Contents

Using VB Messenger
VB Messenger Custom Control Reference
VB Messenger API

Using VB Messenger

Adding VB Messenger to Your Application
How Do | Use VB Messenger? - A Guided Tour

Adding VB Messenger to Your Application

All Visual Basic custom controls are loaded into your project from within the Visual Basic environment.
Once a custom control is added to your project and your project is saved, it will always load whenever
you load that project.

To add the VB Messenger custom control to your project, choose 'Add File' from the 'File' menu in Visual
Basic. Then, enter the name of the design time VB Messenger custom control, and its fully qualified path
if necessary. The VB Messenger icon should now appear in you Visual Basic Toolbox.

To use VB Messenger, you must first add it to a form in your project. When you add the VB Messenger
custom control to your form, it will appear on your form as an icon similar to the one that appears in the
Toolbox. Although you can reposition the icon anywhere you like on the form, the position of the icon is
not important. When you run your application, the custom control becomes invisible and therefore
cannot be seen by the user.

Refer to the ‘Loading Custom Controls' section in the Visual Basic Programmer's Guide for a detailed
explanation of adding controls to your project.

How Do | Use VB Messenger? - A Guided Tour

VB Messenger is used to subclass a form or control in Visual Basic to intercept the Windows messages
that are associated with the form or control.

Once added to your form, VB Messenger is ready to use. Most of VB Messenger's properties can be set
via the property window in design mode of Visual Basic.

The following instructions provide you with a sample walk through on using VB Messenger with your
application. It walks you through the creation of a sample program that illustrates the fundamental usage
of the VB Messenger Custom Control. The program uses VB Messenger to trap the
WM_MENUSELECT message that is sent to the main form when the user highlights a menu item in a
drop down menu. Then the program will display information about the menu item selected on a message
line at the bottom of the screen in a status bar.

Step 1.

First create the following form with the following drop down menu. The bottom of the form contains a 3D
Panel control with the Align property set to Align Bottom. You may substitute a standard Visual Basic Label if you
wish.

New
Open...
Close

Save
Save As...

Print...
Print Setup...

Exit

Step 2.

Add the VB Messenger Custom Control to the new form.

Step 3.

Bring up the property window for the new VB Messenger Custom Control. Select the (Message
Selector) property from the property window. Click once on the ellipses ('...") button next to the text in
the property window. The following dialog box will appear:

= Message Selector

Meszages: Selected Meszages:

WH_MDIICOMARBRANGE 0K
WH_MDIMAXIMIZE
WH_MDINEXT
WH_MDIRESTORE
WH_MDISETMENU
WH_MDITILE
WH_MEASUREITEM
W _WMENLCHAR

Cancel

WM_MOUSEACTIVATE
WM_MOUSEMOVE
wWM_MOVE

WM_NCACTIVATE Add ->
WM_NCCALCSIZE
WM_NCCREATE Remove
WM_NCDESTROY
WwWM_NCHITTEST + e

Message Types: Custom Meszage[Hex]:

Standard Messages |£I] WM_USER + I:I

Scroll through the Messages list box and search for WM_MENUSELECT. Select this message by double
clicking on it with the mouse or by pressing the Add-> button. The message will then appear in the Selected
Messages list box. Click on OK to save the selection and close the Message Selector dialog box.

Step 4.

Add the following code to the Form1's Form_Load procedure:

VBMsgl.SubClasshWnd = Forml.hWnd

When the form is loaded, this code will be executed instructing VB Messenger to subclass the main form.

VB Messenger immediately starts intercepting messages at this point. To turn off the message

processing, just set the SubclasshWnd property to zero.

Step 5.
Now add the following code to the VBMsg1_WindowMessage procedure:
Panel3Dl.Caption = "wParam =" & Str$ (wParam)

wParam is passed to this procedure by VB Messenger.

Step 6.

Run the program. Use the mouse to select through the different menu items and watch how VB
Messenger intercepts the message and allows you to display the information about the menu item on the
status bar.

This example detects when the user is selecting a menu item and displays the wParam parameter
associated with the message (WM_MENUSELECT) at the botton of the screen. You can use this
number in your program to reference a line of text that may be used to describe the particular function on
the menu. Then you can display this text on the bottom of the screen, very similarly to other Windows
programs.

See the sample project MENU.MAK.

VB Messenger Custom Control Reference

Description The VB Messenger Custom Control allows you to subclass a form or
control to receive and/or intercept its messages.

2

File Name VBMSG.VBX

Object Type VBMsg

Related Topics:

Properties , Events, and Methods

Properties Reference
Events Reference

Properties , Events, and Methods

All of the properties, events, and methods for VB Messenger are listed in the tables below. All standard
Visual Basic properties, events, and methods are denoted with an asterisk(*) and can be found
documented in the Visual Basic Language Reference that comes with Visual Basic.

Properties

About AddMessage ClearMessages
*Height HiWord *hWnd
*Index *Left LoWord
IParam IParam2String MessageCount
MessagelList MessageSelector MessageText
MessageTypes *Name *Parent
PostMessage RemoveMessage ReturnVal
SendMessage String SubclasshWnd
*Tag *Top *Width
wParam

Events
WindowMessage WindowDestroyed

Methods

VB Messenger does not support any methods.

Properties Reference
The following is a detailed reference of all the properties supported by VB Messenger.

Related Topics:

About Property
AddMessage Property
ClearMessages Property
HiWord Property

LoWord Property

IParam Property
IParam2String Property
MessageCount Property
MessagelList Property
MessageSelector Property
MessageText Property
MessageTypes Property
PostMessage Property
RemoveMessage Property
SendMessage Property
ReturnValue Property
String Property
SubclasshWnd Property
wParam Property

About Property

Description

Usage

Remarks

Data Type

AddMessage Property

Description
Usage

Remarks

Data Type

See Also

ClearMessages Property

Description
Usage

Remarks

Data Type

See Also

HiWord Property

Description

Usage

Displays version information about the VB Messenger Custom Control.

Double click on the ellipses ('...") button next to the property text to
activate the about dialog box.

Available only at design time.

N/A

Adds a message to the MessagelList property.
[form.]VBMsg.AddMessage[= messageé&]

To specify which messages are intercepted by VB Messenger at
runtime, you must use this property. Each time you set the
AddMessage property to a message, a new message gets appended
to the end of the MessagelL.ist property array.

Example:

VBMsg.AddMessage WM PAINT
VBMsg.AddMessage = WM SIZE
VBMsg.AddMessage = WM CLOSE

Available only at runtime and is write only.

Long

MessageSelector, RemoveMessage, ClearMessages

Clears all messages from the MessageL.ist property.
[form.]VBMsg.ClearMessage = True

Setting this property to True (or any integer value) clears all the
messages from the MessagelList property. This is the equivilent of
using Removeltem for all messages in the MessagelList.

Only available at runtime and is write only.

Boolean

RemoveMessage, AddMessages, MessageSelector

Returns or sets the high-order word of the 32-bit long integer value in
the IParam property.

[form.]VBMsg.HiWord[= value %]

Remarks

Data Type

See Also

LoWord Property

Description

Usage

Remarks

Data Type

See Also

IParam Property

This property is used primarily in conjunction with the LoWord property
to create the IParam property. This property is useful when you need
to send the IParam parameter with a message to a window that calls
for the high-order word to be a certain value.

Setting this value to an integer causes VB Messenger to combine this
value with the LoWord property and set the IParam property to the
result. VB Messenger performs a concatenation of the two 2-byte
integer values to produce the 4-byte integer IParam property.

Setting the IParam property to a long integer causes VB Messenger to
parse out two 2-byte values and place the results in LoWord and
HiWord respectively.

Example:

VBMsgl.LoWord = Forml.hWnd

VBMsgl.HiWord = 100

Print "The resulting lParam is:"; VBMsgl.lParam

Available only at runtime.

Integer

LoWord, IParam, SendMessage, PostMessage

Returns or sets the low-order word of the 32-bit long integer value in
the IParam property.

[form.]VBMsg.LoWord[= value%)]

This property is used primarily in conjunction with the HiWord property
to create the IParam property. This property is useful when you need
to send the IParam parameter with a message to a window that calls
for the low-order word to be a certain value.

Setting this value to an integer causes VB Messenger to combine this
value with the HiWord property and set the IParam property to the
result. VB Messenger performs a concatenation of the two 2-byte
integer values to produce the 4-byte integer IParam property.

Setting the IParam property to a long integer causes VB Messenger to
parse out two 2-byte values and place the results in LoWord and
HiWord respectively.

Example:

VBMsgl.LoWord = Forml.hWnd

VBMsgl.HiWord = 100

Print "The resulting lParam is:"; VBMsgl.lParam

Available only at runtime.

Integer

HiWord, IParam, SendMessage, PostMessage

Description

Usage

Remarks

Data Type

See Also
IParam2String Property

Description

Usage

Remarks

This property represents the 32-bit long value of the Windows
message structure.

[form.]VBMsg.IParam[= value&]

This property is used primarily in conjunction with the SendMessage
and PostMessage properties as a parameter for sending messages
directly to a subclassed window.

This property can also be used to parse out the low-order and high-
order word values of any 32-bit long integer. The results can be found
in the HiWord and LoWord properties respectively.

Example:

' select a range of items in a multi-select list box
VBMsgl.wParam = True

VBMsgl.LoWord 0

VBMsgl.HiWord Listl.ListCount

'The concatenated value is now in lParam property
VBMsgl.SendMessage = LB SELITEMRANGE

Available only at runtime.

Integer

wParam, SendMessage, PostMessage

This property converts a 32-bit address to a Visual Basic string.
[form.]VBMsg.IParam2String[= value&]

Setting this value to a valid 32-bit far segment address (stored in a
long integer) causes VB Messenger to place the data pointed to by the
address into the String property. The length of the resulting String
property is determined by the first occurrance of an ASCII 0 in the
data.

WARNING! Use this property very carefully. Setting this to an
invalid pointer could result in undesirable results such as a GPF or
loss of data. Do not set this property to anything else except a valid
pointer.

Generally this property is used to convert the IParam message
parameter passed from within the WindowMessage event procedure to
a Visual Basic string.

Available only at runtime and is write only.

Example:

from within the VBMsgl WindowMessage proc ...

VBMsgl.lParam2String = lParam
Print "The resulting string is: " & VBMsgl.String

Data Type

See Also
MessageCount Property

Description

Usage

Remarks

Data Type

See Also

MessageList Property

Description
Usage

Remarks

Data Type

See Also

Long

IParam

Returns the number of messages in the MessageList property array.
[form.]VBMsg.MessageCount

Available only at runtime and is read only.

Integer

MessageList

Contains a list of all messages to be intercepted by VB Messenger.
[form.]VBMsg.MessagelList(index)[= message&]

This property array contains all the messages set by either
AddMessage or at design time by the MessageSelector dialog. Each
time a new message is added, the message gets appended to the end
of this list, increasing the count by one. To access any message in
the list, you must specify the index of the array.

You can also change messages in the list by assigning the specific
element in the property array.

Example:

' changes the 3rd message (0 based) in the list
' to WM CLOSE
VBMsg.MessageList (2) = WM CLOSE

Available only at runtime. The first element in the array is at index 0.

Long

MessageCount, MessageSelector, AddMessage, RemoveMessage,
ClearMessage

MessageSelector Property

Description

Usage

Remarks

Displays a dialog box from which you can manage the list of messages
to be intercepted by VB Messenger.

Double click on the elipses ('...") button next to the property text to
activate the about dialog box.

Clicking on the elipses in the property window display the Message
Selector dialog box. The Message Selector allows you to add and
remove standard and custom messages to the MessageList Property
array at design time.

Data Type

See Also

MessageText Property

Description

Usage

Remarks

= Message Selector

Meszzages:

MM JOY1BUTTONDOWN +
MHM_JOY1BUTTONUP)

MM_JOY1MOVE =
MM_JOY1ZMOVE
MM_JOY2BUTTONDOWN
MM_JOY2BUTTONUP
MM_JOY2MOVE
MM_JOY2ZMOVE
MM_MCINOTIFY
MM_MIM_CLOSE
MM_MIM_DATA
MM_MIM_ERROR
MM_MIM_LONGDATA
MM_MIM_LONGERROR
MM_MIM_OPEN
MM_MOM_CLOSE
MM_MOM_DONE +

Hessage Types: Custom Meszage[Hex]:

I S| [vsen- []

The Messages list box contains all available standard messages.
The Selected Messages list box on the right contains your selected
messages to be intercepted. Clicking on the Add, Remove or Clear
button allows you to manage the selected messages.

You can filter the types of standard messages to be displayed in the
Messages list box by selecting from the Message Types drop down
list.

You can specify a custom message that does not appear in the
Messages list of standard messages by entering the message value
(in hex) into the Custom Message edit box. Optionally, you can
check the WM_USER + check box to add the value of WM_USER to
the entered custom message.

Available only at design time.

N/A

Selected Meszages:

I

I

MessagelList, MessageCount, AddMessage, RemoveMessage,
ClearMessage

Converts a message value to the corresponding text (i.e.,
"WM_PAINT") as defined by the Windows 3.1 SDK.

[form.]VBMsg.MessageText(message&)

This property array contains all the messages in literal form. You can
specify the message description to retrieve by indicating the message
value as the index to the property array.

Example:
Const WM CLOSE = &H10

X$ = VBMsg.MessageList (WM CLOSE)
' X$ now equals "WM CLOSE"

Available only at runtime and is read only.

Data Type String
MessageTypes Property
Description Allows you to specify how VB Messenger interprets the MessageList
property.
Usage [form.]VBMsg.MessageTypes|[= setting%)]
Remarks Use the MessageTypes property to instruct VB Messenger when to fire

an event in accordance to when the messages in the MessageList
property array are detected.

The MessageTypes settings are as follows:

Setting Description

0 Intercept selected messages in the MessagelList property only.
1 Intercept all messages (ignore MessageL.ist property).

2 Do not intercept any messages.
3

Intercept all messages except those selected in the
MessagelList property array.

Data Type Integer (Enumerated)
PostMessage Property
Description Posts a message to the Windows message queue for the subclassed
window.
Usage [form.]VBMsg.PostMessage[= message&]
Remarks Setting this property will cause VB Messenger to post the specified

message for the subclassed window to the Windows message queue.
VB Messenger uses the properties wParam and IParam as the 16-bit
word and 32-bit long parameters for the message. The return value

of the posted message can be obtained in the ReturnVal property.

If the SubclasshWnd property is not set, no message will be posted.

Example:
Const WM CLOSE = &H10

VBMsgl.wParam = O
VBMsgl.lParam = 0
VBMsgl.PostMessage = WM CLOSE

Available only at runtime and is write only.

Data Type Long

RemoveMessage Property

Description Removes a message from the MessageL.ist property.

Usage [form.]VBMsg.RemoveMessage[= index%]

Remarks

Data Type

See Also

SendMessage Property

Description

Usage

Remarks

Data Type

ReturnValue Property

Description

Usage

Remarks

Setting this property to the message value of a message in the
MessagelList property array will remove the message from the list.

Example:

Remove message from the MessagelList property
VBMsgl.RemoveMessage = WM CLOSE

Available only at runtime and is write only.
Long

ClearMessages, AddMessage

Sends a message directly to the subclassed window bypassing the
message queue.

[form.]VBMsg.PostMessage[= message&]

Setting this property will cause VB Messenger to send the specified
message directly to the subclassed window. VB Messenger uses the
properties wParam and IParam as the 16-bit word and 32-bit long
parameters for the message. The return value of the message can be
obtained in the ReturnVal property.

If the SubclasshWnd property is not set, no message will be sent.

Example:

' select a range of items in a multi-select list box
VBMsgl.wParam = True

VBMsgl.LoWord = 0

VBMsgl.HiWord = Listl.ListCount

'The concatenated value is now in lParam property

VBMsgl.SendMessage = LB SELITEMRANGE

Available only at runtime and is write only.
Long

This property is set with the return value of the SendMessage or
PostMessage property.

[form.]VBMsg.ReturnVal

Example:

' This example sends an EM GETLINECOUNT message to
' retrieve the number of lines in a multiline edit
' control and then sends an EM LINESCROLL message
' to scroll the edit control so that the last line
' is displayed at the top of the edit control.

VBMsgl.SendMessage = EM GETLINECOUNT

Data Type
See Also
String Property

Description

Usage

Remarks

Data Type

See Also

SubclasshWnd Property

Description

Usage

Remarks

Data Type

' Number of lines returned can be found in the
' ReturnVal property.

VBMsgl.wParam = 0

VBMsgl.LoWord VBMsgl.Returnval - 1
VBMsgl.HiWord = 0

VBMsgl.SendMessage = EM LINESCROLL

Available only at runtime and is read only.
Long

SendMessage, PostMessage

This property is set with the resulting string after setting the
IParam2String property. Setting this property returns an address
which can be found in the IParam property.

[form.]VBMsg.String
If you set this property to a string, VB Messenger will return an
address of the string in the IParam property. The address of the string

will be valid for as long as VB Messenger is active or the string is
replaced with a new string.

Example:
'... from within the VBMsgl WindowMessage procC ...

VBMsgl.lParam2String = lParam
Print "The resulting string is: " & VBMsgl.String

Available only at runtime.
String

IParam2String, IParam

Set this property to the window handle (hWnd) of the form or control to
subclass.

[form.]VBMsg.SubclasshWnd = [handle %]

Setting this property to a valid window handle immediately activates
VB Messenger. All messages sent to the window associated with the
handle from that point onward will be filtered by VB Messenger and the
event WindowMessage will be fired for each.

Setting this property to zero will automatically disable the subclassing.
Upon the destruction of the window (WM_DESTROQY), this property is
cleared and subclassing will terminate.

Available only at runtime.

Integer

wParam Property

Description This property represents the 16-bit integer value of the Windows
message structure.

Usage [form.]VBMsg.wParam|[= value %]

Remarks This property is used primarily in conjunction with the SendMessage

and PostMessage properties as a parameter for sending messages
directly to a subclassed window.

Available only at runtime.
Data Type Integer

See Also IParam, SendMessage, PostMessage

Events Reference
The following is a detailed reference of all the properties supported by VB Messenger.

Related Topics:

WindowMessage Event
WindowDestroyed Event

WindowMessage Event

Description

Syntax

Remarks

See Also

WindowDestroyed Event

Description

Syntax

Remarks

See Also

VB Mesenger fires this event each time one of the selected messages
is detected for the subclassed window.

Sub VBMsg_WindowMessage (hWindow As Integer, Msg As
Integer, wParam As Integer, IParam As Long, RetVal As Long,
CallDefProc As Integer)

When a message that you wish to intercept is detected for the
subclassed form, VB Messenger fires this event passing the
message's parameters to the event procedure.

Parameter Description

hWindow Identifies the subclassed window.
Msg The message that was detected.
wParam The 16-bit word value associated with the message.
IParam The 32-bit long value associated with the message.

RetVal After you process the message, use this parameter if
you wish to return a value to VB Messenger and bypass the
default windows procedure. VB Messenger will then use this
value as the return value.

CallDefProclf this value is True, VB Messenger will call the default
windows procedure for the subclassed control. Ifitis False,
VB Messenger will not call the default procedure and return
the specified return value in RetVal.

WindowDestroyed Event

VB Mesenger fires this event unconditionally if the subclassed window
is senta WM_DESTROY message.

Sub WinMsg1_WindowDestroyed (hWindow As Integer)
This event is fired when the subclassed window is destroyed. This is
useful for code to clean up memory that you may have associated with

the subclassed window. The window is automatically unhooked after
this event is fired.

Parameter Description

hWindow Identifies the subclassed window.

WindowDestroyed Event

VB Messenger API

Overview
APl Reference

Overview
VB Messenger comes with a set of API functions that you will need to process certain messages.

Several Windows messages require the programmer to be able to access data via pointers. Although in
languages like C it is possible to provide pointers, it is not possible using Visual Basic. These API
functions allow you to access data while "faking" pointers. VB Messenger uses long integers to
represent the pointers. Since pointers are actually just 32-bit numbers (i.e., long integers), you can
actually "fake" Windows by sending certain Windows API functions the long integer equivilent of a pointer
as supplied by the VB Messenger API.

CAUTION: These routines require the use of pointers. Take care when using such routines as they may
cause unpredictable results if used improperly. Do not pass invalid addresses to these routines. Doing
S0 may cause a GPF or loss of data.

Special Note: You may notice that the Lib in the Declare statements below refer VBMSG.VBX. Why is
this not referencing a DLL? Since a custom control (VBX) is really a DLL with special routines in so that
Visual Basic can access it, functions can be called externally from them. So rather than supplying a
separate DLL that you would need to include with your distribution, VB Messenger comes with a full set of
functions built right into itself. All of the following functions can be called directly from the file
VBMSG.VBX.

As with all DLLs and VBXs, the executable file must be either in the path, the current directory, or the
Windows SYSTEM directory in order for Visual Basic to find and load them. See the Chapter 22,
"Calling Procedures in DLLs" in the Microsoft Visual Basic Programmer's Guide for a further description
on calling external procedures.

API Reference
The following section details the API functions available within VB Messenger.

Related Topics:

ptGetintegerAddress, ptGetLongAddress, ptGetStringAddress
ptGetintegerFromAddress
ptGetLongFromAddress
ptGetStringFromAddress
ptGetTypeFromAddress
ptGetVariableAddress
ptHiWord

ptLoWord

ptMakelParam
ptMakeUShort
ptMessageToText

ptGetintegerAddress, ptGetLongAddress, ptGetStringAddress

Description

Declarations

Remarks

Return Value

Returns the address of a Visual Basic variable with stricter type
checking.

Declare Function ptGetintegerAddress Lib "VBMSG.VBX" Alias
"ptGetVariableAddress" (ByVal var As Integer) As Long

Declare Function ptGetLongAddress Lib "VBMSG.VBX" Alias
"ptGetVariableAddress" (ByVal var As Long) As Long

Declare Function ptGetStringAddress Lib "VBMSG.VBX" Alias
"ptGetVariableAddress" (ByVal var As String) As Long

Each of these functions return a 32 bit address of a variable. These
function declarations are provided to give better parameter checking
when using this function.

Parameter Description

var The variable to get the address of. Can either be an integer,
long, or string depending upon the declaration used. For
Types, use the ptGetVariableAddress API.

These functions returns a 32-bit address of the variable.

ptGetintegerFromAddress

Description

Declaration

Remarks

Return Value

ptGetLongFromAddress

Description
Declaration

Remarks

Return Value

ptGetStringFromAddress

Description

Declaration

Remarks

Returns the 16-bit integer value from the data at the address specified.

Declare Function ptGetintegerFromAddress Lib "VBMSG.VBX"
(ByVal address As Long) As Integer

Parameter Description

address The 32-bit far address of the integer.

Returns the integer value associated with the address.

Returns the 32-bit long integer value from the data at the address
specified.

Declare Function ptGetLongFromAddress Lib "VBMSG.VBX" (ByVal
address As Long) As Long

Parameter Description

address The 32-bit far address of the long integer.

Returns the long integer value associated with the address.

Returns a string from the data at the address specified.

Declare Function ptGetStringFromAddress Lib "VBMSG.VBX"
(ByVal address As Long) As String

The string located at the address specified must end with a terminating
zero.

Return Value

ptGetTypeFromAddress

Description

Declaration

Remarks

ptGetVariableAddress

Description

Declaration

Remarks

Return Value

ptHiWord

Description
Declaration

Remarks

Return Value

ptLoWord

Description

Parameter Description

address The 32-bit far address of the string.

Returns the string associated with the address.

Returns a Type structure from the data at the address specified.

Declare Sub ptGetTypeFromAddress Lib "VBMSG.VBX" (ByVal
address As Long, typevar As Any, cbBytes As Integer)

The data located at the address specified will be copied into the Type
structure variable defined by the calling program. Only the number of
bytes specified will be copied. Do not specify more bytes then are
actually allocated. Doing so may produce unpredictable results such
as a GPF or loss of data.

Parameter Description
address The 32-bit far address of the data.
typevar The user defined Type variable to copy the data into.
cbBytes The number of bytes to copy.

Returns the address of a Visual Basic variable.
Declare Function ptGetVariableAddress Lib "VBMSG.VBX" (variable
As Any) As Long

This function returns a 32 bit address of any variable or Type. Any
type of variable can be used.

Parameter Description

variable The variable or Type to get the address of.

This function returns a 32-bit address of the variable or Type.

This function parses out the high-order 16-bit word value of a 32-bit
long integer.

Declare Sub ptHiWord Lib "VBMSG.VBX" (ByVal IParam As Long) As
Integer

This API provides the same functionality as the property HiWord.

Parameter Description

IParam The 32-bit long integer value to parse.

Returns a 16-bit integer representing the high-order of the 32-bit long
value.

This function parses out the low-order 16-bit word value of a 32-bit

Declaration

Remarks

Return Value

ptMakelParam
Description
Declaration

Remarks

Return Value

ptMakeUShort

Description
Declaration

Remarks

Return Value

ptMessageToText

Description
Declaration

Remarks

Return Value

long integer.

Declare Sub ptLoWord Lib "VBMSG.VBX" (ByVal IParam As Long) As
Integer

This API provides the same functionality as the property LoWord.

Parameter Description

IParam The 32-bit long integer value to parse.

Returns a 16-bit integer representing the low-order of the 32-bit long
value.

This functions creates an unsigned long integer for use as an IParam
parameter in a message by concatenating two integer values,
specified by the wLow and wHigh parameters.

Declare Sub ptMakelParam Lib "VBMSG.VBX" (ByVal wLow As
Integer, wHigh As Integer) As Long

Parameter Description
wLow Specifies the low-order word of the new long value.
wHigh Specifies the high-order word of the new long value.

addressThe 32-bit far address of the data.

The return value specifies a long-integer value.

This function converts a signed integer value to an unsigned integer
value and returns it as a long integer.

Declare Sub ptMakeUShort Lib "VBMSG.VBX" (ByVal ushortVal As
Integer) As Long

Parameter Description

ushortVal The signed integer value to convert.

The function returns a long integer value representing the unsigned
integer.

Returns the literal description of a message number as define by the
Windowss SDK.

Declare Function ptMessageToText Lib "VBMSG.VBX" (ByVal
message As Integer) As String

This routine translates the message number to the literal text
description of the message. This function is useful in developing a
diagnostic program that detects all messages for a specific window
and displays the message as text (i.e., WM_PAINT instead of &H10).

Parameter Description

message The message number.

The message string.

