returning a dummy element when the index is out of bounds

rather than generating an error message (or an exception).

hPublic Xstring members 5 i +�

char &operator [](int i) f

return ((i < 0) _ (strlen (p

~

s) < i) ? dummy : p

~

s[i]); g

16. hPrivate Xstring members 4 i +�

static char dummy ;

17. hXstring members and friends 6 i +�

char Xstring ::dummy ;

18. References.

[1] Bjarne Stroustrup. The C++ Programming Language. Addison-

Wesley, second edition, 1991.

19. Index.

dummy : 15, 16, 17.

i: 15.

n: 4.

operator: 12, 13, 14, 15.

p: 4.

s: 4, 5, 6, 13.

srep: 4, 6, 13.

strcat : 14.

strcpy : 7, 8.

strlen : 7, 14, 15.

x: 5, 7, 9, 13.

Xstring: 2, 6, 9, 10, 13.

XSTRING_H: 2.

hAllocate space for the string and put a copy of s there 7 i Used in

sections 6 and 13.

hDecrement reference count, and remove p if necessary 11 i Used in

sections 10 and 13.

hHeader �les 8 i Used in section 3.

hPrivate Xstring members 4, 16 i Used in section 2.

hPublic Xstring members 5, 12, 14, 15 i Used in section 2.

h xstring.h 2 i Cited in section 3. Used in section 3.

hXstring members and friends 6, 9, 10, 13, 17 i Used in section 3.

