Events.mod

Events.mod

COLLABORATORS
TITLE :
Events.mod
ACTION NAME DATE SIGNATURE
WRITTEN BY August 30, 2024
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Events.mod iii

Contents

1 Events.mod 1
1.1 Bvents . . . o o e e e 1
1.2 Overview of Amiga events and the event handling classes 2
1.3 Revision History o e e e e 2
1.4 Global Switches e 3
1.5 Imported Modules e e e 3
1.6 Description of Signal L e e e 3
1.7 Using Signal L e 3
1.8 Anexample of a class derived from Signal 4
1.9 Description of MessagePort e 5
1.10 Using MessagePort e e 5
1.11 Description of IdcmpPort e 5
1.12 Using IdempPorts L. e 6
1.13 Anexample of using an IdcmpPort object 6
1.14 Description of EventLoop e 8
1.15 Using EventLoop e 8
1.16 Anexample of using an EventLoop object 8
1.17 Signal Declarations e e e e e e e e e 9
1.18 MessagePort Declarations e e 9
1.19 IdempPort Declarations o e e e e e e 10
1.20 Data Structures o o o e e e e e e e e e e e e 10
1.21 Signal Methods L e 11
1.22 HandleSig() o e 11
1.23 SimpleLoop() o e 12
1.24 MessagePort Methods L 12
1.25 HandleSig() v o v e e e e e e e e 13
1.26 HandleMsg() o o e e e e 13
1.27 FlushPort() e 14
1.28 AttachPort() e e e e e e 14
1.29 DetachPort() e e e e e e e e e e e 14

Events.mod iv

1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.43

MakePort() e e e e e 15
DeletePort() e e e e e 15
DefaultHandler() e e e 16
IdempPort Methods o L e e e 16
HandleMsg() e 16
Init() 17
SetupWindow() L e e e e e e e e 18
CleanupWindow() L o e e 18
EventLoop Methods e 18
InitEventLoop() o e e e e e e e e 18
AddSignal() 19
RemoveSignal() 19
Loop() - . o o e e e e e e 20
Module Initialisation e e e e 21

Events.mod

1/21

Chapter 1

Events.mod

1.1 Events

MODULE Events;

(*

SRCSfile: Events.mod $

Description: Implements classes for managing events

Created by: fjc (Frank Copeland)

SRevision: 1.7 $
SAuthor: fijc $

SDate: 1994/09/03 16:

19:49 $

Copyright © 1994, Frank Copeland.
This file is part of the Oberon-A Library.
See Oberon—-A.doc for conditions of use and distribution.

Module Events defines and implements four classes designed to abstract
and simplify event handling for Amiga programs.

Overview Overview of Amiga events and the event handling classes

Class descriptions

Signal Description of the Signal Class
MessagePort Description of the MessagePort Class
IdcmpPort Description of the IdcmpPort Class
EventLoop Description of the EventLoop Class
Other

Switches Global compiler switches

Imports Imported modules

Initialisation Module initialisation

Terminology Definition of terms

History Revision

history

Events.mod 2/21

1.2 Overview of Amiga events and the event handling classes

[It is assumed that you are familiar with the Amiga event handling
system, specifically Exec Signals and MsgPorts and Intuition IDCMP
ports.]

The Amiga event handling system consists, like most of the system
software, of objects and concepts which are built up in layers. At the
lowest level, Signals are used to notify Tasks of events. MsgPorts are
built on top of Signals to provide message-based event handling. The
Intuition IDCMP system builds on the MsgPort system by defining a
specific format for messages and a set of standard event types.

Any event-based Amiga program must contain an inner event loop, where it
waits for Signals and responds to the ones it receives. In most cases
these Signals will be associated with one or more MsgPorts, so the loop
must also contain code to remove Messages from the MsgPorts and deal
with them. Most MsgPorts will be associated with Intuition Windows, and
so the event loop must include code to identify and deal with the
IntuiMessages it receives.

This common behaviour presents an opportunity for the creation of
classes that can be re-used by any number of programs. This module
defines three classes (Signal, MessagePort and IdcmpPort) that abstract
the Exec Signal and MsgPort mechanisms, and the Intuition IDCMP
mechanism. A programmer will typically extend one or more of these
classes to implement the specific behaviour required by an application.
A fourth class (EventLoop) abstracts the event loop itself. These four
classes can be used as the basis for the event handling of any
event-based Amiga application. There is also scope for the creation of
other general classes to deal with events generated by, for instance,
the Timer device and ARexx.

1.3 Revision History

SRevision: 1.7 $
SDate: 1994/09/03 16:19:49 $

$Log: Events.mod $
Revision 1.7 1994/09/03 16:19:49 fijc
x% empty log message #xxx*

Revision 1.6 1994/08/08 16:19:17 fijc
Release 1.4

Revision 1.5 1994/06/14 02:06:07 fjc
- Updated for release

Revision 1.4 1994/06/09 14:18:21 fijc
— Incorporated changes to Amiga interface

Revision 1.3 1994/06/04 15:50:17 f£fijc
— Changed to use new Amiga interface

Events.mod 3/21

Revision 1.2 1994/05/19 23:49:20 fijc
— Added OBERON-A: path to links

Revision 1.1 1994/05/12 19:55:20 fjc
— Prepared for release

1.4 Global Switches

$C= CaseChk $I= IndexChk $L+ LongAdr $N- NilChk
$P- PortableCode $R= RangeChk $S= StackChk $T= TypeChk
$V= OvflChk $Z= ZeroVars

NIL checking is disabled, and procedures make explicit checks for NIL
pointers using ASSERT () .

1.5 Imported Modules

IMPORT
E := Exec, EU := ExecUtil, I := Intuition, SYS := SYSTEM;

(*
Types declares basic types used by most Amiga libraries. Exec is the
central kernel of the Amiga OS. ExecUtil provides support procedures
associated with the Exec library. Intuition provides the Amiga’s
user interface.

1.6 Description of Signal

The Signal class is an abstraction of the Exec library’s Signal
mechanism. A Signal object has one field, sigBit, which contains the
bit number of the Exec Signal it corresponds to. Its behaviour is
defined in two methods, SimpleLoop () and HandleSig(). SimpleLoop ()
implements a simple event loop which waits for the object’s Signal to be
received by the Task. HandleSig() contains the code that is to be
executed when the object’s Signal is received.

Declarations Constant and type declarations
Methods Signal methods
Usage Using Signal objects

1.7 Using Signal

Events.mod 4/ 21

Signal is an abstract class and Signal objects perform no useful work.
To make use of it, the programmer must create a concrete class by
extending Signal and implementing the desired behaviour. At a minimum,
the subclass must override the HandleSig method and substitute a method
which performs whatever action is triggered by the receipt of the signal
associated with the object.

The minimum initialisation required for a Signal object is to set the
"sigBit’ field to the value of the Exec Signal associated with the
object. For a discussion of the minimum behaviour expected of a Signal
object, see HandleSig().

As Exec Signals are global to the Task, only one Signal object per Exec
Signal can be active within a Task at any one time.

An event loop involving a single Signal object, and hence a single
Signal, is implemented in the SimpleLoop procedure. If an event loop
involving several Signal objects is required, the programmer should
create an EventLoop object.

Example An example of a class derived from Signal

1.8 An example of a class derived from Signal

(*
A Break object is associated with one of the break signals
defined in Dos.mod. When one of these signals is received, the
program is expected to abort. This class is not very useful, as the
only input handler that routinely reports these signals is the console
handler. This is normally only associated with CLI programs, which do
not use an event loop.

*)

TYPE
Break = POINTER TO BreakRec;
BreakRec = RECORD (SignalRec) END;

PROCEDURE (b : Break) HandleSig * () : INTEGER;
(» Overrides the method defined by Signal x)
BEGIN

RETURN StopAll (x Stop the event loop and exit the program x)
END HandleSig;

VAR breakC : Break;
BEGIN
NEW (breakC);
breakC.sigBit := Dos.sigBreakCtrlC;

SimpleLoop (breakC);

(# Clean up and exit x)

Events.mod

5/21

END

1.9 Description of MessagePort

The MessagePort class is an extension of the Signal class that abstracts

the Exec MsgPort mechanism. A MessagePort object is associated with an
Exec MsgPort and its Signal. It has one new field, port, which is a
pointer to a MsgPort structure. The MessagePort class overrides the
Signal class HandleSig () method and replaces it with a version which
removes and replies to any Messages queued at the object’s MsgPort. It

defines a new method, HandleMsg (), which is responsible for dealing with

individual Messages. Other new methods deal with the creation and
management of MsgPorts.

Declarations Constant and type declarations
Methods MessagePort methods
Usage Using MessagePort objects

1.10 Using MessagePort

Like Signal, MessagePort is an abstract class and must be extended in
order to be useful. The derived class must at the least override the
HandleMsg () method and replace it with an implementation of the desired
behaviour.

A MessagePort object must be initialised with either the AttachPort ()
or the MakePort () method. AttachPort() is used when the programmer
wishes to associate the object with a pre-existing MsgPort, such as one
belonging to an Intuition window. MakePort () is used to create an
entirely new MsgPort. Both these methods initialise the object’s
"sigBit’ field. TIf AttachPort() is used, it is up to the programmer to
ensure that only one MessagePort object is associated with that MsgPort
at any one time.

A MessagePort object must be cleaned up when it is no longer required.
If it was initialised with AttachPort (), call DetachPort (). Similarly,
call DeletePort () to clean up an object initialised with MakePort ().

FlushPort () is mainly used by other methods when detaching Exec MsgPorts

from MessagePort objects. However, under some circumstances user
programs may need to use it directly.

Example An example of using MessagePort.

1.11 Description of IdcmpPort

Events.mod 6/21

The IdcmpPort class extends the MessagePort class to deal with
IntuiMessages from an IDCMP message port. It overrides the

HandleMsg () method with an implementation which passes the IntuiMessage
to a handler procedure depending on the value in the Class field. The
programmer must declare and install handler procedures for each class of
IntuiMessage expected by the program.

Declarations Constant and type declarations
Methods IdcmpPort methods
Usage Using IdcmpPort objects

1.12 Using IldcmpPorts

Unlike the Signal and MessagePort classes, IdcmpPort is a concrete class
that may be used directly. Extensions of IdcmpPort will typically
override the SetupWindow () and CleanupWindow () methods to add menus and
gadgets to the Window and to remove them.

The Init () method must be called before an IdcmpPort object is used to
ensure that it is in a safe state. The programmer must also install at
least one handler procedure in the object (See DefaultHandler () for a
description of the behaviour required of handler procedures).

Like any MessagePort object, an IdcmpPort object must be associated with
an Exec MsgPort, specifically the UserPort field of an open Intuition
Window. If the programmer allows Intuition to create this MsgPort,
(s)he should use AttachPort () to connect the object to it after the
Window is opened. If the programmer wishes to use one MsgPort for
several windows, (s)he may use MakePort () to create it or AttachPort ()
to connect to one created elsewhere. 1In this case the programmer must
make sure the handler procedures installed in the object are able to
determine which window is active (this can be found in the
IntuiMessage) .

The final step is to call the SetupWindow () method to make any
modifications to the Window that the IdcmpPort requires. This could
involve adding Menus and Gadgets to it, for example.

The IdcmpPort object can now be placed in its own event loop using the
SimpleLoop () method, or attached to an EventLoop object to share an
event loop with other Signal objects.

When the IdcmpPort object is no longer required, clean up the Window
with the CleanupWindow () method. Then use the DetachPort () or
DeletePort () method as appropriate.

Example An example of using an IdcmpPort obiject.

1.13 An example of using an IdcmpPort object

Events.mod 7/21

PROCEDURE* HandleCloseWindow
(ip : IdcmpPort;
message : Intuition.IntuiMessagePtr)
INTEGER;

BEGIN (* HandleCloseWindow =*)
E.base.ReplyMsg (message);
RETURN Stop

END HandleCloseWindow;

PROCEDURE* HandleGadgetUp
(ip : IdcmpPort;
message : Intuition.IntuiMessagePtr)
INTEGER;

VAR result, gadgetId : INTEGER;
BEGIN (x HandleGadgetUp =x)
result := Pass; gadgetId := message.Code;
CASE gadgetId OF
process gadget releases
ELSE
default actions
END; (x CASE gadgetId x)
RETURN result

END HandleGadgetUp;

VAR

ip : IdcmpPort;
nw : Intuition.NewWindow;
window : Intuition.WindowPtr;
BEGIN
NEW (ip);
ip.Init;
ip.Handle [Intuition.idcmpCloseWindow] := HandleCloseWindow;
ip.Handle [Intuition.idcmpGadgetUp] := HandleGadgetUp;
window := Intuition.base.OpenWindow (nw);

AttachPort (ip, window.UserPort);
ip.SetupWindow (window) ;

SimpleLoop (ip);

ip.CleanupWindow (window) ;
DetachPort (ip, window.UserPort);

Intuition.base.CloseWindow (window) ;

Events.mod 8/21

END

1.14 Description of EventLoop

A EventLoop object is used to group a number of Signal objects that are
to be processed together using a single event loop. The associated
Signal objects must be created and initialised by the programmer before
adding them to the EventLoop object.

Declarations Constant and type declarations
Methods EventLoop methods
Usage Using EventLoop objects

1.15 Using EventLoop

The EventLoop class is a concrete class that is intended to be used
directly. A EventLoop object is used to group together several Signal
objects and process them all in a single event loop.

InitEventLoop () must be called to initialise an EventLoop object before
it can be used. One or more calls to AddSignal () should then be made to
attach Signal objects to the EventLoop object.

The Loop () method implements an event loop using all the Signal objects
attached to the EventLoop object. At least one Signal object should be
attached to the EventLoop object before calling it. Further Signal
objects may be attached after the call, but only Signal objects already
attached. Signal objects are automatically removed from the EventLoop
when their HandleSig () methods return Stop. The method exits when all
Signal objects have been removed or when one object’s HandleSig() method
returns StopAll.

The RemoveSignal () method will not normally be used, as individual
Signal objects know best when they should be de—activated.

Example An example of using an EventLoop object.

1.16 An example of using an EventLoop object

VAR

sig, ignore : Signal;
mp : MessagePort;

ip : IdcmpPort;
eventLoop : EventLoop;

Events.mod

9/21

BEGIN
NEW (eventLoop); InitEventLoop (eventLoop);
NEW (sig); NEW (mp); NEW (ip);

ignore := AddSignal (eventLoop, sig);

ignore := AddSignal (eventLoop, mp);
ignore := AddSignal (eventLoop, ip);

Loop (eventLoop);
Clean up

END

1.17 Signal Declarations

(*

Signal object fields:

sigBit —-- the number of the Exec signal the object handles.
be a positive integer < 32 or -1 (meaning no signal).
*)

TYPE

Signal x= POINTER TO SignalRec;
SignalRec %= RECORD

sigBit *: SHORTINT;
END; (x SignalRec «x)

(*
These are the wvalid return codes for the HandleSig method.
*)

CONST
Pass *= 0;
(* Did not handle the event. =)
Continue *= 1;
(» Finished handling this event, wait for the next. x)
Stop *= 2;
(# Stop processing events for this handler. x)
StopAll x= 3;

This must

(# Stop processing events for all handlers; halt the Task x)

1.18 MessagePort Declarations

(*

MessagePort object fields:

Events.mod 10/ 21

port —-— the MsgPort the object gets messages from. This is read-only
and is modified through the AttachPort (), DetachPort (), MakePort (), and

DeletePort () methods.
*)

TYPE

MessagePort x= POINTER TO MessagePortRec;
MessagePortRec = RECORD (SignalRec)

port —-: E.MsgPortPtr;
END; (x MessagePortRec x)

(*

1.19 IdcmpPort Declarations

(*
IdcmpPort object fields:

Handle —-- the table of handler procedures, one for each possible class
of IntuiMessage. The Init () methods assigns DefaultHandler to each.

The procedure must return one of the return codes listed for HandleSig
procedures (see Signal). A do-nothing procedure simply returns ’'Pass’.

*)
TYPE
IdcmpPort x= POINTER TO IdcmpPortRec;

IdcmpProc x=
PROCEDURE (ip : IdcmpPort; msg : I.IntuiMessagePtr) : INTEGER;

IdcmpPortRec » = RECORD (MessagePortRec)
Handle *x: ARRAY 32 OF IdcmpProc;
END; (x IdcmpPortRec x)

(*

1.20 Data Structures

CONST
NumSignals = 32; (* The maximum number of signals for a Task. x)

(*
EventLoop object fields:

sigBits —-—- the combined signal bits of all the Signal objects attached
to the EventLoop.

signal -- the table of Signal objects attached to the EventLoop.

*)

Events.mod 11/ 21

TYPE

EventLoop *= POINTER TO EventLoopRec;
EventLoopRec x= RECORD

sigBits : SET;

signal : ARRAY NumSignals OF Signal;
END; (x EventLoopRec x)

(*

1.21 Signal Methods

NEW METHODS
Event handling

PROCEDURE (signal : Signal) HandleSig = () : INTEGER;
— Implements the behaviour associated with a given Signal.

Event Loop

PROCEDURE SimpleLoop * (signal);
- Executes a simple event loop.

1.22 HandleSig()

PROCEDURE (h : Signal) HandleSig = () : INTEGER;

(*
The HandleSig method implements the primary behaviour of the Signal
class and its descendants. It is called by the SimpleLoop () method (or
the Loop () method of an EventLoop object) when the sigBit associated with
the object is received by the Task.

FEach descendant class 1is expected to override this method and provide

its own implementation. In order for the SimplelLoop (and Loop) methods to
work, the replacement methods must implement at least the following
behaviour:

— If the method performs no action for a given event, it must return the
constant ’Pass’.
— If the Signal no longer needs to be part of the event loop (ie- when a

Window is closed), it must return ’Stop’.
- If the event causes the program to terminate, the method must return
"StopAll’.

— In all other cases it must return ’'Continue’.

*)

BEGIN (x HandleSig «)
HALT (99); (% Abort the program, method not implemented. x)
RETURN StopAll (% This is superfluous x*)

END HandleSig;

(*

Events.mod

12/21

1.23 SimpleLoop()

PROCEDURE SimpleLoop * (sig : Signal);
(*
Implements an event loop which waits for a single Exec Signal. The
Signal object must be fully initialised before calling this method.
*)

VAR signalsReceived : SET; result : INTEGER;

BEGIN (*x SimpleLoop x*)
ASSERT (sig # NIL, 132);

REPEAT
signalsReceived := E.base.Wait ({sig.sigBit});
result := sig.HandleSig ()

UNTIL (result > Continue);
END SimpleLoop;

(*

1.24 MessagePort Methods

OVERRIDDEN METHODS
Event handling

PROCEDURE (VAR mp : MessagePort) HandleSig x () : INTEGER;

- Removes and processes messages queued at the object’s MessagePort.

NEW METHODS
Initialisation

PROCEDURE MakePort* (mp, name, priority) : BOOLEAN;
- Creates a MessagePort and attaches it to the object.

PROCEDURE DeletePortx (mp);
— Detaches the object’s MessagePort and disposes of it.

PROCEDURE AttachPortx (mp, port);
— Attaches an existing MessagePort to the object.

PROCEDURE DetachPortx (mp);
— Detaches the object’s MessagePort.

Message Port maintenance

PROCEDURE (mp : MessagePort) FlushPortx ();
— Flushes any pending messages from the object’s MessagePort.

Event handling

PROCEDURE (mp : MessagePort) HandleMsg*x (msg) : INTEGER;
— Performs the action required for a given message.

Events.mod

13/21

1.25 HandleSig()

PROCEDURE” (mp : MessagePort) HandleMsg * (msg : E.MessagePtr) : INTEGER;

PROCEDURE (mp : MessagePort) HandleSig % () : INTEGER;

(*
This procedure implements the behaviour required by receiving the signal
associated with a MsgPort. The actual handling of the messages is
delegated to mp.HandleMsg() .

*)

VAR result : INTEGER; msg : E.MessagePtr;

BEGIN (* HandleSig)
result := Pass; (x Default x)

(# Loop until all messages queued at the port are dealt with x)
LOOP

(» Dequeue the next message, quit if there is none x)

msg := E.base.GetMsg (mp.port);

IF msg = NIL THEN EXIT END;

(» Despatch to the message handler x)
result := mp.HandleMsg (msg);

(* Process the return code x)
IF result = Pass THEN E.base.ReplyMsg (msg) END;
IF result > Continue THEN EXIT END
END;
RETURN result
END HandleSig;
(*

1.26 HandleMsg()

PROCEDURE (mp : MessagePort) HandleMsg * (msg : E.MessagePtr) : INTEGER;

(*

This method is responsible for dealing with individual Messages after

they have been remove from the MsgPort queue with E.base.GetMsg (). Each
descendant class is expected to override this method and provide its own
implementation. In order for the SimplelLoop (and Loop) methods to work,

the replacement methods must implement at least the following behaviour:

- If the method performs no action for a given Message, it must return
the constant ’'Pass’.

- If it is no longer necessary to wait for Messages at the MsgPort, the
method should return ’'Stop’.

- If the Message causes the program to terminate, the method must return
"StopAll’.

— In all other cases it must return ’'Continue’.

If the method returns any result other than ’'Pass’ it must first call
"E.base.ReplyMsg (msg)’ to remove the Message from the MsgPort. If

Events.mod 14/ 21

it returns ’'Pass’, it should xnever* call ReplyMsg() .
*)

BEGIN (x HandleMsg x)
HALT (99); (% Abort the program, method not implemented. x)
RETURN StopAll (% This is superfluous x)

END HandleMsg;

(*

1.27 FlushPort()

PROCEDURE (mp : MessagePort) FlushPort = ();

(*
Gets and replies to all messages queued for the handler’s message
port. It is called inside an Exec.Forbid()/Exec.Permit () pair to
prevent more messages from arriving at the port while it is being
flushed.

*)
VAR msg : E.MessagePtr;

BEGIN (* FlushPort «)
E.base.Forbid ();
LOOP
msg := E.base.GetMsg (mp.port);
IF msg = NIL THEN EXIT END;
E.base.ReplyMsg (msqg)
END;
E.base.Permit ()
END FlushPort;
(*

1.28 AttachPort()

PROCEDURE AttachPortx (mp : MessagePort; port : E.MsgPortPtr);
(*

Attaches an Exec message port to a handler.
*)

BEGIN (% AttachPort x)
ASSERT (mp # NIL, 132);
ASSERT (port # NIL, 132);
mp.sigBit := port.sigBit;
mp.port := port;

END AttachPort;

(*

1.29 DetachPori()

Events.mod 15/ 21

PROCEDURE DetachPort =«
(mp : MessagePort);

(*
Detaches a message port from a handler after flushing any remaining
messages.

*)

BEGIN (x DetachPort «)
ASSERT (mp # NIL, 132);
mp.FlushPort ();
mp.port := NIL;
mp.sigBit := -1;

END DetachPort;

(*

1.30 MakePort()

PROCEDURE MakePort =
(mp : MessagePort; name : ARRAY OF CHAR; priority : SHORTINT)
BOOLEAN;
(*
Creates an Exec message port and attaches it to the handler.
*)

VAR port : E.MsgPortPtr;

BEGIN (% MakePort «)
ASSERT (mp # NIL, 132);
port := EU.CreatePort (name, priority);
IF port # NIL THEN AttachPort (mp, port); RETURN TRUE
ELSE RETURN FALSE
END
END MakePort;
(*

1.31 DeletePort()

PROCEDURE DeletePort % (mp : MessagePort);

(*
Deletes a message port created with MakePort () and frees any resources
allocated to it.

*)

BEGIN (% DeletePort x)
ASSERT (mp # NIL, 132);
E.base.Forbid ();

mp.FlushPort ();
EU.DeletePort (mp.port);
E.base.Permit ();
mp.port := NIL;
mp.sigBit := -1

Events.mod 16/ 21

END DeletePort;
(*

1.32 DefaultHandler()

PROCEDURE* DefaultHandler
(ip : IdcmpPort; msg : I.IntuiMessagePtr)
INTEGER;
(*
The default handler for IntuiMessage classes that do not have a
specific handler provided.
*)

BEGIN (* DefaultHandler x)
RETURN Pass

END DefaultHandler;
(*

1.33 IdcmpPort Methods

OVERRIDDEN METHODS
Event handling

PROCEDURE (ip : IdcmpPort) HandleMsgx (msg) : INTEGER;
— Performs the action required for an IntuiMessage

NEW METHODS
Initialisation

PROCEDURE (ip : IdcmpPort) Initx ();
— Initialises an IdcmpPort object.

PROCEDURE (ip : IdcmpPort) SetupWindow* (window);
— Associates a handler object with an Intuition window.

PROCEDURE (ip : IdcmpPort) CleanupWindowx (window);
— Dissociates a handler object from an Intuition window.

PRIVATE METHODS

PROCEDURE DefaultHandler (ip, message) : INTEGER;
— Default handler for IDCMP events: does nothing.

1.34 HandleMsg()

PROCEDURE (ip : IdcmpPort) HandleMsg* (msg : E.MessagePtr) : INTEGER;
(*

This implementation assumes that any message received at an Intuiton

Events.mod

17/ 21

Window’s MsgPort is an IntuiMessage, an extension of an Exec

Message. Each IntuiMessage has a Class field, which indicates which
kind of event the IntuiMessage is reporting. The actual handling of the
message is delegated to one of the ip.HandleIdcmp () procedures,
depending on the value in the Class field.

The event type is indicated by the setting of a single bit in the Class
field. This gives a maximum of 32 possible event types, not all of which
are currently defined. The actual event is determined by searching
through the bits of the Class field until a set bit is found.

*)

VAR
intuiMessage : I.IntuiMessagePtr;
class : SET; flag : SHORTINT;

BEGIN (x HandleMsg x*)
(» Type cast message to an IntuiMessagePtr x)
intuiMessage := SYS.VAL (I.IntuiMessagePtr, msqg);

(# Get the Class field x)
class := intuiMessage.class;

(» Search for the event type and despatch to the appropriate handler x)
FOR flag := 0 TO 31 DO
IF flag IN class THEN
(x $N+ Turn on NIL checking just for the call x)
RETURN ip.Handle [flag] (ip, intuiMessage)
(x SN- *)
END
END;

RETURN Pass (x Default if no bit set in class x)
END HandleMsg;

(*

1.35 Init()

PROCEDURE (ip : IdcmpPort) Init* ();

(*
The initialisation task is to assign DefaultHandler to all of the
handlers in the handler table. This ensures that the receipt of an
unexpected message doesn’t ruin your day.

*)
VAR flag : SHORTINT;

BEGIN (* Init =)

FOR flag := 0 TO 31 DO ip.Handle [flag] := DefaultHandler END
END Init;
(*

Events.mod 18/ 21

1.36 SetupWindow()

PROCEDURE (ip : IdcmpPort) SetupWindow* (window : I.WindowPtr);

(*
This method is intended to be overridden by extensions of IdcmpPort
to take care of any processing required after the window is attached to
the handler but before it starts to process messages. One possible use
is for attaching Menus and Gadgets to the window.

*)

BEGIN (x SetupWindow =)
END SetupWindow;
(*

1.37 CleanupWindow()

PROCEDURE (ip : IdcmpPort) CleanupWindowx (window : I.WindowPtr);

(*
This method is intended to be overridden by extensions of IdcmpPort
to take care of any processing required after the window is detached
from the object. One possible use is for removing Menus from the
window.

*)

BEGIN (x CleanupWindow x)

END CleanupWindow;
(*

1.38 EventLoop Methods

NEW METHODS
Initialisation

PROCEDURE InitEventLoop* (el);
- Initialises an EventLoop obiject.

PROCEDURE AddSignalx (el, signal) : Signal;
- Add a Signal object to a EventLoop object

PROCEDURE RemoveSignal* (el, signal);
- Removes a Signal object from a EventLoop obiject.

Event Handling

PROCEDURE Loopx (el);
- Starts the event loop.

1.39 InitEventLoop()

Events.mod 19/ 21

PROCEDURE InitEventLoopx (el : EventLoop);

(*
Performs necessary initialisation for an EventLoop object. It simply
zeroes all fields.

*)

VAR index : INTEGER;

BEGIN (x InitEventLoop =)
ASSERT (el # NIL, 132);

el.sigBits := {};

FOR index := 0 TO NumSignals - 1 DO
el.signal [index] := NIL

END;

END InitEventLoop;
(*

1.40 AddSignal()

PROCEDURE AddSignalx (el : EventLoop; signal : Signal) : Signal;

(*
Adds a Signal object to an EventLoop object. The Signal must be fully
initialised first. If there is already a Signal for the same sigBit it
is returned; this allows Signals to be temporarily replaced and restored
with successive calls.

*)

VAR sigBit : SHORTINT; oldSignal : Signal;

BEGIN (% AddSignal x)
ASSERT (el # NIL, 132);
ASSERT (signal # NIL, 132);
sigBit := signal.sigBit;
oldSignal := el.signal [sigBit];
INCL (el.sigBits, sigBit);
el.signal [sigBit] := signal;
RETURN oldSignal

END AddSignal;

(*

1.41 RemoveSignal()

PROCEDURE RemoveSignalx (el : EventLoop; signal : Signal);
(*

Removes a Signal object from an EventLoop object.
*)

VAR sigBit : SHORTINT;

BEGIN (*» RemoveSignal x)
ASSERT (el # NIL, 132);

Events.mod 20/ 21

ASSERT (signal # NIL, 132);
sigBit := signal.sigBit;
IF el.signal [sigBit] = signal THEN
el.signal [sigBit] := NIL;
EXCL (el.sigBits, sigBit);
END
END RemoveSignal;
(*

1.42 Loop()

PROCEDURE Loopx* (el : EventLoop);

(*
Implements an event loop using multiple Signal objects. The loop
continues until all Signal objects have returned Stop or one has
returned StopAll.

*)

VAR
signalsReceived : SET; sigBit : SHORTINT; result : INTEGER;
signal : Signal;

BEGIN (x Loop =)
ASSERT (el # NIL, 132);
(» Loop while there are active Signals x)
WHILE el.sigBits # {} DO

(+ Wait for signal(s) to arrive =x)

signalsReceived := E.base.Wait (el.sigBits);
(# For each signal received... x)
FOR sigBit := 0 TO NumSignals - 1 DO

IF sigBit IN signalsReceived THEN

(+ Get the relevant Signal x)
signal := el.signal [sigBit];
ASSERT (signal # NIL, 132);

(* Handle the signal x)
result := signal.HandleSig ();

IF result = Stop THEN

(* Remove the Signal x)
el.signal [sigBit] := NIL;
EXCL (el.sigBits, sigBit)

ELSIF result = StopAll THEN

(» Exit the event loop x*)
el.sigBits := {}
END
END (x IF *)
END (x FOR =)
END (» WHILE)

Events.mod 21/21

END Loop;
(*

1.43 Module Initialisation

(# No initialisation required x)

END Events.
(*

	Events.mod
	Events
	Overview of Amiga events and the event handling classes
	Revision History
	Global Switches
	Imported Modules
	Description of Signal
	Using Signal
	An example of a class derived from Signal
	Description of MessagePort
	Using MessagePort
	Description of IdcmpPort
	Using IdcmpPorts
	An example of using an IdcmpPort object
	Description of EventLoop
	Using EventLoop
	An example of using an EventLoop object
	Signal Declarations
	MessagePort Declarations
	IdcmpPort Declarations
	Data Structures
	Signal Methods
	HandleSig()
	SimpleLoop()
	MessagePort Methods
	HandleSig()
	HandleMsg()
	FlushPort()
	AttachPort()
	DetachPort()
	MakePort()
	DeletePort()
	DefaultHandler()
	IdcmpPort Methods
	HandleMsg()
	Init()
	SetupWindow()
	CleanupWindow()
	EventLoop Methods
	InitEventLoop()
	AddSignal()
	RemoveSignal()
	Loop()
	Module Initialisation

