
U5. Colors
    UtilIt supports several commands to help programmers get and set colors, plus a single command to
switch the color palette associated with a program.    The need for help with getting and setting colors
stems from the fact that the color environments available on the Mac range from B & W w/o Color
QuickDraw to the latest version of 32-bit QuickDraw running on 24-bit deep screens.    By using UtilIt
commands to get and set colors, drawing can be done without needing to be aware of the current color
environment.

GetFgC    178    a,b,c,d,uRGB,uResult,uMenuID,
                                uMenuItem,uI2

GetBkC    179    a,b,c,d,uRGB,uResult,uMenuID,
                                uMenuItem,uI2
    Returns the foreground, GetFgC, or background, GetBkC, color from the designated port or color table.    Returns the foreground, GetFgC, or background, GetBkC, color from the designated port or color table.
When getting a color in a color table, the only difference between GetFgC and GetBkC is that the former When getting a color in a color table, the only difference between GetFgC and GetBkC is that the former
returns black and the latter white when a color cannot be found.    All forms of GetFgC and GetBkC work returns black and the latter white when a color cannot be found.    All forms of GetFgC and GetBkC work
in all color & non-color environments.in all color & non-color environments.
• if b = 0 then...• if b = 0 then...
    a = source window or port    a = source window or port
      0 = front modal or active modeless window      0 = front modal or active modeless window
      1 = current port      1 = current port
      other = WindowPtr or GrafPtr      other = WindowPtr or GrafPtr
    c & d are not used (pass 0)    c & d are not used (pass 0)
• if b = -1 then...• if b = -1 then...
    c = clut ID or handle    c = clut ID or handle
    d = clut index (1-based)    d = clut index (1-based)
    a is not used (pass 0)    a is not used (pass 0)
• if b = -2 then...• if b = -2 then...
    c = clut ID or handle    c = clut ID or handle
    d = clut value (partID)    d = clut value (partID)
    a is not used (pass 0)    a is not used (pass 0)
where the unusual use of parameter b to determine the type of action follows that seen in the where the unusual use of parameter b to determine the type of action follows that seen in the
SetFgC/BkC commands.SetFgC/BkC commands.
    For both color and non-color ports, the color is returned in both uRGB and in the three 4-byte integer     For both color and non-color ports, the color is returned in both uRGB and in the three 4-byte integer
variables uResult, uMenuID, and uMenuItem, where the latter either contain an old-style color constant in variables uResult, uMenuID, and uMenuItem, where the latter either contain an old-style color constant in
uResult and -1 in uMenuID and uMenuItem, or the three RGB color components in the low word of each uResult and -1 in uMenuID and uMenuItem, or the three RGB color components in the low word of each
variable.variable.
    When getting a color by index from a clut, uI2 returns the entry's partID.    When getting a color by     When getting a color by index from a clut, uI2 returns the entry's partID.    When getting a color by
partID, and the partID cannot be found in the clut, then UtilIt will get the color from clut 1111 which partID, and the partID cannot be found in the clut, then UtilIt will get the color from clut 1111 which
contains a copy of the standard control colors.contains a copy of the standard control colors.
    UtilIt includes clut 1110 which contains the 8 old-style colors as RGB colors with part IDs equal to the     UtilIt includes clut 1110 which contains the 8 old-style colors as RGB colors with part IDs equal to the
old-style color constants.    This facilitates finding the RGB equivalent of an old-style color by calling old-style color constants.    This facilitates finding the RGB equivalent of an old-style color by calling
GetFgC with b = -2,    c = 1110, and d = old-style color constant (= the partID).GetFgC with b = -2,    c = 1110, and d = old-style color constant (= the partID).

SetFgC    180    a,b,c,d,uRGB,uResult
SetBkC    181    a,b,c,d,uRGB,uResult
    Resets the foreground, SetFgC, or background, SetBkC, color-related fields of the designated port's Resets the foreground, SetFgC, or background, SetBkC, color-related fields of the designated port's
(C)GrafPort record, where parameters b, c, and d specify the color.    All forms of SetFgC and SetBkC will (C)GrafPort record, where parameters b, c, and d specify the color.    All forms of SetFgC and SetBkC will
work in all color and non-color environments.    Black (foreground) or white (background) is used as the work in all color and non-color environments.    Black (foreground) or white (background) is used as the
default color if the specified color is not supported in the current environment.    If the port's color is default color if the specified color is not supported in the current environment.    If the port's color is
changed, UtilIt returns uResult ≠ 0.changed, UtilIt returns uResult ≠ 0.
    a = target window or port    a = target window or port
      0 = front modal or active modeless window      0 = front modal or active modeless window
      1 = current port      1 = current port
      other = WindowPtr or GrafPtr      other = WindowPtr or GrafPtr
• if b = c = d = -1 then...• if b = c = d = -1 then...

    uRGB is used as source of color    uRGB is used as source of color
• if b = -1 then...• if b = -1 then...
    c = clut ID or handle    c = clut ID or handle
    d = clut index (1-based)    d = clut index (1-based)
• if b = -2 then...• if b = -2 then...
    c = clut ID or handle    c = clut ID or handle
    d = clut value (partID)    d = clut value (partID)
• if b > 0 and c = d = -1 then...• if b > 0 and c = d = -1 then...
    b = address of RBG color OR old-style color constant:    b = address of RBG color OR old-style color constant:
          33 = black, 30 = white, 205 = red, 341 = green,          33 = black, 30 = white, 205 = red, 341 = green,
          409 = blue, 273 = cyan, 137 = magenta, 69 = yellow          409 = blue, 273 = cyan, 137 = magenta, 69 = yellow
• if b > 0, c > 0, d > 0 then...• if b > 0, c > 0, d > 0 then...
    b = red component (in low word, 0 to 65535)    b = red component (in low word, 0 to 65535)
    c = green component (in low word, 0 to 65535)    c = green component (in low word, 0 to 65535)
    d = blue component (in low word, 0 to 65535)    d = blue component (in low word, 0 to 65535)
where the unusual use of parameter b arose from efforts to maintain backward compatibility with older where the unusual use of parameter b arose from efforts to maintain backward compatibility with older
versions.versions.
    When searching for a "partID" (typically used by control drivers to set control part colors), and the partID    When searching for a "partID" (typically used by control drivers to set control part colors), and the partID
cannot be found in the designated clut, then UtilIt will try getting the color from clut 1111 which contains a cannot be found in the designated clut, then UtilIt will try getting the color from clut 1111 which contains a
copy of the standard control colors.    This makes it easy for control drivers to set control part colors copy of the standard control colors.    This makes it easy for control drivers to set control part colors
without having to worry about the color environment in use.without having to worry about the color environment in use.
    To help understand the use of b, c, and d, consider the following examples which all specify the color     To help understand the use of b, c, and d, consider the following examples which all specify the color
white:white:
    b = c = d = -1, uRGB.red = green = blue = $FFFF    b = c = d = -1, uRGB.red = green = blue = $FFFF
    b = -1, c = 1111, d = 2    (the 2nd color in clut 1111)    b = -1, c = 1111, d = 2    (the 2nd color in clut 1111)
    b = 30, c = d = $FFFFFFFF = -1    b = 30, c = d = $FFFFFFFF = -1
    b = c = d = $0000FFFF = 65535    b = c = d = $0000FFFF = 65535
NOTE:    NOTE:    When creating complex pictures or pixmaps with thousands of different colors, it is usually not When creating complex pictures or pixmaps with thousands of different colors, it is usually not
advisable to use SetFgC or SetBkC to set colors since they are more time-consuming than the advisable to use SetFgC or SetBkC to set colors since they are more time-consuming than the
corresponding toolbox calls.corresponding toolbox calls.

SetPal2 185    a,b,c,d,uResult
    Resets the current program-wide color palette or palette characteristics according to the parameters a, Resets the current program-wide color palette or palette characteristics according to the parameters a,
b, c, and d.    SetPal2 is ignored if Color QuickDraw is not supported, and uResult returns a negative b, c, and d.    SetPal2 is ignored if Color QuickDraw is not supported, and uResult returns a negative
value if an error occurs.value if an error occurs.
    a = scope or type of palette change    a = scope or type of palette change
      -1 = apply to all palette entries      -1 = apply to all palette entries
      0 to 255 = palette entry number      0 to 255 = palette entry number
      > 255 = clut handle in memory      > 255 = clut handle in memory
      < -1 = - ID of clut resource or System color table      < -1 = - ID of clut resource or System color table
    b = palette entry usage    b = palette entry usage
      0 = pmCourteous      0 = pmCourteous
      2 = pmTolerant      2 = pmTolerant
      4 = pmAnimated      4 = pmAnimated
      8 = pmExplicit      8 = pmExplicit
      10 = pmTolerant + pmExplicit (requires 32-bit QD)      10 = pmTolerant + pmExplicit (requires 32-bit QD)
      12 = pmAnimated + pmExplicit (requires 32-bit QD)      12 = pmAnimated + pmExplicit (requires 32-bit QD)
    c = palette entry tolerance    c = palette entry tolerance
    d = target palette    d = target palette
      0 = the program-wide palette      0 = the program-wide palette
      other = a palette handle      other = a palette handle
If the scope of changes applies to the entire palette (a < 0 or a > 255), then all visible windows in all If the scope of changes applies to the entire palette (a < 0 or a > 255), then all visible windows in all
screens are erased and invalidated.screens are erased and invalidated.         In cases where your program keeps control after calling SetPal2, In cases where your program keeps control after calling SetPal2,
you may want to call DoUpdt2 to force FaceIt to redraw all of the invalidated windows.you may want to call DoUpdt2 to force FaceIt to redraw all of the invalidated windows.

