
pcl-cvs

pcl-cvs ii

COLLABORATORS

TITLE :

pcl-cvs

ACTION NAME DATE SIGNATURE

WRITTEN BY July 22, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

pcl-cvs iii

Contents

1 pcl-cvs 1

1.1 pcl-cvs.guide . 1

1.2 pcl-cvs.guide/Copying . 2

1.3 pcl-cvs.guide/Installation . 8

1.4 pcl-cvs.guide/Pcl-cvs installation . 9

1.5 pcl-cvs.guide/On-line manual installation . 10

1.6 pcl-cvs.guide/Typeset manual installation . 10

1.7 pcl-cvs.guide/About pcl-cvs . 10

1.8 pcl-cvs.guide/Contributors . 11

1.9 pcl-cvs.guide/Archives . 11

1.10 pcl-cvs.guide/Getting started . 12

1.11 pcl-cvs.guide/Buffer contents . 13

1.12 pcl-cvs.guide/File status . 13

1.13 pcl-cvs.guide/Selected files . 14

1.14 pcl-cvs.guide/Commands . 15

1.15 pcl-cvs.guide/Updating the directory . 15

1.16 pcl-cvs.guide/Movement commands . 16

1.17 pcl-cvs.guide/Marking files . 17

1.18 pcl-cvs.guide/Committing changes . 17

1.19 pcl-cvs.guide/Editing files . 18

1.20 pcl-cvs.guide/Getting info about files . 18

1.21 pcl-cvs.guide/Adding and removing files . 18

1.22 pcl-cvs.guide/Undoing changes . 19

1.23 pcl-cvs.guide/Removing handled entries . 19

1.24 pcl-cvs.guide/Ignoring files . 20

1.25 pcl-cvs.guide/Viewing differences . 20

1.26 pcl-cvs.guide/Emerge . 21

1.27 pcl-cvs.guide/Reverting your buffers . 21

1.28 pcl-cvs.guide/Miscellaneous commands . 22

1.29 pcl-cvs.guide/Customization . 22

pcl-cvs iv

1.30 pcl-cvs.guide/Future enhancements . 24

1.31 pcl-cvs.guide/Bugs . 25

1.32 pcl-cvs.guide/Function and Variable Index . 26

1.33 pcl-cvs.guide/Concept Index . 27

1.34 pcl-cvs.guide/Key Index . 29

pcl-cvs 1 / 30

Chapter 1

pcl-cvs

1.1 pcl-cvs.guide

This info manual describes pcl-cvs which is a GNU Emacs front-end to
CVS. It works with CVS version 1.3. This manual is updated to release
1.05 of pcl-cvs.

Copying GNU General Public License
Installation How to install pcl-cvs on your system.
About pcl-cvs Authors and ftp sites.

Getting started An introduction with a walk-through example.
Buffer contents An explanation of the buffer contents.
Commands All commands, grouped by type.

Customization How you can tailor pcl-cvs to suit your needs.
Future enhancements Future enhancements of pcl-cvs.
Bugs Bugs (known and unknown).
Function and Variable Index List of functions and variables.
Concept Index List of concepts.
Key Index List of keystrokes.

-- The Detailed Node Listing --

Installation

Pcl-cvs installation How to install pcl-cvs on your system.
On-line manual installation How to install the on-line manual.
Typeset manual installation How to create typeset documentation

about pcl-cvs.

About pcl-cvs

Contributors Contributors to pcl-cvs.
Archives Where can I get a copy of Pcl-Cvs?

Buffer contents

File status The meaning of the second field.
Selected files How selection works.

pcl-cvs 2 / 30

Commands

Updating the directory Commands to update the local directory
Movement commands How to move up and down in the buffer
Marking files How to mark files that other commands

will later operate on.
Committing changes Checking in your modifications to the

CVS repository.
Editing files Loading files into Emacs.
Getting info about files Display the log and status of files.
Adding and removing files Adding and removing files
Undoing changes Undoing changes
Removing handled entries Uninteresting lines can easily be removed.
Ignoring files Telling CVS to ignore generated files.
Viewing differences Commands to ‘diff’ different versions.
Emerge
Reverting your buffers Reverting your buffers
Miscellaneous commands Miscellaneous commands

1.2 pcl-cvs.guide/Copying

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble
========

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid

pcl-cvs 3 / 30

anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software,
and (2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

1. This License applies to any program or other work which contains a
notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program",
below, refers to any such program or work, and a "work based on
the Program" means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is
included without limitation in the term "modification".) Each
licensee is addressed as "you".

Activities other than copying, distribution and modification are
not covered by this License; they are outside its scope. The act
of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on
the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any
warranty; and give any other recipients of the Program a copy of
this License along with the Program.

pcl-cvs 4 / 30

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange
for a fee.

3. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that
in whole or in part contains or is derived from the Program
or any part thereof, to be licensed as a whole at no charge
to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display
an announcement including an appropriate copyright notice and
a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the
program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program
itself is interactive but does not normally print such an
announcement, your work based on the Program is not required
to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the
Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate
works. But when you distribute the same sections as part of a
whole which is a work based on the Program, the distribution of
the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or
contest your rights to work written entirely by you; rather, the
intent is to exercise the right to control the distribution of
derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the
Program with the Program (or with a work based on the Program) on
a volume of a storage or distribution medium does not bring the
other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms
of Sections 1 and 2 above provided that you also do one of the
following:

a. Accompany it with the complete corresponding machine-readable

pcl-cvs 5 / 30

source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for
software interchange; or,

b. Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete
source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable.
However, as a special exception, the source code distributed need
not include anything that is normally distributed (in either
source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights,
from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

6. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify
or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work
based on the Program), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any
further restrictions on the recipients’ exercise of the rights
granted herein. You are not responsible for enforcing compliance

pcl-cvs 6 / 30

by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent
issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who
receive copies directly or indirectly through you, then the only
way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable
under any particular circumstance, the balance of the section is
intended to apply and the section as a whole is intended to apply
in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of
any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed
to be a consequence of the rest of this License.

9. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces,
the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of
this License.

10. The Free Software Foundation may publish revised and/or new
versions of the General Public License from time to time. Such
new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies a version number of this License which applies
to it and "any later version", you have the option of following
the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose
any version ever published by the Free Software Foundation.

pcl-cvs 7 / 30

11. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the
author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision
will be guided by the two goals of preserving the free status of
all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Programs
===

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

ONE LINE TO GIVE THE PROGRAM’S NAME AND A BRIEF IDEA OF WHAT IT DOES.
Copyright (C) 19YY NAME OF AUTHOR

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,

pcl-cvs 8 / 30

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper
mail.

If the program is interactive, make it output a short notice like
this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19YY NAME OF AUTHOR
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the
appropriate parts of the General Public License. Of course, the
commands you use may be called something other than ‘show w’ and ‘show
c’; they could even be mouse-clicks or menu items--whatever suits your
program.

You should also get your employer (if you work as a programmer) or
your school, if any, to sign a "copyright disclaimer" for the program,
if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

SIGNATURE OF TY COON, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

1.3 pcl-cvs.guide/Installation

Installation

This section describes the installation of pcl-cvs, the GNU Emacs CVS
front-end. You should install not only the elisp files themselves, but
also the on-line documentation so that your users will know how to use
it. You can create typeset documentation from the file
‘pcl-cvs.texinfo’ as well as an on-line info file. The following steps
are also described in the file ‘INSTALL’ in the source directory.

pcl-cvs 9 / 30

Pcl-cvs installation How to install pcl-cvs on your system.
On-line manual installation How to install the on-line manual.
Typeset manual installation How to create typeset documentation

about pcl-cvs.

1.4 pcl-cvs.guide/Pcl-cvs installation

Installation of the pcl-cvs program
===================================

1. Edit the file ‘Makefile’ to reflect the situation at your site.
The only things you have to change is the definition of ‘lispdir’
and ‘infodir’. The elisp files will be copied to ‘lispdir’, and
the info file to ‘infodir’.

2. Configure pcl-cvs.el

There are a couple of paths that you have to check to make sure
that they match you system. They appear early in the file
pcl-cvs.el.

NOTE: If your system is running emacs 18.57 or earlier you MUST
uncomment the line that says:

(setq delete-exited-processes nil)

Setting ‘delete-exited-processes’ to ‘nil’ works around a bug in
emacs that causes it to dump core. The bug was fixed in emacs
18.58.

3. Release 1.05 and later of pcl-cvs requires parts of the Elib
library, version 0.07 or later. Elib is available via anonymous
ftp from prep.ai.mit.edu in ‘pub/gnu/elib-0.07.tar.z’, and from a
lot of other sites that mirrors prep. Get Elib, and install it,
before proceeding.

4. Type ‘make install’ in the source directory. This will
byte-compile all ‘.el’ files and copy both the ‘.el’ and the
‘.elc’ into the directory you specified in step 1.

If you don’t want to install the ‘.el’ files but only the ‘.elc’
files (the byte-compiled files), you can type ‘‘make install_elc’’
instead of ‘‘make install’’.

If you only want to create the compiled elisp files, but don’t
want to install them, you can type ‘make elcfiles’ instead. This
is what happens if you only type ‘make’ without parameters.

5. Edit the file ‘default.el’ in your emacs lisp directory (usually
‘/usr/gnu/emacs/lisp’ or something similar) and enter the contents
of the file ‘pcl-cvs-startup.el’ into it. It contains a couple of
‘auto-load’s that facilitates the use of pcl-cvs.

pcl-cvs 10 / 30

1.5 pcl-cvs.guide/On-line manual installation

Installation of the on-line manual.
===================================

1. Create the info file ‘pcl-cvs’ from ‘pcl-cvs.texinfo’ by typing
‘make info’. If you don’t have the program ‘makeinfo’ you can get
it by anonymous ftp from e.g. ‘ftp.gnu.ai.mit.edu’ as
‘pub/gnu/texinfo-2.14.tar.Z’ (there might be a newer version there
when you read this), or you could use the preformatted info file
‘pcl-cvs.info’ that is included in the distribution (type ‘cp
pcl-cvs.info pcl-cvs’).

2. Move the info file ‘pcl-cvs’ to your standard info directory.
This might be called something like ‘/usr/gnu/emacs/info’.

3. Edit the file ‘dir’ in the info directory and enter one line to
contain a pointer to the info file ‘pcl-cvs’. The line can, for
instance, look like this:

* Pcl-cvs: (pcl-cvs). An Emacs front-end to CVS.

1.6 pcl-cvs.guide/Typeset manual installation

How to make typeset documentation from pcl-cvs.texinfo
==

If you have TeX installed at your site, you can make a typeset manual
from ‘pcl-cvs.texinfo’.

1. Run TeX by typing ‘‘make pcl-cvs.dvi’’. You will not get the
indices unless you have the ‘texindex’ program.

2. Convert the resulting device independent file ‘pcl-cvs.dvi’ to a
form which your printer can output and print it. If you have a
postscript printer there is a program, ‘dvi2ps’, which does. There
is also a program which comes together with TeX, ‘dvips’, which
you can use.

1.7 pcl-cvs.guide/About pcl-cvs

About pcl-cvs

Pcl-cvs is a front-end to CVS version 1.3. It integrates the most

pcl-cvs 11 / 30

frequently used CVS commands into emacs.

Contributors Contributors to pcl-cvs.
Archives Where can I get a copy of Pcl-Cvs?

1.8 pcl-cvs.guide/Contributors

Contributors to pcl-cvs
=======================

Contributions to the package are welcome. I have limited time to
work on this project, but I will gladly add any code that you
contribute to me to this package (see Bugs).

The following persons have made contributions to pcl-cvs.

* Brian Berliner wrote CVS, together with some other contributors.
Without his work on CVS this package would be useless...

* Per Cederqvist wrote most of the otherwise unattributed functions
in pcl-cvs as well as all documentation.

* Inge Wallin (‘inge@lysator.liu.se’) wrote the skeleton to
‘pcl-cvs.texinfo’, and gave useful comments on it. He also wrote
the files ‘elib-node.el’ and ‘compile-all.el’. The file
‘cookie.el’ was inspired by Inge.

* Linus Tolke (‘linus@lysator.liu.se’) contributed useful comments
on both the functionality and the documentation.

* Jamie Zawinski (‘jwz@lucid.com’) contributed ‘pcl-cvs-lucid.el’.

* Leif Lonnblad contributed RCVS support.

Apart from these, a lot of people have send me suggestions, ideas,
requests, bug reports and encouragement. Thanks a lot! Without your
there would be no new releases of pcl-cvs.

1.9 pcl-cvs.guide/Archives

Where can I get pcl-cvs?
========================

The latest release of pcl-cvs can be fetched via anonymous ftp from
‘ftp.lysator.liu.se’, (IP no. 130.236.254.1) in the directory
‘pub/emacs’. If you don’t live in Scandinavia you should probably
check with archie to see if there is a site closer to you that archives
pcl-cvs.

pcl-cvs 12 / 30

New releases will be announced to appropriate newsgroups. If you
send your email address to me I will add you to my list of people to
mail when I make a new release.

1.10 pcl-cvs.guide/Getting started

Getting started

This document assumes that you know what CVS is, and that you at
least knows the fundamental concepts of CVS. If that is not the case
you should read the man page for CVS.

Pcl-cvs is only useful once you have checked out a module. So before
you invoke it you must have a copy of a module somewhere in the file
system.

You invoke pcl-cvs by typing ‘M-x cvs-update RET’. If your emacs
responds with ‘[No match]’ your system administrator has not installed
pcl-cvs properly. Try ‘M-x load-library RET pcl-cvs RET’. If that
also fails - talk to your root. If it succeeds you might put this line
in your ‘.emacs’ file so that you don’t have to type the ‘load-library’
command every time you wish to use pcl-cvs:

(autoload ’cvs-update "pcl-cvs" nil t)

The function ‘cvs-update’ will ask for a directory. The command
‘cvs update’ will be run in that directory. (It should contain files
that have been checked out from a CVS archive.) The output from ‘cvs’
will be parsed and presented in a table in a buffer called ‘*cvs*’. It
might look something like this:

PCL-CVS release 1.05.

In directory /users/ceder/FOO/test:
Updated bar
Updated file.txt
Modified ci namechange
Updated newer

In directory /users/ceder/FOO/test/sub:
Modified ci ChangeLog

---------- End -----

In this example the three files (‘bar’, ‘file.txt’ and ‘newer’) that
are marked with ‘Updated’ have been copied from the CVS repository to
‘/users/ceder/FOO/test/’ since someone else have checked in newer
versions of them. Two files (‘namechange’ and ‘sub/ChangeLog’) have
been modified locally, and needs to be checked in.

You can move the cursor up and down in the buffer with ‘C-n’ and
‘C-p’ or ‘n’ and ‘p’. If you press ‘c’ on one of the ‘Modified’ files
that file will be checked in to the CVS repository. See
Committing changes. You can press ‘x’ to get rid of the

pcl-cvs 13 / 30

"uninteresting" files that have only been ‘Updated’ (and don’t require
any further action from you).

You can also easily get a ‘diff’ between your modified file and the
base version that you started from, and you can get the output from
‘cvs log’ and ‘cvs status’ on the listed files simply by pressing a key
(see Getting info about files).

1.11 pcl-cvs.guide/Buffer contents

Buffer contents

The display contains four columns. They contain, from left to right:

* An asterisk when the file is "marked" (see Selected files).

* The status of the file. See See File status, for more information.

* A "need to be checked in"-marker (‘ci’).

* The file name.

File status The meaning of the second field.
Selected files How selection works.

1.12 pcl-cvs.guide/File status

File status
===========

The ‘file status’ field can have the following values:

‘Updated’
The file was brought up to date with respect to the repository.
This is done for any file that exists in the repository but not in
your source, and for files that you haven’t changed but are not
the most recent versions available in the repository.

‘Modified’
The file is modified in your working directory, and there was no
modification to the same file in the repository.

‘Merged’
The file is modified in your working directory, and there were
modifications in the repository as well as in your copy, but they
were merged successfully, without conflict, in your working
directory.

pcl-cvs 14 / 30

‘Conflict’
A conflict was detected while trying to merge your changes to FILE
with changes from the source repository. FILE (the copy in your
working directory) is now the output of the ‘rcsmerge’ command on
the two versions; an unmodified copy of your file is also in your
working directory, with the name ‘.#FILE.VERSION’, where VERSION
is the RCS revision that your modified file started from. See
Viewing differences, for more details.

‘Added’
The file has been added by you, but it still needs to be checked
in to the repository.

‘Removed’
The file has been removed by you, but it needs to be checked in to
the repository. You can resurrect it by typing ‘a’ (see
Adding and removing files).

‘Unknown’
A file that was detected in your directory, but that neither
appears in the repository, nor is present on the list of files
that CVS should ignore.

There are also a few special cases, that rarely occur, which have
longer strings in the fields:

‘Removed from repository’
The file has been removed from your directory since someone has
removed it from the repository. (It is still present in the Attic
directory, so no permanent loss has occurred). This, unlike the
other entries in this table, is not an error condition.

‘Removed from repository, changed by you’
You have modified a file that someone have removed from the
repository. You can correct this situation by removing the file
manually (see see Adding and removing files).

‘Removed by you, changed in repository’
You have removed a file, and before you committed the removal
someone committed a change to that file. You could use ‘a’ to
resurrect the file (see see Adding and removing files).

‘Move away FILE - it is in the way’
For some reason CVS does not like the file FILE. Rename or remove
it.

‘This repository is missing! Remove this dir manually.’
It is impossible to remove a directory in the CVS repository in a
clean way. Someone have tried to remove one, and CVS gets
confused. Remove your copy of the directory.

1.13 pcl-cvs.guide/Selected files

pcl-cvs 15 / 30

Selected files
==============

Many of the commands works on the current set of "selected" files.

* If there are any files that are marked they constitute the set of
selected files.

* Otherwise, if the cursor points to a file, that file is the
selected file.

* Otherwise, if the cursor points to a directory, all the files in
that directory that appears in the buffer are the selected files.

This scheme might seem a little complicated, but once one get used to
it, it is quite powerful.

See Marking files tells how you mark and unmark files.

1.14 pcl-cvs.guide/Commands

Commands

The nodes in this menu contains explanations about all the commands
that you can use in pcl-cvs. They are grouped together by type.

Updating the directory Commands to update the local directory
Movement commands How to move up and down in the buffer
Marking files How to mark files that other commands

will later operate on.
Committing changes Checking in your modifications to the

CVS repository.
Editing files Loading files into Emacs.
Getting info about files Display the log and status of files.
Adding and removing files Adding and removing files
Undoing changes Undoing changes
Removing handled entries Uninteresting lines can easily be removed.
Ignoring files Telling CVS to ignore generated files.
Viewing differences Commands to ‘diff’ different versions.
Emerge
Reverting your buffers Reverting your buffers
Miscellaneous commands Miscellaneous commands

1.15 pcl-cvs.guide/Updating the directory

Updating the directory
======================

pcl-cvs 16 / 30

‘M-x cvs-update’
Run a ‘cvs update’ command. You will be asked for the directory in
which the ‘cvs update’ will be run. The output will be parsed by
pcl-cvs, and the result printed in the ‘*cvs*’ buffer (see see
Buffer contents for a description of the contents).

By default, ‘cvs-update’ will descend recursively into
subdirectories. You can avoid that behavior by giving a prefix
argument to it (e.g., by typing ‘C-u M-x cvs-update RET’).

All other commands in pcl-cvs requires that you have a ‘*cvs*’
buffer. This is the command that you use to get one.

CVS uses lock files in the repository to ensure the integrity of
the data files in the repository. They might be left behind i.e.
if a workstation crashes in the middle of a CVS operation. CVS
outputs a message when it is waiting for a lock file to go away.
Pcl-cvs will show the same message in the *cvs* buffer, together
with instructions for deleting the lock files. You should
normally not have to delete them manually -- just wait a little
while and the problem should fix itself. But if the lock files
doesn’t disappear you can delete them with ‘M-x cvs-delete-lock
RET’.

‘g’
This will run ‘cvs update’ again. It will always use the same
buffer that was used with the previous ‘cvs update’. Give a prefix
argument to avoid descending into subdirectories. This runs the
command ‘cvs-mode-update-no-prompt’.

1.16 pcl-cvs.guide/Movement commands

Movement Commands
=================

You can use most normal Emacs commands to move forward and backward
in the buffer. Some keys are rebound to functions that take advantage
of the fact that the buffer is a pcl-cvs buffer:

‘SPC’
‘C-n’
‘n’

These keys move the cursor one file forward, towards the end of the
buffer (‘cookie-next-cookie’).

‘C-p’
‘p’

These keys move one file backward, towards the beginning of the
buffer (‘cookie-previous-cookie’).

pcl-cvs 17 / 30

1.17 pcl-cvs.guide/Marking files

Marking files
=============

Pcl-cvs works on a set of "selected files" (see Selected files).
You can mark and unmark files with these commands:

‘m’
This marks the file that the cursor is positioned on. If the
cursor is positioned on a directory all files in that directory
will be marked. (‘cvs-mode-mark’).

‘u’
Unmark the file that the cursor is positioned on. If the cursor is
on a directory, all files in that directory will be unmarked.
(‘cvs-mode-unmark’).

‘M’
Mark *all* files in the buffer (‘cvs-mode-mark-all-files’).

‘ESC DEL’
Unmark *all* files (‘cvs-mode-unmark-all-files’).

‘DEL’
Unmark the file on the previous line, and move point to that line
(‘cvs-mode-unmark-up’).

1.18 pcl-cvs.guide/Committing changes

Committing changes
==================

‘c’
All files that have a "need to be checked in"-marker (see
Buffer contents) can be checked in with the ‘c’ command. It
checks in all selected files (see Selected files) (except those
who lack the "ci"-marker - they are ignored). Pressing ‘c’ causes
‘cvs-mode-commit’ to be run.

When you press ‘c’ you will get a buffer called
‘*cvs-commit-message*’. Enter the log message for the file(s) in
it. When you are ready you should press ‘C-c C-c’ to actually
commit the files (using ‘cvs-edit-done’).

Normally the ‘*cvs-commit-message*’ buffer will retain the log
message from the previous commit, but if the variable
‘cvs-erase-input-buffer’ is set to a non-‘nil’ value the buffer
will be erased. Point and mark will always be located around the
entire buffer so that you can easily erase it with ‘C-w’
(‘kill-region’).

If you are editing the files in your emacs an automatic

pcl-cvs 18 / 30

‘revert-buffer’ will be performed. (If the file contains ‘Id’
keywords ‘cvs commit’ will write a new file with the new values
substituted. The auto-revert makes sure that you get them into
your buffer). The revert will not occur if you have modified your
buffer, or if ‘cvs-auto-revert-after-commit’ is set to ‘nil’.

1.19 pcl-cvs.guide/Editing files

Editing files
=============

There are currently three commands that can be used to find a file
(that is, load it into a buffer and start editing it there). These
commands work on the line that the cursor is situated at. They ignore
any marked files.

‘f’
Find the file that the cursor points to. Run ‘dired’ (see Dired)
if the cursor points to a directory (‘cvs-mode-find-file’).

‘o’
Like ‘f’, but use another window
(‘cvs-mode-find-file-other-window’).

‘A’
Invoke ‘add-change-log-entry-other-window’ to edit a ‘ChangeLog’
file. The ‘ChangeLog’ will be found in the directory of the file
the cursor points to.
(‘cvs-mode-add-change-log-entry-other-window’).

1.20 pcl-cvs.guide/Getting info about files

Getting info about files
========================

Both of the following commands can be customized. See Customization.

‘l’
Run ‘cvs log’ on all selected files, and show the result in a
temporary buffer (‘cvs-mode-log’).

‘s’
Run ‘cvs status’ on all selected files, and show the result in a
temporary buffer (‘cvs-mode-status’).

1.21 pcl-cvs.guide/Adding and removing files

pcl-cvs 19 / 30

Adding and removing files
=========================

The following commands are available to make it easy to add and
remove files from the CVS repository.

‘a’
Add all selected files. This command can be used on ‘Unknown’
files (see see File status). The status of the file will change to
‘Added’, and you will have to use ‘c’ (‘cvs-mode-commit’, see see
Committing changes) to really add the file to the repository.

This command can also be used on ‘Removed’ files (before you commit
them) to resurrect them.

Selected files that are neither ‘Unknown’ nor ‘Removed’ will be
ignored by this command.

The command that is run is ‘cvs-mode-add’.

‘r’
This command removes the selected files (after prompting for
confirmation). The files are ‘rm’ed from your directory and
(unless the status was ‘Unknown’; see File status) they will also
be ‘cvs remove’d. If the files were ‘Unknown’ they will disappear
from the buffer. Otherwise their status will change to ‘Removed’,
and you must use ‘c’ (‘cvs-mode-commit’, see Committing changes)
to commit the removal.

The command that is run is ‘cvs-mode-remove-file’.

1.22 pcl-cvs.guide/Undoing changes

Undoing changes
===============

‘U’
If you have modified a file, and for some reason decide that you
don’t want to keep the changes, you can undo them with this
command. It works by removing your working copy of the file and
then getting the latest version from the repository
(‘cvs-mode-undo-local-changes’.

1.23 pcl-cvs.guide/Removing handled entries

Removing handled entries
========================

‘x’

pcl-cvs 20 / 30

This command allows you to remove all entries that you have
processed. More specifically, the lines for ‘Updated’ files (see
File status and files that have been checked in (see
Committing changes) are removed from the buffer. If a directory
becomes empty the heading for that directory is also removed.
This makes it easier to get an overview of what needs to be done.

The command is called ‘cvs-mode-remove-handled’. If
‘cvs-auto-remove-handled’ is set to non-‘nil’ this will
automatically be performed after every commit.

‘C-k’
This command can be used for lines that ‘cvs-mode-remove-handled’
would not delete, but that you want to delete
(‘cvs-mode-acknowledge’).

1.24 pcl-cvs.guide/Ignoring files

Ignoring files
==============

‘i’
Arrange so that CVS will ignore the selected files. The file
names are added to the ‘.cvsignore’ file in the corresponding
directory. If the ‘.cvsignore’ doesn’t exist it will be created.

The ‘.cvsignore’ file should normally be added to the repository,
but you could ignore it also if you like it better that way.

This runs ‘cvs-mode-ignore’.

1.25 pcl-cvs.guide/Viewing differences

Viewing differences
===================

‘d’
Display a ‘cvs diff’ between the selected files and the RCS version
that they are based on. See Customization describes how you can
send flags to ‘cvs diff’. If CVS-DIFF-IGNORE-MARKS is set to a
non-‘nil’ value or if a prefix argument is given (but not both) any
marked files will not be considered to be selected.
(‘cvs-mode-diff-cvs’).

‘b’
If CVS finds a conflict while merging two versions of a file
(during a ‘cvs update’, see Updating the directory) it will save
the original file in a file called ‘.#FILE.VERSION’ where FILE is
the name of the file, and VERSION is the RCS version number that
your file was based on.

pcl-cvs 21 / 30

With the ‘b’ command you can run a ‘diff’ on the files
‘.#FILE.VERSION’ and ‘FILE’. You can get a context- or Unidiff by
setting ‘cvs-diff-flags’ - see Customization. This command only
works on files that have status ‘Conflict’ or ‘Merged’.

If CVS-DIFF-IGNORE-MARKS is set to a non-‘nil’ value or if a
prefix argument is given (but not both) any marked files will not
be considered to be selected. (‘cvs-mode-diff-backup’).

1.26 pcl-cvs.guide/Emerge

Running emerge
==============

‘e’
Invoke ‘emerge’ on one file. This command works slightly different
depending on the file status.

‘Modified’
Run ‘emerge-files’ with your working file as file A, and the
latest revision in the repository as file B.

‘Merged’
‘Conflict’

Run ‘emerge-files-with-ancestor’ with your working file (as
it was prior to your invocation of ‘cvs-update’) as file A,
the latest revision in the repository as file B, and the
revision that you based your local modifications on as
ancestor.

Note: CVS has already performed a merge. The resulting file is
not used in any way if you use this command. If you use the ‘q’
command inside ‘emerge’ (to successfully terminate the merge) the
file that CVS created will be overwritten.

1.27 pcl-cvs.guide/Reverting your buffers

Reverting your buffers
======================

‘R’
If you are editing (or just viewing) a file in a buffer, and that
file is changed by CVS during a ‘cvs-update’, all you have to do
is type ‘R’ in the *cvs* buffer to read in the new versions of the
files.

All files that are ‘Updated’, ‘Merged’ or in ‘Conflict’ are
reverted from the disk. Any other files are ignored. Only files
that you were already editing are read.

pcl-cvs 22 / 30

An error is signalled if you have modified the buffer since it was
last changed. (‘cvs-mode-revert-updated-buffers’).

1.28 pcl-cvs.guide/Miscellaneous commands

Miscellaneous commands
======================

‘M-x cvs-byte-compile-files’
Byte compile all selected files that end in .el.

‘M-x cvs-delete-lock’
This command can be used in any buffer, and deletes the lock files
that the *cvs* buffer informs you about. You should normally
never have to use this command since CVS tries very carefully to
always remove the lock files itself.

You can only use this command when a message in the *cvs* buffer
tells you so. You should wait a while before using this command
in case someone else is running a cvs command.

‘q’
Bury the *cvs* buffer. (‘bury-buffer’).

1.29 pcl-cvs.guide/Customization

Customization

If you have an idea about any customization that would be handy but
isn’t present in this list, please tell me! See Bugs for info on how
to reach me.

‘cvs-erase-input-buffer’
If set to anything else than ‘nil’ the edit buffer will be erased
before you write the log message (see Committing changes).

‘cvs-inhibit-copyright-message’
The copyright message that is displayed on startup can be annoying
after a while. Set this variable to ‘t’ if you want to get rid of
it. (But don’t set this to ‘t’ in the system defaults file - new
users should see this message at least once).

‘cvs-diff-flags’
A list of strings to pass as arguments to the ‘cvs diff’ and
‘diff’ programs. This is used by ‘cvs-mode-diff-cvs’ and
‘cvs-mode-diff-backup’ (key ‘b’, see Viewing differences). If you
prefer the Unidiff format you could add this line to your ‘.emacs’
file:

pcl-cvs 23 / 30

(setq cvs-diff-flags ’("-u"))

‘cvs-diff-ignore-marks’
If this variable is non-‘nil’ or if a prefix argument is given (but
not both) to ‘cvs-mode-diff-cvs’ or ‘cvs-mode-diff-backup’ marked
files are not considered selected.

‘cvs-log-flags’
List of strings to send to ‘cvs log’. Used by ‘cvs-mode-log’ (key
‘l’, see Getting info about files).

‘cvs-status-flags’
List of strings to send to ‘cvs status’. Used by ‘cvs-mode-status’
(key ‘s’, see Getting info about files).

‘cvs-auto-remove-handled’
If this variable is set to any non-‘nil’ value
‘cvs-mode-remove-handled’ will be called every time you check in
files, after the check-in is ready. See Removing handled entries.

‘cvs-auto-revert-after-commit’
If this variable is set to any non-‘nil’ value any buffers you have
that visit a file that is committed will be automatically reverted.
This variable is default ‘t’. See Committing changes.

‘cvs-update-prog-output-skip-regexp’
The ‘-u’ flag in the ‘modules’ file can be used to run a command
whenever a ‘cvs update’ is performed (see cvs(5)). This regexp is
used to search for the last line in that output. It is normally
set to ‘"$"’. That setting is only correct if the command outputs
nothing. Note that pcl-cvs will get very confused if the command
outputs *anything* to ‘stderr’.

‘cvs-cvsroot’
This variable can be set to override ‘CVSROOT’. It should be a
string. If it is set then everytime a cvs command is run it will be
called as ‘cvs -d CVS-CVSROOT...’ This can be useful if your site
has several repositories.

‘TMPDIR’
Pcl-cvs uses this *environment variable* to decide where to put the
temporary files it needs. It defaults to ‘/tmp’ if it is not set.

‘cvs-commit-buffer-require-final-newline’
When you enter a log message in the ‘*cvs-commit-message*’ buffer
pcl-cvs will normally automatically insert a trailing newline,
unless there already is one. This behavior can be controlled via
‘cvs-commit-buffer-require-final-newline’. If it is ‘t’ (the
default behavior), a newline will always be appended. If it is
‘nil’, newlines will never be appended. Any other value causes
pcl-cvs to ask the user whenever there is no trailing newline in
the commit message buffer.

‘cvs-sort-ignore-file’
If this variable is set to any non-‘nil’ value the ‘.cvsignore’
will always be sorted whenever you use ‘cvs-mode-ignore’ to add a

pcl-cvs 24 / 30

file to it. This option is on by default.

1.30 pcl-cvs.guide/Future enhancements

Future enhancements

Pcl-cvs is still under development and needs a number of
enhancements to be called complete. Below is my current wish-list for
future releases of pcl-cvs. Please, let me know which of these
features you want most. They are listed below in approximately the
order that I currently think I will implement them in.

* Rewritten parser code. There are many situations where pcl-cvs
will fail to recognize the output from CVS. The situation could
be greatly increased.

* ‘cvs-status’. This will run ‘cvs status’ in a directory and
produce a buffer that looks pretty much like the current *cvs*
buffer. That buffer will include information for all
version-controlled files. (There will be a simple keystroke to
remove all "uninteresting" files, that is, files that are
"Up-to-date"). In this new buffer you will be able to update a
file, commit a file, et c. The big win with this is that you will
be able to watch the differences between your current working file
and the head revision in the repository before you update the
file, and you can then choose to update it or let it wait for a
while longer.

* Log mode. When this mode is finished you will be able to move
around (using ‘n’ and ‘p’) between the revisions of a file, mark
two of them, and run a diff between them. You will be able to
hide branches (similar to the way you can hide sub-paragraphs in
outline-mode) and do merges between revisions. Other ideas about
this are welcome.

* The current model for marks in the *cvs* buffer seems to be
confusing. I am considering to use the VM model instead, where
marks are normally inactive. To activate the mark, you issue a
command like ‘cvs-mode-next-command-uses-marks’. I might
implement a flag so that you can use either version. Feedback on
this before I start coding it is very welcome.

* It should be possible to run commands such as ‘cvs log’, ‘cvs
status’ and ‘cvs commit’ directly from a buffer containing a file,
instead of having to ‘cvs-update’. If the directory contains many
files the ‘cvs-update’ can take quite some time, especially on a
slow machine. I planed to put these kind of commands on the prefix
‘C-c C-v’, but that turned out to be used by for instance c++-mode.
If you have any suggestions for a better prefix key, please let me
know.

* Increased robustness. For instance, you can not currently press
‘C-g’ when you are entering the description of a file that you are

pcl-cvs 25 / 30

adding without confusing pcl-cvs.

* Support for multiple active *cvs* buffers.

* Dired support. I have an experimental ‘dired-cvs.el’ that works
together with CVS 1.2. Unfortunately I wrote it on top of a
non-standard ‘dired.el’, so it must be rewritten.

* An ability to send user-supplied options to all the cvs commands.

* Pcl-cvs is not at all clever about what it should do when ‘cvs
update’ runs a program (due to the ‘-u’ option in the ‘modules’
file -- see ‘cvs(5)’). The current release uses a regexp to
search for the end. At the very least that regexp should be
configured for different modules. Tell me if you have any idea
about what is the right thing to do. In a perfect world the
program should also be allowed to print to ‘stderr’ without
causing pcl-cvs to crash.

If you miss something in this wish-list, let me know! I don’t
promise that I will write it, but I will at least try to coordinate the
efforts of making a good Emacs front end to CVS. See See Bugs for
information about how to reach me.

So far, I have written most of pcl-cvs in my all-to-rare spare time.
If you want pcl-cvs to be developed faster you can write a contract with
Signum Support to do the extension. You can reach Signum Support by
email to ‘info@signum.se’ or via mail to Signum Support AB, Box 2044,
S-580 02 Linkoping, Sweden. Phone: +46 (0) 13 - 21 46 00. Fax: +46 (0)
13 - 21 47 00.

1.31 pcl-cvs.guide/Bugs

Bugs (known and unknown)

If you find a bug or misfeature, don’t hesitate to tell me! Send
email to ‘ceder@lysator.liu.se’.

If you have ideas for improvements, or if you have written some
extensions to this package, I would like to hear from you. I hope that
you find this package useful!

Below is a partial list of currently known problems with pcl-cvs
version 1.05.

Commit causes Emacs to hang
Emacs waits for the ‘cvs commit’ command to finish before you can
do anything. If you start a background job from the loginfo file
you must take care that it closes ‘stdout’ and ‘stderr’ if you do
not want to wait for it. (You do that with ‘background-command &>-
2&>- &’ if you are starting ‘background-command’ from a ‘/bin/sh’
shell script).

pcl-cvs 26 / 30

Your emacs will also hang if there was a lock file in the
repository. In this case you can type ‘C-g’ to get control over
your emacs again.

Name clash in Emacs 19
This is really a bug in Elib or the Emacs 19 distribution. Both
Elib and Emacs 19.6 through at least 19.10 contains a file named
‘cookie.el’. One of the files will have to be renamed, and we are
currently negotiating about which of the files to rename.

Commands while cvs-update is running
It is possible to type commands in the *cvs* buffer while the
update is running, but error messages is all that you will get.
The error messages should be better.

Unexpected output from CVS
Unexpected output from CVS confuses pcl-cvs. It will currently
create a bug report that you can mail to me. It should do
something more civilized.

1.32 pcl-cvs.guide/Function and Variable Index

Function and Variable Index

bury-buffer Miscellaneous commands
cookie-next-cookie Movement commands
cookie-previous-cookie Movement commands
cvs-auto-remove-handled (variable) Customization
cvs-auto-revert-after-commit (variable) Customization
cvs-auto-revert-after-commit (variable) Committing changes
cvs-byte-compile-files Miscellaneous commands
cvs-commit-buffer-require-final-newline (variable) Customization
cvs-cvsroot (variable) Customization
cvs-delete-lock Updating the directory
cvs-diff-flags (variable) Customization
cvs-diff-ignore-marks (variable) Customization
cvs-diff-ignore-marks (variable) Viewing differences
cvs-erase-input-buffer (variable) Customization
cvs-erase-input-buffer (variable) Committing changes
cvs-inhibit-copyright-message (variable) Customization
cvs-log-flags (variable) Customization
cvs-mode-acknowledge Removing handled entries
cvs-mode-add Adding and removing files
cvs-mode-add-change-log-entry-other-window Editing files
cvs-mode-commit Committing changes
cvs-mode-diff-backup Viewing differences
cvs-mode-diff-cvs Viewing differences
cvs-mode-emerge Emerge
cvs-mode-find-file Editing files
cvs-mode-find-file-other-window Editing files
cvs-mode-ignore Removing handled entries

pcl-cvs 27 / 30

cvs-mode-log Getting info about files
cvs-mode-mark Marking files
cvs-mode-mark-all-files Marking files
cvs-mode-remove-file Adding and removing files
cvs-mode-remove-handled Removing handled entries
cvs-mode-revert-updated-buffers Reverting your buffers
cvs-mode-status Getting info about files
cvs-mode-undo-local-changes Undoing changes
cvs-mode-unmark Marking files
cvs-mode-unmark-all-files Marking files
cvs-mode-unmark-up Marking files
cvs-mode-update-no-prompt Updating the directory
cvs-sort-ignore-file (variable) Customization
cvs-status-flags (variable) Customization
cvs-update Updating the directory
cvs-update-prog-output-skip-regexp (variable) Customization
TMPDIR (environment variable) Customization

1.33 pcl-cvs.guide/Concept Index

Concept Index

-u option in modules file Customization
.cvsignore file, sorting Customization
About pcl-cvs About pcl-cvs
Active files Selected files
Added (file status) File status
Adding files Adding and removing files
Archives Archives
Author, how to reach Bugs
Authors Contributors
Automatically inserting newline Customization
Automatically remove handled files Customization
Automatically sorting .cvsignore Customization
Buffer contents Buffer contents
Bugs, how to report them Bugs
Bugs, known Bugs
Byte compilation Miscellaneous commands
Ci Committing changes
Commit buffer Committing changes
Commit message, inserting newline Customization
Committing changes Committing changes
Conflict (file status) File status
Conflicts, how to resolve them Viewing differences
Conflicts, resolving Emerge
Context diff, how to get Customization
Contributors Contributors
Copyright message, getting rid of it Customization
Customization Customization
Deleting files Adding and removing files
Diff Viewing differences
Dired Editing files
Edit buffer Committing changes

pcl-cvs 28 / 30

Editing files Editing files
Email archives Archives
Email to the author Bugs
Emerge Emerge
Enhancements Future enhancements
Erasing commit message Committing changes
Erasing the input buffer Customization
Example run Getting started
Expunging uninteresting entries Removing handled entries
FAQ Bugs
File selection Selected files
File status File status
Finding files Editing files
Flush changes Undoing changes
Ftp-sites Archives
Generating a typeset manual Typeset manual installation
Generating the on-line manual On-line manual installation
Getting pcl-cvs Archives
Getting rid of lock files Miscellaneous commands
Getting rid of the Copyright message. Customization
Getting rid of uninteresting lines Removing handled entries
Getting status Getting info about files
Getting the *cvs* buffer Updating the directory
Handled lines, removing them Removing handled entries
Info-file (how to generate) On-line manual installation
Inhibiting the Copyright message. Customization
Installation Installation
Installation of elisp files Pcl-cvs installation
Installation of on-line manual On-line manual installation
Installation of typeset manual Typeset manual installation
Introduction Getting started
Invoking dired Editing files
Invoking emerge Emerge
Known bugs Bugs
Loading files Editing files
Lock files Miscellaneous commands
Log (RCS/cvs command) Getting info about files
Manual installation (on-line) On-line manual installation
Manual installation (typeset) Typeset manual installation
Marked files Selected files
Marking files Marking files
Merged (file status) File status
Modified (file status) File status
Modules file (-u option) Customization
Move away FILE - it is in the way (file status) File status
Movement Commands Movement commands
On-line manual (how to generate) On-line manual installation
Printing a manual Typeset manual installation
Problems, list of common Bugs
Putting files under CVS control Adding and removing files
Recompiling elisp files Miscellaneous commands
Removed (file status) File status
Removed by you, changed in repository (file status) File status
Removed from repository (file status) File status
Removed from repository, changed by you (file status) File status
Removing files Adding and removing files
Removing uninteresting (processed) lines Removing handled entries

pcl-cvs 29 / 30

Reporting bugs and ideas Bugs
Require final newline Customization
Resolving conflicts Emerge
Resurrecting files Adding and removing files
Reverting buffers Reverting your buffers
Reverting buffers after commit Committing changes
Reverting buffers after commit Customization
Selected files Selected files
Selecting files (commands to mark files) Marking files
Sites Archives
Sorting the .cvsignore file Customization
Status (cvs command) Getting info about files
Syncing buffers Reverting your buffers
TeX - generating a typeset manual Typeset manual installation
This repository is missing!... (file status) File status
Undo changes Undoing changes
Unidiff, how to get Customization
Uninteresting entries, getting rid of them Removing handled entries
Unknown (file status) File status
Update program (-u option in modules file) Customization
Updated (file status) File status
Variables, list of all Customization
Viewing differences Viewing differences

1.34 pcl-cvs.guide/Key Index

Key Index

a - add a file Adding and removing files
A - add ChangeLog entry Editing files
b - diff backup file Viewing differences
c - commit files Committing changes
C-k - remove selected entries Removing handled entries
C-n - Move down one file Movement commands
C-p - Move up one file Movement commands
d - run cvs diff Viewing differences
DEL - unmark previous file Marking files
e - invoke emerge Emerge
ESC DEL - unmark all files Marking files
f - find file or directory Editing files
g - Rerun cvs update Updating the directory
l - run cvs log Getting info about files
m - marking a file Marking files
M - marking all files Marking files
n - Move down one file Movement commands
o - find file in other window Editing files
p - Move up on file Movement commands
q - bury the *cvs* buffer Miscellaneous commands
r - remove a file Adding and removing files
R - revert buffers Reverting your buffers
s - run cvs status Getting info about files

pcl-cvs 30 / 30

SPC - Move down one file Movement commands
U - undo changes Undoing changes
u - unmark a file Marking files
x - remove processed entries Removing handled entries

	pcl-cvs
	pcl-cvs.guide
	pcl-cvs.guide/Copying
	pcl-cvs.guide/Installation
	pcl-cvs.guide/Pcl-cvs installation
	pcl-cvs.guide/On-line manual installation
	pcl-cvs.guide/Typeset manual installation
	pcl-cvs.guide/About pcl-cvs
	pcl-cvs.guide/Contributors
	pcl-cvs.guide/Archives
	pcl-cvs.guide/Getting started
	pcl-cvs.guide/Buffer contents
	pcl-cvs.guide/File status
	pcl-cvs.guide/Selected files
	pcl-cvs.guide/Commands
	pcl-cvs.guide/Updating the directory
	pcl-cvs.guide/Movement commands
	pcl-cvs.guide/Marking files
	pcl-cvs.guide/Committing changes
	pcl-cvs.guide/Editing files
	pcl-cvs.guide/Getting info about files
	pcl-cvs.guide/Adding and removing files
	pcl-cvs.guide/Undoing changes
	pcl-cvs.guide/Removing handled entries
	pcl-cvs.guide/Ignoring files
	pcl-cvs.guide/Viewing differences
	pcl-cvs.guide/Emerge
	pcl-cvs.guide/Reverting your buffers
	pcl-cvs.guide/Miscellaneous commands
	pcl-cvs.guide/Customization
	pcl-cvs.guide/Future enhancements
	pcl-cvs.guide/Bugs
	pcl-cvs.guide/Function and Variable Index
	pcl-cvs.guide/Concept Index
	pcl-cvs.guide/Key Index

