
U8. String Lists
    An important subset of UtilIt commands are those used to manipulate "string lists" (STR#-type An important subset of UtilIt commands are those used to manipulate "string lists" (STR#-type
resources or any relocatable block with a similar structure).    String lists contain Pascal-type strings resources or any relocatable block with a similar structure).    String lists contain Pascal-type strings
packed together in a list:packed together in a list:

[2-byte count][length byte][text][length byte][text]...[2-byte count][length byte][text][length byte][text]...
Although this is a very efficient way to store strings, the only toolbox call, GetIndString, available for use Although this is a very efficient way to store strings, the only toolbox call, GetIndString, available for use
with such string lists simply returns a particular string from an STR#-based list.with such string lists simply returns a particular string from an STR#-based list.
    The four UtilIt commands GetStr, SetStr, SrtLst, and DupLst allow you to easily manipulate string lists.        The four UtilIt commands GetStr, SetStr, SrtLst, and DupLst allow you to easily manipulate string lists.   
For example, to set STR# 1040 equal to the first 10 elements of STR# 1030, you could write,For example, to set STR# 1040 equal to the first 10 elements of STR# 1030, you could write,
 FaceIt(nil,SetStr,1040,-1,0,0); clear list FaceIt(nil,SetStr,1040,-1,0,0); clear list
 for i:= 1 to 10 do for i:= 1 to 10 do

 begin begin
get ith string from STR# 1030get ith string from STR# 1030

    FaceIt(nil,GetStr,1030,i,0,0);    FaceIt(nil,GetStr,1030,i,0,0);
set ith string in STR# 1040set ith string in STR# 1040

    FaceIt(nil,SetStr,1040,i,0,0);    FaceIt(nil,SetStr,1040,i,0,0);

 end; end;
where each string being copied goes through the uString variable.    String lists can also be dynamically where each string being copied goes through the uString variable.    String lists can also be dynamically
created and disposed of without the need for STR# resources.    For example, to copy the contents of created and disposed of without the need for STR# resources.    For example, to copy the contents of
STR# 1030 into a new string list handle, you could write:STR# 1030 into a new string list handle, you could write:

FaceIt(nil,DupLst,1030,0,0,0);FaceIt(nil,DupLst,1030,0,0,0);

myList := uResult;myList := uResult;
where a handle to the new list is returned in uResult and saved in "myList".    Such a list handle can then where a handle to the new list is returned in uResult and saved in "myList".    Such a list handle can then
be used with other string list commands.    For example,be used with other string list commands.    For example,

FaceIt(nil,SetStr,myList,0,0,-1);FaceIt(nil,SetStr,myList,0,0,-1);
would cause UtilIt to dispose of the dynamically allocated "myList" string list.would cause UtilIt to dispose of the dynamically allocated "myList" string list.
    In some cases you may need to determine the number of strings which are currently in a list.    The first     In some cases you may need to determine the number of strings which are currently in a list.    The first
two bytes of the copy of the string list in memory contains this value.    For example, using Language two bytes of the copy of the string list in memory contains this value.    For example, using Language
Systems Fortran, where "n" is the number of strings in the list, "resID" is an STR# ID, and "strHdl" is the Systems Fortran, where "n" is the number of strings in the list, "resID" is an STR# ID, and "strHdl" is the
handle to a string list,handle to a string list,
 strHdl = GetResource(%val('STR#'),%val(resID)) strHdl = GetResource(%val('STR#'),%val(resID))
 n = word(long(strHdl)) n = word(long(strHdl))
or, using Pascal, where the type "word" is declared as a pointer to an integer,or, using Pascal, where the type "word" is declared as a pointer to an integer,
 word = ^integer; word = ^integer;

 strHdl := GetResource('STR#',resID); strHdl := GetResource('STR#',resID);
 n := word(strHdl^)^; n := word(strHdl^)^;
or, using C,or, using C,
 strHdl = GetResource('STR#',resID); strHdl = GetResource('STR#',resID);
 n = *(short*)(*strHdl); n = *(short*)(*strHdl);

    The following commands use parameter a to designate a string list to manipulate.    Parameter a can     The following commands use parameter a to designate a string list to manipulate.    Parameter a can
refer to either an existing STR#-type resource or to any relocatable block in memory having the structure refer to either an existing STR#-type resource or to any relocatable block in memory having the structure
of a string list.    CAUTION:    A string list that is not based on an STR# resource must still have the of a string list.    CAUTION:    A string list that is not based on an STR# resource must still have the
structure of a string list.    An "empty" string list, for example, is not a 0-byte relocatable block created with structure of a string list.    An "empty" string list, for example, is not a 0-byte relocatable block created with
the toolbox call NewHandle, but rather a 2-byte block containing the value zero.the toolbox call NewHandle, but rather a 2-byte block containing the value zero.

GetStr    491    a,b,c,d,uString,uName
    Gets a string or substring from a string list, uString, or uName, returning it in uString.Gets a string or substring from a string list, uString, or uName, returning it in uString.
    a = STR# resource ID of an existing string list resource    a = STR# resource ID of an existing string list resource

        or a handle to an existing string list block in memory        or a handle to an existing string list block in memory
        or 0 = use uString or uName as source string        or 0 = use uString or uName as source string
    b = number of string in list to get    b = number of string in list to get
        or 0 or 1 = use uString (if a = 0)        or 0 or 1 = use uString (if a = 0)
        or 2 = use uName (if a = 0)        or 2 = use uName (if a = 0)
        or other = address of a Pascal string (if a = 0)        or other = address of a Pascal string (if a = 0)
    c = number of substring within string to get    c = number of substring within string to get
        or 0 = return entire string (- d leading characters)        or 0 = return entire string (- d leading characters)
    d = ASCII character number used to delimit substrings    d = ASCII character number used to delimit substrings
                  (“,” = 44, “:” = 58, “;” = 59, etc.)                  (“,” = 44, “:” = 58, “;” = 59, etc.)
        or number of leading characters to skip (if c = 0)        or number of leading characters to skip (if c = 0)

SetStr    492    a,b,c,d,uString,uResult
    Adds, deletes, or inserts strings in string lists.    Where necessary, empty strings are added to the string Adds, deletes, or inserts strings in string lists.    Where necessary, empty strings are added to the string
list.    Note that uString is preserved across calls to SetStr.list.    Note that uString is preserved across calls to SetStr.
    a = STR# resource ID of an existing string list resource    a = STR# resource ID of an existing string list resource
        or a handle to an existing string list block in memory        or a handle to an existing string list block in memory
        or, if a = 0, a new string list is created and its handle is        or, if a = 0, a new string list is created and its handle is

returned in uResult (save this handle for later use)returned in uResult (save this handle for later use)
    b = scope of changes to make    b = scope of changes to make
      -1 = clear all strings in the list      -1 = clear all strings in the list
          0 = don't change any of the strings          0 = don't change any of the strings
          n = nth string in list to manipulate          n = nth string in list to manipulate
    c = type of changes to make    c = type of changes to make
      -1 = delete nth string from list      -1 = delete nth string from list
          0 = replace nth string in list with uString          0 = replace nth string in list with uString
          1 = insert uString at nth string position          1 = insert uString at nth string position
    d = memory and disk options (disk operations are skipped if not working with an STR# resource)    d = memory and disk options (disk operations are skipped if not working with an STR# resource)
      -2 = delete copy of string list from memory w/o updating      -2 = delete copy of string list from memory w/o updating
      -1 = update copy of string list in memory and on disk,      -1 = update copy of string list in memory and on disk,
                        then delete the string list from memory                        then delete the string list from memory
          0 = update copy in memory only          0 = update copy in memory only
          1 = update both copy in memory and on disk          1 = update both copy in memory and on disk
You should, in general, minimize the number of calls made to update a copy of an STR# list on disk since You should, in general, minimize the number of calls made to update a copy of an STR# list on disk since
this step involves saving the entire STR# resource back to disk.    In other words, if you have a loop whichthis step involves saving the entire STR# resource back to disk.    In other words, if you have a loop which
results in many SetStr calls, then don't ask UtilIt to update the disk copy (d = 1) until changes to the list in results in many SetStr calls, then don't ask UtilIt to update the disk copy (d = 1) until changes to the list in
memory are complete.    There will often simply be no need to update the disk copy.memory are complete.    There will often simply be no need to update the disk copy.

SrtLst    493    a,b
    Sorts (alphabetizes) the list whose resource ID or handle is given by a.    Parameter b can be used to Sorts (alphabetizes) the list whose resource ID or handle is given by a.    Parameter b can be used to
designate the number of leading characters to ignore when comparing strings in the list.designate the number of leading characters to ignore when comparing strings in the list.

DupLst    494    a,b,c,d,uResult
    Copies the list designated by parameter a to that designated by b, where a and b are either STR# IDs Copies the list designated by parameter a to that designated by b, where a and b are either STR# IDs
or handles to string lists.    If b is zero, then a new destination string list block is dynamically allocated and or handles to string lists.    If b is zero, then a new destination string list block is dynamically allocated and
its handle returned in uResult.    Parameter c can be used to add or remove leading characters as each its handle returned in uResult.    Parameter c can be used to add or remove leading characters as each
string is copied.    If c is positive, then c characters whose ASCII value is given by d are added to each string is copied.    If c is positive, then c characters whose ASCII value is given by d are added to each
string. If c is negative, then c characters are removed from the beginning of each copied string. If a = b, string. If c is negative, then c characters are removed from the beginning of each copied string. If a = b,
then the source string list is simply modified according to c and d.then the source string list is simply modified according to c and d.

GetI2    422    a,b,c,d,uString,uName,uI2
GetI4    423    a,b,c,d,uString,uName,uI4
GetR4    425    a,b,c,d,uString,uName,uR4

GetR8    426    a,b,c,d,uString,uName,uR8
GetR10    427    a,b,c,d,uString,uName,uR10
GetR12    428    a,b,c,d,uString,uName,uR12
    These commands are similar to    These commands are similar to GetStr, but return values in uI2 to uR12.    They assume that the string
retrieved from the string list consists of bytes that are equal to an integer or real value.    GetI2, for
example, moves the first two bytes of the designated string to uI2 (w/o converting the string to a number).
These commands are most often used to retrieve values from STR# 1101 after executing the FaceIt
command GetFWs.

