
snma.hyper



snma.hyper ii

COLLABORATORS

TITLE :

snma.hyper

ACTION NAME DATE SIGNATURE

WRITTEN BY July 22, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME



snma.hyper iii

Contents

1 snma.hyper 1

1.1 Samu Nuojua’s Macro Assembler, SNMA v1.97 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 1.1 Copyright © . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 1.2 What you need . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 1.3 Installing SNMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.6 1.4 Good & Bad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.7 1.5 History of SNMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.8 1.6 Bug reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.9 1.7 Misc., general things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.10 1.8 Thanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.11 2. How to use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.12 2.1 Startup from shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.13 2.1.1 template: old flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.14 2.1.2 Command Line Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.15 2.2 Workbench support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.16 2.3 Starting the ARexx SNMA host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.17 3. Features of SNMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.18 3.1 Source code format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.19 3.2 Symbols in SNMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.20 Pre-defined symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.21 Register names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.22 3.3 Expressions in SNMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.23 Local symbol example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.24 3.4 Address modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.25 3.5 Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.26 3.5.1 types.i directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.27 CLRFO directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.28 CNOP directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.29 CNUL directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



snma.hyper iv

1.30 CPU directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.31 DC directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.32 DCB directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.33 DEBUG directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.34 DS directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.35 DX directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.36 ELSEIF directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.37 End Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.38 ENDC directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.39 ENDM directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.40 ENDR directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.41 EQU directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.42 EQUR directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.43 EVEN directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.44 FAIL directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.45 FO directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.46 IDNT directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.47 IFC directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.48 IFcc directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.49 IFD directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.50 IFNC directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.51 IFND directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.52 INCBIN directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.53 INCDIR directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.54 INCLUDE directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.55 LIST directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.56 MACRO directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.57 mc680x0 directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.58 MEXIT directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.59 NOLIST directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.60 SNMAOPT directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.61 OPT J example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.62 REG directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.63 REPT directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.64 RS directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.65 RSRESET directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.66 RSSET directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.67 SECTION directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.68 SET directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



snma.hyper v

1.69 SETFO directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.70 SMALLDATA directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.71 XDEF directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.72 XREF directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.73 3.6 Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.74 3.7 Things to Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.75 3.7.1 Notes about instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.76 Bcc instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.77 3.7.2 Notes about the expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.78 3.7.3 Notes about the include files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.79 3.7.4 Notes about the directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.80 3.7.5 Misc. notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.81 3.8 Error messages of SNMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.82 4. SNMA, ARexx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.83 4.1 general ARexx stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.84 4.2 ARexx commands of SNMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.85 4.2.1 SNMA,ARexx: ASM command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.86 4.2.2 SNMA, ARexx: CHDIR command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.87 4.2.3 SNMA, ARexx: FREE command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.88 4.2.4 SNMA, ARexx: GETERR command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.89 4.2.5 SNMA, ARexx: INFO command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.90 4.2.6 SNMA, ARexx: QUIT command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.91 4.2.7 SNMA, ARexx: SET command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.92 4.2.8 SNMA, ARexx: ADDGB command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.93 4.2.9 SNMA, ARexx: REMGB command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1.94 4.2.10 SNMA, ARexx: SEEGB command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.95 4.2.11 SNMA, ARexx: SELFCHECK command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.96 4.3 ARexx examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.97 5. Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



snma.hyper 1 / 50

Chapter 1

snma.hyper

1.1 Samu Nuojua’s Macro Assembler, SNMA v1.97

******************************************************
* *
* S N M A V1.97 *
* ~~~~~~~~~~~~~~~~~~~~~~ *
******************************************************

SNMA is 680x0 conditional macro assembler.

1. Introduction Blablaablaa....

2. Usage How to use (start).

3. Features Expressions, directives...

4. ARexx ARexx interface

5. Author Me.

1.2 1. Introduction

Introduction to Samu Nuojua’s Macro Assembler, SNMA

SNMA is a 680x0/6888x macro assembler. SNMA requires OS 2.0+.
If you have used another assembler, snma should not throw big
surprises in your face (I hope). (Look at things to note )

1.1 Copyright and other boring stuff

1.2 What you need

1.3 How to Install

1.4 Good & Bad things

1.5 History



snma.hyper 2 / 50

1.6 Bug reports

1.7 Misc.

1.8 Thanks

1.3 1.1 Copyright ©

SNMA stands for Samu Nuojua’s Macro Assembler.

SNMA is © copyright 1993-1994 by Samu Nuojua.

All SNMA documents are © copyright 1993-1994 by Samu Nuojua.

SNMA is FREEWARE. I reserve all rights to SNMA. You can copy it as long
you don’t ask payment (a small fee is allowed to cover the expenses of
a possible disk/postage fee). Permission is granted to upload SNMA to
bulletin boards and FTP sites. However, you must include all the files
present in the original archive when distributing SNMA to anywhere or
anybody. This includes all documents.

DISCLAIMER:
~~~~~~~~~~
SNMA software and documents are provided ’as is’. No guarantee of any
kind is given as to what SNMA does or that the information in files is
correct in any way. You are using this software at your own risk. The
author of SNMA is in NO WAY responsible for any loss or damage caused
by SNMA.

1.4 1.2 What you need

What you need to use SNMA to produce stand alone programs.

- AmigaOS 2.04 or higher (V37)
- Text editor (to write/edit programs)
- The following libaries:

V. Where note
~~ ~~~~~ ~~~~

- dos.library 37 in rom
- intuition.library 36 in rom
- utility.library 36 in rom
- icon.library any * in rom WB support
- mathieeedoubbas.library any * libs: fp support
- mathieeedoubtrans.library any * libs: fp support
- rexxsyslib.library 36 * libs: ARexx support

Libraries marked with a * are not neccessarily required. The math
libraries are needed for single and double floating point
conversions. A 6888x or 680x0 with FPU is needed for the extended



snma.hyper 3 / 50

floating point conversions. Rexxsyslib is required for the ARexx
support and icon.library for the WB support (if snma is started
with the icon).

Although snma can now produce executables, you may still need a linker to
to link object modules together (i.e. when your sources consist of several
modules). There are many choices for the linker and snma should work with
the ones which can deal with standard hunks. I have used DLink (from the
freely distributable DICE, not the registered or commercial versions - I
don’t know if they differ anyway) which works just fine and is free.

Recommended:

- Hard Disk
- Manuals, manuals...
- Debugger
- Time (8’)
- Development tools (Includes and so on)

*********************************************************************
* Remember, this isn’t pascal, this is REAL programming. *
* - 68000 Assembly language, techniques for building programs *
*********************************************************************

(Good book (a bit old, however) by D.Krantz and J.Stanley).

1.5 1.3 Installing SNMA

There are couple of files to be copied. Installer? Well, as soon as I
have some time to spare.

SNMA The main file. Copy it somewhere in your search path if
you are using snma from the shell. If you are using snma
in its ARexx mode, it needs to be started only once so it
is not necessary that this file be in the search path in
this case. Also, snma now has an icon so that it can be
started directly from the WB.

SNMA.guide Documents in AmigaGuide format. Copy this one to anywhere
you like.

examples/ Very simple example files.

arexx/ ARexx macros. Copy to your ARexx: directory, whichever
ones you are going to use.

See also examples/alias.txt file.

(User friendlies at the best 8’| )



snma.hyper 4 / 50

1.6 1.4 Good & Bad

My personal view on this assembler.
(Things are not listed in any particular order)

Good:

- It’s free.
- Most common directives are supported.
- Macros are supported.
- All 680x0, 6888x, 68851 and 68030 PMMU instructions are supported
- Does normal optimizations, including forward branches.
- It’s coded in assembler. (See below, Bad things).
- Enforcer was in duty all the time I coded, checked, debugged...
- Supports all data types of 680x0 6888x family (I think).

(FFP conversions are not supported).
- ARexx interface.
- Global symbol table

Bad:
- 68040/68060 instructions (those few) are not yet supported.
- All source files must fit into memory at the same time.
- It’s coded in assembler. Messy code sometimes - my fault, my

problem. (Moral: Assembly language is a two edged sword).
- Some sort of beginner’s help would be good (sources...).
- Only output format is Amiga object code.
- No GUI, but I’m not so sure this would even be useful.
- It’s driving me crazy, sometimes.

1.7 1.5 History of SNMA

History is now contained in a separate text file entitled "History".

1.8 1.6 Bug reports

Bug reports are WELCOME.

Please, state the following facts:

1) Your system configuration (Model, CPU, MEM, OS, ...) and the
version of SNMA.

2) What you did - Source code which caused the bug - If I can’t make
the bug reappear, it is an awful task to find out what went wrong.
If at all possible try to isolate the bug. Usually, only a tiny
section of source code is required to show it. Or, if the bug is
not directly related to the source code, describe it clearly (in
any case).

If you find something is implemented badly, missing or could use a
little polishing, along with other similar things, suggestions are
welcome.



snma.hyper 5 / 50

Where to report, see author .

----------------------------
--* fixed bug better bug *--
----------------------------

1.9 1.7 Misc., general things

Some words from the inner workings of SNMA
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SNMA is not a traditional two pass assembler although its operations
can be divided into two stages. Source files are read and parsed only
once. SNMA creates its own internal structures in this first pass. In
the second pass, snma solves all undefined symbols, optimizes code,
recalculates the changed values (like pc-relative stuff) and writes
object code (and other requested files).

Listing file creation is sloooow. (I suspect the buffered IO, but I
cannot make sure because I don’t have 3.1 where SetVBuf() actually
does something).

Memory usage by snma isn’t the most economical since all source files
files must fit into memory. (Not to mention the way I implemented all
the other stuff). Strip the comments from the include files you use
because that will reduce memory usage.

As a memory usage example:

One source code module: size 25625 bytes, 1061 lines
(7432 lines with includes)

SNMA uses 99403 bytes to store source files and 225356 bytes for all
the other stuff making a total of 324759 bytes.

The way I have implemented macros costs memory since snma needs the
produced macro lines to be in memory during the second pass where
expressions with relative and undefined symbols are re-calculated and
possible errors shown. (SNMA won’t read the source twice).

I know the actual snma file is quite large also. Well, I can’t help
that a lot, without a complete re-design and re-write which is not in
my top ten list of how to spend the next years of my life.

The development of SNMA
~~~~~~~~~~~~~~~~~~~~~~~

I started the development of snma somewhere in the first half of
1993. I have written SNMA entirely in assembler - first I wrote most
of it with a68k and then minor parts with snma itself. Now I’m
using snma only - it is good enough for that.

SNMA operates pretty stable on my system (A2000, GVP A3001 28Mhz



snma.hyper 6 / 50

68030/882, 4M fast 1Mchip, OS2.04). I’m developing it in my free
time and have spent long nights staring at my old 1081 and
wondering what the **** is wrong with everything.

1.10 1.8 Thanks

Thanks
~~~~~~

First, to the following people:

Eric Augustine for helping me with this guide.
Laura Mahoney for sending me source code.

and all the other people who have sent in bug reports.

I really must thank all you who have made so much wonderful
’Freely Distributable’ software for the Amiga.

Also, thanks to the following people for the software I use
while developing SNMA:

- Charlie Gibbs, A68k
- Matt Dillon, DME and DLink
- Aaron Digulla, XDME
- Steffan Becker, ToolManager
- Jorrit Tyberghein, PowerVisor.

1.11 2. How to use

SNMA can be started from the Shell or from the WorkBench.

2.1 Shell startup
2.2 Workbench startup
2.3 Starting arexx host

1.12 2.1 Startup from shell

SNMA can be started from the shell like a ’traditional’ assembler. It
parses its arguments using AmigaDOS 2.0 templates. Some of the options
can be specified also in the ’old way’ , i.e. with ’-’.
These ’old way’ arguments override the template arguments.

Command Line template:

SNMA
SOURCEFILE/A O=OBJ/K O=OBJ/K I=INCLUDE/K H=HEADER/K E=EQUATE/K



snma.hyper 7 / 50

L=LISTING/K Q=QUICKOPT P=PCOPT A=ADDRESSOPT B=BASEFORCE S=SYMBOL
LB=LONGBRA AREXX/S PORTNAME/K QUIET/S PAGELEN/K/N LNM=LSTNOMAC/S
LOD=LISTONLYDATA/S EXEOBJ/S SR=SHORTRELOC32 KEEPOBJ/S MOVEM/T
EC=ERRCOLOR/K/N DEBUG/S OL=OPTLEVEL/K/N TD=TYPESDIR/T
CS=CASESEN/T

Where:

SOURCEFILE is the name of the source file. It is a first argument
and must always be there.

OBJ defines the name of the object file.
O alias: -o<name>

INCLUDE defines a list of directories where the INCLUDE
I directive searches for include files.

alias: -i<namelist>

HEADER defines one file to be included before any lines from
H the source file are assembled. Only one is allowed.

alias: -h[<name>]

EQUATE defines the equate file name to be created. An empty
E string is allowed in which case SNMA creates the name

from the source file name. Currently the equate file
is generated at the end of assembly. Symbols are taken
from the hash table, so they are in mixed order. You
can use the AmigaDOS SORT command if you like some sort
of order.
alias: -e[<name>]

LISTING Listing file to be created. Minimal formatting may be
L done by using the PAGELEN option.

alias: -l[<name>]

QUICKOPT Quick optimizing flag, default: on
Q

PCOPT pc-relative optimizing, default: off
P

ADDRESSOPT effective address optimizing default: on
A

BASEFORCE Auto-force (Bd,An)->(disp16,An) default: on
B

SYMBOL Write symbol data hunk default: off
S

LONGBRA Long branches (wo/size field) default: off
LB

AREXX flag to start AREXX command host SNMA. Overrides
other directives.



snma.hyper 8 / 50

QUIET Disables informational output.

PAGELEN Defines pagelen used in listing file. If null, snma
does not create pages (useful if you want to do your
own formatting).
Default: NULL.

LSTNOMAC Don’t include macro expansions in the listing file.
LNM Default: off.

LSTONLYDATA Only list the lines which actually define some data.
LOD Default: off.

EXEOBJ Produces an executable, instead of an object module.
SNMAOPT e+ causes same effect.
Default: off.

SHORTRELOC32 write HUNK_RELOC32SHORT instead of HUNK_RELOC32 when-
SR ever possible. Has effect only when EXEOBJ is also

specified. Note that the actual hunk written is NOT
HUNK_RELOC32SHORT (1020) due to a 2.0 bug, but it is
HUNK_DRELOC32 (1015). Since that hunk cannot be in an
executable it doesn’t matter. Executables which have
this hunk, work only in OS 2.0 or later.
Default: off.

KEEPOBJ Don’t delete object file if there are errors in source
file.
Default: off.

MOVEM Optimize movem (to move or remove) if possible.
Default: on.

ERRCOLOR ANSI color code for the error highlightning.
EC Default: none.

DEBUG Include LINE DEBUG hunks to all sections. See also
debug directive and snmaopt d.

Default: off.

OPTLEVEL Number of maximum optimizing passes. One optimization
OL may make more optimization possible. You can define

the maximum number of levels snma will take. SNMA
will stop optimizing when there is nothing more to
optimize.
Default: 1.

TYPESDIR Toggle some directives which override some types.i macros.
TD Default: off.

CASESEN Toggle to use case-sensetine (ON) or -insesensitive (OFF)
CS symbols.

Default: on.

See Options .

SNMA does not check the stack. I haven’t had problems with a stack



snma.hyper 9 / 50

size of 4000 bytes. You can overflow the stack with very nested
includes. One level takes about 100 bytes, so "very" means something
like 40 levels. Actually, a little less. If you worry about that,
use a bigger stack.

Examples

1.13 2.1.1 template: old flags

Many applications use the ’-’ as an option start character.
(like: a68k file.asm -l -iinclude:).

If you wanted to just flag that you needed some file to be generated and
wanted snma to create the file name from the source name, you had to pass
an empty string (like LISTING ""). I have to admit that this isn’t a very
elegant method and when trying to pass options to ARexx macros I had many
problems with the quotes. So, to allow easier use, a couple of ’-’ flags
are also allowed on the commandline. In template they show as OLDFLAGS/M
template. In the template explanation they are referred to as ’alias:’.

To use style old flags, just specify -<flag> in the commandline.

For example: ->snma source.asm -l -e

Request listing and equate file.

1.14 2.1.2 Command Line Examples

prompt> SNMA mycode.asm obj mycode.o include myinc:

Mycode.asm is a source file, mycode.o is an object file and include
files are searched for in the current directory and then from myinc:
directory.

prompt> SNMA mycode.asm Q on A off B off S on I work:,work2:inc

mycode.asm is a source file. Flags are set on and off. Include files
are searched for in the current directory, work: and work2:inc.

prompt> SNMA mycode.asm EQUATE myequ

produces the equate file named myequ.equ and mycode.o object code.

prompt> SNMA mycode.asm E ""

produces the equate file named mycode.equ and mycode.o object code.

prompt> SNMA arexx

Starts SNMA ARexx command host.



snma.hyper 10 / 50

prompt> SNMA mycode.s -e -l -iinclude:

mycode.s is source code, -e and -l flags snma to produce equate and
listing file, and -iinclude: tells snma to search include files from
the include: directory.

1.15 2.2 Workbench support

SNMA may be started from the Workbench, too. Its behaviour is
controlled with ToolTypes. SNMA can assemble file(s) or start ARexx
SNMA. You can disable a ToolType by removing it or setting it to
parenthesis "()".

Tooltypes:
~~~~~~~~~

AREXX flag to start snma in ARexx mode.

PORTNAME=<name> AREXX port name. If omitted, snma uses the
default name (SNMA).

WINDOW=<file> Specify output file. If omitted, snma will
use its default output (CON:...). If the
AREXX flag is set too, no default output
is created, if omitted. See ARexx/SET

The default tooltypes are set so that AREXX snma will be started.
You can have several SNMAs running at the same time (although it is
not very useful). If you click several times on the snma icon many
SNMAs will be launched, each with a different portname. See ARexx

To stop SNMA you have to send a QUIT command to it. Here’s how you
do that from the shell:

->rx "address SNMA QUIT"

where "SNMA" is the name of the ARexx port.

How do you stop snma from the WB? For example, use a tool like
ToolManager and create the "SNMA OFF" command which is just like
the above shell command.

If you want to assemble files using the icons, I suggest you use
something like ToolManager, which makes your life a lot easier.

I added the WB support mainly because it may be helpful to start
SNMA in ARexx mode from an icon.

If you start SNMA from the WB and pass it arguments (ie: you have
selected other icons as well), SNMA will try to open WINDOW=<file>,
if omitted it will open its default output window. Then the passed
file(s) is(are) assembled just like in shell mode. SNMA won’t



snma.hyper 11 / 50

check any of the tooltypes or arguments and it does not check if
there’s already an snma ARexx port where the assembly could be
directed. (I highly doubt that anyone will use this method, but it
was rather easy to implement so there it is).

1.16 2.3 Starting the ARexx SNMA host

SNMA can be started as an ARexx host and I suggest it be used
that way.

Startup from:

- Shell use AREXX template

- WB use AREXX tooltype

See ARexx section (4.).

1.17 3. Features of SNMA

This section covers all features of SNMA, relating to the actual
assembly process.

3.1 Source code format

3.2 Symbols

3.3 Expressions

3.4 Addressing modes

3.5 Directives

3.6 Data types

3.7 Things to note

3.8 Errors

1.18 3.1 Source code format

The format of the source code is ’standard’.

One line can be 256 bytes long (after macro expansion, too).

One source code line may have the following components:



snma.hyper 12 / 50

<Label> <opcode> <operands> <comment>

<Label> Labels must start from the first column.
It may end with a colon (’:’).

Legal label characters are ’A-Z’, ’a-z’, ’0-9’, ’_’,
’.’ or codes 127-255 (like äöåÞÐ). I decided to handle
all the characters in the range 127 to 255 as symbol
characters.

First character must be: ’A-Z’, ’a-z’, codes 127-255,
’_’, ’.’ After that digits (0-9) are legal too.

Local labels are supported. You have three alternatives
to define a local label:

1) add a ’.’ in front of it. For example: .local
2) add a ’\’ in front of it. For example: \local
3) add a ’$’ to the end of it. For example: local$

Local labels may also start with a digit (actual label
portion). (1$, .1, ...)

<opcode> Opcode field is separated from the label field by at
least one space. An Opcode can be:

1) MC680x0 operation code (instruction).
2) Assembler directive .
3) Macro invocation.

<operands> Operand field is separated from the opcode field by at
least one space. The Operand field may contain 0 to 9
operands depending on what is in the opcode field.
Operands are separated by a comma (,). There can now be
99 macro operands.

<comment> Anything after the operand field is ignored and treated
as a comment. Those MC680x0 instructions which don’t
have operands ignore anything after the opcode field.
Anything after a ";" character is treated as a comment.
If the character in the first column is a "*", the
entire line is considered a comment or if the opcode is
a * it is ignored.

1.19 3.2 Symbols in SNMA

Symbols in SNMA have different meaning, depending on where they are
used.

Absolute, relative, register and register list symbols are
case-sensetive by default, but you can chnage this behaviour with
"snmaopt c-" or with CASESEN=OFF commandline toggle.



snma.hyper 13 / 50

Absolute symbols
~~~~~~~~~~~~~~~~

Absolute symbols are defined with the EQU or SET directive.
Symbols may be local symbols in the same way as labels. See the
label definition. Absolute symbols refer to numerical values.

Example

SNMA pre-defines some symbols with the SET directive.

Relative Symbols
~~~~~~~~~~~~~~~~

Relative symbols are labels, or equates which have relative symbols
in the expression which defines it. The only exception to this is
expression Relative-Relative which results in an absolute type. See
expressions for restrictions on relative symbols.

"*" is a special symbol and is the value of the program counter(PC).

For example:
data ds.b 100 ; define space 100 bytes
size equ *-data ; size gets value of 100 (abs type)

Register Equates
~~~~~~~~~~~~~~~~

Register equates are defined with the equr directive.
"Register symbol" refers to the register (Dn or An).

Register lists
~~~~~~~~~~~~~~

Register lists are only allowed in movem and fmovem instructions.
They are defined with reg directive.
"Register list" refers to the list of registers.

Macro symbols
~~~~~~~~~~~~~

Macros are defined with the macro and endm directives.
"Macro symbol" refers to the defined macro.
Names of macros are always case-insensitive.

1.20 Pre-defined symbols



snma.hyper 14 / 50

SNMA pre-defines the following symbols with SET.

symbol name value
~~~~~~~~~~~ ~~~~~

SNMA 0
snma 0
NARG 0 (actually number of args in macro call)
M68000 1
M68010 2
M68020 4
M68030 8
M68040 16
M68881 512
M68882 512
M68851 2048
F040 1024

M68xxx symbols are meant to be used with the cpu directive.

See also register names .

1.21 Register names

SNMA uses the following register names:

D0-D7 A0-A7 SP CCR SR SFC DFC CACR USP VBR CAAR MSP ISP FP0-FP7
FPCR FPSR FPIAR TT0 TT1 TC DRP SRP CRP CAL VAL SCC AC MMUSR PSR
PCSR BAD0-BAD7 BAC0-BAC7

Registers from the CCR in the above list are special registers. If
the name of special register is the only component of an address
mode (like ’lea CAL,a0’) snma considers it to be a special register.
If the name of a special register is one of the components of an
address more (like ’lea (CAL,pc),a0’) it is treated as a normal
symbol. However, to avoid any confusion, I strongly suggest that
you use these names only when referring to the special registers.

1.22 3.3 Expressions in SNMA

Expressions can be used almost anywhere where numerical components
are needed. The only exception being floating point numbers which
don’t allow expressions. Expressions use 32 bit integer math.

Expressions may have: 1) symbols, 2) constants, 3) operators,
4) parenthesis.

1) Symbols must be absolute or relative symbols.

2) Constants are numbers. They can be decimal, hexadecimal ($), octal



snma.hyper 15 / 50

(@) or in binary (%) form.

3) operators (in the order of precedence)

- Unary minus
~ bitwise NOT (one’s complement)
<< left shift
>> right shift
& bitwise AND
! or | bitwise OR

* multiply
/ divide
// modulo
+ add
- subtract

boolean operators (TRUE <> 0, false = 0)
=, == equal to
!=, <> not equal to
< less than
<=, =< less than or equal to
> greater than
>=, => greater than or equal to

4) Parenthesis are (). They may be nested.
For example: 3*((12-6)/(2+2))

Expressions are either absolute or relative, depending on the
types of symbols and operators. Relative symbols are allowed only
to add and sub(tract) operands. When an expression is evaluated,
it is divided into the sub-expressions to the stage

<number operand number>

where number can be a symbol. This sub-expression gets its own
sub-type. Confused? See below.

For example: (Rel2-Rel1)/4 is a legal expression, because the type
of Rel2-Rel1 is absolute although they are both rela-
tive symbols. See the table below.

Following table shows types of expressions.
A = Absolute , R = Relative, - = not allowed

Operator operands
~~~~~~~ ~~~~~~~~

A op A A op R R op A R op R
+ A R R -
- A - R A

*, /, //, &, !, <<, >> A - - -



snma.hyper 16 / 50

1.23 Local symbol example

The following example demonstrates local and global symbols.

; start-----------------------------------------
num equ 123 ; define global symbol
start:
.num equ 10 ; define local symbol
move.l #.num,d0 ; move 10 to d0
move.l #num,d1 ; move 123 to d1

new:
.num equ 23 ; define local symbol

move.l #.num,d0 ; move 23 to d0
move.l #num,d1 ; move 123 to d1
rts
end

; end-----------------------------------------

1.24 3.4 Address modes

SNMA supports all the addressing modes of the 680x0.

SNMA supports Motorola’s new addressing mode format as well as the
old format. I don’t have any of the Motorala’s manuals, but I have
seen enough ’new format’ sources. The change is more cosmetic, I
think. ( Aku(a0) in the new format is (Aku,a0)).

Forcing the size
~~~~~~~~~~~~~~~~
In some places, you can force a value to be either word or long
word. This is generally used to force something to word size, but
it can be used to force something to long as well. Forcing is
implemented by adding the .w (for word) suffix or the .l (for long
word) suffix to the symbol. For example, ’move.l (4.w),a0’.

Note1: The above addressing mode is optimized when using simple
’move.l (4),a0’. ’move.l (4.l),a0’ will not allow optimizing
due to the forcing suffix.

Note2: SNMA won’t complain about the mode (4).w, but it does ignore
the forcing suffix. The above mode is discouraged anyway if
you take a look at the new Motorola addressing mode syntax.
At least in SNMA.

Currently you can’t force to byte like "num.b(a0,d0.w)" but you can
do it by disabling 020+ code generation by using mc68000 directive.
This is a little ugly, I know. Maybe I’ll add a ".b" suffix in some
day.

Base displacement modes (including Memory Indirect)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



snma.hyper 17 / 50

You can force Base Displacement and Outer Displacement to be a
long word or word with the .l (long) or .w (word) suffix.

For example: ([BD.w,A0,d1.w],OD.l) where BD and OD are symbols.

SNMA will optimize addressing modes to the best possible. If
certain components are omitted a change to a quicker mode can be
made. When you force some value with a .l or .w, the value must be
within range and even if the actual value could be optimized it is
not because it is forced.

Example:

jsr (BD.w,a6)
BD equ 0

; Although BD is null, generated addressing mode will be disp16(An)
; because we forced BD to be word.

tst.l (BD,a0)
BD equ 0

; This will generate addressing mode (An)
; end of example

The same applies to Outer Displacement, except that addressing mode
is always Memory Indirect if there is OD.

Don’t worry if the above is confusing. You don’t usually have to
force anything since SNMA optimizes to the best mode for you. If
you want some value to be an exactly specified size (when importing
a value, for example) forcing can be a handy feature.

No Address Register in addressing mode
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When an address register is not part of address generation you have
two ways to exclude it. First, just don’t set it (like (d2.l) ).
Then you can always use a Zero Suppressed address register using the
name ZAn (n does not matter) instead of An. For example,

(10,d3.l) = (10,za0,d3.l)
(d1.l) = (za0,d1.l)
(10,a2.w) = (10,za0,a2.w) index register is An

You may wonder what the <---> is this Zero suppress stuff. The book
I used as a reference manual mentioned it and I being a fool, didn’t
realize until now (a long time passed) that the index register has
(err.. may have - that .l or .w - it is good practise to use them)
suffix information which says, "HEY ! I’m the index register".

Oh well...

Immediate values
~~~~~~~~~~~~~~~~



snma.hyper 18 / 50

SNMA checks immediate values so that they are in range, depending on
the size of the instruction. Immediate values can also be longer
than 32 bits if the instruction is some fpu/mmu instruction. FPU
instructions allow real mode definition of a number like -11.13232e-2.
The sizes of FP values are not checked.

Optimizing Address modes
~~~~~~~~~~~~~~~~~~~~~~~~
Address modes are optimized very well in SNMA. Forward optimizing is
also included. See the SNMAOPT directive and above for more
information. I suggest that you keep addressing mode optimizing on,
especially when the 68020+ mode is on because of the way SNMA works.
You will definately get the worst addressing mode if the symbols are
not defined when the line is assembled first time.

1.25 3.5 Directives

The following directives are supported:

CLRFO Reset _FO
CNOP Conditional NOP
CNUL Conditional NULL
CPU Define CPU ID type
DC Define Constant
DCB Define Constant Block
DEBUG Write line debug hunk
DS Define Space
DX Define BSS space
ELSEIF Conditional assembly toggle
END End of source file
ENDC End conditional assembly
ENDIF Alias for endc
EDNM End macro definition
ENDR End repeat block
EQU Define symbol value
EQUR Define register equate
EVEN Ensure PC is even
FAIL User error
FO Frame offset
IDNT Set program unit name
IFC Assemble if strings equal
IFcc Assemble if condition true
IFD Assemble if symbol defined
IFNC Assemble if strings not equal
IFND Assemble if symbol undefined
INCBIN Include Binary
INCDIR Include directory list
INCLUDE Include source file
LIST Turn on listing file generation
MACRO Start macro definition
MC680x0 CPU mode
MEXIT Exit from macro
NOLIST Turn off listing file generation



snma.hyper 19 / 50

OPT Changed to SNMAOPT
REG Define register list
REPT Start repeat block
RS Define structure offset
RSRESET Reset _RS
RSSET Set _RS
SECTION Start new section
SET Define SET value
SETFO Set _FO
SNMAOPT Define options
SMALLDATA Enable small data for section
XDEF Export symbol
XREF Import symbol
types.i types.i macros as directives

1.26 3.5.1 types.i directives

SNMA has most of the exec/types.i macros defined as directives.
Although this doesn’t save very much assembling time it reduces
memory usage because snma doesn’t need to create macro lines.

You can enable/disable this feature with ’snmaopt T’ flag or
with a ’typesdir’ toggle in a startup template. By default this
feature is disabled.

As you can see, you probably need to include types.i because
there is only structure definition stuff at the moment. (This
does not take into consideration what kind of modifications
people have made to the their types.i file)

Currently , the following exec/types.i macros are supported:

aptr <name>[,how many] (32 bits)
byte <name>[,how many] (8 bits)
bool <name>[,how many] (16 bits)
cptr <name>[,how many] (32 bits)
double <name>[,how many] (64 bits)
float <name>[,how many] (32 bits)
fptr <name>[,how many] (32 bits)
label <name>
long <name>[,how many] (32 bits)
rptr <name>[,how many] (16 bits)
struct <name>,<how many>
structure <name>[,offset] (offset=0 if omitted)
short <name>[,how many] (16 bits)
uword <name>[,how many] (16 bits)
ubyte <name>[,how many] (8 bits)
ulong <name>[,how many] (32 bits)
ushort <name>[,how many] (16 bits)
word <name>[,how many] (16 bits)

[,how many] field is extension to the exec/types.i macros.
’Structure’ doesn’t require initial offset (basic macro does).



snma.hyper 20 / 50

Notice that there are no data type checks so most of these directives
do same thing (the ones which have same size).

Example:
structure MyDataStruct

aptr ptr ;ptr = 0
byte col1 ;col1 = 4
byte col2 ;col2 = 5
word mask ;mask = 6
aptr planes,8 ;planes= 8
long count ;count = 8+8*4 = 40
label sizeof ;sizeof= 44

1.27 CLRFO directive

CLRFO

Resets the _FO variable to 0.
See also FO and SETFO .

1.28 CNOP directive

Conditional NOP. This directive is used to align data arbitrarily.

CNOP offset,alignment

Offset is a value which is added to the alignment.
Alignment is an alignment boundary value.

cnop 0,4 aligns pc to the long word boundary.

cnop 2,8 align pc to the 8 byte boundary plus two bytes.

1.29 CNUL directive

CNUL offset,alignment

Conditional NULL. Same as CNOP but, unlike the NOP directive,
it pads with null word.

1.30 CPU directive



snma.hyper 21 / 50

CPU <expression>

Defines what kind of instructions are legal. This is also used for FPU
and MMU instructions.

Expressions are simple numerical values which are set to the internal
SNMA variable (CPU command is only way to set it, it is not a symbol).
See Pre-defined symbols .

M68000
M68010
M68020
M68040
M68851 MMU
M68881 FPU
M68882 FPU same as M68881
F040 MC68040 floating point only
M030 68030 MMU

Examples:

CPU M68000 enables 68000 instructions
CPU M68000!M68010!M68020 enables instructions of those cpu’s.

CPU M68020!M68030!M68881 enables FPU instruction also.

This directive can be used so that if code is desired to be run on
M68000 machines you can check that there are no other instructions than
those which the MC68000 recognizes. All combinations are possible. CPU
-1 enables all instructions to be assembled. SNMA performs "CPU -1" in
the beginning of the assembly.

See also MC680x0 directives.

1.31 DC directive

Define Constant

DC.n <expression> or <single value>

n is size of data.

See Data types .

dc.b 2+1 reserves one byte and sets 3 to its value.
dc.l 12 reserves long word and sets 12 to its value
dc.s $FEEBD00D reserves long word and sets it to $FEEBD00D
dc.d +12.9292e-2 reserves two long words and sets its value what

that number is in double format (binary).



snma.hyper 22 / 50

Expressions are only valid as integers. Expressions that are
floating point numbers are not allowed.

If n is not defined the default size is word.

1.32 DCB directive

Define Constant Block

dcb.n <abs expression>,<value>

Reserves space for the given data type (n). All entries are set to a
single value which is given as the second argument. See Data types .

1.33 DEBUG directive

DEBUG

Writes LINE debug hunk(s) to to the output file. Only affects the
section where this directive is specified. If DEBUG commandline switch
is used, LINE debug hunk is written to the all sections. "SNMAOPT D"
can be used to switch snma to write the full path of the source name,
which may be required with some debuggers.

This feature allows source level debugging to be used with debuggers
which support that.

1.34 DS directive

Define Space

DS.n <abs expression>

Defines storage for the given data type (n).

ds.b 12 reserves space for 12 bytes
ds.l 3 reserves space for 3 longs (12 bytes)
ds.x 4*4 reserves space for 16 extended type fp number.
(192 bytes)

<abs expression> must be evaluated and it cannot contain relative
symbols (or undefined by far).

All reserved space is set to null.
See Data types .



snma.hyper 23 / 50

1.35 DX directive

DX.<size> defines BSS space to be allocated after code or data
hunk. This directive only takes affect when producing
an executable with snma. DX is like DS except that the
size is reserved only from the hunk header. When the
AmigaOS loads the executable it allocates memory as is
specified in the size field of the hunk header. This
size can be larger than the actual hunk size. Before
2.0 this memory range was not cleared and it must be
done (if desired) by startup code. After 2.0 AmigaOS
clears this area.

By using this method you can reduce the size of the
executable and make more effecient BSS data references
using combined DATA/BSS base register.

1.36 ELSEIF directive

ELSEIF toggles conditional assembly. If assembly was off it
toggles it on and vice versa.

Warning! This one does NOT WORK as it should, when conditional
assembly nests. (I should fix that...).

1.37 End Directive

End directive ends assembly. It is not required to be at the end of the
source file. When the source file ends it also ends assembly. Anything
after the END directive is not assembled.

1.38 ENDC directive

ENDC (alias ENDIF)

Toggles off conditional assembly if nest counts match.

1.39 ENDM directive

ENDM

Ends current macro definition.



snma.hyper 24 / 50

1.40 ENDR directive

ENDR

Ends current repeat block.
See REPT .

1.41 EQU directive

EQUate.

symbol EQU <expression>

Sets the value of the symbol to <expression>. Symbol and <expression>
are both required. = is equivalent to equ.

See Expressions .

Floating point numbers are supported by specifying a size field to the
EQU.

See Data types .

Only floating point data types are supported in equ if the n suffix is
present. (You can’t ’equ.b 5’).

When a symbol is used as part of an fpu instruction simple type checking
is done, but only between floating point types. The following code will
cause an ERROR:

NUM equ.d +11.234343
fmove.s #NUM,fp0

To fix this, change NUM to single or fmove to double.

NUM equ.d +11.234343
fmove.d #NUM,fp0 declared type same as used type !

The following code will not cause an error, because fmove uses the long
type which is not floating point type (okay, it would be good to check
anyway).

NUM equ.d 12.23232
fmove.l #NUM,fp0

1.42 EQUR directive

EQUR means register equate.
It allows registers to be addressed as symbols.
Register equates must be defined before use.



snma.hyper 25 / 50

Example:

count equr d0
move.l #0,count ; means move.l #0,d0

1.43 EVEN directive

EVEN aligns PC to be divisible by two if it is not already. It does the
same thing as cnop 0,2 See CNOP.

1.44 FAIL directive

FAIL flags the assembler to stop assembling. It is used to flag user
errors. It may be used if a macro call won’t get enough parameters
for example.

1.45 FO directive

Label FO.<size> <absexpression>

Define frame offset. Useful with the link instruction. This is
something like RS but decreases the counter _FO and then assigns the
value to the symbol (label).

Sizes other than byte are aligned to the word boundary.
See also CLRFO and SETFO .

It’s good practise to keep your stack long word aligned. FO doesn’t
ensure it (how about some FOLONG directive ?).

Little example:

clrFO ; reset _FO (0)
long1 fo.l 1 ;=-4
byte1 fo.b 1 ;=-5
word1 fo.w 1 ;=-8

link #_FO,a5 ; _FO = -8

;-- set all local variables to 0.

clr.l long1(a5)
clr.b byte1(a5)
clr.w word1(a5)

unlk a5
rts

The stack looks something like the following after link:



snma.hyper 26 / 50

a5
offset
~~~~~~

SP-> -8 [ ] word word1
-6 [ ] byte pad byte
-5 [ ] byte byte1
-4 [ ] long long1

a5 -> 0 [ ] long old a5

1.46 IDNT directive

IDNT <name>

Sets the name of the program unit to <name>.

1.47 IFC directive

IFC ’string1’,’string2’

If string1 = string2 DO assemble.

See also IFNC .

1.48 IFcc directives

IFcc <expression>

IFcc is a conditional assembly control directive. cc is the condition.
The expression is tested against the value of zero.

directive means
(condition)
~~~~~~~~~~~ ~~~~~
IFEQ <expression> EQual
IFNE <expression> NEqual
IFGT <expression> Greater Than
IFGE <expression> Greater or Equal
IFLT <expression> Lower Than
IFLE <expression> Lower or Equal

IF <expression> If true (not equal)
IFT <expression> If true (not equal)
IFF <expression> if false (equal)
IFNT <expression> if not true - false (equal)

If the condition is true, assembly is continued. If the condition is
false assembly is turned off. The ENDC directive ends conditional
assembly.



snma.hyper 27 / 50

1.49 IFD directive

IFD <symbol>

Conditional assembly trigger.
IF symbol is defined, do assembly, else don’t.

See also IFND .

1.50 IFNC directive

IFNC ’string1’,’string2’

If string1 <> string2 DO assembly.

See also IFC .

1.51 IFND directive

IFND <symbol>

Conditional assembly trigger.
IF symbol is not defined, do assembly, else don’t.

See also IFD .

1.52 INCBIN directive

INCBIN <file>

Incbin directive includes the named file into the code in its binary
form. No assembling is done on the file. If you had a file named bin and
it contained following data in hex form (4 bytes long file):

0BAD BEEF

Now..

IncBin bin

would do same as

dc.l $0BADBEEF.

If the length of the file is not even, an extra null byte is added to
the end of the data when it is set to the produced code. This makes
sure that the program counter stays aligned. This is just the same as
the Incbin without this feature (in SNMA this feature is always on):



snma.hyper 28 / 50

incbin <file>
even

Thus, above ’even’ is done automatically (always) by ’incbin’ and is
unnecessary in SNMA.

1.53 INCDIR directive

INCDIR <mydir1>[,mydir2,mydir3...]

INCDIR adds directories to the directory list where the
INCLUDE files are retrieved from.

INCBIN uses this list, too.

1.54 INCLUDE directive

INCLUDE <file>

Startsx to assemble <file>. After it has been assembled, snma continues
assembling after the INCLUDE directive.

Include files are looked for first in the current directory, and then in
in the directory list which can be defined in command line or with the
INCDIR directive. If an include file is not found during assembly the
assembly is terminated immediately (fatal error).

When snma is in ARexx mode it can have global include tables. If <file>
is already in the global table it is skipped (not even loaded into
memory). See ADDGB .

1.55 LIST directive

LIST turns on listing file generation. You can disable portions
(like includes) of a listing file to be generated with the
LIST and NOLIST directives. These do not nest.

1.56 MACRO directive

<Symbol> MACRO

Starts macro definition. Code inside a macro definition is not assembled
until the macro is called. The NARG symbol is set to the number of argu-
ments passed to the macro, when the macro is called. Macro names are
case-insensitive.



snma.hyper 29 / 50

The Macro call may have up to 99 parameters. A produced macro line must
fit into 256 bytes, however. If a parameter is enclosed between "<" and
">", it can contain any characters (including commas, spaces, tabs)
except the ">" (which always ends the parameter started with "<") and LF
($a).

Backslash ("\") has special meaning in macro definition. If character
after it is:

1) 01-99 insert argument number <number>
2) 0[0] insert size field of macro call
3) @<label> produces unique label (like local labels).
4) *<function()> executes special function

Argument number (1) may be defined with one or two digits. If you want
to produce something like <argument><number> with arguments below 10 you
must set the leading 0, otherwise it is not required.

;------------------------------------------------------
simple examples:

BURGER macro
dc.b "\011"
endm

BURGER HAM ; produces dc.b "HAM1"

Do macro
move.\0 \1,\2
endm

Do.b d0,d1 ; produces move.b d0,d1
;------------------------------------------------------

Special functions (4) insert the resulting string into the macro. If
there is an error the actual function call is inserted. These ’functions’
do not nest, BUT you can define macro arguments in the argument of a
function (like \*valof(\1)).

The parenthesis are always required because there must be some way to
tell when the ’function’ ends.

\*VALOF(expression) inserts the numerical value of expression.
This expression is only solved during pass1.
If expression has relative components, optim-
ization may change it but the change is NOT
reflected here. Also, symbols in the exp-
ression must already be defined.



snma.hyper 30 / 50

\*DATE(format) inserts the current date string of the system.
Format char format type
~~~~~~~~~~~ ~~~~~~~~~~~
d DOS (dd-mmm-yy)
i INT (yy-mmm-dd)
u USA (mm-dd-yy)
c CND (dd-mm-yy)

DATE() uses dos/datestamp.

\*TIME() inserts current system time
TIME() uses dos/datestamp.

\*VAR(name) inserts local or global (ENV:) dos variable
using dos/GetVar().

\*STRLEN(string) inserts length of string
\*UPPER(string) converts string to uppercase
\*LOWER(string) converts string to lowercase

DATE macro
dc.b ’Assembling Date: \*DATE(d)’,0
endm

1.57 mc680x0 directives

The following directives are shortcuts to the cpu directive.

mc68000
mc68010
mc68020
mc68030
mc68040
mc68881
mc68882

These do the same as CPU with a single argument, which is one of
the types of cpu. MC68881 (mc68882) enables also 68020 (68030). Using
the CPU directive, you can control arbitrarily the value of CPUID.

mc68040 is bit useless now because I still don’t know the 68040
specific instructions.

1.58 MEXIT directive

MEXIT

Exit from macro definition.



snma.hyper 31 / 50

When macro is called it may be useful to exit from macro expansion
before actual macro ends.

Used usually in conditional macros.

1.59 NOLIST directive

NOLIST directive turns off listing file generation.
See also LIST directive.

1.60 SNMAOPT directive

SNMAOPT flag[,flag,flag...]

where flags are:

Q Quick optimizing. Move->moveq, add->addq, sub->subq
whenever possible.
Default: On

P Absolute long addressing -> program counter relative
whenever possible.
Default: Off

A Effective address optimizing. 0(An)->(An), BD and OD
optimizing if 0 or word. (BD,An)->dip16(An) if
possible. Optimizes address modes as quick as they
can be.
Default: On

B Auto-force (BD,An) -> disp16(An). You can override by
disabling this flag or using .l suffix in the symbol.
(BD.l,An) makes the addressing mode always long
irrespective of the B flag. This feature is present
because routines in the run-time libraries can all be
called by the (disp16,An) mode. Displacement can be
an xref’d symbol which is solved during link time.
Because symbol is xref’d it must be treated as 32 bit
because in theory it can be this way. All library
calls however can use (disp16,An) mode. In using this
option you needn’t add the .w suffix to all calls.
Default: On

S With this flag symbol hunks are written to the object
file. This is handy when using symbolic debuggers.
Default: Off

L Long branches. Enable long branches if there is no
size field in Bcc instructions.
Default: Off



snma.hyper 32 / 50

E Produce executable (instead of producing object code).
Source file cannot have xref statements. Sorry, no
DATA+BSS coagulation yet.
Default: Off

R RELOC32SHORT to executables, implemented as 1015.
Default: Off

J ’jsr <ea>, rts’ pair to the jmp <ea> if rts is not
referenced. See Opt j example.
Default: Off

M Movem to move if only one reg.
Default: On

D Write the full path of the source file to the line
debug hunks. See also DEBUG.
Default: Off.

T SNMA has some exec/types.i macros defined as directives.

Flags are case-insensitive.

Example:

OPT S,P+,b-

Write symbol hunks, Optimize Absolute long -> pc-relative,
Disable Auto-forcing of (BD,An).

1.61 OPT J example

Little example:
...
jsr SubRoutine
rts

Can be converted to
...
jmp SubRoutine

because SubRoutine (usually) ends to rts.

Be careful with this one - if you pass parameters via
stack or do something else that depends on a return
address being in stack, DO NOT USE this.

If you have enabled this optimizing, you can locally disable it
by setting a label to the rts or by using snmaopt directive.

1.62 REG directive



snma.hyper 33 / 50

Symbol REG <reg-list>

REG directive specifies the register list used by the movem
instruction. List may contain a symbolic register name defined
by equr. Symbolic register lists must be defined before use.
Symbols defined by the REG directive can be used only with the
movem instruction. <reg-list> may be omitted. If <reg-list> is
empty, the movem instruction, which uses empty list, is not
generated.

example:

list reg d0-d3/a0-a2/a5
movem.l list,-(sp) push registers onto stack
nop
movem.l (sp)+,list pop registers from stack

1.63 REPT directive

REPT <num>
Starts repeat block. <num> specifies how many times repeat
block is repeated.

Example

rept 100 ; clear 400 bytes
clr.l (a0)+
endr

See ENDR .

Don’t define things inside a repeat block, use include or
something similar.

1.64 RS directive

Label RS.<size> <absexpression>

RS directive can be used to define structure offsets.
Label is always required (for obvious reasons). Size
field is one of the allowed. See data types . Expression
must be absolute and defined before use.

Simple example:

rsreset ; reset _RS

num1 rs.l 1 ; num1 = 0
double rs.d 1 ; double = 4



snma.hyper 34 / 50

byte rs.b 3 ; byte = 12 (3 bytes)
word rs.w 1 ; word = 16 (auto-align to word boundary)

1.65 RSRESET directive

RSRESET

Reset the value of _RS symbol to 0. Equivalent to RSSET 0.
See also RS .

1.66 RSSET directive

RSSET <absexpression>

Set _RS value. _RS can be set also with the SET directive,
but DO NOT ’equ’ it. See also RS .

1.67 SECTION directive

SECTION <name>[,<type>[,<mem type>]]

Start a new section. Name of the section is set to <name>.
The Type of section is one of the following:

CODE CODE_C CODE_F
DATA DATA_C DATA_F
BSS BSS_C BSS_F

_C extension specifies mem type (C=CHIP, F=FAST).

<mem type> specifies the type of the memory where the hunk
should be loaded. It can be specified with <type> field by
extension or with separate third argument which is CHIP or
FAST.

1.68 SET directive

<Symbol> SET <number>

With SET you can define a symbol whose value can be changed
arbitrarily later on. You can ’equ’ set symbols but then they
become absolute symbols which cannot be changed again.



snma.hyper 35 / 50

1.69 SETFO directive

SETFO <absexpression>

Sets _FO variable to the <absexpression>.
See also FO .

1.70 SMALLDATA directive

SMALLDATA [<An>]

Enables small data model for the current section. If the
section has any base relative address modes which have An
as a base register, snma handles them as being references
to data area - ie. using HUNK_DREL or EXT_DREF hunks.

If register An is omitted , the default is a4.

To use small data model, you need linker a which can deal
with HUNK_DREL and EXT_DREF hunks. Please refer to your
linker documentation for more information on how to use
the small data model. There are certain rules as to how to
name sections which define data and so on.

1.71 XDEF directive

XDEF <symbol>[,<symbol>[,<symbol>...]]

Define external symbol. Defines a symbol value to be
visible to other modules. (Export)

1.72 XREF directive

XREF <symbol>[,<symbol>[,<symbol>...]]

External reference to symbol. Defines a label to be
imported from other modules.

1.73 3.6 Data types

Supported data types.

All data types are NOT supported by ALL instructions.

Directives which support:
DC.n
DCB.n



snma.hyper 36 / 50

DS.n
EQU.n (all integers are 32 bit values and they are defined
without a suffix).
RS.n

n is one of these. size
~~~~~~~~~~~~~~~~~ ~~~~
b = byte ( 1 byte )
w = word ( 2 bytes)
l = long word ( 4 bytes)
s = single precision floating point number ( 4 bytes)
d = double precision floating point number ( 8 bytes)
x = extended precision floating point number (12 bytes)
p = packed floating point number (12 bytes)

Used K-factor is 17 with packed type.

1.74 3.7 Things to Note

Things to note when using SNMA.

3.7.1 Instructions

3.7.2 Expressions

3.7.3 Include files

3.7.4 Directives

3.7.5 Misc.

1.75 3.7.1 Notes about instructions

Bcc (bsr, bra, beq,...) instructions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- If there is no size field (like bra or bsr) SNMA attempts
to optimize the branch to the shortest possible. If the size
field is given (like bsr.w) SNMA does not try to optimize
the instruction. When generating jump tables, I wanted
branches to be ’forced’ to word size without altering the
snmaopt directive (I don’t remember those option chars even
myself 8).

If the size field is omitted:

- LONGRA flag tells SNMA whether to use long or word size.
LONGBRA=on enables long branches in these cases and
LONGBRA=off disables longs, forcing SNMA to use word size
branches.

- If the value is an external reference, SNMA won’t optimize



snma.hyper 37 / 50

it. Instead, depending the on LONGBRA flag (and the CPU
mode) it may be set to long or word.

- Currently, if you Bcc to another module and SNMA ends up at
a long branch, things go wrong. I have to dig out what is
in those new hunks - about which my old Bantam book knows
nothing at all. Until then be warned... (a change to jsr
could be made but I’m searching for a more elegant method,
like RELRELOC32) SNMA should really warn if this happens.

1.76 Bcc instruction

Bcc instruction. (Also bsr).

bhs = bcc
blo = bcs

Sizes: .s .b (byte)
.w (word)
.l (long)

1.77 3.7.2 Notes about the expressions

The Check of the data sizes
~~~~~~~~~~~~~~~~~~~~~~~~~~~

SNMA checks that specified data fits where it is set. For
example if you have the instruction "move.w #100000,d0" SNMA
tells you that value won’t fit as word. Positive number range
is unsigned and negative signed (All internal math is 32 bit).

Remember that when using the NOT (~) operation all 32 bits are
affected, not just parts of it.

Range checking can be annoying if you are using NOTs with bit
masks and sizes other than long word. (Hint: you can mask
values with AND) Checking of the ranges by SNMA reveals some
bugs (value too big to fit in a byte) which were not noticed
when using a68k, so I think it is a useful feature.

1.78 3.7.3 Notes about the include files

SNMA assembles V37 includes just fine.

The V40 includes which I got from NativeDeveloperKit3.1
have very few problems with SNMA.

Ooops... about devices/conunit... <> is a macro argument
encloser (or something like that) and is now supported by



snma.hyper 38 / 50

snma.

NOTE: I haven’t tried all the possible macros, so I don’t
claim all macros will work as intended. If you have some
problems, a bug report is welcome.

StripC tool which is in the NDK3.1 won’t handle the file
exec/macros.i, BTW.

1.79 3.7.4 Notes about the directives

The OPT directive is changed to "SNMAOPT" to avoid any con-
fusion with other assemblers which may have implemented the
OPT directive differently.

The CPU directive works a little differently than the MACHINE
directive found in some assemblers. So, to avoid any confu-
sion I implemented a CPU directive.

1.80 3.7.5 Misc. notes

Alignement problems
~~~~~~~~~~~~~~~~~~~
SNMA does not produce mis-aligned code. One thing to mention:

;-----------
s dc.b ’arg’ line 1
sl = *-s line 2

dc.w 0 line 3
;-----------

The value of ’sl’ will be 4 instead of the intended 3. SNMA
’adjusts’ dc.b in this case with one null byte. To prevent
this (so that ’sl’ will get the right value), add EVEN or CNOP
between line2 and line3. (It’s good practice to have EVEN or
CNOP 0,4 after ’DC.B’s anyway).

One pass assembler
~~~~~~~~~~~~~~~~~~

SNMA does not read and parse the source twice. So things like
conditional assembly relating to the value of PC are probably
going to break under snma. You don’t have to declare normal
symbols before you use them (with the exception of register
equates and lists), snma is smart enough to create its private
structures for them, and then solves them in pass2.

1.81 3.8 Error messages of SNMA



snma.hyper 39 / 50

Error messages in SNMA are quite self explanatory. An error may
be a "DEAD END" error which means that assembly cannot continue.
An object file is NOT produced if there is even one error. If
there is an old object file it is deleted so you don’t link it
by accident. There are a couple of warnings too. Grammar of
the error messages is quite awful, by the way, but I hope you
get an idea of what caused the error (I hope you understand
this guide, too).

The first character of the possible cause of the error is under-
scored. This might sometimes be in the wrong spot, so don’t
wonder if you think the error is somewhere else (it can be). I
added this feature later on and there are quite a lot of places
I should adjust it so that the error column will be in the right
spot always. When I find it is in the wrong place I usually (or
sometimes) try to fix the problem, which is not quite a big one.

When the error is in a macro you get two messages in the SHELL
interface. The first one tells you where the error is in the
macro and the second, where the macro call is which caused the
error. The error count is incremented by one, because there is
only one error, except in AREXX mode where both are counted.

When an error is found in pass 2 (solving undefined symbols...)
you get only one error message when it’s in a macro. This needs
some work but, you can see where the error is quite easily even
now (well, not always...8-( )

If you get an error which says its an internal bug or something
similar, a bug report is welcome and appreciated.

You can control the error message mechanism with AREXX/SET
command.

1.82 4. SNMA, ARexx

The ARexx interface is implemented as a command host. The
PORTNAME keyword in the template can be used to change the
basename of the ARexx port. Default basename is SNMA.

RexxMaster must be running when using snma in ARexx mode.

SNMA itself cannot execute any ARexx macros, it is a simple
command host.

4.1 General

4.2 Commands

4.3 Examples

SNMA’s ARexx port is the first one I wrote so it may need



snma.hyper 40 / 50

little more polishing, but it works the way I want. Totally
different question: is that way the right one?... 8^)

1.83 4.1 general ARexx stuff

GENERAL AREXX THINGS
~~~~~~~~~~~~~~~~~~~~

I recommend you use snma as an ARexx host. Calling snma direct
from the text editor and using a global symbol table cuts down
assembly time. If you have difficulties in writing interface
macros for the text editor you use, you can always utilize the
ShellAsm.rexx macro. The interface is basically the same as in
snma’s shell mode. That way you can still use global tables.
Also, snma is always in memory so, no load time in this method
either.

It is possible to display error messages as in shell mode when
snma is in ARexx mode. SNMA writes the messages to the default
output if you want (you can always redirect the default output
wherever you want, for example to con:). See AREXX/SET

There are lots of possibilities in using snma, be creative! (As
always).

1.84 4.2 ARexx commands of SNMA

Many commands use RexxVariableInterface to pass information
back.

4.2.1 ASM Assemble file
4.2.2 CHDIR Change working directory
4.2.3 FREE Free resources of last assembly
4.2.4 GETERR Get the errors
4.2.5 INFO Get info about the last assembly
4.2.6 QUIT Quit SNMA (ARexx)
4.2.7 SET SET attributes
4.2.8 ADDGB Add global include
4.2.9 REMGB Remove global include
4.2.10 SEEGB See global includes
4.2.11 SELFCHECK Check snma’s code

1.85 4.2.1 SNMA,ARexx: ASM command

Command:
~~~~~~~ ASM SOURCEFILE/A,OBJ=O/K,INCLUDE=I/K,HEADER=H/K,

LISTING=L/K,EQUATE=E/K



snma.hyper 41 / 50

Template:
~~~~~~~
All the keywords are the same as in SNMA commandline.
SNMA ARexx commandline does not have PORTNAME, AREXX
or SNMAOPT flags. You can set SNMAOPT flags with
the SET command.

Results:
~~~~~~~
ASM command triggers SNMA to assemble SOURCEFILE. To
To find out how assembly went, see/use the INFO
command.

1.86 4.2.2 SNMA, ARexx: CHDIR command

Command: CHDIR DIRNAME/A
~~~~~~~
Template: DIRNAME is the name of the directory
~~~~~~~~
Function:
~~~~~~~~
Changes the working directory of SNMA. You can
set the working directory to be the same directory
where your source file is with this command. If you
have the include files in the same directory as the
prrogram source this becomes quite a helpful command.
If DIRNAME does not exist or is a file, SNMA opens a
Requester to tell you.

Why is this named CHDIR instead of CD ? To avoid any
confusion between this and AmigaDOS CD.

1.87 4.2.3 SNMA, ARexx: FREE command

Command: FREE
~~~~~~~
Template: none
~~~~~~~~
Function:
~~~~~~~~
Frees all resources opened by the ASM command.
After you execute this command you will lose all
information about the previous assembly, including
errors.

"Resources" here means memory. All file handling
(opening/closing) is internal to the ASM command.

1.88 4.2.4 SNMA, ARexx: GETERR command



snma.hyper 42 / 50

Command: GETERR NUMBER/N REMOVE/S WARN/S STEM/K
~~~~~~~
Template:
~~~~~~~~

NUMBER error/warning number. SNMA keeps track of which
error was requested last. If the number is omitted
the next error is returned. If GETERR tries to fetch
an error which does not exist it returns special
values (see below).

REMOVE Toggling removes error from the list. Errors are
numbered such that the first one is always number
one and if you remove number one, the second one
becomes number one and so on.

WARN Toggling causes GETERR to return WARNINGS instead of
the ERRORS.

STEM variable specifies variable base name.

Results:
~~~~~~~

<STEM>.LINENUM
<STEM>.LINETXT
<STEM>.FILENAME
<STEM>.ERRTXT
<STEM>.COLUMN

<STEM>.LINENUM
The line number of the error. If this is NULL there
is no such error as the one requested.

<STEM>.LINETXT
String which holds the source code line where the
error is.

<STEM>.FILENAME
Name of the source code file.

<STEM>.ERRTXT
Error description text.

<STEM>.COLUMN
Column number where SNMA thinks the error is. If
your source code has TABS in it you may need to
change the TAB value with SET command to get the
right column.
Default TAB is 8 (as AmigaDOS uses).

<STEM>.ERRNUM
Which error this was. Handy if you want to know when
using GETERR to fetch next error. Number 1 is first.

Function:



snma.hyper 43 / 50

~~~~~~~~ GetErr is used to fetch errors SNMA found in the
source code. Warnings are fetched with GetErr, too.

Errors are stored in a list. The first error is
first in the list, second is second and so on. The
Warnings are in a separate list.

Exactly how many errors is in the list can be found
with the INFO command from the <STEM>.ERRORS field.
Warnings are in the <STEM>.WARNINGS field.

GETERR REMOVE changes these values if you call INFO
after GETERR REMOVE, but does not change them when
you call GETERR.

If you call GETERR with an illegal error number
(an error which does not exist) you will get the
following results:

LINENUM=0
LINETEXT=’ ’
FILENAME=’ ’
ERRTXT=’No more errors’
ERRIND=0

LINENUM=0 is not generated anywhere else because
line numbers start at one(1), so it is safe to check
this field in an ARexx macro if the error fetching
was successful.

If you call GETERR to get the next error and there
is no text error (all errors are handled) the sit-
uation is same as above.

1.89 4.2.5 SNMA, ARexx: INFO command

Command: INFO <STEM>
~~~~~~~

Template:
~~~~~~~~
<STEM> is the stem variable where values are put.

Results:
~~~~~~~
<STEM>.STATUS ok, warn, error, fail
<STEM>.LINES How many lines we assembled
<STEM>.ERRORS number of errors
<STEM>.WARNINGS number of warnings
<STEM>.CODE number of code sections
<STEM>.DATA number of data sections
<STEM>.BSS number of bss sections
<STEM>.CODESIZE number of bytes in code sections
<STEM>.DATASIZE number of bytes in date sections
<STEM>.BSSSIZE number of bytes in bss sections



snma.hyper 44 / 50

<STEM>.FAILSTR possible failure string
(if STATUS="FAIL")

.STATUS is one of the following strings:

OK = assembly went just fine / nothing
assembled yet

WARN = last assembly resulted warn
ERROR = last assembly resulted error
FAIL = last assembly resulted failure

if .STATUS is "FAIL" .FAILSTR has the failure
description.

.LINES tells how many lines SNMA assembled. (Include
files are also counted for this).

.ERRORS How many errors, if any. Failures don’t count
here.

.WARNINGS How many warnings there were, if any.

.CODE Number of CODE sections.

.DATA and .BSS are equivalent with .CODE

.CODESIZE
The number of bytes section(s) take. This is the
sum of all CODE sections.

.DATASIZE and .BSSSIZE are equivalent with .CODESIZE.

.FAILSTR Possible failure description. See .STATUS.

1.90 4.2.6 SNMA, ARexx: QUIT command

Command: QUIT
~~~~~~~
Template: none
~~~~~~~~
Function: Quits SNMA
~~~~~~~~

1.91 4.2.7 SNMA, ARexx: SET command

Command: SET Q=QUICKOPT/T P=PCOPT/T A=ADDRESSOPT/T
~~~~~~~ B=BASEFORCE/T S=SYMBOL/T LB=LONGBRA/T

TABS/K/N KS=KEEPSOURCE/T OF=OUTFILE/T RE=RXERR/T
LNM=LSTNOMAC/T LOD=LSTONLYDATA/T SR=SHORTRELOC32/T
KO=KEEPOBJ/T MOVEM/T EC=ERRCOLOR/K/N DEBUG/T
OL=OPTLEVEL/K/N TD=TYPESDIR/T CS=CASESEN/T



snma.hyper 45 / 50

Template:
~~~~~~~~ QUICKOPT Q flag move-moveq and so on
PCOPT P flag absolute long ->pc-relative
ADDRESS A flag address mode optimizing
BASEFORCE B flag ensure disp16(an) mode
SYMBOL S flag write symbol hunk
LONGBRA L flag enable long branches (w/o .l

suffix)

TABS
Number which specifies your current TAB
setting. SNMA needs this value for the
GETERR.COLUMN field. If the value is NULL
the value is NULL or negative SNMA simply
ignores it.
Default: 8.

KEEPSOURCE
KS If off snma frees all the source code it

allocated in the last assembly and you
cannot print the line of the error, but
when working from a text editor that is
not necessary. When this flag is on, snma
frees the source when the text assembly is
started (or via FREE command), keeping the
source code in memory between the previous
assembly and the next one.
one.
Default: ON.

OUTFILE
OF Toggle to enable/disable normal snma out-

put. With this is OFF snma will not write
assembly messages to the default output.
When ON snma writes to the default output.
Default: OFF.

RXERR
RE Enable/disable ARexx errors. Normally, in

ARexx mode this flag is kept on. If it is
off snma will NOT generate ARexx error
structures. INFO and GETERR commands think
that there were no errors if this flag is
off, even if there are errors.
Default: ON.

LSTNOMAC no macro expansions to the listing file
LNM Default: OFF.

LSTONLYDATA only those lines which define data.
LOD Default: OFF.

SHORTRELOC32 Use short reloc32 whenever possible.
SR Default: OFF.

KEEPOBJ Do not delete object file when there are
errors in the source file.



snma.hyper 46 / 50

Default: OFF.

MOVEM movem optimizing.
Default: ON.

ERRCOLOR Error highlighting.
EC

DEBUG Toggle to enable debu line hunks

OPTLEVEL How many times to run optimizer.
OL

TYPESDIR Some macros implemented as directives.
TS

CASESEN Case-sensetive symbols.
CS Default: ON.

Function:
~~~~~~~~~
To change default settings of SNMA. The SNMAOPT
directive overrides those flags which can be set with
SNMAOPT. Some flags are the same as in the shell
template .

The ARexx SET command has nothing to do with the SET
directive.

1.92 4.2.8 SNMA, ARexx: ADDGB command

Command: ADDGB
~~~~~~~ SOURCEFILE/A,OBJ=O/K,INCLUDE=I/K,HEADER=H/K,

LISTING=L/K,EQUATE=E/K

Template:
~~~~~~~~ Template is same as in the ASM command.

Function:
~~~~~~~~ To add symbols and macros to the global table. A single
ADDGB can add any number of include files to the global
table.

ADDGB works like ASM with the following exceptions:

1) No code is generated
2) Second pass is not executed
3) Absolute symbols and macros are transfered to the

global table at the end of assembly.
4) Include files are added to the internal include file

list to prevent them from being included again.

Equates, sets, floating point equates and macros are
transferred to the global table.



snma.hyper 47 / 50

The idea of the global table is to lower include file
loading and processing time. You need do this process
only once after which SNMA will find the symbol (or
macro) from the global symbol table if it is there. If
you try to INCLUDE a file which has been ADDFB’d the
include file will be skipped. If you have includes in
your source the include files which are ADDGB’d are not
processed.

SNMA locks the files you add to the global table. This
prevents you from modifying the (still readable) files,
as the change doesn’t modify the global table anyway.
The REMGB command can be used to remove a file from
the global table.

Important! The main sourcefile symbols and macros
are NOT transferred to the global table. A file you
handle with this command usually contains some INCLUDE
directives which SNMA processes. This enables you to
process your current sourcefiles with ADDGB.

Errors are reported just like in the ASM command.

If you have includes which produce code and you want
that code to be included DO NOT use the ADDGB command
to include that file.

The Global table can be used only in ARexx mode.

So, what does all that mean in practice? There is a
little example in snma/examples. Look at it.

The current implementation of include file skipping
tries to lock the file, even if it is in the global
table and if it doesn’t succeed it fails. For the hard
disk users there is nothing to worry about, but the
floppy users may find this frustrating. In theory, you
should be able to add the include file to the global
table from the floppy and then remove the actual disk
where they were loaded, but as snma tries to lock these
files it can’t find them. Any floppy users out there?
It is not a big task to change the include handling to
allow the above situation. It is big enough to avoid if
nobody really needs it though. (Hint: Invest in a hard
disk. Yeah, I know, THAT requires money 8)

1.93 4.2.9 SNMA, ARexx: REMGB command

Command: REMGB FILENAME
~~~~~~~

Template:
~~~~~~~~ FILENAME Name of include file you want to remove.



snma.hyper 48 / 50

This removes only symbols added in the
main include file. If this include has
included other include files they will
not be removed. If the FILENAME has been
omitted, the global table is cleared and
the symbols freed.

Function:
~~~~~~~~ To remove symbols and macros for one file (or all) that
have been included in the global tables. You can see
what files are in the global tables with the SEEGB
command.

I have the following alias defined in my shell-startup:

alias remgb "rx ’address SNMA remgb "[]"’

Then just typing remgb <name> will remove the file from
the global table if present there.

Symbols which have been declared by using the SET
directive belong to the first file which defined
them. When you remove that file, the symbol is removed
from the global table even if some other include file
has changed it (i.e. declared by using SET).

1.94 4.2.10 SNMA, ARexx: SEEGB command

Command: SEEGB STEM

Template:
~~~~~~~~ STEM stem variable name.

STEM.COUNT will hold the number of filenames
STEM.0 filename 0
STEM.1 filename 1
STEM.n filename n

Function:
~~~~~~~~ To get information as to what files are in the global
symbol table. If you don’t specify a STEM variable this
command is a no-op.

1.95 4.2.11 SNMA, ARexx: SELFCHECK command

Command: SELFCHECK
~~~~~~~

Function:
~~~~~~~~ Calculates a new checksum from the snma’s own code and
compares it with that calculated in startup. If there’s



snma.hyper 49 / 50

a difference snma will report it. Programs tend to run
away every now and then when developing. Using this
command you can make sure snma is still in good health.
(Yes, sometimes memory protection would be nice).

1.96 4.3 ARexx examples

The ARexx directory of the snma package has many ARexx macros
(programs). You may use them as they are or modify them anyway
you like.

ShellAsm.rexx is a simple macro to call from the shell and it
does basically the same as SNMA in shell mode.
This one looks a little better than that found
in the V1.70 release.

addgb.rexx adds symbols to the global table. Basically the
same as ShellAsm.rexx.

seegb.rexx displays what include files are in the snma
global symbol table.

Other macros are for the XDME text editor. Those who have some
other text editor (which supports ARexx) may found them helpful
as an example in writing their own interface macros.

asm.xdme assembles file
GetErr.xdme fetches error information
snmainfo.xdme displays information about last assembly

These macros need a little more work but they do well for now.
The GetErr macro also needs some work with ’user macro’ errors.

Feel free to modify these macros anyway you please or write
completely new ones. My taste is not neccessarily yours.

If you modify these files and distribute them, please change
the names and state what they are supposed to do clearly enough.

1.97 5. Author

The author lives in Helsinki, Finland.

If you are using snma, by sending mail or a postcard you will
motivate him to work even harder with snma. By stating which
Amiga model you use the author knows that snma has no problems
(has it? It shouldn’t) with different Amiga models. By stating
where you got the snma package, you will be giving interesting
information too. (Paranoid? Who? Me? Why? 8’)



snma.hyper 50 / 50

Send your comments, flames or whatever to

E-mail: snuojua@cc.helsinki.fi

or

smail: Samu Nuojua
Harustie 8 B 15
00980 Helsinki
FINLAND

Well, although snma is freeware, donations are always welcome.

Finally, thanks to Satu for the patience.


	snma.hyper
	Samu Nuojua's Macro Assembler, SNMA v1.97
	1. Introduction
	1.1 Copyright ©
	1.2 What you need
	1.3 Installing SNMA 
	1.4 Good & Bad
	1.5 History of SNMA
	1.6 Bug reports
	1.7 Misc., general things
	1.8 Thanks
	2. How to use 
	2.1 Startup from shell
	2.1.1 template: old flags
	2.1.2 Command Line Examples
	2.2 Workbench support
	2.3 Starting the ARexx SNMA host
	3. Features of SNMA
	3.1 Source code format
	3.2 Symbols in SNMA
	Pre-defined symbols
	Register names
	3.3 Expressions in SNMA
	Local symbol example
	3.4 Address modes
	3.5 Directives
	 3.5.1 types.i directives
	CLRFO directive
	CNOP directive 
	CNUL directive 
	CPU directive 
	DC directive 
	DCB directive
	DEBUG directive
	DS directive
	DX directive
	ELSEIF directive 
	 End Directive
	 ENDC directive
	ENDM directive 
	ENDR directive 
	EQU directive
	EQUR directive 
	 EVEN directive
	FAIL directive
	FO directive
	IDNT directive 
	 IFC directive
	 IFcc directives
	 IFD directive
	 IFNC directive
	 IFND directive 
	 INCBIN directive
	INCDIR directive 
	 INCLUDE directive 
	LIST directive
	MACRO directive 
	mc680x0 directives
	MEXIT directive 
	NOLIST directive
	 SNMAOPT directive
	OPT J example
	REG directive 
	REPT directive 
	 RS directive
	 RSRESET directive
	 RSSET directive
	 SECTION directive
	 SET directive
	SETFO directive
	SMALLDATA directive 
	XDEF directive 
	XREF directive 
	3.6 Data types
	3.7 Things to Note
	3.7.1 Notes about instructions
	 Bcc instruction 
	3.7.2 Notes about the expressions
	3.7.3 Notes about the include files
	3.7.4 Notes about the directives
	3.7.5 Misc. notes 
	3.8 Error messages of SNMA
	4. SNMA, ARexx 
	4.1 general ARexx stuff
	4.2 ARexx commands of SNMA
	4.2.1 SNMA,ARexx: ASM command
	4.2.2 SNMA, ARexx: CHDIR command
	4.2.3 SNMA, ARexx: FREE command
	4.2.4 SNMA, ARexx: GETERR command
	4.2.5 SNMA, ARexx: INFO command
	4.2.6 SNMA, ARexx: QUIT command
	4.2.7 SNMA, ARexx: SET command
	4.2.8 SNMA, ARexx: ADDGB command
	4.2.9 SNMA, ARexx: REMGB command
	4.2.10 SNMA, ARexx: SEEGB command
	4.2.11 SNMA, ARexx: SELFCHECK command
	4.3 ARexx examples
	5. Author 


