
F4. Menu Handling
    Menu item events are returned from selections in menus that are either auto-installed at launch time, 
dynamically added by your program (typically using UtilIt's SetItm2), or are added via menu controls in 
ViewIt windows.    The type of event (if any) that is returned when an item is selected is determined by the 
menu item type.

Menu Item Types
    Menu item types are differentiated on the basis of whether they are labeled or not, and, if labeled, 
whether they are one of 3 standard item types. This produces 5 distinct types:
1. Unlabeled Program Items    ("Do It")
2. Labeled Program Items    ("Do It#121")
3. Program-Wide Standard Items    ("Hide#108")
4. Shared Standard Items    ("Cut#13")
5. Module-Specific Standard Items ("Combine#1575")
where a "labeled" item is one that contains "#n" in its item text in the MENU resource (n is an integer), 
and "standard" items are ones that have both their appearance and behavior automatically controlled by a 
FaceWare module.
    Most of the standard items described below are already present in our demo program MENU resources 
to illustrate their operation.    ResEdit can be used to modify these menus and/or add new menus 
containing any mixture of the five menu item types.

• Unlabeled Program Items
    All menu items that do not contain the "#" character in their titles (are not labeled) return simple menu 
events to the main program when selected:
    uMenuID = menu ID of selected menu
    uMenuItem = selected menu item number
    uString = selected menu item text
    uResult = 0
The main program is responsible for maintaining both the appearance and behavior of such items.    This 
is the most common type of new menu item added to program menus since these items give the user 
access to program-specific functionality.

• Labeled Program Items
    Menu items with labels in the range of #121 to #1000 also return control with menu events when 
selected, but return with uResult equal to the label ID:
    uMenuID = menu ID of selected menu
    uMenuItem = selected menu item number
    uString = selected menu item text
    uResult = label ID (121-1000)
A menu item with the title "Do It#121", for example, is processed by UtilIt when the menu is loaded.    UtilIt 
removes the "#121" and stores this information in a private record that can later be used to identify and 
manipulate the item based on its associated label ID.    (See the "Menus" topic in the UtilIt Guide for 
further information.)
    The advantages of using such labeled program items versus unlabeled items are that (1) code can be 
written to respond to the value of uResult, making that code independent of the position of the item in 
MENU resources, (2) more than one item with the same label ID can be present in multiple MENU 
resources, and (3) the UtilIt command SetItm2 can be used to manipulate all instances of the item at 
once.
    NOTE:    There is a slight dependence between memory use and the magnitude of the label ID, so it 
pays to use label IDs beginning with #121.

• Program-Wide Standard Items
    Standard menu items are labeled items whose appearance and behavior are handled by a FaceWare 
module (i.e., menu events are not returned by such items).    FaceIt supports several "program-wide" 
standard items that have label IDs between 101 and 120:
 About#101 - (see description below)



 Save Settings#103    - opens Save Settings dialog
 Delete...#104 - supports deleting a file
 Transfer...#105 - supports transferring to another app
 Quit#106 - quits program
 Select#107 - first item in list of open windows
 Hide#108 - hides active window
 Send Behind#109 - sends active window behind next
 Send to Back#110 - sends active window to back
 Hide Others#111 - hides all windows except active
 Show All#112 - shows all hidden windows
These program-wide standard items can be added to any menu in the main menu bar, but should not be 
used within menu controls in ViewIt windows.
    The Select standard item defines the position in a menu where FaceIt will build a windows list.    Unlike 
the other standard items, it can only appear in one place, and must be the last item in its parent menu 
(since FaceIt will clobber all items below it when building the windows list).
    The About standard item is reset to contain the name of the program file, "About [ProgramName]...", 
when DoInit is executed.    Selection of this item returns a labeled menu event to the program (with 
uString = "About") so that the program can display information about itself.    This item differs from other 
standard items in that it is the only one without built-in functionality.
    The Save Settings standard item was originally used to support saving various window-related settings 
for the old TextIt, GrafIt, and ShowIt windows.    This item is no longer used by ViewIt windows (settings 
are saved in other ways), and should not be used if your program does not make use of the old TextIt, 
GrafIt, or ShowIt windows.

• Shared Standard Items
    Another class of standard menu items are those that are shared by different modules as the current 
context changes (i.e., as the identity of the active window or selected control is changed).    These shared 
standard items have label IDs between 1 and 100:
 Open...#2 - typically opens a file
 Close#4 - typically closes a window or file
 Save#5 - typically saves something to disk
 Save As...#6 - typically saves something with new name
 Save Special#7 - typically another way to save
 Revert#8 - typically reverts something from disk
 Page Setup...#9 - typically opens Page Setup dialog
 Print...#10 - typically prints window/control contents
 Print Special#11 - typically another way to print
 Undo#12 - typically undoes last action
 Cut#13 - typically cuts selection (copy + clear)
 Copy#14 - typically copies selection to clipboard
 Copy Special#15 - typically another way to copy
 Paste#16 - typically pastes clipboard to window/control
 Paste Special#17 - typically another way to paste
 Clear#18 - typically clears selection
 Select All#19 - typically selects all in window/control
 Find...#20 - typically supports searching for something
 Next Case#21 - typically finds next case of something
 Go To...#22 - typically jumps to designated place
A HelpCt editable control and a BaseCt editable control in the same ViewIt window, for example, "share" 
the Copy item in the sense that they take turns controlling this item as the user selects one control or the 
other.
    Which of the shared standard menu items are supported by a module is defined by the content of an 
STR# resource that has the same ID number as the baseID of the module.    BaseCt (the basic ViewIt 
control driver), for example, includes an STR# 1310 resource with the following strings:
 1. [empty]
 ...



 12. [empty]
 13. Cut
 14. Copy
 15. [empty]
 16. Paste
 17. [empty]
 18. Clear
 19. Select All
which informs FaceIt that BaseCt only supports the Cut, Copy, Paste, Clear, and Select All standard 
items.    This STR# list also defines the default menu text that FaceIt is to set these items to when a 
BaseCt editable control becomes the selected control in a ViewIt window (meaning that you would need 
to translate these strings as well as the MENU resources if converting the program to another language).
    Any number of instances of the same shared standard item can be put in any number of menus of any 
type (i.e., you can have the standard Copy item in more than one menu).    All such instances of the same 
standard item will have the same appearance and behavior.

• Module-Specific Standard Items
    These items are standard labeled items that are supported by specific window- or control-driving 
modules.    The label number will be equal to the baseID of the module + n where n is greater than zero.    
GrafIt (baseID 1170), for example, supports labels #1171, #1172, etc.    These standard items are disabled 
when the current program context is not being managed by the associated module.    Otherwise the 
module will control both the appearance and behavior of the item.    The documentation accompanying 
each module will describe any support the module may have for such standard items.

Font/Size/Style/Color Items
    When DoInit is called, UtilIt initializes Font, Size, Style, & Color (FSSC) menus from MENU resources 
1116-1119 that have menu IDs 196-199, respectively.    These menus are loaded by UtilIt as non-main 
menus and can be attached to hierarchical menu items in any other menu.    The items within these 
menus are similar to standard items since both the appearance and behavior of the items in FSSC menus 
is automatically handled by FaceWare modules.
    The style menu in this help window, for example, contains hierarchical menu items that are attached to 
UtilIt's FSSC menus.    In general, you should provide access to the FSSC menus whenever editable 
controls are used that have the "Supports FSSC" option checked in the Control dialog.

Managing Menu Items
    The UtilIt commands GetItm (get menu item info) and SetItm2 (set menu item info) can be used to get 
and set menu item characteristics.    These commands replace a large number of Menu Manager toolbox 
calls and have the added advantage of recognizing label IDs.    To disable all instances of the menu item 
with label ID #125, for example, you can simply write,
 FaceIt(nil,SetItm2,0,125,2,0);
SetItm2 can also be used to dynamically add/delete entire menus, automatically processing any label IDs 
found in such menus.    See the UtilIt Guide for a complete description of these important commands.

Custom Standard Items
    The behavior and appearance of standard items is handled automatically by the module associated with 
the current program context.    The standard items in this window, for example, are being controlled by the 
HelpCt control driver.
    In some cases you may need to modify the behavior of an existing standard item.    One way of doing 
this is by giving the item a negative label ID in the MENU resource.    For example, if "Quit#106" is 
changed to "Quit#-106", then FaceIt will return control with a menu item event when the Quit item is 
chosen:
    uMenuID = menu ID of menu containing Quit
    uMenuItem = item number of the Quit item
    uString = item text of the Quit item (usually "Quit")
    uResult = label ID = 106



This gives the program an opportunity to do something before the Quit item is executed.    To force FaceIt 
to then execute a standard Quit, the label ID corresponding to Quit can be passed as a command to 
FaceIt:
 FaceIt(nil,106,0,0,0,0); execute Quit
    In other cases you may be interested in adding support for standard items that are not directly 
supported by a module.    Suppose, for example, that you wished to add support for a standard Print item 
to print the text in BaseCt's editable text controls.    The first step is to make a copy of BaseCt's STR# 
1310 and modify it to include a "Print" item:
          #            old STR# --> new STR#
        ...            ...                    ...
          9            [empty]            [empty]
        10            [empty]              Print
        11            [empty]            [empty]
        12            [empty]            [empty]
        13              Cut                    Cut
        ...            ...                    ...
where this modified copy of STR#1310 is best placed in the program's resource file so that it does not 
affect programs that are sharing the FaceWare file.
    The presence of the modified STR# will cause FaceIt to enable the Print standard item when a BaseCt 
editable text control is selected.    Selection of the Print item will then send a menu event to the BaseCt 
driver which, since it does not know how to handle this item, will then post it back to the main program as 
a program menu event:
    uMenuID = menu ID of menu containing Print
    uMenuItem = item number of the Print item
    uString = item text of the Print item ("Print")
    uResult = label ID = 10
The program can then print the editable text in the BaseCt control (or do whatever else it thinks "Print" 
should do).

Balloon Help
    System 7.0 balloon help can be made available for each item in all main and non-main menus 
(including control menus in windows).    The "normal" way of doing this is to use a special program called 
"BalloonWriter" that can be purchased from APDA.    The use of BalloonWriter is thought by many to be 
required due to the complex nature of the special hmnu resources that must be created for each MENU 
that has balloon help associated with it.    The truth is that you can use ResEdit to do this if you keep 
things simple by sticking to a single type of help resource text.

The file "hmnu TMPL" contains hmnu 102, STR# 1002, and TMPL 1000 (named "hmnu").    The presence 
of the TMPL resource allows ResEdit to edit hmnu resources that are associated with help text in STR# 
resources.    The hmnu's resource ID of 102 means that it will be used with the MENU that has menuID 
102 (not its resource ID!).    To associate the hmnu (or a copy of it) with a different MENU, simply reset its 
resource ID equal to the menuID of the new MENU.    (WARNING:    Do not try to add the TMPL resource 
to ResEdit itself since it cannot be used to edit all types of hmnu resources.    Keep this TMPL in your own 
files for use in editing your own hmnu resources.)

When balloon help is enabled, hmnu resources are used to locate the help text displayed as the user 
moves the cursor over menu items.    This help text can be stored in a variety of ways, but, to make it 
possible for you to use ResEdit, our TMPL only supports the use of STR#-based help text (this happens, 
however, to be one of the best ways to store help text).    This restriction affects the way in which entries in 
the hmnu template are used.

The entries in an hmnu resource consist of miscellaneous header info followed by repeating blocks that 
correspond to the menu items:
1. Header info containing "Version", "Options", "ProcID", and "VarCode" - Use the settings in our example 
hmnu.    For more info (don't bother!), see the Help Manager chapter of Inside Macintosh Volume 6.
2. Menu Item Blocks -    Following the header are repeating blocks of info corresponding to "missing" 
items, the menu title, and each menu item.    The first block is used for any info that's missing from other 



menu item blocks ("default" help text).    The second block is used for the menu's title, and successive 
blocks are used for the menu's items.    Each block defines help text for four different item states:    
enabled ("Enb"), disabled ("Dis"), checked ("Chk"), or marked ("Mrk").    The entries in each block are:

"Help Size" - must set to 20 (= byte size of this block)
"Help Type" - must set to 3 (= STR#-based help)
"Enb STR# ID" = ID of STR# containing help text
"Enb Index" = index into STR# resource
"Dis STR# ID" = ID of STR# containing help text
"Dis Index" = index into STR# resource
"Chk STR# ID" = ID of STR# containing help text
"Chk Index" = index into STR# resource
"Mrk STR# ID" = ID of STR# containing help text
"Mrk Index" = index into STR# resource

For example, hmnu 102 contains just one block (the default or "missing items" block) with the help entries 
1002, 1, 1002, 2, 1002, 3, 1002, 4.    This means that all items in any menu with menuID 102 will have 
help text from STR# 1002 since only the default block is defined.    If the menu item is enabled, then the 
first string from STR# 1002 is used.    If disabled, then the second string is used.    If checked, the third is 
used.    If marked, the fourth is used.    To define unique help text for each menu item, a title block and a 
block for each item would have to be added to the hmnu (you can copy and paste entire blocks in 
ResEdit).    Not all entries in a block need to be defined.    To skip an entry, set both its STR# ID and index 
to zero.    If help is ever needed for such an item, the default help will be displayed.    (If you're reading the 
Help Manager chapter in IM6 note that you can't really "skip" an item block in the way described in IM6, 
but setting the STR# ID and index to zero has the same effect.)

The title block operates a little differently from the blocks for other items.    First, its "checked" entry is 
used as help text for the title when the menu has been disabled due to the presence of a modal window. 
Second, its "marked" entry is used for all items in the menu when the menu has been disabled due to a 
modal window.    Third, if STR# ID and index entries are zeroed in the title block, then the default block is 
not used and the balloon doesn't appear.

What To Do:    Copy the resources from the "hmnu TMPL" file into the program file or other resource file 
opened by the program.    Duplicate and renumber the hmnu resource so that one hmnu is present for 
each MENU that will have balloon help.    Expand each hmnu with entries that define the source of help 
text for menu items that will have balloon help.    Create the associated help text as one or more STR# 
resources.    Run program under System 7 to test.


