textfield_gc

textfield_gc

] COLLABORATORS
TITLE :
textfield_gc
ACTION NAME DATE SIGNATURE
WRITTEN BY August 30, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

textfield_gc iii
1 textfield_gc 1
1.1 textfield_gc.doc oL e 1
1.2 textfield.gadget/textfield.gadget L 1
1.3 textfield.gadget/ TEXTFIELD_GetClass 0 i it e e e e e e e 17

textfield_gc 1/17

Chapter 1

textfield _gc

1.1 textfield_gc.doc

textfield.gadget ()
TEXTFIELD_GetClass ()

1.2 textfield.gadget/textfield.gadget

NAME
textfield.gadget —— multi-line text entry BOOPSI object (V2)

LEGAL
textfield.gadget is © 1994 Mark Thomas
All rights reserved.

FUNCTION
The textfield class allows you create an area on your screen for text
entry. The class supports a number of features including unlimited
or limited size text entry, specifying the font and style to use,
specifying the colors for different parts (text, background, and
lines), two types of borders (with option to invert the borders for a
total of 4 types of borders) or no border, text left/center/right
justification, vertical centering, IntuiText labels, attached Images,
line spacing, limited character acceptance, insertion or block cursor,
cursor blinking speed or no blinking, read-only mode, modified buffer
flag, lined paper, cut/copy/paste/erase while editing or program-
matically, undo buffer, and settable word delimiter characters for
word wrapping.

SIZE ISSUE

The textfield class gadget should be used for relatively small areas
where you want to allow text entry. Typically a size below 320 x 200
is a fairly reasonable limit, but larger sizes will work. 1In other
words it is not intended to be a whole editor like Ed. Please note
that the vertical size has more affect on speed than the horizontal
size. Many people have ignored the size issue in previous versions,

textfield_gc 2/17

and it doesn’t seem to have caused problem. I keep this here until
the day I can really optimize the gadget.

PROGRAMMING LANGUAGE

This gadget is written for a C language interface and is that way
simply because the Amiga development is geared more towards the C
language than any other. This does not mean that the gadget cannot be
used with another language. In particular, support for Oberon is
given in the form of two mod files. One file, TextField.mod provides
the actual interface to the gadget class. It can be compiled and
linked into an Oberon project. The other, TestClass.mod is a sample
program, similar to the C version, that tests the class and shows how
to use the class. Thanks goes to Stefan for taking the effort to
convert the files.

If you use C, the important thing to know is that you need to include
the header file <gadgets/textfield.h>. And depending on what you do

you may need to include some other files: <intuition/gadgetclass.h>,

<intuition/classes.h>, <intuition/classusr.h>, <intuition/icclass.h>,
<intuition/imageclass.h>, <utility/tagitem.h>.

HOW TO OPEN THE TEXTFIELD GADGET LIBRARY (for non-SAS/C 6.50+ users)

To use the class you must open the "textfield.gadget" library like so:
OpenLibrary ("gadgets/textfield.gadget", 0). If that was successful,
then you need to get the class pointer with the TEXTFIELD_GetClass ()
function. You do not have to check to make sure that the pointer
returned by TEXTFIELD_GetClass() 1is valid (see TEXTFIELD_GetClass
description). You do not have to return the pointer with any
function, just do not use the pointer after you close the
"textfield.gadget" library.

Here’s a quick guide:

struct Library *TextFieldBase;
Class xTextFieldClass;

TextFieldBase = OpenLibrary ("gadgets/textfield.gadget", 0)
if (TextFieldBase) {
TextFieldClass = TEXTFIELD_GetClass();

/* use the class =/

TextFieldClass = NULL;
Closelibrary (TextFieldBase) ;

HOW TO OPEN THE TEXTFIELD GADGET LIBRARY (for SAS/C 6.50+ users)

If you use SAS/C 6.50 or greater, then you can use the TextFieldAuto.c
source file provided in the source draw to have the library open
automatically at startup, and close automatically at termination so
that you will not have to take care of these yourself. I highly

textfield_gc 3/17

recommend using this feature. The file makes two variables available
to the client:

extern struct Library *TextFieldBase;
extern Class *TextFieldClass;

Starting in main () these varaibles will automatically be defined to
have the library base and the class pointer. If the library fails to
open, SAS/C’s auto-open feature will close down the program with a
standard Amiga requester telling the user what happened.

NO PUBLIC CLASS NAME

Future versions of the textfield.gadget intend to offer a public class
name that you can use, but that will have to wait until (or if)
Commodore or CATS return from the dead since I have to register the

class name. At which time that a public class name is offered, both
the old TEXTFIELD_GetClass () and the class name can be used with the
NewObject () function so that old and new programs will work.

WORKS ON OS 2.04 AND UP

The class will work on OS 2.04 and up, but for 0S 2.04 through 2.1
there is no standard place to put .gadget libraries, so on these
systems the gadget should be installed in a drawer named "Gadgets" in
the same directory of the program that uses it. See the example
program on how to open the class. For O0S 3.0 and up, just install
the textfield.gadget file in "SYS:Classes/Gadgets" like normal.

COMPARISON TO STRING GADGET

Unlike the Amiga’s string gadget, you get a gadget up message from
this gadget when you hit the right mouse button, or either Amiga keys
and the right alt keys pressed together.

GADGET GRAPHIC ELEMENTS SUPPORTED

This gadget does support the GA_Image tag for rendering a linked list
of images attached to the gadget. Borders structures are not
supported. (Complain if you want it.)

As of version 2.0 the gadget also supports GA_IntuiText also. This
means this gadget will render a linked list of IntuiText structures.
Note that GA_Text and GA_LabelImage are not supported. (Like above,
complain if you want it.)

This may or may not help you, but the render order for the elements of
this gadget is as follows:

Border (1if enabled)
Lines of text
Image (from GA_Image)

IntuiText (from GA_IntuiText)

textfield_gc 4/17

So, images do overwrite borders and the lines of text. Also note that
the gadget will render at least one line of text, and at least one
character per line, so restrict the width and height if this is a
problem.

IMPORTANT NOTES ON ACCESSING THE BUFFER
You must follow these rules or bad things can happen.

The buffer pointer returned by TEXTFIELD_Text with the get method is
read only. You must not modify the buffer at any time.

The buffer pointer returned by TEXTFIELD_Text with the get method is
valid between any of the following:

OffGadget ()
valid
OnGadget ()

GA_Disabled, TRUE
valid
Disabled, FALSE

TEXTFIELD_ReadOnly, TRUE
valid
TEXTFIELD_ReadOnly, FALSE

Anytime you are outside all of the above situations, the pointer is
invalid and is guaranteed to change. In fact you will get a NULL
pointer if you are outside all of the above situations.

The size of the buffer you have can be obtained by issuing a get
method of TEXTFIELD_Size on the gadget inside the above situations.
And if you get a size of 0, then you must not reference the pointer
that is returned because it is NULL. Be very careful to never
reference past the size given. The buffer is not NULL terminated.
In C, that’s buffer[0] through buffer[size - 1].

CHARACTERS ALLOWED IN THE BUFFER

The text you get from TEXTFIELD_ Text only contains values from 0x0a,
0x20 - 0x7f, and 0xal0 - Oxff. In other words you get the printable
characters, plus "\n’. ©No tabs are supported for now.

When characters are sent to the gadget, either by the application or
by the user, only the characters listed above are allowed in. You can
also make further restrictions with TEXTFIELD_AcceptChars and
TEXTFIELD_RejectChars. There is one other character that is allowed
in, 0x0d, but it is converted to 0x0Oa for you. When you read the
buffer, it will return only OxOa characters.

CHANGING ATTRIBUTES

textfield_gc 5/17

When setting attributes, the gadget will always render the changes,
except i1f the gadget’s geometry is changed, in which case it will
return a non-zero value to let you know changes need to be rendered by
refreshing the gadget.

A geometry change means that the gadget moves in the window.
Specifically the following attributes cause the geometry to change:

GA_Top, GA_Left, GA_Width, GA_Height, GA_RelWidth, GA_RelHeight,
GA_RelBottom, GA_RelRight.

Here’s how to handle this inside an application.

if (SetGadgetAttrs (gadget, window, requester, ...)) {
/* gadget needs rendering =*/
RefreshGList (gadget, window, requester, 1);

MOVING OR SIZING THE GADGET

If you want to move the gadget or change its size you should take note
of the section above on changing attributes. In addition, the source
file TestClass.c in the TestClass example shows how to move the gadget
or change its size. You should clear out the old position, then set
the new position and size, and finally refresh the gadget.

APPLICABILITY IN THE TAGS SECTION

In the TAGS section there is a statement with each attribute called
applicability. It consists of a letters inside parentheses, like
(ISGNU) . These are standard BOOPSI letters that tell you which
standard methods the attribute can be used. Here’s what the letters
refer to (see the BOOPSI reference in the RKRM: Libraries for further
information) :

I - OM_NEW (initializable)

S — OM_SET (settable)

G - OM_GET (gettable)

N - OM_NOTIFY (is passed in gadget’s notify message)
U - OM_UPDATE (updatable)

SETTING ATTRIBUTES

Some of the attributes cause others to not work properly. Do not get
discouraged. This only applies when sending then in one OM_SET
method. It is unavoidable in the current release, so if you are
seeing things not work right, or in particular if a later tag works
but a former one does not, then split the attributes among two calls.
The gadget is set up so that later tags have precedence over former
tags. This particularly applies to attributes that change the cursor
position and scrolling (changing top and such).

UNDO

textfield_gc 6/17

The undo function is implemented as an alternate paste buffer. In
certain situations list below text will be copied into an undo buffer.
When the undo command is issued, the text in that buffer is pasted to
the current cursor position. It does not really undo anything, it
just saves otherwise lost text. When the undo is actually performed,
the undo buffer becomes cleared so that you cannot undo the same text
multiple times.

List of places where text is saved in the undo buffer:

— If you hit BACKSPACE or DELETE while some text is marked, the marked
text is placed in the undo buffer before the text is deleted.

— If you hit SHIFT BACKSPACE or DELETE, the text that is deleted is
placed in the undo buffer.

- If you hit ALT BACKSPACE or DELETE, the word that is deleted is
placed in the undo buffer.

— If you hit CTRL X, the line that is deleted is placed in the undo
buffer.

- If you type a character while some text is marked, the marked text
is placed in the undo buffer before the text is delete.

— When you perform a normal paste while text is marked, the marked
text is placed in the undo buffer before it is deleted and the paste
occurs.

- If you perform an erase (RAMIGA E or programmatically), the whole
buffer is placed in the undo buffer before it is deleted.

DOCS FOR USERS

You can mark text for cutting, copying, and erasing by simply clicking
and dragging. Hitting alphanumeric keys replaces the text that is
highlighted. Hitting cursor keys moves you to the front or end of the
highlighted text.

While you drag to scroll, the farther away from the gadget your mouse
pointer is, the faster the gadget will scroll.

For key sequences, the Amiga Style Guide was followed. Anywhere the
undo buffer is mentioned, the statement is only valid if the UndoStream
is supplied (see tag section below).

Key Sequence Function

_______ IaE Activate next gadget (if GA TabCycle)
SHIFT TAB Activate previous gadget (if GA_TabCycle)
SHIFT CURSOR UP Move to the top line in the current page, or

scroll up one page if cursor is on top line

textfield_gc

7/17

SHIFT

CTRL
SHIFT

CTRL
SHIFT

SHIFT

SHIFT

CTRL

CTRL

ALT

ALT

ALT

ALT

ALT

ALT

CTRL

RAMIGA

RAMIGA
RAMIGA

RAMIGA

RAMIGA

RAMIGA

CURSOR

or
CURSOR

or
CURSOR

DOWN

RIGHT

LEFT

BACKSPACE

DELETE

CURSOR

CURSOR

CURSOR

CURSOR

CURSOR

CURSOR

UP

DOWN

RIGHT

LEFT

UP

DOWN

BACKSPACE

DEL

Move to the bottom line in the current page,
or scroll down one page if cursor is on top
line

Move to the right end of the current line

Move to the left end of the current line

Delete all text to the left of cursor on the
current line

Delete all text to the right of the cursor
on the current line (in block cursor mode
this also includes the highlighted
character)

Move to the top line of the text

Move to the bottom line of the text

Move to the next word (using the delimiter
characters provided by the programmer)

Move to the previous word (using the
delimiter characters provided by the
programmer)

Move to first character in gadget

Move to last character in gadget

Deletes the word to the left of the cursor
starting at the current cursor position

Deletes the word to the right of the cursor
starting at the current cursor position

Deletes the whole line that the cursor is on
Switch to left justification

(if TEXTFIELD_UserAlign is set)

Switch to center justification

(if TEXTFIELD_UserAlign is set)

Switch to right justification
(if TEXTFIELD_UserAlign is set)

Erase all text in gadget (saved in undo
buffer) (no read-only)

Paste text from clipboard to current cursor
position (no read-only)

textfield_gc 8/17

RAMIGA A Mark all text
RAMIGA U Undeletes (pastes) the last block of text
marked, or recover from RAMIGA E

(no read-only)

When text is highlighted the following keys have functions:

BACKSPACE Erase marked text (saved in undo buffer)
DEL Erase marked text (saved in undo buffer)
RAMIGA X Cut marked text to clipboard (no read-only)
RAMIGA C Copy marked text to clipboard
RAMIGA V Replace marked text with text from

clipboard (save marked text in undo
buffer) (no read-only)

(any text key) Replace marked text with that character
TAGS
GA_Left (WORD) —-- Specifies the left edge of the gadget.
GA_Top (WORD) —-- Specified the top edge of the gadget.
GA_Width (WORD) —-- Specifies the width of the gadget. If a border is

chosen, it will be rednered within this wvalue.

GA_Height (WORD) -- Specifies the height of the gadget. If a border
is chosen, it will be rendered within this value.

GA_RelRight (WORD) -- Specifies the gadget as being relative to the
right border of whatever the gadget is attached to. See the
BOOPSI Class Reference.

GA_RelBottom (WORD) —-- Specifies the gadget as being relative to the
bottom border of whatever the gadget is attached to. See the
BOOPSI Class Reference.

GA_RelWidth (WORD) -- Specifies the gadget as being relative to the
width of whatever it is attached to. See the BOOPSI Class
Reference.

GA_RelHeight (WORD) —-- Specifies the gadget as being relative to the
height of whatever it is attached to. See the BOOPSI Class
Reference.

GA_Image (struct Image %) ——- Pass a pointer to a linked list of images
and this class will render them relative to the gadget’s upper
left corner. See rendering order above.

GA_IntuiText (struct IntuiText) —-- Pass a pointer to a linked list

of IntuiText structures and this class will render them relative
to the gadget’s upper left corner. See rendering order above.

textfield_gc 9/17

(V2)

GA_Disabled (BOOL) —-- TRUE disables the gadget, not allowing input,
and FALSE enables the gadget for input. When the gadget is
disables, it usually is ghosted, see TEXTFIELD_NoGhost for
other conditions.

GA_TabCycle (BOOL) —-- Turns on tab cycling. See the BOOPSI Class
Reference.

TEXTFIELD_Text (char %) —-- This set/replaces text. NULL means no
change. To set the buffer empty pass "" (pointer to empty
string, not a NULL pointer). When you use it to get text see
special conditions under IMPORTANT above. The cursor position
is reset to the beginning (0). The pointer passed must be a
pointer to a NULL terminated string of characters. If you
have read only mode turned on with TEXTFIELD_ReadOnly, this
attribute still works.

Default for this tag is NULL. Applicability is (ISG U).

TEXTFIELD_InsertText (char x) —-- This inserts text at current cursor
position and move the cursor to the end of the inserted text.
You must pass a NULL terminated pointer to characters. If you
have read only mode turned on with TEXTFIELD_ReadOnly, this
attribute still works.

Applicability is (S 1U).

TEXTFIELD_DeleteText (ULONG) —-—- This deletes the number of characters
you pass in the data field, starting at the current cursor
position. This attribute works even if read only mode is
turned on with TEXTFIELD_ReadOnly.

Applicability is (S U). (V2)

TEXTFIELD_TextFont (struct TextFont %) —— Sets the font for the gadget
to use. Pass the object a pointer to a TextFont structure.
This supersedes TEXTFIELD_TextAttr below. Please do not close
this font while the gadget is using it. :) The default font
is your screen’s current font.

Default for this tag is NULL. Applicability is (IS 1U).
TEXTFIELD_TextAttr (struct TextAttr %) —-—- Sets the font the gadget is

to use. Pass the gadget a pointer to a TextAttr structure.

This is superseded by TEXTFIELD_TextFont. The default font is

the screen’s current font.

Default for this tag is NULL. Applicability is (IS U).
TEXTFIELD_FontStyle (ULONG) —-- The style will get set to what you pass

here. The font style automatically gets reset when

TEXTFIELD_TextFont or TEXTFIELD_ TextAttr is set.

Default for this tag is FSF_PLAIN. Applicability is (IS TU).

textfield_gc 10/17

TEXTFIELD_Delimiters (char x) —-- You get the default if you pass NULL.
Words break after these and "\n". You will probably want at
least " ", the space. This string is not copied, so do not

get rid of it while the gadget is in use.

Default for this tag is ",)!@"&*_=+\|<>?/ ". Applicability
is (IS TU).
TEXTFIELD_AcceptChars (char x) —-- Tells the textfield gadget which

characters to accept. All others are rejected, and non-
printable characters are automaically rejected. Some of these
characters may not be accepted if they also appear in the
reject string. This string is not copied, so do not get rid
of it while the gadget is in use. A NULL means to accept all
characters.

Default for this tag is NULL. Applicability is (IS U). (V2)

TEXTFIELD_RejectChars (char x) —-- Tells the textfield gadget which
characters to reject. Non-printable characters are
automaically rejected. Characters specified with this are
always rejected. This string is not copied, so do not get rid
of it while the gadget is in use. A NULL means to reject no
characters.

Default for this tag is NULL. Applicability is (IS U). (V2)

TEXTFIELD_BlinkRate (ULONG) —-—- This sets the number of microseconds
between a cursor on-off, or off-on transition. A value of 0
means do not blink. Realistically, this should be set to
100000 or higher since BOOPSI objects don’t get idle messages
any faster than about once every 10th of a second, but any
value between 0 and 100000 will just make the cursor blink as
fast as it can. If you give the user an option of blink
speed, suggest values: 0 for no blink, 750000 for a slow
blink, 500000 for a medium blink, and 250000 for a fast blink.

Default for this tag is 0. Applicability is (IS U).

TEXTFIELD_BlockCursor (BOOL) —- Turn on/off block cursor mode. You
should not use a block cursor if your font is italic because
it looks weird.

Default for this tag is FALSE. Applicability is (IS U).

TEXTFIELD_CursorPos (ULONG/ULONG =) ——- Get/Set the cursor position.
The cursor position returned is always an exact offset into
the buffer you get to read via TEXTFIELD_Text. 0 takes you
to the first character in the gadget, and OxXFFFFFFFF takes
you past the last character in the gadget. In general, any
value you pass that is larger than what’s returned by
TEXTFIELD_Size will end up just past the last character in
the gadget. Setting this attribute will scroll the text to
the position you set the cursor to. If there is any text
highlighted, highlighting is turned off. When you get the
current cursor position, you must pass a pointer to a ULONG.
The ULONG will then have the cursor position in it.

textfield_gc 11/17

Applicability is (ISG U).

TEXTFIELD_Size (ULONG %) —-- Returns the number of characters in the
gadget’s buffer, including \n characters. This gives you the
size when you want to use TEXTFIELD_Text to read the text in
the gadget. You must pass a pointer to a ULONG and then the
ULONG will contain the wvalue.

Applicability is (G).

TEXTFIELD _MaxSize (ULONG) —- Limit the size of text entered into the
gadget. 0 means unlimited, otherwise limits the buffer size
to what you pass. This includes \n characters.

Default for this tag is UNLIMITED. Applicability is (I) .

TEXTFIELD_MaxSizeBeep (BOOL) —-- This attribute lets you set whether
the system DisplayBeep () function is called if the user
attempts to enter text into the gadget and the gadget is full
(i.e. the gadget’s buffer size is equal to the limit set by
TEXTFIELD_MaxSize). If TRUE the system beep is called. If
FALSE, the system beep is not called.

Default for this tag is TRUE. Applicability is (IS U). (V2)
TEXTFIELD_Visible (ULONG %) —-— Get the current number of visible
lines. It always returns how many _could_ be displayed if

there were enough characters to fill the display. Use for
notifying a BOOPSI prop gadget. You actually pass a pointer
to a ULONG and then the ULONG will contain the value. See
example program.

Applicability is (GN).
TEXTFIELD_Lines (ULONG %) —- Get the total number of lines in the

buffer of the gadget. Use this to also notify a BOOPSI prop
gadget. You pass a pointer to a ULONG and then the ULONG will

contain the value. See example program.
Applicability is (GN).
TEXTFIELD_Top (ULONG/ULONG) —-- Get or set ordinal value of the top

line. 0 is the top most line. This is useful for ICA_MAP and
ICA_TARGET when using the BOOPSI prop gadget and notifications.
When you get the value you pass a pointer to a ULONG and then
the ULONG will contain the value. See sample program for
example.

Default for this tag is 0. Applicability is (SGNU).

TEXTFIELD_Partial (BOOL) -- When this flag is set to TRUE, partial
lines will be shown at the bottom of the gadget. When this
flag is set to false, then only whole lines will be shown in
the gadget. ©Note that having both TEXTFIELD_VCenter, and
TEXTFIELD_Partial on is not allowed and doesn’t make sense.
If both TEXTFIELD_VCenter and TEXTFIELD_Partial are turned on

textfield_gc

12/17

at the same time, only TEXTFIELD_ VCenter will get turned on.

Default for this tag is FALSE. Applicability is (IS U).

TEXTFIELD_NoGhost (BOOL) -- If TRUE, never ghost when gadget is
disabled. If FALSE, then ghost when gadget is disabled. You
can use this to make a read only multiline string gadget. It

has a special purpose, though.

Normally you will want a gadget to be enabled when allowing
text to be entered. However, when you need to read the text
from the gadget, you have to disable it. But disabling a
gadget ghosts it. So, with this option, you can pass
GA_Disabled, TRUE, TEXTFIELD_NoGhost, TRUE at the same time
and it will disable without ever showing the ghosted pattern.
And likewise, passing the attributes GA_Disabled, FALSE,
TEXTFIELD_NoGhost, FALSE will seamlessly reenable the gadget.
While the gadget is disabled, read the text and then be on
your way. Also note that most S and U attributes are settable
while the gadget is disabled, notably TEXTFIELD_Top. This
allows you to make a scrollable read-only multiline non-
ghosted text, image capable, and border capable gadget.
Sounds useful to me!

The read only mode is probably better. See below.
Default for this tag is FALSE. Applicability is (IS U).

TEXTFIELD_ReadOnly (BOOL) -- If TRUE, then the gadget does not allow
text to be entered or deleted by the user. However, the user
can still highlight so that text can be copied to the
clipboard. If FALSE, then the gadget acts normally. If you
want a read only mode without clipboard support, then use the
GA_Disabled and TEXTFIELD_NoGhost mode mentioned in the
TEXTFIELD_NoGhost description.

All but two of the normal keyboard editing commands are
ignored while in read-only mode. RAMIGA-a highlights all
text, and RAMIGA-c copies highlighted text to the clipboard.
Other RAMIGA keys will get passed is TEXTFIELD_PassCommand is
turned on.

So that the gadget acts more like it’s not active while in
this mode, certain keys events get passed on to the window:
F1-F10, Help, Cursor keys.

Note that non-RAWKEY events, like mouse moves, buttons, and
timer events are not passed on so that normal highlighting and
scrolling can occur.

There is no visual change in the gadget when it is read-only
other than it does not have a cursor. You should set the
border to an inverted bevel or inverted double-bevel. By the
style guide, inverted borders represent read-only gadgets.

Default for this tag is FALSE. Applicability is (IS U).
(v2)

textfield_gc 13/17

TEXTFIELD_Modified (BOOL) —-- This attribute is a flag that you can
set and read to find out if a gadget’s buffer has been
modified in some way. For instance, if you wanted to load
some text into the gadget, then when the program quits
determine if the text was modified then you would load and
set the flag like this: TEXTFIELD_Text, text,
TEXTFIELD_Modified, FALSE. Note that the order matters, such
that if they were reversed the text change would promptly
set the modified flag to TRUE. You can read or set this flag
at any time.

Default for this tag is FALSE. Applicability is (IS U).

(V2)

TEXTFIELD_PassCommand (BOOL) —-- This attribute is a flag to allow the
gadget to pass unused right Amiga key sequences (command key
sequences) on to the client application. If the flag is set

to TRUE then the key sequences are passed to the client.
There is a side effect that causes the gadget to become
inactive (as if the user had clicked outside the gadget).
The default behavior (set to FALSE) is to ignore these key
sequences so that the gadget remains active.

Default for this tag is FALSE. Applicability is (IS U).
(v2)

TEXTFIELD_Border (ULONG) —-- Sets the border type. See defines below.
The gadget offers a standard bevel, and standard double bevel.
If you need another type, your could always create an image,
link it to the gadget with GA_Image, and set its top and left
edges above and to the left of this gadget (negative in the
image structure), and make the width and height larger than
this gadget.

Default for this tag is TEXTFIELD_BORDER_NONE. Applicability

is (IS U).

TEXTFIELD_Inverted (BOOL) —-- If this flags is TRUE, the border is
drawn inverted, if there is a border. If FALSE, the border is
drawn non-inverted. This option is here in case you want to

give the textfield gadget a read-only look when used in
conjunction with TEXTFIELD_NoGhost and GA_Disabled.

Default for this tag is FALSE. Applicability is (IS U).

TEXTFIELD_Up (ULONG) —-- Moves the text up by one line. You can pass
anything, but it will only move the text up by a line, if it’s
not at the top already. Useful BOOPSI notifications.

Applicability is (S U).

TEXTFIELD_Down (ULONG) —-- Moves the text down by one line. You can
pass anything, but it will only move the text down by a line,
if it’s not at the bottom already. Useful for BOOPSI
notifications.

textfield_gc 14 /17

Applicability is (S 1U).

TEXTFIELD_Alignment (ULONG/ULONG x) —— Set/Get the line Jjustification.
This gadget offers left, center, and right justification.
When you are getting the flags, you need to pass a pointer to
a ULONG and then the ULONG will contain the flags. See
defines below.

Default for this tag is TEXTFIELD_ALIGN_LEFT. Applicability
is (ISG U).

TEXTFIELD_VCenter (BOOL) —-- Turn on/off vertical centering. When on,
the lines in the display are centered vertically. If the
total number of lines is less than the visible number of lines
then the smaller number of lines are centered. This allows
you to center single lines of text within the gadget very
easily. For normal text entry operation, it is best to leave
this off. Also, check TEXTFIELD_ _Partial for possible
conflicts when used with TEXTFIELD_VCenter.

Default for this tag is FALSE. Applicability is (IS U).

TEXTFIELD_UserAlign (BOOL) -- If this is set at creation, then the
user will have control over the left/center/right
justification of text through RIGHT-AMIGA [, =,] keyboard
shortcuts. TIf you want to save what the user has set the
justification to, then do a GetAttr() on TEXTFIELD_Alignment.

Default for this tag is FALSE. Applicability is (I) .

TEXTFIELD_RuledPaper (BOOL) —-- Lets you set whether the paper
(background) has ruled horizontal lines under each line of
text or not.

Default for this tag is FALSE. Applicability is (IS U).

TEXTFIELD_PaperPen (ULONG) —-- This lets you specify the pen used for
drawing the paper (background) of the gadget. A value of -1
means use default, which is BACKGROUNDPEN.

Default for this tag is -1. Applicability is (IS U).

TEXTFIELD_InkPen (ULONG) -- This lets you specify the pen used for
drawing the text. A wvalue of -1 means use the default, which
is TEXTPEN. If this pen, and the TEXTFIELD_LinePen are
different, then rendering speed is slowed down a bit. It is
recommended that the line pen be left to -1.

Default for this tag is -1. Applicability is (IS U).

TEXTFIELD_LinePen (ULONG) -- This lets you specify the pen used for
drawing the ruled lines, if TEXTFIELD_RuledPaper is TRUE. See
TEXTFIELD_InkPen for possible speed problems when specifying
this pen. A value of -1 means to use the same pen as
TEXTFIELD_InkPen.

Default for this tag is -1. Applicability is (IS U).

textfield_gc 15/17

TEXTFIELD_Spacing (UBYTE) —-- Lets you set an extra amount of spacing
between lines of text, for maybe doing 1-1/2 or double
spacing. It’s a pixel value between 0 and 255. The space is

added to the top of each line. 1In other words, the baseline
is moved down by the amount you specify.

Default for this tag is 0. Applicability is (IS U).

TEXTFIELD_ClipStream (struct ClipboardHandle %) —-- This tag allows
clipboard support in the gadget. Pass the pointer returned
from the iffparse.library OpenClipboard() function. If a NULL
is passed, the clipboard support is not allowed. Please
supply this tag value. Don’t leave users without clipboard
support. It is recommended that the unit opened by
OpenClipboard() be 0 or PRIMARY_UNIT, since that is the
standard unit, but you can pick whatever unit you or your user
wants. This stream can be safely given to multiple objects.

Default for this tag is NULL. Applicability is (I) .

TEXTFIELD_ClipStream2 (struct ClipboardHandle %) —— ClipStream2 is
used for the undo features of the textfield class. It is
obtained from the iffparse.library OpenClipboard() function.

You should probably use a clipboard unit other than 0 to avoid
conflicts with normal clips. This stream can be safely passed
to multiple objects. (See TEXTFIELD_UndoStream)

Default for this tag is NULL. Applicability (I) .

TEXTFIELD_UndoStream —-- This is a synonym for
TEXTFIELD_ClipStream2. See it above.

TEXTFIELD_LineLength (ULONG =) —-- Get the contents of the ULONG to a
line number and that ULONG will be replaced with the length of
that line in characters. If you are worried about the line
lengths changing while you are reading them, then try removing
the gadget from the window first. Please realize that if the
gadget has a relative width or height then the lengths can
change anytime the user resized the window.

Applicability is (G). (V2)
TEXTFIELD SelectSize (ULONG/ULONG %) ——- Set the number of characters
to highlight starting from the current cursor position. If

the value is 0, highlighting will be turned off. If the
number is non-zero, that number of characters will be
highlighted. You can also get the number of highlighted
characters with this attribute by passing a ULONG *. If you
get a 0 value, then highlighting is turned off. This can is
useful for the copy, cut, and paste commands.

Applicability is (SG U). (V2)
TEXTFIELD_Copy ——- When this attribute is specified, the gadget copies

any highlighted text to the clipboard. Highlighting is turned
off after issuing this. You can put Copy in a menu with this.

textfield_gc

16 /17

This does not take a parameter.
Applicability is (S U). (V2)

TEXTFIELD_CopyAll —-- When this attribute is specified, the gadget
copies all of the gadget’s text to the clipboard. It does not
affect the state of the highlight and the text does not need
to be highlighted. You can put Copy All in a menu with this.
This does not take a parameter.

Applicability is (S U). (V2)

TEXTFIELD_Cut -- When this attribute is specified, the gadget will
cut any highlighted text to the clipboard. Cut text goes to
the clipboard. You can put Cut in a menu with this. This
does not take a parameter.

Applicability is (S U). (V2)

TEXTFIELD_Paste —-—- When this attribute is specified, the gadget will
delete any highlighted text to the undo buffer, then it will
paste the text from the clipboard to the gadget. You can put
Paste in a menu with this. This does not take a parameter.

Applicability is (S U). (V2)

TEXTFIELD_Erase —— When this attribute is specified, the gadget will
delete any highlighted text, otherwise do nothing. TIf text
is deleted, it’s placed in the undo buffer. You can put Erase
in a menu with this. This does not take a parameter.

Applicability is (S U). (V2)

TEXTFIELD_Undo —- When this attribute is specified, the gadget will
delete any highlighted text, then insert the text from the
undo buffer. You can put Undo in a menu with this. This does
not take a parameter.

Applicability is (S U). (V2)

BORDER REFERENCE
You can use the width and heights given when calculating window sizes

and limits. To make the window’s height minimal with respect to your
font, use (window border top) + (window border bottom) + (num_lines =*
(font height)) + (gadget border height). Also, if you use

TEXTFIELD_Spacing, you’ll have to add that in too.

TEXTFIELD_BORDER_NONE Border takes up: 0 width, 0 height
TEXTFIELD_BORDER_BEVEL Border takes up: 8 width, 4 height
TEXTFIELD_BORDER_DOUBLEBEVEL Border takes up: 12 width, 6 height

ALIGMENT REFERENCE

TEXTFIELD_ALIGN_LEFT Cause text to be flush left
TEXTFIELD_ALIGN_CENTER Cause text to be centered
TEXTFIELD_ALIGN_RIGHT Cause text to be flush right

BUGS

textfield_gc 17 /17

What bugs? Please let me know if you find any.
See the History file for a list of fixed bugs.

DEBUGGING

A version of the textfield.gadget library is provided with routines
that print debug information to the serial port using the current
settings for the serial device. It could be helpful. Just rename
the debug gadget (textfield.debug.gadget) to textfield.gadget and

place it in the normal gadgets place listed above.

CONTACT
To contact me for reporting bugs or giving suggestions:

Mark Thomas

1515 Royal Crest Dr. #3259
Austin, TX 78741

or

mthomas@cs.utexas.edu

or

URL: http://www.cs.utexas.edu/~mthomas

1.3 textfield.gadget/TEXTFIELD_GetClass

NAME

TEXTFIELD_GetClass —-- Gets the pointer to the textfield class. (V1.0)
SYNOPSIS

textfield_class = TEXTFIELD_GetClass();

DO

Class *TEXTFIELD_GetClass (void);

FUNCTION
Obtains the pointer to the textfield.gadget class for use with
NewObject () . This function always returns a valid pointer so
you do not need to check it. The reason is that if the library
opens fine, then the pointer returned is already setup. (Of course
this implies that if opening the library fails, you shouldn’t be
calling this.)

INPUTS
None.

RESULT
textfield class - the pointer to the textfield.gadget class.

BUGS
None.

	textfield_gc
	textfield_gc.doc
	textfield.gadget/textfield.gadget
	textfield.gadget/TEXTFIELD_GetClass

