
4. CARP Instructions Reference Guide
tt.09.jj

4. CARP Instructions Reference Guide

%

Syntax

% (operand)

Remarks

The % operator precedes a sequence of ones (1) and zeroes (0) that are interpreted as a bit sequence. Therefore,
the operand may only consist of a sequence of 1s and 0s.

By this, you can do bit manipulation in a more explicit form compared to treating integers as bit values.

Example

RECIPE XYSize = 60;
 Zet = 4;
 Colors = 4;

CONST dead = %00; (* bit sequence 00 *)
 just_died = %01; (* bit sequence 01 *)
 just_born = %10; (* bit sequence 10 *)
 alive = %11; (* bit sequence 11 *)
 (* A *)
 (* | *)
 (* "alive bit" *)

REF east[1,0];
 west [-1,0];
 north [0,-1];
 south [0,1];
 north_ea [1,-1];
 north_we [-1,-1];
 south_ea [1,1];
 south_we [-1,1];

PROC add_second_bit:;(* procedure evaluates second bit of*)
 (* neighbors that indicates alive *)
 (* state and returns sum of found bits*)
BEGIN
RETURN ((east XOR %01) SHR 1) + ((west XOR %01) SHR 1)
 + ((north XOR %01) SHR 1) + ((south XOR %01) SHR 1)
 + ((north_ea XOR %01) SHR 1) + ((north_we XOR %01) SHR 1)
 + ((south_ea XOR %01) SHR 1) + ((south_we XOR %01) SHR 1)
END add_second_bit;

28

4. CARP Instructions Reference Guide
tt.09.jj

*

Syntax

(operand) * (operand)

Remarks

The * operator multiplies two operands. As operands are allowed: integer constants, variables or procedures that
return an integer.

Example

VAR a, b;

EVENT 1;
b:= 17;
a := b * 4;

+

Syntax

(operand) + (operand)

Remarks

The + operator adds two operands. As operands are allowed: integer constants, variables or procedures that
return an integer.

Example

VAR temp;
CONST c = 2345;

EVENT 1;
temp:= c + 37;

-

Syntax

(operand) - (operand)
29

4. CARP Instructions Reference Guide
tt.09.jj

Remarks

The - operator subtracts two operands. As operands are allowed: integer constants, variables or procedures that
return an integer.

Example

VAR a, b;

EVENT 1;
b:= 17;
a := b - 4;

30

4. CARP Instructions Reference Guide
tt.09.jj

:=

Syntax

(VAR) identifier | Self := expression;

Remarks

The assignment procedure ':=' attributes the value of an expression right to the assignment procedure to any
variable or the cell Self standing left to this procedure.

Example

EVENT E1;
PARALLEL DO
 Self := OddCell;
OD;
ShowPlane;

<

Syntax

(operand) < (operand)

Remarks

The < operator compares two operands in respect to size. If the first operand is smaller than the second, the
whole expression returns true, otherwise false.

Example

VAR a, b;

EVENT 1;
WHILE b < i DO
a := b + 48
OD;

31

4. CARP Instructions Reference Guide
tt.09.jj

<=

Syntax

(operand) <= (operand)

Remarks

The <= operator compares two operands in respect to size. If the first operand is smaller or equal than the
second, the whole expression returns true, otherwise false.

Example

VAR a, b;

EVENT 1;
IF b <= limit
THEN b := Any8Sum (a, b, c, d, e, f, g, h);
FI;

<>

Syntax

(operand) <> (operand)

Remarks

The <> operator compares two operands in respect to unequality. If the first operand is unequal to the second,
the whole expression returns true, otherwise false.

Example

VAR a, b;

EVENT 1;
IF a <> limit
THEN a := a +1
ELSE a := limit
FI;

32

4. CARP Instructions Reference Guide
tt.09.jj

=

Syntax

(operand) = (operand)

Remarks

The = operator compares two operands in respect to equality. If the first operand is equal to the second, the
whole expression returns true, otherwise false.

Example

VAR a, b;

EVENT 1;
WHILE a = b DO
 Self := add_four_positions;
OD;

>

Syntax

(operand) > (operand)

Remarks

The > operator compares two operands in respect to size. If the first operand is greater than the second, the
whole expression returns true, otherwise false.

Example

VAR a, b;

EVENT 1;
IF b > a
 THEN b := a;
FI;

33

4. CARP Instructions Reference Guide
tt.09.jj

>=

Syntax

(operand) >= (operand)

Remarks

The >= operator compares two operands in respect to size. If the first operand is greater or equal compared to
the second, the whole expression returns true, otherwise false..

Example

VAR a, b;

EVENT 1;
WHILE a >= 0 DO
 a := a -1;
OD;

A

AND

Syntax

(operand) AND (operand)

Remarks

The AND operator connects two operands and returns true, if both operands are true. All other cases return
false.

If the cells of your CAT model may only have the state 0 or 1, you may treat cells with the AND operator, too.

Example

a := 8;
IF (a > limit) AND (b = 9)
 THEN a := Self FI;

Any8Sum

34

4. CARP Instructions Reference Guide
tt.09.jj

Syntax

Any8Sum (n1, n2, n3, n4, n5, n6, n7, n8);

Remarks

Any8Sum adds the state values of neighbors, variables or constants that follow as 8 parameters.

Example

REF knight_t_l [-1,-2]; (* possible jumps of *)
 knight_t_r [1,-2]; (* knights *)
 knight_b_l [-1,2];
 knight_b_r [1,2];
 knight_mt_l [-2,-1];
 knight_mt_r [2,-1];
 knight_mb_l [-2,1];
 knight_mb_r [2,1];

EVENT E1;
PARALLEL DO

Self := Any8Sum
(knight_t_l, knight_t_r, knight_b_l, knight_b_r,
knight_mt_l, knight_mt_r, knight_mb_l, knight_mb_r);

OD;
ShowPlane;

B

BarrelForm

Syntax

BarrelForm;

Remarks

The topology BarrelForm forms a virtually barrelshaped matrix, i.e. the right and left edges of the cell matrix
are mutually copied to the opposite edge.

c m m m m m c
c m m m m m c
c m m m m m c
c m m m m m c
c m m m m m c
c m m m m m c
c m m m m m c

Topology BarrelForm (c = copied cell)

Example

EVENT SetUp;
35

4. CARP Instructions Reference Guide
tt.09.jj

BarrelForm;
PlClipActive;
ShowPlane;

Beep

Syntax

Beep (n);

Remarks

Returns n beeps.

This procedure is useful if you want to mark a crucial state of your cellular automaton model by an acoustic
signal.

Example

CONST max_value = 5478;
VAR x;
EVENT E0;
...
IF x >= max_value THEN Beep(1) FI;

BEGIN ... END

Syntax

BEGIN
 statement;
 [statement;]
 ...
 [statement;]
END;

Remarks

Instructions bracketed by the keywords BEGIN and END may be used as an additional means for structuring a
CARP program. Usage is optional.

Example

(* Compound statement used within an "IF" statement *)
IF First < Last THEN
BEGIN
 Temp := First;
 First := Last;
 Last := Temp;
END;

36

4. CARP Instructions Reference Guide
tt.09.jj

FI;

Brake

Syntax

Brake;

Remarks

Stops the current event.

Example

FOR x := 1 TO x < 10 BY 2 DO
WRITE (x);
IF (x + 3) = 5

THEN Brake
ELSE y := x + 1

FI;
OD x;

C

Comments in a CARP program

Syntax

(* string *)

37

4. CARP Instructions Reference Guide
tt.09.jj

Remarks

To keep your program self-explanatory even for later times, use comments in your CARP program. Use pairs of
"(*" and "*)" respectively to indicate start or end of a comment. Comments may comprise several lines.

Example

REF left[-1,0]; up[0,-1]; right[0,1];
(* x counts negative for referenced cells
 on the top of cell Self *)

Colors

Syntax

Colors = n;

Remarks

Colors defines the number of available colors. The color actually assigned to a certain state may be either
interactively set by means of the color customizing button or by means of the RGBBrush procedure.

Example

RECIPE XYSize = 140;
 XYBound = 3 ;
 Zet = 20;
 Colors = 20;

CONST

Syntax

CONST
 identifier = expression;

Remarks

A constant declaration (CONST) defines an identifier, which denotes a constant value within the block
containing the declaration. A constant identifier cannot be included in its own declaration. You can only assign
a value to a constant during the declaration.

Expressions used in constant declarations must be written in such a way that the compiler can evaluate them at
compile time.

A string cannot be assigned to a constant. If possible, use instead the WRITE procedure with a string parameter.

38

4. CARP Instructions Reference Guide
tt.09.jj

Examples

(* Constant Declarations *)

CONST
 limit = 65000;
 KeyCode = 943762;

39

4. CARP Instructions Reference Guide
tt.09.jj

D

DelBrushes

Syntax

DelBrushes;

Remarks

Deletes all color palette entries, which may be defined by means of the RGBBrush or the RGBPalette
procedure. Be careful! The color palette has to be redefined after the entries have been deleted by the
DelBrushes procedure.

Deleting of color palette entries may also affect the color display of MS Windows or other Windows
applications.

Example

EVENT SetUp;
DelBrushes; (* all color palette entries

 are now lost *)
RGBPalette (10, 0,20, 0,20, 0,20);
 (* color palette is now redefined *)

DIV

Syntax

(operand) DIV (operand)

Remarks

The DIV operator devides two operands and returns an integer as result of the whole expression. As operands
are allowed: integer constants, variables or procedures that return an integer.

Example

VAR a, b;
EVENT 1;
b:= 17;
a := b DIV 4; (* a is now 4 *)

40

4. CARP Instructions Reference Guide
tt.09.jj

E

EVENT

Syntax

EVENT [E<n>] | [SetUp];
statements;

[END.] | [EVENT E <n+1>;]

Remarks

An event is a program part that starts with the keyword "EVENT" plus identifier number plus semicolon and
ends with the next keyword "EVENT" or the keyword "END.". The identifier number must be in the range from
0 to 5. An event is a program unit, which may be triggered by its

41

4. CARP Instructions Reference Guide
tt.09.jj

corresponding single step or run button or by the SetUp button and whose code can be executed independently
at a time.
Each event should have one dominant function, e.g. initialization or the implementation of a specific algorithm.

One CARP program may contain up to 6 events with identifiers from "E0" to "E5" and, additionally, the special
event SetUp.

Example

EVENT E0; (* initialization of cell plane *)
PlFillRandom (Dead,Alive);
ShowPlane;

EVENT E1;

Expressions

Expressions consist of operators and operands. These are the operands:

constants
A constant declaration (CONST) defines an identifier, which denotes a constant value within the block
containing the declaration. A constant identifier cannot be included in its own declaration.

variables
A variable (VAR) declaration associates an identifier and a type with a location in the memory where values of
that type can be stored.

procedures
A procedure may be either predefined or user-defined. User-defined procedures may be function procedures or
procedures using a side effect.

operators
The different types of operators existing in CAT (arithmetic operators, logic operators, comparative operators,
bit operators) allow to join operands.

Subexpressions can be enclosed in parentheses to change the order of precedence.

F

FOR ... TO ...BY ... DO ... OD

Syntax

FOR assignment TO expression [BY step] DO
statement;

OD loop_variable;

Remarks

The FOR ... OD instruction causes the statement after DO to be executed once for each case the Boolean
42

4. CARP Instructions Reference Guide
tt.09.jj

expression is true. The Boolean expression is checked after the first execution of statement sequence. So,
statement sequence is executed at least one time.

The loop variable is implicidly defined and may not be defined at the top of your CARP program. The loop
variable may be read inside a loop, but never be written to. After the loop is completed the content of the loop
variable is not defined any more.

If the BY construct is used, you can change the interval by which the loop variable is incremented to the value
which follows BY.

Example

FOR x := 1 TO x < 10 BY 2 DO
 WRITE (x);
 IF (x + 3) = 5
 THEN Brake
 ELSE y := x + 1
 FI;
OD x;

G

GetX

Syntax

GetX;

Remarks

Returns the current x-value of the treated cell inside a PARALLEL DO loop.

Example

EVENT E1;
 PARALLEL DO
 ...
 IF top > 0
 THEN
 WRITE ('','Current x value : ', GetX);
 FI;
 OD;

GetY

43

4. CARP Instructions Reference Guide
tt.09.jj

Syntax

GetY;

Remarks

Returns the current y-value of the treated cell inside a PARALLEL DO loop.

Example

EVENT E1;
 PARALLEL DO
 IF top = 1
 THEN

WRITE (GetY);
 FI;
 OD;
 ShowPlane;

I

Identifiers

Identifiers denote the following:

CONST(ants)
PROC(edures programs)
VAR(iables)

Identifiers can be formed of up to 31 characters.

- The first character of an identifier must be a letter. Upper or lower case letters are allowed at
any place.

- The characters that follow the first one must be letters, digits, or underscores (no spaces).

Like reserved words, identifiers are case-sensitive. Identifier may not coincide with reserved words.

Examples

(* Identifiers *)
VAR Limit;
CONST A_State = 4;
 B_State = 8;

IF .. THEN .. ELSE .. FI

Syntax

IF expression THEN statement [ELSE statement] FI;

44

4. CARP Instructions Reference Guide
tt.09.jj

Remarks

IF, THEN and ELSE specify the conditions under which a statement will be executed.

If the Boolean expression after IF is true, the statement after THEN is executed. Otherwise, if the ELSE part is
present, the statement after ELSE is executed.

Example

x := Random (1000);
IF (x > 995)

THEN Self := Alive;
ELSE Self := Dead;

FI;

INV

Syntax

INV (operand)

Remarks

The INV operator has an integer or bit operand and converts all its zeroes to ones and all ones to

45

4. CARP Instructions Reference Guide
tt.09.jj

zeroes. As operand is allowed: an integer constant, a variable, a procedure that returns an integer or a bit
operand.

Example

VAR a, b;

EVENT E4;
a := %110; (* 6 *)
b := INV a;
WRITE ('', ' a: ', a);
WRITE ('', ' INV a: ', b); (* result : - 7 *)
END.

M

MOD

Syntax

(operand) MOD (operand)

Remarks

The MOD operator devides two operands and returns the remainder as the result. As operands are allowed:
integer constants, variables or procedures that return an integer.

Example

VAR a, b;

EVENT 1;
b := 17;
a := b MOD 4;

MooreSum

Syntax

MooreSum

Remarks

MooreSum adds the state values of the northern, southern, western, eastern, northeastern, northwestern,
southeastern and southwestern neighbors of Self.

m m m m m

46

4. CARP Instructions Reference Guide
tt.09.jj

m O O O m
m O S O m
m O O O m
m m m m m

MooreSum (O = evaluated cell)

Example

EVENT E1;
PARALLEL DO

IF (MooreSum <> 4)
 Self := Ill;
FI;

OD;
ShowPlane;

N

NeumannSum

Syntax

NeumannSum

Remarks

NeumannSum adds the state values of the northern, southern, western and eastern neighbors of Self.

m m m m m
m m O m m
m O S O m
m m O m m
m m m m m

NeumannSum (O = evaluated cell)

Example

EVENT E1;
PARALLEL DO

IF (NeumannSum > 4)
Self := Red;
FI;

OD;
ShowPlane;

47

4. CARP Instructions Reference Guide
tt.09.jj

NOT

Syntax

NOT (operand)

Remarks

The NOT operator negates the result of the Boolean expression or operand that follows.

If the cells of your CAT model may only have the state 0 or 1, you may also use a cell denoter as operand for
NOT.

Example

IF NOT (a > limit)
 THEN a := Self
FI;

48

4. CARP Instructions Reference Guide
tt.09.jj

O

OddCell

Syntax

OddCell

Remarks

OddCell provides access only to those cells whose x-value in the matrix is odd. This effects a cell matrix
resembling a chess-board.

The x-value is counted from the first top left cell to the last right bottom cell continuously. That means for
example that for a matrix with XYSize 31 the first cell of the second row is considered even (i.e. 32nd cell).

Example

EVENT E1;
PARALLEL DO

Self := OddCell;
OD;
ShowPlane;

OR

Syntax

(operand) OR (operand)

Remarks

The OR operator connects two operands and returns true, if one or both operands are true. The remaining case
returns false.

If the cells of your CAT model may only have the state 0 or 1, you may treat cells with the OR operator, too.

Example

IF (a > limit) OR (Self = 9) THEN a := Self FI;

49

4. CARP Instructions Reference Guide
tt.09.jj

P

PARALLEL DO

PARALLEL DO
 statement;
 [statement;]
OD;

Remarks

The PARALLEL DO executes the instructions of its body once for all cells of the cell matrix in parallel.

Internally, a copy of the present state of all cells at the beginning of the PARALLEL DO construct is made, so
that all conditional instructions etc. take the value contained in this copy. At the end, the computed state of all
cells is written back and kept for future evaluations.

Mostly, the Self procedure is used inside a PARALLEL DO construct as an important part of a cell-related
algorithm.

Example

EVENT E1;
 PlClipActive;
 PARALLEL DO
 Self := North XOR South XOR East XOR West;
 OD;
 ShowPlane;

ParallelMethod

Syntax

ParallelMethod;

Remarks

Is now the default method and needs not to be particularly defined.

In a future version of CAT, there will also be a method SequentialMethod.

Example

- - -

50

4. CARP Instructions Reference Guide
tt.09.jj

PillowForm

Syntax

PillowForm;

Remarks

The topology PillowForm assumes an axis in the middle of the matrix. Cells of the edges that have the same
distance to this axis are copied to their counterpart.

c4c3c2c1|c1c2c3c4
c m m m | m m m c
c m m m | m m m c
c m m m | m m m c
c m m m | m m m c
c m m m | m m m c
c4c3c2c1|c1c2c3c4

Topology PillowForm (c = copied cell)

Example

EVENT SetUp;
PillowForm;
PlClipActive;
ShowPlane;

PipeForm

Syntax

PipeForm;

Remarks

The topology PipeForm forms a virtually pipe-shaped matrix (tube), i.e. the top and bottom edges of the cell
matrix are mutually copied to their opposite edges.

c c c c c c c
m m m m m m m
m m m m m m m
m m m m m m m
m m m m m m m
m m m m m m m
c c c c c c c

Topology PipeForm (c = copied cell)

Example

EVENT SetUp;
PipeForm;
PlClipActive;

51

4. CARP Instructions Reference Guide
tt.09.jj

ShowPlane;

PlClipActive

Syntax

PlClipActive;

Remarks

Restricts the effect of the subsequent instructions to the cell matrix without its border areas defined by an
optional XYBound declaration. This setting is the default value.

Example

EVENT SetUp;
 PlClipActive;
 RGBPalette (2, 20,10, 60,10, 80,10);

PlClipAll

Syntax

PlClipAll;

Remarks

Makes the whole cell matrix including the border areas available for subsequent instructions This procedure is
only useful if you want to initialize the border areas.

Example

EVENT SetUp;
 PlClipAll;
 RGBPalette (2, 20,10, 60,10, 80,10);

PlClipXY

Syntax

PlClipXY (x, y);

52

4. CARP Instructions Reference Guide
tt.09.jj

Remarks

Shows a central portion of the whole cell matrix with the corresponding x- and y-values. Thus, you can focus an
area of special interest.

Example

EVENT E4;
 ...
 PlClipXY (10,10);

PlFillRandom

Syntax

PlFillRandom (Low, High);

Remarks

The procedure PlFillRandom initializes the cell matrix by random values ranging from parameter Low to High.

Keep in mind the range of states, which are defined by the Zet declaration. If the range of possible values
produced by PlFillRandom exceeds the number of defined states, the range is restricted to the Zet value.

To take effect the parameters must be inside the range of defined colors and states (cp. Zet) and the smaller
value must precede the greater one.

Example

EVENT E0;
PlFillRandom (0,10);
ShowPlane;

PlFillUni

Syntax

PlFillUni (n);

Remarks

Gives the whole cell matrix a uniform state, which is defined by the n parameter, and via the associated color
mapping value a uniform appearance.

To take effect the parameter must be inside the range of defined colors and states (cp. Zet).

53

4. CARP Instructions Reference Guide
tt.09.jj

Example

EVENT SetUp;
 PlClipActive;
 PlFillUni (32);
 ShowPlane;

PlFillUpStairs

Syntax

PlFillUpStairs (Low, High, By);

Remarks

The procedure PlFillUpStairs creates a stair-like shape in the cell matrix. Thereby, the parameter Low gives the
lower state and colormapping value , High the higher state and colormapping value and By the interval in which
the range between Hi and Lo is filled. Useful for initialization purposes.

To take effect the parameters must be inside the range of defined colors and states (cp. Zet, Colors).

Example

EVENT SetUp;
 PlClipAll;
 PlFillUpStairs (2, 20, 4);
 ShowPlane;

PROC

Syntax

PROC proc_identifier [VAR (identifier, identifier...)] :;
[VAR identifier;]
[CONST identifier;]
BEGIN

statement sequence;
[RETURN expression;]
END proc_identifier;

Remarks

A procedure is a program part, which performs a specific action, often based on a set of parameters. CAT
provides both the function procedure that returns a value and the normal prodecure that exchanges data with the
CARP program via variables declared in the procedure head.

The procedure heading specifies the identifier for the procedure and the formal parameters (if any). A procedure
is activated by a procedure call.

The procedure heading is followed by:
54

4. CARP Instructions Reference Guide
tt.09.jj

- a declaration part that declares local objects,
- the statements between BEGIN and END, which specify what is to be executed when the procedure is called.

A function procedure contains the keyword RETURN followed by an expression as last instruction.

Example

REF knight_t_l [-1,-2];
 knight_b_r [1,2];
 knight_mt_l [-2,-1];
 knight_mb_r [2,1];

(* procedure adds four positions that might be reached by knight moves *)
PROC add_4_positions (VAR ret):;

BEGIN
ret := knight_t_l + knight_b_r + knight_mt_l + knight_mb_r;
END add_4_positions;

PROC add_4_pos:; (* the same more briefly and the *)
BEGIN (* procedure returning the value itself *)
RETURN knight_t_l + knight_b_r + knight_mt_l + knight_mb_r;
END add_4_pos;

EVENT E3;
PARALLEL DO
 WRITE ('', 'Value : ', add_4_pos);

 OD;
 ShowPlane;

R

Random

Syntax

Random (n);

Remarks

Returns a random number between 0 and n. Negative n values are not allowed.

Every call of a loop that contains the Random instruction produces the same sequence of results for internal
reasons. If you want to avoid this effect, use Randomize additionally.

Example

VAR x;

EVENT E0;
...
x := Random (1000);
IF x > 950 THEN add_four_positions FI;

55

4. CARP Instructions Reference Guide
tt.09.jj

Randomize

Syntax

Randomize;

Remarks

Creates a new base number for the random number generator.

This procedure is advisable if you want to prevent that each loop (PARALLEL DO, WHILE), that contains a
Random procedure produces the same sequence of random numbers. The Randomize procedure should be used
in the event SetUp or in the event containing the Random procedure.

Randomize should not be used, if you are searching for a program error that is related to random numbers.

56

4. CARP Instructions Reference Guide
tt.09.jj

Example

EVENT SetUp;
 RGBPalette(Colors, $0, 10, $32,10, $B6,10,);
 Randomize;

RECIPE

Syntax

RECIPE
[XYSize and/or XYBound declarations;]
[VAR declarations;]
[CONST declarations;]
[REF declarations;]
[PROC declarations;]
EVENT declarations;
statements;
END.

Remarks

A CARP program has to be started by the keyword "RECIPE" and terminates with the keyword "END."
("END" followed by a point). Between these delimiters, you can declare variables, constants, refered neighbors
of a cell, user defined procedures and - as independently executable parts of a CARP program - events.

Normally, the keyword RECIPE is followed by settings for the size of the cell matrix and evaluated
neighborhood, by definitions of constants (CONST) , variables (VAR) or referenced cells (REF) and by events
(EVENT) that contain the proper program functions. A template for a program may look as follows:

Example

RECIPE XYSize = 50;
CONST ...;
VAR ...;
REF ...;

EVENT SetUp;
...

EVENT E0;
...

EVENT E1;...
...
END.

REF

57

4. CARP Instructions Reference Guide
tt.09.jj

Syntax

REF identifier [xvalue,yvalue]; (read)

Remarks

The REF declaration assigns a name to specified neighboring cells of the cell Self and allows such

58

4. CARP Instructions Reference Guide
tt.09.jj

to refer to the value of these identified cells by their name. Precondition: The cell referred to may not exceed the
limits set by XYBound.

To use the value of a certain reference cell you have to do two things:
- Define a referenced cell.
- Use the defined neighbors within the program by referring to their names. Compare the sample

program part on the bottom:

Note:
- You may only read from referenced cells, not write to them. This is restricted to the procedure Self.
- X-values to the right of Self and Y-values on the bottom of Self have a positive value.

Example

REF right_neighbor [1,0];
 left_neighbor [-1,0];
 top_neighbor [0,-1];
 bottom_neighbor [0,1];
...

EVENT E1;
 PARALLEL DO
 Self := top_neighbor OR left_neighbor OR Self OR
 right_neighbor OR bottom_neighbor;
 OD;
 ShowPlane;
END.

RePaint

Syntax

RePaint;

Remarks

Paints the graphic window again, if appearance or colors of the cell matrix are garbled. Scarcely useful inside a
CARP program, compare instead the corresponding RePaint button.

Example

- - -

REPEAT .. UNTIL

Syntax

REPEAT
 statement;

59

4. CARP Instructions Reference Guide
tt.09.jj

 [statement;]
UNTIL expression;

Remarks

The statements between REPEAT and UNTIL are executed in sequence until, at the end of the loop body, the
Boolean expression after UNTIL is true.

The sequence is executed at least once. The delimiter of the REPEAT ... UNTIL loop is a ';'.

Example

x := 1;
REPEAT

IF (x + 3) = 8
THEN WRITE (x);
 x := x + 1
ELSE x := x + 1

FI;
UNTIL x > 15;

RGBBrush

Syntax

RGBBrush (n, r, g, b);

Remarks

Assigns the color mapping n the colors given by the parameters r(ed), g(reen) and b(blue).

This procedure is advisable, if you want to assign certain cell states to specific colors. (sample a)

This procedure may also be used if you want to change the previous overall color settings for a special color at a
given time (sample b).

Example

(sample a)

RECIPE XYSize = 60;
 Zet = 4;
 Colors = 4;

CONST dead = %00; (* bit sample 0000 *)
 just_died = %01; (* bit sample 0001 *)
 just_born = %10; (* bit sample 0010 *)
 alive = %11; (* bit sample 0011 *)
EVENT E0;
 RGBBrush (dead, 0, 0, 0); (* black *)
 RGBBrush (just_died, 152, 88, 46); (* brown *)
 RGBBrush (just_born, 74, 229, 3); (* light green *)
 RGBBrush (alive, 50, 174, 30); (* dark green *)

(sample b)

60

4. CARP Instructions Reference Guide
tt.09.jj

VAR cell_state;

EVENT E4;
IF generation_counter > 100

THEN RGBBrush (cell_state, 24 ,30, 30)
FI;

61

4. CARP Instructions Reference Guide
tt.09.jj

RGBPalette

Syntax

RGBPalette (n, r0, ri, g0, gi, b0, bi);

Remarks

The procedure RGBPalette allows to define a set of colors and their dissemination on the color palette. These
parameters have to be defined:

n Number of colors to define. Generally, this number should comply with
the number of defined states (Zet).

r0 Starting point for the red value.
ri Increment value by which the red value increases. Values above 255 are

corrrected to a maximum value 255.
g0 Starting point for the green value.
gi Increment value by which the green value increases. Values above 255

are corrrected to a maximum value 255.
b0 Starting point for the blue value.
bi Increment value by which the blue value increases. Values above 255 are

corrrected to a maximum value 255.

Some general remarks: each defined color is a set of three values for their portion of red, green and blue (rgb).
Each of this component color has a definition range from 0 to 255 (hexadecimal $0 to $FF). Red, green and blue
each set to 255 result in the color white, red, green and blue each set to 0 result in the color black. That is the
area, in which you may select certain colors.

Note:
RGBPalette sets the colors for your automaton tool model in a global way. Besides, you may define a specific
color by means of the RGBBrush procedure.
Colors defined either by RGBPalette or RGBBrush may be varied interactively later on by means of the color
customizing button. To use this button for particular colors is most advisable, because it is very difficult to
predict the resulting color only by defining the red, green and blue parameters.
Values for increments (ri, gi, bi) may also be negative. This makes sense together with high starting values for
r0, g0 or b0.
Values may be given as decimal or hexadecimal figures with leading $.

The example program below will generate this color palette:
r-value g-value b-value

color 1 30 40 50
color 2 45 55 65
color 3 60 70 80
color 4 75 85 95
color 5 90 100 110

Example

EVENT SetUp;
RGBPalette (5, 30,15, 40,15, 50,15);

RingForm

62

4. CARP Instructions Reference Guide
tt.09.jj

Syntax

RingForm;

Remarks

The topology RingForm forms a virtual endless matrix connecting at first two edges and then the edges of the
built up pipe. This body is also known as thorus. The RingForm topology is the default setting and therefore,
the RingForm instruction may be omitted.

c c c c c c c
c m m m m m c
c m m m m m c
c m m m m m c
c m m m m m c
c m m m m m c
c c c c c c c

Topology RingForm (c = copied cell)

Example

EVENT SetUp;
RingForm;
PlClipActive;
ShowPlane;

S

Self

Syntax

Self (read / write)

Remarks

The only instruction to change the state of a cell and thereby the whole cell matrix is Self. All other cell matrix-
related procedures only allow reading of a cell state.

Self is strongly connected with the PARALLEL DO instruction. Inside a PARALLEL DO cycle, Self allows for
each cell read or write access.

All instructions inside a PARALLEL DO and related to Self and other referred cells have to be thought of as
actually happening simultaneously. (In fact, on a single CPU computer, a copy of the state of all cells will be
made, and, depending on these values, the instructions for all cells will be of course carried out subsequently.)
But focussing on CAT's concept, Self and PARALLEL DO are the decisive keys to leave array treatment and
such things behind and turn to the new programming paradigm 'the cell in its environment'.

The effect of the sample instructions below (it implements Conveys Life program): For each cell of the cell
matrix will be controlled as to whether Self is 'alive' (read access) and has two or three 'alive' neighbors ('alive'

63

4. CARP Instructions Reference Guide
tt.09.jj

is assigned to the state 1 of a cell). If this is true, Self will be set to 'alive' (write access with the ':=' procedure).
Otherwise, if Self is 'dead' and has three 'alive' neighbors, Self will be set again to 'alive'. In all other cases, Self
will be considered as 'too lonely' or 'overcrowded' and therefore set to 'dead'.

Example

PARALLEL DO
IF (Self = Alive) AND
 ((MooreSum = 3) OR (MooreSum = 2))
THEN Self := Alive
ELSE IF (Self = Dead) AND (MooreSum = 3)

THEN Self := Alive
ELSE Self := Dead

 FI
FI;

OD;

SetLattice

Syntax

SetLattice (thickness, foregroundcolor, backgroundcolor);

Remarks

Returns a lattice pattern originating from the center of your cell matrix with free spaces of size
'thickness' and with the corresponding fore- and backgroundcolors.

Example

EVENT SetUp;
PlClipActive;
SetLattice(3,1,19);

SheetForm

Syntax

SheetForm;

Remarks

The topology SheetForm makes the evaluation of algorithms end on the edges of the cell matrix without any
further continuation on other edges.

m m m m m m m

64

4. CARP Instructions Reference Guide
tt.09.jj

m m m m m m m
m m m m m m m
m m m m m m m
m m m m m m m
m m m m m m m
Topology SheetForm (m = normal cell,
no copied cell)

Example

EVENT SetUp;
SheetForm;
PlClipActive;
ShowPlane;

SHL

Syntax

(operand) SHL (operand)

65

4. CARP Instructions Reference Guide
tt.09.jj

Remarks

The SHL operator shifts all bits of a binary digit by the value of the second operand times to the left. Leading
digits are filled by 0.

This works for integer variables, constants or referenced cells interpreted as binary values as well as for
explicitly defined binary digits. In the following sample the variable b returns the value 12 both times.

Example

a := %110; (* 6 *) (* using bit operator *)
b := a SHL 1;
WRITE ('',b);

 (* without bit operator *)
a := 6;
b := a SHL 1;
WRITE ('',b);

ShowCell

Syntax

ShowCell (n);

Remarks

This procedure shows the current state of the cell with the x-value n.

This value is computed as n = x + (XSize * (y - 1)). (An example: in a cell matrix with XYSize = 10 the first
cell in the top left corner counts 0 and the last cell in the bottom right corner counts 99.)

This procedure is very CPU-time-consuming and should only be used if the focus is on a single cell.

Example

EVENT E1;
 PARALLEL DO
 IF x > delimiter
 THEN
 Self := (NeumannSum + Self) > 0
 FI;
 OD;
 ShowCell (74);
 ShowCell (75);
 ShowCell (76);

ShowKind

66

4. CARP Instructions Reference Guide
tt.09.jj

Syntax

ShowKind (w);

Remarks

Shows the state and color mapping of a single cell.

Useful only if the focus is on these settings of a single cell. Can then be combined with the ShowCell
procedure.

Example

EVENT E1;
 ShowKind (74);
 ShowKind (75);
 ShowKind (76);
 ShowCell (74);
 ShowCell (75);
 ShowCell (76);

ShowPlane

Syntax

ShowPlane;

Remarks

This function is necessary for showing the whole cell matrix in its current state. Should normally occur at the
end of any event description for control purposes. If your cellular automaton model is very CPU time-
consuming, you can order to display only every tenth or whatever generation of your CAT model.

Never use ShowPlane inside a PARALLEL DO instruction, for this might crash CAT.

Example

EVENT E1;
...
IF i < 50

THEN ShowPlane
ELSE IF i MOD 10 = 0

THEN ShowPlane
FI

FI;
i := i +1;

SHR

67

4. CARP Instructions Reference Guide
tt.09.jj

Syntax

(operand) SHR (operand)

Remarks

The SHR operator shifts all bits of a binary digit by the value of the second operand times to the right. Leading
digits are filled by 0.

This works for integer variables, constants or referenced cells interpreted as binary values as well as for
explicitly defined binary digits.

Example

(* life model (cp. Convey) with four different states: *)
(* life, just_born, dead, just_died *)

RECIPE XYBound = 60;

CONST dead = %00; (* bit sample 0000 *)
 just_died = %01; (* bit sample 0001 *)
 just_born = %10; (* bit sample 0010 *)
 alive = %11; (* bit sample 0011 *)
 (* A *)
 (* "alive bit" *)

REF right_n [1,0];
 left_n [-1,0];
 top_n [0,-1];
 bot_n [0,1];

PROC add_second_bit:;
(* procedure evaluates second bit of neighbors that *)
(* indicate alive state and returns sum of found bits*)

BEGIN *)
RETURN ((right_n XOR %01) SHR 1) + ((left_n XOR %01) SHR 1) + ((top_n XOR %01) SHR 1) + ((bot_n
XOR %01) SHR 1)
END add_second_bit;

EVENT E0;
 RGBBrush (dead, 0, 0, 0); (* black *)
 RGBBrush (just_died, 152, 88, 46); (* brown *)
 RGBBrush (just_born, 74, 229, 3); (* light green *)
 RGBBrush (alive, 50, 174, 30); (* dark green *)

EVENT E1;
PARALLEL DO
a := add_second_bit;

IF (a = 2) OR (a = 3)
 THEN IF (a = 3) AND ((Self = dead) OR (Self = just_died))
 THEN Self := just_born;
 ELSE Self := alive
 FI;
 ELSE IF (Self = alive) OR (Self = just_born)
 THEN Self := just_died;
 ELSE Self := dead;

68

4. CARP Instructions Reference Guide
tt.09.jj

 FI;
FI;
OD;
ShowPlane;

END.

Statement

A statement is one of the following:

assignment (:=)
BEGIN..END
FOR..TO..BY..DO..OD
PARALLEL...DO
IF..THEN..ELSE FI
PROC(edure)
REPEAT .. UNTIL
WHILE .. DO .. OD

V

VAR

Syntax

 VAR
 identifier, ... identifier;

Remarks

A variable (VAR) declaration associates an identifier with a location in the memory where values can be stored.

You may not combine a declaration of a variable with an assignment like you might expect from the usage of
constants. Assign a value to the variable inside an event.

Examples

(* Variable Declarations *)
 VAR
 x , y , z;

x := 3;

W

WHILE ... DO ... OD

69

4. CARP Instructions Reference Guide
tt.09.jj

Syntax

WHILE expression DO statement OD;

Remarks

A WHILE statement contains an expression, which controls the repeated execution of one or several statements
embraced by the keywords 'DO' and 'OD'. The statement after DO is executed repeatedly as long as the Boolean
expression is true.

The expression is evaluated before the statement is executed, so if the expression is false at the beginning, the
statement will not be executed at all.

Example

WHILE i < 20 DO
Self := NeumannSum DIV 2;
i := i + 1 OD;

WinClipActive

Syntax

WinClipActive;

Remarks

Shows only the active part of the cell matrix without any border areas. WinClipAll or WinClipActive are only
relevant for the appearance of the STATE window.
The same can be achieved interactively by means of the magnifier button.

Example

EVENT SetUp;
 RGBPalette(Colors, $0, $FF, $32,0, $B6,0);
 WinClipActive;
 ShowPlane;

WinClipXY

Syntax

WinClipXY (x, y);

70

4. CARP Instructions Reference Guide
tt.09.jj

Remarks

Shows a central portion of the whole cell matrix with the corresponding x- and y-values. Thus, you can focus on
an area of special interest.

Example

EVENT E4;
PlFillRandom (1,4);
WinClipXY (5, 5);

WinClipAll

Syntax

WinClipAll;

Remarks

Shows the whole cell matrix including the border areas. WinClipAll or WinClipActive are only relevant for the
appearance of the STATE window.

The same can be done interactively by means of the magnifier button.

Example

EVENT SetUp;
 RGBPalette(Colors, $0, $FF, $32,0, $B6,0);
 WinClipAll;
 ShowPlane;

WrDCaps

Syntax

WrDCaps;

Remarks

Acronym for 'Write Display Capabilities'. The corresponding values specific to your data display are written

71

4. CARP Instructions Reference Guide
tt.09.jj

into the LIST window. Useful for system administration and service purposes, especially on graphic resolution
issues. A possible output in the LIST window:

 Display capabilities

 H/V Resolution : 1024 768
 Pixel/Planes : 8 1
 Colors : 20
 Palette/reserv : 256 20

Example

EVENT SetUp;
 RGBPalette(Colors, 127, 2, 127,30, 127,30);
 ShowPlane;
 WrDCaps;

WRITE

Syntax

WRITE ([string] | [(VAR) identifier] | [(CONST) identifier] | [(PROC) identifier] [:n] ['']);

Remarks

Writes the contents of variables, constants, values of function procedures or strings to the LIST window and
the .CAL file. Different operands have to be devided by a comma, strings must be included by ' (apostrophe).

Several facilities are provided for formatting the output:
[(var):n] If the contents of the variable or the constant has less than n

digits, the output is indended accordingly.
' ' Put at the end or beginning of the parameter list, a carriage return

/ linefeed (CR/LF) at the end or beginning of the output is caused.

If the buffer to which all data is moved is full, you will get the message "Editor buffer is full" and will be
prompted whether you want to overwrite the contents or stop writing. All written informations may later be
inspected by means of the LIST window.

Example

IF (x > limit)
 THEN WRITE ('','Limit exceeded with value : ');
 WRITE (x : 8, '');
FI;

WrMCaps

72

4. CARP Instructions Reference Guide
tt.09.jj

Syntax

WrMCaps;

Remarks

Acronym for 'Write Memory Capabilities'. The corresponding values of RAM (Random Access Memory) usage
specific to your hardware and operating system configuration are written into the LIST window. Useful for
system administration and service purposes, especially if you are in doubt about sufficient memory (RAM).

A possible output in the LIST window may look as follows:

 Memory and resources

 Mem_free KB : 47730
 Mem_block KB : 16320
 Sys_Res % : 62
 GDI_Res % : 62
 Usr_Res % : 83

Example

EVENT SetUp;
 RGBPalette(Colors, 127, 2, 127,30, 127,30);
 ShowPlane;
 WrMCaps;

WrPPars

Syntax

WrPPars;

Remarks

Acronym for 'Write Plane Parameters'. The corresponding values for your actual CAT cell matrix configuration
are written into the LIST Window. Useful for system administration and debugging purposes.

A possible output in the LIST window may look as follows:

 CAT actual parameters

 X/YSize : 31 31
 X/YBound : 3 3
 X/YTotal : 37 37
 Act/TotSz : 961 1369
 Org/Skip : 114 6

Example

EVENT SetUp;
 RGBPalette(Colors, 127, 2, 127,30, 127,30);

73

4. CARP Instructions Reference Guide
tt.09.jj

 ShowPlane;
 WrPPars;

X

XOR

Syntax

(operand) XOR (operand)

Remarks

The XOR operator adds two operands and returns true if one of the two operands returns true and the other
false. If both the operands return true or false, the whole expression returns false. As operands are allowed:
integer constants, variables, referenced cells or procedures that return an integer.

Example

b := 8;
IF (a > limit) XOR (b = 8)
 THEN a := Self
FI;

XYBound

Syntax

XYBound = n;

Remarks

Defines the range of the neighborhood of the cell Self (in x and y values) that can be evaluated by any
instruction of your CARP program. Referenced cells (REF) must be inside the range of the XYBound.

XYBound defines moreover the width of the border area of the cell matrix that is shown if the PlClipAll
procedure is used or that is effected by an equivalent setting of the magnifier button.

Example

RECIPE XYSize = 140;
 XYBound = 1 ;

REF east[1,0];
 west [-1,0];
 north [0,-1];

74

4. CARP Instructions Reference Guide
tt.09.jj

 south [0,1];
 north_ea [1,-1];
 north_we [-1,-1];
 south_ea [1,1];
 south_we [-1,1];

PROC add_second_bit:;(* procedure evaluates second bit of*)
 (* neighbors indicating alive state *)
BEGIN (* and returns sum of found bits *)
RETURN ((east XOR %01) SHR 1) + ((west XOR %01) SHR 1) +
 ((north XOR %01) SHR 1) + ((south XOR %01) SHR 1) +
 ((north_ea XOR %01) SHR 1) +((north_we XOR %01) SHR 1) +
 ((south_ea XOR %01) SHR 1) + ((south_we XOR %01) SHR 1)
END add_second_bit;

XYSize

Syntax

XYSize = n;

Remarks

Defines the horizontal (x) and vertical (y) size of a cell matrix. If you want to define a different YSize compared
to XSize, you can use the YSizedeclaration.

Keep in mind that high XYSize values are very CPU time-consuming.

Example

RECIPE XYSize = 120;
 XYBound = 2;

Y

YSize

Syntax

YSize = n;

Remarks

Defines the vertical (y) size of a cell matrix

Keep in mind that high XYSize or YSize values are very CPU time-consuming

75

4. CARP Instructions Reference Guide
tt.09.jj

Example

RECIPE XYSize = 120;
 YSize = 100;

Z

Zet

Syntax

Zet = n;

Remarks

Zet is the number of different states that can be adopted by any cell. The Zet value complies normally with the
number of available Colors.

Example

RECIPE XYSize = 140;
 XYBound = 3 ;
 Zet = 20;
 Colors = 20;

76

	4. CARP Instructions Reference Guide
	%
	Syntax
	% (operand)

	Remarks
	The % operator precedes a sequence of ones (1) and zeroes (0) that are interpreted as a bit sequence. Therefore, the operand may only consist of a sequence of 1s and 0s.
	By this, you can do bit manipulation in a more explicit form compared to treating integers as bit values.

	Example
	RECIPE XYSize = 60;
	Zet = 4;
	Colors = 4;
	CONST dead = %00; (* bit sequence 00 *)
	just_died = %01; (* bit sequence 01 *)
	just_born = %10; (* bit sequence 10 *)
	alive = %11; (* bit sequence 11 *)
	(* A *)
	(* | *)
	(* "alive bit" *)
	REF east [1,0];
	west [-1,0];
	north [0,-1];
	south [0,1];
	north_ea [1,-1];
	north_we [-1,-1];
	south_ea [1,1];
	south_we [-1,1];
	PROC add_second_bit:;(* procedure evaluates second bit of*)
	(* neighbors that indicates alive *)
	(* state and returns sum of found bits*)
	BEGIN
	RETURN ((east XOR %01) SHR 1) + ((west XOR %01) SHR 1)
	+ ((north XOR %01) SHR 1) + ((south XOR %01) SHR 1)
	+ ((north_ea XOR %01) SHR 1) + ((north_we XOR %01) SHR 1)
	+ ((south_ea XOR %01) SHR 1) + ((south_we XOR %01) SHR 1)
	END add_second_bit;

	*
	Syntax
	(operand) * (operand)

	Remarks
	The * operator multiplies two operands. As operands are allowed: integer constants, variables or procedures that return an integer.

	Example
	VAR a, b;
	EVENT 1;
	b:= 17;
	a := b * 4;

	+
	Syntax
	(operand) + (operand)

	Remarks
	The + operator adds two operands. As operands are allowed: integer constants, variables or procedures that return an integer.

	Example
	EVENT 1;
	temp:= c + 37;

	-
	Syntax
	(operand) - (operand)

	Remarks
	The - operator subtracts two operands. As operands are allowed: integer constants, variables or procedures that return an integer.

	Example
	VAR a, b;
	EVENT 1;
	b:= 17;
	a := b - 4;

	:=
	Syntax
	(VAR) identifier | Self := expression;

	Remarks
	The assignment procedure ':=' attributes the value of an expression right to the assignment procedure to any variable or the cell Self standing left to this procedure.

	Example
	EVENT E1; PARALLEL DO Self := OddCell; OD; ShowPlane;

	<
	Syntax
	(operand) < (operand)

	Remarks
	The < operator compares two operands in respect to size. If the first operand is smaller than the second, the whole expression returns true, otherwise false.

	Example
	VAR a, b;
	EVENT 1;
	WHILE b < i DO
	a := b + 48
	OD;

	<=
	Syntax
	(operand) <= (operand)

	Remarks
	The <= operator compares two operands in respect to size. If the first operand is smaller or equal than the second, the whole expression returns true, otherwise false.

	Example
	VAR a, b;
	EVENT 1;
	IF b <= limit
	THEN b := Any8Sum (a, b, c, d, e, f, g, h);
	FI;

	<>
	Syntax
	(operand) <> (operand)

	Remarks
	The <> operator compares two operands in respect to unequality. If the first operand is unequal to the second, the whole expression returns true, otherwise false.

	Example
	VAR a, b;
	EVENT 1;
	IF a <> limit
	THEN a := a +1
	ELSE a := limit
	FI;

	=
	Syntax
	(operand) = (operand)

	Remarks
	The = operator compares two operands in respect to equality. If the first operand is equal to the second, the whole expression returns true, otherwise false.

	Example
	VAR a, b;
	EVENT 1;
	WHILE a = b DO
	Self := add_four_positions;
	OD;

	>
	Syntax
	(operand) > (operand)

	Remarks
	The > operator compares two operands in respect to size. If the first operand is greater than the second, the whole expression returns true, otherwise false.

	Example
	VAR a, b;
	EVENT 1;
	IF b > a
	THEN b := a;
	FI;

	>=
	Syntax
	(operand) >= (operand)

	Remarks
	The >= operator compares two operands in respect to size. If the first operand is greater or equal compared to the second, the whole expression returns true, otherwise false..

	Example
	VAR a, b;
	EVENT 1;
	WHILE a >= 0 DO
	a := a -1;
	OD;

	A
	AND
	Syntax
	(operand) AND (operand)

	Remarks
	The AND operator connects two operands and returns true, if both operands are true. All other cases return false.
	If the cells of your CAT model may only have the state 0 or 1, you may treat cells with the AND operator, too.

	Example
	a := 8;
	IF (a > limit) AND (b = 9)
	THEN a := Self FI;

	Any8Sum
	Syntax
	Any8Sum (n1, n2, n3, n4, n5, n6, n7, n8);

	Remarks
	Any8Sum adds the state values of neighbors, variables or constants that follow as 8 parameters.

	Example
	REF knight_t_l [-1,-2]; (* possible jumps of *) knight_t_r [1,-2]; (* knights *) knight_b_l [-1,2];
	knight_b_r [1,2];
	knight_mt_l [-2,-1];
	knight_mt_r [2,-1];
	knight_mb_l [-2,1];
	knight_mb_r [2,1];
	EVENT E1;
	PARALLEL DO
	Self := Any8Sum (knight_t_l, knight_t_r, knight_b_l, knight_b_r, knight_mt_l, knight_mt_r, knight_mb_l, knight_mb_r); OD; ShowPlane;

	B
	BarrelForm
	Syntax
	BarrelForm;

	Remarks
	The topology BarrelForm forms a virtually barrelshaped matrix, i.e. the right and left edges of the cell matrix are mutually copied to the opposite edge.
	c m m m m m c c m m m m m c c m m m m m c c m m m m m c c m m m m m c c m m m m m c c m m m m m c

	Example
	EVENT SetUp; BarrelForm; PlClipActive; ShowPlane;

	Beep
	Syntax
	Beep (n);

	Remarks
	Returns n beeps.
	This procedure is useful if you want to mark a crucial state of your cellular automaton model by an acoustic signal.

	Example
	CONST max_value = 5478;
	VAR x;
	EVENT E0;
	...
	IF x >= max_value THEN Beep(1) FI;

	BEGIN ... END
	Syntax
	BEGIN
	statement;
	[statement;]
	...
	[statement;]
	END;

	Remarks
	Instructions bracketed by the keywords BEGIN and END may be used as an additional means for structuring a CARP program. Usage is optional.

	Example
	(* Compound statement used within an "IF" statement *)
	IF First < Last THEN
	BEGIN
	Temp := First;
	First := Last;
	Last := Temp;
	END;
	FI;

	Brake
	Syntax
	Brake;

	Remarks
	Stops the current event.

	Example
	FOR x := 1 TO x < 10 BY 2 DO
	WRITE (x);
	IF (x + 3) = 5
	THEN Brake
	ELSE y := x + 1
	FI;
	OD x;

	C
	Comments in a CARP program
	Syntax
	(* string *)

	Remarks
	To keep your program self-explanatory even for later times, use comments in your CARP program. Use pairs of "(*" and "*)" respectively to indicate start or end of a comment. Comments may comprise several lines.

	Example
	REF left[-1,0]; up[0,-1]; right[0,1]; (* x counts negative for referenced cells on the top of cell Self *)

	Colors
	Syntax
	Colors = n;

	Remarks
	Colors defines the number of available colors. The color actually assigned to a certain state may be either interactively set by means of the color customizing button or by means of the RGBBrush procedure.

	Example
	RECIPE XYSize = 140;
	XYBound = 3 ;
	Zet = 20;
	Colors = 20;

	CONST
	Syntax
	CONST
	identifier = expression;

	Remarks
	A constant declaration (CONST) defines an identifier, which denotes a constant value within the block containing the declaration. A constant identifier cannot be included in its own declaration. You can only assign a value to a constant during the declaration.
	Expressions used in constant declarations must be written in such a way that the compiler can evaluate them at compile time.
	A string cannot be assigned to a constant. If possible, use instead the WRITE procedure with a string parameter.

	Examples
	(* Constant Declarations *)
	CONST
	limit = 65000;
	KeyCode = 943762;

	D
	DelBrushes
	Syntax
	DelBrushes;

	Remarks
	Deletes all color palette entries, which may be defined by means of the RGBBrush or the RGBPalette procedure. Be careful! The color palette has to be redefined after the entries have been deleted by the DelBrushes procedure.
	Deleting of color palette entries may also affect the color display of MS Windows or other Windows applications.

	Example
	EVENT SetUp; DelBrushes; (* all color palette entries are now lost *)
	RGBPalette (10, 0,20, 0,20, 0,20); (* color palette is now redefined *)

	DIV
	Syntax
	(operand) DIV (operand)

	Remarks
	The DIV operator devides two operands and returns an integer as result of the whole expression. As operands are allowed: integer constants, variables or procedures that return an integer.

	Example
	VAR a, b;
	EVENT 1;
	b:= 17;
	a := b DIV 4; (* a is now 4 *)

	E
	EVENT
	Syntax
	EVENT [E<n>] | [SetUp];
	statements;
	[END.] | [EVENT E <n+1>;]

	Remarks
	An event is a program part that starts with the keyword "EVENT" plus identifier number plus semicolon and ends with the next keyword "EVENT" or the keyword "END.". The identifier number must be in the range from 0 to 5. An event is a program unit, which may be triggered by its
	corresponding single step or run button or by the SetUp button and whose code can be executed independently at a time.
	Each event should have one dominant function, e.g. initialization or the implementation of a specific algorithm.
	One CARP program may contain up to 6 events with identifiers from "E0" to "E5" and, additionally, the special event SetUp.

	Example
	EVENT E0; (* initialization of cell plane *)
	PlFillRandom (Dead,Alive); ShowPlane;
	EVENT E1;

	Expressions
	Expressions consist of operators and operands. These are the operands:
	constants
	A constant declaration (CONST) defines an identifier, which denotes a constant value within the block containing the declaration. A constant identifier cannot be included in its own declaration.
	variables
	A variable (VAR) declaration associates an identifier and a type with a location in the memory where values of that type can be stored.
	procedures
	A procedure may be either predefined or user-defined. User-defined procedures may be function procedures or procedures using a side effect.
	operators
	The different types of operators existing in CAT (arithmetic operators, logic operators, comparative operators, bit operators) allow to join operands.
	Subexpressions can be enclosed in parentheses to change the order of precedence.

	F
	FOR ... TO ...BY ... DO ... OD
	Syntax
	FOR assignment TO expression [BY step] DO
	statement;
	OD loop_variable;

	Remarks
	The FOR ... OD instruction causes the statement after DO to be executed once for each case the Boolean expression is true. The Boolean expression is checked after the first execution of statement sequence. So, statement sequence is executed at least one time.
	The loop variable is implicidly defined and may not be defined at the top of your CARP program. The loop variable may be read inside a loop, but never be written to. After the loop is completed the content of the loop variable is not defined any more.
	If the BY construct is used, you can change the interval by which the loop variable is incremented to the value which follows BY.

	Example
	FOR x := 1 TO x < 10 BY 2 DO
	WRITE (x);
	IF (x + 3) = 5
	THEN Brake
	ELSE y := x + 1
	FI;
	OD x;

	G
	GetX
	Syntax
	GetX;

	Remarks
	Returns the current x-value of the treated cell inside a PARALLEL DO loop.

	Example
	EVENT E1;
	PARALLEL DO
	...
	IF top > 0
	THEN
	WRITE ('','Current x value : ', GetX);
	FI;
	OD;

	GetY
	Syntax
	GetY;

	Remarks
	Returns the current y-value of the treated cell inside a PARALLEL DO loop.

	Example
	EVENT E1;
	PARALLEL DO
	IF top = 1
	THEN
	WRITE (GetY);
	FI;
	OD;
	ShowPlane;

	I
	Identifiers
	Identifiers denote the following:
	CONST(ants)
	PROC(edures programs)
	VAR(iables)
	Identifiers can be formed of up to 31 characters.
	- The first character of an identifier must be a letter. Upper or lower case letters are allowed at any place.
	- The characters that follow the first one must be letters, digits, or underscores (no spaces).
	Like reserved words, identifiers are case-sensitive. Identifier may not coincide with reserved words.
	Examples
	(* Identifiers *)
	VAR Limit;
	CONST A_State = 4;
	B_State = 8;

	IF .. THEN .. ELSE .. FI
	Syntax
	IF expression THEN statement [ELSE statement] FI;

	Remarks
	IF, THEN and ELSE specify the conditions under which a statement will be executed.
	If the Boolean expression after IF is true, the statement after THEN is executed. Otherwise, if the ELSE part is present, the statement after ELSE is executed.

	Example
	x := Random (1000);
	IF (x > 995)
	THEN Self := Alive;
	ELSE Self := Dead;
	FI;

	INV
	Syntax
	INV (operand)

	Remarks
	The INV operator has an integer or bit operand and converts all its zeroes to ones and all ones to
	zeroes. As operand is allowed: an integer constant, a variable, a procedure that returns an integer or a bit operand.

	Example
	VAR a, b;
	EVENT E4;
	a := %110; (* 6 *)
	b := INV a;
	WRITE ('', ' a: ', a);
	WRITE ('', ' INV a: ', b); (* result : - 7 *)
	END.

	M
	MOD
	Syntax
	(operand) MOD (operand)

	Remarks
	The MOD operator devides two operands and returns the remainder as the result. As operands are allowed: integer constants, variables or procedures that return an integer.

	Example
	VAR a, b;
	EVENT 1;
	b := 17;
	a := b MOD 4;

	MooreSum
	Syntax
	MooreSum

	Remarks
	MooreSum adds the state values of the northern, southern, western, eastern, northeastern, northwestern, southeastern and southwestern neighbors of Self.
	m m m m m m O O O m m O S O m m O O O m m m m m m

	Example
	EVENT E1; PARALLEL DO IF (MooreSum <> 4) Self := Ill; FI; OD; ShowPlane;

	N
	NeumannSum
	Syntax
	NeumannSum

	Remarks
	NeumannSum adds the state values of the northern, southern, western and eastern neighbors of Self.
	m m m m m m m O m m m O S O m m m O m m m m m m m

	Example
	EVENT E1; PARALLEL DO IF (NeumannSum > 4) Self := Red; FI; OD; ShowPlane;

	NOT
	Syntax
	NOT (operand)

	Remarks
	The NOT operator negates the result of the Boolean expression or operand that follows.
	If the cells of your CAT model may only have the state 0 or 1, you may also use a cell denoter as operand for NOT.

	Example
	IF NOT (a > limit)
	THEN a := Self FI;

	O
	OddCell
	Syntax
	OddCell

	Remarks
	OddCell provides access only to those cells whose x-value in the matrix is odd. This effects a cell matrix resembling a chess-board.
	The x-value is counted from the first top left cell to the last right bottom cell continuously. That means for example that for a matrix with XYSize 31 the first cell of the second row is considered even (i.e. 32nd cell).

	Example
	EVENT E1; PARALLEL DO Self := OddCell; OD; ShowPlane;

	OR
	Syntax
	(operand) OR (operand)

	Remarks
	The OR operator connects two operands and returns true, if one or both operands are true. The remaining case returns false.
	If the cells of your CAT model may only have the state 0 or 1, you may treat cells with the OR operator, too.

	Example
	IF (a > limit) OR (Self = 9) THEN a := Self FI;

	P
	PARALLEL DO
	PARALLEL DO
	statement;
	[statement;]
	OD;
	Remarks
	The PARALLEL DO executes the instructions of its body once for all cells of the cell matrix in parallel.
	Internally, a copy of the present state of all cells at the beginning of the PARALLEL DO construct is made, so that all conditional instructions etc. take the value contained in this copy. At the end, the computed state of all cells is written back and kept for future evaluations.
	Mostly, the Self procedure is used inside a PARALLEL DO construct as an important part of a cell-related algorithm.

	Example
	EVENT E1;
	PlClipActive;
	PARALLEL DO
	Self := North XOR South XOR East XOR West;
	OD;
	ShowPlane;

	ParallelMethod
	Syntax
	ParallelMethod;

	Remarks
	Is now the default method and needs not to be particularly defined.
	In a future version of CAT, there will also be a method SequentialMethod.

	Example
	- - -

	PillowForm
	Syntax
	PillowForm;

	Remarks
	The topology PillowForm assumes an axis in the middle of the matrix. Cells of the edges that have the same distance to this axis are copied to their counterpart.
	c4c3c2c1|c1c2c3c4 c m m m | m m m c c m m m | m m m c c m m m | m m m c c m m m | m m m c c m m m | m m m c c4c3c2c1|c1c2c3c4

	Example
	EVENT SetUp; PillowForm; PlClipActive; ShowPlane;

	PipeForm
	Syntax
	PipeForm;

	Remarks
	The topology PipeForm forms a virtually pipe-shaped matrix (tube), i.e. the top and bottom edges of the cell matrix are mutually copied to their opposite edges.
	c c c c c c c m c c c c c c c

	Example
	EVENT SetUp; PipeForm; PlClipActive; ShowPlane;

	PlClipActive
	Syntax
	PlClipActive;

	Remarks
	Restricts the effect of the subsequent instructions to the cell matrix without its border areas defined by an optional XYBound declaration. This setting is the default value.

	Example
	EVENT SetUp;
	PlClipActive;
	RGBPalette (2, 20,10, 60,10, 80,10);

	PlClipAll
	Syntax
	PlClipAll;

	Remarks
	Makes the whole cell matrix including the border areas available for subsequent instructions This procedure is only useful if you want to initialize the border areas.

	Example
	EVENT SetUp;
	PlClipAll;
	RGBPalette (2, 20,10, 60,10, 80,10);

	PlClipXY
	Syntax
	PlClipXY (x, y);

	Remarks
	Shows a central portion of the whole cell matrix with the corresponding x- and y-values. Thus, you can focus an area of special interest.

	Example
	EVENT E4;
	...
	PlClipXY (10,10);

	PlFillRandom
	Syntax
	PlFillRandom (Low, High);

	Remarks
	The procedure PlFillRandom initializes the cell matrix by random values ranging from parameter Low to High.
	Keep in mind the range of states, which are defined by the Zet declaration. If the range of possible values produced by PlFillRandom exceeds the number of defined states, the range is restricted to the Zet value.
	To take effect the parameters must be inside the range of defined colors and states (cp. Zet) and the smaller value must precede the greater one.

	Example
	EVENT E0; PlFillRandom (0,10);
	ShowPlane;

	PlFillUni
	Syntax
	PlFillUni (n);

	Remarks
	Gives the whole cell matrix a uniform state, which is defined by the n parameter, and via the associated color mapping value a uniform appearance.
	To take effect the parameter must be inside the range of defined colors and states (cp. Zet).

	Example
	EVENT SetUp; PlClipActive; PlFillUni (32); ShowPlane;

	PlFillUpStairs
	Syntax
	PlFillUpStairs (Low, High, By);

	Remarks
	The procedure PlFillUpStairs creates a stair-like shape in the cell matrix. Thereby, the parameter Low gives the lower state and colormapping value , High the higher state and colormapping value and By the interval in which the range between Hi and Lo is filled. Useful for initialization purposes.
	To take effect the parameters must be inside the range of defined colors and states (cp. Zet, Colors).

	Example
	EVENT SetUp;
	PlClipAll;
	PlFillUpStairs (2, 20, 4);
	ShowPlane;

	PROC
	Syntax
	PROC proc_identifier [VAR (identifier, identifier...)] :;
	[VAR identifier;]
	[CONST identifier;]
	BEGIN
	statement sequence;
	[RETURN expression;] END proc_identifier;

	Remarks
	A procedure is a program part, which performs a specific action, often based on a set of parameters. CAT provides both the function procedure that returns a value and the normal prodecure that exchanges data with the CARP program via variables declared in the procedure head.
	The procedure heading specifies the identifier for the procedure and the formal parameters (if any). A procedure is activated by a procedure call.
	The procedure heading is followed by:
	- a declaration part that declares local objects,
	- the statements between BEGIN and END, which specify what is to be executed when the procedure is called.
	A function procedure contains the keyword RETURN followed by an expression as last instruction.

	Example
	REF knight_t_l [-1,-2];
	knight_b_r [1,2];
	knight_mt_l [-2,-1];
	knight_mb_r [2,1];
	(* procedure adds four positions that might be reached by knight moves *)
	PROC add_4_positions (VAR ret):;
	BEGIN
	ret := knight_t_l + knight_b_r + knight_mt_l + knight_mb_r;
	END add_4_positions;
	PROC add_4_pos:; (* the same more briefly and the *) BEGIN (* procedure returning the value itself *)
	RETURN knight_t_l + knight_b_r + knight_mt_l + knight_mb_r;
	END add_4_pos;
	EVENT E3;
	PARALLEL DO WRITE ('', 'Value : ', add_4_pos); OD;
	ShowPlane;

	R
	Random
	Syntax
	Random (n);

	Remarks
	Returns a random number between 0 and n. Negative n values are not allowed.
	Every call of a loop that contains the Random instruction produces the same sequence of results for internal reasons. If you want to avoid this effect, use Randomize additionally.

	Example
	VAR x;
	EVENT E0;
	...
	x := Random (1000);
	IF x > 950 THEN add_four_positions FI;

	Randomize
	Syntax
	Randomize;

	Remarks
	Creates a new base number for the random number generator.
	This procedure is advisable if you want to prevent that each loop (PARALLEL DO, WHILE), that contains a Random procedure produces the same sequence of random numbers. The Randomize procedure should be used in the event SetUp or in the event containing the Random procedure.
	Randomize should not be used, if you are searching for a program error that is related to random numbers.

	Example
	EVENT SetUp;
	RGBPalette(Colors, $0, 10, $32,10, $B6,10,);
	Randomize;

	RECIPE
	Syntax
	RECIPE [XYSize and/or XYBound declarations;] [VAR declarations;] [CONST declarations;] [REF declarations;] [PROC declarations;] EVENT declarations; statements; END.

	Remarks
	A CARP program has to be started by the keyword "RECIPE" and terminates with the keyword "END." ("END" followed by a point). Between these delimiters, you can declare variables, constants, refered neighbors of a cell, user defined procedures and - as independently executable parts of a CARP program - events.
	Normally, the keyword RECIPE is followed by settings for the size of the cell matrix and evaluated neighborhood, by definitions of constants (CONST) , variables (VAR) or referenced cells (REF) and by events (EVENT) that contain the proper program functions. A template for a program may look as follows:

	Example
	RECIPE XYSize = 50;
	CONST ...;
	VAR ...;
	REF ...;
	EVENT SetUp;
	...
	EVENT E0;
	...
	EVENT E1;...
	...
	END.

	REF
	Syntax
	REF identifier [xvalue,yvalue]; (read)

	Remarks
	The REF declaration assigns a name to specified neighboring cells of the cell Self and allows such
	to refer to the value of these identified cells by their name. Precondition: The cell referred to may not exceed the limits set by XYBound.
	To use the value of a certain reference cell you have to do two things:
	- Define a referenced cell. - Use the defined neighbors within the program by referring to their names. Compare the sample program part on the bottom:
	Note: - You may only read from referenced cells, not write to them. This is restricted to the procedure Self. - X-values to the right of Self and Y-values on the bottom of Self have a positive value.

	Example
	REF right_neighbor [1,0]; left_neighbor [-1,0]; top_neighbor [0,-1]; bottom_neighbor [0,1]; ... EVENT E1; PARALLEL DO Self := top_neighbor OR left_neighbor OR Self OR right_neighbor OR bottom_neighbor; OD; ShowPlane; END.

	RePaint
	Syntax
	RePaint;

	Remarks
	Paints the graphic window again, if appearance or colors of the cell matrix are garbled. Scarcely useful inside a CARP program, compare instead the corresponding RePaint button.

	Example
	- - -

	REPEAT .. UNTIL
	Syntax
	REPEAT
	statement;
	[statement;]
	UNTIL expression;

	Remarks
	The statements between REPEAT and UNTIL are executed in sequence until, at the end of the loop body, the Boolean expression after UNTIL is true.
	The sequence is executed at least once. The delimiter of the REPEAT ... UNTIL loop is a ';'.

	Example
	x := 1;
	REPEAT
	IF (x + 3) = 8
	THEN WRITE (x); x := x + 1 ELSE x := x + 1 FI;
	UNTIL x > 15;

	RGBBrush
	Syntax
	RGBBrush (n, r, g, b);

	Remarks
	Assigns the color mapping n the colors given by the parameters r(ed), g(reen) and b(blue).
	This procedure is advisable, if you want to assign certain cell states to specific colors. (sample a)
	This procedure may also be used if you want to change the previous overall color settings for a special color at a given time (sample b).

	Example
	(sample a)
	RECIPE XYSize = 60;
	Zet = 4;
	Colors = 4;
	CONST dead = %00; (* bit sample 0000 *)
	just_died = %01; (* bit sample 0001 *)
	just_born = %10; (* bit sample 0010 *)
	alive = %11; (* bit sample 0011 *)
	EVENT E0;
	RGBBrush (dead, 0, 0, 0); (* black *)
	RGBBrush (just_died, 152, 88, 46); (* brown *)
	RGBBrush (just_born, 74, 229, 3); (* light green *)
	RGBBrush (alive, 50, 174, 30); (* dark green *)
	(sample b)
	VAR cell_state;
	EVENT E4; IF generation_counter > 100 THEN RGBBrush (cell_state, 24 ,30, 30)
	FI;

	RGBPalette
	Syntax
	RGBPalette (n, r0, ri, g0, gi, b0, bi);

	Remarks
	The procedure RGBPalette allows to define a set of colors and their dissemination on the color palette. These parameters have to be defined:
	n Number of colors to define. Generally, this number should comply with the number of defined states (Zet).
	r0 Starting point for the red value.
	ri Increment value by which the red value increases. Values above 255 are corrrected to a maximum value 255. g0 Starting point for the green value.
	gi Increment value by which the green value increases. Values above 255 are corrrected to a maximum value 255. b0 Starting point for the blue value.
	bi Increment value by which the blue value increases. Values above 255 are corrrected to a maximum value 255.
	Some general remarks: each defined color is a set of three values for their portion of red, green and blue (rgb). Each of this component color has a definition range from 0 to 255 (hexadecimal $0 to $FF). Red, green and blue each set to 255 result in the color white, red, green and blue each set to 0 result in the color black. That is the area, in which you may select certain colors.
	Note:
	RGBPalette sets the colors for your automaton tool model in a global way. Besides, you may define a specific color by means of the RGBBrush procedure.
	Colors defined either by RGBPalette or RGBBrush may be varied interactively later on by means of the color customizing button. To use this button for particular colors is most advisable, because it is very difficult to predict the resulting color only by defining the red, green and blue parameters. Values for increments (ri, gi, bi) may also be negative. This makes sense together with high starting values for r0, g0 or b0. Values may be given as decimal or hexadecimal figures with leading $.
	The example program below will generate this color palette: r-value g-value b-value
	color 1 30 40 50 color 2 45 55 65 color 3 60 70 80 color 4 75 85 95 color 5 90 100 110

	Example
	EVENT SetUp; RGBPalette (5, 30,15, 40,15, 50,15);

	RingForm
	Syntax
	RingForm;

	Remarks
	The topology RingForm forms a virtual endless matrix connecting at first two edges and then the edges of the built up pipe. This body is also known as thorus. The RingForm topology is the default setting and therefore, the RingForm instruction may be omitted.
	c c c c c c c c m m m m m c c m m m m m c c m m m m m c c m m m m m c c m m m m m c c c c c c c c

	Example
	EVENT SetUp; RingForm; PlClipActive; ShowPlane;

	S
	Self
	Syntax
	Self (read / write)

	Remarks
	The only instruction to change the state of a cell and thereby the whole cell matrix is Self. All other cell matrix-related procedures only allow reading of a cell state.
	Self is strongly connected with the PARALLEL DO instruction. Inside a PARALLEL DO cycle, Self allows for each cell read or write access.
	All instructions inside a PARALLEL DO and related to Self and other referred cells have to be thought of as actually happening simultaneously. (In fact, on a single CPU computer, a copy of the state of all cells will be made, and, depending on these values, the instructions for all cells will be of course carried out subsequently.) But focussing on CAT's concept, Self and PARALLEL DO are the decisive keys to leave array treatment and such things behind and turn to the new programming paradigm 'the cell in its environment'.
	The effect of the sample instructions below (it implements Conveys Life program): For each cell of the cell matrix will be controlled as to whether Self is 'alive' (read access) and has two or three 'alive' neighbors ('alive' is assigned to the state 1 of a cell). If this is true, Self will be set to 'alive' (write access with the ':=' procedure). Otherwise, if Self is 'dead' and has three 'alive' neighbors, Self will be set again to 'alive'. In all other cases, Self will be considered as 'too lonely' or 'overcrowded' and therefore set to 'dead'.

	Example
	PARALLEL DO IF (Self = Alive) AND ((MooreSum = 3) OR (MooreSum = 2)) THEN Self := Alive ELSE IF (Self = Dead) AND (MooreSum = 3) THEN Self := Alive ELSE Self := Dead FI FI; OD;

	SetLattice
	Syntax
	SetLattice (thickness, foregroundcolor, backgroundcolor);

	Remarks
	Returns a lattice pattern originating from the center of your cell matrix with free spaces of size 'thickness' and with the corresponding fore- and backgroundcolors.
	Example
	EVENT SetUp;
	PlClipActive;
	SetLattice(3,1,19);

	SheetForm
	Syntax
	SheetForm;

	Remarks
	The topology SheetForm makes the evaluation of algorithms end on the edges of the cell matrix without any further continuation on other edges.
	m m

	Example
	EVENT SetUp; SheetForm; PlClipActive; ShowPlane;

	SHL
	Syntax
	(operand) SHL (operand)

	Remarks
	The SHL operator shifts all bits of a binary digit by the value of the second operand times to the left. Leading digits are filled by 0.
	This works for integer variables, constants or referenced cells interpreted as binary values as well as for explicitly defined binary digits. In the following sample the variable b returns the value 12 both times.

	Example
	a := %110; (* 6 *) (* using bit operator *)
	b := a SHL 1;
	WRITE ('',b);
	(* without bit operator *)
	a := 6;
	b := a SHL 1;
	WRITE ('',b);

	ShowCell
	Syntax
	ShowCell (n);

	Remarks
	This procedure shows the current state of the cell with the x-value n.
	This value is computed as n = x + (XSize * (y - 1)). (An example: in a cell matrix with XYSize = 10 the first cell in the top left corner counts 0 and the last cell in the bottom right corner counts 99.)
	This procedure is very CPU-time-consuming and should only be used if the focus is on a single cell.

	Example
	EVENT E1;
	PARALLEL DO
	IF x > delimiter
	THEN
	Self := (NeumannSum + Self) > 0
	FI;
	OD;
	ShowCell (74);
	ShowCell (75);
	ShowCell (76);

	ShowKind
	Syntax
	ShowKind (w);

	Remarks
	Shows the state and color mapping of a single cell.
	Useful only if the focus is on these settings of a single cell. Can then be combined with the ShowCell procedure.

	Example
	EVENT E1;
	ShowKind (74);
	ShowKind (75);
	ShowKind (76);
	ShowCell (74);
	ShowCell (75);
	ShowCell (76);

	ShowPlane
	Syntax
	ShowPlane;

	Remarks
	This function is necessary for showing the whole cell matrix in its current state. Should normally occur at the end of any event description for control purposes. If your cellular automaton model is very CPU time-consuming, you can order to display only every tenth or whatever generation of your CAT model.
	Never use ShowPlane inside a PARALLEL DO instruction, for this might crash CAT.

	Example
	EVENT E1; ... IF i < 50
	THEN ShowPlane
	ELSE IF i MOD 10 = 0
	THEN ShowPlane
	FI
	FI;
	i := i +1;

	SHR
	Syntax
	(operand) SHR (operand)

	Remarks
	The SHR operator shifts all bits of a binary digit by the value of the second operand times to the right. Leading digits are filled by 0.
	This works for integer variables, constants or referenced cells interpreted as binary values as well as for explicitly defined binary digits.

	Example
	(* life model (cp. Convey) with four different states: *)
	(* life, just_born, dead, just_died *)
	RECIPE XYBound = 60;
	CONST dead = %00; (* bit sample 0000 *)
	just_died = %01; (* bit sample 0001 *)
	just_born = %10; (* bit sample 0010 *)
	alive = %11; (* bit sample 0011 *)
	(* A *)
	(* "alive bit" *)
	REF right_n [1,0];
	left_n [-1,0];
	top_n [0,-1];
	bot_n [0,1];
	PROC add_second_bit:;
	(* procedure evaluates second bit of neighbors that *) (* indicate alive state and returns sum of found bits*)
	BEGIN *)
	RETURN ((right_n XOR %01) SHR 1) + ((left_n XOR %01) SHR 1) + ((top_n XOR %01) SHR 1) + ((bot_n XOR %01) SHR 1)
	END add_second_bit;
	EVENT E0;
	RGBBrush (dead, 0, 0, 0); (* black *)
	RGBBrush (just_died, 152, 88, 46); (* brown *)
	RGBBrush (just_born, 74, 229, 3); (* light green *)
	RGBBrush (alive, 50, 174, 30); (* dark green *)
	EVENT E1;
	PARALLEL DO
	a := add_second_bit;
	IF (a = 2) OR (a = 3)
	THEN IF (a = 3) AND ((Self = dead) OR (Self = just_died))
	THEN Self := just_born;
	ELSE Self := alive
	FI;
	ELSE IF (Self = alive) OR (Self = just_born)
	THEN Self := just_died;
	ELSE Self := dead;
	FI;
	FI;
	OD;
	ShowPlane;
	END.

	Statement
	A statement is one of the following:
	assignment (:=)
	BEGIN..END
	FOR..TO..BY..DO..OD
	PARALLEL...DO
	IF..THEN..ELSE FI
	PROC(edure)
	REPEAT .. UNTIL
	WHILE .. DO .. OD

	V
	VAR
	Syntax
	VAR
	identifier, ... identifier;

	Remarks
	A variable (VAR) declaration associates an identifier with a location in the memory where values can be stored.
	You may not combine a declaration of a variable with an assignment like you might expect from the usage of constants. Assign a value to the variable inside an event.

	Examples
	(* Variable Declarations *)
	VAR
	x , y , z;
	x := 3;

	W
	WHILE ... DO ... OD
	Syntax
	WHILE expression DO statement OD;

	Remarks
	A WHILE statement contains an expression, which controls the repeated execution of one or several statements embraced by the keywords 'DO' and 'OD'. The statement after DO is executed repeatedly as long as the Boolean expression is true.
	The expression is evaluated before the statement is executed, so if the expression is false at the beginning, the statement will not be executed at all.

	Example
	WHILE i < 20 DO
	Self := NeumannSum DIV 2;
	i := i + 1 OD;

	WinClipActive
	Syntax
	WinClipActive;

	Remarks
	Shows only the active part of the cell matrix without any border areas. WinClipAll or WinClipActive are only relevant for the appearance of the STATE window. The same can be achieved interactively by means of the magnifier button.

	Example
	EVENT SetUp;
	RGBPalette(Colors, $0, $FF, $32,0, $B6,0);
	WinClipActive;
	ShowPlane;

	WinClipXY
	Syntax
	WinClipXY (x, y);

	Remarks
	Shows a central portion of the whole cell matrix with the corresponding x- and y-values. Thus, you can focus on an area of special interest.

	Example
	EVENT E4;
	PlFillRandom (1,4);
	WinClipXY (5, 5);

	WinClipAll
	Syntax
	WinClipAll;

	Remarks
	Shows the whole cell matrix including the border areas. WinClipAll or WinClipActive are only relevant for the appearance of the STATE window.
	The same can be done interactively by means of the magnifier button.

	Example
	EVENT SetUp;
	RGBPalette(Colors, $0, $FF, $32,0, $B6,0);
	WinClipAll;
	ShowPlane;

	WrDCaps
	Syntax
	WrDCaps;

	Remarks
	Acronym for 'Write Display Capabilities'. The corresponding values specific to your data display are written into the LIST window. Useful for system administration and service purposes, especially on graphic resolution issues. A possible output in the LIST window:
	Display capabilities
	H/V Resolution : 1024 768
	Pixel/Planes : 8 1
	Colors : 20
	Palette/reserv : 256 20

	Example
	EVENT SetUp;
	RGBPalette(Colors, 127, 2, 127,30, 127,30);
	ShowPlane;
	WrDCaps;

	WRITE
	Syntax
	WRITE ([string] | [(VAR) identifier] | [(CONST) identifier] | [(PROC) identifier] [:n] ['']);

	Remarks
	Writes the contents of variables, constants, values of function procedures or strings to the LIST window and the .CAL file. Different operands have to be devided by a comma, strings must be included by ' (apostrophe).
	Several facilities are provided for formatting the output:
	[(var):n] If the contents of the variable or the constant has less than n digits, the output is indended accordingly. ' ' Put at the end or beginning of the parameter list, a carriage return / linefeed (CR/LF) at the end or beginning of the output is caused.
	If the buffer to which all data is moved is full, you will get the message "Editor buffer is full" and will be prompted whether you want to overwrite the contents or stop writing. All written informations may later be inspected by means of the LIST window.

	Example
	IF (x > limit)
	THEN WRITE ('','Limit exceeded with value : ');
	WRITE (x : 8, ''); FI;

	WrMCaps
	Syntax
	WrMCaps;

	Remarks
	Acronym for 'Write Memory Capabilities'. The corresponding values of RAM (Random Access Memory) usage specific to your hardware and operating system configuration are written into the LIST window. Useful for system administration and service purposes, especially if you are in doubt about sufficient memory (RAM).
	A possible output in the LIST window may look as follows:
	Memory and resources Mem_free KB : 47730 Mem_block KB : 16320 Sys_Res % : 62 GDI_Res % : 62 Usr_Res % : 83

	Example
	EVENT SetUp;
	RGBPalette(Colors, 127, 2, 127,30, 127,30);
	ShowPlane;
	WrMCaps;

	WrPPars
	Syntax
	WrPPars;

	Remarks
	Acronym for 'Write Plane Parameters'. The corresponding values for your actual CAT cell matrix configuration are written into the LIST Window. Useful for system administration and debugging purposes.
	A possible output in the LIST window may look as follows:
	CAT actual parameters
	X/YSize : 31 31
	X/YBound : 3 3
	X/YTotal : 37 37
	Act/TotSz : 961 1369
	Org/Skip : 114 6

	Example
	EVENT SetUp;
	RGBPalette(Colors, 127, 2, 127,30, 127,30);
	ShowPlane;
	WrPPars;

	X
	XOR
	Syntax
	(operand) XOR (operand)

	Remarks
	The XOR operator adds two operands and returns true if one of the two operands returns true and the other false. If both the operands return true or false, the whole expression returns false. As operands are allowed: integer constants, variables, referenced cells or procedures that return an integer.

	Example
	b := 8;
	IF (a > limit) XOR (b = 8)
	THEN a := Self
	FI;

	XYBound
	Syntax
	XYBound = n;

	Remarks
	Defines the range of the neighborhood of the cell Self (in x and y values) that can be evaluated by any instruction of your CARP program. Referenced cells (REF) must be inside the range of the XYBound.
	XYBound defines moreover the width of the border area of the cell matrix that is shown if the PlClipAll procedure is used or that is effected by an equivalent setting of the magnifier button.

	Example
	RECIPE XYSize = 140;
	XYBound = 1 ;
	
	REF east [1,0];
	west [-1,0];
	north [0,-1];
	south [0,1];
	north_ea [1,-1];
	north_we [-1,-1];
	south_ea [1,1];
	south_we [-1,1];
	PROC add_second_bit:;(* procedure evaluates second bit of*)
	(* neighbors indicating alive state *)
	BEGIN (* and returns sum of found bits *)
	RETURN ((east XOR %01) SHR 1) + ((west XOR %01) SHR 1) +
	((north XOR %01) SHR 1) + ((south XOR %01) SHR 1) +
	((north_ea XOR %01) SHR 1) +((north_we XOR %01) SHR 1) +
	((south_ea XOR %01) SHR 1) + ((south_we XOR %01) SHR 1)
	END add_second_bit;

	XYSize
	Syntax
	XYSize = n;

	Remarks
	Defines the horizontal (x) and vertical (y) size of a cell matrix. If you want to define a different YSize compared to XSize, you can use the YSize declaration.
	Keep in mind that high XYSize values are very CPU time-consuming.

	Example
	RECIPE XYSize = 120;
	XYBound = 2;

	Y
	YSize
	Syntax
	YSize = n;

	Remarks
	Defines the vertical (y) size of a cell matrix
	Keep in mind that high XYSize or YSize values are very CPU time-consuming

	Example
	RECIPE XYSize = 120;
	YSize = 100;

	Z
	Zet
	Syntax
	Zet = n;

	Remarks
	Zet is the number of different states that can be adopted by any cell. The Zet value complies normally with the number of available Colors.

	Example
	RECIPE XYSize = 140;
	XYBound = 3 ;
	Zet = 20;
	Colors = 20;

