
      Help for MsgHook
Properties Events Methods

Getting Custom Controls Written

Description

A control which provides the ability to intercept messages sent to a window.

File Name

MSGHOOK.VBX, MSGHOO16,OCX, MSGHOO32.OCX

Object Type

VBHT.MsgHook

Compatibility

VB 2.0 and up

Remarks

MsgHook provides a way for the Visual Basic programmer to intercept and respond to messages which
Visual Basic doesnt provide events for.    For instance, you can use MsgHook to intercept taskbar
related messages, thus enabling you to write a program which displays itself on the taskbar.

Distribution Note          When you develop and distribute an application that uses MsgHook, you should
install the file MSGHOOK.VBX, MSGHOO16.OCX, or MSGHOO32.OCX into the users Windows
SYSTEM directory.    MsgHook has version information built into it.    So, during installation, you should
ensure that you are not overwriting a newer version of MsgHook.

MsgHook Properties

Properties that have special meaning for this control or that only apply to this control are marked with an
asterisk (*).

*HwndHook Property

Index Property

Left Property

*Message Property

Name Property

Parent Property

Tag Property

Top Property

Tips Events

Events that have special meaning for this control or that only apply to this control are marked with an
asterisk (*).

*Message Event

MsgHook Methods

Methods that have special meaning for this control or that only apply to this control are marked with an
asterisk (*).

*InvokeWindowProc Method

HwndHook Property
Description

Handle of hooked window.

Usage

[form.][control.]HwndHook[= long]

Remarks

Assigning the value of a windows handle to the MsgHooks HwndHook property enables message
interception for that window.    In addition to assigning a window handle to HwndHook you must also
enable the interception of one or more window messages by setting elements of the Message property.

You can set this property to zero to unhook a window.

Data Type

Integer (long)

Message Event
Description

Occurs when one of the messages enabled by the Message property is received..

Syntax

Sub ctlname_Message(msg As Long, wp As Long, lp As Long, result As Long)

Remarks

This event Occurs when one of the messages enabled by the Message property is received..

The msg parameter lets you know which message has been received, and the wp and lp parameters
the values passed as wp and lp to window procedures.    You will need to refer to Windows API
documentation to understand the values of wp and lp which are passed with the various messages.

Window procedures must return a value of some sort, thats what the result argument is for.    Inside the
Message event you must set result to a value appropriate for the message received.    Again you will
need to refer to Windows API documentation for specifics.

Message Property
Description

Used to enable firing of the Message.event when messages are received.

Usage

[form.][control.]Message(index As Long) [= Boolean]

Remarks

This property is used to enable/disable firing of the Message.event for messages received by the
hooked window.    Setting an element of the Message array to TRUE enables message events for the
corresponding message number, setting the element to FALSE disables the event.

Data Type

Boolean

InvokeWindowProc Method
Description

Calls the default window procedure for the hooked window

Usage

Long result = [form.][control.]InvokeWindowProc(msg As Long, wp As Long, lp As Long)

[form.][control.]Version

Remarks

When a window is hooked you have the opportunity to handle windows messages before they are seen
by Visual Basic and the hooked window.    If you are not handling normal processing of received
messages entirely by yourself you will want to call the hooked windows message procedure at some
point during the Message event routine.    To do that you use the InvokeWindowProc method.

Under some circumstances you may choose to handle the message entirely within your own code and
not allow the hooked window to process it.    In that case you will not call InvokeWindowProc.    In either
case you must ensure that you return a meaningful value in result or Windows may do strange things.

Data Type

Long

Getting Custom Controls Written

If you or your organization would like to have custom controls written, you can contact me at the
following:

Zane Thomas
Post Office Box 300
Indianola, WA    98342

CompuServe: 72060,3327

Internet: zthomas@acvitexpert.com

or contact James Shields at:

James Shields
Mabry Software, Inc.
Post Office Box 31926
Seattle, WA    98103-1926

Phone: 206-634-1443
Fax: 206-632-0272
BBS: WinDev BBS 206-634-0783

CompuServe: 71231,2066
Internet: mabry@halcyon.com

