
FilledVector

FilledVector ii

COLLABORATORS

TITLE :

FilledVector

ACTION NAME DATE SIGNATURE

WRITTEN BY August 30, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

FilledVector iii

Contents

1 FilledVector 1

1.1 FilledVector.guide . 1

1.2 overview . 1

1.3 author . 2

1.4 polygon context . 3

1.5 polygon context overview . 3

1.6 newpolycontext . 4

1.7 freepolycontext . 4

1.8 setpolybitmap . 5

1.9 setpolycliprect . 5

1.10 setpolyflags . 6

1.11 vectorobject . 6

1.12 newvectorobject . 7

1.13 freevectorobject . 8

1.14 copyvectorobject . 8

1.15 clonevectorobject . 9

1.16 getvobjectpoints . 9

1.17 newvlist . 10

1.18 freevlist . 10

1.19 addvlist . 11

1.20 remvlist . 11

1.21 sortvlist . 12

1.22 drawvobject . 12

1.23 drawvlist . 13

1.24 movedrawvlist . 13

1.25 rendering . 14

1.26 matrix . 14

1.27 matrixinfo . 15

1.28 setmatident . 15

1.29 setmatrotate . 16

FilledVector iv

1.30 setmatscale . 16

1.31 matsize . 17

1.32 matmult . 18

1.33 matapply3 . 18

1.34 Example code . 19

FilledVector 1 / 20

Chapter 1

FilledVector

1.1 FilledVector.guide

Filled Vector Module for AmigaE 2.5+

© 1993,1994 Michael Zucchi
All Rights Reserved

This document describes the usage of a suite of 3d filled vector routines
compiled for the AmigaE language.

The following sections are available:

OverView some of the ideas behind the module

Polygon Context describing destination memory

Vector Object vector object creation/manipulation

Rendering rendering functions

Matrix coordinate manupulation functions

a few playthings i came up with ...

NOTE: You need to have:

MODULE ’tools/filledvector’, ’tools/filledvdefs’

Somewhere in your MODULE include section

This module should work with all Amiga’s

1.2 overview

FilledVector 2 / 20

Filled Vector Module Overview

Whats this module all about?

This module contains some reasonably ’optimised’ rendering code
to render 3d polygon filled vectors. This includes some a
reasonably complex and versatile object format that can be
used to create complex iconvex vector objects.

Because it uses the blitter to do rendering, it means you
can have very complex objects (ones with holes in them
and so on) without slowing it down too much. Unfortunately,
performance on accelerated machines isn’t so hot ...

BTW, i say "optimised", but its not that fast really ... one
reason is because i’m keeping the system intact :)
Another reason, is this code is somewhat old by now, and i
dont really have the time to update it to the latest
kill-os version i have (the kill-os version uses a very
interrupt-intensive customblitter queue, and it operates
on parameters fixed at compile-time. It is also a LOT
faster though ...). It also uses some more efficient
data structures and algorithms that i havent had time
to put into this one.

One of the "cool" features it DOES have though, is the ability
to perform z clipping as its rendering objects. This allows
you to smoothly run through objects as you run into them,
rather than having them dissapear just as they start to get big.
It doesn’t use a particularaly reliable or fast z clipping
algorithm but its still not too bad. (again, my kill-os
vector code uses a much more efficient version ...).

Hopefully someone out there will be able to do more with it
than just another version of ZedWB :) (although, for
full-on vector world creation, you need some more
tools ...)

MZ

1.3 author

I’m another one of these poor students, but i live in Australia, not Europe!
I’ve been stuffing about with this vector shit since i had a ’64, but never
really got to do anything with it ...

Presently, i study ’from time to time’ :-) in order to obtain a Computer
Systems Engineering degree from the Univerity Of South Australia.
I’m the ’Zed’ of FRONTIER in my anti-os hours.

I can be contacted in the following ways:

Internet email:

FilledVector 3 / 20

9107047w@lux.levels.unisa.edu.au
till the end of ’94 at least - reliable

zucchi@hal9000.apana.org.au
zucchi@bkroom.apana.org.au

until i keep acounts there (?)

‘Real Mode’ (tm) mail:

Michael Zucchi
PO BOX 824
Waikerie
South Australia 5330

slow, but very reliable - till mum sells the house :)

Michael Zucchi
110 Dunrobin Rd
Warradale
South Australia 5046

till end of ’94

1.4 polygon context

This section describes the functions used for creating and manipulating
’polygon contexts’.

Polygon Context OverView

newPolyContext() create a new one
freePolyContext() free one
setPolyBitMap() change where it renders
setPolyClipRect() change clipping window

All of these functions operate with system libraries starting from V33
(workbench 1.2). However, please note that interleaved bitmaps are
only possible when using V39 libraries (WB3.0+).

1.5 polygon context overview

A polygon context is similar to a rastport, but instead of containing
all and sundry general purpose drawing variables as a rastport must,
it only contains data necessary for polygon rendering.

The following is an example of some of the information that is stored in
the polygon context:

clipping rectangle
minimum dimensions of current polygon (for blitting)
size of destination bitmap
bytesperrow of bitmap and screen

FilledVector 4 / 20

pointer to a bitplane to render polygons into
pointer to bitmap to blit thus renderd polygons
some temporary storage

Because of the context sensitive nature of this data object, when one
is allocated it must be attached to a specific screen or bitmap - and MUST NOT
be used for another screen or bitmap, unless it is absolutely clear that
they are of the same dimensions (the buffered screen routines guaruntee this).

All fields of the polygon context are !PRIVATE! and must only be
accessed via the provided functions!

1.6 newpolycontext

filledvector.m/newPolyContext filledvector.m/newPolyContext

SYNTAX

polycontext:=newPolyContext(bitmap, workspace)

PURPOSE

Allocates memmory required for the polygon context and associated
memory. A single bitplane the same size as the bitmap is allocated
for blitting into along with some work memory.

INPUTS
bitmap a standard ’Amiga bitmap’ that is to be the destination

for rendering operations. This may be changed during runtime
with the setPolyBitMap() function.

workspace a number used to allocate workspace for the polygon
rendering functions. Currrently make this the maximum number
of points in any single object, plus 16.

OUTPUTS
polycontext

pointer to a private polgon context handle that can
be passed to the other functions

SEE ALSO
freePolyContext(), Rendering functions

1.7 freepolycontext

filledvector.m/freePolyContext filledvector.m/freePolyContext

SYNTAX

VOID freePolyContext(poly context)

PURPOSE

FilledVector 5 / 20

Frees the memory associated with a given polygon context. This
function should always be called before a program exits.

INPUTS
polycontext

Pointer to a polygon context handle that was previously
allocated with newPolyContext(). It MUST have
been allocated with this function. This value MUST NOT
be NIL.

SEE ALSO
newPolyContext()

1.8 setpolybitmap

filledvector.m/setPolyBitMap filledvector.m/setPolyBitMap

SYNTAX

VOID setPolyBitMap(poly context, bitmap)

PURPOSE

Sets the bitmap that the rendering functions will render into. This
bitmap must be either the one used to allocate the polygon context,
or one with identical structure.

INPUTS
polycontext

Previously allocated (using newPolyContext()), valid polygon
context. Must not be NIL.

bitmap
Pointer to a standard Amiga bimap that is to become the new
destination for rendering.

SEE ALSO
newPolyContext()

1.9 setpolycliprect

filledvector.m/setPolyClipRect filledvector.m/setPolyClipRect

SYNTAX

VOID setPolyClipRect(poly context, [minx, miny, maxx, maxy]:INT)

PURPOSE

This function sets the viewport through which all rendering will
take place. The values supplied, minx/miny/maxx and maxy must
all be within the size of the bitmap being rendered into, with a
further restriction that maxx>minx and so on.

FilledVector 6 / 20

INPUTS
polycontext

Previously allocated (using newPolyContext()), valid polygon
context. Must not be NIL.

[minx, miny, maxx, maxy]:INT
An array of 4 16 bit numbers that describe the clipping
rectangle to be used.

SEE ALSO
newPolyContext(), Rendering functions

1.10 setpolyflags

filledvector.m/setPolyFlags filledvector.m/setPolyFlags

SYNTAX

VOID setPolyFlags(poly context, newflags, mask)

PURPOSE

This function sets the polygon context flags (see below) for
the given polygon context. Not much can be changed just yet.
Like several Amiga system functions, the mask value sets
which of the bits in the newflags will become set to those
values (0 or 1, or whatever).

PCF_ZCLIP
This flag will set zclipping on or off. If this bit
is on, zclipping will be performed for all polygons
rendered. Turning off zclipping can reduce
calulcations somewhat, but they can’t get too close
to the virtual eye-level of the viewer, without
stuffing up.

INPUTS
polycontext

Previously allocated (using newPolyContext()), valid polygon
context. Must not be NIL.

newflags
State of new flags

mask A 1 in a bit position of the mask indicates that the
corresponding bit in the newflags parameter is to be
copied to the polygon context flags field. A 0
indicates that that bit is to remain unchanged.

SEE ALSO
newPolyContext()

1.11 vectorobject

FilledVector 7 / 20

This section describes the functions available for creating, destroying,
and working with ‘vector objects’. These are high level object
definitions that can be used to describe quite complex objects, which
can then be rendered very efficiently.

Creating new objects can be difficult, designing objects explains
more information about how to go about this.

newVectorObject() create a new vector object
freeVectorObject() free a vector object
copyVectorObject() make an efficient copy of an object
cloneVectorObject() make a minimal copy of an object

getVObjectPoints() access the array of vertices

newVList() create a list header for linking objects
freeVList() free the list, and optionally all objects in it
addVObject() add an object to an object list
remVObject() remove an object from an object list

sortVList() do a fast sort in descending Z order of the list

drawVObject() draw a single vector object
drawVList() draw a list of objects
moveDrawVList() render a scene of objects

All of these functions operate with system libraries starting from V33
(workbench 1.2).

1.12 newvectorobject

filledvector.m/newVectorObject filledvector.m/newVectorObject

SYNTAX

vobject := newVectorObject(type, numpoints, numfaces, points, faces)

PURPOSE

Creates a new vector object, and initialises its fields to those
supplied.

INPUTS
type type of object, currently only ’0’ is valid
numpoints

the number of vertices/points in the object
numfaces

the number of faces in the object
points an array of INT’s which are the vertices used by the object.

Each entry in the list consists of 3 words the X, Y and Z
coordinates of that point. There must be at least

FilledVector 8 / 20

numpoints*3 INT’s in this list.
faces an array of "vface" data structures which describe the faces

of the object. There must be at least as many of these
as the numfaces argument. See designing objects for more
information.

OUTPUTS
vobject Pointer to a vobject type OBJECT that can be used to manipulate

the object in some ways.

SEE ALSO
freeVectorObject(), copyVectorObject(), cloneVectorObject(),
Designing objects

1.13 freevectorobject

filledvector.m/freeVectorObject filledvector.m/freeVectorObject

SYNTAX

VOID freeVectorObject(vobject)

PURPOSE

Free’s a vector object, and any associated memory. This function
should be used to free all objects previously created or copied,
before the program exits.

INPUTS
vobject previously allocated vector object (either using

newVectorObject(), copyVectorObject() or cloneVectorObject()),
it may also be NIL, in which case it does nothing.

SEE ALSO
newVectorObject(), copyVectorObject(), cloneVectorObject(),

1.14 copyvectorobject

filledvector.m/copyVectorObject filledvector.m/copyVectorObject

SYNTAX

vobject := copyVectorObject(vobject)

PURPOSE

Makes an efficient copy of a vector object. The entire object is
copied, including the points, the face definitions (colours etc),
but the polygon definitions are not copied to save space.

INPUTS
vobject previously allocated vector object (either using

FilledVector 9 / 20

newVectorObject(), copyVectorObject() or cloneVectorObject()),
it may also be NIL, in which case it returns NIL.

OUTPUTS
vobject a copied vector object.

SEE ALSO
newVectorObject(), freeVectorObject(), cloneVectorObject()

1.15 clonevectorobject

filledvector.m/cloneVectorObject filledvector.m/cloneVectorObject

SYNTAX

vobject := copyVectorObject(vobject)

PURPOSE

Makes a minimal copy of a vector object. The points array, and the
face array are NOT copied. This allows an identical object to be
created and positioned independently of the original, but any
manipulation of either object (colours or points) will affect the
other.

INPUTS
vobject previously allocated vector object (either using

newVectorObject(), copyVectorObject() or cloneVectorObject()),
it may also be NIL, in which case it returns NIL.

OUTPUTS
vobject a cloned vector object.

SEE ALSO
newVectorObject(), freeVectorObject(), copyVectorObject()

1.16 getvobjectpoints

filledvector.m/getVObjectPoints filledvector.m/getVObjectPoints

SYNTAX

points := getVObjectPoints(vobject)

PURPOSE

Allows a pointer to the internal point/vertice array to be obtained.
This can be used with the and other manipulation
functions (you are free to do what you like) for post-processing the
object.

This array will contain as many points as the number of points used

FilledVector 10 / 20

in the argument to the initial newVectorObject() call.

INPUTS
vobject previously allocated vector object (either using

newVectorObject(), copyVectorObject() or cloneVectorObject()),
it may also be NIL, in which case it returns NIL.

OUTPUTS
points A pointer to an array of INT’s that are the 3d points of the

object. If the object has been cloned, this will point to
the same physical array as the parent’s point list.

SEE ALSO
newVectorObject()

1.17 newvlist

filledvector.m/newVList filledvector.m/newVList

SYNTAX

vlist := newVList()

PURPOSE

Creates a new list header,and initialises it. This is used for
linking several objects into a bigger object, or as a way of
efficiently manipulating several objects at a time.

OUTPUTS
vlist pointer to a newly allocated vlist header, or NIL incase of

failure.

SEE ALSO
freeVList(), , ,
, ,

1.18 freevlist

filledvector.m/freeVList filledvector.m/freeVList

SYNTAX

VOID freeVList(vlist, freenodes)

PURPOSE

Free’s a vector object list header, and optionally, all of the
vector objects connected to the list.

INPUTS
vlist pointer to a previously allocated vlist header, allocated with

FilledVector 11 / 20

, this must not be NIL!
freenodes

Boolean value which indicates whether all of the objects in
the vlist are also to be free’d.

SEE ALSO
newVList()

1.19 addvlist

filledvector.m/addVList filledvector.m/addVList

SYNTAX

VOID addVList(vlist, vobject)

PURPOSE

Adds a vector object to the vlist.

INPUTS
vlist pointer to a previously allocated vlist header, allocated with

, this must not be NIL!
vobject previously allocated vector object (either using

newVectorObject(), copyVectorObject() or cloneVectorObject()),
it may also be NIL, in which case it returns NIL.

SEE ALSO
newVList(),

1.20 remvlist

filledvector.m/remVList filledvector.m/remVList

SYNTAX

VOID addVList(vlist, vobject)

PURPOSE

Removes the vector object from the vlist.

INPUTS
vlist pointer to a previously allocated vlist header, allocated with

, this must not be NIL!
(currently, this field is unused, since the list uses a doubly
linked list. If int he future, this changes, then this
will become important)

vobject a vobject that has previosly been added to the vlist using
.

SEE ALSO

FilledVector 12 / 20

newVList(),

1.21 sortvlist

filledvector.m/sortVList filledvector.m/sortVList

SYNTAX

VOID sortVList(vlist)

PURPOSE

Takes the vlist argument, and scans all of the vector objects on
the list. It looks at the vobject.pz value, and uses this to
sort the list indescending Z order.

The algorithm used by this sort is a modified mergesort, which
uses a prescan stage to break the list into already-sorted
sublists, which it then takes pairs of, and merges to create
larger sublists, until sorted. This will mean that a nearly
sorted list can be sorted VERY quickly. Even with a completely
reversed list, the properties of the mergesort algorithm
guarentee a very fast worst case performance.

INPUTS
vlist pointer to a previously allocated vlist header, allocated with

, this must not be NIL!
vobject a vobject that has previosly been added to the vlist using

.

SEE ALSO
newVList(),

1.22 drawvobject

filledvector.m/drawVObject filledvector.m/drawVObject

SYNTAX

VOID drawVObject(polygon context, vobject)

PURPOSE

Draws a single vector object into the polygon context described.
The object’s position and angles are taken into account, resulting
in a positioned and rotated object being rendered into the
destination bitmap.

INPUTS
poly context

Pointer to a polygon context handle that was previously
allocated with newPolyContext(). It MUST have

FilledVector 13 / 20

been allocated with this function. This value MUST NOT
be NIL.

vobject previously allocated vector object (either using
newVectorObject(), copyVectorObject() or cloneVectorObject()),
it must NOT be NIL.

SEE ALSO
Polygon Context, Vector Objects

1.23 drawvlist

filledvector.m/drawVList filledvector.m/drawVList

SYNTAX

VOID drawVList(polygon context, vlist)

PURPOSE

Scans the vector object list, and draws all of the items contained
within it. No sorting of the objects is done whatsoever, so if
you wish to have correctly depth sorted (i.e. painters algorithm)
objects, must be called first.

Each object is rendered using its position and angles as specified
in the vobject OBJECT.

INPUTS
poly context

Pointer to a polygon context handle that was previously
allocated with newPolyContext(). It MUST have
been allocated with this function. This value MUST NOT
be NIL.

vlist pointer to a previously allocated vlist header, allocated with
, this must not be NIL!

SEE ALSO
newVList(), Polygon Context, Vector Objects

1.24 movedrawvlist

filledvector.m/moveDrawVList filledvector.m/movewDrawVList

SYNTAX

VOID movewDrawVList(polygon context, vlist, position)

PURPOSE

This is a high level function which performs a lot of processing
in one step. Initially, it scans the list of objects, and
uses the supplied position OBJECT to rotate and position all

FilledVector 14 / 20

of the objects into an internal list. Once this has taken place,
this list is depth sorted, and all objects in the list are
rendered, starting from the back.

The positions within each vobject now become relative to the
position supplied as an argument above. The angles should
be relative too, but currently the angles stored in each vobject
are ignored when this function is called.

INPUTS
poly context

Pointer to a polygon context handle that was previously
allocated with newPolyContext(). It MUST have
been allocated with this function. This value MUST NOT
be NIL.

vlist pointer to a previously allocated vlist header, allocated with
, this must not be NIL!

position
an OBJECT position object, which describes the position
and angle at which the object list is to be drawn.

SEE ALSO
newVList(), Polygon Context, Vector Objects

1.25 rendering

Currently, the only available rendering functions are
those in the vector object section.

Sometime in the future, some more low-level, but simple
to use polygon rendering functions will be provided.

1.26 matrix

This section describes the range of general purpose matrix-based functions
that are available for manipulating sets of points in 2d and 3d.

Have a look at matrix information on just how to use these
functions.

setMatIdent() setup a matrix to do nothing (identity matrix)
setMatRotate() setup a matrix to perform a rotation
setMatScale() setup a matrix to perform a scaling operation

matSize() scale the rows of a matrix
matMult() multiply two matrices

matApply3() apply a matrix to a set of 3d points

All functions here work with all machines.

FilledVector 15 / 20

1.27 matrixinfo

So, there’s all of these matrix functions - just what the hell do you do with
them? Well, matrices are an efficient way to manipulate things like points
in 3d. You can do things like scaling, rotation, shearing, and so on all using
a single matrix. You can also combine operations, like doing several rotations
at once, or a rotation and a scale, by combining the individual transformations
into one matrix, and then applying this matrix in one go to the points.

Ok, how about an example. Say we wish to rotate several points, and then scale
them up by 100%, in the X direction.

DEF matrotate:matrix, matscale:matrix

setMatRotate(matrotate, anglex, angley, anglez); -> rotate angles
setMatScale(matscale, 2048, 1024, 1024); -> scale 2x in x
matMult(matscale, matrotate) -> create new transform

matApply3(matrotate, 10, points, buffer); -> apply the matrix

Because the scaling matrix is left-multiplied with the rotation matrix
(the matMult call above), then the new matrix will act as if two seperate
transformations had occured, the first being a rotate, and the second
a scaling.

If the order of multiplication of the matrices was reversed, then the
matrix would represent first a scaling operation, and THEN a rotation.
These two different matrices result in quite different outputs.

This operation (multiplying the two matrices) is known as concatenation,
and is mentioned throughout the function descriptions.

Another way to perform scaling is to use the matSize() function. This
modifies the rows of the matrix directly, and will produce similar
results (and is actually more efficient), but it always acts as if
it is the last operation.

See the various functions for more information about what is available.
A textbook on 3d graphics, or simply one on linear algebra which talks
about affine transformations may also be handy.

1.28 setmatident

filledvector.m/setMatIdent filledvector.m/setMatIdent

SYNTAX

VOID setMatIdent(matrix)

PURPOSE

Sets up the contents of the matrix pointed to by matrix to

FilledVector 16 / 20

the internal identity matrix value.

OUTPUTS
matrix Matrix setup to do nothing.

SEE ALSO
,

1.29 setmatrotate

filledvector.m/setMatRotate filledvector.m/setMatRotate

SYNTAX

VOID setMatRotate(matrix, anglex, angley, anglez)

PURPOSE

Sets up the contents of the matrix pointed to by matrix to
a rotation matrix which represents the rotations provided
in the arguments. This matrix is itself a concatentated
matrix (but calculated much more efficiently than taking
3 2d rotations and multiplying them together), and as such
has certain properties. For example, the order of rotations
becomes important - i think the order is anglez, angly then
anglex.

If you wish to rotate with other angle ordering, then
you can make 2d rotation matrices using this function,
and setting two of the angles to 0, then concatenating
the resultant matrices yourself (using).

INPUTS
anglex, angley, anglez

The angles to use as the basis of the rotations.
0 = 0 degrees, and 512 = 360 degrees.

OUTPUS
matrix Matrix setup with a rotation matrix

SEE ALSO
,

1.30 setmatscale

filledvector.m/setMatScale filledvector.m/setMatScale

SYNTAX

VOID setMatScale(matrix, scalex, scaley, scalez)

PURPOSE

FilledVector 17 / 20

Sets up the contents of the matrix pointed to by matrix to
a scaling matrix which represents the scaling provided
in the arguments.

This provides a true mathematicall accurate scaling operation,
that can be concatenated and ordered correctly. For a simpler
version, see .

INPUTS
scalex, scaley, scalez

The scaling values (fixed point) to be used to setup
the matrix. These fixed point values are normalised
to 1024. This means a value of 512 will mean a
halving along that axis, and a value of 2048
a doubling etc.

OUTPUTS
matrix Matrix setup with a scaling operation

NOTES
Dont try to scale above 32 times larger! (32767), negative
values are also acceptable, and will tend to flip the
object inside out along that axis (odd results).

SEE ALSO
, ,

1.31 matsize

filledvector.m/matSize filledvector.m/matSize

SYNTAX

VOID matSize(matrix, scalex, scaley, scalez)

PURPOSE

Modifies the matrix, by scaling each of its rows by the
3 values provided. This provides a more efficient
way to add a scaling operation to a matrix, but it always
acts as if it was the last operation performed on the
matrix.

INPUTS
scalex, scaley, scalez

The scaling values (fixed point) to be used to setup
the matrix. These fixed point values are normalised
to 1024. This means a value of 512 will mean a
halving along that axis, and a value of 2048
a doubling etc.

OUTPUTS
matrix Matrix modified with the scaling factors above

FilledVector 18 / 20

SEE ALSO

1.32 matmult

filledvector.m/matMult filledvector.m/matMult

SYNTAX

VOID matMult(source matrix, dest matrix)

PURPOSE

Concatenates the two matrix operations, by left multiplying
(go look in a maths book!) the destination matrix by the
source matrix, and storing the result in the dest matrix.
The net result is that the two transformation matrices are
combined, with the effect being that the resultant matrix
will represent the operation originally performed by the
dest matrix, followed by the operation performed by the
source matrix.

Maybe an would help!

INPUTS
source matrix

operation to be performed by the concatenated result
last. This matrix is left-multiplied with the
dest matrix.

dest matrix
operation to be performed by the concatenated result
first. The result of the entire operation is also
stored in here

OUTPUTS
dest matrix

the result of the operation is stored in the dest matrix

NOTES
The result of any concatenation must fit within the size
of the numbers used to prevent any errors. This means
that the net result of any operation must not result
in a scaling up of more than 32x.

SEE ALSO
, ,

1.33 matapply3

filledvector.m/matApply3 filledvector.m/matApply3

SYNTAX

FilledVector 19 / 20

VOID matApply3(matrix, number, source points, dest points)

PURPOSE

Multiplies each 3d point in the points list by the matrix,
and stores the result somewhere else.

The matrix can be setup to perform any affine transformation
that it has been setup to (currently functions exist for
setting up scaling and rotation matrices only).

INPUTS
matrix matrix containing transformation to apply.
number the number of points to apply the operation to.

Currently, must be >0.
source points

An array of INT’s which contains the 3d coordinates
to process

OUTPUTS
dest points

An array, at least as big as number*3 INT’s in which
to store the result. This value may be the same
as the source points parameter, if you just wish to
process an existing list of points.

SEE ALSO
, , ,

1.34 Example code

I’ve had this module floating around on my hdd for 6-12 months
actually ... i just needed to gt my finger out and write
all this damn documentation :)

(i was going to recode it using some ideas i’ve had since then,
but i never got around to it ..!)

Anyway, it means i’ve had time to come up with some decent
(if still trivial) examples.

The Vxx+ below shows which versions of the OS the examples work
with. Since some use the ScrBuffer module, they require
Workbench 3.0+ (V39+).

V33+

A very simple example which demonstrates the basics required to
get a vector object spinning on the screen. It uses the
cube designed in the , and also some
simple Workbench 1.2 functions to do the page flipping.

V39+

Another simple demo of the module. This one also uses the

FilledVector 20 / 20

Workbench 3.0+ double buffering routines to make it run smoother,
and allow you to drag the screen.

V39+

One of the first examples i coded :) Its a spinning Zed logo,
and uses WB3.0 double buffering, and demonstrates the use
of that, the vector module, multiple part objects, and some
of the matrix routines. Use the left mousebutton to make it
go away, and right to make it come closer. (you can still
drag its screen BTW). Both to exit.

V37+

An animated workbench backdrop! Uses an offscreen render bitmap to
draw a picture, which is then blitted to the workbench screen.
This has been tested and works on machines with custom graphics
cards! (if slowly ...)

V37+

Identical to wb1200, but uses a different object. The object
in this one was created in imagine, and converted using a
longwinded and labourious process ...

	FilledVector
	FilledVector.guide
	overview
	author
	polygon context
	polygon context overview
	newpolycontext
	freepolycontext
	setpolybitmap
	setpolycliprect
	setpolyflags
	vectorobject
	newvectorobject
	freevectorobject
	copyvectorobject
	clonevectorobject
	getvobjectpoints
	newvlist
	freevlist
	addvlist
	remvlist
	sortvlist
	drawvobject
	drawvlist
	movedrawvlist
	rendering
	matrix
	matrixinfo
	setmatident
	setmatrotate
	setmatscale
	matsize
	matmult
	matapply3
	Example code

