
@ALT
Syntax:

@ALT(<string>)

Description:

This function is only useful when used within the string argument of a WINDOW SEND command to send
keystrokes to another window.    It generates keystrokes that are the equivalent of holding down the Alt
key while the keys in <string> are being sent.

OK:

Unchanged.

Example:

rem close down an application

window send,Test - WordPad,@alt(F)X

See also:

@CR @CTRL @KEY @SHIFT @TAB

@ASC
Syntax:

@ASC(<string>)

Description:

This function returns the ASCII code of the first (or only) character of <string>..

OK:

Unchanged.

Example:

%A = @asc(A)

See also:

@CHR

@ASK
Syntax:

@ASK(<string>)

Description:

This function displays a dialog box containing a question mark icon, the message <string>, and buttons
for Yes and No.    The value 1 (true) is returned (and OK is set to true) if the user responds Yes; otherwise
the function returns null (false) and OK is set to false.

OK:

Unchanged.

Example:

IF @ASK(Do you want to continue?)

    REM Do something useful

END

See also:

INFO WARN @INPUT @MSGBOX @QUERY

@BOTH
Syntax:

@BOTH(<string1>,<string2>)

Description:

This function returns the value 1 (true) only if both <string1> and <string2> are non-null (true);
otherwise the function returns null (false).

OK:

Unchanged.

Example:

REPEAT

      WAIT 1

UNTIL @BOTH(@file(a.txt),@file(b.txt))

See also:

@EQUAL @NOT @NULL @ZERO

@CHR
Syntax:

@CHR(<value>)

Description:

This function returns the character whose ASCII code is <value>.    It can be used to generate characters
that cannot easily be entered from the keyboard.

OK:

Unchanged.

Example:

%A = Copyright @CHR(169) 1995, 1996 Bloggs Inc.

See also:

@ASC @CR @ESC @TAB

@CLICK
Syntax:

@CLICK(<flags> {, <top>, <left>, <bottom>, <right>})

Description:

This function should be used after a CLICK event has been generated by a BITMAP dialog element, to find
out where on the bitmap the mouse was clicked, and which button was used.    The information is returned
as a string, consisting of one or more items as specified by the flags.    If more than one item is specified
then each item is separated by the field separator character in a form that can be processed by the PARSE
command.

If the B flag is included, the function returns LEFT, RIGHT or CENTER depending on which mouse button
was pressed.

If the N flag is included, the function returns the name of the bitmap control over which the mouse was
clicked.

If the flags X or Y are included, the function returns the X or Y co-ordinates of the pointer when the mouse
was clicked.

If the R flag is included then the function returns the value 1 (true) if the mouse was clicked within the
region bounded by the co-ordinates <top>, <left>, <bottom> and <right>, otherwise it returns null
(false).

Note: this function does not return meaningful information after CLICK events generated by other types of
dialog element.

OK:

Set to false if one of the REGION parameters is invalid.    Otherwise unchanged.

Example:

:evloop

wait event

if @equal(@event(),click)

    parse "%B;%X;%Y",@click(BXY)

    info You clicked the %B Button@CR()Co-ords X: %X Y: %Y

    goto evloop

end

See also:

Dialog Programming Events

@COUNT
Syntax:

@COUNT(<list>)

Description:

This function returns the number of items in the string list <list>.    The parameter <list> must be either a
list number or the name of the dialog list control to which the function will apply.

OK:

Unchanged.

Example:

LIST 1,CREATE,SORTED

LIST 1,LOADFILE,NAMES.TXT

INFO There are @COUNT(1) names in the list

LIST 1,CLOSE

See also:

@INDEX @ITEM @MATCH @NEXT LIST

@CR
Syntax:

@CR()

Description:

This function returns a carriage return character.    You use it to create output on multiple lines, or to send
an Enter keystroke in a WINDOW SEND command.

OK:

Unchanged.

Example:

%A = This is the first line of output

%B = This is the second line

INFO %A@CR()%B

See also:

@CHR @ESC @TAB    WINDOW

@CTRL
Syntax:

@CTRL(<string>)

Description:

This function is only useful when used within the string argument of a WINDOW SEND command to send
keystrokes to another window.    It generates keystrokes that are the equivalent of holding down the Ctrl
key while the keys in <string> are being sent.

OK:

Unchanged.

Example:

rem make text bold

window send,Microsoft Word,@ctrl(B)

See also:

@ALT @CR @KEY @SHIFT @TAB

@CURDIR
Syntax:

@CURDIR(<drive letter>)

Description:

This function returns the current directory of the specified drive.    If no drive letter is specified, the
function returns the current directory of the current default drive.

OK:

Unchanged.

Example:

%C = @CURDIR()

REM %C now holds the current directory

%D = @CURDIR(D)

REM %D now holds the current directory of drive D:

See also:

@WINDIR

@DATETIME
Syntax:

@DATETIME(<format-string> {, <time-value>)

Description:

This function returns the current date and/or time (or if <time-value> is given, the date and/or time
corresponding to <time-value>) formatted in accordance with <format-string>. If no format is specified,
the value returned is a floating point number. If a <time value> is specified that is not a formatted date, it
must also be in this format.

Also, two digit dates are "windowed" so that years 00 - 79 are assumed to be in the next millennium. This
window date can be changed using OPTION CENTURYWINDOW.

Format strings may be comprised of:

d returns day number without leading zero

dd returns day number with leading zero

ddd returns day as an abbreviation e.g. Mon

dddd returns full name of day e.g. Monday

ddddd returns date using Windows' Short Date style (set in Control Panel)

dddddd returns date using Windows' Long Date style (set in Control Panel)

m returns month number without leading zero

mm returns month number with leading zero

mmm retuns month as an abbreviation e.g. Jan

mmmm returns full name of month e.g. January

yy returns year as two digit number

yyyy returns year as four digit number

h returns hour without leading zero

hh returns hour with leading zero

nn returns minute (note: not mm)

ss returns seconds

t returns time using Windows' Short Time style (set in Control Panel)

tt returns time using Windows' Long Time style (set in Control Panel)

am/pm uses 12 hour clock and displays am or pm as appropriate

a/p uses 12 hour clock and displays a or p as approprate

/ returns date separator as set in Control Panel

: returns time separator as set in Control Panel

ampm returns AM symbol or PM symbol as set in Control Panel

Spaces and other separator characters (e.g. the current field separator) can be included in the format
string.

OK:

Unchanged.

Example:

%D = @DATETIME(t    dddd dddddd,%F)

PARSE "%H;%M;%S",@datetime(hh|mm|ss)

See also:

@DDEITEM
Syntax:

@DDEITEM(<item>)

Description:

This function requests the data from a DDE server which is identified by <item>.    For information on what
items are supported see the DDE server documentation.

OK:

True if DDE request is successful, false if it fails.

Example:

DDE LINK,QPW,SYSTEM

%I = @DDEITEM(SYSITEMS)

DDE TERMINATE

INFO DDE Topics supported by QPW:@CR()%I

See also:

DDE

@DIFF
Syntax:

@DIFF(<value1>,<value2>)

Description:

This function returns the difference of its two arguments: <value1> - <value2>.

OK:

Set to false if either of the arguments is null or non-numeric, or if overflow occurs.

Example:

%C = @DIFF(%A,%B)

See also:

@DIV @FADD @FDIV @FMUL @FORMAT

@FSUB @HEX @NUMERIC @PRED @PROD @SUCC

@SUM    @ZERO

@DIRDLG
Syntax:

@DIRDLG(<caption> {, <path> })

Description:

This function displays a standard browser dialog which allows the user to choose a directory, returning the
selected directory name when the dialog is closed.    The optional caption specifies the text to appear
above the browser window.

The directory browser will open with the specified directory selected (<path>). If no argument is specified
the default is "My Computer".

OK:

True if dialog was closed with the OK button, otherwise false.

Example:

%D = @dirdlg()

See also:

@FILEDLG

@DIV
Syntax:

@DIV(<value1>,<value2>)

Description:

This function returns the quotient of its two arguments: <value1> / <value2>.

OK:

Set to false if either of the arguments is null or non-numeric, or if overflow occurs.

Example:

%C = @DIV(%A,%B)

See also:

@DIFF @FADD @FDIV @FMUL @FORMAT

@FSUB @HEX @NUMERIC @PRED @PROD

@SUCC @SUM    @ZERO

@DLGTEXT
Syntax:

@DLGTEXT(<control name>)

Description:

This function is used to read the text that appears in dialog window controls.    The string <control name>
identifies the control that is the target of the function.

In the case of a list box the contents of the selected item is returned, or null if no item is selected.

OK:

Unchanged.

Example:

%A = @dlgtext(Name)

%B = @dlgtext(Addr1)

See also:

DIALOG Dialog Programming

@ENV
Syntax:

@ENV(<string>)

Description:

This function returns the value of the DOS environment variable named <string>.

OK:

Unchanged.

Example:

%P = @ENV(PATH)

See also:

@EQUAL
Syntax:

@EQUAL(<string1>,<string2> {, EXACT})

Description:

This function compares two string values.    If the values are both valid numbers then a numeric
comparison is performed, otherwise a string comparison is performed based on ASCII character values.   
The value 1 (true) is returned if they are identical; otherwise the function returns null (false).

Unless the optional EXACT parameter is specified the string comparison is not case sensitive, so "Visual
DialogScript" and "VISUAL Dialogscript" would be considered equal.

OK:

Unchanged.

Example:

IF @EQUAL(%F,WIN.INI)

      WARN You must not delete this file!

END

See also:

@BOTH @NOT @NULL @ZERO

@ERROR
Syntax:

@ERROR(<flags>)

Description:

This function can be called after an error trap has occurred (see OPTION ERRORTRAP) and returns
information about the error according to the flags used.

The flags are:

E - error code, from which you can determine the type of error;

N - the line number containing the error.

Note that, because the compiler does not include in the EXE lines that do nothing, the line number
reported may not be the same as the line number in the original script.

If more than one flag is specified then each value in the returned string is separated by a field separator
character, in a form that can be split up into separate variables using the PARSE command.

OK:

Unchanged.

Example:

INFO Error @ERROR(E) at line @ERROR(N)

See also:

OPTION PARSE Error trapping

@ESC
Syntax:

@ESC()

Description:

This function generates an Escape character (ASCII 27) which can be used in a WINDOW SEND command.

OK:

Unchanged.

Example:

WINDOW SEND,Error,@ESC()

See also:

@CHR @CR @TAB    WINDOW

@EVENT
Syntax:

@EVENT({D})

Description:

This function returns the name of the last event to have occurred.    It returns a null string if no event has
occurred.    After the function has been called the event is cleared, so it should be stored in a variable if
you need to test it more than once.

This function has an optional parameter D, for use in programs that have more than one dialog. If present,
the event name will be followed by a field separator and a number indicating the dialog that issued the
event. The main window has the value 0. A child window will have the value 1. There may be more than
one child dialog in which case the number will reflect the order they were created but the number will
change if earlier dialogs are closed, because the number is actually the position in a list.

OK:

Unchanged.

Example:

:LOOP

    WAIT EVENT

    GOTO @EVENT()

:OKBUTTON

    INFO You pressed OK

    GOTO LOOP

:CANCELBUTTON

    INFO You pressed Cancel

See also:

Dialog Programming Events

@EXT
Syntax:

@EXT(<string>)

Description:

This function returns the extension portion of a file path specified in <string>.

OK:

Unchanged.

Example:

%X = @EXT(C:\WINDOWS\WIN.INI)

REM %X now contains INI

See also:

@NAME @PATH @SHORTNAME

@FADD
Syntax:

@FADD(<value1>,<value2>)

Description:

This function returns the sum of its two arguments: <value1> + <value2>, which may be floating-point
numbers.

OK:

Not changed.    Error 25 will occur if an argument is non-numeric.    Error 26 will occur if underflow or
overflow occurs.

Example:

%F = @FADD(%A,3.14159)

See also:

@DIFF @DIV @NUMERIC @PRED

@PROD @SUCC @SUM    @ZERO

@FATN
Syntax:

@FATN(<value1>)

Description:

This function returns the arctangent of its argument <value1>.

OK:

Not changed.    Error 25 will occur if an argument is non-numeric.    Error 26 will occur if underflow or
overflow occurs.

Example:

%T = @FDIV(@FSIN(%X),@FCOS(%X))

See also:

@DIFF @DIV @NUMERIC @PRED

@PROD @SUCC @SUM    @ZERO

@FCOS
Syntax:

@FCOS(<value1>)

Description:

This function returns the cosine of its argument <value1>.

OK:

Not changed.    Error 25 will occur if an argument is non-numeric.    Error 26 will occur if underflow or
overflow occurs.

Example:

%F = @FCOS(2)

See also:

@DIFF @DIV @NUMERIC @PRED

@PROD @SUCC @SUM    @ZERO

@FDIV
Syntax:

@FDIV(<value1>,<value2>)

Description:

This function returns the result of: <value1> / <value2>, where the two values may be floating-point
numbers.

OK:

Not changed.    Error 25 will occur if an argument is non-numeric.    Error 26 will occur if underflow or
division by zero occurs.

Example:

%F = @FDIV(%A,%B)

See also:

@DIFF @DIV @NUMERIC @PRED

@PROD @SUCC @SUM    @ZERO

@FILE
Syntax:

@FILE(<file description>, <attributes>)

Description:

This function returns the name of the first file that matches <file description> if it exists.    It returns a null
string if the file does not exist.

The attribute string can be used to filter the filenames that will be checked.    The attributes can be:

A - archive

D - directory

H - hidden

R - read only

S - system

The 'pseudo-attributes' F, L, T or Z may also be present.    These pseudo-attributes are used to specify
what information is returned by the function.    If none of these pseudo-attributes is present, F is assumed.

The information returned if these attributes are specified is as follows:

F - file path

L - path of the file a shortcut points to (this is only valid if the file is a shortcut)

Z - file size in bytes

T - file date/time as a packed binary value

If more than one of these pseudo-attributes is specified the information is returned in the order shown in
the above list with each item delimited by the current field separator character in a format that can be
split into separate variables using the PARSE command.

The fact that a file path is returned when the L pseudo-attribute is used is no guarantee that the file
pointed to by the shortcut actually exists.

The packed binary value returned by the T pseudo-attribute can be converted to a normal date/time
format using the @DATETIME function.

OK:

Set to false if the function fails.

Example:

parse "%F;%S;%D",@file(c:\autoexec.bat,FTZ)

if @file(%F,D)

    INFO Directory %F does not exist

end

See also:

@EXT @NAME @PATH @SHORTNAME @VERINFO @VOLINFO

@FILEDLG
Syntax:

@FILEDLG(<file description> {title>, <initial filename>,<parameter>})

Description:

This function displays a Windows common file dialog, and returns the name of the file that was selected
(or a null string if no file was selected.)    The string <file description> contains a filter for the file type to
be displayed, for example: *.txt.    The string <title> contains an optional title which will be used for the
dialog. The string <initial filename> specifies an optional default filename.

Optional fourth parameters are:

MULTI allows multiple selections to be made. In this event, the files are returned as a string of names
separated by carriage return characters. The resulting string can be assigned to a list using LIST ASSIGN,
so each filename will then be a separate list item.

SAVE creates a dialog with a Save button instead of an Open button. These options are mutually
exclusive: you cannot select multiple files to save.

NOTE: if the third parameter (default filename) is specified it must be a valid filename. If it is not the file
dialog box is not displayed and the value of OK is set to false.

Multiple choice filters and descriptions of the file types can be specified if <file description> follows the
format:

"<file description 1>|<*.ext1> {|<file description2>|<*.ext2>} ..."

This format must be followed exactly or the description will be ignored.    Quotes must surround the entire
file description string.

OK:

True if dialog was closed with the OK button, otherwise false.

Example:

%F = @filedlg(*.txt)

%F = @filedlg("Text file (*.txt)|*.txt|Document file (*.doc)|*.doc",Open file)

See also:

@DIRDLG

@FMUL
Syntax:

@FMUL(<value1>,<value2>)

Description:

This function returns the product of its two arguments: <value1> x <value2>, which may be floating-
point numbers.

OK:

Not changed.    Error 25 will occur if an argument is non-numeric.    Error 26 will occur if underflow or
overflow occurs.

Example:

%F = @FMUL(%A,%B)

See also:

@DIFF @DIV @NUMERIC @PRED

@PROD @SUCC @SUM    @ZERO

@FORMAT
Syntax:

@FORMAT(<value>,<format>)

Description:

This function returns <value> formatted in accordance with <format>, which must be in the form n.d
where n is the total number of digits and d is the number of decimal places.    If only n is specified then
two decimal places are assumed by default.

OK:

Set to false if either of the arguments is null or non-numeric.

Example:

DIALOG SET,AM1,£@FORMAT(%T,5.2)

See also:

@DIFF @DIV @HEX @NUMERIC

@PRED @PROD @SUCC @SUM

@ZERO Floating point functions

@FSIN
Syntax:

@FSIN(<value1>)

Description:

This function returns the sine of its argument <value1>.

OK:

Not changed.    Error 25 will occur if an argument is non-numeric.    Error 26 will occur if underflow or
overflow occurs.

Example:

%F = @FSIN(2)

See also:

@DIFF @DIV @NUMERIC @PRED

@PROD @SUCC @SUM    @ZERO

@FSQT
Syntax:

@FSQT(<value1>)

Description:

This function returns the square root of its argument <value1>.

OK:

Not changed.    Error 25 will occur if an argument is non-numeric.    Error 26 will occur if underflow or
overflow occurs.

Example:

%F = @FSQT(2)

See also:

@DIFF @DIV @NUMERIC @PRED

@PROD @SUCC @SUM    @ZERO

@FSUB
Syntax:

@FSUB(<value1>,<value2>)

Description:

This function returns the difference of its two arguments: <value1> - <value2>, which may be floating-
point numbers.

OK:

Not changed.    Error 25 will occur if an argument is non-numeric.    Error 26 will occur if underflow or
overflow occurs.

Example:

%F = @FSUB(%A,%B)

See also:

@DIFF @DIV @NUMERIC @PRED

@PROD @SUCC @SUM    @ZERO

@GREATER
Syntax:

@GREATER(<value1>, <value2>)

Description:

This function compares two string values.    If the values are both valid numbers then a numeric
comparison is performed, otherwise a string comparison is performed based on ASCII character values.   
The value 1 (true) is returned if <value1> is greater than <value2>; otherwise the function returns null
(false).

OK:

Unchanged.

Example:

IF @GREATER(%1,%2)

      INFO Larger value is %1

END

See also:

@EQUAL @NOT @ZERO @NULL

@HEX
Syntax:

@HEX(<value>{,<number>})

Description:

This function returns <value> formatted as a hexadecimal number.

The optional second argument specifies the number of digits (the result will be padded out with leading
zeros.)

OK:

Set to false if    the argument is null or non-numeric.

Example:

DIALOG SET,Hexval,@HEX(%N)

See also:

@DIFF @DIV @FADD @FDIV @FMUL

@FORMAT @FSUB @PRED @PROD @SUCC

@SUM    @ZERO

@INDEX
Syntax:

@INDEX(<list>)

Description:

This function returns the current index (pointer) value for the string list <list>.    The parameter <list>
must be either a list number or the name of the dialog list control    to which the function will apply.

If <list> is a LIST or COMBO element and no list item is selected the value returned by this function is -1.

OK:

Unchanged.

Example:

LIST 1,CREATE,SORTED

LIST 1,LOADFILE,NAMES.TXT

IF @MATCH(1,John)

    INFO John is at position @INDEX(1) in the list

END

LIST 1,CLOSE

See also:

@COUNT @ITEM @MATCH @NEXT LIST

@INIREAD
Syntax:

@INIREAD(<section name>,<key name> {, <default>})

Description:

This function returns a string containing the value of <key name> in the <section name> section of the
INI file that was specified in the preceding INIFILE command (or the default INI file if no INIFILE OPEN
command has been executed.)    If <section name> is null the section [Default] is used.    The returned
string is empty if the section or key do not exist unless the optional <default> value has been supplied.

The maximum length of text that can be read in using this function is set by OPTION REGBUF.

OK:

Unchanged.

Example:

%A = @INIREAD(Extensions,.txt)

See also:

INIFILE

@INPUT
Syntax:

@INPUT(<prompt text>,<default result> {, PASSWORD})

Description:

This function prompts the user to enter some text.    The optional default result is returned if the user
presses Cancel.

If the optional PASSWORD parameter is supplied then the text in the input box is shown as asterisks.

OK:

Set to false if the user presses Cancel.

Example:

%P = @INPUT(Enter password:,,PASSWORD))

See also:

@ASK @MSGBOX @QUERY

@ITEM
Syntax:

@ITEM(<list>{,<number>})

Description:

This function returns the contents of the string at the current index position in the string list <list>.    The
index can be set using the LIST SEEK command.

The optional second parameter (@item(i,x)) allows you to retrieve an item from a list randomly without
having to seek to that item first. The index value afterwards has changed just as if a LIST SEEK command
had been carried out.

The parameter <list> must be either a list number or the name of the dialog list control to which the
command will apply.    An error will occur if the list does not already exist.

OK:

Set to false if <item number> is out of range..

Example:

LIST 1,CREATE

LIST 1,LOADFILE,NAMES.TXT

LIST 1,SEEK,9

%I = @ITEM(1)

INFO The tenth name is %I

LIST 1,CLOSE

See also:

@COUNT @INDEX @MATCH @NEXT LIST

@KEY
Syntax:

@KEY(<key name>)

Description:

This function is only useful when used within the string argument of a WINDOW SEND command to send
keystrokes to another window.    It is used to generate keystrokes that are equivalent to the key named in
<key name>.

Valid key namesaare: HOME, END, UP, DOWN, LEFT, RIGHT, PGUP, PGDN, INS, DEL, plus F1 to F12..

OK:

Unchanged.

Example:

rem move cursor

window send,Test - WordPad,@key(HOME)@key(PGDN)@key(PGDN)

See also:

@ALT @CR @CTRL @SHIFT @TAB

@LEN
Syntax:

@LEN(<string>)

Description:

This function returns the length of <string> in characters.    The value 0 is returned if the string is empty.

OK:

Unchanged.

Example:

%L = @LEN(%A)

See also:

@POS    @SUBSTR    @UPPER

@LOWER
Syntax:

@LOWER(<string>)

Description:

This function returns the string <string> converted entirely to lower case characters.

OK:

Unchanged.

Example:

%S = @LOWER(The Quick Brown Fox)

REM %S now contains 'the quick brown fox'

See also:

@UPPER

@MATCH
Syntax:

@MATCH(<list>, <string>)

Description:

This function returns 1 (true) if a string in the string list <list>, starting from the current pointer position,
contains text matching <string>.    The match is not case-sensitive.    The pointer is advanced to the
matching item number, so you can obtain the contents of the string using @ITEM or @NEXT, rewrite it
using LIST PUT and obtain the index value using @INDEX.    If no match is found, null (false) is returned
and the index value is unchanged.

The parameter <list> must be either a list number or the name of the dialog list control to which the
command will apply.

OK:

Set to false if no match is found.

Example:

LIST 1,CREATE

LIST 1,LOADFILE,NAMES.TXT

%M = @MATCH(1,Jim)

INFO %M

LIST 1,CLOSE

See also:

@COUNT @INDEX @ITEM    @NEXT LIST

@MCI
Syntax:

@MCI(< MCI command string >)

Description:

This function is used to control multimedia devices using the Multimedia Control Interface (MCI).    An MCI
command is supplied as the parameter to the function.    The function returns the result of the command.
It returns the text of the MCI error message if the command fails..

Note: MCI is a feature of Windows.    For a full description of how to use it you will need documentation
such as the Microsoft Multimedia Development Kit Programmer's Workbook or the Microsoft Windows
Software Development Kit Multimedia Programmer's Reference.

OK:

Set to false if the command fails.

Example:

%R = @MCI(open C:\WINDOWS\MEDIA\THEMIC~1.WAV alias sound)

if @ok()

    %R = @MCI(play sound)

else

    warn MCI error: %R

end

See also:

PLAY Using MCI

@MSGBOX
Syntax:

@MSGBOX(<message>, <title>, <icon/button flags>)

Description:

This function displays a standard Windows message dialog box with the message, title, buttons and icons
specified, and returns a value which indicates which button was pressed.

The <icon/button flags> argument is a value which is best expressed as a hexadecimal number. It is built
up by adding one number from each of the following three sections:

Default button:

First button $000

Second button $100

Third button $200

Icon:

None $000

No entry $010

Question mark $020

Exclamation mark $030

Information $040

Buttons:

OK $000

OK, Cancel $001

Abort, Retry, Ignore $002

Yes, No, Cancel $003

Yes, No $004

Retry, Cancel $005

The return value is one of the following:

1 OK

2 Cancel

3 Abort

4 Retry

5 Ignore

6 Yes

7 No

The INFO and WARN commands, and the @ASK and @QUERY functions, are a simpler way to create
certain message dialogs.

OK:

Unchanged.

Example:

IF @EQUAL(@MSGBOX(Cannot read from drive A:,Backup,$35),2)

    STOP

END

See also:

INFO WARN @INPUT @QUERY

@NAME
Syntax:

@NAME(<string>)

Description:

This function returns the filename portion (not including the extension) of a file path specified in <string>.

OK:

Unchanged.

Example:

%N = @NAME(C:\WINDOWS\WIN.INI)

REM %N now contains WIN

See also:

@EXT @PATH @SHORTNAME

@NEXT
Syntax:

@NEXT(<list>)

Description:

This function returns the contents of the next item in the string list <list>.    that the pointer currently
points to, and then advances the pointer by 1.    The pointer may be set using the LIST SEEK command.
For LIST and COMBO elements, if no item is selected the index value is -1 and the value returned by
@next() will be null.

The parameter <list> must be either a list number or the name of the dialog list control to which the
command will apply.

You use the @NEXT function if you want to read sequentially through the items in a list.

OK:

Set to false when the end of the list is reached.

Example:

LIST 1,CREATE

LIST 1,LOADFILE,NAMES.TXT

REPEAT

    INFO @NEXT(1)

UNTIL @NOT(@OK())

LIST 1,CLOSE

See also:

@COUNT @INDEX @ITEM @MATCH LIST

@NOT
Syntax:

@NOT(<string>)

Description:

This function returns the value 1 (true) if the string is empty (null); otherwise the function returns null
(false).

This function is equivalent to @NULL.

OK:

Unchanged.

Example:

IF @NOT(@ZERO(%2))

      GOTO loop

END

See also:

@BOTH @EQUAL @NULL    @ZERO

@NULL
Syntax:

@NULL(<string>)

Description:

This function tests whether the enclosed string is empty.    The value 1 (true) is returned if it is empty
(null), otherwise the function returns null (false).

This function is equivalent to @NOT.

OK:

Unchanged.

Example:

IF @NULL(%2)

      WARN No command line parameter supplied!

END

See also:

@BOTH @EQUAL @NOT @ZERO

@NUMERIC
Syntax:

@NUMERIC(<string>)

Description:

This function returns a value of true (1) if the string is a valid number, otherwise it returns a value of false
(null)..

OK:

Unchanged.

Example:

IF @NUMERIC(%A)

    %B = @SUM(%A,2)

END

See also:

@DIFF @DIV @FADD @FDIV @FMUL

@FORMAT @FSUB @HEX @PRED @PROD

@SUCC @SUM    @ZERO

@OK
Syntax:

@OK()

Description:

This function is used to test the status of various I/O commands which set the DialogScript OK flag.    It
returns 1 (true) if OK is true, otherwise the function returns null (false).

OK:

Unchanged.

Example:

IF @OK()

    rem Do something useful

ELSE

    WARN Operation failed!

END

See also:

@PATH
Syntax:

@PATH(<string>)

Description:

This function returns the path portion (up to and including the final colon or backslash) of the file path
specified in <string>.

OK:

Unchanged.

Example:

%P = @PATH(C:\WINDOWS\WIN.INI)

REM %P now contains C:\WINDOWS\

See also:

@EXT @NAME @SHORTNAME

@POS
Syntax:

@POS(<string1>,<string2>)

Description:

This function returns the starting character position of the first occurrence of <string1> in <string2>.   
The characters in the string are counted from 1.    The value 0 is returned if either string is empty or
<string1> does not occur in <string2>.    Note that the comparison is not case sensitive.

OK:

Unchanged.

Example:

%P = @pos(a,%A)

info Position of a in %A is: %P

See also:

@LEN    @SUBSTR    @UPPER

@PRED
Syntax:

@PRED(<value>)

Description:

This function returns the predecessor of <value>, i.e. <value> - 1.    It is more efficient than using
@diff(<value>,1)..

OK:

Set to false if <value> is null or non-numeric, or if overflow occurs.

Example:

%P = @PRED(%P)

See also:

@DIFF @DIV @FADD @FDIV @FMUL

@FORMAT @FSUB @HEX @NUMERIC @PROD

@SUCC @SUM    @ZERO

@PROD
Syntax:

@PROD(<value1>,<value2>)

Description:

This function returns the product of its two arguments: <value1> x <value2>.

OK:

Set to false if either of the arguments is null or non-numeric, or if overflow occurs.

Example:

%C = @PROD(%A,%B)

See also:

@DIFF @DIV @FADD @FDIV @FMUL

@FORMAT @FSUB @HEX @NUMERIC @PRED

@SUCC @SUM    @ZERO

@QUERY
Syntax:

@QUERY(<string>)

Description:

This function displays a dialog box containing a question mark icon, the message <string>, and buttons
for OK and Cancel.    The value 1 (true) is returned (and OK is set to true) if the user responds OK;
otherwise the function returns null (false) and OK is set to false.

OK:

Unchanged.

Example:

IF @QUERY(Insert disk in drive A: and press OK)

    REM Do something with disk in drive A:

END

See also:

INFO WARN @ASK @MSGBOX @INPUT

@REGREAD
Syntax:

@REGREAD(<root key>, <subkey>, <name>, <default>)

Description:

This function returns the value of the specified key from the Windows registry.

Binary key values are returned as a string of numbers separated by fieldsep.

<root key> specifies the root key to search from.    The permissible values are:

ROOT specifies HKEY_CLASSES_ROOT

CURUSER specifies HKEY_CURRENT_USER

LOCAL specifies HKEY_LOCAL_MACHINE

USERS specifies HKEY_USERS

STATS specifies HKEY_DYN_DATA

DEFAULT specifies the key Software\SADE\VDS\3.0\UserScripts in HKEY_CURRENT_USER.

<subkey> specifies the key value to retrieve.    Use backslashes to specify keys several levels deep.

<name> specifies the named value to retrieve.    If omitted, the value of the default value of the key is
retrieved.

<default> specifies the value to be returned if the specified key does not exist.

It is recommended that the DEFAULT root key is used for any registry keys created for the use of
DialogScript programs.

OK:

Set to false if the key does not exist, or if the contents exceed the buffer size. This can be changed using
the OPTION REGBUF command.

Example:

%T = @regread(CURUSER,Software\SADE\VDS\3.0\SourceWin,Top)

See also:

REGISTRY OPTION DEFAULT OPTION REGBUF Tip

@RETCODE
Syntax:

@RETCODE()

Description:

This function returns the exit code (e.g. DOS errorlevel) of the last program executed using a RUN or
SHELL command with a WAIT parameter.

OK:

Unchanged.

Example:

RUN PKZIP.EXE

info Return code was @retcode()

See also:

RUN SHELL

@SENDMSG
Syntax:

@SENDMSG(<window>, <message number>, <wparam>, <lparam>)

Description:

This function is for use only by very advanced users.    You will need knowledge of Windows messaging and
access to Windows API documentation to make full use of this function.

This function lets you use the Windows API SendMessage function to send a system message to another
window. Messages are used to control windows (which include individual controls on a window) and to
send information to them or retrieve information from them.

All arguments to the function must be supplied.    The <window> argument is the identifier of the window
that is to be the target of the message, and will normally be obtained using @WINEXISTS or
@WINATPOINT.    The <message number> argument is the number which identifies the Windows message.

The arguments    <wparam> and <lparam> are parameters to the message. Their exact contents are
dependent on the message type, and will be determined from the Windows API documentation.    If an
argument is a string starting with the characters $, -    or 0 to 9, it is interpreted as a word or integer value
(in hexadecimal if starting with $.).    If the argument is the special function @STRBUF, it is replaced by the
address of a buffer in which Windows will return a string value.    If it is anything else, it is considered to
be a string, and a pointer to the string is passed to the SendMessage API function.    (The last two options
are only valid in the <lparam> position.)

The function will return the numeric value returned by the SendMessage function, unless @STRBUF was
used for the <lparam> value, in which case the return value is the string that was placed in the buffer.

Note: you can find the window identifier of a dialog element on the VDS program's dialog using
@WINEXISTS with the argument of the dialog element name prefixed by a tilde '~'.    This may be useful
to perform operations that cannot be achieved in VDS any other way.    Use of @SENDMSG can cause
unpredictable effects, and may crash VDS or, indeed, Windows, so this command should only be used by
those who know what they are doing.

OK:

Unchanged.

Example:

rem - make listbox LST display a horizontal scroll bar

%P = @sendmsg(@winexists(~LB),1045,1000,0)

rem - return index of item in list box that starts with "Line 5"

%P = @sendmsg(@win(~LB),$018F,0,Line 5)

rem - use $01A2 for match on whole item

rem - set EDIT dialog element to use a password character of X

%P = @sendmsg(@win(~EDIT1),$00CC,@asc(X),0)

See also:

WINDOW @WINACTIVE @WINATPOINT @WINEXISTS @WINPOS

@SHIFT
Syntax:

@SHIFT(<string>)

Description:

This function is only useful when used within the string argument of a WINDOW SEND command to send
keystrokes to another window.    It generates keystrokes that are the equivalent of holding down the Shift
key while the keys in <string> are being sent.

OK:

Unchanged.

Example:

rem highlight some text

window send,Test - WordPad,@shift(@key(HOME)@key(DOWN)@key(DOWN))

See also:

@ALT @CR @CTRL @KEY @TAB

@SHORTNAME
Syntax:

@SHORTNAME(<file description>)

Description:

This function returns a DOS-compatible short filename version of the file path <file description> if it
exists.

OK:

Set to false if the function fails.

Example:

run LIST @shortname(%1),wait

See also:

@FILE OPTION

@STRDEL
Syntax:

@STRDEL(<string>,<pos1>,<pos2>)

Description:

This function returns a string consisting of <string> with the characters in positions <pos1> to <pos2>
deleted.    The characters in the string are counted from 1.

If <pos1> is omitted or zero then the function returns <string> unmodified.    If< pos2> is zero or
omitted, just the single character at <pos1> is deleted.    If <pos2> is negative, the ending position is
counted from the end of the string.

OK:

Unchanged.

Example:

%S = @strdel(%A,4,8)

info Result of deleting chars 4 to 8 from %A is: %S

See also:

@LEN      @POS @STRINS @SUBSTR @UPPER

@STRINS
Syntax:

@STRINS(<string>,<pos1>,<string2>)

Description:

This function returns a string consisting of <string> with <string2> inserted at position <pos1>.    The
characters in the string are counted from 1.

If <pos1> is omitted or zero then the function returns <string> unmodified.    If <pos1> is greater than
the length of <string> then <string2> is inserted at the end of the string.

OK:

Unchanged.

Example:

%S = @strins(%A,4,%B)

info Result of inserting %B into %A is: %S

See also:

@LEN      @POS @STRDEL @SUBSTR @UPPER

@SUBSTR
Syntax:

@SUBSTR(<string>,<pos1>,<pos2>)

Description:

This function returns the substring of <string> starting at character position <pos1> and ending at
character position <pos2>.    The characters in the string are counted from 1.

If <pos1> is omitted or zero then the function returns <string> unmodified.    If< pos2> is zero or
omitted, just the single character at <pos1> is returned.    If <pos2> is negative, the ending position is
counted from the end of the string.

OK:

Unchanged.

Example:

%S = @substr(%A,4,8)

info Substring of %A from 4 to 8 is: %S

See also:

@LEN      @POS @STRDEL @STRINS @UPPER

@SUCC
Syntax:

@SUCC(<value>)

Description:

This function returns the successor of <value>, i.e. <value> + 1.    It is more efficient than using
@sum(<value>,1)..

OK:

Set to false if <value> is null or non-numeric, or if overflow occurs.

Example:

%S = @SUCC(%S)

See also:

@DIFF @DIV @FADD @FDIV @FMUL

@FORMAT @FSUB @HEX @NUMERIC @PRED

@PROD @SUM    @ZERO

@SUM
Syntax:

@SUM(<value1>,<value2> {, ...})

Description:

This function returns the sum of its two or more arguments, which are treated as integers.

OK:

Set to false if either of the arguments is null or non-numeric, or if overflow occurs.

Example:

%S = @SUM(%S,10)

See also:

@DIFF @DIV @FADD @FDIV @FMUL

@FORMAT @FSUB @HEX @NUMERIC @PRED

@PROD @SUCC @ZERO

@SYSINFO
Syntax:

@SYSINFO(<string>)

Description:

This function returns various system information dependent on the value of <string>.

The possible values are:

FREEMEM Returns the amount of memory currently free, in Kb

PIXPERIN Returns the number of pixels per inch of screen resolution

SCREENHEIGHT Returns the height of the screen in pixels

SCREENWIDTH Returns the width of the screen in pixels

WINVER Returns the Windows version numbe

WIN32 Returns the value 1 (true) if running in a 32 bit version of Windows.

DSVER Returns the DialogScript version number

OK:

Unchanged.

Example:

title System Information

%W = Windows version@tab()= @SYSINFO(WINVER)

%M = Free memory@tab()= @SYSINFO(FREEMEM)Kb

%S = Screen width@tab()= @SYSINFO(SCREENWIDTH)

%T = Screen height@tab()= @SYSINFO(SCREENHEIGHT)

%P = Pixels per inch@tab()= @SYSINFO(PIXPERIN)

info %W@CR()%M@CR()%S@CR()%T@CR()%P

See also:

Screen metrics

@TAB
Syntax:

@TAB()

Description:

This function returns a tab character.    You use it to insert a tab in text which is being output, or to send a
tab keystroke in a WINDOW SEND command.

OK:

Unchanged.

Example:

WINDOW SEND,Report - WordPad,Column 1@TAB()Column 2

See also:

@CHR @ESC @CR    WINDOW

@TRIM
Syntax:

@TRIM(<string>)

Description:

This function returns a string which is the same as <string> but with leading and trailing spaces and other
control characters removed.

OK:

Unchanged.

Example:

%T = @trim(@next(1))

See also:

@UPPER
Syntax:

@UPPER(<string>)

Description:

This function returns the string <string> converted entirely to upper case characters.

OK:

Unchanged.

Example:

%S = @UPPER(The quick brown fox)

REM %S now contains THE QUICK BROWN FOX

See also:

@LOWER

@VERINFO
Syntax:

@VERINFO(<filename>, <information type>)

Description:

This function returns the embedded version informaton (if present) about the specified file, which must be
an executable file type.

The information type contains flags, which can be:

C - company name

D - file description

N - original file name

P - product name

T - type of executable file

V - version

X - product version

Y - copyright message

If no <information type> is specified, the default V is used.

If more than one flag is specified, each item of information is separated by the field separator character.
The data can be stored in separate variables using the PARSE command.

The type of executable can be either 'NE', a Windows 16-bit New Executable file, or 'PE', a Windows 32-bit
Portable Executable file.    Other file types return the value '??'.    Version information is not present in all
Windows executable files.

OK:

Not changed.

Example:

%V = @verinfo(MYPROG.EXE,V)

See also:

@FILE

@VOLINFO
Syntax:

@VOLINFO(<drive>, <information type>)

Description:

This function returns informaton about the specified volume.

The information type contains flags, which can be:

F - return amount of space free (Kb)

N - return volume name

S - return total space on drive (Kb)

T - return type of volume:removable, Fixed, Network, CD-ROM or RAM.

Y - returns a text string describing the file system type (for example, FAT32, NTFS.)

Z - returns the hard disk serial number.

If no <information type> is specified, the default N is used.

The F and S flags which return the free space and total size of a drive return an incorrect result for
volumes larger than 2GB in earlier versions of Windows 95. This is because of a bug in Windows 95. The
function has been modified to use a new function present only in Windows 95 OSR2 or later and Windows
NT 4.0 so that it reports these values correctly when run on those systems.

If more than one flag is specified, each item of information is separated by the field separator character.
The data can be stored in separate variables using the PARSE command.

OK:

Set to false if function fails

Example:

rem find free space on D:

%E = @volinfo(D,F)

See also:

@FILE

@WINACTIVE
Syntax:

@WINACTIVE(<flags>)

Description:

This function is used to obtain information about the currently active window.    This information is needed
when using certain window control commands, such as WINDOW SEND.

The flags are:

C - returns the class name;

I - returns the window identifier;

N - causes the name (title bar text) to be returned.    This is the default.

OK:

Unchanged.

Example:

%W = @winactive()

See also:

WINDOW @WINATPOINT @WINEXISTS @WINPOS

@WINATPOINT
Syntax:

@WINATPOINT(<x pos>, <y pos>)

Description:

This function can be used to obtain the window identifier of the window or control (such as a button or edit
box) at absolute position <x pos>, <y pos> on the screen.    This value can be used in commands like
WINDOW SEND.or WINDOW SETTEXT.

OK:

Unchanged.

Example:

WINDOW SETTEXT,@winatpoint(225,304),This is the new text

See also:

WINDOW @WINPOS

@WINCLASS
Syntax:

@WINCLASS(<window>)

Description:

This function returns the window class name of the window specified in <window>.    The class name is
one of the ways that a Visual DialogScript program can identify a window.

OK:

Unchanged.

Example:

%C = @winclass(@winatpoint(256,72))

See also:

WINDOW @WINATPOINT @WINPOS @WINTEXT

@WINDIR
Syntax:

@WINDIR(<parameter>)

Description:

This function returns the full path of the Windows directory.    The optional <parameter> may be either W
or S.    If S, the full path of the Windows system directory is returned instead.

OK:

Unchanged.

Example:

%W = @WINDIR()

REM On most systems %W will now contain C:\WINDOWS

See also:

@CURDIR

@WINEXISTS
Syntax:

@WINEXISTS(<window> {,    <child window> })

Description:

This function is used to determine whether the window <window> is present or not.    It returns the
window identifier if a main window or dialog box with a title bar of <string> exists, and null (false) if not.
The <window> is specified using its full title bar text or its class name.

To determine whether an MDI child window exists, or obtain its window identifier, the optional <child
window> argument must be supplied, giving the full title bar text of the required window which is a child
of <window>.

OK:

Unchanged.

Example:

if @not(@WinExists(Untitled - Notepad))

    run NOTEPAD.EXE

end

See also:

WINDOW @WINACTIVE @WINATPOINT @WINPOS

@WINPOS
Syntax:

@WINPOS(<window>, <flags>)

Description:

This function returns information about the position of the window <window> according to the value of
<flags>.

Valid flags are:

T return the top co-ordinate

L return the left co-ordinate

W return the width

H return the height

S return the window status (1 = normal; 2 = iconized; 3 = maximized)

Where more than one flag is specified the information returned is separated using the current field
separator in a format that can be processed by the PARSE command.

OK:

Set to false if the specified window cannot be found.

Example:

PARSE "%T;%L",@winpos(Explorer,TL)

See also:

WINDOW @WINACTIVE @WINATPOINT @WINCLASS

@WINEXISTS @WINTEXT

@WINTEXT
Syntax:

@WINTEXT(<window>)

Description:

This function returns the text contents of the window specified in <window>.    When the @WINATPOINT
function is used to identify the window, this function can retrieve the text from controls such as buttons
and edit fields.

OK:

Unchanged.

Example:

%T = @wintext(@winatpoint(256,72))

See also:

WINDOW @WINATPOINT @WINCLASS @WINPOS

@ZERO
Syntax:

@ZERO(<string>)

Description:

This function returns the value 1 (true) if the value of <string> is zero; otherwise the function returns null
(false).

OK:

Unchanged.

Example:

IF @ZERO(%V)

    INFO Result is zero.

END

See also:

@DIFF @DIV @HEX @NUMERIC

@PRED @PROD @SUCC @SUM

Applications for Visual DialogScript
Examples of tasks for which you could use Visual DialogScript are:

create an 'intelligent' start-up script to load applications or perform housekeeping tasks at start-up,
dependent on time, date etc.;

create a start-up menu with buttons to select which applications are loaded;
create an 'Agent' script that runs in the background and performs actions at certain times;
control other Windows applications by sending keystrokes or mouse clicks, using DDE and setting

the size and position of their windows;
create software installation programs;

create simple utilities such as databases or system resource monitors;
create front-ends for DOS programs, which can run invisibly in the background so that it looks as

if a Windows application is running;
produce interactive multimedia applications that display bitmaps and play sounds.

Assignments
Like commands, assignments need not start in the first character position, so they may be indented using spaces
for readability.

An assignment consists of a variable name, an equals symbol and a string, (which may contain variable or function
references) each separated by spaces.

Here are some examples of assignments:

%S = @VOLINFO(D:,S)

%T = Backing up drive %D

@Automating Applications
Visual DialogScript has several features which enable you to control other Windows applications.    One method is to
use Dynamic Data Exchange (DDE); however, this requires that the application to be automated is a DDE server,
which few are.    The most commonly used method is therefore to simulate key presses and mouse clicks.    There
are no hard and fast rules for achieving this and with some applications it can be quite difficult to do.    This section
explains the basic principles.

The key to most application automation operations is identifying the window that is the target of your key presses
and mouse clicks.    In Visual DialogScript you can use the text in the title bar of the main window, or you can use
the window class name.    However, neither of these will identify a specific instance of a window if two or more
copies are running, since in many cases the title and class name will be the same for each instance.

If you launch the program you wish to automate from within your script then you can get the window identifier that
is allocated by Windows to the instance of the application's window that has just been created.    You can usually do
this using the @WINACTIVE function, along the lines of:

%H = @winactive(I)

run myapp.exe

repeat

    wait 1

    %I = @winactive(I)

until @not(@equal(%H,%I))

Once you have got a way to identify your target window, automating it is simply a matter of using WINDOW SEND
and WINDOW CLICK commands in your script.

You use WINDOW SEND to send keystrokes to the application.    The command activates the named window, and
then sends the keystrokes, which will be directed to the control that has input focus at that time.    The main
difficulty is in timing the arrival of the keystrokes, since your program can send them much faster than a user
seated at the keyboard would.    You can use OPTION SKDELAY to add a fixed delay between each keystroke, which
can make this more reliable.

Mouse clicks can be sent using WINDOW CLICK (or WINDOW RCLICK to send a right-button click.)    As with
WINDOW SEND, the command activates the named window to make sure it is fully visible before the mouse click is
sent.    To double-click you just use two WINDOW CLICK commands.    To make things easy the X and Y co-ordinates
of the pointer are expressed relative to the top left corner of the named window.

The biggest problem with automating applications is the inability of your program to get the visual feedback that a
real user would get that an operation has finished and it is alright to continue.    The usual solution is simply to use
WAIT commands to allow a long enough period for any lengthy operation to finish.

Any operation that causes another window or dialog box to appear should ensure that it has appeared by testing
for it, for example using the @WINEXISTS function.    This function returns the identifier of the window, which will
normally be needed if you want to direct any keystrokes to it.

Sometimes you can get information from a field displayed on the window, for example, the status line.    You could
do this using the instruction:

%T = @wintext(@winatpoint(%X,%Y))

The @WINTEXT function returns the contents of the text property of the window whose identifier is passed as its
argument.    This can be a button caption, the contents of an edit field or label text.    (To understand this it is
necessary to realise that in Windows terms almost all the items you see on a screen are in fact windows.)    The
@WINATPOINT function returns the handle of the window (or control) at the point specified by variables %X and
%Y.    Note that the co-ordinates X and Y in this case are relative to the top left corner of the screen: since the
position of a window control will usually be defined relative to the top left co-ordinate of its main window you will
need to use the @WINPOS function to find this and then do some arithmetic.

You cannot extract any item of text that you see using @WINTEXT.    It is entirely application dependent.    Be
aware, too, that features like user-selectable toolbars or a display mode that uses large fonts can alter the position
of the controls you want which can make calculating the X and Y co-ordinates of each control quite involved.    But
then nobody said this was supposed to be easy!

The WINDOW SETTEXT command can sometimes be used to set the contents of edit fields, instead of WINDOW
SEND.    If you use this, the window identifier must be that of the exact control that is to receive the text, as
obtained from @WINATPOINT.    This method bypasses the normal method of data entry and so may cause
problems, depending on how the target application has been written.    It is a case of try it and see.    You can also

use this command to change button captions and other normally inaccessible text, though it is difficult to think of a
useful application for this.

BEEP
Syntax:

BEEP

Description:

Sounds a beep. This command can optionally accept an argument, an integer value corresponding to the
constants permitted in the MessageBeep API.

OK:

Unchanged.

Example:

BEEP

See also:

DIALOG ADD BITMAP,<name>,<top>,<left>,<width>,<height>,<filename>,<style>{,<style>}

This dialog element creates a bitmap at the position and size specified, containing the image <filename>.

The BITMAP dialog element supports only BMP and ICO files. In addition, it can load a bitmap from a BMP file that
has been compiled into a resource file (special VDS resource format.) In this case, the filename must be followed
by a vertical bar and the offset, in bytes, of the BMP file within the resource. No spaces are permitted between the
filename, the vertical bar and the offset.

If the width or height are omitted then the bitmap control is automatically sized to the image.

If the STRETCH style is specified then the image is sized to fit the bitmap control (note that this has no effect on
icons.)

If CLICK is specified, the bitmap will generate a <name>CLICK event when clicked with the mouse.    You can test
whereabouts on the bitmap the mouse was clicked and which button was used with the @CLICK function.

The HAND style is the same as CLICK, but a hand cursor will be shown when over the bitmap.    The CROSS style is
the same as CLICK, but a cross cursor will be shown when over the bitmap.

DIALOG ADD,BUTTON,<name>,<top>,<left>,<width>,<height>,<caption>,{ styles...}

This dialog element creates a button at the position and size specified.    The name is used as the caption for the
button. If you want to use characters in the button caption that are invalid in a name, such as the & symbol which
makes the following character a keyboard shortcut, you can specify a separate caption. When the button is
pressed, it will cause a<name>BUTTON event.

If button is called CANCEL, a CANCELBUTTON event will occur when the Esc key is pressed, as well as when the
button is clicked.
If button is called HELP, a HELPBUTTON event will occur when the F1 key is pressed, as well as when the button is
clicked.

A keyboard shortcut, shown by an underline, can be created by putting an & before a letter in the button caption.
This is a Windows feature.

Bitmap Editor
Windows already includes a useful bitmap editor - Windows Paint.    The Bitmap Editor option of the Tools menu
provides you with a quick method of accessing this utility.

DIALOG ADD,CHECK,<name>,<top>,<left>,<width>,<height>,<caption>,<value>,{ styles.. }

This dialog element creates a check box at the size and position specified, with a text caption of <caption> and an
initial state of <value> which may be unchecked (0) or checked (1).

If <value> is null for the box to be unchecked, and non-null for it to be checked. This is consistent with the
treatment of other logical operations, such as the evaluation of expressions.

If the CLICK style is specified a <name>CLICK event will be generated whenever the check box is clicked.

CLIPBOARD
Syntax:

CLIPBOARD APPEND,    <string>

CLIPBOARD CLEAR

CLIPBOARD SET, <string>

Description:

The CLIPBOARD command is used to put data into the Windows clipboard.

CLIPBOARD APPEND adds the contents of <string> to whatever is already in the clipboard. Successive
appends add the text on a new line.

CLIPBOARD CLEAR empties the clipboard of any data that was in it.

CLIPBOARD SET sets the contents of the clipboard to the text <string>.

OK:

Unchanged.

Example:

CLIPBOARD SET,Hello Clipboard!

See also:

LIST

DIALOG ADD,COMBO,<name>,<top>,<left>,<width>,<height>,<value>, {style...}

This dialog element creates a combo box at the position and size specified.    A combo box is a combination list box
and edit control.    To get data into and out of the edit control you use the DIALOG SET command and @DLGTEXT
function.    To get data into and out of the list box you must use the LIST command.

The SORTED style specifies whether the list items are to be maintained in ASCII order or not.    Data entered in the
edit control is automatically inserted into the drop-down list when the focus moves away from the control.

The LIST style causes the combo box to work like a LIST dialog element, so you cannot enter data into the control,
only choose values from the drop down list.

The CLICK style causes a <name>CLICK event to be generated when an item is chosen from the drop-down list.

The EXIT style causes a <name>EXIT event to be generated when the combo box loses the input focus.

Command Reference

BEEP

CLIPBOARD

DDE

DIALOG

DIRECTORY

ELSE

END

EXIT

EXITWIN

EXTERNAL

FILE

GOSUB

GOTO

IF

INFO

INIFILE

LINK

LIST

OPTION

PARSE

PLAY

REGISTRY

REM

REPEAT

RUN

RUNH

RUNM

RUNZ

SHELL

SHIFT

STOP

TITLE

WAIT

WARN

WINDOW

WINHELP

Commands
Unlike labels, commands need not start in the first character position.    It is recommended that they are indented
using spaces for readability.

A command consists of the command name (see Command Reference) followed optionally by a string.    The string
is used as the argument (or parameters) to the command.    Most commands have only a single argument, but
some have more than one, in which case commas are used to separate the parameters.    A space must separate
the command from the string.    Commands are not case-sensitive.

Here are some examples of commands:

TITLE My first script

INIFILE WRITE,Reg_Info,UserName,Fred Bloggs

Strings may include variable and function references, which are evaluated before the command is carried out.   
Here is an example of commands containing variable and function references:

IF @FILE(%F)

    INFO File %F exists

END

Contents

User Guide

Command Reference

Function Reference

Creating Dialogs

The DIALOG command is used to create a dialog window for the program and manage its controls.    The dialog
becomes the program's main window, and will exist until the program terminates.

The dialog definition takes the basic form of:

DIALOG CREATE, ... define dialog window, title, size and properties
DIALOG ADD, ... define the dialog elements
DIALOG SHOW show the dialog.

Dialog elements begin with the element type appended to the DIALOG ADD command, which is optionally followed
by details such as the control name, size, position and initial value.    The details are contained within brackets and
separated by semicolons.    See Dialog Elements for more information.

Visual DialogScript's dialog designer allows you to design a dialog box interactively, and then generates the DIALOG
CREATE command for you.

Creating Executable Files
Once your DialogScript programs are finished and fully debugged you will probably want to run them on their own,
as standalone programs.    To do this you must create an executable file.

From the File menu select Compile to EXE, and this dialog appears:

Click on any area to learn what it does.

The settings in this dialog are stored in the in the .DSP file which is created for each script. So any changes made
do not have to be recreated the next time you create an executable from the same script.

DDE
Syntax:

DDE    LINK, <servername>,    <topicname>

DDE    EXECUTE, <macro>

DDE    POKE,    <itemname>,    <data>

DDE    TERMINATE

Description:

The DDE commands are used to establish and terminate a link using DDE between a script program acting
as a DDE client and another application acting as a DDE server.    Note that Windows requires programs
using DDE communication to have a window, so this command will generate an error unless a dialog box
has been created.

The DDE LINK command is used to initiate the DDE link before any communication can take place.    The
DDE TERMINATE command is used to terminate the link once communication has finished.

The DDE EXECUTE command is used to send to the server application a command (or DDE macro) to be
executed.    The commands that are valid are dependent on the application.    Tip

The DDE POKE command is used to send data to a named item in the DDE server.    Many applications do
not accept poked data.

The DDE TERMINATE command closes the DDE link.    It is good practice to do this once DDE
communication has finished.

OK:

Set to false if the DDE command fails.

Example:

        DDE LINK,Progman,Progman

        if @ok()

            DDE EXECUTE,[CreateGroup(%U)]

        end

        if @ok()

            DDE EXECUTE,[ShowGroup(%U",1")]

        end

        if @ok()

            DDE EXECUTE,[AddItem(@shortname(%D\ds.exe)",Visual DialogScript")]

            DDE EXECUTE,[AddItem(@shortname(%D\ds.hlp)",Visual DialogScript 2 Help,winhelp.exe")]

            DDE EXECUTE,[AddItem(@shortname(%D\tutorial.hlp)",Visual DialogScript 2 Tutorial,winhelp.exe")]

        end

        if @not(@ok())

            warn Setup failed to create start menu shortcuts

        end

        DDE TERMINATE

See also:

@DDEITEM LINK

DIALOG

Syntax:

DIALOG ADD,<element_type>,<element_name>, element description

DIALOG CLEAR, <control name>

DIALOG CLEARSEL, <control name>

DIALOG CLOSE

DIALOG CREATE,<title>,<top>,<left>,<width>,<height>,{ <styles> }

DIALOG CURSOR {, WAIT}

DIALOG DISABLE,    <control name>

DIALOG ENABLE, <control name>

DIALOG FOCUS, <control name>

DIALOG HIDE, <control name>

DIALOG POPUP, <items> {<x>,<y>}

DIALOG SELECT, <id>

DIALOG SET, <control name>, <text>

DIALOG SETPOS, <name>,<top>,<left>,<width>,<height>

DIALOG SHOW, <element name>

DIALOG SHOWMODAL

DIALOG TITLE, <title>

Description:

DIALOG ADD adds a new dialog element to the currently selected dialog. The element types, and the valid
description for each of them, see "Dialog Elements".

DIALOG CLEAR clears the text in the control named <control name>.

DIALOG CLEARSEL clears the selected item in a list box control named <control name>.

DIALOG CLOSE causes a CLOSE event to be issued for a main window. However the window will not close
until the application terminates. For a child window, this command will also issue a CLOSE event. (If
@event(d) is used, the dialog ID will ne > 0.) The effect is the same as clicking the close (X) button. The
script can respond to this by reading information from any dialog elements, if required. A second DIALOG
CLOSE must then be executed (which will generate a second CLOSE event, which can be thrown away by
calling @event().) This time the child window will close.

DIALOG CURSOR, WAIT sets the cursor for the dialog to an hourglass.    The command DIALOG CURSOR
sets it back to the default cursor.    To provide feedback to the user your script program should show the
hourglass cursor whenever it will take some time to respond to a user action.

DIALOG CREATE function is just to create a (hidden) dialog on which elements are added using DIALOG
ADD, and which is then displayed using DIALOG SHOW. It therefore contains just the title, size and
position, and any styles that relate to the dialog. This command has many different parameters which
form the <description>.    It is described in more detail in the topics Creating Dialogs and Dialog Elements.
You would normally use the Dialog Designer to generate this command. Note that the <width> and
<height> values are the width and height of the client area of the dialog window, in other words the area
in which it is possible to place dialog elements. The total width of the dialog is slightly larger than this

value. The total height is the height value plus a small amount for the border, plus the title bar height,
plus the menu height if a menu is defined. It means that you don't have to worry about calculating the
size to take account of non-standard desktop settings (e.g. large fonts, desktop themes etc.)

DIALOG DISABLE and DIALOG ENABLE disable and enable the control named <control name>.

DIALOG FOCUS sets the input focus to the control named <control name>.

DIALOG HIDE and DIALOG SHOW hide and show the control named <control name>.

DIALOG POPUP    This command is completely changed. There is no longer a POPUP dialog element.
Instead, popup menus are defined when processing the CLICK event that triggers them. This means that
the items on the popup menu no longer have to be fixed at design time so a popup menu can be a true
context menu.
DIALOG POPUP,<items> {<x>,<y>}    <items> is a list of menu items, separated by vertical bars. For
example: Cut|Copy|Paste. Each item, when clicked, generates an event of type <name>MENU, for
example: CutMENU if you click the Cut item on the popup. The optional <x> and <y> are numbers that
specify the screen co-ordinates where the menu is to pop up. If omitted it will pop up where the mouse
pointer is.

DIALOG SELECT is needed for scripts that use more than one dialog. The DIALOG commands, and
functions that operate on dialog elements such as @dlgtext, search only the currently selected dialog for
the named dialog element. This command is used to ensure that the correct dialog is selected.    DIALOG
SELECT,<id>    The <id> is a number that refers to the dialog's position relative to the main window dialog
0 (zero) in a list. <id> 1 would be an only child dialog. Multiple dialogs can be created, then closed in a
different order, in which case the <id> to refer to a particular dialog will change. Only advanced users
should make use of this feature!

DIALOG SET sets the text in the control named <control name> to <text>.    When applied to LIST dialog
elements, this command sets the contents of the list box <name> to <text>. To replace the selected item
you should use LIST PUT,<name>,<text> instead.    To clear a check box use DIALOG SET,<name>. (In
other words, the third parameter is omitted, not zero). To set it use DIALOG SET,<name>,<anything>.
This is a change which was made for consistency: a check box is a boolean item and VDS treats a null
value as false, not zero. Anything else (non-null) is treated as true.

DIALOG    SETPOS,<name>,<top>,<left>,<width>, <height>
DIALOG SETPOS lets you alter the size or position of a dialog element (or the dialog itself) at run-time.
<name> is the name of the dialog element, such as EDIT1. The <top>,<left>,<width> and <height> are
the values for those respective properties. For each parameter value that is left null, the existing value is
left untouched.    If <name> is null, the command refers to the active dialog. In this case, <width> and
<height> specify the size of the client area of the dialog, not including any border, menu bar or title bar.

DIALOG SHOW ,<element name>
Un-hides an element that has been hidden.    If <element_name> is omitted, the dialog that has just been
created (or the selected dialog which is currently hidden) is shown.

DIALOG SHOWMODAL This command is similar to DIALOG SHOW, except that the script freezes on this
command until a button is pressed. When a button is pressed, the <button_name>BUTTON event is
generated, but the dialog behaves as if it has been closed. The script can use @event() to test which
button was pressed, and if it was not a Cancel button get information from the dialog. Then it must use
DIALOG CLOSE to close finally the dialog.

DIALOG TITLE sets the text in the title bar of the dialog window to <title>.    This is different from setting
the title of the script program, which is done using the TITLE command.

Dialog styles are:

CLICK: generate a CLICK event if user clicks on the surface of the dialog;

DRAGDROP: generate a DRAGDROP event if user drops file(s) on the dialog;

NOSYS: don't have a system menu or close (X) box;

NOMIN: din't have a minimise button;

NOTITLE: creates non-movable window with no title bar;

ONTOP: keep the dialog on top of other windows;

SAVEPOS: save the dialog position (and size) and restore from the saved information next time it is
created. This style can have an optional text ID to distinguish between different dialogs in a multi-dialog
script, for example: SAVEPOS Options.

SMALLCAP: have a small caption bar; (if used, this style must come first.)

RESIZABLE: allow the window to be resized. If this style is used, RESIZE events will occur. The script must
respond to them and use @dlgpos to obtain the new width and height, then use DIALOG SETPOS to
reposition or resize any dialog elements that are affected by this.

CLASS: This style must be followed by a name, which will be used as the window class name for the
window or dialog instead of the default which is TVDSDialog. For example: CLASS TOptionsDlg.

PAINT: This style will cause PAINT events to be generated whenever the dialog is redrawn. This occurs
when it is resized (if RESIZABLE), restored or when any part of the dialog surface that has formerly been
obscured by another window now becomes visible. This style is only likely to be of use to writers of
extension DLLs that draw directly on to the surface of the dialog. It serves no useful purpose in any other
context, since VDS itself takes care of redrawing all dialog elements that need to be redrawn. Because
VDS events are not queued, it is recommended that resizable windows that also use PAINT events should
treat both RESIZE and PAINT events the same, i.e.: the two labels are placed one after the other so the
same event processing code is executed. Otherwise one or other event may be lost and the corresponding
code not executed.

OK:

Unchanged.

Example:

dialog title,Address Book
dialog clear,Name
dialog set,NM,1
dialog focus,Name

See also:

@DLGTEXT TITLE Dialog Programming

DIRECTORY
Syntax:

DIRECTORY CHANGE, <path>

DIRECTORY CREATE, <path>

DIRECTORY DELETE, <path>

DIRECTORY RENAME, <path1>, <path2>

Description:

The DIRECTORY command is used to change, create, delete or rename directories.

DIRECTORY CHANGE changes the current directory to the one named in <path>.    If <path> is on a
different drive to the current drive then this is changed as well.    This command is similar in operation to
the MS-DOS CHDIR command.

DIRECTORY CREATE creates a new directory named <path>.    If necessary, it will recursively create all the
subdirectories in the path.    This command is similar in operation to the MS-DOS MKDIR command.

DIRECTORY DELETE removes the directory named in <path>.    The directory must be empty or it will not
be removed.

DIRECTORY RENAME renames the directory named in <path1> to the directory named in <path2>.

Both DIRECTORY DELETE and DIRECTORY RENAME now use the Windows 95 Shell API, as does the FILE
command. This means that the ALLOWUNDO, CONFIRM and SHOWERRORS options are supported with
these two operations. See the FILE command for more information.

OK:

True if the operation is successful; false if not.

Example:

directory delete,f:\tmp1

directory create c:\test\subdir1\subdir2

See also:

Data Lists
Syntax:

LIST    DROPFILES,<list>

LIST    FILELIST,<list>, <filespec>, {<attributes>}

LIST    LOADFILE,<list><filename>

LIST    LOADTEXT,<list>

LIST    REGKEYS,<list>,<root key>,    <subkey>

LIST    REGVALS, <list>,<root key>,    <subkey>

LIST    SAVEFILE,<list>,<filename>

LIST    WINLIST,<list>,{<flags>}

Description:

These LIST commands are used to get data into string lists.    The parameter <list> must be either a list
number or the name of the dialog list control to which the command will apply.    An error will occur if the
list does not already exist.

DROPFILES is used to add to the list <list> the names of files that have been dropped on to a dialog
window that has the DRAGDROP property.

FILELIST is used to add to the list <list> the names of files that match a particular specification, which
may include wildcards.    Note that whether just the name and extension or the full path is returned
depends on whether a full path is given in <filespec>. The file specification may optionally be followed by
a list of attributes which will be used to filter the list of files selected.    The attributes may be specified as:
A - archive; D - directory; H - hidden; R - read only; S - system; V - volume label. The attributes are
additive, so if you specify HS for example the list will contain files that have the hidden attribute, the
system attribute or both..

LOADFILE is used to create a list holding the contents of a named text file.

LOADTEXT loads text from the script file into the list.    The text to be loaded should immediately follow the
command, and each line should begin with a double-quote (") in column 1.    (There is no need for a
closing quote.    The quote is just an indication to the interpreter that the line is to be added to the string
list not treated as a command.)

REGKEYS is used to obtain a list of subkeys of the named subkey (see the REGISTRY command for more
details).

REGVALS is used to obtain a list of values of the named subkey.

SAVEFILE is used to save the contents of a list to a named text file.

WINLIST is used to obtain a list of all the windows (including hidden windows) present on the system.   
The flags may be specified as: C - class name; I - window identifier; N - window name or title.    If more
than one flag is specified then the values are concatenated in the list with each one separated by the
current field separator character in a form suitable for splitting up with the PARSE command.

OK:

Set to true if the command is successful or false if it fails.

Example:

LIST LOADFILE,1,C:\CONFIG.SYS

LIST FILELIST,LB1,*.tmp

See also:

@COUNT @INDEX @ITEM @MATCH @NEXT LIST Using
Lists

Debug Window
The debug window is used to examine the contents of variables, lists and the OK status variable.

This window is most useful when single-stepping through a script. To watch a variable value, you have to add it by
a double click in the variable name itself in the script window or by a right click in the debug window to get a popup
menu:

then select "Add item to window" to get the dialog below:

Debugging Scripts
When a script does not behave as expected it can sometimes be difficult to work out why.    Writing programs is
never easy, but Visual DialogScript comes with a set of tools that makes it as easy as possible to work out what is
going wrong.

Start by resetting the program (menu Run / Reset) so that you start running from the beginning. Then step
through your script a line at a time using the Single Step button or the F8 key.    Open the Debug Window so that
you can see the result of all the variables used by your script after each line has been executed.    This is usually
enough to work out what the problem is, if you think after each line about what the correct values are supposed to
be.

Sometimes a command will not work, and will report that it does not work by setting the OK indicator to false,
rather than by halting with an error message.    The script language does this to give you a chance to cope with the
error within your script, rather than have a user presented with a cryptic error code.    However, if you don't use the
@OK function to test the result of OK, but just assume the command or function will work, a script will not work
correctly if the command fails.    You can check the status of OK at any time during debugging as it is shown in the
status bar of the debug window.

A common source of problems is failure to get information from files.    This is usually caused by path problems.    If
you only specify a filename and not a full path, the script will look in the current directory for the file.    The current
directory is not necessarily the directory in which the script program resides.    You should always specify a full path
when referencing any file.    If the file belongs to the script and will always be kept in the same directory use
@PATH(%0) to get the directory of the script program.

If you have a complicated script and it would be too long-winded to step through the whole thing line by line then
you can set breakpoints to halt the script at a particular point.    For more complex problems you can insert BREAK
commands with an @EQUAL, @GREATER, @NULL or @ZERO function in the first parameter, which will cause a
breakpoint to occur when the conditional function evaluates to True.

Development Environment
Visual DialogScript has an interactive development environment (IDE) which makes it easy to develop and debug
your Windows scripts.    The environment is run from the main window, shown below, which is normally positioned
at the top of the screen.

For a description of each feature of the IDE interface, click on a button or menu on the picture below.

Scripts are edited in the script window, which is an advanced text editor with syntax highlighting.    Scripts can be
run from the main window, using either the menu options or the toolbar buttons.

Visual DialogScript provides several aids to debugging.    You can set breakpoints at any point in the script throught
the script window, and then check the value of each variable using the debug window.      You can also use single-
step mode to step through the script a line at a time.

The Options menu lets you set your preferences for various options in the development environment.

The Tools menu provides access to tools which you may find helpful when creating your script program.    You can
add your own tools to the menu.    Check our Web site for add-in tools you can download.

Dialog Elements
Dialog elements are parameters to the DIALOG CREATE command which specify the characteristics of the dialog
window you want to create and the controls that should appear on it.

Most dialog elements have parameters, which are appended to element name.    The parameters are separated by
commas.    The name parameter, where required, is mandatory and is used to address the control when you want to
write text to it or read text from it.    Most of the remaining parameters are optional, and may be left as null or
omitted;.    When omitted, DialogScript will use suitable defaults.    With controls you will usually want to specify at
least the top and left position co-ordinates.    Position co-ordinates are relative to the client area of the dialog
window.

The following dialog elements are available:

BITMAP,<name>,<top>,<left>,<width>,<height>,<filename>,<style>{,<style>}

BUTTON,<name>,<top>,<left>,<width>,<height>,<caption>,<style>

BITBTN,<name>,<top>,<left>,<width>,<height>,<filename>,{<caption>,<hint>}
CHECK,<name>,<top>,<left>,<width>,<height>,<caption>,<value>,<style>{,<style>}

COMBO,<name>,<top>,<left>,<width>,<height>,<value>,<style>{,<style>}

EDIT,<name>,<top>,<left>,<width>,<height>,<value>,<style>{, <style>}

GROUP,<name>,<top>,<left>,<width>,<height>,<caption>{,style...}

LIST,<name>,<top>,<left>,<width>,<height>,<style>{,style>}

MENU,<menu_name>,<item_1>,<item_2>...

PROGRESS,<name>,<top>,<left>,<width>,<height>,<value>

RADIO,<name>,<top>,<left>,<width>,<height>,<caption>,<value list>,<value>,<style>{, <style>}

STATUS,<name>,<value>,<style>

STYLE,<name>

TAB,<name>,<top>,<left>,<width>,<height>,<tabs>{,<style>}

TASKICON,<name>,<filename>,<tooltip text>

TEXT,<name>,<top>,<left>,<width>,<height>,<value>,<style>

The order of specifying the dialog elements can be important.    The first button to be specified will be the default
button which is executed if the user presses Enter.    The tab order of controls that can accept input will be the
order of specification, and the first such control to be specified will be the one that has the input focus when the
dialog window is created.

An easier way to create a dialog than by working out a list of dialog elements is to use the dialog designer .

Dialog Programming
DialogScript allows you to create multiple dialog windows which function as window for your script application.   
Dialog windows may contain a number of controls, such as text controls and a status panel for displaying captions
and other information, and edit controls, check boxes and list boxes which can not only display information but
allow interaction with the user, plus buttons and menus which tell you when to process information by generating
events.

You create a dialog using the DIALOG CREATE command.    You can design the dialog interactively using the dialog
designer , which will then generate the correct DialogScript code to create the dialog.    The dialog must include
buttons which users can press when they want the script to do something with the information in the dialog.

Note that the language makes it possible to write more sophisticated programs in which conditional statements
and/or calculations are performed between the DIALOG CREATE and the DIALOG SHOW to vary the appearance of
the dialog in real-time.

HOWEVER (** important!! **) the Dialog Designer can only create simple dialogs consisting of DIALOG CREATE, a
number of DIALOG ADD lines, and DIALOG SHOW, where all the arguments to these commands are constants.
More important still, the Dialog Designer can only edit such dialogs. So, if you use the full flexibility of the language
to do calculations or execute conditional statements within the definition of a dialog, you will lose the ability to edit
the dialog with the Dialog Designer. If you try to do so, the Dialog Designer might lose some of the other
commands, or crash.

You can create more than one dialog. The first one, ID 0 (zero), is the application's main window. Once created, it
will not close until the program terminates. When you process the CLOSE event for this dialog you should save any
information and go to the EXIT or STOP command. Other dialogs we will call child dialogs.

Subsequent dialogs can be created and closed at will. DIALOG commands (and also LIST commands and functions
that refer to LIST or COMBO dialog elements) refer to the active dialog. If the name of a dialog element on a
different dialog is used, you will get a fatal error. To allow a particular dialog to be specified, you can use the
DIALOG SELECT command.

When you close a child dialog, either by clicking its Close button or by executing a DIALOG CLOSE command, it
does not close straight away. A CLOSE event is generated. A script can respond to this event by saving information
in the dialog, then issuing another DIALOG CLOSE which this time closes the dialog.

Because events can have the same name, no matter which dialog generated them, the @EVENT function has been
enhanced so you can obtain the dialog ID. Programming with multiple dialogs is quite difficult so it is best to
examine the simple examples that show how it is done.

When a button is pressed it generates an event.    For a user-defined button the name of the event is the name of
the button followed by BUTTON; for example, when the OK button is pressed an OKBUTTON event occurs.    The
dialog close button (and selecting Close from the system menu) generates a CLOSE event.    Other examples of
events are the DRAGDROP event, which occurs if the dialog window is drag and drop enabled and files are dragged
to the window, and the CLICK event which occur when the mouse is clicked over certain controls.    See Events for
more information.

There are two ways to process events.    You can use WAIT EVENT.    This halts the script entirely until an event
occurs.    When it does, you can test it using the @EVENT function, carry out whatever processing is required, and if
appropriate loop back to the WAIT EVENT command to wait for the next event.

If you require your script to do other work while the dialog is displayed then you can simply test @EVENT regularly:
it will return null if no event has occurred.    If your script needs to respond to events as well as doing some
processing on a regular basis you can use WAIT EVENT,<n>, which in addition to dialog events will generate a
TIMER event every n seconds.

The dialog will remain until the program terminates, when the final EXIT command is executed.

The simplest way to write a dialog-based DialogScript program is to use the Application Wizard.    This lets you
design the dialog using the dialog designer and then generates a skeleton program with labels for all the possible
events.    All you need do is write the code to respond to each event.

Application Wizard
The Application Wizard helps you to write a dialog-based DialogScript program.

When you run the Wizard, you enter a title for your program, design the dialog using the dialog designer, and then
the Wizard generates all the code for the program, including dummy handlers for each of the possible events.    You
then simply replace the dummy event handlers with your own code.

DialogScript Language
The DialogScript programming language has been designed to be simple, flexible and easy to use.    The language
has three main elements, labels, commands and assignments.

DIALOG ADD,EDIT,<name>,<top>,<left>,<width>,<height>,<value>,{,styles}

This dialog element creates an edit (input) box at the position and size specified, containing the text <text>.

Available styles:

PASSWORD style, specific to edit controls, causes asterisks to be displayed for every character typed.

EXIT style causes a <name>EXIT event to be generated whenever the input focus leaves this window control.   
One use of this would be to invoke a validation procedure.

MULTI: This makes the element into a multi-line edit control, similar to Notepad (and with similar restrictions, such
as an approximately 32KB limit on the size of text.)

WRAP: This style applies if the dialog element is multi-line, and causes text to be word-wrapped within the
boundaries of the element.

SCROLL: This style applies if the dialog element is multi-line, and causes scroll bars to appear so that non word-
wrapped text (or longer text than can fit in the control) can be viewed and edited.

READONLY: makes the text in the control read only.

TABS: Allows tab characters to be entered when editing text. If this style is not present, hitting tab will cause focus
to go to the next control, instead.

ELSE
See: IF

END
See: IF

EXIT
Syntax:

EXIT

Description:

When obeyed after a GOSUB command, causes execution to continue at the line following the GOSUB.   
Otherwise, EXIT causes execution of the script to terminate.

OK:

Unchanged.

Example:

EXIT

See also:

GOSUB    STOP

EXITWIN
Syntax:

EXITWIN    <exit option>

Description:

This command lets you shut down Windows under script control.

The valid options are:

SHUTDOWN A normal shutdown.    This is the default.

REBOOT Shuts down Windows and reboots the system.

LOGOFF Logs the user off the system (the program that issued the command appears to remain
running)

FORCE Forcibly shuts down Windows without allowing programs to display any "OK to close"
messages or similar.

OK:

Unchanged.

Example:

EXITWIN REBOOT

See also:

EXTERNAL
Syntax:

EXTERNAL    <DLL path>, <string>

Description:

This command is used to install a Visual DialogScript extension.    This is a dynamic link library which adds
a new command and function to the DialogScript language, which may then be used within the script.

Developers wishing to create Visual DialogScript extensions can obtain documentation describing the
extension API on request.

OK:

Unchanged.

Example:

EXTERNAL VDSOLE.DLL,100

See also:

Error Messages
1 Invalid Command

An invalid DialogScript command has been encountered.    Usually this means it has been misspelt.

2 Missing parameter(s)

The command executed expects more parameters than the number given.

3 Style already defined

An OPTION STYLE command defining this style has previously been executed.

4 Invalid list operation

The string list or list box control referenced in this command does not exist..

5 Invalid variable name

Valid variable names are %1 .. %9 and %A .. %Z.

6 "=" symbol expected

A command started with a variable name but no equals symbol was found.

7 Invalid @ function

An invalid DialogScript function has been encountered.    Usually this means it has been misspelt.

8 Syntax error in @ function

Something is wrong with a function call.

9 Missing END or ELSE

An IF or ELSE command has been executed but the corresponding ELSE or END could not be found.

10 Command nested too deeply

REPEAT or GOSUB commands have been nested more than 9 deep.    This can be caused by incorrect use
of the GOTO command.

11 Missing argument(s) to @ function

The function executed expects more parameters than the number given.

12 Label not found

The label named in a GOTO or GOSUB command could not be found.

13 Invalid argument to @function

One of the parameters to a function is not valid.

14 Invalid parameter to command

One of the parameters to a command is not valid.

15 UNTIL without REPEAT

An UNTIL command was encountered but no previous REPEAT has been executed.

16 Invalid style

A style parameter of a dialog element does not exist.    This could be because it has been mis-spelt.    Note
that if text has been specified in the dialog element, either as fixed text or in a variable, and that text
includes semicolons, then the semicolons will be treated as parameter separators and part of the text
interpreted as parameters, which will probably give rise to this error message.

17 Dialog already exists

A DIALOG CREATE command cannot be executed when a dialog window already exists.

18 Dialog control does not exist

The dialog control referenced in the DIALOG or LIST command or @DLGTEXT function does not exist.

19 List index out of range

The item number in a list index operation is less than 0 or greater than the number of items in the list.

20 File or path does not exist

The file or directory referenced in a command does not exist.

21 Cannot create control

Visual DialogScript cannot create a control specified in a DIALOG CREATE command.    A dialog element
may contain an invalid parameter, for example, the control name may be duplicated or invalid.

22 Operation invalid when no dialog showing

Function or command can only be used when a dialog is being displayed.

23 Control name not valid

The name specified for a dialog control contains an invalid character: names should contain only
alphanumerics, and begin with a letter.

24 Mismatched brackets

The parser has reached the end of a line and a closing bracket is expected.

25 Non-numeric value in arithmetic function

An invalid character (such as a letter) appears in a string which is being treated as a numberic value.

26 Arithmetic error

An error such as overflow, underflow or division by zero has occurred.

27 Untrapped error in an external command or function

28 External library not available

Either the DLL specified in an EXTERNAL command could not be located on the search path, or a condition
for its use was not met (refer to the documentation for using the extension.)

29 Insufficient memory for operation

30 Breakpoint reached

The script was stopped at a breakpoint.

31 Stopped by user

The script was paused by the user.

Error trapping
Run-time error messages may not be much of a problem in scripts you write for your own use, but they can be
baffling if encountered by somebody else. To solve that problem, DialogScript allows you to trap run-time errors
and write your own code for processing them.

To create an error trap you include the command:

OPTION ERRORTRAP, <label>

somewhere near the start of the script.    The effect of this command is that, if a run-time error occurs, execution
will jump immediately to the liine containing the label <label>.    Obviously, it is a good idea to make sure the label
exists, otherwise you will just get another run-time error.

Once in the error trap code, it is up to you how you process the error. It would be a good idea to turn the error trap
off in case an error in the error trap causes the script to loop. You could then use WARN to display a friendly
message to the user telling them what has happened and what to do.    To terminate the script use the STOP
command, since if the error occurred during execution of a GOSUB, the EXIT command will cause execution to
carry on at the line after the GOSUB.

The @ERROR function lets you determine the error code, the number of the line that caused it, and the actual line
of script that caused the error. You could display this information, or write it to an error log using a string list.

More advanced users could use error traps to improve the robustness of scripts that could be affected by user input
or differences in the systems on which they are run.    For example, if a user enters a value which causes a run-
time error and it is difficult to validate the vaue in code, you could set an error trap, check for the error code and
the line number it occurred at, and if they match this particular case, display a warning message and ask the user
to enter the value again.

Events
Events occur when the user interacts with a dialog which you have created using the DIALOG CREATE command.   
Some events occur by default, such as those generated by buttons.    Others only occur if you specify a style in a
dialog element definition.

Because events can have the same name, no matter which dialog generated them, the @EVENT function has an
extra parameter D to obtain the dialog ID: @EVENT(D). Programming with multiple dialogs is quite difficult so it is
best to examine the simple examples that show how it is done.

You can halt your script and wait for an event to occur using the WAIT EVENT command.    You can find out the type
of event using the @EVENT function.

BUTTON events occur when a button or a bitbtn is pressed.    The type of event is <name>BUTTON, where
<name> is the name of the button.    So when the user presses a button labelled OK an OKBUTTON event occurs.

CLICK events are optional.    They cause a <name>CLICK event to occur when the dialog element is clicked with
the mouse.    In the case of elements such as LIST or RADIO you can use the event to perform some action
dependent on the new setting of the control. In the case of BITMAP dialog elements you can use the @CLICK
function to find out which button was pressed and the position of the mouse at the time it was clicked..

DBLCLICK events are optional.    They cause a <name>DBLCLICK event to occur when the dialog element (a list)
is double clicked with the mouse.

CLOSE events occur when the user closes the dialog from the system menu or using the close button, or when the
user shuts down Windows.    The script should respond to this event by saving any unsaved data and terminating.

To receive DRAGDROP events DRAGDROP style must be used with the DIALOG CREATE command.    A DRAGDROP
event occurs when a file or files are dragged to the dialog window.    You can find out the filenames by using the
LIST DROPFILES command to get them into a string list.

EXIT events are optional.    They cause a <name>EXIT event to occur when the dialog element loses the input
focus.    This event is available for EDIT and COMBO dialog elements.    It can be used to trigger a procedure to
validate the data that has been entered in the control's input field.

An ICON event occurs when the user clicks on a task bar icon created when a TASKICON dialog element is used.

MENU events occur if you have defined a menu for the dialog window.    The type of event is <name>MENU where
<name> is the name of the menu item that was selected. They also occur for a DIALOG POPUP command.

A TIMER event occurs when you use a command of the form WAIT EVENT, <interval>.    It occurs <interval>
seconds after the command was issued.

FAQ

Frequently Asked Questions

(For an updated FAQ check http://www.dialogscript.com)

I want to put some quotes '"' in a string, but they are always removed.    Why?

Visual DialogScript uses double-quotes as a delimiter.    Within double-quotes, a % character is not treated
as the start of a variable name, the @ character is not treated as the start of a function name, and
commas are not treated as parameter separators.    Quotes act as toggles: they can appear anywhere in a
string and turn the delimiter effect on and off as the string is parsed from left to right.    In the process the
quotes are removed.    To get double-quote characters into a string you must use @CHR(34) which is
converted to the ASCII character with code 34, which is a double-quote.

When I run a compiled script from another program I cannot get the program to wait for the script to
finish.    Why?

This is because non-integrated VDS EXE files just call the runtime engine and then terminate.    It is the
runtime engine that actually runs the compiled script.    The solution is either to create an integrated EXE,
or to run the runtime engine from your program, passing it the path to the compiled script EXE as the first
parameter (and any runtime parameters as the second and subsequent parameters.)

I am trying to copy a file from one directory to another and it is not working.    Why?

The FILE COPY command is not like the DOS COPY command in that it must have a full path (including
filename) as the target, not just a directory, even if the name of the copy is to remain the same.

How can I copy a list of files, such as *.TXT, using FILE COPY?

The FILE COPY command does not accept wildcards. Instead you must create a list of the files to be copied
using LIST FILELIST (which does let you use wildcards) and then iterate through the list copying each file
one by one.

Why does not a horizontal scroll bar appear in a list box if an item in the list is too wide to fit?

The LIST dialog element does not have a style option for displaying a horizontal scroll bar.    However, you
can get Windows to display a horizontal scroll bar using the line:

%P = @sendmsg(@winexists(~LIST1),$0194,1000,0)

after the dialog has been created (where LIST1 is the name of the LIST dialog element).

When I try to run a compiled script I get an error dialog that says "Cannot run script." Why?

You have created or installed a non-integrated EXE in a different directory to the one the VDS runtime
(DSRUN.EXE / DSRUN16.EXE) is installed in. If you do this, you must add the directory containing the
runtime to the DOS PATH string, or else move the runtime to the Windows directory. It must be possible
for the EXE you create to execute the run-time engine DSRUN.EXE from wherever it is run, and if it is not
in the same directory then it must be on the search path.

Why does my script not halt at WAIT EVENT command?

There may be another event waiting to be processed.    You must clear the event by reading the event type
using the @EVENT function, even if your script does not care what the event is.    If not, the event will still
be active at the next WAIT EVENT command.

I used a bitmap or icon in my dialog. When another user runs the program the image does not appear.
Why?

The path to the bitmap or icon file is a full path which is not valid on the user's system.    It is best to put
resources such as bitmaps into the same directory as the EXE, and specify only the filename.    The VDS
runtime will look in the EXE's directory as well as the current directory when trying to locate a resource
file.

FILE

Syntax:

FILE COPY, <file path 1>, <file path 2> {, <ALLOWUNDO>, <CONFIRM>,<SHOWERRORS> }

FILE DELETE, <file path>,    {, <ALLOWUNDO>, <CONFIRM>,<SHOWERRORS> }

FILE RENAME, <file path 1>, <file path 2>,    {, <ALLOWUNDO>, <CONFIRM>,<SHOWERRORS> }

FILE SETDATE, <file path>, <time>, <date>

FILE SETATTR, <file path>, <attributes>

Description:

COPY, DELETE and RENAME operations permits the use of wildcards ? and *, and the use of just a
destination path instead of a full file path in COPY operations.

These three operations accept the additional optional flags ALLOWUNDO, CONFIRM and SHOWERRORS. In
FILE DELETE, ALLOWUNDO deletes the file(s) to the Recycle Bin, so they can be undeleted later if
required. CONFIRM causes the display of the dialogs familiar when you use Explorer, to confirm that files
should be deleted or that one file should be overwritten with another of the same name. If SHOWERRORS
is specified, the Windows shell puts up a modal message box with a warning message whenever it is
unable to complete an operation (such as delete a file because the file is held open by another
application.) OK is set to false if the FILE operation fails for any reason.

The first filename parameter can be a list of filenames, such as might be obtained from a string list using
the @text function.

In FILE COPY, if no directory is specified for the target file, the file is copied to the current directory. In
FILE RENAME, if no directory is specified for the target file, the file is renamed in its present location. If a
directory is specified the file is, in effect, moved.

IMPORTANT: The ALLOWUNDO flag ONLY takes effect if the filename(s) passed to the FILE DELETE
command are fully qualified pathnames. If only the filename is passed and the file exists in the current
directory it will be deleted, but not to the Recycle Bin.

FILE COPY copies the file named in <file path 1> to <file path 2>.    The original date and time are
preserved.    The WARNOVERWRITE flag of FILE COPY in VDS 2.x is no longer supported. Instead you
should use CONFIRM and let Windows display the warning dialog message.

FILE DELETE erases the file named in <file path>.    This command is similar in operation to the MS-DOS
DEL command.

FILE RENAME renames the file named in <file path 1> to <file path 2>.    A file can be renamed from one
directory to another (in other words, moved) only if both directories reside on the same logical drive.   
This command is similar in operation to the MS-DOS REN command.

FILE SETDATE changes the time and optionally the date of the file <file path>.    The <time> and <date>
should be in the short time and short date styles set in the Windows control panel.

FILE SETATTR changes the attributes of the file <file path>.    The string <attributes> consists of one or
more of the following characters:
+ turns on the attributes following (default)
- turns off the attributes following
A archive attribute
H hidden attribute
R read only attribute
S system attribute

OK:

True if the operation is successful; false if not.

Example:

file delete,TEST.TXT
file copy A:\DS.EXE,%C\DS.EXE
file setdate,DS.HLP,2:00,1/3/96
file setattr,C:\MSDOS.SYS,-SRH

See also:

@FILE

Floating point math functions
Visual DialogScript supports the following functions which can be used to perform floating point calculations:

@FADD addition

@FATN arctangent

@FCOS cosine

@FDIV division

@FEXP exp

@FLN ln

@FMUL multiplication

@FSIN sine

@FSQT square root

@FSUB subtraction

The @FORMAT function can be used to convert floating point values to a fixed number of decimal places for display
or comparison purposes.

Note that Visual DialogScript does not support the use of commas as decimal separators, as used in some
European countries. This would be incompatible with the use of commas as parameter separators in DialogScript
commands and functions.

Function Reference

@ALT @ASC @ASK

@BOTH @CHR @CLICK

@COUNT @CR @CTRL

@CURDIR @DATETIME @DDEITEM

@DIFF @DIRDLG @DIV

@DLGTEXT @DLGPOS @ENV

@EQUAL @ERROR @ESC

@EVENT @EXT

Floating point functions

@FILE @FILEDLG @FORMAT

@GREATER @HEX @INDEX

@INIREAD @INPUT @ITEM

@KEY @LEN @LOWER

@MATCH @MCI @MOD

@MOUSEPOS @MSGBOX @NAME

@NEXT @NOT @NULL

@NUMERIC @OK @PATH

@POS @PRED @PROD

@QUERY @REGREAD @RETCODE

@SENDMSG @SHIFT @SHORTNAME

@STRDEL @STRINS @SUBSTR

@SUCC @SUM @SYSINFO

@TAB @TEXT @TRIM

@UPPER @VERINFO @VOLINFO

@WINACTIVE @WINATPOINT @WINCLASS

@WINDIR @WINDOW @WINEXISTS

@WINPOS @WINTEXT @ZERO

Functions
DialogScript contains a range of functions (see Function Reference) which are evaluated at run time and return a
string containing information.

Functions start with an @ symbol followed by the function name.    The argument(s) to the function are in the form
of a string enclosed in parentheses.    The parentheses must be present even if the function takes no arguments.   
For functions that take more than one argument the arguments are separated by commas.

Here are some examples of functions:

@ASK(Do you want to continue?)

@EQUAL(%F,WIN.INI)

Note that because the @ symbol is used to identify functions you cannot use it for any other purpose unless it is
enclosed within double quotes..

GOSUB
Syntax:

GOSUB    <string>

Description:

Causes script execution to continue at the command following the label :<string>.    When an EXIT
command is encountered, execution will jump back to the command following the GOSUB.

OK:

Leaves unchanged.

Example:

GOSUB sayhello

INFO Goodbye

EXIT

:sayhello

    INFO Hello

    EXIT

See also:

EXIT    STOP

GOTO
Syntax:

GOTO    <string>

Description:

Causes script execution to continue at the command following the label :<string>.

Note that using the GOTO command to branch to a label that is within an IF ... END or REPEAT ... UNTIL
group of commands will result in a "Missing END or ELSE" or "UNTIL without REPEAT" error message,
unless the GOTO command and the label are both within the same group of commands.

Using a GOTO command to branch out of a REPEAT ... UNTIL group of commands will eventually result in a
"Command nested too deeply" error.    The reason is that the DialogScript interpreter does not know that
the REPEAT command has finished until it has executed the UNTIL command with the terminating
condition as true.

OK:

Leaves unchanged.

Example:

GOTO label

WARN This message box will not be displayed

:label

INFO This message box will be displayed.

See also:

GOSUB

IF
Syntax:

IF    <string>

      ... commands executed if string not null (true)

ELSE

      ... commands executed if string is null (false)

END

Description:

The IF command is used to allow conditional execution of commands in a script.    The <string> is
evaluated and if the resulting string is non-null this is treated as true.    If the result is null this is treated
as false.

If <string> evaluates to true, the commands between the IF command and the ELSE (or the END, if ELSE
is omitted) are executed.    If <string> is null (false) and an ELSE is present the commands between the
ELSE and END are executed.    Otherwise execution skips to the line following the END.

IF commands may be nested.    If this is done then it is important to ensure that the correct ELSE and END
commands are not omitted.    For clarity it is a good idea to indent the nested IF commands as shown in
the example.

Note that unlike many other languages there is no need for a THEN at the end of the IF command line.   
Because DialogScript treats a non-null result for the condition string as true, if you do mistakenly put a
THEN at the end of an IF command line this will be treated as part of the string which will therefore always
be non-null and the condition will always be true.    A similar problem will occur if you omit the @ from a
function name, causing it to be treated simply as text instead of being evaluated as a function.

OK:

Leaves unchanged.

Example:

IF @ask(Do you want to continue?)

    info You answered YES

ELSE

    IF @ask(Are you sure?)

        info You answered NO

    ELSE

        info Make your mind up

    END

END

See also:

@NOT @NULL REPEAT Tip

INFO
Syntax:

INFO    <string>

Description:

Displays a dialog box containing an information symbol icon and the message <string>.    Execution of the
script continues when the OK button is pressed.

OK:

Set to true.

Example:

INFO There is %SKb of free space on drive D:

See also:

WARN @ASK @MSGBOX @QUERY

INIFILE
Syntax:

INIFILE    OPEN,    <inifile name>

INIFILE    WRITE,    <section name>, <key name>, <string>

Description:

The INIFILE OPEN command sets the name of the INI file which will be used by any succeeding INI file
read and write commands to <inifile name>.    If no INI file is specifically opened, then scripts will use a
file DEFAULT.INI.

The INIFILE WRITE command writes a line <key name>=<string> under the section header <section
name> in the currently open INI file.    A section name of [Default] is used if the <section name>
parameter is null.

Note that there is no INIFILE CLOSE command as Windows only keeps an INI file open for the duration of
each read or write.

OK:

Unchanged..

Example:

INIFILE OPEN,MYSCR.INI

INIFILE WRITE,Data,Name,Fred Bloggs

See also:

@INIREAD

LINK
Syntax:

LINK    CREATE, <filename>, <link path>, <link name> {, <icon path> {, <start directory> {,
<arguments> }}}

Description:

The LINK CREATE command is used to create a shortcut to a program or file.

The <filename> is the name of the program or file that the shortcut will be a link to.    The <link path> is
the directory or folder in which the shortcut is to be created. The Windows desktop can usually be found at
the path @WINDIR()\Desktop.    The Start menu is usually found at the path @WINDIR()\Start Menu.   
The <link name> is the description that will appear beneath the shortcut.

The <icon path> is optional.    If present it gives the location of the icon that will be used for the shortcut.

The <start directory> is optional.    If present it gives the starting directory that will be used.

The <arguments> parameter is also optional.    If present, it specifies arguments on the command line of
program <filename>.    If commas are part of the arguments they should be enclosed in quotes.

If successful, a shortcut will be created with the path <link path>\<link name>.LNK.

OK:

Set to false if the LINK command fails.

Example:

rem create a shortcut on the desktop

link create,c:\prog\readme.txt,@windir()\desktop,Shortcut to readme.txt

if @ok()

    info Link created successfully

else

    warn Link create failed

end

See also:

@DDEITEM DDE

LIST

Syntax:

LIST    <command>, <list>, <parameters>

Description:

The LIST command is used to create, manipulate and dispose of string lists.    DialogScript allows you to
have several string lists (currently 9) each identified by a number.    List boxes and combo boxes (list
controls) which appear in a dialog window can also be treated as string lists.    The parameter <list> must
be either a list number or the name of the dialog list control to which the command will apply.
Lists can contain any number of strings holding up to 255 characters each.    A list can either be sorted, or
will retain the order in which the information was entered.
For more information see Using Lists and Data Lists.

This command has changed in one major respect which is that the order of parameters of this command
has been changed. Parameter 1 and parameter 2 are swapped round. This means that the command now
takes the format:

LIST <operation>, <list_id> {other params ...}

which is consistent with all the other commands. The previous form, with the <list_id> as the first
parameter, was inconsistent.

In addition to this, the following changes have been made:

LIST ASSIGN now assigns text to the list if the third argument is not a valid list name. In other words:

LIST ASSIGN,1,2

would copy contents of list 2 to list 1, but:

LIST ASSIGN,1,Here is some text@cr()Here is some more text

would assign two lines of text to the list.

LIST FILELIST supports a pseudo-attribute * which works in conjunction with a root path (not a file spec)
to produce a recursed list of directories starting at that path. For example:

LIST FILELIST,1,C:\Windows,*

would create a list of all the subdirectories of Windows.

LIST LOADFILE can load text from a file, or from a text file that has been compiled into a special VDS
resource file. In the latter case, the filename must be followed by a vertical bar and the offset, in bytes, of
the text file within the resource. No spaces are permitted between the filename, the vertical bar and the
offset.

LIST SORT sorts the contents of a list. (It works with string lists 1 .. 9 only, not LIST or COMBO elements)

LIST PRINT, <list_id> {, <font_name>, <font_size>} prints the contents of a list.

OK:

Set to true if the command is successful, false if it fails.

Example:

LIST CREATE,1, SORTED
LIST ADD,1, Fred Jones
LIST ADD,1, John Smith

See also:

@COUNT @INDEX @ITEM @MATCH @NEXT

DIALOG ADD,LIST,<name>,<top>,<left>,<width>,<height>,<style>{,style>}

This dialog element creates a list box at the position and size specified. LIST dialog elements have built-in tab-
stops so that information containing tabs is displayed in columns.

The CLICK style causes a <name>CLICK event to be generated when an item is chosen from the list.

The DBLCLICK style returns a <name>DBLCLICK event if user double-clicks an item in the list box.

The SORTED style specifies whether the list items are to be maintained in ASCII order or not.

To get data into the list box you must use the LIST command.

Labels
Labels are used as the target of GOTO and GOSUB commands.    They start in the first character position of a line
with a colon, and are followed by the label name.

This is an example of a label:

:LABEL

Labels, GOTO and GOSUB commands are used to change the order of execution of script commands.

OPTION
Syntax:

OPTION CENTURYWINDOW,nn

OPTION DECIMALSEP, <separator>

OPTION ERRORTRAP, <label>

OPTION FIELDSEP, <separator character>

OPTION FILENAMES, <SHORT|LONG>

OPTION PRIORITY, <IDLE|NORMAL|HIGH|REALTIME>

OPTION REGBUF, <buffer-size>

OPTION REGKEY,<new_default_key>

OPTION SCALE, <pixels-per-inch>

OPTION SKDELAY, <interval>

OPTION SLEEPTIME, <interval>

Description:

The OPTION command is used to set various options to be used by your script.    If the value is missing the
default value is set.

OPTION CENTURYWINDOW,nn

This option lets you specify a different start year for the 100 year window for two digit year numbers
which will run from 19nn to 20nn-1. Numbers >= nn have 1900 added, < nn have 2000 added. So if you
make nn 100, all years will be 21st century.

OPTION DECIMALSEP is used to force the decimal separator to be a period, i.e. OPTION DECIMALSEP,"."
This should be used if there are any floating point numeric constants in the script. If it is not, then
numeric values will be interpreted according to the Windows regional settings (for example, a separator of
a comma would be expected in many European countries) so a script that worked in one country would fail
in another. Note that numeric values with commas as a decimal separator should have quotes round them
if they are used in a script. Commas are treated by the interpreter as parameter separators, so if a value
is written with a comma as a decimal separator the interpreter will treat the number as two separate
integers.

OPTION ERRORTRAP lets you define a label which execution will branch to if a run-time error occurs.    If
no label is present, error trapping is turned off.

OPTION FIELDSEP sets the field separator to be recognised by the PARSE command when it splits a string
up into its separate fields.    The default is the vertical bar (|).

OPTION FILENAMES lets you specify whether the LIST ... DROPFILE command returns short or long
filenames.    It is usually better to use short filenames if you will be passing filenames to a DOS program.
Note that the LIST ... FILELIST command and the @FILE() function only return long filenames which are
not full paths; to convert these names to short names the @SHORTNAME function must be used.

OPTION PRIORITY lets you set the priority level of the program. If IDLE, the program runs only if the
system is idle, which is a good choice for scripts that are intended to run in the background. NORMAL is
the priority level that all programs run at by default. HIGH and

REALTIME are higher priority levels and should be used with care, if at all, as they may cause problems by
giving your program a higher priority than Windows system functions.

OPTION REGBUF lets you specify the size of the buffer used when reading and writing Registry key entries
and INI keys using the REGISTRY command and @REGREAD function.    The default size is 256 bytes,
which is large enough for most purposes.    Registry keys can be much larger, though, in which case you
will need to use this option to make the buffer larger.

OPTION REGKEY,<new_default_key>

This option defines the registry key root to be used when DEFAULT is specified in the REGISTRY command
and @REGREAD function. If not changed by this option the default registry key root is
HKCU\Software\SADE\VDS\3.0\User Scripts\<scriptname>\.

The option prepends 'Software\' to <new_default_key>, and appends a '\', so the parameter value should

be something like 'MyCompany\MyApp'. The purpose of this option is to allow script writers to use their
own registry key root without having to specify the full path in each registry command or function call.
However, if scripts are for your own use the default key will suffice.

OPTION SCALE is used to make a dialog scale itself when different font sizes are used.    The value in
<pixels-per-inch> should be the same value given by @SYSINFO(PIXPERIN) on the system on which the
dialog was designed (see Screen Metrics.)    This value is determined by the font size chosen in Control
Panel Display Settings.    The 1standard setting is Small Fonts, which gives a value of 96 pixels per inch.   
If the value on the user's system is different from the value specified in this option then the size of the
dialog and the position and size of dialog elements will be scaled to display the correct proportions with
the font size chosen.

OPTION SKDELAY can be used to introduce a delay, specified in milliseconds, between sending characters
using the WINDOW SEND command, if this is required for more reliable sending.    The default is 10ms.

OPTION SLEEPTIME can be used to specify the interval, in milliseconds, that a DialogScript program
suspends itself while executing a WAIT command.    The default is 50ms.    Increasing this value to, say,
500, would reduce the system overhead of a script that simply waits in the background, but would give
poor performance when users interact with a dialog.

OK:

Unchanged.

Example:

OPTION FILENAMES,SHORT

OPTION SLEEPTIME,200

Overview
Visual DialogScript is a programming tool that enables you to quickly develop simple batch procedures or dialog-
based programs for Windows as easily as writing a batch file or Basic program for DOS.    It includes an interactive
editor and debugger for creating programs, called scripts, which are written in the DialogScript programming
language.

The package also includes tools such as a Dialog Designer for visually designing dialog boxes, an Icon Designer
(Not packaged in the shareware version) to let you create icons for your scripts, a resource compiler (Not packaged
in the shareware version) and a Window spy for finding out information about other applications' windows.    There
is also an Application Wizard which will generate all the DialogScript code for a complete dialog-based program.

DialogScript has a simple syntax, with English-like commands, spreadsheet-like formula functions and typeless
variables.    Script programs can be tested instantly using the development environment.    You can then create an
EXE which can then be run just like any other Windows application.    Registered users can distribute the EXE files
created by Visual DialogScript without any further payment being required.

DialogScript is not intended to be an alternative to programming languages like C, Basic or Pascal for application
development.    But it is a better choice when you need a simple utility or a quick solution to a problem.    Most
DialogScript scripts can be written and tested in a matter of minutes once you are familiar with the script language.

PARSE
Syntax:

PARSE <field list>, <string>

Description:

The PARSE command provides an easy way to split up strings which represent records in a database into
their constituent data fields.

The <field list> parameter consists of a semicolon-separated list of DialogScript variables or, if a dialog is
showing, dialog control names, which are to receive the data.    The <string> contains the data record.

Note that because DialogScript uses commas to separate parameters on a command line, semicolons are
used to separate the variable and field identifiers in the field list.    Also, if a comma appears in <string>
any data after the comma will be lost.    This should not be a problem as the data will normally be passed
to the command line using a variable, not a literal string.

Note also that to prevent variables where they appear in the field list from being substituted by their initial
contents the field list itself should be enclosed in quotes.    This is not necessary if the list contains only
dialog control names.

If there are fewer items in the string than in the field list, the remaining fields are set to blank instead of
keeping whatever they held before.

OPTION FIELDSEP sets the field separator used by the PARSE command when it splits a string up into its
separate fields.    By default this is the vertical bar character: |.

OK:

Unchanged.

Example:

%Y = @next(1)

parse "%N;%A;%B;%C", %Y

See also:

OPTION

PLAY
Syntax:

PLAY    <file name> {, WAIT}

Description:

Plays an audio wave (*.WAV) file.    If the parameter WAIT is specified the script does not proceed to the
next command until the sound is finished.

OK:

Leaves unchanged.

Example:

PLAY intro.wav,WAIT

See also:

@MCI

DIALOG ADD PROGRESS,<name>,<top>,<left>,<width>,<height>,<value>

This dialog element creates a progress bar at the indicated position.    The number <value> indicates its initial
setting, as a percentage value (0 to 100)..

Saves a script if it has been changed every two minutes

Preferences
From the Options menu you can set your operating preferences for the development environment.

Click on a menu item to learn what it does.

DIALOG ADD,RADIO,<name>,<top>,<left>,<width>,<height>,<caption>,<value list>,<value>{,styles}

This dialog element creates a group of radio buttons at the position and size specified, with a caption of <caption>
and a set of possible values shown in <value list>.    The values in the value list are separated by a vertical bar
delimiter, for example: Male|Female. The initial setting is <value>.

If the CLICK style is specified a <name>CLICK event is generated whenever the radio button group is clicked.

Note : The RADIO dialog element is a group dialog element. See the decription of the GROUP element for more
information. However, it is not actually recommended to place other dialog elements within the group box of the
RADIO dialog element. In the Dialog Designer it is difficult to do this, but it can be done by manually setting the
top left corner of elements so that they fall within the boundary of the the RADIO dialog element.

REGISTRY

Syntax:

REGISTRY    DELETE, <root key>,    <subkey>

REGISTRY    WRITE, <root key>,    <subkey>,    <name>,    <value>{,<Type>}

Description:

The REGISTRY command modifies the value of keys in the Windows registry.

REGISTRY DELETE can delete either only a whole key and all its values or specifying a third parameter, a
value name. If present, only that value is deleted, not the whole key.

Note that VDS does nothing to hide the differences between Windows 95, 98 and NT. So, although you can
delete a key containing subkeys in Windows 95, this will fail in Windows NT because NT does not allow it.
If you are delevoping scripts for NT you will have to enumerate the keys and delete them individually.

REGISTRY WRITE supports an optional fifth parameter, which can be BINARY or DWORD. This parameter is
used to specify the type of value to be written. If omitted, the type will be a string if the value did not
previously exist in the registry, otherwise it will take the same type as the existing value if possible. (Note:
VDS registry commands and functions support only string, binary and dword value types: if you try to
write to other types the effect is undefined.)

The second parameter to this command, DEFAULT, now uses a key root of
'Software\SADE\VDS\3.0\UserScripts\<scriptname>' unless this has been modified using OPTION REGKEY.
(This affects @REGREAD as well.)

The value of the third parameter may be null. However, it only makes sense for it to be null when the
second parameter is DEFAULT. When the default key is used, VDS generates a unique registry branch for
that project (as described in the paragraph above, or you can specify your own using OPTION REGKEY.) In
many cases there is no need for further levels of subkeys as you can use named values for all the data
you need to store.

When writing to a binary key: the value is now a single parameter with byte values separated by fieldsep.
Example:

REGISTRY WRITE,CURUSER,Software\SADE\Something,BinaryValue,0|1|8|0

The @regread function returns binary values in a complementary format. (With the previous syntax of
passing the binary values as individual parameters separated by commas, people thought you could pass
the comma separated values in a single variable. You could not, because the interpreter treated the whole
contents of the variable as a single parameter.)

<root key> specifies the root key to search from.    The permissible values are:

ROOT specifies HKEY_CLASSES_ROOT
CURUSER specifies HKEY_CURRENT_USER
LOCAL specifies HKEY_LOCAL_MACHINE
USERS specifies HKEY_USERS
DEFAULTspecifies the key Software\SADE\VDS\3.0\UserScripts in HKEY_CURRENT_USER.

<subkey> specifies the key value to use.    Keys several levels deep can be specified using backslashes.

<name> specifies the named value to change    If null, the default key value is changed

<value> is the string value to which the key is set.

Note: Registry keys may be one of a number of different types.    DialogScript recognises the following
types: String, DWord (32-bit integer) and Binary (byte array).    Because DialogScript variables are
untyped, DialogScript can only create string type keys.    However, if a Registry key already exists and has
a non-string type, DialogScript will attempt to convert the <value> to the data type used by the key.   
Note that binary keys are created using a buffer which has a default size of 256 bytes.    This can be
increased if necessary using the OPTION REGBUF command.

WARNING: Modifying the system registry is potentially dangerous, and can render Windows
unable to run.    Ensure you have a backup of the registry files before experimenting.

OK:

Set to false if the REGISTRY command fails.

Example:

REGISTRY WRITE,ROOT,.wsc,,wnscript

REGISTRY WRITE,DEFAULT,Test,Value,31

REGISTRY WRITE,DEFAULT,Test,Binkey,1,3,5,7,9

REGISTRY DELETE,ROOT,.tmp

See also:

@REGREAD Tip

REM
Syntax:

REM    <text>

Description:

Use the REM command to enter a comment in your script.

OK:

Leaves unchanged.

Example:

REM This script does something interesting

See also:

REPEAT
Syntax:

REPEAT

      ... commands ...

UNTIL <string>

Description:

Commands between the REPEAT and UNTIL lines are repeatedly executed while the result of <string>
evaluates to null (false).    If the string is non-null then script execution continues on the line following
UNTIL.

REPEAT commands may be nested.    For clarity it is a good idea to indent the commands nested within
REPEAT ... UNTIL as shown in the example.

It is not recommended to use the GOTO command to branch out of a REPEAT ... UNTIL group of
commands.

OK:

Leaves unchanged.

Example:

REPEAT

    %A = @SUM(%A,1)

UNTIL @EQUAL(%A,6)

See also:

@NOT @NULL IF Tip

RUN, RUNH, RUNM, RUNZ
Syntax:

RUN    <filename>    <parameters>{,WAIT, <priority level>}

Description:

Runs the file or program <filename>, with the additional parameters specified.    If a filename is given
then the file is opened using the shell open command stored in the Windows registry.

If the WAIT parameter is included then script execution does not continue until the program has
terminated.

You can optionally specify the <priority level> for the task as one of: IDLE, NORMAL, HIGH or REALTIME.
If IDLE, the program runs only if the system is idle. NORMAL is the priority level that all programs run at
by default. HIGH and REALTIME are higher priority levels and should be used with care, if at all, as you
may experience problems by giving programs a higher priority than Windows system functions.

The variants of the command are:

RUN - run as a normal window;

RUNH - run in a hidden window;

RUNM - run as a maximized window;

RUNZ - run minimized as an icon.

If you run a DOS program and want it to close its window when it finishes make sure the program's "close
window on exit" property is set.

Note: (32-bit only) The RUN command does not work with long filenames that include a space.    This is
because it looks for a space to determine the end of the filename and the start of any parameters.    If this
is a problem, either use @SHORTNAME to convert the file name to a DOS-compatible short name, or use
the SHELL command instead.

OK:

Set to false if the command fails.

Example:

RUN winword.exe

RUNZ c:\utils\pkzip.exe c:\temp\test.zip *.txt,WAIT

See also:

@RETCODE SHELL

RUNH
see: RUN

RUNM
see: RUN

RUNZ
see: RUN

SHELL
Syntax:

SHELL    <operation>, <filename>, <parameters>, <start-dir> {AIT, <priority level>}

Description:

Performs the Windows shell operation <operation> on the file <filename> with optional parameters
<parameters> in the optional startup directory <start-dir>.    If WAIT is specified the script waits until the
operation is complete.

If the <operation> is null, the default operation is used. The effect is the same as when you double-click
on the file in Windows Explorer.

You can optionally specify the <priority level> for the task as one of: IDLE, NORMAL, HIGH or REALTIME.
If IDLE, the program runs only if the system is idle. NORMAL is the priority level that all programs run at
by default. HIGH and REALTIME are higher priority levels and should be used with care,re, if at all, as you
may experience problems by giving programs a higher priority than Windows system functions.

OK:

Set to false if the command fails.

Example:

SHELL "",My Data.LNK

SHELL open,http://www.swregnet.com/

SHELL print,Report.DOC

SHELL printto,Budgets.XLS,"Microsoft Fax WPSUNI.DRV FAX:",,WAIT

See also:

@RETCODE RUN

SHIFT
Syntax:

SHIFT

Description:

Shifts the command line parameter variables so that %8 takes the value of %9, %7 takes the value of %8
and so on down to %1 takes the value of %2.    This is similar to the MS-DOS SHIFT batch file command.

OK:

Leaves unchanged.

Example:

SHIFT

See also:

DIALOG ADD STATUS,<name>,<value>,<style>

This dialog element creates a status panel at the bottom of the dialog window, containing the text <text>.    A
dialog can only have one status panel.

STOP
Syntax:

STOP

Description:

Halts execution of a script unconditionally.    It is similar to EXIT but will terminate a script even from
within a subroutine..

OK:

Unchanged.

Example:

STOP

See also:

EXIT GOSUB

DIALOG ADD STYLE,<name>, <fontname>, <fontsize>, <text attributes>, <background color>, <foreground
color>

The STYLE dialog element defines a typeface, text attributes and colors which are associated with a style name.   
The style name can be used in the DLGTYPE dialog element to have it apply globally to the whole dialog, or it can
be applied to individual elements.    The default font is MS Sans Serif, size 8.    The text attributes are B (bold), I
(italic), L (left justified), C (centered) or R (right justified). The colors can be BACKGRND, FOREGRND, BLACK,
DKRED, DKGREEN, BROWN, DKBLUE, MAGENTA, GRAY, SILVER, RED, LTGREEN, YELLOW, LTBLUE, CYAN, WHITE.   
Not all dialog controls are affected by all style attributes.

Screen metrics
Metrics is the term used by Microsoft to describe the characteristics of an output device, such as the display.    One
factor that may affect your scripts is the number of pixels per inch used by the display driver.. Windows displays
typically use either 96ppi or 120ppi, the latter when the Large Fonts display option is selected.

When large fonts are used, text takes up more space relative to the dialog controls it is displayed in.    This can lead
to text in a dialog box being truncated if it is run on a system which uses larger fonts than the system on which the
dialog box was designed.

There are two solutions you can adopt if your scripts may be run on systems using either small or large fonts.   
One is to allow plenty of space so that text displays correctly whichever font size is chosen.    The other is to use
OPTION SCALE, which causes VDS to attempt to scale the dialog box to the right size for the system on which the
script is being run.

Script Window

The IDE automatically starts up by opening the project that was last used.

The script window is used for editing and debugging scripts.    The Editor Options from the Options menu opens a 5
page properties dialog that allows the syntax highlighting, editor behaviour and fonts to be customized. An "auto-
correct" and a "code template" facility are also provided.

Breakpoints can be set/unset by clicking in the gutter beside the line where the breakpoint is, as well as from the
context menu. Breakpoints are shown by a red graphic with the letter B.

Bookmarks are shown by a green numbered graphic.

Project options such as breakpoints, bookmarks, icon file, executable target and so on are stored in a project file
(.DSP) with the same path and name as the script source.

During single-step debugging, the command which is about to be executed is shown highlighted in the script
window.    If an error is found during execution of a script, the line containing the error is highlighted when the
DialogScript interpreter displays the error message.

The context menu provides a quick way to access many useful functions.

The menu is context sensitive.    You can place the cursor in the middle of a command or function and select Help at
Cursor to call up the help page for that command or function from the menu.    Alternatively you can select some
text with the mouse and then press Control + F1.    The command reference and function reference sections of the
online help can be called up directly from the menu.

You can set breakpoints to halt the execution of a script by placing the cursor in the line at which you want
execution to stop, right-clicking the mouse and selecting Add Breakpoint at Cursor from the menu. If you place the
cursor on a breakpoint the option changes to Clear Breakpoint at Cursor.    You can also clear all breakpoints in one
go.

You can also call up the dialog designer from the context menu, or by pressing F2.    To edit an existing dialog
description, place the cursor in the first line of the DIALOG CREATE command before opening the editor.

String Lists
String lists can be used to hold the contents of text files as well as lists of ASCII data.    As the name implies, they
are lists of strings.    The length and number of strings in a string list are limited only by available memory.

DialogScript supports nine independent string lists, identified as 1 to 9.    In addition, the list box and combo box
dialog controls are also string lists, and can be manipulated using the same list commands.

String lists can be unsorted, in which case strings remain in the order they were loaded and items may be added at
the end using LIST ADD, inserted using LIST INSERT or replaced using LIST PUT. Using the LIST SEEK and LIST
PUT commands, and the @MATCH and @ITEM functions, lists can be used as random access files.

Alternatively lists may be sorted, in which case DialogScript maintains the order of items and new items must only
be added using LIST ADD.    To replace an item in a sorted list you must delete it and then add it.

For more information on how lists are used, see Using Lists.

For information on how to load data into lists see Data Lists.

Strings
In DialogScript, all variables and parameters to commands and functions are strings.    Strings can contain
embedded variables and functions, which are substituted or evaluated as the string is processed from left to right.

So if %D contains C: then the string:

Drive %D has @VOLINFO(%D,F)Kb free

would be evaluated to:

Drive C: has 32456Kb free

Note that the symbols % and @ (which are used to denote variables and functions), commas (which are used to
split strings into two or more parameters for commands or functions that expect multiple parameters), and
brackets (which enclose the parameters of an individual function), cannot normally appear in a string because of
the special meaning attached to them.    To overcome this, strings can be enclosed in double quotes (").

Text within double quotes is interpreted simply as text: no variable substitution or function evaluation will be
performed.    Quotes can appear anywhere in a string to prevent substitution or evaluation for a particular section,
as in this example:

%A = Order @input(Enter quantity,1) "widgets @ "%R" each (incl. "%T"% sales tax)"

DIALOG ADD,TASKICON,<name>,<filename>,<tooltip text>

This dialog element creates a task bar icon which will generate <name>ICON events when clicked with the mouse.
If no <filename> is specified the script's own icon is used, otherwise the named icon (which can be an EXE or ICO
file) is used (the <filename> can refer to a resource file and specify a byte offset) .    The <caption> appears as a
tooltip when the cursor is placed over the icon.    The caption text can be changed using the DIALOG SET command.
The icon can be enabled and disabled using DIALOG ENABLE and DIALOG DISABLE.

DIALOG ADD,TEXT,<name>,<top>,<left>,<width>,<height>,<value>{,styles}

This dialog element creates a text control at the position and size specified, containing the text <text>.

The CLICK style generates a <name>CLICK event if user clicks on the text.

TITLE
Syntax:

TITLE    <string>

Description:

The title set here is the application title. It appears only in message and input boxes. The title of the task
bar button is the title of the main window. Console scripts (in other words, those that do not have a visible
window) do not appear on the task bar at all.

OK:

Leaves unchanged.

Example:

TITLE Daily Backup

See also:

DIALOG

DialogScript does not allow compound conditions.    However, you can have a group of statements executed if one
or more of several conditions are true by concatenating the conditions, since DialogScript considers a non-null
result to be true.    For example:

if @ext(%F,COM)@ext(%F,EXE)@ext(%F,BAT),run %F

To convert from using INI files to registry keys you can usually just replace the INIFILE command with REGISTRY,
and insert the parameter DEFAULT at the front of the parameter list.

Using Lists
Syntax:

LIST ADD,<list>,<text>

LIST ASSIGN,<list>,<list2>

LIST CLEAR,<list>

LIST CLOSE,<list>

LIST COPY,<list>

LIST CREATE,<list>, {SORTED}

LIST DELETE,<list>

LIST INSERT,<list>

LIST PASTE,<list>

LIST PUT,<list>,<text>

LIST SEEK,<list>,<record number>

LIST WRITE,<list>,<text>

Description:

These LIST commands are used to modify, save and dispose of string lists.    The parameters <list> and
<list2> must be either a list number or the name of the dialog list box to which the command will apply.   
An error will occur if the list does not already exist or the record number (for the SEEK command) is out of
range.

ADD is used to add an item to the list.    You use this to add items to a sorted list (they are inserted in the
correct position according to the sort order) or to append items to an unsorted list, much as you would
write successive lines to a text file.

ASSIGN copies the contents of <list2> to <list>

CLEAR is used to remove all items from a list and reset the item pointer to zero.

CLOSE must be used to dispose of a list that you have CREATEd once you have finished with it.    This
releases the memory it used, and makes the list number available again for a new list.

COPY causes the contents of <list> to be copied to the Clipboard.

CREATE creates a new, empty string list.    The option SORTED specifies whether the list is to be
maintained in ASCII code order.

DELETE deletes the item at the position in the list indicated by the index (pointer).    This is the first item
(item 0) when the list is first opened, but can be modified by means of the SEEK command.

INSERT inserts a new item in front of the current pointer position.    After the insertion, the index position
is the item following the one just inserted. Note that you should not use INSERT with sorted lists.

PASTE causes <list> to be filled with the contents of the Clipboard (as text.)

PUT is used to write the specified text to the position in the list indicated by the index (pointer).    PUT lets
you treat a list as a random access file.    Note that you cannot use PUT with sorted lists.

SEEK is used to set the index pointer to a specific item number.

OK:

Set to true if the command is successful, false if it fails.

Example:

LIST SEEK,1, 3

LIST WRITE,1,This is item 4 in the list

LIST SAVEFILE,1,LIST.TXT

LIST CLOSE,1

See also:

@COUNT @INDEX @ITEM @MATCH @NEXT LIST Data
Lists

Using MCI
DialogScript allows you to control multimedia devices using the Windows Multimedia Control Interface (MCI).   
DialogScript provides the @MCI function, which can be used to send MCI command strings and obtain the
response, which may consist of information or an error message.

MCI is a command language in its own right.    For a complete description of it, refer to Microsoft's own multimedia
documentation or third party books on Windows multimedia development.    If you can obtain the help file
MCISTRWH.HLP, supplied with Microsoft Visual C++, this will also be a useful reference.

MCI command strings are English-like and readily understandable.    You open a device, play it, and then close it
when you are finished with it.    For example, the command strings:

open cdaudio

play cdaudio from 1 to 2

close cdaudio

would play the first track of an audio CD.    Audio data files must be given a name, called an alias, which is used in
the MCI commands.    For example:

open C:\WINDOWS\MEDIA\THEMIC~1.WAV alias sound

play sound

close sound

If the above MCI command strings were sent using a DialogScript script then the result would be nothing, because
the sound would be stopped by the close command before it had a chance to play.    By appending the word wait to
an MCI command string, control is not returned to the script until the command has completed.    If the command

play cdaudio from 1 to 2 wait

was sent then execution of the script would be held up until the track had finished playing.

Variables
DialogScript allows you to have up to 99 variables.

35 standard variables.    Variable names start with a percent symbol, followed by the character 1 to 9 or A to Z.

As well as the standard variables %A to %Z and %0 to %9 you can have 64 user-defined variable names. These
variables begin with %%, a letter, then alphanumerics plus underscores (e.g. %%my_variable_1.) There is no limit
on the length of the variable name.

The variables %1 to %9 contain the command line parameters to DialogScript, which can be used to pass
information to the script program at run time.    Unlike a DOS batch file you can also assign your own data to the
variables %1 to %9, overwriting the original contents.    The read only variable %0 can also be used in a compiled
EXE script: it contains the full pathname of the program.

DialogScript variables are untyped strings of unlimited length.    Because variables are untyped it is up to you to
ensure that, for example, where a function requires a numeric value the variable passed to it contains a string
which is a valid number.

Note that the use of the percent symbol to identify variables, and the @ symbol to identify functions, means that
you cannot generally use these symbols in a string of text.    Double quotes can be used to enclose text containing
these symbols and prevent them from being interpreted as variables or function names, like this:

INFO Email address:@tab()%N"@dialogscript.com"

DialogScript also supports string lists.    You can think of these as arrays of strings, which can be maintained in
sorted or unsorted order and accessed either sequentially or by item number.

WAIT
Syntax:

WAIT <interval>

WAIT EVENT {, <interval> }

Description:

Pauses execution of the script for a period of <interval> seconds.    If <interval> is not specified then the
default period is 1 second.

The value for the timer <interval> may be a floating-point value. The minimum value that can be specified
is 0. The minimum time that the script will actually wait for is governed by the default or specified value of
OPTION SLEEPTIME.

The WAIT EVENT command is used in dialog programming.    It is only valid when a dialog is being
displayed.    It causes the script to wait indefinitely until an event occurs such as a button being pressed.

If an interval is specified in a WAIT EVENT command, then a TIMER event will be generated when the
interval has elapsed.    This is useful for dialogs that must be updated at intervals, because it allows you to
respond immediately to button and other events as well.

OK:

Not affected.

Example:

%T = @INPUT(Enter alarm time [hh:mm]:)

repeat

    wait 30

    %N = @datetime(t)

until @EQUAL(%T,%N)

beep

warn Wake up!

See also:

WARN
Syntax:

WARN    <string>

Description:

Displays a dialog box containing an exclamation mark icon and the message <string>.    Execution of the
script continues when the OK button is pressed.

OK:

Set to true.

Example:

WARN There is less than 100Kb of free space on drive D:

See also:

INFO @ASK @MSGBOX @QUERY

WINDOW
Syntax:

WINDOW    ACTIVATE,    <window>

WINDOW CLICK,    <window>,    <x pos>,    <y pos>

WINDOW    CLOSE,    <window>

WINDOW    HIDE,    <window>

WINDOW    ICONIZE,    <window>

WINDOW    MAXIMIZE,    <window>

WINDOW    NORMAL,    <window>

WINDOW    ONTOP,    <window>

WINDOW    POSITION,    <window>, <top>, <left>, <width>, <height>

WINDOW    SEND,    <window>,    <string>

WINDOW SETTEXT, <window>, <string>

Description:

The WINDOW command is used to control other windows.    The value of <window> is the window
identifier, which specifies which window is the target of the command.    The <window> is normally a main
window or MDI child window.

WINDOW ACTIVATE activates (restores from an icon, or brings to the top) the specified window.

WINDOW CLICK simulates a mouse click at the point <x pos>, <y pos> relative to the top left corner of
the specified window.    To simulate a double click use the same command twice in succession.    The
command WINDOW RCLICK can also be used to simulate a right-button click.

WINDOW CLOSE closes the specified window.

WINDOW HIDE hides the specified window or task bar button.    To un-hide the window, use WINDOW
NORMAL.

WINDOW ICONIZE minimizes the specified window.

WINDOW MAXIMIZE maximizes the specified window.

WINDOW NORMAL restores to normal size the specified window.

WINDOW ONTOP sets the Topmost attribute of the specified window so that it remains in view even when
not active.

WINDOW POSITION positions the specified window so that it's top left corners are at the co-ordinates
specified.    The width and height can also be specified.    If they are omitted, the window retains its
existing size.

WINDOW SEND sends the contents of <string> to the specified window as simulated keystrokes.    Text
can be entered as ordinary text.    Functions like @TAB(), @CR() and @ESC() can be used for the Tab,
Enter and Escape keys.    You can also use @ALT to simulate the Alt key, @CTRL for the Ctrl key and
@SHIFT for the Shift key.    In addition, the @KEY function can be used to generate the keystrokes for the
Home, End, Up arrow, Down arrow, Left arrow, Right arrow, PgUp, PgDn, Ins and    Del. keys plus F1 to
F12.

WINDOW SEND has been modified. It no longer has the limitation that you cannot send characters with an
ASCII code of 228 or greater. However, now the character @chr(127) cannot be sent.    To send a
@chr(127) you must use two consecutive @chr(127)'s.

Note that WINDOW SEND can only be used to send characters for which there is a key on the keyboard.
This varies from country to country. If there is not a key for a character in the string, that character is not
sent. The WINDOW SEND command now sets OK to false if one or more characters could not be sent.
(The SKTEST.DSC example illustrates this.)

WINDOW SETTEXT sends the contents of <string> to the specified window using a Windows message.   
Text sent to a main window using this command will replace whatever is in the title bar.    To send text to a
control such as an input field <window> must identify that actual control, which is typically done using the

@WINATPOINT function.

OK:

Set to false if no matching window was found.

Example:

if @winexists(Connected to Internet)

    window position,Connected to Internet,100,100

    window ontop,Connected to Internet

end

See also:

@WINACTIVE @WINATPOINT @WINCLASS @WINEXISTS @WINPOS @WINTEXT

Automating Applications

WINHELP
Syntax:

WINHELP <help file path>, <key>

Description:

Displays the specified Windows help file, at the page associated with the key <key>.    The <key> can be
either a keyword or a context ID string defined in the help file. If the second parameter <key> is omitted,
the contents page of the help file is shown.

A context ID string must be prefixed by an "=" character, to distinguish it from a keyword.    It is not
usually possible to find out what the context ID strings are unless you authored the help file.    The
advantage of using a context ID string is that it uniquely identifies a topic in the help file.

If you specify a keyword, and more than one help topic is associated with the keyword, a list of topics is
displayed. If no keyword matches the keyword exactly the keyword index is displayed with the nearest
match selected.

OK:

Set to False if the command fails.

Example:

WINHELP DS.HLP,events

WINHELP ds.hlp,=key_winhelp

See also:

Window Spy
You use the Window Spy to get information about other application windows which you need to automate them
using the WINDOW command.

Lauch the Window Spy Help File

Continues execution of the script from the current point

Controls are objects such as buttons, text and list boxes which may appear in a window.

If a DDE EXECUTE command isn't working, replace DDE EXECUTE by INFO. This will display the DDE command that
is being sent in a message box, so you can check that the syntax is correct and it isn't being truncated.

Traces through the script.    As each line is executed it is highlighted in the editor window.    If the debug window is
showing then its contents are updated after every line so you can watch the variables changing dynamically.

The Edit menu contains options for cutting text, copying it to and pasting it from the clipboard, and for search and
replace.

Copies the text selected in the code window to the clipboard.

Cuts the text selected in the code window to the clipboard

Search for text in the script

Pastes text from the clipboard into the code window at the current cursor position

Events occur as a result of interaction with the script program, such as when a button is pressed or when the dialog
window is closed. Timer events can also occur at intervals.    You can halt a script and wait for an event to occur
using the WAIT EVENT command, and determine the type of event using the @EVENT function..

Note:

1. When copying code from the online help into the script editor make sure that any blank lines are removed and
any word-wrapped lines are restored to a single line or you may get errors when running the script.

2. Some of the example scripts use Windows 95 features which are not available if you are using a 16-bit version of
Visual DialogScript.

The field separator is the character used to separate items of data on a line of text, such as a database record.   
DialogScript uses the vertical bar "|" by default, but this can be changed using the OPTION command.    Data fields
can be split up and stored in separate variables or dialog contrls using the PARSE command.

The File menu contains options for creating new scripts, opening and saving scripts, and for exiting Visual
DialogScript.

Creates a new blank script.

Opens an existing script.

Saves the script.

The Help menu allows you to access Visual DialogScript's online help.

Displays the contents page of the online help.

Allows you to perform a keyword search of the online help.

A dialog control (list box, combo box) that can be treated as a string list

Creates an executable file

If this option is checked the variables in the script window will show their values as a tooltip when roll over with the
mouse.

This option sets the font to be used in the debug window

This option sets the font to be used in the script editor

If this option is selected, when you press the Enter key in the editor, the new line is indented to the same level as
the one above it.

If this option is checked, the development environment will minimize all its open windows when the script you are
testing runs.

Check this option to have all the items in string lists displayed in the debug window.    If the lists are large this
option should be turned off otherwise it will slow down the debugger.

This option sets the tab interval to be used by the editor.    An interval of 1 disables the tab key.

Note that tabs are implemented by inserting spaces.    Tab characters must not appear in a script source file.

If this option is checked the debug window will be kept on top of other active windows.

Prints the script on the default printer

Moves a line or block of text away from the margin by as many spaces as defined in the editor options.

Runs the script.

The Run menu is used to test run    the script.    Other options enable you to set command line parameters for the
script being tested, and make an executable file

Shell operations are defined for each file type in the Windows Registry.    They are the operations like Open and
Print which you see listed at the top of the context menu when you right-click on a file.

Executes the next line of the script

Stops execution of a running script.    If the script is running in the debugger, you can continue or single step
execution from the point at which it stops, and view the values of the variables in the debug window.

Styles are names which are associated with a set of attributes (such as color, font) that determine how a dialog or
a control should appear.    They are set using the STYLE dialog element.    In addition, there are some predefined
styles such as CLICK    that apply only to dialogs or specific controls.

From the Tools menu you can access utilities which may help with the development of your script program.

Tools are placed in the Tools folder, subsidiary to the VDS main folder. The IDE looks in there at start-up, and builds
the Tools menu from the names of the EXE files contained therein. So to install a tool you just place it, or a
shortcut to it, in the Tools folder. A parameter is passed to the tool, of the path of the script being edited.

Shows or hides the debug window

A window can be identified by one of three things:
its title (the text that appears in its title bar)
its class name (an internal name that can be discovered using the Window Spy)
its window identifier (a value obtained by using the @WINACTIVE, @WINEXISTS or @WINATPOINT

functions)

The window class name is the name given to the window by the application's programmer.    This name, unlike the
window title, does not change.    You can find out the window class name using the Window Spy, which can be
selected from the Tools menu.

This is a numeric value by which Windows identifies a specific instance of a window.    Microsoft calls it the window
handle.

How to Register
This program can be registered through our sole agents RegNet - The Registration Network.    RegNet can be
located on the World Wide Web at the following URL:

http://www.swregnet.com/

Registration costs $99.00 US.

You can register online using your credit card.    RegNet offers secure transactions for users of NetScape or
Microsoft Internet Explorer 3 or higher.    To go to the registration page for Visual DialogScript 3 go to:

http://www.reg.net/product.asp?ID=4240

You can reach this page by choosing Register now from the Help menu and then clicking the Register button on the
Registration screen.

Alternatively, you can send a check or money order (in US dollars drawn on a US bank), made payable to
Wintronix, Inc to:

RegNet
24303 Walnut Street
Suite 200
Newhall, CA    91321
U.S.A.

You can also call the toll-free number 1 800 WWW2REG (1 800 999-2734).    Callers from outside the US should call
(661) 288-1827.

Upon registration (allow up to 1 working day for your registration to be processed) you will receive your personal
registration key.    This will be sent by email if an email address was specified when registering.

When you receive your registration key, place it in the program main directory (e.g: c:\program files\Visual
DialogScript). The software will then behave as a fully licensed version.

If you don't have a credit card and can't write a dollar check.

Copyright ©1995 - 1999 S.A.D.E. s.a.r.l. / All rights are reserved.

License Agreement

Visual DialogScript is not free software.    The software is the copyright of    S.A.D.E. s.a.r.l. and is protected under
international law. You may not sell, rent or lease this software. Reverse engineering, decompiling or disassembling
the software, and use of the software to create competitive products, is expressly forbidden.

This is a legal agreement between you and S.A.D.E. s.a.r.l. Subject to your acceptance of the conditions and
restrictions set out below, you are granted a free-of-charge license giving limited rights to use the software.

1) This software is provided as is. All responsibility for determining fitness of purpose rests with you, the user, for
which purpose the free evaluation period is provided.    On purchase of a full license, you are deemed to have
agreed that the software is fit for the intended purpose of use. No refund of the license fee shall be entertained
thereafter, for whatever reason.

2) You agree not to hold S.A.D.E. s.a.r.l. liable for any loss or damage or consequential loss or damage arising
directly or indirectly out of the use of the software or for any other reason.    You accept that it is entirely your
responsibility to take all necessary precautions to safeguard against any such loss, damage pr consequential loss or
damage, howsoever it may be caused.

3) You agree to use the software solely and exclusively for the purposes of evaluation, for a period of not exceeding
28 days.    On the expiry of this period, or when you have completed your evaluation (whichever comes first) you
agree to either a) obtain a full license for the software, or b) cease using the software and any programs created
using it, and to delete all the installed copies of the software that you have made.

4) You agree not to distribute programs created using the software. An unlimited license to redistribute programs
created using the product is granted with every unrestricted license that you purchase.

Obtaining an Unrestricted Software License
--

One full license must be purchased for each non-networked system on which the software is installed and used.   
In the case of systems in which the program is simultaneously accessible to more than one user at a time, such as
a network server, one full license must be purchased for each user who is capable of accessing the software.

Visual DialogScript is copyright © 1995 - 1999 by S.A.D.E. s.a.r.l..    All rights are reserved.

Registering the software
Visual DialogScript is not free software.    You are required to pay a registration fee and register the software if you
wish to continue using it after an evaluation period of not exceeding 28 days.

The software itself is not time limited.    However, some advanced functions as the Icon Editor or the resource
compiler aren't available into the shareware package. Also, in the shareware version, scripts can't be compiled.

When you register the software you will receive a personal registration key file which you must place in the
program's main directory (e.g: c:\program files\Visual DialogScript).    After this key file is placed in the directory
you will be able to compile your scripts.

How To Register

Visual DialogScript is copyright © 1995 - 1999 by S.A.D.E. s.a.r.l..    All rights are reserved.

If you don't have a credit card and can't write a dollar check
If you don't wish to pay by credit card and you are unable to write a dollar check, then you can obtain your
registration code direct from S.A.D.E. s.a.r.l. in France, ONLY if you can send your payment as a check written in
Francs, drawn on a French bank or a Eurocheck.

Terms are strictly cash with order. S.A.D.E. s.a.r.l. can NOT accept credit card orders.

Product: Visual DialogScript 3

Unit price No. copies Total

Program registration fee: FF    699.00     ______ FF______

Software on disk (if required): FF        50.00     ______ FF______

========

TOTAL (payable to S.A.D.E.) FF______

========

Order number: _____________________

Your name: __

Company name: __

Your address: __

__

__

Post/Zip code: _________________________

Country: _________________________

Email address: _________________________

Send to: S.A.D.E. s.a.r.l.

94-96, rue Victor HUGO

94200 IVRY SUR SEINE

FRANCE

Moves a line or block of text closer to the margin by as many spaces as defined in the editor options.

Undoes the last change made to the script.

Undoes the changes made by undo

Getting support
Two levels of support are offered:

Free pre- and post-sales support covers Installation problems, bug reports and the provision of
workarounds (if possible) where a bug is identified,and simple questions, like "Can you do this using
VDS?"

An extra-cost support plan is also offered which provides support cover for the following areas:

Help achieving a specific task (we will write sections of script code)
Help debugging a script that won't work
Help writing a script (within the limit of two hours worth of work)
The provision of interim upgrades of the VDS software by email where a bug prevents a script from working or

necessitates an inconvenient workaround (other customers must wait for the fixed version to be generally
released.)

The support is invoiced per hour . It has to be bought in advance by "Time Pack" :

1 hour = USD 150 Buy through internet

To learn more about advanced support and Time Packs, go to the web site at:

http://www.dialogscript.com/uk/suppo-direct.html

Whatever your support problem, please help us to help you by including the following information in
your request:

Your name, company (as specified on registration)
The product name and version number (from the About box)
The version of Windows you are using
The sequence of events (or a section of script code) which will enable us to reproduce the problem.

Support for Visual DialogScript is provided via email to:

support@dialogscript.com

Please do NOT send large screendump files as enclosures as your message may be deleted
without any notification.

Allows you to select a folder to be used as the default folder for script projects.

Editor Options
A complete property editor is supplied with which allows setting of all aspects of the display styles, fonts, options,
key-definitions, code template definitions, auto-replace entries and printing option:

Click on any area to learn what it does.

Select here the default print settings.

Set here default settings for the I.D.E.

Highlighting
With this Editor option's tab, you can set the syntax highlighting of the script window. These presets are global and
are saved in a file VDSPREFS.DAT.

Click on any area to learn what it does..

Click here to select the item default background color for the current script.

Click here to select the item default text attributes for the current script.

Click here to select the language item or the script window object to be customized.

Click here to set the current values to the default values for each new script.

Select here the item default font for the current script.

Select here the item default font size for the current script.

You can see here a sample of highlighted code with your selected presets.

Click here to select the item default foreground color for the current script.

Show you the current language. This can't be customized.

Key assignments
With this Editor option's tab, you can set very usefull shorcuts for a more quick keyboard use:

Click on any area to learn what it does.

Hot keys combination for the selected action.

Use these fields to enter new hot keys.

Available actions to perform with hot keys.

Add or remove a hot keys combination.

Auto Correct
With this Editor option's tab, you can "force" the script window to correct automatically some words or expressions
by giving in this area those you may do:

Click on any area to learn what it does.

Code templates
With this Editor option's tab, you can set the syntax highlighting of the script windows for the current script. These
presets are stored in a project file (.DSP) with the same path and name as the script source.:

Click on any area to learn what it does.

Click here to select the item default background color for the current script.

You can choose a different name or location for the executable file, by pressing this Browse button.    By default the
EXE has the same name as the script, and will be created in the same directory.

You can change the icon from the default Visual DialogScript icon by pressing the second Browse button and
choosing an icon file.    Note that only 16 color 32 x 32 pixel icons can be used.

Create the executable file.

Test the created executable.

Display informations during compilation.

@DLGPOS
Syntax:

@DLGPOS(<element_name>, <flags>)

Description:

This function returns the size and position of the element <element_name> according to the value of
<flags>.

Valid flags are:

T return the top co-ordinate

L return the left co-ordinate

W return the width

H return the height

Where more than one flag is specified the information returned is separated using the current field
separator in a format that can be processed by the PARSE command.

If <element_name> is null, the position and size of the current selected dialog are returned. Note that the
width and height returned in this case are the width and height of the client area of the dialog, excluding
the border, title bar and menu (if applicable.)

OK:

Set to false if the specified window cannot be found.

@FEXP

Syntax:

@FEXP(<value>)

Description:

Floating-point function. Returns the value exp(value).

OK:

Not changed.

@FLN

Syntax:

@FLN(<value>)

Description:

Floating-point function. Returns the value ln(value).

OK:

Not changed.

@MOD
Syntax:

@mod(<value1>,<value2>)

Description:

Math function. Returns the value <value1> modulo <value2>.

OK:

Not changed.

@MOUSEPOS

Syntax:

@mousepos(<flags>)

Description:

Flags are X, Y. Default XY.    Returns the X, Y co-ordinates of the mouse pointer, field separated.

OK:

Not changed.

@TEXT
Syntax:

@text(<list>)

Description:

This function gets the whole text of a string list into a variable. CR's separate each line.

OK:

Not changed.

@WINDOW
Syntax:

@WINDOW(<window>,CHILD|OWNER|FIRST|LAST|PREV|NEXT)

Description:

This function returns the window id of a window related to <window> in a manner specified by the second
argument.

OK:

Unchanged.

DIALOG ADD BITBTN,<name>,<top>,<left>,<width>,<height>,<filename>, {<caption>,<hint>}

The BITBTN dialog element is a flat Explorer-type button, which shows a raised boundary when the mouse pointer
is over the button. The filename is the name of the bitmap to be displayed in the button. It should ideally have 16
colours or fewer. The bitmap can be loaded from a resource file (special VDS resource format.) In this case, the
filename must be followed by a vertical bar and the offset, in bytes, of the BMP file within the resource. No spaces
are permitted between the filename, the vertical bar and the offset.

The caption is optional, and appears below the bitmap if present. The hint is also optional, and defines the etxt that
appears in a tooltip when the pointer is over the button. If no hint text is present, the button name is used instead.
There are no styles for this dialog element.

The BITBTN generates a <name>BUTTON event when it is clicked.

If the button's name is HELP, a button-click event is automatically generated if the F1 key is pressed.

DIALOG ADD,GROUP,<name>,<top>,<left>,<width>,<height>,<caption>{tyle...}

This dialog element is a group box (similar to that which surrounds a RADIO group of buttons. When a style is
applied to a group box it applies automatically to all the dialog elements placed on it.

The order of creation of the GROUP dialog element is important. Dialog elements that are created subsequent to it,
and whose top left corner is within its boundaries, are owned by the group element. (This is because some
elements, if their owner is the dialog itself, are drawn behind the group element and are hence obscured.) One
effect of this is that if a style is applied to a group element, all the elements owned by it automatically have that
style also. Another effect is that in design mode, if you move the group element, all the elements owned by it are
moved with it.

DIALOG ADD,MENU,<menu_name>,<item_1>,<item_2>...

This dialog element adds a pull-down menu to the window. <menu-name> is the name that appears on the menu
bar. <item_x> are the individual items on the pull-down menu. Each item is a separate parameter, so they are
separated by commas. When clicked, a menu item generates an event of type <item>MENU, for example:
NewMENU when you click File, New. No event is generated when you click the main menu item on the menu bar
(e.g. File.)

Successive pull-down menus are created by each successive DIALOG ADD command.

To specify the default keyboard shortcut, as shown by an underlined letter on the menu, you prefix that letter with
an amperstand "&." For example: &File. Additional keyboard shortcuts can be specified by following the item name
with a vertical bar and then the description of the shortcut. Line separators in a menu are speccified by an item
name of a dash. So a simple example: DIALOG ADD,MENU,&File,&Open|F6,&Save|F10,-,E&xit|Alt+X

Note: MENUs are not implemented in the same way as other dialog elements. The SET, CLEAR, HIDE, SHOW,
ENABLE, DISABLE and REMOVE verbs don't work with them. Once a menu is added to a dialog it is fixed.

DIALOG ADD,TAB,<name>,<top>,<left>,<width>,<height>,<tabs>{,<style>}

This dialog element adds a tab control to the dialog box. The names of the tabs are defined in <styles> as a string
of names separated by vertical bar characters, e.g. Tab 1|Tab 2|Tab 3. When a tab is clicked, a <tab name>CLICK
event is generated. The script must process this to remove dialog elements that are not required for this tab page,
and recreate new ones. (In design mode, a <name>CLICK event is generated instead, since it would be a problem
for dialog designers to provide handlers for user-defined tab events.)

A tab dialog element is a group element. See the description of the GROUP dialog element for more explanation of
this.

List of currently setted replacements.

Type here the usual errors to be replaced.

Type here the corrected text to insert when you type the abreviations or when you make some "recursive" errors.

Add here all characters which indicate the IDE to check last word typed.

List of currently setted code templates.

Sample code associated with the selected item from the field above and to be inserted.
It's also the field to use to write a new sample.

Define here the hot key to activate the list popup which allows you to select a sample into the IDE.

Type here the name for a new sample.

Type here a short description for the new sample.

Resource Compiler

VDS 3 supports resource files which are files in which bitmaps and text have been concatenated together into one
file. Resource files may be used in any command that may load a bitmap or text from a separate file. Resource files
may have any file extension other than BMP, ICO, EXE, DLL or TXT. The recommended extension is DSR
(DialogScript resource.) When loading from a resource file, the byte offset within the file of the particular resource
you are loading is specified by following the filename with a '|' separator bar followed by the offset. Example:
DIALOG SET,BITMAP1,MYRESRCE.DSR|3066 tells the VDS program to load a bitmap starting 3066 bytes into the
file MYRESRCE.DSR. It is the programmer's responsibility to ensure that the byte offset is correct. If it is not, the
data read in will be invalid and VDS will probably crash.

Note: icons can be included in resource files but only for use by TASKICON dialog elements. The method for loading
icons into BITMAP dialog elements is different. VDS uses the file extension to determine that an icon is being
loaded. If the extension is ICO, EXE or DLL VDS assumes an icon is being loaded. EXE and DLL files may contain
multiple icons, in which case the same syntax as above can be used to specify the icon offset (n.b. NOT the byte
offset.) For example, to load the second icon in an icon library called ICONLIB.DLL you would use: DIALOG
SET,BITMAP1,ICONLIB.DLL|2.

VDS 3 does not support writing to resource files. Resource files may be created by using the VDS Resource
Compiler VDSRC.EXE.

The resource compiler is a command line tool. The program displays help when run with no parameters.

Usage: VDSRC resourcescript [resourcefile] [options]
(Resourcefile is list of files to be included)

resourcescript = <filepath>.RC
resourcefile = <filepath>.DSR

Options :

/M - create map file <resourcescriptpath>.MAP
/Q - quiet operation
/G - display GUI message boxes not console output

The map file is basically the output from the console, showing the resources and their offset within the resource
file, so this can be entered into the script.

