

GBLIB1.DLL - A utility library for Visual Basic Programmers

By Gordon Bamber (c)1994

 (or ALT+x)

 Overview of GBLIB1.DLL

 GBLIB1.DLL Complete Function Reference

GBLIB1.DLL Function Reference by Category

System requirements for using/distributing GBLIB1.DLL

 About GBLIB1.DLL

Index of all Subs and Functions in GBLIB1.DLL

 (or ALT+x)

Click the sub or function name to obtain more information

Sub About index 1
Function PlayDLLWave index 2
Function LoadDLLBitmap index 3
Function GetDLLText index 4
Function GetDLLBitmapSize index 5
Function LoadDLLBitmapTo index 6
Function PlayResource index 7
Sub Gordon index 8
Sub Marts index 9
Sub PlayLoop index 10
Sub StopLoop index 11
Sub Clik index 12
Sub Click index 13
Sub Done index 14
Sub SystemStart index 15
Sub SystemEnd index 16
Sub SystemBeep index 17
Sub SystemQuestion index 18
Sub SystemExclamation Index 19
Sub SystemAsterisk index 20
Sub SystemHand index 21
Sub MouseClick index 22
Sub ProgramLaunch index 23
Sub PlaySound index 24
LoadDLLBitmapFrom index 25
LoadDLLDialog index 26
LoadDLLIcon index 27
LoadDLLCursor index 28
DestroyDLLCursor index 29
SetArrow index 30
GBSetCursorPos index 31
GBClientToScreenRECT index 32
GBDecompress index 33
GBPutOnTop index 34
GBNotOnTop index 35
ModalCalc index 36
ModalNotePad index 37
ModalNotePadExec index 38
MakeUAE index 39
WaitForL index 40
WaitFor index 41
SpeakerBeep index 42
StartWait index 43
StopWait index 44
WaitOne index 45
LoadEXEIcon index 46

SubClassIt index 47
UnSubClassIt index 48
LoadEXEIconXY index 49
LoadDLLIconXY index 50
SetUpJoystick index 51
UnSetUpJoyStick index 52
WillPlay811Mono index 53
WillPlay811Stereo index 54
WillPlay1611Mono index 55
WillPlay1611Stereo index 56
WillPlay822Mono index 57
WillPlay822Stereo index 58
WillPlay1622Mono index 59
WillPlay1622Stereo index 60
WillPlay844Mono index 61
WillPlay844Stereo index 62
WillPlay1644Mono index 63
WillPlay1644Stereo index 64
GetWaveVendorID index 65
GetWaveProductID Index 66
GetWaveDriverVersion Index 67
GetWaveProductName Index 68
GetWaveNumChannels Index 69
GetMIDIVendorID index 70
GetMIDIProductID Index 71
GetMIDIDriverVersion Index 72
GetMIDIProductName Index 73
GetMIDIVoices Index 74
GetMIDINotes Index 75
GetMIDINumChannels Index 76
IsMIDI Index 77
IsMIDISquareWaveSynth Index 78
IsMIDIFMSynth Index 79
IsMIDIGenericSynth Index 80
IsMIDIMapper Index 81
WillMidiDoVolume Index 82
WillMidiDoLRVolume Index 83
WillMidiDoCache Index 84
GetClientZero Index 85
GetJoyPos Index 86

See... Functions By Category

About GBLIB1.DLL

 (or ALT+x)

GBLIB1.DLL (c)1994 was written in Borland Turbo Pascal for Windows(tm) V1.5 by The Author .

It is released as FREEWARE on the following conditions:

1)    Copyright remains with the author.
2)    Commercial use is prohibited without the authors written permission.
3)    No responsibility is accepted by the author for support in its use.
4)    No responsibility is accepted under any circumstances by the author for any damage caused in its
use.
5)    Subject to conditions (1) to (4), you may use it in any way you please.
6)    There is to be no condition (7)
8)    Source code for GBLIB1.DLL is not freeware.

Function PlayResource

 (or ALT+x)

Purpose

There are a number of WAVES    already embedded in GBLIB1.DLL.. They can be called by their
own subroutines (ie. Sub Click) or using this function.

The embedded sounds are:
GORDON Me    saying "Hello"
MARTS A collegue (Martin Pointer) saying "Hello"
CLICK A sound like a camera shutter
CLIK A shorter and harder version of CLICK (Click with a flick-knife)
DONE A man saying Done Processing

GBLIB.DLL Pascal Prototype

Function PlayResource(lpname:LPSTR):INT

Help Declare and Use

RegisterRoutine("gblib1.dll","PlayResource","i=S")
PlayResource(DONE)

Visual Basic Declare

Declare Function PlayResource Lib "gblib1.dll" (ByVal szResName As String) as Integer

Visual Basic Example

i_Retval = PlayResource (CLICK)

See... PlaySound SpeakerBeep

Sub About

 (or ALT+x)

CLICK ME for an example

Purpose

An about screen for GBLIB.DLL. You have no compulsion to include this in your application if it
uses GBLIB.DLL, but I would consider you a complete asshole if you didnt.

GBLIB.DLL Pascal Prototype

procedure About(hWind:UINT)

Help Declare and Use

RegisterRoutine("gblib1.dll","AboutHelp","v=")
AboutHelp()

Visual Basic Declare

Declare Sub About Lib "gblib1.dll" (ByVal i_HWnd As Integer)

Visual Basic Example

About Me.hWnd

See... About GBLIB1 LoadDLLDialog

Sub Gordon

 (or ALT+x)

Purpose

Me    saying "Hello".

CLICK ME for an example.

GBLIB.DLL Pascal Prototype

Procedure Gordon

Help Declare and Use

RegisterRoutine("gblib1.dll","Gordon","v=")
Gordon()

Visual Basic Declare

Declare Sub Gordon Lib "gblib1.dll" ()

Visual Basic Example

 Gordon

See... About

Sub Marts

 (or ALT+x)

Purpose

Martin Pointer saying "Hello". (Who the heck is Martin Pointer?)

CLICK ME for an example.

GBLIB.DLL Pascal Prototype

Procedure Marts

Help Declare and Use

RegisterRoutine("gblib1.dll","Marts","v=")
Marts()

Visual Basic Declare

 Declare Sub Marts Lib "gblib1.dll" ()

Visual Basic Example

 Marts

See... PlayResource

Sub StopLoop

 (or ALT+x)

Purpose

Plays a NULL sound, which has the effect of stopping any sound started by calling the PlayLoop 
sub. No sound is produced by StopLoop itself.

CLICK ME to start a looped sound as an example.
CLICK ME to stop looping

GBLIB.DLL Pascal Prototype

Procedure StopLoop

Help Declare and Use

RegisterRoutine("gblib1.dll","StopLoop","v=")
StopLoop()

Visual Basic Declare

Declare Sub StopLoop Lib "gblib1.dll" ()

Visual Basic Example

StopLoop

See... PlayLoop PlaySound

Sub PlayLoop

 (or ALT+x)

Purpose

Plays the specified WAVE    repeatedly until another wave is played, or StopLoop    is called.

CLICK ME to start a looped sound as an example.
CLICK ME to stop looping

GBLIB.DLL Pascal Prototype

Procedure PlayLoop(sz_WAVFile:LPSTR)

Help Declare and Use

RegisterRoutine("gblib1.dll","PlayLoop","i=S")
PlayLoop(c:\windows\snore.wav)

Visual Basic Declare

Declare Sub PlayLoop Lib "gblib1.dll" (ByVal szWAVEFile as string)

Visual Basic Example

PlayLoop "c:\windows\snore.wav"

See... StopLoop PlaySound

Sub Clik

 (or ALT+x)

Purpose

Plays a short click sound. - Good for menu selections.

CLICK ME for an example.

GBLIB.DLL Pascal Prototype

Procedure Clik

Help Declare and Use

RegisterRoutine("gblib1.dll","Clik","v=")
Clik()

Visual Basic Declare

Declare Sub Clik Lib "gblib1.dll" ()

Visual Basic Example

Clik

See... SpeakerBeep PlaySound Click

Sub Click

 (or ALT+x)

Purpose

Plays a camera shutter click sound. - Good for command buttons.

CLICK ME for an example.

GBLIB.DLL Pascal Prototype

Procedure Click

Help Declare and Use

RegisterRoutine("gblib1.dll","Click","v=")
Click()

Visual Basic Declare

Declare Sub Click Lib "gblib1.dll" ()

Visual Basic Example

Click

See... Clik SpeakerBeep PlaySound

Sub Done

 (or ALT+x)

Purpose

Plays the sound of a man saying "Done Processing"    I like this sound. I would love to hear the
same person saying something like "Please can I go to the toilet? " or "Hi - pleased to meet you - havnt I
got a silly voice? "

CLICK ME for an example.

GBLIB.DLL Pascal Prototype

Procedure Done

Help Declare and Use

RegisterRoutine("gblib1.dll","Done","v=")
Done()

Visual Basic Declare

Declare Sub Done Lib "gblib1.dll" ()

Visual Basic Example

Done

See... PlayResource

Sub SystemStart

 (or ALT+x)

Purpose

Plays the sound specified in your WIN.INI under
[Sounds]
SystemStart=

CLICK ME for an example.

GBLIB.DLL Pascal Prototype

Procedure SystemStart

Help Declare and Use

RegisterRoutine("gblib1.dll","SystemStart","v=")
SystemStart()

Visual Basic Declare

Declare Sub SystemStart Lib "gblib1.dll" ()

Visual Basic Example

SystemStart

See... SystemEnd SystemBeep SystemAsterisk
SystemHand SystemQuestion SystemExclamation
MouseClick ProgramLaunch PlaySound

Sub SystemEnd

 (or ALT+x)

Purpose

Plays the sound specified in your WIN.INI    file under
[Sounds]
SystemEnd=

CLICK ME for an example.

GBLIB.DLL Pascal Prototype

Procedure SystemEnd

Help Declare and Use

RegisterRoutine("gblib1.dll","SystemEnd","v=")
SystemEnd()

Visual Basic Declare

Declare Sub SystemEnd Lib "gblib1.dll" ()

Visual Basic Example

SystemEnd

See... SystemStart SystemBeep SystemAsterisk
SystemHand SystemQuestion SystemExclamation
MouseClick ProgramLaunch PlaySound

Sub SystemBeep

 (or ALT+x)

Purpose

Plays the sound specified in your WIN.INI under
[Sounds]
SystemBeep=

CLICK ME for an example.

GBLIB.DLL Pascal Prototype

Procedure SystemBeep

Help Declare and Use

RegisterRoutine("gblib1.dll","SystemBeep","v=")
SystemBeep()

Visual Basic Declare

Declare Sub SystemBeep Lib "gblib1.dll" ()

Visual Basic Example

SystemBeep

See... SystemEnd SystemStart SystemAsterisk
SystemHand SystemQuestion SystemExclamation
MouseClick ProgramLaunch PlaySound

Sub SystemQuestion

 (or ALT+x)

Purpose

Plays the sound specified in your WIN.INI under
[Sounds]
SystemQuestion=

CLICK ME for an example.

GBLIB.DLL Pascal Prototype

Procedure SystemQuestion

Help Declare and Use

RegisterRoutine("gblib1.dll","SystemQuestion","v=")
SystemQuestion()

Visual Basic Declare

Declare Sub SystemQuestion Lib "gblib1.dll" ()

Visual Basic Example

SystemQuestion

See... SystemEnd SystemStart SystemAsterisk
SystemHand SystemBeep SystemExclamation
MouseClick ProgramLaunch PlaySound

Sub SystemExclamation

 (or ALT+x)

Purpose

Plays the sound specified in your WIN.INI under
[Sounds]
SystemExclamation=

CLICK ME for an example.

GBLIB.DLL Pascal Prototype

Procedure SystemExclamation

Help Declare and Use

RegisterRoutine("gblib1.dll","SystemExclamation","v=")
SystemExclamation()

Visual Basic Declare

Declare Sub SystemExclamation Lib "gblib1.dll" ()

Visual Basic Example

SystemExclamation

See... SystemEnd SystemStart SystemAsterisk
SystemHand SystemBeep SystemQuestion
MouseClick ProgramLaunch PlaySound

Sub SystemAsterisk

 (or ALT+x)

Purpose

Plays the sound specified in your WIN.INI under
[Sounds]
SystemAsterisk=

CLICK ME for an example.

GBLIB.DLL Pascal Prototype

Procedure SystemAsterisk

Help Declare and Use

RegisterRoutine("gblib1.dll","SystemAsterisk","v=")
SystemAsterisk()

Visual Basic Declare

Declare Sub SystemAsterisk Lib "gblib1.dll" ()

Visual Basic Example

SystemAsterisk

See... SystemEnd SystemStart SystemExclamation
SystemHand SystemBeep SystemQuestion
MouseClick ProgramLaunch PlaySound

Sub SystemHand

 (or ALT+x)

Purpose

Plays the sound specified in your WIN.INI under
[Sounds]
SystemHand=

CLICK ME for an example.

GBLIB.DLL Pascal Prototype

Procedure SystemHand

Help Declare and Use

RegisterRoutine("gblib1.dll","SystemHand","v=")
SystemHand()

Visual Basic Declare

Declare Sub SystemHand Lib "gblib1.dll" ()

Visual Basic Example

SystemHand

See... SystemEnd SystemStart SystemExclamation
SystemAsterisk SystemBeep SystemQuestion
MouseClick ProgramLaunch PlaySound

Sub MouseClick

 (or ALT+x)

Purpose

Plays the sound specified in your WIN.INI under
[Sounds]
MouseClick=

CLICK ME for an example.

GBLIB.DLL Pascal Prototype

Procedure MouseClick

Help Declare and Use

RegisterRoutine("gblib1.dll","MouseClick","v=")
MouseClick()

Visual Basic Declare

Declare Sub MouseClick Lib "gblib1.dll" ()

Visual Basic Example

MouseClick

See... SystemEnd SystemStart SystemExclamation
SystemAsterisk SubSystemBeep SystemQuestion
SystemHand SubProgramLaunch PlaySound

Sub ProgramLaunch

 (or ALT+x)

Purpose

Plays the sound specified in your WIN.INI under
[Sounds]
ProgramLaunch=

CLICK ME for an example.

GBLIB.DLL Pascal Prototype

Procedure ProgramLaunch

Help Declare and Use

RegisterRoutine("gblib1.dll","ProgramLaunch","v=")
ProgramLaunch()

Visual Basic Declare

Declare Sub ProgramLaunch Lib "gblib1.dll" ()

Visual Basic Example

ProgramLaunch

See... SystemEnd SystemStart SystemExclamation
SystemAsterisk SubSystemBeep SystemQuestion
SystemHand MouseClick PlaySound

Sub PlaySound

 (or ALT+x)

Purpose

Plays a WAV file    from disk.

CLICK ME for an example.

GBLIB.DLL Pascal Prototype

Procedure PlaySound(sz_WAVFile:LPSTR)

Help Declare and Use

RegisterRoutine("gblib1.dll","PlaySound","v=S")
PlaySound(c:\windows\tada.wav)

Visual Basic Declare

Declare Sub PlaySound Lib "gblib1.dll" (ByVal sz_WAVFile as String)

Visual Basic Example

PlaySound "c:\windows\sparkle.wav"

See... SystemEnd SystemStart SystemExclamation
SystemAsterisk SystemBeep SystemQuestion
SystemHand MouseClick ProgramLaunch

Function PlayDLLWave

 (or ALT+x)

Purpose

This function will play a user resource of type WAVE

Returns Zero=Success, NonZero=Failure

GBLIB.DLL Pascal Prototype

Function PlayDLLWave (sz_Filename, sz_ResName :LPSTR) :INT

Visual Basic Declare

Declare Function PlayDLLWave Lib "gblib1.dll" (ByVal sz_DLLFile As String, ByVal sz_WAVEName
As String) As Integer

Visual Basic Example

Dim i_Retval as integer

Rem //The sound is in vbres.dll and the resource is named WAVE_1//
i_Retval = PlayDLLWave("c:\windows\vbres.dll", "WAVE_1")

Rem //If successful, the return value is zero//
If i_Retval Then
        MsgBox "Bad return from PlayDLLWave", 16, "ERROR"
        Exit Sub
End If

See How to add a non-standard resource to a DLL

Function LoadDLLBitmap

 (or ALT+x)

Purpose

This function will display a Bitmap from a DLL resource into a display hWnd.

If Stretch=0 then no resizing
If Stretch=1 then the bitmap resizes to fit the hWnd

Returns

Zero=Success, NonZero=Failure

GBLIB.DLL Pascal Prototype

Function LoadDLLBitmap (sz_Resname, sz_Filename :LPSTR; hWind :UINT; Stretch :INT) :INT

Visual Basic Declare

Declare Function LoadDLLBitmap Lib "gblib1.dll" (ByVal sz_DLLFile As String, ByVal
sz_BitMapName As String, ByVal hWnd As Integer, ByVal Stretch As Integer) As Integer

Visual Basic Example

Rem //Loading into the Picture Box called pic1//
Call LoadAPicture pic1, "BITMAP_1", 0
Rem //If the last parameter was 1, then it would AutoSize to Pic1//

Which Calls...

Sub LoadAPicture (c As Control, sz As String, bstretch As Integer)

Dim i_Retval As Integer
Dim hwind As Integer

Rem //Get the controls hWnd property//
hwind = c.hWnd

i_Retval = LoadDLLBitmap("c:\windows\vbres.dll", sz, hwind, bstretch)

Rem //Test for failure//
If i_Retval Then
        MsgBox "Returned an error", 16, "LoadDLLBitmap Function"
        Exit Sub

End If

End Sub

See... LoadDLLBitmapFrom LoadDLLBitmapTo

Function GetDLLText

 (or ALT+x)

GBLIB.DLL Pascal Prototype

Function GetDLLText (sz_Filename, sz_Resname, sz_Text :LPSTR; Var i_Len :UINT) :INT

Purpose

This function will load a user resource of type TEXT
The text resource must end in ASCII 0

Returns

SZTEXT as a String/LPSTR
SZLEN as the length of szText
Zero=Success, NonZero=Failure

Visual Basic Declare

Declare Function GetDLLText Lib "gblib1.dll" (ByVal sz_DLLFile As String, ByVal sz_TextName As
String, ByVal lpText As String, iLen As Integer) As Integer

Visual Basic Example

Global Declaration

Rem //The function requires a fixed length string//
Global lpSzr As String * 512

Typical Use in an event Sub

Dim msg As String

Rem //Remember the DLL text could include embedded carriage returns//

msg = VBSetTextFromDLL("DLLNAME") & Chr$(13)
msg = msg & "Version " & VBSetTextFromDLL("VERSION") & Chr$(13)
msg = msg & VBSetTextFromDLL("COPYRIGHT")
lbl_OutPut.Caption = msg

Visual Basic Wrapper Function

 Function VBSetTextFromDLL (sz As String) As String

Dim i_Retval As Integer
Dim szlen As Integer

Rem //Initialise lpSzr to ASCII Zeros//
szlen = 512
lpSzr = String$(512, 0)

i_Retval = GetDLLText("c:\windows\vbres.dll", sz, lpSzr, szlen)
If i_Retval Then
        MsgBox "Bad return from GetDLLText", 16, "ERROR"
        VBSetTextFromDLL = "unknown"
        Exit Function
End If

Rem //The DLL Text MUST end in an ASCII Zero //
VBSetTextFromDLL = Left$(lpSzr, szlen)

End Function

See How to add a non-standard resource to a DLL

Function GetDLLBitmapSize

 (or ALT+x)

Purpose

This function will interrogate a Bitmap resource. Used in conjunction with LoadDLLBitmap , for
instance, you could resize the VB control to the bitmaps size before loading it in, and thus use a generic
picturebox control to display a series of bitmaps.

Returns

TRECT Structure contains size:
TRECT.Right = Width,
TRECT.Bottom = height
Zero=Success, NonZero=Failure

GBLIB.DLL Pascal Prototype

Function GetDLLBitmapSize (sz_Filename, sz_Resname :LPSTR ;Var MyRect :TRECT) :INT

Visual Basic Declare

Rem //Declare TRECT before using it in the Function Declare//
Type TRECT
          Left As Integer
          Top As Integer
          Right As Integer
          Bottom As Integer
End Type

Declare Function GetDLLBitmapSize Lib "gblib1.dll" (ByVal sz_DLLFile As String, ByVal lpname
As String, MyRECT As TRECT) As Integer

Visual Basic Example

Dim msg As String
Dim ARECT as TRECT

rem //TRECT must first be declared as a TYPE prototype//
i_Retval = GetDLLBitmapSize("c:\windows\vbres.dll", "BITMAP_1", ARECT)

If i_Retval Then
        MsgBox "Bad return from GetDLLBitmapSize", 16, "ERROR"
        Exit Sub
End If

rem //The return values are always in pixels//
msg = Format$(ARECT.Right)
msg = msg & " Pixels x "
msg = msg & Format$(ARECT.Bottom)
msg = msg & " Pixels"

lbl_OutPut.Caption = msg

See... LoadDLLBitmap LoadDLLBitmapFrom LoadDLLBitmapTo

Function LoadDLLBitmapTo

 (or ALT+x)

Purpose

This function will display a Bitmap from a DLL resource into a display hWnd.

Left, Top, Right and Bottom place the bitmap RELATIVE TO the Top and Left of the display Window

Returns

Zero=Success, NonZero=Failure

GBLIB.DLL Pascal Prototype

Function LoadDLLBitmapTo (sz_Filename, sz_Resname: LPSTR; hWind: UINT; Left, Top, Right,
Bottom :UINT) :INT

Visual Basic Declare

Declare Function LoadDLLBitmapTo Lib "gblib1.dll" (ByVal sz_DLLFile As String, ByVal
sz_BitMapName As String, ByVal hWnd As Integer, ByVal i_Left As Integer, ByVal i_Top As Integer,
ByVal i_Right As Integer, ByVal i_Bottom As Integer,) As Integer

Visual Basic Example

i_Retval = LoadDLLBitmapTo("c:\windows\vbres.dll", MYPICTURE, PictureBox.hWnd,
10,10,200,200)

Rem //Test for failure//
If i_Retval Then
        MsgBox "Returned an error", 16, "LoadDLLBitmapTo Function"
        Exit Sub
End If

End Sub

See... LoadDLLBitmap LoadDLLBitmapFrom

Calling Functions by Index

This Function or Sub can be called by this Index number instead of by name.

Overview of GBLIB1.DLL

 (or ALT+x)

Aim and Purpose of GBLIB1.DLL

GBLIB1.DLL was written as a companion to Visual Basic(tm) V3.0.
There were 2 criteria for including a function or subroutine in the library.

Either: 1) Visual Basic was unable to do it.
or 2) It saved tedious and/or complicated API declarations.

In category (1) are the SubClassing and Cursor functions.
In Category (2) are the Resource and Sound functions.

As much effort went into this help file GBLIB1.HLP as the DLL itself. This is because a DLL library is only
useful if the functions are understood in their syntax and use.

Each Subroutine or Function has an explanation of it's use, the original Pascal Prototype (so that it can be
used with other languages) the Visual Basic Declaration, and, where appropriate, an example of how it
can be used in VB, and/or an HPJ declaration.

Some of the sound functions have a live demo (CLICK ME) in this help file.

There were two important aims in writing the code:

All routines should be 'system-resource-friendly', in that they should return any resources they
consume. (eg DCs, Handles, Objects)

All routines should be as robust as possible, and capable of detecting their own errors.

Most routines check the parameters passed to them, and will return cleanly if they are bad, usually with a
Message Box outlining the problem, and any resources returned.

Most functions return Zero for success, and 1 for failure. (except those which retrieve a value, of course)

GBLIB1.DLL and associated help file are distributed as FREEWARE, under conditions outlined in the help
file (See About)

The DLL was written in Borland Turbo Pascal for Windows(tm) V1.5 and this
help file was written using Microsoft Word for Windows(tm) V6.0

Visual Basic and Binary Resources

One of the few failings of Visual Basic(tm) is its non-standard use of Windows resources.

VB resources are held in the FRX file, which is non-standard, and then bound into the EXE file at
compilation in a non-standard way.

If your application uses many Bitmaps and Sounds, you have two choices:
1) Compile them into the EXE file.
2) Use LoadPicture to load them in from disk.

Method (1) can result in an EXE file that will be unacceptably large to compile, and whats more, the
resources cannot be edited or changed without re-compilation.

Method (2) leaves your work subject to piracy or alteration. Many bitmaps and waves    can make
distribution of your application lengthy and expensive on disks.

GBLIB1.DLL tries to overcome these problems.

Using a resource editor, (ie. Resource Workshop(tm) from Borland) all Bitmap, Cursor,Icon, Wave and
Text items are bound into one or more DLL resource files.

These files are then used by your application (in association with the GBLIB1.DLL functions) to
retrieve the resources when needed.

An added bonus is that the resources remain secure, in that they can only be altered or removed by a
knowlegable user of a Resource Editor.

Resources loaded from a DLL load MUCH faster than from disk, so flickbook animation with bitmaps is
practical in VB at last!

Another boon is the ability to load CURSORS and ICONS via resources - loading persistent cursors is
very difficult in VB.

In addition, GBLIB1.DLL contains functions which eliminate tedious API/DLL programming in VB.
Functions like the SoundCard querying ones make life easier for the professional VB programmer who
has to produce distributable VB applications.

Each function in GBLIB.DLL is documented where appropriate, with examples in the Function Reference 
included in this helpfile.

Gordon Bamber

Gordon Bamber is currently a staff programmer with Maxim Training - a company specialising in
Multimedia CBT.

Gordon can currently(08/94) be reached

Email:
gbamber@cix.compulink.uk.com
74437.672@compuserve.com

Snailmail:
11, Helena road,
Brighton, E.Sussex, England.
BN2 6BS

Maxim Training can be reached at
74437.672@compuserve.com
57 Ship Street,
Brighton,
E.Sussex.
England.

A Complete Asshole

Defined as:    An individual who uses or alters my software without acknowledging or crediting me in any
way.

WAVE Files

MCI RIFF files having the extension WAV
You must have a sound output device attached to your PC in order to play these.
If such a sound device is absent, Windows 3.1(tm) will substitute a default speaker beep for the sound.

System Sounds

In Windows 3.1(tm) sounds can be specified as system sounds in Control Panel(tm).
These are stored in you WIN.INI file as:
[Sounds]
SystemStart=tada.wav
SystemEnd=terminat.wav
etc.

You can, of course, edit these entries manually via notepad, and even add your own
eg
MouseClick=click.wav
ProgramLaunch=sparkle.wav
etc.

[Sounds]
Entry=

Dont worry if your WIN.INI does not contain this entry.
Use SYSEDIT (or your application code) to put it in. The Subroutine will then find it OK.

If it is absent, then a default System Beep will be played instead

ASCII 0

When you add a user resource and define it of type TEXT , Resource Workshop does not add an
ASCII Zero (Binary Zero) to the end of the data.
You must edit the raw data yourself, and manually add &H00 as the last character in your text.

The function GetDLLText will retrieve all text up to (not including) this ASCII zero.    If you are getting
unwanted extra characters, then the ASCII 0 is missing.

How to add a non-standard resource to a DLL

 (or ALT+x)

 WAV files and Text files using Resource Workshop (tm)Borland

1) Select File/Open Project, and open a DLL (It can be an empty one with no functions, but it must be a
proper Windows DLL file)

2) Select File/Add to Project, and select Filetype as USER RESOURCE DATA.

3) Select a WAV file or an unformatted Text file from disk, and load it.

4) A dialog box titled Custom Resource Type will appear. Select the New Type button.

5) Type in WAVE or TEXT as the type (use Uppercase)

6) Rename the resource as necessary.

7) If TEXT, edit the raw data so that it ends with ASCII 0

Thats it! Save the project as a DLL, and the GBLIB1 functions can extract the WAVE and TEXT resources
as needed.

LoadDLLBitmapFrom

 (or ALT+x)

Purpose

This function will display a whole or a part of a Bitmap from a DLL resource into a display hWnd.

Left, Top, Right and Bottom defines the area of the Bitmap that you want to display. It is stretched to fit the
Hwnd

Returns

Zero=Success, NonZero=Failure

GBLIB.DLL Pascal Prototype

Function LoadDLLBitmapFrom (sz_Filename, sz_Resname: LPSTR; hWind: UINT; Left, Top, Right,
Bottom :UINT) :INT

Visual Basic Declare

Declare Function LoadDLLBitmapFrom Lib "gblib1.dll" (ByVal sz_DLLFile As String, ByVal
sz_BitMapResName As String, ByVal hWnd As Integer, ByVal i_Left As Integer, ByVal i_Top As
Integer, ByVal i_Right As Integer, ByVal i_Bottom As Integer,) As Integer

Visual Basic Example

i_Retval = LoadDLLBitmapFrom("c:\windows\MyBMPS.dll", TOOLBITMAP, PictureBox.hWnd,
64,0,64,64)

Rem //Test for failure//
If i_Retval Then
        MsgBox "Returned an error", 16, "LoadDLLBitmapFrom Function"
        Exit Sub
End If

End Sub

See... LoadDLLBitmap LoadDLLBitmapTo

LoadDLLDialog

 (or ALT+x)

Purpose

Loads a Dialog resource. The dialog must be a simple AboutBox type of dialog only.    Pass the
form hWnd to the function.

GBLIB.DLL Pascal Prototype

Function LoadDLLDialog (sz_Filename, sz_Resname :LPSTR; hWind :UINT) :INT

Returns

Zero=Success, NonZero=Failure

Visual Basic Declare

Declare Function LoadDLLDialog Lib "gblib1.dll" (ByVal sz_DLLFile As String, ByVal
sz_DialogResName As String, ByVal hWnd As Integer) As Integer

Visual Basic Example

i_RetVal = LoadDLLDialog(RESFILE.DLL,ABOUTDLG,Me.hWnd)
Rem //Test for failure//
If i_Retval Then

MsgBox "Returned an error", 16, "LoadDLLDialog Function"
Exit Sub

End If

See... About

LoadDLLIcon

 (or ALT+x)

Purpose

Loads an Icon resource into the passed hWnd. The icon is placed at the Top and Left of the
hwnd, and is not resized.

GBLIB.DLL Pascal Prototype

Function LoadDLLIcon (sz_Filename, sz_Resname :LPSTR; hWind :UINT) :INT

Returns

Zero=Success, NonZero=Failure

Visual Basic Declare

Declare Function LoadDLLIcon Lib "gblib1.dll" (ByVal sz_DLLFile As String, ByVal
sz_IconResName As String, ByVal hWnd As Integer) As Integer

Visual Basic Example

i_RetVal = LoadDLLIcon(RESFILE.DLL,PROGICON,Me.hWnd)
Rem //Test for failure//
If i_Retval Then

MsgBox "Returned an error", 16, "LoadDLLIcon Function"
Exit Sub

End If

See... LoadDLLBitmap GetDLLText LoadDLLDialog LoadDLLCursor

LoadDLLCursor

 (or ALT+x)

Purpose

Loads a Cursor resource into the passed hWnd. The effect lasts until the mouse is moved outside
the boundries of the class to which the hWnd belongs.

GBLIB.DLL Pascal Prototype

Function LoadDLLCursor (sz_Filename, sz_Resname :LPSTR;; hWind :UINT) :INT

Returns

Zero=Success, NonZero=Failure

Visual Basic Declare

Declare Function LoadDLLCursor Lib "gblib1.dll" (ByVal sz_DLLFile As String, ByVal
sz_CursorResName As String, ByVal hWnd As Integer) As Integer

Visual Basic Example

i_RetVal = LoadDLLCursor(RESFILE.DLL,HANDPTR,Me.hWnd)
Rem //Test for failure//
If i_Retval Then

MsgBox "Returned an error", 16, "LoadDLLCursor Function"
Exit Sub

End If

See... LoadDLLBitmap GetDLLText LoadDLLDialog LoadDLLIcon

DestroyDLLCursor

 (or ALT+x)

Purpose

Destroys a cursor set previously by LoadDLLCursor()

GBLIB.DLL Pascal Prototype

Procedure DestroyDLLCursor

Visual Basic Declare

Declare Sub DestroyDLLCursor Lib "gblib1.dll" ()

Visual Basic Example

DestroyDLLCursor

See... LoadDLLCursor

SetArrow

 (or ALT+x)

Purpose

Sets the cursor for the passed hWnd to the default arrow.

GBLIB.DLL Pascal Prototype

Function SetArrow(hWind:UINT):INT

Returns

Zero=Success, NonZero=Failure

Visual Basic Declare

Declare Function SetArrow "gblib1.dll" (ByVal hWnd As Integer) As Integer

Visual Basic Example

SetArrow

See... LoadDLLCursor

GBSetCursorPos

 (or ALT+x)

Purpose

To set the cursor to a position relative to the Top and Left of the passed hWnd in pixels. The
source hWnd need not have Scalemode=3

GBLIB.DLL Pascal Prototype

Function GBSetCursorPos(hWind:UINT;NewX,NewY:INT):INT

Returns

Zero=Success, NonZero=Failure

Visual Basic Declare

Declare Function GBSetCursorPos Lib "gblib1.dll" (ByVal hWind As Integer, ByVal XPos As
Integer, ByVal YPos As Integer) As Integer

Visual Basic Example

i_Retval = GBSetCursorPos Me.hWnd, 10, 10

If i_Retval Then
        MsgBox "Bad return from GBSetCursorPos ", 16, "ERROR"
        Exit Sub
End If

GBClientToScreenRECT

 (or ALT+x)

Purpose

Converts client co-ordinates into screen co-ordinates.
N.B. - Use VBs built-in Screen.TwipsperpixelX and Screen.TwipsperpixelY for forms with ScaleMode=0.

GBLIB.DLL Pascal Prototype

Procedure GBClientToScreenRECT(hWind:UINT;Var MyRect:TRECT)

Visual Basic Declare

Type TRECT
          Left As Integer
          Top As Integer
          Right As Integer
          Bottom As Integer
End Type

Declare Sub GBClientToScreenRECT Lib "gblib1.dll" (ByVal hWind As Integer, ScreenRECT As
TRECT)

Visual Basic Example

Dim MyRect as TRECT

Myrect.Left = Me.Left
MyRect.Top = Me.Top
MyRect.Right = Me.Width
MyRect.Bottom = Me.Height

GBClientToScreenRECT Me.hWnd, MyRect

InvertRect Me.hWnd, MyRect

GBDecompress

 (or ALT+x)

Purpose

Acts like the Microsoft(tm) DOS program EXPAND.EXE(c).    Enables a VB program to
uncompress files on demand with just one call.

A program could store, say, version-specific data files, and decompress the appropriate ones as needed
after installation.

Sadly, there is no ability to compress files without COMPRESS.EXE(c) (A DOS program)

GBLIB.DLL Pascal Prototype

Function GBDecompress(sz_InFilePath,sz_OutFilePath:LPSTR):INT

Returns

Zero=Success, NonZero=Failure

Visual Basic Declare

Declare Function GBDecompress Lib "gblib1.dll" (ByVal InfilePath As String, ByVal OutfilePath As
String) As Integer

Visual Basic Example

i_Retval = GBDecompress (c:\install\readme.tx_, c:\app\readme.txt)

If i_Retval Then
        MsgBox "Bad return from GBDecompress", 16, "ERROR"
        Exit Sub
End If

GBPutOnTop

 (or ALT+x)

Purpose

Pass a forms hWnd to this function, and it will stay on top of other windows, even when it does
not have the focus.

GBLIB.DLL Pascal Prototype

Procedure GBPutOnTop(hWind:UINT)

Visual Basic Declare

Declare Sub GBPutOnTop Lib "gblib1.dll" (ByVal hWind As Integer)

Visual Basic Example

GBPutOnTop Me.hWnd

GBNotOnTop

 (or ALT+x)

Purpose

This will undo a GBPutOnTop    call.

GBLIB.DLL Pascal Prototype

Procedure GBNotOnTop(hWind:UINT)

Visual Basic Declare

Declare Sub GBNotOnTop Lib "gblib1.dll" (ByVal hWind As Integer)

Visual Basic Example

GBNotOnTop Me.hWnd

ModalCalc

 (or ALT+x)

Purpose

Puts up the Windows Calculator on top of all other windows until it is closed by the user.

If Calculator is already running, it will restore the running version to the top.

CLICK ME for an example.

GBLIB.DLL Pascal Prototype

Function ModalCalc:INT

Returns

Zero=Success, NonZero=Failure

Visual Basic Declare

Declare Function ModalCalc Lib "gblib1.dll" () As Integer

Visual Basic Example

i_RetVal = ModalCalc

If i_Retval Then
        MsgBox "Bad return from ModalCalc", 16, "ERROR"
        Exit Sub
End If

See... ModalNotePad ModalNotePadExec

ModalNotePad

 (or ALT+x)

Purpose

Runs Windows Notepad on top of all other windows, and keeps on top until the user shuts it
down.

If Notepad is already running, it is brought to the top.

CLICK ME for an example.

GBLIB.DLL Pascal Prototype

Function ModalNotePad:INT

Returns

Zero=Success, NonZero=Failure

Visual Basic Declare

Declare Function ModalNotePad Lib "gblib1.dll" () As Integer

Visual Basic Example

i_Retval = ModalNotePad()

If i_Retval Then
        MsgBox "Bad return from ModalNotePad", 16, "ERROR"
        Exit Sub
End If

See... ModalCalc ModalNotePadExec

ModalNotePadExec

 (or ALT+x)

Purpose

Runs Windows Notepad with a specified file on top of all other windows, and keeps on top until
the user shuts it down.

If Notepad is already running, it is brought to the top.
ModalNotePadExec could be used to show README files upon successful installation of your
application.

GBLIB.DLL Pascal Prototype

Function ModalNotePadExec(sz_Txtname:LPSTR):INT

Returns

Zero=Success, NonZero=Failure

Visual Basic Declare

Declare Function ModalNotePadExec Lib "gblib1.dll" (ByVal szFilePath As String) As Integer

Visual Basic Example

i_RetVal = ModalNotePadExec (c:\appdir\readme.txt)

If i_Retval Then
        MsgBox "Bad return from ModalNotePadExec", 16, "ERROR"
        Exit Sub
End If

See... ModalCalc ModalNotePad

MakeUAE

 (or ALT+x)

Purpose

This is a pointless and tasteless joke routine.    It simulates a General Protection Fault, but unlike
a real one, returns without harm.    Someone with a purile sense of humour must have written this one.

CLICK ME for an example.

GBLIB.DLL Pascal Prototype

Procedure MakeUAE

Visual Basic Declare

Declare Sub MakeUAE Lib "gblib1.dll" ()

Visual Basic Example

MakeUAE
MsgBox Hah! I was only fooling!

WaitForL

 (or ALT+x)

Purpose

This is a modal timer, in other words, a PAUSE statement.    Code will stop executing, and all user
actions are defrerred until the WaitForL returns.

The L stands for Long - the data type that must be passed to this subroutine.    The time is in
MilliSeconds. As the system clock ticks as 18.2 ticks/second, the shortest time that can be passed is
about 55ms.

GBLIB.DLL Pascal Prototype

Procedure WaitForL(l_Millisecs:LONGINT)

Visual Basic Declare

Declare Sub WAITFORL Lib "gblib1.dll" (ByVal MilliSeconds As Long)

Visual Basic Example

WaitForL 1000
rem //Wait a second//
WaitForL 100
rem //Wait 1/10th of a second//

See.. WaitFor

WaitFor

 (or ALT+x)

Purpose

WaitFor is a Visual Basic PAUSE statement. Pass it the number of seconds that you want to wait.
No code will get executed until it returns.

Possible use - A Splash Screen timer.

GBLIB.DLL Pascal Prototype

Procedure WaitFor(i_seconds:INT)

Visual Basic Declare

Declare Sub WaitFor Lib "gblib1.dll" (ByVal Seconds As Integer)

Visual Basic Example

WaitFor 1
rem //Hold on a second!//

Splashfrm.Show
rem //Make sure that the user cannot escape from seeing it//
WaitFor 5
Unload Splashfrm

See.. WaitForL

SpeakerBeep

 (or ALT+x)

Purpose

Sounds the system built-in speaker.    If the user has a soundcard, it will be ignored, and the
speaker will be used.

The user may have the default mci beep turned off, but a SpeakerBeep will still make a sound.

CLICK ME for an example.

GBLIB.DLL Pascal Prototype

Procedure SpeakerBeep

Visual Basic Declare

Declare Sub SpeakerBeep Lib "gblib1.dll" ()

Visual Basic Example

SpeakerBeep
Msgbox An error has occurred,16,That woke you up!

See.. PlaySound WillPlay Click Clik

StartWait

 (or ALT+x)

Purpose

Together with the WAITONE and STOPWAIT procedures, StartWait implements a CLOCK Cursor
that will animate 12-o-clock thru 12-o-clock with each call to WaitOne.

Used instead of the hourglass cursor to show the passing of time during a lengthy process.

GBLIB.DLL Pascal Prototype

Procedure StartWait(hWind:UINT)

Visual Basic Declare

Declare Sub StartWait Lib "gblib1.dll" (ByVal hWind As Integer)

Visual Basic Example

StartWait Me
rem //Initialise clockcursor//

Call DoCalc
StopWait
rem //Return to normal cursor, and free-up resources//

Sub DoCalc
For x = 1 to aLot

rem //Twizzle the clock another hour//
WaitOne
DoAnotherCalc

Next X
Exit Sub

See.. WaitOne StopWait

StopWait

 (or ALT+x)

Purpose

Called to return the cursor to normal, and clean up resources after using StartWait/WaitOne.

GBLIB.DLL Pascal Prototype

Procedure StopWait

Visual Basic Declare

Declare Sub StopWait Lib "gblib1.dll" ()

Visual Basic Example

StartWait Me
rem //Initialise clockcursor//

Call DoCalc
StopWait
rem //Return to normal cursor, and free-up resources//

Sub DoCalc
For x = 1 to aLot

rem //Twizzle the clock another hour//
WaitOne
DoAnotherCalc

Next X
Exit Sub

See.. StartWait WaitOne

WaitOne

 (or ALT+x)

Purpose

Advances the clock cursor set up in STARTWAIT one hour.

GBLIB.DLL Pascal Prototype

Procedure WaitOne

Visual Basic Declare

Declare Sub WaitOne Lib "gblib1.dll" ()

Visual Basic Example

StartWait Me
rem //Initialise clockcursor//

Call DoCalc
StopWait
rem //Return to normal cursor, and free-up resources//

Sub DoCalc
For x = 1 to aLot

rem //Twizzle the clock another hour//
WaitOne
DoAnotherCalc

Next X
Exit Sub

See.. StartWait StopWait

LoadEXEIcon

 (or ALT+x)

Purpose

Borrows the first Icon it can find in the specified EXE file, and displays it at position 0,0 in the
passed hWnd.

GBLIB.DLL Pascal Prototype

Function LoadEXEIcon(hWind:UINT;sz_EXEPath:LPSTR):INT

Returns

Zero=Success, NonZero=Failure

Visual Basic Declare

Declare Function LoadEXEIcon Lib "gblib1.dll" (ByVal hWind As Integer, ByVal szFilename As
String) As Integer

Visual Basic Example

i_RetVal = LoadEXEIcon (Picture1.hWnd, c:\windows\progman.exe)

If i_Retval Then
        MsgBox "Bad return from LoadEXEIcon", 16, "ERROR"
        Exit Sub
End If

See.. LoadEXEIconXY

SubClassIt

 (or ALT+x)

Purpose

Unfortunately, Visual Basic(tm) does not have a Message Handling loop, as other languages
(Pascal, C, C++) have.    This means that there are (a very few) messages that cannot be picked up by
the VB programmer.

Using SubClassIt, you can detect Non-Client (eg MenuBar) mouseclick events, the Form_Move event,
and Memory-Compacting and WM_POWER events.

While the window is subclassed, the right_mousebutton_down event is mapped to the
left_mousebutton_down event - that may be useful in itself.

The extra message events are all diverted to the Visual Basic Sub form_mousedown event.    The type of
message is indicated by the X parameter. (Normally this is the X-Position of the mouse, of course)

In addition, a right mousebutton double-click will trigger the default Windows Screen-Saver.

GBLIB.DLL Pascal Prototype

Procedure SubClassIt(hWind:UINT)

Visual Basic Declare

Declare Sub SubClassIt Lib "gblib1.dll" (ByVal hWind As Integer)
rem //Use the current form hWnd//

Visual Basic Example

rem //Use the current form hWnd//
SubClassIt Me.hWnd

Sub Form_MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single)
Dim msg As String

If Button = 1 Then
MsgBox "Left_MouseButton Clicked", 64, "Form_MouseDown"
Exit Sub

Else
rem //If subClassing then X= following values: //
rem //0=NC_Left, 1=NC_Right, 2=Form_Move, 3=Compacting, 4=POWER//
Select Case X
Case 0

msg = "Non-Client Left Button clicked."
Case 1

msg = "Non-Client Right Button clicked."
Case 2

Dim WX As Integer
Dim WY As Integer
GetClientZero Me.hWnd, WX, WY
msg = "Window moved to Screen Co-Ordinates" & Chr$(10)
msg = msg & "X=" & Format$(WX) & " Y=" & Format$(WY)

Case 3
msg = "Windows is Compacting Memory."
MsgBox msg, 64, "Subclassing via GBLIB1.DLL"
UnSubClassIt

Case Else
msg = "Right_MouseButton Clicked"

End Select
MsgBox msg, 64, "Subclassing via GBLIB1.DLL"

End If
End Sub

See... UnSubClassIt

UnSubClassIt

 (or ALT+x)

Purpose

This routine restores things to nomal after a call to SubClassIt . The Form_MouseDown event will
revert to Visual Basic(tm) behaviour.

GBLIB.DLL Pascal Prototype

Procedure UnSubClassIt

Visual Basic Declare

Declare Sub UnSubClassIt Lib "gblib1.dll" ()

Visual Basic Example

UnSubCalssIt

See... SubClassIt

LoadEXEIconXY

 (or ALT+x)

Purpose

This routine will load the first Icon it finds (usually the application Icon) from the specified EXE file,
and display it in the specified hWnd at the co-ordinates X, Y.

GBLIB.DLL Pascal Prototype

Function LoadEXEIconXY(hWind:UINT;sz_EXEPath:LPSTR;X,Y:INT):INT

Returns

Zero=Success, NonZero=Failure

Visual Basic Declare

Declare Function LoadEXEIconXY Lib "gblib1.dll" (ByVal hWind As Integer, ByVal sz_EXEname As
String, ByVal Xpos as Integer, ByVal Ypos as Integer) As Integer

Visual Basic Example

i_Retval = LoadEXEIconXY(picLoadIcon1.hWnd, "C:\WINDOWS\PROGMAN.EXE", 10,10)
If i_Retval Then
        MsgBox "Bad return from LoadEXEIconXY", 16, "ERROR"
        Exit Sub
End If

See... LoadEXEIcon LoadDLLIcon

LoadDLLIconXY

 (or ALT+x)

Purpose

This routine will load an Icon from the resources of the specified DLL into the specified hWnd at
the co-ordinates X, Y.

GBLIB.DLL Pascal Prototype

Function LoadDLLIconXY(sz_Filename, sz_Resname :LPSTR;hWind:UINT;X,Y:INT):INT

Returns

Zero=Success, NonZero=Failure

Visual Basic Declare

Declare Function LoadDLLIconXY Lib "gblib1.dll" (ByVal sz_DLLFile As String, ByVal
sz_ICO_Resname As String, ByVal hWind As Integer, ByVal i_Left As Integer, ByVal i_Top As
Integer) As Integer

Visual Basic Example

i_RetVal = LoadDLLIconXY(VBRES.DLL,PROGICON,PictureBox1.hWnd,10,10)

If i_Retval Then
        MsgBox "Bad return from LoadDLLIconXY", 16, "ERROR"
        Exit Sub
End If

See... LoadDLLIcon

SetUpJoystick

 (or ALT+x)

Purpose

Visual Basic provides no built-in Joystick support.    Using the MMSYSTEM.DLL mci services, this
function sets up a Joystick interface.

If there is no joystick connected, or some other error, a message is displayed to that effect.

Calls to GetJoyPos    (In a Timer event) retrieve the joystick position.

UnSetUpJoystick de-initialises the services, and returns all resources.

GBLIB.DLL Pascal Prototype

procedure SetUpJoyStick(hWind:UINT)

Visual Basic Declare

Declare Sub SetUpJoyStick Lib "gblib1.dll" (ByVal hWind As Integer)

Visual Basic Example

SetUpJoyStick Me.hWnd

See... UnSetupJoystick GetJoyPos

UnSetUpJoyStick

 (or ALT+x)

Purpose

After a call to SetUpJoystick , this routine de-initialises the Joystick handlers and returns all
resources.

GBLIB.DLL Pascal Prototype

Procedure UnSetUpJoyStick

Visual Basic Declare

Declare Sub UnSetUpJoystick Lib "gblib1.dll" ()

Visual Basic Example

UnSetUpJoyStick

See... SetupJoystick GetJoyPos

WillPlay...

 (or ALT+x)

Purpose

A series of functions that return a TRUE/FALSE value.    You can use one or more to test a Users
hardware before playing WAVE files on their system.

You could have 2 or more versions of the same sound, and, depending on the users hardware, play the
best quality that they can support.

Eliminates a lot of tedious VB programming.

GBLIB.DLL Pascal Prototypes

Function WillPlay811Mono:INT
Function WillPlay1611Mono:INT
Function WillPlay811Stereo:INT
Function WillPlay1611Stereo:INT
Function WillPlay822Mono:INT
Function WillPlay1622Mono:INT
Function WillPlay822Stereo:INT
Function WillPlay1622Stereo:INT
Function WillPlay844Mono:INT
Function WillPlay1644Mono:INT
Function WillPlay844Stereo:INT
Function WillPlay1644Stereo:INT

Returns

Zero=False, NonZero=True
N.B. The SoundBlaster AWE32 returns True for them all.

Visual Basic Declares

Declare Function WillPlay811Mono Lib "gblib1.dll" () As Integer
Declare Function WillPlay811Stereo Lib "gblib1.dll" () As Integer
Declare Function WillPlay1611Mono Lib "gblib1.dll" () As Integer
Declare Function WillPlay1611Stereo Lib "gblib1.dll" () As Integer

Declare Function WillPlay822Mono Lib "gblib1.dll" () As Integer
Declare Function WillPlay822Stereo Lib "gblib1.dll" () As Integer
Declare Function WillPlay1622Mono Lib "gblib1.dll" () As Integer
Declare Function WillPlay1622Stereo Lib "gblib1.dll" () As Integer

Declare Function WillPlay844Mono Lib "gblib1.dll" () As Integer
Declare Function WillPlay844Stereo Lib "gblib1.dll" () As Integer
Declare Function WillPlay1644Mono Lib "gblib1.dll" () As Integer
Declare Function WillPlay1644Stereo Lib "gblib1.dll" () As Integer

Visual Basic Example

Sub PlayThisSound
If WillPlay1644Stereo() > 0 then

i_RetVal=PlayResource(mysounds.dll,HIFISOUND)
If i_RetVal then Exit Sub

Else
i_RetVal=PlayResource(mysounds.dll,LOWFISOUND)
If i_RetVal then Exit Sub

EndIf
End Sub

GetWaveVendorID

 (or ALT+x)

Purpose

Use to determine the type of soundcard in a machine.    Each manufacturer has a unique ID.

GBLIB.DLL Pascal Prototype

Function GetWaveVendorID:INT

Returns

The Vendor ID
N.B. The SoundBlaster AWE32(tm) returns the number 2

Visual Basic Declare

Declare Function GetWaveVendorID Lib "gblib1.dll" () As Integer

Visual Basic Example

i_VendorID = GetWaveVendorID()
Select Case i_VendorID
Case....

GetWaveProductID

 (or ALT+x)

Purpose

Used to query the soundcard setup installed in a target machine.

GBLIB.DLL Pascal Prototype

Function GetWaveProductID:INT

Returns

The Product ID
N.B. The SoundBlaster AWE32(tm) returns the number 104

Visual Basic Declare

Declare Function GetWaveProductID Lib "gblib1.dll" () As Integer

Visual Basic Example

i_ProductID = GetWaveProductID()
Select Case i_ProductID
Case....

GetWaveDriverVersion

 (or ALT+x)

Purpose

Used to query the soundcard setup installed in a target machine.

GBLIB.DLL Pascal Prototype

Function GetWaveDriverVersion(var Major,Minor:INT):INT

Returns

Zero=Success, NonZero=Failure
N.B. The SoundBlaster AWE32(tm) driver returns the number 1.17

Visual Basic Declare

Declare Function GetWaveDriverVersion Lib "gblib1.dll" (Major As Integer, Minor As Integer) As
Integer

Visual Basic Example

i_RetVal = GetWaveDriverVersion(Major, Minor)
If i_RetVal Then
        MsgBox "Error in GetWaveDriverVersion", 48, "GBLIB1.DLL"
        Exit Sub
End If
MsgBox "Driver version is " & Format$(Major) & "." & Format$(Minor)

GetWaveProductName

 (or ALT+x)

Purpose

Used to query the soundcard setup installed in a target machine.

GBLIB.DLL Pascal Prototype

Function GetWaveProductName(sz_Buffer:LPSTR;var i_Len:UINT):INT

Returns

Zero=Success, NonZero=Failure
N.B. The SoundBlaster AWE32(tm) returns the string SB16 WAVE OUT

Visual Basic Declare

Declare Function GetWaveProductName Lib "gblib1.dll" (ByVal szBuffer As String, i_BufferLen As
Integer) As Integer

Visual Basic Example

Dim szBuf as String * 255
ALen = GetWaveProductName(szBuf, 255)
msg = Left$(szBuf, ALen)
MsgBox msg, 64, "Sound Card Driver Name"

GetWaveNumChannels

 (or ALT+x)

Purpose

Used to query the soundcard setup installed in a target machine.

GBLIB.DLL Pascal Prototype

Function GetWaveNumChannels:INT

Returns

1 = Mono, 2 = Stereo
N.B. The SoundBlaster AWE32(tm) returns the number 2

Visual Basic Declare

Declare Function GetWaveNumChannels Lib "gblib1.dll" () As Integer

Visual Basic Example

msg = "No. of Channels: " & Format$(GetWaveNumChannels())
MsgBox msg, 64, "GBLIB.DLL Report"

GetMIDIVendorID

 (or ALT+x)

Purpose

Used to query the MIDI setup installed in a target machine.

GBLIB.DLL Pascal Prototype

Function GetMIDIVendorID:INT

Returns

The MIDI Vendor ID number.
N.B. The SoundBlaster AWE32(tm) returns the number 30

Visual Basic Declare

Declare Function GetMIDIVendorID Lib "gblib1.dll" () As Integer

Visual Basic Example

Dim msg As String
Dim nl As String
nl = Chr$(10)
msg = "MIDI Capabilities" & nl
msg = msg & "Vendor    ID: " & Format$(GetMIDIVendorID()) & nl
msg = msg & "Product ID: " & Format$(GetMIDIProductID()) & nl
msg = msg & "No. of Voices: " & Format$(GetMIDIVoices()) & nl
msg = msg & "No. of Notes: " & Format$(GetMIDINotes()) & nl
msg = msg & "No. of Channels: " & Format$(GetMIDINumChannels())
MsgBox msg, 64, "GBLIB.DLL Report"

GetMIDIProductID

 (or ALT+x)

Purpose

Used to query the MIDI setup installed in a target machine.

GBLIB.DLL Pascal Prototype

Function GetMIDIProductID:INT

Returns

The Product ID
N.B. The SoundBlaster AWE32(tm) returns the number 15

Visual Basic Declare

Declare Function GetMIDIProductID Lib "gblib1.dll" () As Integer

Visual Basic Example

Dim msg As String
Dim nl As String
nl = Chr$(10)
msg = "MIDI Capabilities" & nl
msg = msg & "Vendor    ID: " & Format$(GetMIDIVendorID()) & nl
msg = msg & "Product ID: " & Format$(GetMIDIProductID()) & nl
msg = msg & "No. of Voices: " & Format$(GetMIDIVoices()) & nl
msg = msg & "No. of Notes: " & Format$(GetMIDINotes()) & nl
msg = msg & "No. of Channels: " & Format$(GetMIDINumChannels())
MsgBox msg, 64, "GBLIB.DLL Report"

GetMIDIDriverVersion

 (or ALT+x)

Purpose

Used to query the MIDI setup installed in a target machine.

GBLIB.DLL Pascal Prototype

Function GetMIDIDriverVersion(var Major,Minor:INT):INT

Returns

The Version number of the MIDI driver.
N.B. The SoundBlaster AWE32(tm) driver returns 1.51

Visual Basic Declare

Declare Function GetMIDIDriverVersion Lib "gblib1.dll" (Major As Integer, Minor As Integer) As
Integer

Visual Basic Example

Dim msg As String
Dim ALen As Integer
Dim Major As Integer
Dim Minor As Integer
Dim i_RetVal As Integer
Dim szBuf As String * 255
i_RetVal = GetMIDIDriverVersion(Major, Minor)
If i_RetVal Then
        MsgBox "Error in GetMIDIDriverVersion", 48, "GBLIB1.DLL"
        Exit Sub
End If
MsgBox "Driver version is " & Format$(Major) & "." & Format$(Minor), 64, "GetMIDIDriverVersion"

GetMIDIProductName

 (or ALT+x)

Purpose

Used to query the MIDI setup installed in a target machine.

GBLIB.DLL Pascal Prototype

Function GetMIDIProductName(sz_Buffer:LPSTR;var i_Len:UINT):INT

Returns

The Product name of the MIDI driver.
N.B. The SoundBlaster AWE32(tm) returns the string Voyerta Super Sapi FM Driver

Visual Basic Declare

Declare Function GetMIDIProductName Lib "gblib1.dll" (ByVal szBuffer As String, i_BufferLen As
Integer) As Integer

Visual Basic Example

Dim msg As String
Dim ALen As Integer
Dim szBuf As String * 255
ALen = GetMIDIProductName(szBuf, 255)
msg = "Driver: " & Left$(szBuf, ALen)
MsgBox msg, 64, "GBLIB1 - GetMIDIProductName"

GetMIDIVoices

 (or ALT+x)

Purpose

Used to query the MIDI setup installed in a target machine.

GBLIB.DLL Pascal Prototype

Function GetMIDIVoices:INT

Returns

Number of simultaneous MIDI Voices supported.
N.B. The SoundBlaster AWE32(tm) returns the number 14

Visual Basic Declare

Declare Function GetMIDIVoices Lib "gblib1.dll" () As Integer

Visual Basic Example

Dim msg As String
Dim nl As String
nl = Chr$(10)
msg = "MIDI Capabilities" & nl
msg = msg & "Vendor    ID: " & Format$(GetMIDIVendorID()) & nl
msg = msg & "Product ID: " & Format$(GetMIDIProductID()) & nl
msg = msg & "No. of Voices: " & Format$(GetMIDIVoices()) & nl
msg = msg & "No. of Notes: " & Format$(GetMIDINotes()) & nl
msg = msg & "No. of Channels: " & Format$(GetMIDINumChannels())
MsgBox msg, 64, "GBLIB.DLL Report"

GetMIDINotes

 (or ALT+x)

Purpose

Used to query the MIDI setup installed in a target machine.

GBLIB.DLL Pascal Prototype

Function GetMIDINotes:INT

Returns

Number of simultaneous MIDI notes supported.
N.B. The SoundBlaster AWE32(tm) returns the number 14

Visual Basic Declare

Declare Function GetMIDINotes Lib "gblib1.dll" () As Integer

Visual Basic Example

Dim msg As String
Dim nl As String
nl = Chr$(10)
msg = "MIDI Capabilities" & nl
msg = msg & "Vendor    ID: " & Format$(GetMIDIVendorID()) & nl
msg = msg & "Product ID: " & Format$(GetMIDIProductID()) & nl
msg = msg & "No. of Voices: " & Format$(GetMIDIVoices()) & nl
msg = msg & "No. of Notes: " & Format$(GetMIDINotes()) & nl
msg = msg & "No. of Channels: " & Format$(GetMIDINumChannels())
MsgBox msg, 64, "GBLIB.DLL Report"

GetMIDINumChannels

 (or ALT+x)

Purpose

Used to query the MIDI setup installed in a target machine.

GBLIB.DLL Pascal Prototype

Function GetMIDINumChannels:INT

Returns

Number of MIDI Channels supported
N.B. The SoundBlaster AWE32(tm) returns the number 8

Visual Basic Declare

Declare Function GetMIDINumChannels Lib "gblib1.dll" () As Integer

Visual Basic Example

Dim msg As String
Dim nl As String
nl = Chr$(10)
msg = "MIDI Capabilities" & nl
msg = msg & "Vendor    ID: " & Format$(GetMIDIVendorID()) & nl
msg = msg & "Product ID: " & Format$(GetMIDIProductID()) & nl
msg = msg & "No. of Voices: " & Format$(GetMIDIVoices()) & nl
msg = msg & "No. of Notes: " & Format$(GetMIDINotes()) & nl
msg = msg & "No. of Channels: " & Format$(GetMIDINumChannels())
MsgBox msg, 64, "GBLIB.DLL Report"

IsMIDI...

 (or ALT+x)

Purpose

Used to query the MIDI setup installed in a target machine.

GBLIB.DLL Pascal Prototypes

Function IsMIDIExternalSynth:INT
Function IsMIDISquareWaveSynth:INT
Function IsMIDIFMSynth:INT
Function IsMIDIGenericSynth:INT
Function IsMIDIMapper:INT

Returns

No=0, Yes=1

Visual Basic Declares

Declare Function IsMIDIExternalSynth Lib "gblib1.dll" () As Integer
Declare Function IsMIDISquareWaveSynth Lib "gblib1.dll" () As Integer
Declare Function IsMIDIFMSynth Lib "gblib1.dll" () As Integer
Declare Function IsMIDIMapper Lib "gblib1.dll" () As Integer

Visual Basic Example

Dim msg as String
If IsMIDIExternalSynth() then msg =    an external synthesiser
If IsMIDISquareWaveSynth() then msg = a square wave synthesiser
If IsMIDIFMSynth() then msg = an FM synthesiser
If IsMIDIMapper() then msg = diverted through MIDI Mapper
msg = Your MIDI is    & msg
MsgBox msg, 64, IsMIDI Functions

WillMidiDo...

 (or ALT+x)

Purpose

Used to query the MIDI setup installed in a target machine.

GBLIB.DLL Pascal Prototypes

Function WillMidiDoVolume:INT
Function WillMidiDoLRVolume:INT
Function WillMidiDoCache:INT

Returns

No=0, Yes=1

Visual Basic Declares

Declare Function WillMidiDoVolume Lib "gblib1.dll" () As Integer
Declare Function WillMidiDoLRVolume Lib "gblib1.dll" () As Integer
Declare Function WillMidiDoCache Lib "gblib1.dll" () As Integer

Visual Basic Example

Dim Msg as String
Dim nl as String
nl = Chr$(13)
Msg = Your MIDI setup. & nl
If WillMidiDoVolume() then Msg = Msg & It can Vary the Volume & nl
If WillMidiDoLRVolume() then Msg = Msg & and also do this in Stereo! & nl
If WillMidiDoCache() then Msg = Msg & It can Cache Patches. & nl
MsgBox Msg, 64 GBLIB1.DLL MIDI Report

GetClientZero

 (or ALT+x)

Purpose

Someone, somewhere, may find a good use for this routine. I use it for the Subclassed
Form_Move routine.

GBLIB.DLL Pascal Prototype

Procedure GetClientZero(hWind:UINT;var Left:INT;Var Top:INT)

Visual Basic Declare

Declare Sub GetClientZero Lib "gblib1.dll" (ByVal hWind As Integer, i_Left As Integer, i_Top As
Integer)

Visual Basic Example

Dim i_Left as Integer
Dim i_Top as Integer
Dim Msg as String
GetClientZero Me.hWnd, i_Left, i_Top
Msg = Form is at    & Format$(i_Left) & , & Format$(i_Top)
MsgBox Msg, 64, GBLIB1 - GetClientZero

GetJoyPos

 (or ALT+x)

Purpose

GBLIB.DLL Pascal Prototype

Procedure GetJoyPos(var XPos:LONGINT;var YPos:LONGINT;var LButton:INT;var RButton:INT)

Visual Basic Declare

Declare Sub GetJoyPos Lib "gblib1.dll" (XPos As Long, YPos As Long, LButton As Integer,
RButton As Integer)

Visual Basic Example

Global JX as Long
Global JY as Long
Global JRB as Integer
Global JLB as Integer

Sub JoyTimer_Timer ()
GetJoyPos JX, JY, JRB, JLB
If JLB = 1 Then MsgBox "Left Button Pressed"
If JRB = 1 Then MsgBox "Right Button Pressed"
Me.Caption = "Joy-X=" & Format$(JX) & " Joy-Y=" & Format$(JY)
End Sub

See... UnSetupJoystick SetUpJoystick

GBLIB1.DLL Function Reference by Category

 (or ALT+x)

Retrieving Resources from a DLL

Sound Functions

VB Add-Ons

See... Complete Function Reference

Retrieving Resources from a DLL

 (or ALT+x)

Click the sub or function name to obtain more information

Function PlayDLLWave index 2

Function LoadDLLBitmap index 3

Function GetDLLText index 4

Function GetDLLBitmapSize index 5

Function PlayResource index 7

LoadDLLBitmapFrom index 25

LoadDLLDialog index 26

LoadDLLIcon index 27

LoadDLLCursor index 28

DestroyDLLCursor index 29

LoadDLLIconXY index 50

See... Complete Function Reference

Sound Functions

 (or ALT+x)

Click the sub or function name to obtain more information

Function PlayDLLWave index 2

Function PlayResource index 7

Sub PlayLoop index 10

Sub StopLoop index 11

Sub SystemStart index 15

Sub SystemEnd index 16

Sub SystemBeep index 17

Sub SystemQuestion index 18

Sub SystemExclamation Index 19

Sub SystemAsterisk index 20

Sub SystemHand index 21

Sub MouseClick index 22

Sub ProgramLaunch index 23

Sub PlaySound index 24

SpeakerBeep index 42

WillPlay811Mono index 53

WillPlay811Stereo index 54

WillPlay1611Mono index 55

WillPlay1611Stereo index 56

WillPlay822Mono index 57

WillPlay822Stereo index 58

WillPlay1622Mono index 59

WillPlay1622Stereo index 60

WillPlay844Mono index 61

WillPlay844Stereo index 62

WillPlay1644Mono index 63

WillPlay1644Stereo index 64

GetWaveVendorID index 65

GetWaveProductID Index 66

GetWaveDriverVersion Index 67

GetWaveProductName Index 68

GetWaveNumChannels Index 69

GetMIDIVendorID index 70

GetMIDIProductID Index 71

GetMIDIDriverVersion Index 72

GetMIDIProductName Index 73

GetMIDIVoices Index 74

GetMIDINotes Index 75

GetMIDINumChannels Index 76

IsMIDI Index 77

IsMIDISquareWaveSynth Index 78

IsMIDIFMSynth Index 79

IsMIDIGenericSynth Index 80

IsMIDIMapper Index 81

WillMidiDoVolume Index 82

WillMidiDoLRVolume Index 83

WillMidiDoCache Index 84

See... Complete Function Reference

VB Add-Ons

 (or ALT+x)

Click the sub or function name to obtain more information

Sub About index 1

SetArrow index 30

GBSetCursorPos index 31

GBClientToScreenRECT index 32

GetClientZero Index 85

GBDecompress index 33

GBPutOnTop index 34

GBNotOnTop index 35

ModalCalc index 36

ModalNotePad index 37

ModalNotePadExec index 38

MakeUAE index 39

WaitForL index 40

WaitFor index 41

StartWait index 43

StopWait index 44

WaitOne index 45

LoadEXEIcon index 46

SubClassIt index 47

UnSubClassIt index 48

LoadEXEIconXY index 49

SetUpJoystick index 51

UnSetUpJoyStick index 52

GetJoyPos Index 86

See... Complete Function Reference

System requirements for using/distributing GBLIB1.DLL

 (or ALT+x)

In order to run applications using services provided by GBLIB1.DLL you will need to ensure that
the following libraries are installed on both your and the target machine:

Library Purpose
GBLIB1.DLL Functions in this Help File
MMSYSTEM.DLL Sound and Joystick services
LZEXPAND.DLL GBDecompress function
SHELL.DLL Icon services

The target machine should be running Windows 3.1 or higher in Enhanced mode.

You can install the DLLs in the users Windows/System directory (Obtained by a call to the API function
GetSystemDirectory) or you can install them all in the same directory as your application.

I would recommend the second option, as it eliminates any version conflicts with existing DLLs on the
users system.

I know that Microsoft(tm) recommend that DLLs be installed in the System directory, but they, and a lot of
other software distributors break this rule for the practical reason that Version checking just does not
work in practice to the benefit of the user

See... About GBLIB1.DLL and Conditions of Use

