
V5. Controls
    Controls within ViewIt windows are much more powerful than the standard controls seen in Mac 
dialogs.    This power is based upon an extension of the Control Manager that (1) stores more information 
about the characteristics of each control, and (2) sends a wider variety of messages to each control. This 
extension is what makes it possible to support multiple styles and colors, as well as complex controls 
such as this help control that contains its own scroll bar and can respond to a full range of events.
    This topic presents information about ViewIt controls that applies to all control types:    how to get info 
about existing controls, which toolbox calls work with ViewIt controls, and ViewIt's support for control 
scrolling, growing, styles, colors, etc.    Information about specific control types can be obtained from the 
corresponding driver's on-line help.    To open such help,
 1. Add the control of interest to a ViewIt window
 2. Enter edit mode (Option-âŒ˜-Shift)
 3. Select the control (click once on it)
 4. Open the Control dialog (shortcut:    triple click)
 5. Press the "Driver Help" button
The menu controls at the top of this window, for example, are supported by the BaseCt basic control 
driver which has an on-line help window that describes all of the control types that it supports:    text, 
icons, lists, menus, dials, etc.

Getting Info
    The extra information associated with each ViewIt control is stored in a relocatable block whose handle 
can be found in the "contrlDefProc" field of the control's standard control record (which is itself another 
relocatable block).    Since it would be a headache for programmers to retrieve this info from relocatable 
blocks, ViewIt's GetCtl command can be used to get the info from both the standard control record and 
the extra block (see GetCtl in "Commands" topic).
    GetCtl copies the content of the two blocks into the fRec variables cNext to cString, where cNext to 
cTitle corresponds to the standard control record, and cStuff to cString is a copy of the supplemental 
record.    GetCtl also returns the control's control handle in cControl, info about its position in the control 
list in ciIndex, cvIndex, and ccIndex, and the driver's baseID in cBaseID (see the "fRec Record" topic for 
brief description of each variable).
    Common uses of GetCtl include:
- getting the control handle for use in other calls
- determining the current value or state of a control
- getting the current control rect prior to drawing
- getting the handle of a resource linked to the control
WARNING:    Do not assume that the content of fRec variables returned by GetCtl is preserved across 
calls to the Control Manager or the FaceIt dispatching procedure.    Values that might need to be reused, 
such as a cControl control handle, should be saved in program variables.    One exception:    Most UtilIt 
commands preserve the "w" and "c" variables.

Toolbox Calls
    Although we have greatly enhanced the capabilities of controls in ViewIt windows, most of the Control 
Manager toolbox calls can continue to be used with ViewIt controls.    Moreover, toolbox calls applied to 
view controls in ViewIt windows will automatically affect all daughter controls in the view (i.e., hiding a 
view will also hide controls within the view).

The toolbox calls supported are:
      HiliteControl              SetCtlValue
      ShowControl                  SetCtlMin
      HideControl                  SetCtlMax
      Draw1Control                GetCtlValue
      SizeControl                  GetCtlMin
      MoveControl                  GetCtlMax
      DragControl                  SetCRefCon
      GetCtlAction                GetCRefCon
      GetCTitle                      SetCTitle



where ViewIt's GetCtl makes the "Get..." calls unnecessary, DrwCtl can be used in place of 
"Draw1Control", ShoCtl in place of "ShowControl" and "HideControl", and ActCtl in place of 
"HiliteControl".
    CAVEAT:    The Control Manager does not always send the proper messages to controls that are 
hidden.    This is due to the fact that it assumes that controls redraw themselves in a simple way based 
upon the current state of their control record.    Many ViewIt controls, however, maintain private data that 
must be updated whenever the control is moved, resized, or has its value or hilite state changed.    With 
respect to moving and resizing, ViewIt makes an effort to compensate for the Control Manager by fixing a 
hidden control's private size-related data whenever it is reshown.    When using "SetCtl..." or 
"HiliteControl", however, you may find that these do not work properly with complex, hidden ViewIt 
controls.

The toolbox calls not supported are:
      DrawControls                UpdtControl
      NewControl                    GetNewControl
      DisposeControl            KillControls
      FindControl                  TestControl
      TrackControl                SetCtlAction
where ViewIt's AddCtl or AddVew should be used in place of "NewControl" and "GetNewControl", DspCtl 
in place of "DisposeControl" and "KillControls", and the others are replaced by other ViewIt features and 
commands.    NOTE:    These restrictions and substitutions only apply to ViewIt controls.    Private controls 
maintained as part of a ViewIt control (such as the scroll bar in this help control), are treated as standard 
Mac controls by the control driver.

Rectangles
    The settings displayed in ViewIt's Bounds dialog are the ones saved in FWND, FVEW, or FCTL 
resources.    When controls are initialized from such resources, the "Pen", "Bounds", "Indent", and 
"Content" information from the resource is converted to the cRect, cClip, cContent, and cLimit rectangles 
used by ViewIt and control drivers.
    cRect is the standard control bounds.    cClip is the visible content area of the control (= cRect - frame 
and indent).    cLimit defines the minimum & maximum bounds of cRect when resizing the control.    
cContent is either the same as cClip, growing and shrinking with the control bounds, or is a fixed size that 
can be larger or smaller than cClip.
    Many control drivers ignore cContent and always draw their content to fit cClip.    In this case it is best to 
set up cContent so that it tracks cClip.    This is done by setting the "Max H" and "Max V" content values in 
the Bounds dialog to zero.    This help control, for example, makes no use of cContent, and manages its 
own scrolling.
    Other control drivers and types do make use of cContent.    The SICN-based static controls at the top of 
this window, for example, have non-zero "Max H" and "Max V" content values to inform the driver that 
their contents should not be stretched to fit cClip.

Scrolling
    Another use of cContent is to support "hand scrolling" of a control's content.    This support is built into 
ViewIt, and is activated by setting a non-zero "Max H" or "Max V" and checking the hand icon in the 
Bounds dialog.    When above the control, the cursor is then changed to a hand which can be used to 
"hand drag" the control's contents:    dragging the content down moves cContent lower relative to cClip, 
up moves cContent higher, etc.    This feature will only work with controls that draw their contents into 
cContent.    The most common use is to support hand dragging of the content of views, although views 
can also support scroll bar-based scrolling independently.
    Controls with content areas larger than cClip can also be scrolled directly by programs via the ScrCtl 
command.    A program can also use ScrCtl to resize the content area of a control.    This capability is most 
often used in programs that dynamically construct views that have a varying number of daughter controls: 
AddVew adds the view, ScrCtl adjusts its content size, and AddCtl adds daughter controls.

Growing
    Controls can be "attached" to the right or bottom sides of their parent views, and views to the right or 



bottom sides of their parent window, by setting the "Attach Right" or "Attach Bottom" options in the 
Bounds dialog.    If the window is zoomable or growable (options set in Window dialog), then the attached 
controls and views that are not of a fixed size ("Min H" ≠ "Max H" or "Min V" ≠ "Max V") are used to 
determine the minimum and maximum window size (via the control or view's cLimit rectangle described 
above).
    This help window, for example, contains one view that is attached to the bottom and right sides of the 
window, and a help control that is attached to the bottom and right sides of the view.    If the window size 
is changed, then the attached view and control are resized to fit the new window size. Also note that 
attached controls are aligned with the right edge of the parent view's visible content area, which explains 
why, in the case of this window, the help control is indented a few pixels from the view's edges (the view 
has a 3-pixel right and bottom indent).
    Although ViewIt makes growing and zooming quite easy to implement, there are a few guidelines you 
should follow to achieve the best results:
• If the window is growable or zoomable, then at least one view in the window should be attached to both 
the bottom and right sides of the window.
• If more than one view is attached to the both the bottom and right sides of the window (such as when 
supporting the "paging" of views), then each of these overlapping views should have the same frame and 
indent size.    This ensures that the grow box is drawn properly as views are switched.
• Do not attach controls to views that are set up to be hand scrolled or scrolled via scroll bars (think about 
it).    Such views can themselves, however, be attached to windows.
• ViewIt does not protect you from adding attached controls or views whose limits cannot be reconciled 
(i.e., when one control's maximum size is smaller than another control's minimum size).    Strange zoom 
or grow behavior will result in such cases.
• ViewIt updates window and control size limits according to the attached controls and views in just two 
cases:    (1) when windows are created, and (2) when leaving editing mode.    If your program adds, 
removes, moves, or resizes (including resizing the content area with ScrCtl) attached controls or views 
using ViewIt or toolbox commands, then call SizWnd with b = c = 0 to force ViewIt to update all 
attachments.    This requirement does not apply to hiding and showing.

Floating
    Controls that are attached to the right or bottom sides of their parent view or window, but are of a fixed 
size ("Min H" = "Max H" or "Min V" = "Max V"), will appear to "float" with the right or bottom edge as the 
parent view or window is resized (i.e., they remain attached by moving rather than stretching).    Two of 
the guidelines given above also apply to floating controls:
• Do not attach floating controls to views that are set up to be hand scrolled or scrolled via scroll bars.
• ViewIt updates the position of floating controls or views at the same time that it updates the size of 
attached controls or views that grow with their parent view or window.

Styles
    Each control has a text font, size, and style associated with it.    This information is found, respectively, 
in cTxFont, cTxSize, and cTxFace after calling GetCtl, and can be reset from within ViewIt's edit mode via 
its Style menu.
    ViewIt's StlCtl command can be used by a program to directly reset the text font, size, or style of an 
existing control (see Commands topic).    This is equivalent to using ViewIt's Style menu, and results in 
redrawing the control.

Colors
    Each "part" of a control can be a different color.    With the introduction of System 7, Apple defined 15 
distinct control parts corresponding to the 15 items in ViewIt's Color menu.    Most control drivers support 
the first three of these colors:    frame, body (background), and content.    The "System" or default colors 
for these parts are black frame, white body, and black content.
    If the "System" item is checked in the Colors menu, then the control uses the default colors and its 
cColors handle will be nil.    If at least one color has been chosen from the Colors menu for a control part 
(even if it is the same color as the part's default color), then ViewIt creates a control color table for the 
control, a handle to which can be found in cColors (after calling GetCtl).    cColors is a handle to a 



relocatable block that has the following structure:
    6 bytes miscellaneous stuff
    2-byte integer = number of entries - 1
      2-byte integer = part number
      6-byte RGBColor = part color
      2-byte integer = part number
      6-byte RGBColor = part color
      ...
where the "part numbers" for frame, body, and content are, respectively, 0, 1, and 2.
    Although there are toolbox calls that can be used to reset control color tables, the simplest way to 
manipulate control colors from within a program is to simply get/set colors in an existing table.    This 
approach requires that the control being manipulated has a non-empty color table, which can be assured 
by directly setting at least one part color using ViewIt's Colors menu when in editing mode.
    The UtilIt command GetFgC can be used to get a color from a cColors table:
 FaceIt(nil,GetFgC,0,-2,ord(cColors),2);
where "2" in this case is the part number corresponding to the control's content, and the color is returned 
in uRGB.
    To directly reset a color, the color entry with the proper part number must be found.    In Pascal, such a 
search would look something like (if cColors is type "CCTabHandle"),
 if (cColors <> nil) then
    with cColors^^ do
      for i := 0 to ctSize do
        if (ctTable[i].value = 2) then
          begin
            ctTable[i].rgb := newColor;
            leave;
          end;
where "2" refers to the content part, "newColor" will be the new RGB color of the control's content, and 
DrwCtl can be used to then redraw the control.

Best Colors
    For the best appearance across all types of Macintoshes, use relatively light body (background) colors 
(such as the yellow in this control), and darker content and frame colors.    This will ensure that control 
backgrounds do not turn to black on black-and-white screens, and that content and frames do not 
become white.    The reverse use of darker backgrounds and lighter content and frames does not map 
well to lower screen depths.
    Also note that, when testing the display of control colors at different screen depths, the appearance of a 
control on a one-bit deep black-and-white device with Color QuickDraw installed will not always be the 
same as its appearance on a Mac without Color QuickDraw (such as a Mac+).    Always check the 
appearance of colored controls at varying screen depths, in both color and non-color windows, and on 
older Macs without Color QuickDraw.


