
Promotional information about McGraw-Hill book
--
--
Visual Basic Developers' Toolkit:
Performance Optimization, Debugging, Rapid Application Development, and Distribution

Call 1 (800) 2McGraw (McGraw-Hill) for more information, pricing and availability.
--
--
Visual Basic is a real development environment used to create well-known and best-selling
Solomon Software financial modules, Quicken 4.0 and Quick Books 3.0, MicroHelp Uninstaller. It
is also a serious rival to PowerBuilder, CA Visual Tools, IBM Visual Code, and 4GL toolkits. Many
small-distribution applications have been created with VB, for both internal-corporate or external
sales. The integration of Microsoft Office with VBA and the office productivity toolkit will expand
the possibilities for rapid customized application development and the need for knowledge and
skills to do so.

The important points, and these are perceived as hard topics or as too tough to write, include the
four key terms in the book’s subtitle, namely performance optimization, rapid application
development, debugging, and distribution.

People in the VB development environment, which I want to write to, want to know how to
manage the whole process, ensure its success, handle design from prototyping to application
rollout and those corresponding upscaling problems. VB is suitable for heavy-duty client/server
applications, perhaps both better and worse than PowerBuilder, for many reasons. In the same
way, Borland Delphi provides a means to respond to upsizing and performance issues perceived
with VB (time code created with each). There are many tools available to supplement VB, yet
most developers do not have the time to evaluate or integrate them into their development
process. Many do not think how they can justify the cost for these tools and create effective
budgets and process planning. Additionally, there are important packaging issues related to
platform, DOS and GUI releases and versions, .DLL and .VBX versions, and compatibility which
can create problems for those inexperienced developers and even experienced ones.

Additionally, one of the serious limitations of RAD or application prototyping is that the sample is
unfortunately rolled out as a production solution—this creates problems with performance,
upgrading, maintenance, and stability. Source code control and automatic testing tools become
very important. Also, there are a few tools which convert VB resources into C and C++ or Delphi
for multiplatform distribution, and there will be more as VB grows in popularity. Furthermore, VB
version 4.0 is forthcoming in third or fourth quarter in 1995, and there is growing body of third-
party tools for developing TAPI, Lotus Notes, SQL front ends, spreadsheets, and graphics. It is
possible to convert VB into C by recycling objects and resources, or convert VB into Borland
OWL and Delphi95. Developers will be looking at converting 16-bit applications with VBXs into
32-bit versions with OCX code. These represent optimization topics important to many corporate
and professional developers alike.

Conversion and distribution is important when one considers the desire to take a primitive
prototype and expand it into a working product or take what is a single-user application and make
it multi-user or at least reentrant within a multitasking environment. It is nice if a demo (the
skeleton) can be converted into the complete application without starting over. Other issues
include memory management, record locking, platform issues, version and upgrades, and
performance tuning that are critical for client/server applications in the extended WAN
environment.

I want to address application development process from the standpoint of using VB to get
applications up and running quickly, Very few books, even C books relate how to:

• create a packaged product
• deal with deadlines and production pressures
• develop in a team environment (with code control)
• get the most out of the tools
• use CASE tools and prototypers to qualify a design
• design a referential database with design tools
• using VB for testing interface concepts
• using VB for improving testing workflow and utility
• how to benefit from RAD and avoid its pitfalls
• how to design an application for performance (and what to avoid)
• how to debug code, APIs, and user-interface errors
• how to solve EXE and DLL problems
• how to use VB debugger, breakpoints, Debug.Print, code spy
• how to trace triggers, cascades, excess baggage, and eliminate them
• maintain code libraries for object and code reuse

Although there are a number of good books aimed either at new programmers, programmers new
to VB, or to experts who want to learn the newest tricks, they still generally cater to the lowest
common denominator; they present either a lot of basic material, present API calls and bells and
whistles which do not really relate to the mainstream corporate development process where
development is focused to customer applications rather than mass-market ones, or are imbued
with arcane tips in an encyclopedic-style without thesis or focus. After acquiring a first basic
Visual Basic book, I think everyone seems to want a real book for "experts" like themselves. The
books by Mitch Waite represent the best resources, but I think they leave a lot of gaps. The few
other high-end books are very disappointing, such as Visual Basic Database Programming, by
Karen Waterson, a promising book which seems to me to lack real utilitarian content. It is rises
above the code with the result that it does not address coding or design issues.

Of note though because it seems contrary to my assertions, the more frequent downloads from
Internet VB FAQ sites (where tracked) and CompuServe are the VBXs, DLLs, and VB extensions.
While this speaks forthright to developers’ interests in bells and whistles, it also addresses the
need to ram through a application quickly with previously debugged modules. Such modules are
supposedly time-savers, and the implication is that the programmers are desperately seeking to
find faster ways to achieve their ends within resource limits.

RAD means different things in VB (and other languages, including rapid application decay and
rapid application death with some good reason), I want to address as many of these as possible.
Specifically, there are the issues of getting a skeleton up quickly, of replacing complex code (say
with MCA API and many state conditions) with a simpler VBX. What are the trade-offs and how
does the typical developer evaluate the tools? This is particularly relevant as networking and
telecommunications merge to create viable CTI needs with phone, e-mail, pagers, fax, scanning,
IVR, Lotus Notes, and Internet distribution. These issues do tie together because the MS Back
Office is providing the means to automate many workflows and production processes with VBA
and standalone VB with OLE.

This is book for readers with problems to provide problem resolution and the techniques for it.
Every developer runs into problems. I do, and there is a limited place to turn for help.
CompuServe and Microsoft VB support is insufficient, particularly for debugging or optimization.
The 3 month free support service is very limiting. The 900 and 800 fee-based Mastercard
services do not debug and they are very expensive. (My solution has been to keep buying new
copies of VB and Access because it is cheaper than the priority service fees.) When a
programmer has a problem and a deadline, this is the books they will order Federal Express
Urgent. Production and performance problems are incredibly expensive and critical to many
organizations and no current books really tackle the professional needs of the programmer or
their organizations. According to Microsoft at VBITS 94, they have sold 1,783,xxx copies of the
VB language to date; they will not reveal if this is current version of VB WIN 3.0, or the sum total

of all outstanding VB WIN, VB DOS, and VB Office APP development kits. Nevertheless, that is a
huge market that dwarfs even C language tools, and quite a market for developers with problems.

For example, one of the problems which typically faces me is the tradeoff between trying a new
VBX or toolkit and doing the task the same old way. Not only is there an expense to the toolkit,
more importantly, there are time and space constraints to each new tool. Specifically, I have to
learn how to use the tool, evaluate it for effectiveness and balance the need for it against disk
space and distribution disk space. I may review Internet news groups or CompuServe forums for
samples, demos, shareware, or information about a commercial product. Yet, this takes a few
hours, time which is very precious and the results are often open-ended; I may not meet my
needs. Even commercial products create conflicts in terms of memory management, speed,
performance, integration, and packaging. I learned this one the hard way when I converted an
VB/MS Access 1.1 application and database to Access 2.0 Jet in order to provide referential
integrity. Unfortunately, I realized only after I tried to distribute it that I needed the Access
Distribution Developers kit and about 2.6 MB more for distribution. This killed the upgrade and
forced me to revert to earlier code (via tape archives... thank god for that).

The disk or CD-ROM can include ScreenCAM or V4W demos to demonstrate how to do the tricky
things which most people are adverse to reading or trying. VB is very useful for prototyping
applications quickly as a matter of course, for demo-ing concepts and technical ideas, and for
creating fully-functioning client/server applications. Because this development environment is so
rich and has been extended with so many third-party tools, the typical person new to this
environment or even quite an old hand at VB does not know all the methods and new tools to
speed product development.
--
--

Chapter 1—Overview
An overview of the book explaining the purpose, audience, book content, and structure of book.

Chapter 2 —Visual Basic and Tools
A hands-on how to tour of Visual Basic in terms of what it can and cannot do, its limitations, how it
can be extended, and what represents doable tasks. Reference here should be made to
PowerBuilder, Delphi, C/C++, source code control, version control, Bricklen’s Demo, project
planning, CASE, and automated testing tools which integrate into various 4 GL and OODBMSs.
This includes Lotus Notes development, ODBC, Progress/Crescent Stingray workgroup tools, CTI
toolkits, graphics routines, and others. I will also include discussions on PinPoint, VB Compress,
and various toolkits and add-on VBXs and OCXs. A reader will want to find out what works, what
the alternatives are, and why they need the toolkits. Groupware issues are also important
because of performance optimization, record or device acceSs, rollout, and replication.

Chapter 3—Visual Basic Performance and Design Errors
A hands-on view of VB performance flaws, including concept and design errors, reinvention of
solutions which are built-into VB or libraries, and bad code. This Chapter will also detail common
types of code errors and code bloating and what to do about them.

Chapter 4—Performance and Debugging Tools
This chapter details tools, including the built-in debugger, Windows heap tools, and profilers.
There are at least five new and good profilers of VB performance and this Chapter will reference
them. I hope to include several of these tools on the CD-ROM. I will profile other tools which help
teams develop applications in tandem including source code control, X-ref, and third-party
libraries of common functions. A discussion of various metrics, which to use, how to implement
them, and how to get information from them.

Chapter 5—Design Issues
Designs that will work, won’t work, won’t scale, will create implementation, memory, runtime, disk

space, file space, access time, and user problems... and how to avoid the traps. User interface
issues, including reference to Win 95/Win NT interface, tabs, popup help, tips, status bars,
context sensitive help, order. I may also include issues relating to graphics, sound, and control of
device drivers. WinG, WinMM, and Win32s may also be relevant, depending upon the state of the
new VB 4.0 and Win 95 platforms.

Chapter 6—Multi-developer/Multi-user/Multiplatform
This chapter explains source code control, code libraries, function libraries, modularization, and
the requirements for creating applications that run as multiple copies of the same application, as
multi-user applications, as multi-user, shared database applications, and applications which can
be ported across platforms. Reentrancy, heaps, record locking, table locking, transactions,
compiled SQL statements, are also important. Similarly, some of the issues required for
successful group design and coding will be addressed here. Another interesting approach is
conversion of VB and VBA applications into DLL and C/C++ standalone applications through
resource and form object conversions.

Chapter 7—Application Tuning
A detailed Chapter showing the reader how to tune code, solve problems in better ways, resolve
event cascades, stack errors, and program so that everything in VB is not a trigger. I will show
samples of code with elapsed runtimes, several versions of code that trade more memory for
faster processing, and uses of API's for improved performance.

Chapter 8—Limited Distribution Products
A hands-on view of using VB for corporate projects, from the simple, to complex implementations
with DDE and OLE. I also want to include issues related to client/server front end development,
access to host data, special tools for CTI and other real world communication.

Chapter 9—Rapid Application Development
The pros and cons of this philosophy, how it differs from waterfall design, and conflicts with the
best intentions of object-oriented technology. What RAD really means, how you can utilize it, and
what tools integrate into the development process. How the previously-defined planning, control,
CASE, DB design, toolkits, report writers, and automation tools improve the accuracy of
development, help a team build a good product, maintain deadlines, and automatically generate
skeletons for modules, data sets, and help files.

Chapter 10—Debugging
Code debugging with debugger, spy tools, message capture tools, PinPoint, X-ref, Compress,
and other similar tools. Once these critical basics are explained, I will show how to automate
testing with various explorative and iterative macros-type tools.

Chapter 11—Distribution
Testing to conformance of concept. Builds. VB installation wizard and the templates, and how to
alter them as needed. Other disk build tools and installation routines. Some thoughts on
shareware, freeware, registrationware, and application locks. Distribution and installation of
VBXs, OCXs, DLLs and common problems, and how to get around them.

Chapter 12-Help Desk Support
Tracking and tracing bugs, Internet Support, on-line help, on-line Help desk, bug issues, data
backup, data conversion, and installation support. Possible video driver, chip, memory, GDI, or
USER resource issues; solutions for them.

Chapter 13—Code Examples
Examples of applications and modules which I will develop for various common functions. One of
the serious limitations I find with the wealth of options is that I do not have the time to evaluate
what works and how it affects the overall product when I am in the midst of development. Clearly,
this is true for every other developer or prototyper. In so far as most books show how to read

the .INI file, or create forms, or perform some bell and whistle, I want to show the reader how to
get as much accomplished within the shortest possible time. This chapter will show how some
tools create instant forms from a database, create referential code, and automatically generate
the code to open, create new, backup, and copy a database structure. Some of the tools for
example, generating dialog boxes are primitive time-savers, and not really within the scope of
ensuring project success. If at all possible, I will use AVI or ScreenCam movies to actually
demonstrate the techniques; seeing is believing and also sometimes the showing a person how
to actually create a referential link is better than trying to explain with enumerated steps.

Chapter 14—The CD-ROM
CD-ROM or disk will include: (I have not worked out the sizes, but this looks to be at least 60 MB)

Skeletons
code samples
small specialized applications
ScreenCam movies of various techniques, toll usages, and methods
hypertext versions of book
demos of various tools
selected shareware for various VBXs, OCXs, and tools

--
--
Author's Bio
Marty Nemzow has written a number of best-selling books for McGraw-Hill, including the Ethernet
Management Guide in its third edition, Implementing Wireless Networks, and a series on tuning
computing environments: LAN Performance Optimization, Computer Performance Optimization,
and the newest, Enterprise Network Performance Optimization. His company, Network
Performance Institute (Miami Beach, FL) provides enterprise network design and improvement
consulting services, and markets capacity planning and network configuration software tools.
--
--
Call 1 (800) 2McGraw (McGraw-Hill) for more information, pricing and availability.

