
ee

ee ii

COLLABORATORS

TITLE :

ee

ACTION NAME DATE SIGNATURE

WRITTEN BY August 30, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

ee iii

Contents

1 ee 1

1.1 main . 1

1.2 license . 1

1.3 credits . 2

1.4 introduction . 2

1.5 requirements . 3

1.6 installation . 3

1.7 customization . 4

1.8 preferences files . 4

1.9 completion files . 5

1.10 prefseditor . 6

1.11 pe general . 6

1.12 pe commands . 7

1.13 pe compiler . 7

1.14 pe global settings . 8

1.15 pe key assignments . 11

1.16 listkeys . 11

1.17 pe menu command hotkeys . 12

1.18 functions by name . 12

1.19 functions by class . 14

1.20 command line . 15

1.21 project . 15

1.22 traversal . 16

1.23 find . 17

1.24 edit . 18

1.25 settings . 19

1.26 tools . 20

1.27 block editing functions . 22

1.28 mouse operations . 23

1.29 contacting the author . 23

1.30 arexx functions . 24

1.31 arexx overview . 26

ee 1 / 28

Chapter 1

ee

1.1 main

EE V0.8 (beta)

Source Editor and
Development Environment

for the E Programming Language

Copyright (c)Barry Wills, 1994

License
Credits

Introduction
Requirements
Installation

Functions by Class
Functions by Name
ARexx Functions
Customization

Contacting the Author

1.2 license

Use EE at your own risk. If yer careful, it won’t chew off your arm. :)
If you use EE, you have to promise not to hold me legally liable (I’ll
commiserate with you, try to fix the problem, even abide a little verbal
abuse; but hey, let’s be realistic: whaddya want for free? :)

EE is copyright by me, Barry Wills. Do not modify the original archive
for redistribution. The only exception: BBS and other similar software
distributers may add their personal "EE was here!" readme files. If you
do this, please test the archive’s integrity before redistributing!

EE may not be distributed for a profit. If you plan to get rich from

ee 2 / 28

EE, I want a piece of it; so you must negotiate with me for my blessing.
Fred Fish has explicit permission to include EE in his archives. Any
distributers who provide a similar service, for a fee comparable to Fred
Fish’s, hereby have permission to distribute EE under these conditions.

1.3 credits

MANY, MANY THANKS TO THE FOLLOWING INDIVIDUALS WHOSE HELP AND/OR SOFTWARE
CONTRIBUTED GREATLY TO THE DEVELOPMENT OF EE:

Wouter van Oortmerssen - Amiga E, technical support, multitudinous
ideas, awesome E modules and sources, and beta-testing EE! (I’m
still convinced there’s more than one of him. :-) :-)

Dave Higginson - Multiple Windows info (especially his mweg.e, Multi-
Windows Eggsample, posted to the E mailing list), GadTools and
miscellaneous gadget help, various on-line info, beta-testing EE,
and an endless, never-boring supply of sideways faces! ;-)

Lionel Vintenat - tons of excellent suggestions, beta-testing EE, and
impressively complete bug reports!! :-)

Mark Langston - help resolving GadTools and miscellaneous gadget
problems!

Nico Francois - ReqTools library!

David Larsson - KingCON!

Michael G. Binz - AProf!

Martin Korndorfer - Magic Menus!

1.4 introduction

Source Editor and
Development Environment

for the E Programming Language

This release fixes several nasty bugs and oversights present in the
original distribution found in the E v3.0 demo distribution. Also added
are case-sensitive Intuition menu command hotkeys, correct handling of
dead keys, keyboard hilighting made more CED-like, speeded up display
updating and search-replace, added option to turn on/off smart indent.

EE is a multi-tasking, multi-windowing, OS 2.0 compliant, folding
source editor, designed with E, and E programmers in mind. It has
robust features, equally mouse and keyboard driven, which allow for
quick editing and traversal. Naturally, it has many features which
enhance the development of E programs, like compiling and running from
within the editor, EC error reporting, relocating the cursor at the
erroneous line, keyword/phrase lookup and completion, and more.

ee 3 / 28

Main features:

- Completely written in E :-)
- Multi-tasking;
- Multi-windows with hotkey switching and window selection listview;
- Custom assignment of any function to any qualifier/key combo;
- Smart indent;
- Choice of free-form cursor (goes anywhere on screen) .vs. stream-

oriented cursor (adheres to text, wrapping around at end and
beginning of lines);

- Custom fixed-width font support;
- Option to open on public screen(s) (with optional Default and

Shanghai modes);
- Fold on PROCs, OBJECTs, recognized comment, and hilighted block;

can be Cut-n-Pasted;
- Single- and multi-line comment and uncomment;
- Unlimited macro recording and playback;
- Compile with auto-save, asynchronous execution, and other options;
- Keyword and phrase completion--comes with dictionary file of E

function templates--just type function name and complete it; you’ll
now have the E function template in your source; two convenient
methods of completion provided; custom dictionaries supported, as
well as an unlimited number of dictionaries available simultaneously;

- Configurable/editable command slots, as well as the ability to pick
up hilighted text from the source for execution;

- Optional bottom scrollbar for those who like to have that extra
line of text at the bottom;

- Garbage on demand (or memory crisis); and other low-mem options;
- Many small things that add to comfort and productivity that won’t

be mentioned for the sake of space and attention span :-)
- Open/Visit/Fallback public screen options;
- Auto source backup; auto save before compiling;
- Case-sensitive menu command hotkeys (a la Intuition menus);
- Nice configuration GUI (thanks to Wouter for his easygui module!);

1.5 requirements

System Requirements and Recommendations

- Amiga E (if you wanna edit/compile E programs. :-)
- At least v37 (Kickstart 2.04) of the Amiga operating system.
- At least 512Kb free ram, 1Mb+ to edit and compile larger projects.
- At least gadtools.library v37.
- At least reqtools.library v38.693.
- AmigaDOS commands TYPE and COPY, in your path or made resident.
- Logical device T: mounted (preferably in RAM:).

1.6 installation

Installation

ee 4 / 28

The following files must exist in the specified directories
subordinate to the directory where the EE executable is located.
OS2.0+ programmers may recognize this location as "PROGDIR:". No ASSIGN
ADDs or PATH ADDs are necessary (although it may be desirable to place
the EE and PROGDIR:bin directories in your path).

- Properly configured settings file (defaults provided) in directory
PROGDIR:prefs; (location configurable; see Preferences Files);

- EE keyword completion file in PROGDIR:prefs; (location configurable
Completion Files);

- EE PrefsEditor program in PROGDIR;

If you uncompress EE and preserve the archived directory structure,
all you need to do is install reqtools.library in your LIBS: directory,
and the fonts to your FONTS: directory. Customization is possible, even
desirable (see Customization link "Customization"}). The included fonts E/11 ←↩

and blerk/11
and /9 are highly recommended.

1.7 customization

EE Customization

Preferences Files
Completion Files
PrefsEditor Program
Viewing Key Assignments

1.8 preferences files

EE Preferences Files

EE Preferences files store configurable information needed by EE at
startup.

Without a preferences file EE would be dead in the water. Rather than
store a hunk of default info in the frequently used EE executable, I
chose to put it in the less frequently used PrefsEditor program. If
you need to create a new Preferences file this can be done quite simply
via the PrefsEditor Program .

The title of this section implies that you can have and use more than one
Preferences file, and this is so. There are four methods for selecting
a Preferences file, two active and two passive:

- (active) a PREFS argument provided on the command line overrides the
passive methods;

- (passive) the current directory is searched for a file named
EE.prefs;

- (passive) the directory PROGDIR:prefs is searched for a file named
EE.prefs;

- (active) The "Load Prefs" function can be accessed after startup via

ee 5 / 28

the menu, a key assignment, and/or EE’s ARexx port; NOTE: the
following settings are frozen at startup and are not changed by
loading new Preferences file: 1) presence/absence of the bottom
scroller, 2) public screen preferences, and 3) foreground and
background colors;

SEE ALSO:
Command Template
Load Prefs Function
Assigning Keys
ARexx Overview

1.9 completion files

EE Completion Files

The file CompletionFiles exists in path PROGDIR:prefs. This file
consists of linefeed terminated strings. It was created with EE and
can be modified by EE. The contents of this file contains the path and
file names of the files that should be searched by the @(" Complete Block " ←↩

link "Tools"}
function.

The default CompletionFiles file list points to the files
PROGDIR:prefs/completions/E-Builtin-NoRtnVal and
PROGDIR:prefs/completions/E-Builtin.

The default completion files, like the default CompletionFiles file
list consist of linefeed terminated strings. The text of a completion
file may say anything (as long as it’s printable ascii). The max
allowable file size is virtually unlimited (i.e., only by AmigaDOS and
how long you’re willing to wait for a search). The files’ contents are
stored on disk during runtime, not in memory.

If you have already read the Complete Block function description, you
know that the Complete Block function searches the Completion file(s)
for the first matching occurrence of the hilighted text, and if found,
replaces the hilighted block with the entire line of text where the
match is found. You may edit the default files, or interchange your
own files. You must understand, however, that the search is case
sensitive, and that when hilighting your text you much chose enough
text to make the string unique, else you may suffer massive confusion
when EE insists on replacing the selection with an unexpected string.

If it helps your understanding of how to use this function, EE uses the
dos.library function Fgets() to read in the lines of text, and the E
function InStr() to check for a match.

With some thought, you can easily set up your file entries to be
unique and flexible. As a sample, the two default completion files
listed above contain the E builtin function templates. The former file
contains the function templates without return values, the latter
function templates with return-values. Functions with similar names
are arranged internally from shorter to longer (e.g., Dispose() before
DisposeLink(), String() before StringF()). Now, because of the way I

ee 6 / 28

arranged the default completion file list, if I hilight the word
"OpenS", it is replaced with:

OpenS(width, height, depth, sflags, title, taglist)

but if I hilight the word "=OpenS", it is replace with:

sptr:=OpenS(width, height, depth, sflags, title, taglist)

Another idea is to give "names" to lines of source code. For example,
a completion file entry could be the EasyRequestArgs() line from the
EReq.e example program, with a comment tag on the end of it:

EasyRequestArgs(0,[20,0,0,body,gadgets],0,args) ->EZREQ

then when you complete "EZREQ", you get the source in it’s place, and
the tag is just a comment.

1.10 prefseditor

EE PrefsEditor Program

In General
Commands
Compiler
Global Settings
Key Assignments
Menu Command Hotkeys

1.11 pe general

EE PrefsEditor: In General

The PrefsEditor program can be found in the directory PROGDIR:bin.

The PrefsEditor command template is ’FILE,PUBSCREEN’, where FILE is the
optional name of the Preferences file to edit, and PUBSCREEN is the
optional name of the public screen to visit.

If FILE is not provided, default Preferences settings are used. In this
case, the file is saved to T:EE.prefs if the ’Save’ button is used to exit
the program. A requester is posted to notify you of the creation of the
temporary file. It is up to you to manually copy it to a suitable
location for salvage.

If PUBSCREEN is not provided, the Workbench screen is used.

Three exit actions are available.

- Choose ’Cancel’ or the Close Window gadget to quit and discard changes.
- Choose ’Save’ to write the changes to the file specified on the command

line (or T:EE.prefs if no file is specified on the command line).

ee 7 / 28

- Choose ’Use’ if you invoked the Preferences editor from within EE and
only wish to use the new settings for the current session. Regardless
of the command-line and where the PrefsEditor was launched from, the
preferences will be written to file T:EE.prefs.

NOTE: PrefsEditor is a stand-alone utility, so you may run it from the
CLI. You can run PrefsEditor from the CLI (or other program-launching
utility) without affecting a currently running instance of EE.

NOTE: if you invoke the PrefsEditor from within EE and exit with the
’Use’ button, you can edit the current session’s settings by invoking the
PrefsEditor again from within EE. The changes will be written back to the
temporary file. If afterwards you decide to save the temporary changes,
you must manually copy T:EE.prefs to a suitable location. Don’t confuse
this tip with normal operation...this is just contingent upon you choosing
’Use’ when you really meant ’Save’.

1.12 pe commands

PrefsEditor: Edit Commands

EE provides 5 slots for commands which can be executed from within the
editor. Since the commands are executed via the exec.library function
SystemTagList(), you may set these to any valid string which will be
recognized by your configured Console (e.g., IO redirection).

1.13 pe compiler

EE PrefsEditor: Edit Compiler

Command

Enter the command line you would use to compile your project, omitting
the project’s filename. The filename will be supplied by EE. The
default is "EC". Another example is "EC SYM QUIET SOURCE=", assuming
EC is in your path, in the current directory, aliased, or made
resident(?).

You may specify the full pathname for EC.

Command is limited to 80 characters.

Save Before Compiling

Check this option if you want EE to save a modified project before
invoking the compiler.

Report Unreferenced

Check this option if you want EE to display EC’s reported "UNREFERENCED"
identifiers.

ee 8 / 28

1.14 pe global settings

PrefsEditor: Edit Global Settings

FG<->BG

Check this if you want to swap the default colors FG=0, BG=1.

Bottom Scroller

Check this if you want EE to attach a horizontal scroller to the bottom
border of its windows.

Find Case Sensitive

Check this if you want EE to start up in case-sensitive find mode.

Insert Mode

Check this if you want EE to start up in insert mode.

Backup

Check this if you want EE to backup your project file before saving a
modified project. Backed up files have the string ’.bak’ appended to
their names and are stored under the same directory as the project.
WARNING: 1) use foresight in naming your valuable backup files (i.e.,
don’t name project ’foo.e’ backup to ’foo.e.bak’; EE will overwrite
it if this option is turned on); 2) leave enough room in your project
filenames for the extension; your projects should be 26 characters
(including extension) long at most; if editing an EE backup file, it’s
backup file will be, for example, ’foo.e.bak.bak’; this should be
obvious.

This feature requires the AmigaDOS Copy command to be in your path,
aliased, or resident.

No Fold When Loading

Don’t fold a project upon loading it, even if has fold info.

WARNING: saving a project after loading in this fashion will lose all
of it’s fold info. Your only hope in such a case is to be using the
Backup option, or be fortunate enough to have an ARexx script that will
intelligently fold your project back up.

Free-form Cursor

Check this if you want EE to start up in Free-form Cursor mode. See
Free-form Cursor Mode.

Completions

The name of the Completion Files file list. (The file containing the
names of files to be searched by the @(" Complete Block " link "Tools"} ←↩

function.

ee 9 / 28

See also: Completion Files .

Public Screen Name

Enter the name of the public screen that EE will open and/or visit.
The default name is ’Workbench’.

Default

Check this if you want EE to become the default public screen at
startup. When other programs call LockPubScreen(NIL), the Default
Public Screen is locked. This option causes other applications to
that ask for the Default Public Screen in this fashion to lock the
EE screen. Many applications use this feature to decide which screen
their windows will open on.

Shanghai

Check this if you want EE to become a Shanghai screen at startup. When
other applications expect to open on the Workbench screen, this mode
causes them open on EE’s screen instead.

New

Check this if you want EE to attempt to open a new public screen at
startup. The screen name is the one you specify in the Public Screen
Name string gadget.

Visit

Check this if you want EE to visit the public screen specified in the
Public Screen Name string gadget. If New is checked and EE fails to
open the new public screen because a screen of that name is already
open (e.g., by another EE), EE will attempt to visit that screen. If
New is not checked and the named screen isn’t already opened, then
Visit will fail.

Fallback

Check this if you want EE to attempt to Fallback to the Workbench
screen if New and/or Visit public screen operations fail. Note: these
three options obviously take the precedence New, Visit, Fallback. If
one is missing, the next lower-precedence option is used. If Fallback
is missing and New and Visit fail, EE will abort.

Indent

Enter the number of spaces to insert by an Indent operation.

Tab

Enter the number of spaces to expand tabs when loading a file. The
default is 8.

Fold Extra Lines

Enter the number of blank lines to fold after a fold terminator. Useful

ee 10 / 28

for readability, i.e., if Fold Extra Lines is 1, the following unfolded
source:

PROC foo()
doFoo()

ENDPROC

PROC bar()
doBar()

ENDPROC

PROC hooHah() IS $F00D

...folds to:

>>PROC foo()
>>PROC bar()
PROC anotherServing() IS $F00D

There are two special values which affect folding of functions and
objects: -1 and -2.

-1 will fold all but the ENDPROC line, so the return values will remain
visible:

PROC wutsup()
lotsa_stuff()

ENDPROC this,that,theOther

...becomes:

>>PROC wutsup()
ENDPROC this,that,theOther

With a setting of -1, objects’ ENDOBJECT keyword are folded, and no
trailing blank lines are folded.

-2 will fold all but the ENDPROC line, the same as -1. The difference
is that objects’ ENDOBJECT keyword plus one blank line will be folded.

NOTE: comments are NOT blank lines, and therefore will disable the
Fold Extra Lines feature.

Win L, Win T, Win H, Win W

Window Left, Top, Height, and Width at startup.

Console Spec

The con specification string to use for opening a console as output.
For example: ’KCON:20/20/100/600/Mega Output Console/WAIT/AUTO/SCREEN’
NOTE: the SCREEN parameter MUST always be supplied, and MUST always be
last. The screen name should be left out since EE will automatically
use the public screen name specified in the Public Screen Name string
gadget (or the Workbench screen if EE ’falls back’).

Font Name, Size

ee 11 / 28

Just like it says. The font must be a black and white, fixed width,
non-scaled font, else it will screw up. Obviously, some fonts will be
better than others. The supplied E/11 and blerk/11 and 9 fonts are
provided for your reading bliss. :-)

1.15 pe key assignments

PrefsEditor: Edit Key Assignments

The "Assign Keys" gui is a pair of list views, the left containing all
the assignable functions. Click on a function to select it, the current
key combination assignments will be displayed in the list view on the
right.

After selecting a function with the mouse, you’re in edit mode. You can
assign the function to keys simply by typing key combinations. The key
combination names will be added to the right list view as they are typed.
Assignments may be removed by clicking with the mouse on the key
assignment item in the right list view.

Special: well, maybe not so special...you can assign the ’deadkeys’
(Alt-F thru Alt-K) by selecting ’Write Char’, then pressing those key
combinations. This is all that’s required to get ’deadkey’ accents in EE.

The small utility ListKeys has be provided to allow you to view what
functions are bound to your keys.

1.16 listkeys

The ListKeys Utility

This is a small and very simple CLI utility that will read an EE Prefs
file and display a list of keys that have functions bound to them.

Keys are listed as one of the combinations:

NONE keyname functionname
SHIFT keyname functionname
CTRL keyname functionname
ALT keyname functionname

RCOMMAND keyname functionname
LCOMMAND keyname functionname

where keyname is the alphanumeric name of the Vanilla ASCII code, and
functionname is the name of the function as they appear in the AssignKeys
gui of the PrefsEditor.

The command template is ’FILE/A,HEX/S,SHOWALL/S’ where:

FILE name of the Preferences file to examine;
HEX display the hexadecimal key value (default is alphanumeric);

ee 12 / 28

SHOWALL force display of keys bound to function "Write Char" (default
is NOT to show these bindings, which are usually numerous);

1.17 pe menu command hotkeys

PrefsEditor: Edit Menu Command Hotkeys

Very straightforward. Enter the character you want intuition to display
in the function’s menu item. This character is bound to the Right-Amiga
Command key and invokes the function when that key combination is
pressed. Since Intuition intercepts these key codes before they are
passed as Rawkeys, a character entered here overrides any assignment of
this key combination via the Key Assignments Editor .
Conflicts are not prevented by this program.

Conflicts between Menu Items are, however, prevented. Which is to say,
you can’t enter an "N" for menu items "New Window" and "Next Window"; the
latter attempted assignment will cause a requester to appear, and the
assignment will be ignored (even though the value appears to remain in the
gadget.)

EE’s menus are CASE-SENSITIVE. =) For instance, I like RCommand-e for
’Compile’, and Rcommand-E for ’Compile and Run’.

1.18 functions by name

EE Functions by Name

Backspace
Backup
Begin Macro
Beginning Of Line

Cancel Block
Cancel Macro
Clear
Clear Macros
Command 1
Command 2
Command 3
Command 4
Command 5
Comment
Compile
Compile and Run
Complete Block
Copy Block
Copy Block To Find String
Copy Block To Replace String
Cut Block

Delete

ee 13 / 28

Delete Left
Delete Line
Delete Right
Delete Word Left
Delete Word Right
Down
Duplicate Line

Edit Command 1
Edit Command 2
Edit Command 3
Edit Command 4
Edit Command 5
Edit Compile String
End Macro
End Of Line
Execute Macro

Find
Find Backward
Find Case Sensitivity
Find Next
Find Previous
Find Selected
Fold/Unfold

Goto Last Error
Goto Line

Ignore Fold Info When Loading
Indent
Insert Mode

Join Line
Jump Left
Jump Right
Jump To Bottom
Jump To Top

Left
Load Macros
Load Prefs

Make Default Public Screen
Make Shanghai Public Screen
Mark Block

New Window
Next Window

Open
Open Line
Open New Window

Page Down
Page Up
Paste Block

ee 14 / 28

Previous Window

Quit

Replace
Replace All
Replace Backward
Replace Next
Replace Previous
Replace Selected
Right

Save
Save As
Save Before Compiling
Save Macros
Scroll Down
Scroll Up
Set Tab Width
Set Trailing Blank Lines to Fold
Show Editor Info
Split Line

To Lower
To Upper
Top Of View

Undo
Uncomment
Up

Word Left
Word Right
Write Char

Zip Window

1.19 functions by class

EE Functions by Class

Editor Operations:
Command Line
Project
Traversal
Find
Edit
Settings
Tools
Block Editing Functions
Mouse Operations

Customization
Preferences Files
Completion Files

ee 15 / 28

PrefsEditor Program

1.20 command line

EE Command Line

EE’s Command Line has been tailored to provide adequate dynamic control
at startup, but also to avoid command line argument overkill.

Template FILE/M,L=LEFT/N,T=TOP/N,W=WIDTH/N,H=HEIGHT/N,
TAB/N,INDENT/N,SWAP=SWAPCOLORS/S,NOFOLD/S,
VISIT=VISITPUB/K, NEW=NEWPUB/K,FALLBACK/S,
FN=FONTNAME,FS=FONTSIZE/N,
PREFS/K,HORIZ=HORIZSCROLLER/S,?=HELP/S

Breakdown

FILE Name of file to load (multiple allowed)
L=LEFT Window leftedge (default 0)
T=TOP Window topedge (default 0)
W=WIDTH Window width (default screen width)
H=HEIGHT Window height (default screen height)
TAB Tab width (default 8)
INDENT Indent width (default 2)
SWAP=SWAPCOLORS Swap fg/bg colors (default 0/1)
NOFOLD Ignore fold info when loading file
VISIT=VISITPUB Visit named public screen, takes string

argument PubScreenName (case sensitive)
NEW=NEWPUB Open named public screen, takes string

argument PubScreenName (case sensitive)
FALLBACK Fall back to Workbench if Visit or New fail
FN=FONTNAME Specify fontname (e.g., E.font)
FS=FONTSIZE Specify fontsize (MUST accompany fontname!)
PREFS Get Preferences from path/filename
HORIZ=HORIZSCROLLER Attach horizontal scroller to bottom border
?=HELP Display command template

1.21 project

EE Project Management Functions

Function Name Description
------------- -----------

Clear* Abandon current window’s text, but do not close window.
Open* Abandon current window’s text and request another file

to load.
Open New* Open a new window and request a file to load. See note

1 for a tip.
New Window* Open a new window. See note 1 for a tip.
Save* Save current window’s text to the file named in the

ee 16 / 28

window’s title bar.
SaveAs* Save current window’s text to a file different than the

file named in the window’s title bar.
Quit* Abandon current window’s text and close the window.

* Function accessible via menu.

Note 1: when a new window is opened, it inherits the current path from
the window from which it was launched. You can take advantage of this
feature by switching to a window whose path is nearest to the directory
where you want to load or create your file. If you have monster paths
on your harddrive like me, you’ll appreciate not having to bash the
file requester to get to distant places from the startup directory all
the time. ;-)

1.22 traversal

EE Traversal Functions

Function Name Description
------------------ -----------

Left Move cursor left one character.
Right Move cursor right one character.
Word Left Move cursor left one word.
Word Right Move cursor right one word.
Jump Left Shift text right by one half screen width.
Jump Right Shift text left by one half screen width.
Beginning Of Line Move cursor to beginning of current line.

Repeated invocation toggles cursor between
leftmost non-blank character and column 1.

End Of Line Move cursor immediately after last character in
current line.

Down Move cursor down one line.
Up Move cursor up one line.
Scroll Down Scroll text down one line.
Scroll Up Scroll text up one line.
Page Down Scroll text up one full page.
Page Up Scroll text down one full page.
Jump To Bottom Go to last page of text.
Jump To Top Go to first page of text.
Goto Line* Go to specific line number.
Goto Last Error* Go to line number at which last compilation error

occurred. (If the erroneous line is within a
fold, this function positions the cursor at the
fold header. By repeatedly unfolding and
invoking this function you will eventually arrive
at the erroneous line.)

* Function accessible via menu.

ee 17 / 28

1.23 find

EE Find Functions

Function Name Description
----------------- -----------

Find Selected* Pick up text in currently hilighted block and
search forward for next occurrence.

Find* ** Request text and search forward for next
occurrence.

Find Backward* ** Request text and search backward for previous
occurrence.

Find Next* ** Continue most recent forward search.
Find Prev* ** Continue most recent backward search.
Replace Selected* Pick up text in currently hilighted block and

request replacement text; replace currently
hilighted text and search forward for next
occurrence. Note: there is no function by this
name. This action is inherent to ’Replace’.

Replace* Request search-text and replacement-text, search
forward for next occurrence of search-text,
replace it, then search again. This function will
pick up hilighted text and use it as search-text.

Replace Backwards* Request search-text and replacement-text, search
backwards for previous occurrence of search-text,
replace it, then search again. This function will
pick up hilighted text and use it as search-text.

Replace Next* *** Replace search-text under cursor with replacement-
text, then search for next occurrence.

Replace Prev* *** Replace search-text under cursor with replacement-
text, then search for previous occurrence.

Replace All* From current cursor location to end of text,
replace all occurrences of search-text with
replacement-text.

Copy Block To Find String
Pick up text in currently hilighted block and
place it in the search-text buffer for use in the
next search operation.

Copy Block To Replace String
Pick up text in currently hilighted block and
place it in the replacement-text buffer for use in
the next replace operation.

Case Sensitivity* Toggle between search case-sensitive and case-
insensitive.

* Function accessible via menu.

** Function will extend (or retract) a hilighted block.

*** A successful "Replace", "Replace Backwards", "Find", "Find
Backwards", or "Find Selected" must precede this operation. You
must have valid search-text in the buffer, else the find will fail
and nothing will be replaced. Also, the cursor must be at the
beginning of the search-text, else the function only performs a
find (safety feature).

ee 18 / 28

1.24 edit

EE Editing Functions

Function Name Description
----------------- -----------

Write Char Normally self-explanatory, but when a block of text
is selected, the character typed is searched for
(forward), and the block is extended up to and
including the typed character.

Open Line Move cursor down one line and insert a blank line.
Justify cursor with leftmost character of previous
line.

Delete Line Delete current line.
Dupe Line* Duplicate current line and insert it immediately

after.
Split Line Split current line at cursor location and insert

the splinter immediately after current line;
justify splinter with leftmost character of
parent line, leaving cursor at that location.

Join Line Join current line with next line, leaving cursor at
location of the joint.

Indent Similar in functionality to tabs, simply inserts
number of spaces required to position cursor at
next (multiple of IndentWidth)+1.

Back Space Move cursor left and delete character under cursor.
When cursor is in column 1, this function moves the
cursor up one line and performs a "Join Line".

Comment* Comment a hilighted block of text.
Uncomment* Comment a hilighted block of text.
Delete Delete character under cursor. When cursor is

beyond end of current line, this function performs
a "Join Line".

Delete Word Left Deletes all characters left of cursor until a
beginning of word is encountered. If the cursor
encroaches the top 1/3 of the view, the view is
automatically scrolled.

Delete Word Right Deletes all characters from character under cursor
until an end of word is encountered. If the cursor
encroaches the bottom 1.3 of the view, the view is
automatically scrolled.

Delete Left Deletes all characters left of cursor to beginning
of current line. If cursor is in column 1, the
current line is joined to the previously line.

Delete Right Deletes all characters from character under cursor
to end of current line.

To Upper* Changes case of a single character to upper. If
the character being converted is the last character
in the line, the cursor jumps to the next non-blank
character. If a block of text is hilighted, the
entire block of text is converted to uppercase.

To Lower* Changes case of a single character to lower. If
the character being converted is the last character
in the line, the cursor jumps to the next non-blank

ee 19 / 28

character. If a block of text is hilighted, the
entire block of text is converted to lowercase.

* Function accessible via menu.

1.25 settings

EE Settings Functions
(Configuring EE from Within the Editor)

Function Name Description
------------- -----------

Insert Mode* Toggle INSERT/OVERSTRIKE mode. Checked menu
item signifies INSERT mode.

Save Before Compiling*
Toggle SAVE/NOSAVE mode. Checked menu item
signifies SAVE FILE (if modified) before invoking
compiler.

Backup* Toggle BACKUP/NOBACKUP mode. Checked menu item
signifies BACKUP mode for <file> to <file>.bak
before saving.

Report Unreferenced* Toggle REPORT/SILENCE mode of EC warnings about
unreferenced variables. Checked menu item
signifies REPORT mode.

No Fold When Loading* Toggle REGARD/DISREGARD fold info when loading.
Checked menu item signifies REGARD mode.

Default Pub Screen* Make EE screen default public screen. Checked
menu item signifies that EE screen IS the
default public screen. When other programs call
LockPubScreen(NIL), the Default Public Screen is
locked. This option causes other applications to
that ask for the Default Public Screen in this
fashion to lock the EE screen.

Shanghai Pub Screen* Make EE screen a shanghai public screen. Checked
menu item signifies that EE screen IS a shanghai
public screen. When other applications expect to
open on the Workbench screen, this mode causes
them to open on EE’s screen instead.

Free-form Cursor* Toggle FREE-FORM/STREAM mode. Checked menu item
signifies FREE-FORM (page) mode. This affects
the behavior of the cursor. STREAM mode
restricts the cursor to the region of extent
text, and wraps around at beginning of line and
end of line. When scrolling, if the cursor comes
to rest beyond end of line, it is yanked to the
end-of-line position for that line. FREE-FORM
mode allows the cursor to roam wherever a
character may exist, even out to position 1024,
and even if there is no text out that far.

Fast File Loading* Fast file loading is twice as fast as normal file
loading. It is really only noticable when
loading large files. Normal loading is very

ee 20 / 28

memory efficient, while fast loading requires
memory more than twice the size of the file:
storage for the file buffer, plus storage for the
editor data structures and line buffers. The
buffer is freed when loading is complete. NOTE:
you cannot use fast loading for devices which
store compressed data and decompress the data
when it is read (XPK, EPU, CompressDisk) unless
the device can report the "virtual" size of the
file. Otherwise, a partial load will result.

Fold Extra Lines* Set number of blank lines to fold after keywords
ENDPROC and ENDOBJECT. NOTE: comments are NOT
blank lines, and therefore will disable this
feature. For an explanation of the special values
-1 and -2, see Global Settings .

Indent Width* Set indent width.
Tab Width* Set tab width (NOTE: Tab Width only matters when

loading files).
Select Font* Invoke fixed-font requester.
Load Prefs* Load key bindings from file.
Save Prefs* Save current key bindings to file.
Execute Macro* Execute the macro that is bound to a particular

key sequence.
Begin Macro* Create a new macro. You will be prompted to

Press the key sequence that will invoke playback
of the macro; then perform the operations you
want to record in the macro. Invoke End Macro to
terminate macro recording.

End Macro* Terminate macro recording and make macro available
for playback.

Cancel Macro* Abort the macro recording that is in progress.
Save Macros* Save all macros in the environment to a file.
Load Macros* Load macros into environment from a file. The

environment is cleared of any macros prior to
loading.

Clear Macros* Clear all macros from the environment.
Edit Command* This menu item has five subitems, each of which

invokes a string requester for its command. The
assignable function names are numbered 1-5. The
new values are used for the current editing
session only. To permanently change the values,
use the PrefsEditor .

* Function accessible via menu.

1.26 tools

EE Tools Functions

Function Name Description
------------- -----------

Fold/Unfold* The folding function has two ways of determining

ee 21 / 28

the boundaries of a fold: 1) fold the currently
hilighted lines of text; 2) fold the text existing
between the current line and the next forward
occurring end-of-fold keyword.

Keywords MUST begin in column 1. Keyword recogni-
tion is as follows:
1) if current line begins with "PROC" or "EXPORT

PROC", text is folded until next occurrence of
"ENDPROC", or end of text;

2) if current line begins with "OBJECT" or "EXPORT
OBJECT", text is folded until next occurrence of
"ENDOBJECT", or end of text;

3) lastly, text is folded from current line to next
occurrence of "->endfold", or end of text. This
keyword string MUST appear EXACTLY as it appears
here, or it won’t be recognized.

A fold is indicated by a "fold header", a line
flagged by the prefix ">>". Enfolded text is hidden
from searching, but fold headers can be searched
for.

A fold header(s) can be copied and pasted all or in
part, but it is otherwise protected against being
edited. A copied fold header does not take with it
a copy of the folded text; the header is pasted with
the prefix changed to "->".

An entire fold(s) can be cut and pasted one time;
all enfolded text is moved with the "fold header".
Subsequent pastings only paste the header with the
prefix changed to "->"; the enfolded text is not
duplicated.

Folds may be nested as deeply as desired.

Folds are saved as an ascii comment at the end of a
source file so as not to clutter the source when
viewed with other tools. Safeguards exist to handle
damaged fold info, but results are unpredictable
should this info become damaged. If damage occurs
you can use the command line option NOFOLD to tell
EE to ignore this info. This option is also avail-
able via menu, and assignable via the key binding
utility.

Next Window* Bring next EE window to front.
Previous Window* Bring previous EE window to front.
Complete Block* Search the Completion file list for a match of the

hilighted text, and replace the hilighted text with
its completion. See Block Editing Functions and
Completion Files .

Compile* Use the compile command string to invoke the E
compiler for the file in the current window.

Goto Last Error* Go to the line containing the error from the last

ee 22 / 28

compiler invocation. If the line is enfolded, the
cursor is placed at the fold header containing the
line. You can unfold text and invoke this command
repeatedly until the offending line is reached.

Execute* Open a console window and execute one of the five
command strings. If a block of text is hilighted,
the hilighted text is picked up and used by the
function. Commands are always displayed in a
string requester so you can edit them before
proceeding. Changes to a command are not retained
unless they are changed via the Edit Commands
function.

Show Editor Info* Show some pertinent information: EE Arexx port
name, EE public screen name.

* Function accessible via menu.

1.27 block editing functions

EE Block Editing Functions

Function Name Description
------------- -----------

Mark Block* Begin hilighting a block of text. If a block is
already being marked, the block is turned off.
Blocks can be marked via clicking and dragging
mouse.

Adjust Block Any editor traversal function will adjust a block
including Finds. The combination Shift-key+
Click-and-Drag mouse will also adjust a block.
Mouse and keyboard manipulation maybe be inter-
changed indefinitely. Typing a character will
extend a block forward up to and including the
next occurrence of the typed character (see
function Write Char).

Cancel Block Invoke function Mark Block a second time, or
invoke the function Cancel Block, which is
assignable via the key binding utility.

Cut Block* Extract hilighted text and store temporarily in a
"cut buffer".

Copy Block* Copy hilighted text and store temporarily in a
"cut buffer".

Paste Block* Insert contents of "cut buffer" into text.
Copy Block To Find String

Pick up text in currently hilighted block and
place it in the search-text buffer for use in the
next search operation.

Copy Block To Replace String
Pick up text in currently hilighted block and
place it in the replacement-text buffer for use in
the next replace operation.

Auto Cut Hilighted block of text is automatically cut when

ee 23 / 28

an editing function (Backspace, Delete, Paste,
etc.) is invoked. Block can be retrieved using
the Undo function. See note below.

Undo* See note below.
Complete Block* Complete Block Usage Completion Files

* Function accessible via menu.

Note: functions Auto Cut and Undo are related in the way of Cut Block
and Paste Block. A major consideration is that separate storage is
used for each of these two classes of clippings. Consequently, you can
Region Cut a region and Auto Cut (via the backspace key, or whatever)
another region, and then Region Paste and Undo as often as desired...
very handy in cases requiring mildly complex duplication of text. In
addition, complex deletions (i.e., Delete Line, Delete Word Left, Delete
Word Right, Delete Left, and Delete Right) are placed in the Undo
buffer, and can therefore be Undone as long as no other Auto Cut
operations have been performed. NOTE: Auto Cut does not work for the
function Write Char .

1.28 mouse operations

These are all fairly intuitive,
but just in case...

Function Name Description
------------- -----------

Relocate Cursor Click.
Page Up/Down Click in groove above/below vertical scroller.
Scroll Up/Down Click and drag vertical scroller, or click

scroller gadgets. Also click and hold on top or
bottom border of window.

Shift Left/Right Click in groove left/right of horizontal scroller.
Scroll Left/Right Click and drag horizontal scroller. Also click

and hold on left or right border of window.
Select Block Click and drag.
Select Word Double click (Not yet implemented).
Select Line Triple click (Not yet implemented).
Select With Scroll Click in window and drag onto any of the four

window borders.
Adjust Region End Click and drag while holding shift key.
Zip Window Quickly resize window by clicking on the ZOOM

gadget. This function is also assignable via the
key binding utility in the PrefsEditor.

1.29 contacting the author

QUICK: you already know that. :-)

ee 24 / 28

1.30 arexx functions

(INCOMPLETE - Still need to update changes and describe arguments/return values ←↩
.)

EE ARexx Functions

OVERVIEW

COMMAND NAME ABBREV
--------------- ------------
BackSpace BACKS
Backup BACKU (Toggle)
BeginMacro 2! BEGINM
BeginningOfLine BEGINN

CancelBlock CANC
Clear 1,2! CLEA
Cmd1 1! CMD1
Cmd2 1! CMD2
Cmd3 1! CMD3
Cmd4 1! CMD4
Cmd5 1! CMD5
Comment 1! COMM
Compile 1! COMPILE
CompileAndRun COMPILEA
CompleteBlock 2! COMPLETE
CopyBlock 2! COPYBLOC
CopyToFindString 2! COPYTOFI
CopyToReplaceString 2! COPYTORE
CursorDown CURSORDO
CursorLeft CURSORLE
CursorRight CURSORRI
CursorUp CURSORUP
CutBlock 2! CUTB

DeleteChar DELETECH
DeleteLeft DELETELE
DeleteLine DELETELI
DeleteRight DELETERI
DeleteWordLeft DELETEWORDL
DeleteWordRight DELETEWORDR
DuplicateLine DUPE

EditPrefs EDIT
EndMacro 2! ENDM
EndOfLine ENDO
ExecuteMacro 2! EXEC

Find 1,2! FIND ARG1=str 3!
FindBackward 1,2! FINDB ARG1=str 3!
FindCaseSensitivity 1,2! FINDC (Toggle)
FindNext 1,2! FINDN
FindPrevious 1,2! FINDP
FindSelected 1,2! FINDS

ee 25 / 28

Fold FOLD
FoldExtraLines 1,3! FOLDE

GetChar GETC RETURN [1]:CHAR
GetString 4! GETS ARG1=len, RETURN [len]:CHAR
GetWord GETW RETURN [?]:CHAR
GotoColumn 4! GOTOCO ARG1=col
GotoLastError GOTOLA
GotoLine 2! GOTOLI
GotoBottom GOTOBO
GotoTop GOTOTO

Indent INDE
InsertMode INSE (Toggle)

JoinLine JOIN
JumpLeft JUMPL
JumpRight JUMPR

LoadPrefs 1,2! LOAD ARG1=name 3!
LockWindow 2! LOCK

MakeDefaultPublicScreen MAKED (Toggle)
MakeShanghaiPublicScreen MAKES (Toggle)
MarkBlock MARK
MoveWindow 3! MOVE

NewWindow NEWW
NextWindow NEXT
NoFoldWhenLoading 3! NOFO (Toggle)

Open 1! OPEN
OpenLine OPENL
OpenNew 1! OPENN

PageDown PAGED
PageUp PAGEU
PasteBlock PAST
PreviousWindow PREV
PutChar 3! PUTC
PutLine 3! PUTL
PutString 3! PUTS

Quit QUIT
QuitAll 3! QUITA

Replace 1,2! REPLACE
ReplaceAll 1,2! REPLACEA
ReplaceBackward 1,2! REPLACEB
ReplaceNext 1,2! REPLACEN
ReplacePrevious 1,2! REPLACEP
ReplaceSelected 1,2! REPLACES

Save 1,2! SAVE
SaveAs 1,2! SAVEA
SaveBeforeCompiling SAVEB (Toggle)
ScrollDown SCROLLDO

ee 26 / 28

ScrollUp SCROLLUP
SetCmd1 1! SETCMD1
SetCmd2 1! SETCMD2
SetCmd3 1! SETCMD3
SetCmd4 1! SETCMD4
SetCmd5 1! SETCMD5
SetCompileCmd 1! SETCOMP
SetIndentWidth 1! SETI
SetTabWidth 1! SETTA
ShowEditorInfo SHOW
SizeWindow 3! SIZE
SplitLine SPLI

ToLower TOLO
ToUpper TOUP
TopOfView TOPO

Undo UNDO
Uncomment 2! UNCO
UnlockWindow UNLO

WordLeft WORDL
WordRight WORDR

ZipWindow ZIPW

?Column ?COL RETURN col
?DefaultPublicScreen ?DEF RETURN bool
?Filename 3! ?FIL RETURN [?]:CHAR
?FindCase ?FIN RETURN bool
?Folded 3! ?FOLDED RETURN bool
?FoldExtraLines ?FOLDEX RETURN BOOL
?IndentWidth ?IND RETURN width
?InsertMode ?INS RETURN bool
?Line ?LIN RETURN lin
?Modified 3! ?MOD RETURN bool
?NoFoldWhenLoading 3! ?NOF RETURN bool
?PathAndFilename 3! ?PAT RETURN [?]:CHAR
?PubScreenName 3! ?PUB RETURN [?]:CHAR
?ShanghaiPublicScreen ?SHA RETURN bool
?TabWidth ?TAB RETURN width

Footnotes:
1! Still need to circumvent requesters
2! Need to add code to return warnings
3! Not yet implemented
4! Need bounds checking on ARGn

1.31 arexx overview

EE Arexx Overview

BRIEF

ee 27 / 28

A valid ARexx script skeleton is:

/* ARexx script skeleton: */
ADDRESS EE.0
OPTIONS RESULTS
’lockwindow’
/* ARexx code and EE commands... */
’unlockwindow’

This sets up a rendesvous with instance 0 of EE, locks the active
window, performs actions, then unlocks the window. A virtually
unlimited number of instances of EE may run concurrently, named EE.0,
EE.1, EE.2, ... You can find the port name of an instance of EE by
selecting the ’Show Editor Info’ menu item in the ’Tools’ menu.

EE ARexx commands are parsed using the dos.library function ReadArgs().
The general command template is ’CMD/A,ARG1,ARG2,ARG3,REP=REPEAT/K/N’.
Commands may be abbreviated, may take arguments (including a repetition
specifier), and may return a Result String, all in accordance with
their descriptions in section ARexx Functions .

RENDESVOUS WITH EE’s AREXX PORT

EE’s ARexx port name follows the naming convention EE.x, where the name
extension ’x’ is a number starting with 0 and continuing to the maximum
integer the computer will support. Each instance of EE will take the
lowest available digit as it’s name extension. You must establish
contact with an EE ARexx port, by using the following line in your
script:

ADDRESS EE.x

where, once again, ’x’ is the number which corresponds to the instance
of EE. You can find EE’s ARexx port name by selecting the ’Show Editor
Info’ menu item in the ’Tools’ menu.

INITIATING AN AREXX COMMAND SESSION

An ARexx command session must be initiated by issuing the command
’lockwindow’. This tells EE to hold the active window, ignoring all
events except those coming from it’s ARexx port. If your script has
locked the active window, then issues a window-related command
(’newwindow’, ’opennew’, ’nextwindow’, ’previouswindow’, or
’closewindow’) the lock is transferred to the succeeding window.
(NOTE: AutoPoint and other SunMouse-type utilities automatically
change EE’s active window, and hence EE’s active project. This is not
surprising. Therefore, you must take care not to inadvertently activate
another window with the mouse if switching to the shell to execute your
ARexx script. Locking the window precludes any such problems during
script execution, but it provides no protection prior to locking the
window!)

(*** Maybe I should add a menu item to lock the current window.)

ee 28 / 28

TERMINATING AN AREXX COMMAND SESSION

An ARexx command session must be terminated by issuing the command
’unlockwindow’. This tells EE to release the active window and return
to normal event processing. NOTE: the ’unlockwindow’ command does not
necessarily have to be issued in the same script as the ’lockwindow’
command. You could very well have one script to lock, one to unlock,
and a collection of scripts that just perform actions on an already
locked window.

ABOUT EE AREXX COMMANDS

Commands are not case sensitive.

The significant length of a command (it’s abbreviation) is determined
by the number of letters required to make a command name unique. This
is a side-effect of the method used to parse the command name. It’s
your choice to take advantage of the abbreviations. But note well that
in a future release if ARexx commands are added whose abbreviations
clash with existing abbreviations, your scripts may become obsolete
because of the need to lengthen an abbreviation. Something like this
may happen if you use the full name, anyway, but it is not as likely.

Commands may or may not take arguments. The number and types are
indicated for each command listed in the section ARexx Functions .
EE’s command parser is the dos.library function ReadArgs(), so it
should be no surprise that commands take on the form of a CLI command-
line.

The general command template is ’CMD/A,ARG1,ARG2,ARG3,REP=REPEAT/K/N’,
where: CMD is always required; ARG1, ARG2, and ARG3 are required only
in the context of a particular command; and REPEAT is the number of
times to repeat the command, e.g., ’cursorright REP=20’.

As in CLI command-lines, you may optionally specify the name of the
argument, e.g., ’cmd=writestring rep=5 arg1="ha"’.

Note that the template dictates that the keyword REP or REPEAT must
always accompany the repetition argument. the REP argument is honoured
by almost every command, but is obviously only useful with certain
commands. For example, it makes sense to use REP with ’cursorleft’,
but not with ’gotoline’ (how many times do you want to go to that line,
ay? :-) REP is treated as 1 if omitted. REP less than 1 is usually
not permitted, and is treated as 1. If a command allows REP=0, it will
be indicated in the section ARexx Functions .

Some commands return a Result String. This is indicated in the section
ARexx Functions .

	ee
	main
	license
	credits
	introduction
	requirements
	installation
	customization
	preferences files
	completion files
	prefseditor
	pe general
	pe commands
	pe compiler
	pe global settings
	pe key assignments
	listkeys
	pe menu command hotkeys
	functions by name
	functions by class
	command line
	project
	traversal
	find
	edit
	settings
	tools
	block editing functions
	mouse operations
	contacting the author
	arexx functions
	arexx overview

