
Access mask constants
TAccessItem

The following constants should be used to set value of property TAccessItem. Mask.

These constants apply to TNTShare and TNTFileSecurity instances.
famRead read access on the object is granted, denied or watched
over
famWrite write access on the object is granted, denied or watched
over
famExecute read right on the object is granted, denied or watched over
famDelete delete right on the object is granted, denied or watched over
famPermissions right to change permissions on the object    is granted,
denied or watched over
famOwnership right to take ownership of files    is granted, denied or
watched over
famFullControl all the listed rights are granted, denied or watched over
The following constants are responsible for inheritance behaviour of folders
genericRead files created in the directory will have read access
genericWrite files created in the directory will have write access
genericExecute files created in the directory will have execute access
genericAll files created in the directory will have full access

These constants apply to TNTRegSecurity instances.
 kamQueryValue access to read key value is granted, denied or watched over
 kamSetValue        access to write key value is granted, denied or watched over
 kamCreateSubKey access to create subkey is granted, denied or watched over
 kamEnumSubKey                                access to enumerate subkeys is granted, denied or
watched over
 kamNotify              access to notify when changes occurred is granted, denied
or watched over
 kamCreateLink access to create links is granted, denied or watched over
 kamDelete              access to delete key is granted, denied or watched over
 kamWriteDAC access to write security information is is granted, denied or
watched over
 kamWriteOwner    access to take ownership of key is granted, denied or
watched over
 kamReadControl access to read security information is granted, denied or
watched over
 kamFullControl    full access to the key is granted, denied or watched over

TUserInfo.AccountExpires
TNTUserMan TUserInfo

property AccountExpires: TDateTime;

Description
Specifies the date when the account expires. A value of "-1" indicates that the account
never expires.

TUserInfo.AccountExpires

TNTUserMan TUserInfo

property AccountExpires: TDateTime;

Description
Specifies when the account will expire. A value of "-1" indicates that the account never
expires.

TNTService.ActiveManager
TNTService Example

property ActiveManager: boolean;

Use ActiveManager: property to establish a connection to the service control manager
on the specified computer and to open the specified database.

TNTService.ActiveService
TNTService Example

property ActiveService: boolean;

Use ActiveService property to open a handle to an existing service.

Note
At the moment of switching ActiveService to true the properties of TNTService
component are automatically changed in accordance with the service control manager
database. The changes made after ActiveService is turned to true affect the database.

Assigning security attributes to folders
TNTFileSecurity

The folder is an object that contains files. In other words it is container. It may have
some attributes that should be inherited by files that are inside the folder. That's why the
folder's access entries are often duplicated. The table below shows some of the
standard combinations of "access control entries" that Windows NT explorer assigns
and correspondent combination of .

Explorer option Access Mask Access Flag
List(RX)(Not specified)  

famRead or famExecute; [acfContainer]

Read(RX)(RX)
1. genericRead or genericExecute; [acfObjInherit, acfInheritOnly]
2. famRead or famExecute; [acfContainer]

Add(WX)(Not specified)
famWrite or famExecute; [acfContainer]

Add & Read (RWX)(RX)
1. genericRead or genericExecute; [acfObjInherit, acfInheritOnly]
2. famRead or famWrite or famExecute; [acfContainer]

Change(RWXD)(RWXD)
1. famDelete or genericRead or [acfObjInherit, acfInheritOnly]

genericWrite or genericExecute;
2. famRead or famWrite or [acfContainer]

famExecute or famDelete;

Full control (All)(All)
1. genericAll [acfObjInherit, acfInheritOnly]
2. famFullControl [acfContainer]

The other combinations are possible but Explorer.exe will call them "special access" or
may even refuse to edit access attributes at all. It does not mean that access control
does not work. It works, but Microsoft Explorer.exe cannot recognize the combination.

TNTUserMan.BadPasswordCount
TNTUserMan TUserInfo

property BadPasswordCount: integer;        read only

Description
Specifies the number of times the user tried to log on to the account using an incorrect
password. A value of "-1" indicates that the value is unknown.

TNTService.BinaryPathName
TNTService Example

property BinaryPathName: string;

Description
Contains the fully qualified path to the service binary file.

TUserInfo.CodePage
TNTUserMan TUserInfo

property CodePage: integer;

Description
Specifies the code page for the user's language of choice.

TUserInfo.Comment
TNTUserMan TUserInfo

property Comment: string

Description
The string contains the comment. Make sure having set valid UserName before using
this property.

TNTShare.Connections
TNTShare Example

property Connections: TConnectionList;

Description
This property returns pointer to the list of network drivers of local computer. Remember
that property MachineName does not affect the list of connections. It is always a list of
network (redirected) drivers of local computer. Each time you use Connections property
component rereads the list of connections. Therefore use it only to obtain pointer to the
list or to refresh information. Use retrieved pointer for any other operations.

Contact information

TNTService, TNTEventLog, TNTUserMan, TNTShare, TNTFileSecurity,
TNTRegSecurity, TNTPrivilege are the components that compound the powerful
collection designed to use specific features of Windows NT™. This is the shareware
version. Full version with source code and technical support is available for registered
users.

E-mail contact@risq.belcaf.minsk.by
Visit us at http://www.belcaf.com
Register your version Internet registration service

Contact information
Library hierarchy
Windows NT vs. Windows 95

    TNTService component

    TNTEventLog component

    TNTUserMan component

    TNTShare component

    TNTFileSecurity component

    TNTRegSecurity component

    TNTPrivilege component

TNTService.ControlService
TNTService Example

The ControlService function sends a control code to a Win32 service.

procedure ControlService(Code: TControlCode);

The function asks the service control manager to send the requested control code to the
service. The service control manager sends the code if the service accepts the control
and if the service is in a controllable state. All running services accept the
SERVICE_CONTROL_INTERROGATE control code by default. Each service specifies
the other control codes that it accepts.

TUserInfo.CountryCode
TNTUserMan TUserInfo

property CountryCode: integer;

Description
Specifies the country code for the user's language of choice.

TNTService.Createservice
TNTService Example

The Createservice procedure creates a service object and adds it to the specified
service control manager database.

procedure Createservice;

Description
The Createservice procedure creates a service object and installs it in the service
control manager database by creating a service name key in the registry with the
following form:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\ServiceName.
Information specified is saved as values under this key. Setup programs and the service
itself can create any subkey under this service name key for any service specific
information.

DBLockHandle property
TNTService

property DBLockHandle: SC_LOCK;      read only

Property DBLockHandle contains lock to the specified service control manager
database when DBLocked is true. There is no other need to use it directly. To unlock a
service control manager database reset DBLockHandle to false.

TNTService.DBLocked
TNTService Example

 property DBLocked: boolean

Description
The DBLocked property allows you to acquire a lock on the specified database. Only
one process at a time can have a lock on a database. A lock is a protocol used by setup
and configuration programs and the service control manager to serialize access to the
service tree in the registry. The only time the service control manager acquires a lock is
when it is starting a service.

TNTService.DatabaseName
TNTService

property DatabaseName: string

Contains the string that names the service control manager database to open. This
string should specify ServicesActive. If the string is empty, the ServicesActive database
is opened by default.

TPersistent
            |
TDayHours

TNTService.DeleteService
TNTService Example

procedure    DeleteService;

Description

The DeleteService procedure marks the specified service for deletion from the service
control manager database. The database entry is not removed until all open handles to
the service have been closed by calls to the CloseServiceHandle function, and the
service is not running. A running service is stopped by a call to the ControlService
function with the CONTROL_STOP control code. If the service cannot be stopped, the
database entry is removed when the system is restarted. The service control manager
deletes the service by deleting the service key and its subkeys from the registry.

Note
ActiveService property must be set TRUE before this function is called

TNTService.Dependencies
TNTService Example

property Dependencies: TStrings;

Description

Contains the    names of services or load ordering groups that must start before this
service.    If the Dependencies is an empty list, the service has no dependencies. If a
group name is specified, it must be prefixed by the SC_GROUP_IDENTIFIER (defined
in the WINSVC.PAS file) character to differentiate it from a service name, because
services and service groups share the same name space. Dependency on a service
means that this service can only run if the service it depends on is running. Dependency
on a group means that this service can run if at least one member of the group is
running after an attempt to start all members of the group.

TNTService.DisplayName
TNTService Example

property DisplayName: string;

Description
The string that is to be used by user interface programs to identify the service. This
string has a maximum length of 256 characters. The name is case-preserved in the
Service Control Manager. Display name comparisons are always case-insensitive.

UserInfo.Domain
TNTUserMan TUserInfo

property Domain: string          read only

Description
Property contains the name of the the domain user belongs to.

TNTService.ErrorControl
TNTService

property ErrorControl: TErrorType;

Description
Specifies the severity of the error if this service fails to start during startup, and
determines the action taken by the startup program if failure occurs.

Now event log has 3 sections: "Application", "Security", "System"

Event log sources
TNTEventLog

Event logging management information is stored in the Services key of the
configuration database and can be modified by a system administrator.

The structure of the configuration information is as follows:

HKEY_LOCAL_MACHINE
    SYSTEM
        CurrentControlSet
            Services
                EventLog
                    Application
                    Security
                    System

The EventLog key contains several subkeys, called logfiles. The default logfiles are
Application, Security, and System. Each logfile subkey can contain subkeys, called
sources. You cannot use a source name that has been used as a logfile name, and
source names should not be hierarchical. (The backslash character [\] cannot be used
in a registry key.) Each source entry contains information specific to the source of the
event, as shown in the following table.

Value Description
EventMessageFile Specifies the path for the event identifier message file.
CategoryMessageFile Specifies the path for the category message file. The event
category and event identifier message strings can be in

the same file.
ParameterMessageFile Specifies the path for the event source's parameter message
file. This file contains language-independent strings  

that are to be inserted into the event description strings. You can use the same
message file for parameter, category, and event identifier message strings.
CategoryCount Specifies the number of categories supported.
TypesSupported Specifies a bitmask of supported types.

When TNTEventLog reads the description of events it searches for the specified source
name in the registry. If the specified source name cannot be found in the registry, the
Application logfile is used by default. However, because there is not a message or
category string file, the event viewer will not be able to map the event identifier or
category to a replacement string. For this reason, the recommended procedure is to add
a unique source name for the application to the registry. This allows you to specify
message files for the event identifier and category in your events. Applications and
services should add their source names to the Application logfile. Device drivers
should add their source name to the System logfile.
TNTEventLog component uses the LoadLibrary function to load the file indicated by
the source's EventMessageFile registry value. The component then uses the
FormatMessage function to retrieve the description string from the loaded module. To
create message table in the DLL or EXE file you can use two tools. Microsoft C++ has a
message compiler MC.EXE which allows to create binary resources. Those resource

can be added to the DLL or EXE later. Alternatively you can use MTEditor.exe which
edits message tables resources inside EXE or DLLs. The source code of MTEditor.dpr
is included in the full version of "Component Set for Windows NT".

Example

TUserInfo.FullName
TNTUserMan TUserInfo Example

property FullName: string;

Description
The property contains the full name of the user.

TNTService.GetDependentServiceList
TNTService Example

function GetDependentServiceList(AState: TServiceStates): TEnumList

Description
The GetDependentServiceList function returns the list of services that depend on the
open service; that is, the specified service must be running before the enumerated
services can run.

Note
ActiveManager property must be TRUE before this function called;
ActiveService property must be TRUE before this function called;
ServiceAccess property must include S_ENUMERATE_DEPENDENTS value;
function GetDependentServiceList returns an object, therefore you have to free it
yourself;

TNTService.GetServiceDisplayName
TNTService See alsoExample

The GetServiceDisplayName function obtains the display name that is associated with a
particular service name. The service name is the same as the service's registry key
name.

function GetServiceDisplayName(AServiceName: string): string;

Note
ActiveManager property must be TRUE before this function called

TNTService.GetServiceKeyName
TNTService See alsoExample

function GetServiceKeyName(ADisplayName: string): string;

The function obtains the service name that is associated with a particular service's
display name. The service name is the same as the service's registry key name.

Note
ActiveManager property must be TRUE before this function called

TNTService.GetServiceList
TNTService Example

function GetServiceList(AState: TServiceStates; AType: TEnumSevices): TEnumList;

Description
Function returns list of services that match the search condition
Parameters:
AState: define services in which state (running, stopped etc.) will be included in the
result list
AType: type of services    to be returned in the result list (drivers or/and processes)

Note
Returned value is an object and you have to free it when no more need.
ManagerAccess property must include M_ENUMERATE_SERVICE value before
setting ActiveManage to true.

TUserInfo.HomeDir
TNTUserMan TUserInfo

property HomeDir: string;

Description
Property contains the path of the home directory for the user specified by UserName

TNTUserMan.LastLogOff
TNTUserMan TUserInfo

property LastLogOff: TDateTime;        read only

Description
Specifies when the last logoff occurred. A "-1" means that the last logoff time is
unknown.

TNTUserMan.LastLogon
TNTUserMan TUserInfo

property LastLogon: TDateTime    read only

Description
Property specifies the date and time when the last logon occurred. If the value is equal
-1 it means that user never logged on.

Scope
 Published

Accessibility
 Read-only

Library hierarchy

NTSet's object hierarchy

TNTService.LoadOrder
TNTService Example

property LoadOrder: string;

Description

The property names the load ordering group of which this service is a member. If the
string is empty, the service does not belong to a group.
The registry has a list of load ordering groups located at
HKEY_LOCAL_MACHINES\System\CurrentControlSet\Control\ServiceGroupOrder.
The startup program uses this list to load groups of services in a specified order with
respect to the other groups in the list. You can place a service in a group so that another
service can depend on the group.

The order in which a service starts is determined by the following criteria:

1. The order of groups in the registry's load-ordering group list. Services in groups in
the load-ordering group list are started first, followed by services in groups not in the
load-ordering group list, and then services that do not belong to a group.
2. The service's dependencies listed in the Dependencies property and the
dependencies of other services dependent on the service.

TNTUserMan.LocalGroupComment
TNTUserMan Example

property    LocalGroupComment: string;

Using
Windows NT only
The property will return empty string on Windows 95 machine

Description
This property is used to get and set description of local group either on local machine or
network computer.

Remark
LocalGroupComment contains proper information only if LocalGroupName is valid
group name.

TNTUserMan.LocalGroupMembers
TNTUserMan Example

property LocalGroupMembers: TStrings;

Using
Windows NT only
The property will return empty list on Windows 95 machine

Description
LocalGroupMembers property allows to retrieve and set list of members of particular
local group on a local or remote computer. Use this property to replace the whole list of
members as well as    to add(remove) particular user into(from) a local group    See also
MemberOfLocal property. Each item of list is expected to be in the form of
"DomainName\UserName".
Note
Before using this property make sure that LocalGroupName contains valid global group
name.

TNTUserMan.LocalGroupName
TNTUserMan Example

property LocalGroupName: string

Using
Windows NT only
The attempt to set this property will not have any result on Windows 95 machine

Description
This property contains the name of the local group of users on the selected computer.
Set this property before retrieving any other information about local group (see also
LocalGroupComment, LocalGroupMembers). You may get the list of all local groups on
the given computer using LocalGroups property.

TNTUserMan.LocalGroups
TNTUserMan Example

property LocalGroups: TStrings;

Windows NT only
The property will return empty list on Windows 95 machine

Description
TNTUserMan.Groups property contains list of local groups on a local or remote
computer. Using this property you can retrieve list of local groups, add, delete group and
replace the whole list of groups.    Use LocalGroups' Add and Delete methods to add or
remove global group. Before using this property make sure that MachineName contains
valid computer name.

TUserInfo.LogonCount
TNTUserMan TUserInfo

property LogonCount: integer;        read only

Description
Counts the number of successful times the user tried to log on to this account. A value
of "-1" indicates that the value is unknown.

TUserInfo.LogonServer
TNTUserMan TUserInfo

property LogonServer: string;          read only

Description
Property contains the name of the server to which logon requests are sent. Server
names should be preceded by two backslashes (\\). When the server name is indicated
by an asterisk (*), the logon request can be handled by any logon server. An empty
string indicates that requests are sent to the domain controller.

TNTService.ManagerAccess
TNTService Example

property ManagerAccess: TManagerAccess;

Description
Specifies the access to the service control manager. Before granting the requested
access, the system checks the access token of the calling process against the
discretionary access-control list of the security descriptor associated with the service
control manager object. The M_CONNECT access type is implicitly specified by calling
this function.

Note
ManagerAccess must be set before setting ActiveManager property to true.

TNTService.ManagerHandle
TNTService Example

ManagerHandle is a handle to the specified service control manager database

property ManagerHandle: SC_HANDLE;    read only;

Description
Use ManagerHandle to call a Windows API function that requires the handle of a
service control manager. Pass ManagerHandle as schSCManager parameter to these
functions.

TUserInfo.MaxStorage
TNTUserMan TUserInfo

property MaxStorage: integer;

Description
Specifies the maximum amount of disk space the user can use. Use the value of "-1" to
use all available disk space.

TNTUserMan.MemberOfGlob
TNTUserMan Example

property MemberOfGlob: TStrings;

Description
MemberOfGlob property contains list of global groups on the selected computer the
user is member of. Use MemberOfGlob's Add and Delete
methods do change membership. Make sure that MachineName has a valid computer
name and UserName contains valid user name before using this property.

TNTUserman.MemberOfLocal
TNTUserMan Example

property MemberOfLocal: TStrings;

Description
MemberOfLocal property contains list of local groups on the selected computer the user
is member of. Use MemberOfLocal's Add and Delete
methods do change membership. Make sure that MachineName has a valid computer
name and UserName contains valid user name before using this property.

TNTService.NotifyBootConfigStatus method
TNTService

The NotifyBootConfigStatus function notifies the service control manager as to the
acceptability of the configuration that booted the system.

procedure NotifyBootConfigStatus(BootAcceptable: boolean);

BootAcceptable parameter

Specifies whether the configuration that booted the system is acceptable. If this
parameter's value is TRUE, the service control manager saves the configuration that
booted the system as the last-known good configuration. If the parameter's value is
FALSE, the system immediately reboots, using the previously saved last-known good
configuration.

TUserInfo.OperatorRights
TNTUserMan TUserInfo

property OperatorRights: TOperatorFlags;

Description
Property specifies the user's operator privileges.

TUserInfo.Options
TNTUserMan TUserInfo Example

property Options: TUserFlags;

Description
Contains values that determine several features of the account.

TUserInfo.Password
TNTUserMan TUserInfo

property Password: string;

Description
Property allows to set password for the user specified by UserName.
It returns set of asterisk when is read.

TNTService.Password
TNTService Example

property Password: string;

The property contains the password to the account name specified by the
ServiceStartName property, if the service type is WIN32_OWN_PROCESS or
WIN32_SHARE_PROCESS. If the string is empty , the service has no password. If the
service type is KERNEL_DRIVER or FILE_SYSTEM_DRIVER, this parameter is
ignored.

Note
Make sure to change password before changing ServiceStartName.

TUserInfo.PasswordDate
TNTUserMan TUserInfo

property PasswordDate: TDateTime;          read only

Description
The property represents the date when password was changed.

Priority of access control

All the components derived from TNTAbstractSecurity component have two lists which
affect access rights on a given object (file, shared device, registry entry etc.).
AccessAllowed grants access while AccessDenied revokes it. Generally, AccessDenied
list has higher priority. This means that if you put an item into the AccessAllowed list
which grants certain permissions to the user and put the same item into the
AccessAllowed list, result will have prohibited permissions.

TUserInfo.Privilege
TNTUserMan TUserInfo Example

property Privilege: TUserPriv          read only

Description
 Use this property to determine level of permissions of user.

TNTService.QueryServiceLockStatus
TNTService Example

The QueryServiceLockStatus function retrieves the lock status of the open service
control manager database.

function QueryServiceLockStatus: TQueryServiceLockStatus

Note
ManagerAccess must include M_QUERY_LOCK_STATUS value to call this function.
ActiveManager must be set TRUE.

TNTService.QueryServiceStatus
TNTService Example

The QueryServiceStatus function retrieves the current status of the open service.

function QueryServiceStatus: TServiceStatusClass;

Note
ActiveService property must be set before this unction is called;
AccessService property    must have S_QUERY_STATUS access.
The return value is an object. Therefore you have to free it after getting information

TNTShare.Resources
TNTShare Example

property Resources: TResourceList;

This property returns pointer to the list of shared devices of computer specified by   
MachineName property. Each time you use Resources property component rereads the
list of shared resources. Therefore use it only to obtain pointer to the list or to refresh
information. Use retrieved pointer for any other operations.

TUserInfo.ScriptPath
TNTUserMan TUserInfo

property ScriptPath: string;

Description
It is the string specifying the path of the user's logon script, .CMD, .EXE, or .BAT file.
The string can be empty.

Security object is a common name of all objects which can have security attributes. The
examples of the security objects are: file, folder, shared device, registry key and so on.
Each TNTAbstractSecurity descendant identifies an object in its own way:
TNTShare by setting properties MachineName and ShareName;
TNTFileSecurity by setting property FileName;
TNTRegSecurity By setting properties MachineName, RootKey and CurrentPath;

AddEx

ControlService

GetServiceDisplayName

GetServiceKeyName

GetServiceList
GetDependentServiceList
TEnumList type

QueryServiceLockStatus

QueryServiceStatus

AccessAllowed
AccessDenied
SystemAudit

AddObject
IncludeSourceName
TEventType type

Service control manager database
TNTService

The services database includes information that determines whether each installed
service is started on demand or is started automatically when the system starts. The
database can also contain logon and security information for a service so that a service
can run even though no user is logged on. It also enables system administrators to
customize security requirements for each service and thereby control access to the
service. No more than one instance of a service can be running at a time.

Services can be divided into these two groups: Win32 services that conform to the
interface rules of the service control manager, and driver services that conform to the
device driver protocols for Microsoft Windows NT™.

The service control manager maintains a ServicesActive database in the registry. This is
the currently active database that was used to start the system. The following is the
registry path to this database.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services
In this directory, there is a ServiceName key for each installed Win32 service or driver
service. The ServiceName key is the name of the service specified by the Createservice
function when the service was installed.
The database includes the following information about each installed service:

The type of service. For Win32 services, the service type indicates whether the
service executes in its own process or shares a process with other Win32 services. For
driver services, it indicates whether the service is a kernel driver or a file system driver.

The start type of the service. The start type indicates whether the service is started
automatically at system startup or whether the service control manager starts it when
requested by a service control process. The start type can also indicate whether the
service is disabled, in which case it cannot be started.

A fully qualified path of the service's executable file. The filename extension is .EXE
for Win32 services and .SYS for driver services.

Optional information used by the service control manager to determine the proper
order for starting services. This information can include a list of services that must be
running before the service can start, the name of a load ordering group that the service
is part of, and a tag identifier that indicates the start order of the service in its load
ordering group.

For Win32 services, an optional logon account name in which the service process
runs and an optional password for this account. If no account is specified, the service
runs in the LocalSystem account.

For driver services, an optional driver object name (for example, \FileSystem\Rdr or
\Driver\Xns), used by the I/O system to load the device driver. If no name is specified,
the I/O system creates a default name based on the service name.

TNTService.ServiceAccess
TNTService Example

property ServiceAccess: TServiceAccess;

Description
Specifies the access to the service. Before granting the requested access, the system
checks the access token of the calling process against the discretionary access-control
list of the security descriptor associated with the service object.

Note
ServiceAccess must be set before setting ActiveService property to true.

TNTService.ServiceHandle
TNTService Example

ServiceHandle is a handle to the service.

property ServiceHandle: SC_HANDLE;    read only;

Description
Use ServiceHandle to call a Windows API function that requires the handle of a service.
Pass ServiceHandle as hService parameter to these functions.

TNTService.ServiceName
TNTService Example

Service name is associated with a particular service's display name. The service name
is the same as the service's registry key name.

property ServiceName: string

Description
The maximum string length is 256 characters. The service control manager database
preserves the case of the characters, but service name comparisons are always case
insensitive. Forward-slash (/) and back-slash (\) are invalid service name characters.

TNTService.ServiceStartName
TNTService Example

property ServiceStartName: string

Description
If the service type is SERVICE_WIN32_OWN_PROCESS or
SERVICE_WIN32_SHARE_PROCESS, this name is the account name in the form of
"DomainName\UserName", which the service process will be logged on as when it runs.
If the account belongs to the built-in domain, ".\UserName" can be specified. If empty
string is specified, the service will be logged on as the LocalSystem account.
If the service type is SERVICE_KERNEL_DRIVER or
SERVICE_FILE_SYSTEM_DRIVER, this name is the Windows NT driver object name
(that is, \FileSystem\Rdr or \Driver\Xns) which the input and output (I/O) system uses to
load the device driver. If empty string is specified, the driver is run with a default object
name created by the I/O system based on the service name.

TNTService.ServiceType
TNTService Example

property ServiceType: TServiceTypes

Description
A set of bit flags that specify the type of service. You must specify one of the service
type flags to indicate the service type. In addition, if you specify either of the
SERVICE_WIN32 flags, you can also specify the SERVICE_INTERACTIVE_PROCESS
flag to enable the service process to interact with the desktop.

TNTShare.Sessions
TNTShare Example

property Sessions: TSessionList

Description
This property returns pointer to the list of sessions established between a server
specified by MachineName    and workstations. Each time you use Sessions property
component rereads the list of sessions. Therefore use it only to obtain pointer to the list
or to refresh information. Use retrieved pointer for any other operations.

TNTService.Startservice
TNTService Example

The Startservice procedure starts the execution of a service.

procedure Startservice;

Description
When a driver service is started, the Startservice method does not return until the
device driver has finished initializing. When a Win32 service is started, the service
control manager spawns the service process, if necessary. If the specified service
shares a process with other services, the required process may already exist. The
Startservice method does not wait for the first status update from the new service
(which may take a while). Instead, it returns when the service control manager receives
notification from the service control dispatcher that the ServiceMain thread for this
service was created successfully.

TNTService.StartType
TNTService Example

property StartType: TStartType

Specifies when to start the service.

TAccessItem properties
TAccessItem TAccessList TNTFileSecurity

    UserName
    Mask
    Flags

TAccessItem type
Properties TNTFileSecurity TNTShare See also

TAccessItem represents an item in a TAccessList.

Description

A TAccessList holds a group of TAccessItem objects. TAccessItem may belong to the
different TAccessList instances. When TAccessItem object belongs to the
AccessAllowed list, it grants access to the users, specified by its UserName property on
some system object (file, shared device, registry entry etc.). If the object is held by
AccessDenied list it restricts access. Finally, items which belong to the SystemAudit list
make the system to write to event log when a user performs the specified operation.
TAccessItem objects are created and destroyed by TAccessList's Add, Delete and Clear
methods. You will never need to create an instance of TAccessItem class explicitly.

Example

FileSecurity1.AccessList[0].Mask := famFullControl;

TAccessItem.Flags
TAccessItem TAccessList TNTFileSecurity

property Flags: TAceFlags;

Property indicates inheritance behavior of TAccessItem object. You need to use this
property in two cases. If you are going to assign control access to the whole directory
instead of single file - use acfContainer,acfInheritOnly, acfObjInherit, acfNoPropogate
flags. If you want to watch over attempts to access file with SystemAudit property - use
acfSuccAudit, acfFailAudit flags.

TAccessItem.Mask
TAccessItem TAccessList TNTFileSecurity

property Mask: DWORD;

Property specifies access which is granted, denied or watched over to the user(s)
denoted by UserName property. The type of the action is implicitly defined by the owner
of TAccessItem object. Access is granted when the owner is AccessAllowed list, denied
when AccessDenied and watched over when SystemAudit.    Use only predefined
constants to be assigned to this property.

Example

FileSecurity.DeniedList[0].Mask := famRead or famExecute;

TAccessItem.UserName
TAccessItem TAccessList TNTFileSecurity

property UserName: string;

Property contains the name of user or group of users that TAccessItem object affects.
When writing this property you may specify string either in the form of
"DomainName\UserName" or "UserName". The way in which TAccessItem object
affects user(s) specified by UserName property depends on the list, the object belongs
to. It may grant or restrict access as well as provoke system audit.

TAccessList methods
TAccessList TNTFileSecurity

    Add
    Delete
    Clear

TAccessList properties
TAccessList TNTFileSecurity

    Items
    Count

TAccessList type
Properties Methods TNTFileSecurity TNTShare

TAccessList is a container for TAccessItem objects. The rights granted or denied by
each item are accumulated. The Count property contains the number of items in the list.
Use the Add, Delete, Clear methods to add and delete access control entries. Usually
you will not create instances of TAccessList class. Use AccessAllowed, AccessDenied,
SystemAudit properties instead to obtain a pointer to the required list which is
maintained by components derived from TNTAbstractSecurity component.

Example
The example applies to TNTFileSecurity component.

FileSecurity1.FileName := '\\moon\Admin';
if FileSecurity1.AccessAllowed.Count = 0 then ShowMessage('No users have access
to \\moon\Admin');

TAccessList.Add
TAccessList TNTFileSecurity

Add adds new item to the end of the list

function    Add(UserName: string; AMask:DWORD; AFlags: TAceFlags): TAccessItem;

Description
The result of adding the item depends on the list into which the item is inserted. Add
new item to AccessAllowed list to grant an access on a file or directory to a user or a
group. All the users which are not included in the AccessAllowed list will not have an
access to the file. Add new item to AccessDenied list to revoke an access to the file
from a user or a group. Add new item to SystemAudit list to make system maintain the
log of access attempts. AMask defines actions which will be granted, denied or watched
over. AFlags determines the inheritance behavior of the newly added item. To find out
how contradictions between AccessAllowed and AccessDenied lists are resolved see
priority of access control.

Example 1: Grant access on the file
FileSecurity1.FileName := 'c:\Program Files\Internet\List.htm';
FileSecurity1.AccessAllowed.Add('Everyone',famFullControl, []);

Example 2: Revoke access from the folder
FileSecurity1.FileName := 'c:\Program Files\Internet';
FileSecurity1.AccessDenied.Add('Everyone',0, [acfObjInherit, acfInheritOnly]);
FileSecurity1.AccessDenied.Add('Everyone',famFullControl, [acfContainer]);

Example 3: Grant access on a registry key.
NTReg.Security1.RootKey := HKEY_LOCAL_MACHINE;
NTReg.Security1.CurrentPath := 'SOFTWARE\BelCAF\Wizard';
NTReg.Security1.AccessAllowed.Add('Everyone',0, [acfObjInherit, acfInheritOnly]);
NTReg.Security1.AccessAllowed.Add('Everyone',kamFullControl, [acfContainer]);

TAccessList.Clear
TAccessList TNTFileSecurity

procedure Clear;

Description
Clear deletes all the items from TAccessList list. The meaning of this action depends on
the instance of TAccessList class. Deleting all the items from AccessAllowed list means
that no one will have an access to the object specified by FileName. Deleting all the
items from AccessDenied list erases list of users or groups with explicitly prohibited
access to the object. Deleting all the items from SystemAudit list prevents system from
logging access attempts.

TAccessList.Count
TAccessList TNTFileSecurity

Count is the number of TAccessItem objects in the list.

property Count: Integer;    read only;

Description

Read Count to determine the number of TAccessItem objects in the Items array.

Example

FileSecurity1.FileName := 'd:\Private\Documents';
if FileSecurity1.SystemAudit.Count = 0 then
        ShowMessage('Directory    d:\Private\Documents has no audit control');

TAccessList.Delete
TAccessList TNTFileSecurity

Delete removes the item at the position given by the Index parameter.

procedure Delete(Index: integer);

Description
The actual meaning of deleting one item from the list depends on the instance of
TAccessList class, deleted item belongs to. The deletion of an item from AccessDenied
list removes explicit restriction for the user or group on using the file. Whether the user
will have access to the file or not depends on the information from AccessAllowed list.
The deletion of an item from AccessAllowed list revokes access to the given file from
the user or group. Deletion of an item from SystemAudit list informs system that there is
necessity to watch over certain actions any more.

TAccessList.Items
TAccessList TNTFileSecurity

Items is the array of object references.

property Items[Index: integer]: TAccessItem; default;

Description

Use Items to obtain a pointer to a specific TAccessItem object in the array. The Index
parameter indicates the index of the object, where 0 is the index of the first object, 1 is
the index of the second object, and so on. Use Items with the Count property to iterate
through all of the objects in the list.

Example

var
    PList: TAccessList;
    i: integer;
begin
    FileSecurity1.FileName := 'c:\work\doc';
    PList := FileSecurity1.AccessDenied;
    for i := 0 to PList.Count - 1 do ListBox1.Items.Add(PList.Items[i].UserName);
end;

TAccessTypes type
TUsage TNTShare

Type
    TAccessType = (actRead, actWrite, actCreate, actExec, actDelete, ActAtrib,   
actPerm, actFindFirst, actGroup);
    TAccessTypes = set of TAccessType;

Value Meaning
actRead Permission to read data from a resource and, by default, to execute
the resource.
actWrite Permission to write data to the resource.
actCreate Permission to create an instance of the resource (such as a file);
data can be written to the resource as the resource is created.
actExec Permission to execute the resource.
actDelete Permission to delete the resource.
ActAtrib Permission to modify the resource's attributes (such as the date
and time when a file was last modified).
actPerm Permission to modify the permissions (read, write, create, execute,
and delete) assigned to a resource for a user or application.

TAceFlags type
TAccessItem TAccessList TNTFileSecurity

type
    TAceFlag      = (acfObjInherit, acfContainer, acfInheritOnly, acfNoPropogate,
acfSuccAudit, acfFailAudit);
    TAceFlags = set of TAceFlag;

Value Meaning
acfContainer

The TAccessItem object is inherited by container objects, such as
directories.

acfInheritOnly
The TAccessItem does not apply to the container object, but to
objects contained by it.

acfObjInherit
The TAccessItem object    is inherited by non container objects,
such as files created within the container object to which the
TAccessItem object is assigned.

acfNoPropogate
The acfObjInheri and acfContainer flags are not propagated to an
inherited access control entries.

acfSuccAudit
Used with TAccessItem which belong to SystemAudit list to indicate
a message is generated for failed access attempts.

acfFailAudit
Used with TAccessItem which belong to SystemAudit list to indicate
a message is generated for successful access attempts.

TConnection properties
TConnection TConnectionList TNTShare

    LocalName
    RemoteName
    UserName

TConnection type
Properties TNTShare TConnectionList

TConnection represents an item in a TConnectionList.
Description

A TConnectionList holds a group of TConnection objects. TConnection objects are
created and destroyed by TConnectionList's Add, AddEx and Delete methods. You will
never need to create an instance of TConnection class explicitly. Use TConnectionList's
Items property to get pointers to TConnection instances maintained by TNTShare
component.

TConnection.LocalName
TConnection TNTShare

property    LocalName: string;        read only;

LocalName returns the name of a local device used for redirection, such as "F:" or
"LPT1". LocalName is specified at the time of establishing connection by
TConnectionList's methods Add and AddEx. This property is empty string if the
connection does not use a device.

Example

function TForm1.CheckDrive(ADrive: string);
var
    i: integer;
    PConnections: TConnectionList;
begin
    PConnections := Share1.Connections;
    for i := 0 to PConnections.Count - 1 do
        if ADrive = PConnections[i].LocalName then
            begin
            ShowMessage('Drive '+ADrive+' is already in use');
            Break;
            end;
end;

TConnection.RemoteName
TConnection TNTShare

property RemoteName: string      read only;

RemoteName specifies the network resource which is connected to.    The string follows
the network provider's naming conventions. LocalName is specified at the time of
establishing connection by TConnectionList's methods Add and AddEx.

Example

var
    PConnections: TConnectionList;
begin
PConnections := Share1.PConnections;
if PConnections.Count > 0 then    Label1.Caption := PConnections[0].RemoteName;
end;

TConnection.UserName
TConnection TNTShare

Property UserName: string;            read only

Property specifies a user name which was used to make the connection. The
UserName is returned in the form of "Domain\User". Use TUserList's Add method to
establish new network connection using default user name and password. Use
TUserList's AddEx method to indicate user name different from default one.

Example

var
    PConnections: TConnectionList;
    i: integer;
begin
    PConnections = Share1.Connections;
    for i := 0 to PConnections.Count -1 do
            ListBox1.Items.Add('Connection to the resource '+PConnections[i].RemoteName+

' uses UserName '+PConnections[i].UserName);
end;

TConnectionList methods
TConnectionList TNTShare

    Add
    AddEx
    Clear
    Delete

TConnectionList properties
TConnectionList TNTShare

Items
Count

TConnectionList type
Properties Methods TNTShare Connections

TConnectionList is a container for TConnection objects. It holds the    local computer's   
connection list. All currently active connections (not only those remembered in the
registry) are in the list. The Count property contains the number of items in the list. Use
the Add, AddEx, Delete, Clear methods to add and delete connections. Usually you will
not create instances of TConnectionList class. Use TNTShare.Connections property
instead to obtain a pointer to the list of connections maintained by TNTShare
component.

Example

if Share1.Connections.Count = 0 then ShowMessage('Network drivers not found!')

TConnectionList.Add
TConnectionList TNTShare See also

Method adds a new device to the list of network drivers. In other words it creates a local
driver redirected to network resource.

procedure      Add(LocalName, RemoteName: string; AType: TShareType);

Adds LocalName device redirected to RemoteName network resource. You must
explicitly specify the type of device. Method takes default user name and password to
establish a connection. If procedure fails it raises an exception which explains an error
(LocalName is already in use; RemoteName not found; and so on)

Example
Share1.Connections.Add('F:', '\\moon\office', stDisk);
Share1.Connections.Add('LPT2:', '\\PrintServer\HP5', stPrint);

TConnectionList.AddEx
TConnectionList TNTShare

Method adds a new device to the list of network drivers. In other words it creates a local
driver redirected to network resource. Use this method to establish a connection to the
network device using UserName and password different from default ones.

procedure      AddEx(LocalName, RemoteName: string; AType: TShareType; UserName,
Password: string);

Description
For the description of the first three parameters look at Add method's description.
UserName specifies the name of user to be used when establishing connection.
Password specifies a password for the given user name.

Example
Share1.Connections.AddEx('F:', '\\moon\office', stDisk, 'Domain guest', 'GuestN34');

TConnectionList.Clear
TConnectionList TNTShare

Clear breaks all the connections of local    computer with network resources.

procedure Clear; override;

Description
Call Clear to remove all network drivers of local computer. Call Delete to remove
particular one(s).

TConnectionList.Count
TConnectionList TNTShare

Count is the number of entries in the list.

property Count: Integer;    read only;

Description
Read Count to determine the number of TConnection objects in the Items array.

Example
Label1.Caption := 'Network drivers: ' + Share1.Connections.Count;

TConnectionList.Delete
TConnectionList TNTShare

procedure Delete(AIndex: integer);

Use Delete method to break an existing network connection. Connection will be
removed from the registry and will not be restored after system reboot.

Example

procedure Form1.btnClearClick(Sender: TObject)
var
    PConnections: TConnectionList;
begin
    PConnections := Share1.Connections;
    while PConnections.Count > 0 do PConnections.Delete(0);
end;

TConnectionList.Items
TConnectionList TNTShare

Items is the array of object references.

property Items[Index: Integer]: TConnection; default;

Description
Use Items to obtain a pointer to a specific TConnection object in the array. The Index
parameter indicates the index of the object, where 0 is the index of the first object, 1 is
the index of the second object, and so on. Use Items with the Count property to iterate
through all of the objects in the list.

TControlAcceptedSet type
TNTService See also

type
    TControlAccepted = (ACCEPT_STOP, ACCEPT_PAUSE_CONTINUE,
ACCEPT_SHUTDOWN);
    TControlAcceptedSet = set of TControlAccepted;

Description
ACCEPT_STOP

The service can be stopped. This enables the CONTROL_STOP
value.

ACCEPT_PAUSE_CONTINUE
The service can be paused and continued. This enables the
CONTROL_PAUSE and CONTROL_CONTINUE values.

ACCEPT_SHUTDOWN
The service is notified when system shutdown occurs. This enables
the system to send a CONTROL_SHUTDOWN value to the service.
The ControlService function cannot send this control code.

TControlCode type
TNTService See also

type
    TControlCode = (CONTROL_STOP, CONTROL_PAUSE, CONTROL_CONTINUE,
CONTROL_INTERROGATE, CONTROL_SHUTDOWN);

CONTROL_STOP
Requests the service to stop. The Service must be open with
S_STOP access.

CONTROL_PAUSE
Requests the service to pause. The Service must be open
with S_PAUSE_CONTINUE access.

CONTROL_CONTINUE
Requests the paused service to resume. The hService
handle must be open with S_PAUSE_CONTINUE access.

CONTROL_INTERROGATE
Requests the service to update immediately its current status
information to the service control manager. The hService
handle must be open with S_INTERROGATE access.

CONTROL_SHUTDOWN
The ControlService function fails if this control code is
specified.

TCurrentState type
TNTService

type
TCurrentState = (STOPPED, START_PENDING, STOP_PENDING, RUNNING,
CONTINUE_PENDING, PAUSE_PENDING, PAUSED);

Description
STOPPED The service is not running.
START_PENDING The service is starting.
STOP_PENDING The service is stopping.
RUNNING The service is running.
CONTINUE_PENDING The service continue is pending.
PAUSE_PENDING The service pause is pending.
PAUSED The service is paused.

TDayHours class
Hierarchy Properties Methods TLogonHours

The class represents one day. It defines the enabled/prohibited connection ability for
each of 24 hours. TNTUserMan component creates seven objects of the class. You will
never need to create instances of the class yourself.    Note that the class deals with
GMT time. If your local time is GMT+2 and you want to enable connection from 20 p.m.
to 21 p.m. on Wednesday then apply Hours[18] property:

TDayHours methods
TDayHours

    Clear
    SetAll

TDayHours properties
TDayHours Legend

 Hours

TDayHours.Clear
TDayHours

procedure Clear;

Description
The procedure prohibits the connection ability by setting false value for each of 24 hours
of day.    When user tries to connect to the computer during disabled time, they get
message: "You account has restricted time for connection. Please try latter."

TDayHours.Hours
TDayHours Example

property Items[AIndex: integer]: boolean;

Description
The property allows to change the state of connection ability for each of 24 hours. Set
true to enable the connection during specified hour and set false to prohibit it. The valid
index values are from 0 to 23. Note that the property deals with GMT time. If your local
time is GMT+2 and you want to enable connection from 20 p.m. to 21 p.m. on
Wednesday then apply Hours[18] property:

TDayHours.SetAll
TDayHours Examples

procedure SetAll;

Description
The procedure enables the connection ability by setting true value for each of 24 hours
of the day.

TDriveType type
TNTFileSecurity

type
    TDriveType = (dtUnknown, dtError, dtRemovable, dtFixed, dtRemote, dtCDROM,
dtRamDisk);

Value Meaning
dtUnknown The drive type cannot be determined
dtError The root directory does not exist.
dtRemovable The disk can be removed from the drive.
dtFixed The disk cannot be removed from the drive.
dtRemote The drive is a remote (network) drive.
dtCDROM The drive is a CD-ROM drive.
dtRamDisk The drive is a RAM disk.

TEnumList type
TNTService

    TEnumList is a class that represent list of TServiceStatusClass objects.
    The functions GetServiceList and GetDependentServiceList use this class for
returning information.

    TEnumList = class
    public
        constructor Create(AOwner: TObject);
        destructor    Destroy;
        procedure Delete(AIndex: integer);
        procedure Clear;
        property Items[AIndex: integer]: TServiceStatusClass
        function IndexOf(AServiceName: string): integer;
        property Count: integer;
        property Parent: TObject;
        function Add: TServiceStatusClass;
    end;

TEnumSevices type
TNTService See also

type
    TEnumSevice = (DRIVER, PROCESS);
    TEnumSevices = set of TEnumSevice;

 Description
PROCESS Enumerates services of type WIN32_OWN_PROCESS and
WIN32_SHARE_PROCESS.
DRIVER Enumerates services of type KERNEL_DRIVER and
FILE_SYSTEM_DRIVER.

TErrorType type
TNTService

    TErrorType = (ERROR_IGNORE, ERROR_NORMAL, ERROR_SEVERE,
ERROR_CRITICAL);

SERVICE_ERROR_IGNORE
The startup (boot) program logs the error but continues the startup
operation.

SERVICE_ERROR_NORMAL
The startup program logs the error and puts up a message box
pop-up but continues the startup operation.

SERVICE_ERROR_SEVERE
The startup program logs the error. If the last-known-good
configuration is being started, the startup operation continues.
Otherwise, the system is restarted with the last-known-good
configuration.

SERVICE_ERROR_CRITICAL
The startup program logs the error, if possible. If the last-known-
good configuration is being started, the startup operation fails.
Otherwise, the system is restarted with the last-known good
configuration.

SERVICE_NO_CHANGE
The existing StartType value is not to be changed.

TEventItem type
TNTEventLog Properties Methods

The type represents an event item in the event log and returns detailed information
about the event. The Objects property returns an information using this class. Most
probably, you will never need to create instances of TEventItem yourself.

TEventItem.SetData
TEventItem

procedure      SetData(AData: Pointer; DataSize: integer);

procedure SetData copies the variable referenced by AData pointer into inner data
structure.
The length of data to be copied is specified by    DataSize parameter.

TEventType
TNTEventLog

type
    TEventType = (EVT_SUCCESS, EVT_ERROR, EVT_WARNING,
EVT_INFORMATION,
                                EVT_AUDIT_SUCCESS, EVT_AUDIT_FAILURE);

EVT_ERROR Error event
EVT_WARNING Warning event
EVT_INFORMATION Information event
EVT_AUDIT_SUCCESS Success Audit event
EVT_AUDIT_FAILURE Failure Audit event

TFilterAccountSet type
TNTPersistent

type
    TFilterAccountSet = set of TFilterAccount;

    TFilterAccount    is an enumeration type with following values

Value Meaning
FLT_TEMP_DUPLICATE_ACCOUNT Enumerates local user account data on
a domain controller
FLT_NORMAL_ACCOUNT Enumerates user account data
on a server.
FLT_INTERDOMAIN_TRUST_ACCOUNT Enumerates account data within a
specified domain.
FLT_WORKSTATION_TRUST_ACCOUNT Enumerates account data for specified
workstations.
FLT_SERVER_TRUST_ACCOUNT Enumerates data for specified server
accounts.

TLogonAs class
TNTPersistent

TLogonAs class stores user name and password to use when connecting to the remote
system.    This is necessary when the user wants to use the account that differs from
that one under which he/she is currently logged in.

type
    TLogonAs = class
    published
        property UserName: string;
        property Password: string;
    end;

TLogonHours class
Hierarchy Properties Methods

The class represents the list that refers to the days of the week. The list has seven
objects of class TDayHours which hold information about allowed logon time for each
hour of each day from Sunday to Saturday.

TLogonHours methods
TLogonHours

    Clear
    SetAll

TLogonHours properties
TLogonHours Legend

 Days

 Sun
 Mon
 Tues
 Wed
 Thur
 Fri
 Sat

TLogonHours.Clear
TLogonHours

procedure Clear;

Description
The procedure prohibits the connection ability by setting false value for each of 168
hours of week.    When user tries to connect to the computer during disabled time, they
get message: "You account has restricted time for connection. Please try latter."

TLogonHours.Days
TLogonHours Example

property Days[AIndex: integer]: TDayHours;

Description
The property holds the references to the days of week and is useful for iteration through
them. The valid values of AIndex parameter are from 0 to 6. Remember that Sunday is
considered to be the first day of the week. Alternatively, you can use the properties from
Sun to Sat to refer to separate days. The following two examples are equivalent. They
prohibit user Guest to connect on the Sunday.

 

TLogonHours.SetAll
TLogonHours

procedure SetAll;

Description
The procedure enables the connection ability by setting true value for each of 168 hours
of week.    The procedure calls SetAll method for each of seven TDayHours objects.

TLogonHours.Sun
TLogonHours Example

property Sun: TDayHours;

Description
Each of properties from Sun to Sat represent one day of week from Sunday do Monday
respectively. The properties refer to the objects of Days list. They define
enabled/prohibited connection ability for each hour of day. Note that following examples
are identical. They prohibit user Guest to connect on Sunday between 22 and 23
o'clock.

 

TPersistent
            |
TLogonHours

TManagerAccess type
TNTService

type
    TManagerAccess =    set of TDesiredManagerAccess;
    TDesiredManagerAccess =    (M_CONNECT,    M_CREATE_SERVICE,
M_ENUMERATE_SERVICE, M_LOCK, M_QUERY_LOCK_STATUS,
M_MODIFY_BOOT_CONFIG);

Description

M_CONNECT
Enables connecting to the service control manager.

M_CREATE_SERVICE
Enables calling of the Createservice function to create a
service object and add it to the database.

M_ENUMERATE_SERVICE
Enables calling of the EnumServicesStatus function to list
the services that are in the database.

M_LOCK
Enables calling of the LockServiceDatabase function to
acquire a lock on the database.

M_QUERY_LOCK_STATUS
Enables calling of the QueryServiceLockStatus function to
retrieve the lock status information for the database.

TNTAbstractSecurity component
Hierarchy Properties Methods

The component is an abstract ancestor for other components that deal with Windows
NT security. The component cannon be used without rewriting abstract virtual methods
that retrieve access control lists from an object    and store them back. The component
implements reading and writing access allowed , access denied and system audit
information at both design and run time. One of the most exciting features of component
is its ability to work with access denied entries. Note that Windows NT 4.0 standard
tools do not support    editing of access denied entries. At the moment NTSet library has
three descendant of    TNTAbstractSecurity component. They apply to the following
objects:
TNTShare shared devices
TNTFileSecurity files and folders
TNTRegSecurity registry keys

TObject
      |
TPersistent
      |
TComponent
      |
TNTPersistent
      |
TNTAbstractSecurity

TNTAbstractSecurity methods
TNTAbstractSecurity

TakeOwnerShip

TNTAbstractSecurity properties
TNTAbstractSecurity
In TNTAbstractSecurity
ObjectOwner
ControlAccess
AccessAllowed
AccessDenied
SystemAudit

Derived from TNTPersistent
MachineName

TNTAbstractSecurity.AccessAllowed
TNTAbstractSecurity Example

property    AccessAllowed: TAccessList;

Description
This property returns pointer to the list of items giving access to the object. All the users
which are not included in the AccessAllowed list will not have an access to the object.
Each time you read this property component rereads actual information form the object.
Read this property only to get pointer to the list or to refresh information. Use retrieved
pointer for any other operations.

Note
If you do not have permissions to read file's security attributes you will get the "Access
denied" exception. To understand the contradiction between AccessDenied and
AccessAllowed lists see priority of access control.

TNTAbstractSecurity.AccessDenied
TNTAbstractSecurity Example

property    AccessDenied: TAccessList;

Description
This property returns pointer to the list of items restricting access to the object.    If a
user or group is included into the AccessDenied list it somehow restricts their rights on
the given file. If a user or group is not included in the AccessDenied list, their rights
depend on the information from AccessAllowed list. Each time you read this property
component rereads actual information form the disk. Read this property only to get
pointer to the list or to refresh information. Use retrieved pointer for any other
operations.

Note
If you do not have permissions to read file's security attributes you will get the "Access
denied" exception.    To understand contradiction between AccessDenied and
AccessAllowed lists see priority of access control.

TNTAbstractSecurity.ControlAccess
TNTAbstractSecurity Example

property ControlAccess: boolean

Description
Property ControlAccess defines whether or not access to the object is controlled. If
ControlAccess has "false" value then everyone has full access to the object. If
ControlAccess is "true" and Access List is empty then no one has an access to the
object.

Note
If you do not have permissions to read object's security attributes you will get the
"Access denied" exception.

TNTAbstractSecurity.ObjectOwner
TNTAbstractSecurity

 property ObjectOwner: string;

Property returns string specifying the account of user who has ownership over the
object. Be careful when writing this property: security requirements do not allow to
assign the ownership to the another user. The only name which is allowed to assign to
this property is the name of currently logged on user. The better way to take ownership
is to use TakeOwnerShip method;

TNTAbstractSecurity.SystemAudit
TNTAbstractSecurity Example

property    SystemAudit: TAccessList;

This property returns pointer to the list of items specifying access audit for the object.
The system maintains the "Security" section in the event log and writes in this section
when specified event occurs. Remember that it is not enough to fill SystemAudit list,
security audit to be in action. Check audit policy settings using Windows NT User
Manager. Each time you read this property component rereads actual information form
the disk. Read this property only to get pointer to the list or to refresh information. Use
retrieved pointer for any other operations.

Note
If you do not have permissions to read file's security attributes you will get the "Access
denied" exception.

TNTAbstractSecurity.TakeOwnership
TNTAbstractSecurity

procedure TakeOwnership;

Description
Use this procedure instead of assigning owner of the object. Windows NT security
system does not allow to assign any user as an owner of object. Only the name or
currently logged on user is the valid choice. The procedure automatically defines the
current user and tries to assign it as an object's owner. If the procedure fails it raises an
exception.

TObject
      |
TPersistent
      |
TComponent
      |
TNTPersistent
      |
TNTEventLog

TNTEventLog component
Hierarchy Properties Methods Events

Unit
EventLog

TNTEventLog component is developed to allow to work with Windows NT event log as
simple as with TStringList. TNTEventLog component    encapsulates the set of relevant
functions    which are described in Windows API. Though you still can use API functions
you have no need to do it.

The project Eventer.dpr demonstrates the main features of TNTEventLog component.
Writer.dpr demonstrates technique of writing events into event log.

TNTEventLog events
TNTEventLog

OnChange

TNTEventLog methods

In TNTEventLog
Add
AddObject
BackupEventLog
Clear
GetEventSources

Derived from TNTPersistent
 GetAccounts
 GetGlobalGroups
 GetLocalGroups
 GetPrimaryDomainServerName
 GetServers
 GetUsers

TNTEventLog properties
TNTEventLog Legend

In TNTEventLog
 Active
 BackupFileName
 Count
 IncludeUserName
 Items
 Handle
 Objects
 SourceName

    WriteObject

Derived from TNTPersistent
 LocalComputer
 LogonAs
 MachineName

TNTEventLog.Active
TNTEventLog Example

property Active: boolean;

Use Active property to establish / break    a connection to an event log on the specified
computer.

TNTEventLog.Add
TNTEventLog See alsoExample

procedure Add(EventType: TEventType; S: string);

Description
Use procedure Add to add string message without additional data into event log.
Call this procedure only if Active property is true and you've opened flesh event log (not
backup file).New message will be added at the end of opened event log. If you want to
use the whole set of capabilities of    event log - use the method AddObject

TNTEventLog.AddObject
TNTEventLog Example

procedure AddObject(AObject: TEventItem);

Description
Use procedure AddObject to add    a new message into event log.
Call this procedure only if Active property is true and you've opened flesh event log (not
backup file). The new message will be added at the end of opened event log.

TNTEventLog.BackupEventLog
TNTEventLog Example

procedure BackupEventLog;

Description
BackupEventLog creates backup file of currently opened section of event log.
You should set BackupFileName property before calling this method.
If specified file already exists than procedure fails.

TNTEventLog.BackupFileName
TNTEventLog Example

property BackupFileName: string

Description
Use this property to specify the name of the file you are going to save event log in. This
property must be set before call BackupEventLog procedure. The another reason to set
BackupFileName property is to open backup file of event log.
Set BackupFileName before setting Active in order to open backup file of event log.

TNTEventLog.Clear
TNTEventLog Example

Clear deletes all the items from opened event log.

procedure Clear;

Description
Call clear to empty the list of events.    The name of section to be erased is defined by
SourceName property. Do not call this procedure if you have opened backup file of
event log.

TNTEventLog.Count
TNTEventLog Example

property Count: integer; read only

This property reports number of items in the opened event log. Use it only if Active
property is true.

TNTEventLog.Handle
TNTEventLog Example

property Handle: THandle; read only

This property contains the handle of event log. It is valid only when Active property is
true.
You may use Handle property to call    windows API functions directly.

TNTEventLog.IncludeUserName
TNTEventLog Example

property IncludeUserName: boolean;

Description
The Value of this property defines if Name of currently connected user is included into
the message written into event log.
Set this property before call Add and AddObject procedures.

TNTEventLog.Items
TNTEventLog Example

property Items[Index: integer]: string; read only;

Description
Use items to read description of event at particular position. This property returns
formatted string.
If source for the message is not found in the registry or registry has wrong information
then
Items returns message:

"The description for Event ID (%d) in Source (%s) could not be found. It contains the
following insertion string(s): "
Strings of message are following.

TNTEventLog.Objects
TNTEventLog Example

property Objects[Index: integer]: TEventItem;

Use Objects to retrieve full information about the particular event.
Objects returns pointer to object. Do not destroy this object. It will be destroyed
automatically.

TNTEventLog.OnChange
TNTEventLog Example

TNotifyEvent = procedure (Sender: TObject) of object;

property OnChange: TNotifyEvent

Description
The OnChange event occurs when there is a change in opened event log.

TNTEventLog.SourceName
TNTEventLog Example

property SourceName: string;

Description
Contains string that specifies the name of the source to be opened. The source name
must be a subkey of a logfile entry under the EventLog key in the registry. For example,
the source name TheApp would be valid if the registry had the following form:

HKEY_LOCAL_MACHINE
    System
        CurrentControlSet
            Services
                EventLog
                    Application
                      TheApp
                    Security
                    System

If the source name cannot be found, the event logging service uses the Application
logfile with no message files for the event identifier or category.

TNTFileSecurity component
Hierarchy Properties Methods

Unit
FilSecur

Usage
NTFS only

TNTFileSecurity component gives an access to the Windows NT sanctuary: the security
system. Now Delphi programmers have powerful component which allows to watch over
file's security at both design and run time. The security attributes can be assigned only
to the files or folders which lie on NTFS partition. Having set FileName determine a type
of the partition using FileSystem property. Use AccessAllowed to allow an access to the
file or directory for the specified users or AccessDenied property    to restrict an access.
Use SystemAudit property    to examine attempts of an (un)authorized access.
Remember that assigning security attributes to files differs from that to folders.

SFiler.dpr project demonstrates the main features of TNTFileSecurity component.

Note:
To use the whole set of TNTFileSecurity's properties and methods you must have
administrator permissions.

TNTFileSecurity methods
TNTFileSecurity

Derived from TNTAbstractSecurity
TakeOwnerShip

Derived from TNTPersistent
 GetAccounts
 GetGlobalGroups
 GetLocalGroups
 GetPrimaryDomainServerName
 GetServers
 GetUsers

TNTFileSecurity properties
TNTFileSecurity Legend
In TNTFileSecurity
    DriveType
    FileName
    FileOwner

FileSystem

Derived from TNTAbstractSecurity
    AccessAllowed
    AccessDenied
    ControlAccess
    SystemAudit

Derived from TNTPersistent
 LocalComputer
 LogonAs
 MachineName

TNTFileSecurity.FileName
TNTFileSecurity Example

property FileName: string;

Description
FileName defines the name of the file or directory to work with. Make sure    that you
have written proper value into this property before undertaking any further    steps.

TNTFileSecurity.FileOwner
TNTFileSecurity

 property FileOwner: string;

Property returns string specifying the account of user who has ownership over the file or
directory. Be careful when writing this property: security requirements do not allow to
assign the ownership to the another user. The only name which is allowed to assign to
this property is the name of currently logged on user. The better way to take ownership
is to use TakeOwnerShip method;

TNTFileSecurity.FileSystem
TNTFileSecurity Example

property FileSystem: string; read only;

Description
Not all file systems have ability to store security attributes. Make sure that the file
system of the drive, on which the file lies, supports security. FileSystem is a string
representation of    file system's type.

TNTFileSecutity.DriveType
TNTFileSecurity

property    DriveType: TDriveType; read only

Description
Property returns the type of the drive on which the file or directory FileName is.

TObject
      |
TPersistent
      |
TComponent
      |
TNTPersistent
    |
TNTAbstractSecurity
    |
TNTFileSecurity

TNTPersistent component
Hierarchy Properties Methods

This component is an abstract ancestor for other NT Set's components. It has a number
of common properties and method for its descendants. There is no need to create
instances of this component.

TObject
      |
TPersistent
      |
TComponent
      |
TNTPersistent

TNTPersistent methods
TNTPersistent

 
 GetAccounts
 GetDomains
 GetGlobalGroups
 GetLocalGroups
 GetPrimaryDomainServerName
 GetServerNameForDomain
 GetServers
 GetUsers

TNTPersistent properties
TNTPersistent

public
LocalComputer
LogonAs
MachineName

TNTPersistent.GetAccounts
TNTPersistent

 function    GetAccounts(AServerName: string; AFilter: DWORD): TStringList;

Description
The function returns list of accounts from the server of destination. It creates the object
of type TStringList and fills it with data. You must destroy the list after you no longer
need it.

Parameters
AServerName
The string identifies the computer of destination from which account information to be
returned. The empty string specifies the local computer.

AFilter
Specifies kind of accounts to retrieve. The following values and their combinations are
possible:

Value Meaning
ACCOUNT_LOCAL_GROUP retrieves local groups
ACCOUNT_GLOBAL_GROUP retrieves global groups (if any)
ACCOUNT_USER                  retrieves users
ACCOUNT_WELL_KNOWN retrieves well known users
ACCOUNT_ALL retrieves all accounts

TNTPersistent.GetGlobalGroups
TNTPersistent

function    GetGlobalGroups(AServerName: string): TStringList;

Description
The function returns list of global groups from the server of destination. It creates the
object of TStringList type and fills it with data. You must destroy the list after you no
longer need it. AServerName string identifies the destination computer. An empty value
specifies the local one.

TNTPersistent.GetLocalGroups
TNTPersistent

function    GetLocalGroups(AServerName: string): TStringList;

Description
The function returns list of local groups from the server of destination. It creates the
object of TStringList type and fills it with data. You must destroy the list after you no
longer need it. AServerName string identifies the destination computer. An empty value
specifies the local one.

TNTPersistent.GetPrimaryDomainServerName
TNTPersistent

function    GetPrimaryDomainServerName: string;

Description
Returns server name of primary domain controller (if any).

TNTPersistent.GetServerNameForDomain
TNTPersistent

function    GetServerNameForDomain(ADomainName: string): string;

Description
The function rerurns tha name of domain controller for the the domain    specified by
ADomainName parameter.

TNTPersistent.GetServers
TNTPersistent

 function GetServers(AServerName: string): TStringList;

Description
Function creates and returns list of servers available on network. AServerName
specifies computer to execute function on. If empty string is specified, function will be
executed on the local computer. Remember to free retrieved TStringList after it is not
necessary any more.

TNTPersistent.GetUsers
TNTPersistent

function    GetUsers(AComputerName: string; Filter: TFilterAccountSet):      TStringList;

Description
Function creates and returns list users' account registered    on the server. Remember to
free retrieved TStringList after you no longer need it.

Parameters
AComputerName identifies the server from which users' accounts to be obtained. An
empty string specifies the local computer.
Filter specifies the kind of account(s) to retrieve.

TNTPersistent.LocalComputer
TNTPersistent

property    LocalComputer: string; read only;

Description
Property returns string identifying the name of local computer.

TNTPersistent.LogonAs
TNTPersistent Example

property    LogonAs: TLogonAs

Description
The property enables connection to the remote system using desirable logon. You may
specify user name and password or you may leave the values empty. If empty values
specified the component will not undertake any special actions when accessing remote
system.    If any values specified, the component will map inter-process communicator
(IPC) of remote computer to the NULL local device. The mapping occurs at the moment
of changing MachineName property. The component tries to delete the connection from
the computer specified by the old value of MachineName property and creates
connection to the computer identified by new MachineName's value.

TNTPersistent.MachineName
TNTPersistent

property MachineName: string;

Description
MachineName contains    the name of the target computer. If empty string is specified,
information will be obtained from the local computer. Note that when under Windows 95,
you cannot leave this property empty. In this case it must contain valid universal name
of a computer running Windows NT operation system. Most of the component's
descendants override read and/or write methods of this property.

Note
In order to be able to control remote computer you must provide administrative account
before assigning this property.

TNTPrivilege component
Hierarchy Properties Methods

Unit
Privileg

Usage
Windows NT only

Microsoft Windows NT™ allows you to establish a full range of levels of security, from
no security at all to the C2 level of security. However, the default configuration is highly
relaxed. You may want to change these default settings to protect against accidental or
deliberate changes to the way the computer is set up. TNTPrivilege component allows
you to set desirable configuration of security privileges on a local or remote computer.

Set Privilege property and then apply Accounts to know what accounts have the
given privilege. You may also use the opposite approach: set Account property and
investigate the Privileges it has. You can manage remote computers as easy as the
local one using MachineName property. In order to connect to the remote system under
different account, use LogonAs property. The component can also adjust privilege list of
the current process. Use the property Enabled to achieve this.

Project Rights.dpr demonstrates main features of TNTPrivilege.

TObject
      |
TPersistent
      |
TComponent
      |
TNTPersistent
      |
TNTPrivilege

TNTPrivilege properties
TNTPrivilege Legend

in TNTPrivilege
    Account
    Accounts

DisplayName
        Enabled
    Privilege
    Privileges

Derived from TNTPersistent
 LocalComputer
 LogonAs
 MachineName

TNTPrivilege.Account
TNTPrivilege Example

property Account: string;

Description
This property serves to specify the account you want to know privileges of.    Privileges
property returns account's list of privileges. You may receive all the account from the
destination server with GetAccounts function.

TNTPrivilege.Accounts
TNTPrivilege Example

property Accounts: TStrings;

Description
The property returns pointer to the list of accounts that have specified Privilege.
Remember that each time when you apply the property the component rereads the list
of accounts from server. Use this property to get the pointer to the list and use the
received pointer to iterate through list.

TNTPrivilege.DisplayName
TNTPrivilege

property DisplayName: string; read only

Description
The DisplayName property retrieves a displayable name representing the privilege
specified by Privilege. It returns the name in the local language for all privileges except
for four rights:

SE_INTERACTIVE_LOGON_NAME
SE_NETWORK_LOGON_NAME
SE_BATCH_LOGON_NAME
SE_SERVICE_LOGON_NAME

The matter is that Windows NT privileges divided into two groups: 23 privileges and 4
rights. The system does not translate the names of rights.

TNTPrivilege.Enabled
TNTPrivilege Example

property        Enabled: boolean;

Description
This property enables or disables the Privilege for current process. Privilege property If
you assign some privileges to the user, it means that any process, run by the user,
acquires such a privilege. The privilege may be in two states: enabled and disabled. The
Enabled property controls this.
If the component cannot change the privilege state it raises the exception "'Cannot

change privilege state'". The possible reasons of error are:

You try to change the state of one of four rights:
SE_INTERACTIVE_LOGON_NAME: Log on locally
SE_NETWORK_LOGON_NAME : Access this computer from

network
SE_BATCH_LOGON_NAME : Log on as batch job
SE_SERVICE_LOGON_NAME: Log on as a service

You cannot change the state of rights. You should add them to, or remove them
from an account;

The current user does not have the Privilege at all: you should add it using
Accounts property;

You just added the privilege t account and did not reboot    the computer;

Note
This property affects only list of privileges of the current process on the local computer.

TNTPrivilege.GetPrivileges
TNTPrivilege

function        GetPrivileges: TStringList;

Description
The function creates and returns string list with names of privileges defined in the
system. There is no way to enumerate privileges, so the content of the list is hard
coded. You must free the list after you no longer need it.

TNTPrivilege.Privilege
TNTPrivilege Example

property Privilege: string;

Description
The property specifies the name of privileges you want to deal with. Having set this
property you may find out its display name, retrieve list of Accounts that have this
property, enable or disable the privilege for the current process.

TNTPrivilege methods
TNTPrivilege

in TNTPrivilege
 GetPrivileges
 GetPrivilegeDisplayName

derived from TNTPersistent
 GetAccounts
 GetGlobalGroups
 GetLocalGroups
 GetPrimaryDomainServerName
 GetServers
 GetUsers

TNTPrivilege.GetPrivilegeDisplayName
TNTPrivilege

 function        GetPrivilegeDisplayName(AValue: string): string;

Description
The function    returns a displayable name representing the privilege specified by AValue
parameter. The function returns string in local language. For more information see
DisplayName.

TNTPrivilege.Privileges
TNTPrivilege Example

property Privileges: TStrings;

Description
The property retrieves list of privileges for the specified Account on the computer
identified by MachineName property. Every time when you apply the property, the
component rereads actual information from the server. Use this property to receive
pointer to the list. Deal with the pointer to enumerate the list.

TNTRegSecurity component
Hierarchy Properties Methods

Unit
RegSecur

TNTRegSecurity component is a descendent of TNTAbstractSecurity component that
has been adjusted to deal with registry security. Now Delphi and C++Builder
programmers have powerful component which allows to watch over registry's security at
both design and run time. The component can read and write the registry key's
discretionary and system access list as well as take ownership of registry key. Having
set MachineName property, set the root key with RootKey property and registry path
with CurrentPath. After it you can use AccessAllowed to allow an access to the registry
key for the specified users or AccessDenied property    to restrict an access. Use
SystemAudit property    to examine attempts of an (un)authorized access.

RegGuard.dpr project demonstrates the most exciting features of TNTRegSecurity
component.

Note:
To use the whole set of TNTRegSecurity's properties and methods you must have
administrator permissions. Otherwise you might get an exception "Access denied".

TNTRegSecurity methods

Derived from TNTAbstractSecurity
TakeOwnership

Derived from TNTPersistent
 GetAccounts
 GetGlobalGroups
 GetLocalGroups
 GetPrimaryDomainServerName
 GetServers
 GetUsers

TNTRegSecurity properties
TNTRegSecurity Legend

In TNTRegSecurity
    CurrentPath
    RootKey
    KeyOwner

Derived from TNTAbstractSecurity
    AccessAllowed
    AccessDenied
    ControlAccess
    SystemAudit

Derived from TNTPersistent
 LocalComputer
 LogonAs
 MachineName

TNTRegSecurity.CurrentPath
TNTRegSecurity Example

 property CurrentPath: string;

Description
The property specifies the location of key in the registry of target machine. When setting
desired value be sure that the path does not have the symbol "\" at the end, otherwise
you may get an exception "2:Path not found". Set the property before reading or
changing key's security attributes.

TNTRegSecurity.KeyOwner
TNTRegSecurity Example

property KeyOwner: string;

The property returns string specifying the account of user who has ownership of the
registry key. Be careful when writing this property: security requirements do not allow to
assign the ownership to the another user. The only name which is allowed to assign to
this property is the name of currently logged on user. The better way to take ownership
is to use TakeOwnerShip method;

TNTRegSecurity.RootKey
TNTRegSecurity Example

property RootKey:          HKey; default HKEY_LOCAL_MACHINE

Description
The property specifies the root key of the target machine registry. The following    values
are defined in windows.pas unit and can be set as RootKey's values:

 HKEY_CLASSES_ROOT
 HKEY_CURRENT_USER
 HKEY_LOCAL_MACHINE
 HKEY_USERS
 HKEY_CURRENT_CONFIG

The last value is valid only for local machine and will return an error "Invalid handle" if
applied to remote server.

TObject
      |
TPersistent
      |
TComponent
      |
TNTPersistent
      |
TNTAbstractSecurity
      |
TNTRegSecurity

TNTService
Hierarchy Properties Methods

Unit
TService

TNTService component is developed to add new services to Windows NT service
control database as well as to start, stop, configure and delete them. It drastically
simplifies tasks of controlling services. TNTService component    encapsulates the set of
relevant functions (except security functions) which are described in Windows API.
Though you still can use API functions you have no need to do it.

In order to select a computer you are going to control services on, assign the name
of the computer to    MachineName property. Set ActiveManager property to establish   
connection to the service control manage on the computer of destination. Use
GetServiceList method to enumerate services. If you want to know particular service's
configuration, assign service name to ServiceName property, then set ActiveService.

The project SrvcMngr.dpr demonstrates the main features of TNTService component.

TObject
      |
TPersistent
      |
TComponent
      |
TNTPersistent
      |
TNTService

TNTService methods
TNTService

In TNTService
    Createservice
    ControlService
    DeleteService
    Startservice
    GetDependentServicesList
    GetOrderGroupList
    GetServiceList
    GetServiceDisplayName
    GetServiceKeyName
    QueryServiceStatus
    NotifyBootConfigStatus
    QueryServiceLockStatus

Derived from TNTPersistent
 GetAccounts
 GetGlobalGroups
 GetLocalGroups
 GetPrimaryDomainServerName
 GetServers
 GetUsers

TNTService properties
TNTService Legend

In TNTService
 ActiveManager
 ActiveService
 BinaryPathName
 DatabaseName

      DBLocked
 DBLockHandle
 Dependencies
 DisplayName
 ErrorControl
 LoadOrder

ManagerHandle
 ManagerAccess
 Password
 ServiceAccess
 ServiceHandle
 ServiceName
 ServiceStartName
 ServiceType
 StartType
 TagId

Derived from TNTPersistent
 LocalComputer
 LogonAs
 MachineName

TNTService.GetOrderGroupList method
TNTService

The function returns list of groups which define order of service's loading.

function      GetOrderGroupList: TStrings;

Description
The function reads registry key
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\ServiceGroupOrder and
retrieves list of groups. Each service may belong to zero or one group. Note that it is not
always possible to read the registry on remote computer. If procedure fails, it raises an
exception.

TNTShare component
Hierarchy Properties Methods

Unit
NTShare

TNTShare component encapsulates the set of Windows API functions which allow to
configure shared devices on either local or network computers as well as retrieve
information about users connected to given computer, configure network drivers and
monitor resources used by other users

The project Shareman.dpr demonstrates the main features of TNTShare component.

Use property Resources to get a list of shared resources on local or remote computers.
Remember to write the name of destination computer into the property MachineName
before using any other properties. Resources' methods Add and Delete act like TList's
methods and allow you to share and deshare resources. Sessions property retrieves
variety of information about users and computers which established the sessions with
computer of destination. Use Sessions' method Delete to close the session. It will also
close all resources which are in use by that user or computer. Use Usages property to
obtain a list of files, pipes and other resources which are in use at the moment.
Connections    property returns list of network drivers of local computer.

Note
Some of properties are available only if you have Administrator permissions on the
computer of destination.

TObject
      |
TPersistent
      |
TComponent
      |
TNTPersistent
      |
TNTAbstractSecurity
      |
TNTShare

TNTShare methods
TNTShare

Derived from TNTPersistent
 GetAccounts
 GetGlobalGroups
 GetLocalGroups
 GetPrimaryDomainServerName
 GetServers
 GetUsers

TNTShare properties
TNTShare Legend

In TNTShare
    Connections

CurrentUsers
    MaxUsers

Path
    Resources
    Sessions
    ShareComment
    ShareName

ShareType
    Usages

Derived from TNTAbstractSecurity
    AccessAllowed
    AccessDenied

Derived from TNTPersistent
    LocalComputer
    LogonAs
    MachineName

TNTShare.CurrentUsers
TNTShare Example

property CurrentUsers: integer;      read only;

Description
Property CurrentUsers returns the number of users using the shared resource. Set
property MachineName to specify the destination computer before using this property.
Remember to write the name of shared resource you are going to get information about
into the property ShareName.

Note
You will get an exception "5: Access denied" if you do not have Administrator
permissions on the destination computer.

TNTShare.MaxUsers
TNTShare Example

property MaxUsers: integer;

Description
MaxUsers Indicates the maximum number of concurrent connections that the shared
resource can accommodate (unlimited if the specified value    is "-1"). Set proper values
into MachineName and ShareName properties before using MaxUsers.

Note
You will get an exception "5: Access denied" when either reading or writing this property
if you do not have Administrator permissions on the destination computer.

TNTShare.Path
TNTShare Example

property Path: string;    read only;

Description
Path contains the local path for the shared resource. For disks, Path is the path being
shared. For print queues, Path is the name of the print queue being shared.

Note
You will get an exception "5: Access denied" if you do not have Administrator
permissions on the destination computer.

TNTShare.ShareComment
TNTShare Example

property    ShareName: string;

Description
ShareName is a string containing the share name of a resource, as remote users wiil
see it . Remember to set MachineName and ShareName properties to before using this
one.

TNTShare.ShareName
TNTShare Example

property    ShareName: string;

Description
ShareName is a string containing the share name of a resource.    This name will be
visible for those browsing network. Set this property before retrieving any other
information on resource. Uses Resources property to retrieve list of shared devices on
the local or network computer. Note that ShareName property is automatically reset
after MachineName property is changed.

TNTShare.ShareType
TNTShare

property ShareType: TShareType;    read only;

Description
Specifies the type of network resource. Note that devices shared for administrative
purposes (usually have '$'at the end of ShareName) have unknown share type.

TNTShare.Usages
TNTShare Example

property Usages: TUsageList

Description
This property returns pointer to the list of open files on MachineName. Each time you
use Usages property component rereads the list of open files. Therefore use it only to
obtain pointer to the list or to refresh information. Use retrieved pointer for any other
operations.

TShareType type
TNTShare

TShareType = (stUnknown, stDisk, stPrint, stDevice, stIPC);

Specifies the type of network resource to connect to as well as the type of redirected
device.

Value Meaning
stUnknown Unknown device
stPrint Print queue
stDisk Disk drive
stDevice Communication device
stIPC Interprocess communicator

TNTUserMan component
Hierarchy Properties Methods

Unit
Userman

TNTUserMan component is developed to to make a task of management of users under
Windows NT™ as easy as possible. Now you have everything you need to add, delete,
edit groups and users as well as to get variety of information about users on both local
machine and network computers. Be careful when designing application using this
component! It has full functionality at both design and run time.

UManager project demonstrates the main features of TNTUserMan component.

Note:
To use the whole set of TNTUserMan's properties and methods you must have
administrator permissions.

TNTUserMan methods
TNTUserMan

In TNTUserMan
 AddUser
 ChangeUserName
 DeleteGlobalGroup
 DeleteLocalGroup
 DeleteUser

Derived from TNTPersistent
 GetAccounts
 GetGlobalGroups
 GetLocalGroups
 GetPrimaryDomainServerName
 GetServers
 GetUsers

TNTUserMan properties
TNTUserMan Legend

In TNTUserMan
 GlobalGroupComment
 GlobalGroupId
 GlobalGroupMembers
 GlobalGroupName
 GlobalGroups
 LocalGroupComment
 LocalGroupMembers
 LocalGroupName
 LocalGroups
 MemberOfGlob
 MemberOfLocal
 UserInfo
 UserName
 Users

Derived from TNTPersistent
 LocalComputer
 LogonAs
 MachineName

TNTUserMan.ChangeUserName
TNTUserMan

procedure ChangeUserName(NewName: string);

Description
The procedure changes    the name of the user specified UserName property into the
new one which must be passed as parameter. If the procedure cannot change user
name it raises an exception.

Note
Do not use UserName property to change the name of the user. This property only
defines the user to retrieve information about.

TNTUserMan.DeleteGlobalGroup
TNTUserMan

procedure DeleteGlobalGroup(AName: string);

Description
The procedure removes the global group of users specified by AName parameter from
the computer of destination. The same result may be achieved by using GlobalGroups
property.

TNTUserMan.DeleteLocalGroup
TNTUserMan

procedure DeleteLocalGroup(AName: string);

Description
The procedure removes the local group of users specified by AName parameter from
the computer of destination. The same result may be achieved by using LocalGroups
property.

TNTUserMan.DeleteUser

procedure DeleteUser(AUserName: string);

Description
The procedure removes the account specified by AUserName parameter from the user
database of destination computer.    The same result may be achieved by using Users
property.

TNTUserMan.GlobalGroupComment
TNTUserMan Example

property    GlobalGroupComment: string;

Description
This property is used to get and set description of global group either on local machine
or network computer.

Remark
GlobalGroupComment contains proper information only if GlobalGroupName is valid
group name.

TNTUserMan.GlobalGroupId
TNTUserMan Example

property    GlobalGroupId: integer; read only;

Description
This property returns the relative identifier of the account identified by
GlobalGroupName property.

Remark
GlobalGroupComment contains proper information only if GlobalGroupName is valid
group name.

TNTUserMan.GlobalGroupMembers
TNTUserMan Example

property GlobalGroupMembers: TStrings;

Description
GlobalGroupMembers property allows to retrieve and set list of members of particular
global group on a server. Use this property to replace the whole list of members as well
as    to add(remove) particular user into(from) a global group    See also MemberOfGlob
property.
Note
Before using this property make sure that GlobalGroupName contains valid global
group name.

TNTUserMan.GlobalGroupName
TNTUserMan Example

property GlobalGroupName: string

Description
This property contains the name of the global group of users on the selected computer.
Set this property    before retrieving any other information about global group (see also
GlobalGroupComment, GlobalGroupMembers). You may get the list of all global groups
on the given computer using GlobalGroups property.

TNTUserMan.GlobalGroups
TNTUserMan Example

property GlobalGroups: TStrings;

Description
GlobalGroups property contains list of global groups on the server. Using this property
you can retrieve list of global groups, add, delete group and replace the whole list of
groups.    Use GlobalGroups' Add and Delete methods to add or remove global group.
Before using this property make sure that MachineName contains valid computer name.

TObject
      |
TPersistent
      |
TComponent
      |
TNTPersistent
      |
TNTUserMan

TNTUserman.AddUser
TNTUserMan

procedure AddUser(AUserName, APassword: string);

Description
The procedure creates new account in the destination computer's user database. You
also may use Users property to create a new account. The parameter AUserName
represents the name of account to be created. APassword is a password to use when
logging in.

TOperatorFlags type
TNTUserMan TUserInfo

    TOperatorFlag =(OP_PRINT, OP_COMM, OP_SERVER, OP_ACCOUNTS);
    TOperatorFlags = set of TOperatorFlag;

Value Meaning
OP_PRINT The print operator privilege is enabled.
OP_COMM The communications operator privilege is enabled.
OP_SERVER The server operator privilege is enabled.
OP_ACCOUNTS The accounts operator privilege is enabled.

TQueryServiceLockStatus type
TNTService See also

type
    TQueryServiceLockStatus = record
        fIsLocked: DWORD;
        lpLockOwner: PAnsiChar;
        dwLockDuration: DWORD;
    end;

Description

fIsLocked
Specifies whether the database is locked. If this member is
nonzero, the database is locked. If it is zero, the database is
unlocked.

lpLockOwner
Points to a null-terminated string containing the name of the user
who acquired the lock.

dwLockDuration
Specifies the time, in seconds, since the lock was first acquired.

TResourceItem properties
TResourceItem TResourceList

    ShareName
    ShareType
    ShareComment
    MaxUsers
    CurrentUsers
    Path

TResourceItem type
Properties TResourceList TNTShare

TResourceItem represents an item in a TResourceList.

Description
A TResourceList holds a group of TResourceItem objects. All the properties of
TResourceItem class are read only. To change some of resource's properties use
TNTShare's properties such as ShareComment, MaxUsers and so on. Use    Resources
property and TResourceItem objects for enumeration tasks. TResourceItem objects are
created and destroyed by TResourceList's Add, Delete and Clear methods. You will
never need to create an instance of TResourceItem class explicitly. Use
TResourceList's Items property to get pointers to TResourceItem instances maintained
by TNTShare component.

TResourceItem.CurrentUsers
TResourceItem TResourceList

property CurrentUsers: integer; read only;

Description
CurrentUsers returns the number of users using the shared resource. This property is a
replica of TNTShare.CurrentUsers used for enumeration purposes.    Note that this
property requires administrative permissions to retrieve right information but does not
raise exception if you don't have them and returns "0".

TResourceItem.MaxUsers
TResourceItem TResourceList

property MaxUsers: integer; read only;

Description
MaxUsers indicates the maximum number of concurrent connections that the shared
resource can accommodate. Unlimited number    is identified by "-1". Note that you must
have administrative permissions to get this information. Unlike to TNTShare.MaxUsers
property this one does not create exception "Access denied" but returns "0".

TResourceItem.Path
TResourceItem TResourceList

property Path: string; read only;

Description
Path contains the local path for the shared resource. For disks, Path is the path being
shared. For print queues, Path is the name of the print queue being shared. This
property is just a replica of TNTShare. Path property used for iteration. Note that this
property requires administrative permissions to retrieve proper information. If current
user does have them, this property does not raise an exception but returns empty string.

TResourceItem.ShareComment
TResourceItem TNTShare

property ShareComment: string; read only;

Description
ShareComment contains an optional comment about the shared resource. This property
is useful for retrieving information when iterating trough Resources list. Use
TNTShare.ShareComment property to change the comment.

Example

var
    List: TResourceList;
begin
    List := Share1.Resources;
    for i := 0 to List.Count - 1 do
        if List[i].ShareComment = '' then
            ShowMessage('Resource '+List[i].ShareName + ' does not have comment yet!');
end;

TResourceItem.ShareName
TResourceItem TResourceList

property    ShareName: string;      read only;

ShareName is a string containing the share name of a resource.    Use this property for
iteration through Resources.

Example

var
    List: TResourceList;
begin
    List := Share1.Resources;
    for i := 0 to List.Count - 1 do
        begin
        Share1.ShareName := List[i].ShareName;
        Share1.ShareComment := 'Temporary opened resource';
        end;
end;

TResourceItem.ShareType
TResourceItem TResourceList

property ShareType: TShareType;    read only;

Description
Specifies the type of network resource. Note that devices shared for administrative
purposes (usually have '$'at the end of ShareName) have unknown share type. This
property duplicates TNTShare.ShareType property and is used for enumeration tasks.

TResourceList methods
TResourceList TNTShare

    Add
    Clear
    Delete

TResourceList properties
TResourceList TNTShare

    Count
    Items

TResourceList    type
Properties Methods TNTShare

TResourceList is a container for TResourceItem objects. It holds the shared devices of
destination computer . The Count property contains the number of items in the list. Use
the Add, Delete, Clear methods to add and delete connections. Usually you will not
create instances of TResourceList class. Use TNTShare.Resources property instead to
obtain a pointer to the list of shared devices maintained by TNTShare component.

Example

Share1.MachineName := '\\moon';
if Share1.Resources.Count = 0 then ShowMessage('No shared devices on server \
\moon');

TResourceList.Add
TNTShare TResourceList

Add    shares a resource of server specified by MachineName property.

procedure      Add(NetName, Path: string; ShareType: TShareType);

Description
Only members of the Administrators or Account Operators local group or those with
Communication, Print, or Server operator group membership can successfully execute
TResourceList.Add. The Print operator can add only Printer queues. The
Communication operator can add only communication-device queues.

Example
Share1.Resources.Add('TEMP', 'c:\temp', stDisk);
Share1.Resources.Add('PaintJet on \\PC21', 'PaintJet', stPrint);

TResourceList.Clear
TResourceList TNTShare

procedure Clear;

Description
Clear deletes all items from a    MachineName's list of shared resources, disconnecting
all connections to the shared resources.

TResourceList.Count
TResourceList TNTShare

Count is the number of TResourceItem objects in the list.

property Count: Integer;    read only;

Description
Read Count to determine the number of TResourceItem objects in the Items array.

Example
Share1.MachineName := '\\moon';
Label1.Caption := 'Server "\\moon" has : ' + IntToStr(Share1.Resources.Count) +'
shared devices' ;

TResourceList.Delete
TNTShare TResourceList

procedure      Delete(Index: integer);

Description
Method deletes item from a    MachineName's list of shared resources, disconnecting all
connections to the shared resource. Only members of the Administrators or Account
Operators local group or those with Communication, Print, or Server operator group
membership can successfully execute NetShareDel. The Print operator can delete only
Printer queues. The Communication operator can delete only communication-device
queues.

Example

try
Share1.Resources.Delete(0);
except
ShowMessage('Cannot delete resource');
end;

TResourceList.Items
TResourceList TNTShare

Items is the array of object references.

property Items[Index: integer]: TResourceItem; default;

Description
Use Items to obtain a pointer to a specific TResourceItem object in the array. The Index
parameter indicates the index of the object, where 0 is the index of the first object, 1 is
the index of the second object, and so on. Use Items with the Count property to iterate
through all of the objects in the list.

Example

var
    PList: TResourceList;
begin
    PList := Share1.Resources;
    for i := 0 to PList.Count - 1 do ListBox1.Items.Add(PList.Items[i].ShareName);
end;

TServiceAccess type
TNTService

type
    TServiceAccess =    set of TDesiredServiceAccess;
    TDesiredServiceAccess = (S_ALL_ACCESS,    S_CHANGE_CONFIG,
S_ENUMERATE_DEPENDENTS, S_INTERROGATE, S_PAUSE_CONTINUE,
S_QUERY_CONFIG, S_QUERY_STATUS, S_START, S_STOP,
S_USER_DEFINED_CONTROL, S_DELETE);

Description
S_ALL_ACCESS

Includes STANDARD_RIGHTS_REQUIRED in addition to all
of the access types listed in this topic.

S_CHANGE_CONFIG
Enables calling of the ChangeServiceConfig function to
change the service configuration.

S_ENUMERATE_DEPENDENTS
Enables calling of the EnumDependentServices function to
enumerate all the services dependent on the service.

S_INTERROGATE
Enables calling of the ControlService function to ask the
service to report its status immediately.

S_PAUSE_CONTINUE
Enables calling of the ControlService function to pause or
continue the service.

S_QUERY_CONFIG
Enables calling of the QueryServiceConfig function to query
the service configuration.

S_QUERY_STATUS
Enables calling of the QueryServiceStatus function to ask
the service control manager about the status of the service.

S_START
Enables calling of the Startservice function to start the
service.

S_STOP
Enables calling of the ControlService function to stop the
service.

S_USER_DEFINE_CONTROL
Enables calling of the ControlService function to specify a
user-defined control code.

TServiceStates type
TNTService See also

type
    TServiceState = (STATE_ACTIVE, STATE_INACTIVE);
    TServiceStates = set of TServiceState;

Description
STATE_ACTIVE

Enumerates services that are in the following states:
START_PENDING, STOP_PENDING, RUNNING,
CONTINUE_PENDING, PAUSE_PENDING, and PAUSED.

STATE_INACTIVE
Enumerates services that are in the STOPPED state.

TServiceStatusClass type
TNTService See also

The TServiceStatusClass class contains information about a service.

type
    TServiceStatusClass = class
    public
        ServiceName: string;
        DisplayedName: string;
        ServiceType: TServiceTypes;
        CurrentState: TCurrentState;
        ControlsAccepted: TControlAcceptedSet;
        Win32ExitCode: DWORD;
        ServiceSpecificExitCode:DWORD;
        CheckPoint: DWORD;
        WaitHint:: DWORD;
    end;

Description

dwWin32ExitCode
Specifies a Win32 error code that the service uses to report an error that occurs when it
is starting or stopping. To return an error code specific to the service, the service must
set this value to ERROR_SERVICE_SPECIFIC_ERROR to indicate that the
dwServiceSpecificExitCode member contains the error code. The service should set this
value to NO_ERROR when it is running and on normal termination.

dwServiceSpecificExitCode
Specifies a service specific error code that the service returns when an error occurs
while the service is starting or stopping. This value is ignored unless the
dwWin32ExitCode member is set to ERROR_SERVICE_SPECIFIC_ERROR.

dwCheckPoint
Specifies a value that the service increments periodically to report its progress during a
lengthy start, stop, or continue operation. For example, the service should increment
this value as it completes each step of its initialization when it is starting up. The user
interface program that invoked the operation on the service uses this value to track the
progress of the service during a lengthy operation. This value is not valid and should be
zero when the service does not have a start, stop, or continue operation pending.

dwWaitHint
Specifies an estimate of the amount of time, in milliseconds, that the service expects a
pending start, stop, or continue operation to take before the service makes its next call
to the SetServiceStatus function with either an incremented dwCheckPoint value or a
change in dwCurrentState. If the amount of time specified by dwWaitHint passes, and
dwCheckPoint has not been incremented, or dwCurrentState has not changed, the
service control manager or service control program can assume that an error has

occurred.

TServiceTypes type
TNTService

type
    TServiceTypes = set of TServiceType;
    TServiceType = (KERNEL_DRIVER, FILE_SYSTEM_DRIVER, ADAPTER,
RECOGNIZER_DRIVER, WIN32_OWN_PROCESS, WIN32_SHARE_PROCESS,
INTERACTIVE_PROCESS);

Description
WIN32_OWN_PROCESS

A service-type flag that specifies a Win32 service that runs in
its own process.

WIN32_SHARE_PROCESS
A service-type flag that specifies a Win32 service that
shares a process with other services.

KERNEL_DRIVER
A service-type flag that specifies a Windows NT device
driver.

FILE_SYSTEM_DRIVER
A service-type flag that specifies a Windows NT file system
driver.

INTERACTIVE_PROCESS
A flag that enables a Win32 service process to interact

ADAPTER
RECOGNIZER_DRIVER

TSession properties
TSession TSessionList

    ClientName
    ClientType
    IdleTime
    OpenResourses
    SessionTime
    Transport
    UserFlags
    UserName

TSession type
Properties TSessionList

TSession represents an item in a TSessionList.
Description

A TSessionList holds a group of TSession objects. TSession objects are created by
TSessionList class. You may close session using Clear and Delete methods. You will
never need to create an instance of TSession class explicitly. Use TSessionList's Items
property to get pointers to TSession instances maintained by TNTShare component.

TSession.ClientName
TSession TSessionList

property ClientName: string; read only;

Property contains the name of the computer that established the session.

TSession.ClientType
TSession TSessionList

property ClientType: string; read only;

Description
Specifies the type of client that established the session. this property returns empty
string if you do not have membership in    Administrators or Account Operators local
groups.

TSession.IdleTime
TSession TSessionList

property IdleTime:            TDateTime; read only;

This is the time for which session has been idle.

TSession.OpenResources
TSession TSessionList

property OpenResources: integer; read only;

Description
OpenResources returns the number of files, devices, and pipes opened during the
session. Property returns "-1" if user does not have administrative permissions.

TSession.SessionTime
TSession TSessionList

property SessionTime: TDateTime; read only;

Specifies the time a session has been active.

TSession.Transport
TSession TSessionList

property    Transport: string; read only;

Description
Specifies the name of the transport that the client is using to communicate with the
server specified by MachineName.    This property returns empty string if you do not
have membership in    Administrators or Account Operators local groups.

TSession.UserFlags
TSession TSessionList

property UserFlags: TSessionFlag; read only;

Describes how the user established the session. Only members of the Administrators or
Account Operators local group can successfully retrieve this information. Otherwise
sessUnknown is returned.

TSession.UserName
TSession TSessionList

property UserName: string; read only;

Property specifies the name of the user who established the session.

TSessionFlag type
TSession

Type describes session's characteristics.

TSessionFlag    = (sessUnknown, sessNone, sessGuest, sessNoEncryption);

Value Meaning
sessUnknown Not enough permission to get information
sessGuest Session is established using a guest account.
sessNoEncryption Session is established without using password encryption.
sessNone No one of previous flags.

TSessionList methods
TSessionList TNTShare

Delete

TSessionList properties
TSessionList TNTShare

Count
Items

TSessionList type
Properties Methods TNTShare

TSessionList is a container for TSession objects. It holds session list of server specified
by MachineName property. The Count property contains the number of items in the list.
Use the Delete and Clear methods to delete selected or all sessions connections.
Usually you will not create instances of TSessionList class. Use TNTShare.Sessions
property instead to obtain a pointer to the list of sessions maintained by TNTShare
component.

Example

if Share1.Sessions.Count = 0 then ShowMessage('No connected users!')

TSessionList.Count
TSessionList TNTShare

Count is the number of TSession objects in the list.

property Count: Integer;    read only;

Description
Read Count to determine the number of TSession objects in the Items array.

Example
Share1.MachineName := '\\moon';
Label1.Caption := 'Server "\\moon" has : ' + IntToStr(Share1.Sessions.Count) +'
established sessions' ;

TSessionList.Delete
TNTShare TSessionList

procedure Delete(Index: integer);

Description
Clear ends a session between    MachineName server and a workstation. Note that
Delete may end more than one session at once. If you are deleting session with empty
UserName property all the sessions of ClientName computer will be terminated. It's
recommended to reread Sessions property after call Delete method.

TSessionList.Items
TSessionList TNTShare

Items is the array of object references.

property Items[Index: integer]: TSession; default;

Description
Use Items to obtain a pointer to a specific TSession object in the array. The Index
parameter indicates the index of the object, where 0 is the index of the first object, 1 is
the index of the second object, and so on. Use Items with the Count property to iterate
through all of the objects in the list.

Example

var
    PList: TSessionList;
begin
    PList := Share1.Sessions;
    for i := 0 to PList.Count - 1 do ListBox1.Items.Add(PList.Items[i].ClientName);
end;

TStartType
TNTService

type
    TStartType = (BOOT_START, SYSTEM_START, AUTO_START, DEMAND_START,
DISABLED);

Description
BOOT_START

Specifies a device driver started by the operating system
loader. This value is valid only if the service type is
KERNEL_DRIVER or FILE_SYSTEM_DRIVER.

SYSTEM_START
Specifies a device driver started by the IoInitSystem function.
This value is valid only if the service type is
KERNEL_DRIVER or FILE_SYSTEM_DRIVER.

AUTO_START
Specifies a device driver or Win32 service started by the
service control manager automatically during system startup.

DEMAND_START
Specifies a device driver or Win32 service started by the
service control manager when a process calls the
Startservice function.

DISABLED
Specifies a device driver or Win32 service that can no longer
be started.

TUsage properties
TUsage TUsageList

    ResourceId
    Permissions
    NumLocks
    PathName
    UserName

TUsage type
Properties TNTShare TUsageList

TUsage represents an item in a TUsageList.

Description
TUsageList holds a group of TUsage objects. TUsage objects are created by TNTShare
component and destroyed by TUsageList's Delete and Clear methods. You will never
need to create an instance of TUsage class explicitly. Use TUsageList's Items property
to get pointers to TUsage instances maintained by TNTShare component.

TUsage.NumLocks
TUsage TUsageList

property NumLocks: integer; read only;

Description
NumLocks specifies the number of file locks on the file, device, or pipe.

TUsage.PathName
TUsage TUsageList

property PathName: string; read only;

Description
PathName property gives the path of the opened resource.

Example

var
    PUsages: TUsageList; i: integer;
begin
    PUsages := Share1.Usages;
    for i := 0 to PUsages.Count - 1 do ListBox1.Items.Add(PUsages[i].PathName);
end;

TUsage.Permissions
TUsage TUsageList

property Permissions:            TAccessTypes;

Description
Specifies the access permissions of the opening application. This member can be any
of the following values:
actRead Permission to read data from a resource and, by default, to execute the
resource.
actWrite Permission to write data to the resource.
actCreate Permission to create a resource; data can be written when creating the
resource.

TUsage.ResourceId
TUsage TUsageList

property ResourceId: integer; read only;

Description
Specifies the identification number assigned to the resource when it is opened.

TUsage.UserName
TUsage TUsageList

property UserName: string; read only;

Description
String specifies which user (on servers that have user-level security) or which computer
(on servers that have share-level security) opened the resource.

TUsageList methods
TUsageList TNTShare

Clear
Delete

TUsageList properties
TUsageList

Count
Items

TUsageList type
Properties Methods TNTShare

TUsageList is a container for TUsage objects. It holds list of open files on the server
specified by MachineName property. The Count property contains the number of items
in the list. Use the Delete and Clear methods to close selected or all files. Usually you
will not create instances of TUsageList class. Use TNTShare.Usages property instead
to obtain a pointer to the list of sessions maintained by TNTShare component.

Example
if Share1.Usages.Count = 0 then ShowMessage('No opened files!');

TUsageList.Clear
TUsageList TNTShare

Clear closes all resources opened on the server MachineName

procedure Clear; override;

Description
Call Clear to close all resources opened on the server MachineName. Call Delete to
close particular one.

TUsageList.Count
TUsageList TNTShare

Count is the number of entries in the list.

property Count: Integer;    read only;

Description
Read Count to determine the number of TUsage objects in the Items array.

Example
ShowMessage(IntToStr(Share1.Usages.Count)+ ' open resource(s) on the server
'+Share1.MachineName);

TUsageList.Delete
TUsageList TNTShare

procedure Delete(AIndex: integer);

Use Delete method to close resource.

Example

procedure Form1.btnClearClick(Sender: TObject)
var
    PUsages: TUsageList;
begin
    PUsages := Share1.Usages;
    while PUsages.Count > 0 do PUsages.Delete(0);
end;

TUsageList.Items
TUsageList TNTShare

Items is the array of object references.

property Items[Index: Integer]: TUsage; default;

Description
Use Items to obtain a pointer to a specific TUsage object in the array. The Index
parameter indicates the index of the object, where 0 is the index of the first object, 1 is
the index of the second object, and so on. Use Items with the Count property to iterate
through all of the objects in the list.

TUserFlags type
TNTUserMan TUserInfo

type
    TUserFlag        = (F_SCRIPT,    F_ACCOUNTDISABLE, F_HOMEDIR_REQUIRED,
F_LOCKOUT, F_PASSWD_NOTREQD, F_PASSWD_CANT_CHANGE,
F_DONT_EXPIRE_PASSWD);

    TUserFlags      = set of TUserFlag;

Value Description
F_SCRIPT,    The logon script executed. This value must be set for
LAN Manager 2.0 or Windows NT.
F_ACCOUNTDISABLE, The user's account is disabled
F_HOMEDIR_REQUIRED, The home directory is required. This value is
ignored in Windows NT.
F_LOCKOUT, The account is currently locked out.    This value
cannot be used to lock a previously locked account.
F_PASSWD_NOTREQD, No password is required
F_PASSWD_CANT_CHANGE, The user cannot change the password.
F_DONT_EXPIRE_PASSWD Represents the password, which should never expire
on the account. This value is valid only for Windows NT.

TUserInfo class
TNTUserMan

Type
    TUserInfo        = class(TPersistent)
    public
        property UserSID
    published
        property AccountExpires
        property BadPasswordCount
        property CodePage
        property Comment
        property CountryCode
        property Domain
        property FullName
        property HomeDir
        property HomeDirDrive
        property LastLogOff
        property LastLogon
        property LogonCount
        property LogonHours
        property LogonServer
        property MaxStorage
        property OperatorRights
        property Options
        property Password
        property PasswordDate
        property PasswordExpired
        property Privilege
        property Profile
        property ScriptPath
        property Workstations
    end;

TUserInfo.HomeDirDrive
TNTUserMan TUserInfo
property HomeDirDrive: string;

Description
Specifies the drive letter assigned to the user's home directory for logon purposes.

TUserInfo.LogonHours
TNTUserMan TUserInfo

property LogonHours:      TLogonHours

Description
The property specifies the time during which user can log on to the computer of
destination.    The property defines weekly time table with one hour precision. You can
specify enabled or disabled state of connection for each of 168 hours of week.

TUserInfo.PasswordExpired
TNTUserMan TUserInfo

property PasswordExpired: boolean;

Description
Determines whether the password of the user has expired. It returns zero if the
password has not expired (and nonzero if it has).    Specify "true" to indicate that the
user must change password at next logon. Note that you cannot specify "false" to
negate the expiration of a password that has already expired.

TUserInfo.Profile
TNTUserMan TUserInfo

property Profile: string;

Description
Specifies a path to the user's profile. This value can be an empty string, a local absolute
path, or a UNC path.

TUserPriv type
TNTUserMan TUserInfo

type
    TUserPriv        = (USR_PRIV_UNKNOWN, USR_PRIV_GUEST, USR_PRIV_USER,
USR_PRIV_ADMIN);
 These values specify the level of privilege assigned to the user UserName

TNTService.TagId
TNTService

property TagId: integer;

Description
32-bit variable that receives a unique tag value for this service in the group specified in
the LoadOrder property parameter. If no tag is requested, this parameter can be 0.    You
can use a tag for ordering service startup in a load ordering group by specifying a tag
order vector in the registry located at:
HKEY_LOCAL_MACHINE\System\ CurrentControlSet\Control\GroupOrderList.
Tags are only evaluated for KERNEL_DRIVER and FILE_SYSTEM_DRIVER type
services that have BOOT_START or SYSTEM_START start types.

TNTUserMan.UserInfo
TNTUserMan Example

property UserInfo: TUserInfo;

Description
This property is a class which allows to get variety of information about particular user.
use this property having set proper values into MachineName and UserName
properties.

TNTUserMan.UserName
TNTUserMan Example

property UserName: string;

Description
UserName contains the name of user registered on the selected computer. Set this
property before retrieving any information about user. You can get the whole list of users
registered on the given computer using Users property.

TUserInfo.UserSID
TNTUserMan TUserInfo

property UserSID: PSID;

Description
This property is a pointer to SID structure. SID stands for Security Identifier. It uniquely
identifies each user. You can use this property for direct calls of API functions. This
property has valid value only when UserName property contains valid user's name.

TNTUserMan.Users
TNTUserMan Examples

property Users: TStrings;

Description
Users property contains list of users registered on the selected computer. Use Users'
Add and Delete
methods do to add and remove users. Make sure that MachineName has a valid
computer name before using this property.

Remark
New user is created with a password    and comment coinciding with UserName.

Windows NT vs. Windows 95
What is in the name? "Component Set for Windows NT" has been developed to give
computer programmers an ability to use low level Windows NT features not diving into
API. But, it does not mean that this collection of component cannot work under
Windows 95. It can. In this case it may    be used to administrate Windows NT servers
and workstations remotely. You will see a special note if some property or method does
not work under Windows 95. It usually applies to those of them    which affect local
machine.

Standard Windows 95 setup does not install libraries for remote Windows NT
administration. You should install them separately. The list of necessary files below may
be found on Windows NT server CD-ROM:

RADMIN32.DLL
ACLEDIT.DLL
FPNWCLNT.DLL
NETMSG.DLL
NETUI0.DLL
NETUI1.DLL
NETUI2.DLL
NTLANUI.DLL
PRTQ32.DLL
RLOCAL32.DLL
RSHX32.DLL

The path to these libraries must be declared in system PATH variable. Each component
of NTSet collection automatically detects version of operation system. They    import API
functions from RADMIN32.DLL when under Under Windows 95 and from
NETAPI32.DLL, ADVAPI32.DLL when under Windows NT.

TUserInfo.Workstations
TNTUserMan TUserInfo Example

property Workstations: string;

Description
Property contains the names of workstations from which the user can log on. As many
as eight workstations can be specified; the names must be separated by commas (,). An
empty string indicates that there is no restriction. To disable logons from all workstations
to this account, set the F_ACCOUNTDISABLE value in the Options.

TEventItem properties
TEventItem Legend

 Computername
 Data
 DataBytes
 DataLength

      EventCategory
      EventID
      EventType
 Number
 SourceName
 Strings
 TimeGenerated
 TimeWritten
 UserName

TEventItem.ComputerName
TEventItem

property Computername:    string        read only;

Description
The property returns a string specifying the name of the computer that generated this
event.

TEventItem.Data
TEventItem

property Data:                Pointer        read only;

Description
The property returns pointer to the block of memory with data, accompanying the event.
This information could be something specific (a disk driver might log the number of
retries, for example), followed by binary information specific to the event being logged
and to the source that generated the entry. If there is no data, the property returns null.

Note
This property does not exist in ActiveX version of component library. Use property
DataBytes that returns the same information in a way, convinient for VB programmers.

TEventItem.DataBytes
TEventItem

property DataBytes:          TByteList; read only

Description
The property represents the array of bytes that are contained within the event record.
The property returns the same information as Data property, but may be accessed
through ActiveX interface. The Data property cannot be used in ActiveX version.

TByteList type
TEventItem

    TByteList = class
    public
        property Item[AIndex: integer]: byte; // returns one byte from the array
      property Count: integer; // returns number of bytes in the array
        procedure Clear; // clears the array of byte, resets count
to zero
        procedure Add(AValue: byte); // adds new byte into array
 end;

TEventItem.DataLength
TEventItem

property DataLength:        DWORD; read only;

Description
The property returns number of byte in the block of memory, pointed by Data property.

Note
This property is not reachable in ActiveX version of component library. Use property
DataBytes.Count that returns the same information in a way, convinient for VB
programmers.

TEventItem.EventCategory
TEventItem

property EventCategory: WORD;

Description
Specifies a subcategory for this event. This subcategory is source specific.

TEventItem.EventID
TEventItem

property EventID:              DWORD;

Description
Identifies the event. This is specific to the source that generated the event log entry, and
is used, together with SourceName, to identify a message in a message file that is
presented to the user while viewing the log.

TEventItem.EventType
TEventItem

property EventType:          TEventType;

Description
Specifies the type of event. The property can have one of the following values:

Value Meaning
EVT_SUCCESS Success event
EVT_ERROR Error event
EVT_WARNING Warning event
EVT_INFORMATION Information event
EVT_AUDIT_SUCCESS Success Audit event
EVT_AUDIT_FAILURE Failure Audit event

TEventItem.Number
TEventItem

property Number:                integer; read only

Description
The property returns sequence number of the event in the event log.

TEventItem.SourceName
TEventItem

property SourceName:        string;    read only

Description
Returns string specifying the name of the source (application, service, driver,
subsystem) that generated the entry. This is the name used to retrieve from the registry
the name of the file containing the message strings for this source. It is used, together
with the event identifier, to get the message string that describes this event.

TEventItem.Strings
TEventItem

property Strings:              TStrings; read only

Description
The property holds insertion strings to be used in creating a message, when a user
views    an event log.

TEventItem.TimeGenerated
TEventItem

property TimeGenerated: TDateTime; read only

Description
The time at which this entry was submitted.

TEventItem.TimeWritten
TEventItem

property TimeWritten:      TDateTime    read oinly;

Description
Specifies the time at which this entry was received by the service to be written to the
logfile.

TEventItem.UserName
TEventItem

property UserName:            string; read only;

Description
Specifies the name of active user at the time this event was logged. This property may
be empty.

TEventType methods
TEventType

SetData

TEventType.SetData
TEventType

procedure      SetData(AData: Pointer; DataSize: integer);

Description
The procedure writes the block of data into inner structures of TEventType class. The
data set may be retieved through Data property. You may need to use this property
when adding new record into event log with AddObject method.

Note
This procedure does not exist in ActiveX version of component library. Use property
DataBytes.Add that sets the data in a way, convinient for VB programmers.

TNTEventLog.GetEventSources
TNTEventLog

function        GetEventSources: TStrings;

Description
The function returns the list of strings filled with the names of event sources. The
procedure retrievs the list from the registry.

TNTEventLog.WriteObject
TNTEventLog

property        WriteObject: TEventItem;

Description
This property is a pre-created object of TEventItem type. It may be used with AddObject
method. It allows to avoid creation of a new object before calling the method and
destroying it after.

TNTPersistent.GetDomains
NTPersistent

 function GetDomains(AServerName: string): TStringList;

Description
Function creates and returns list of domains available on network. AServerName
specifies computer to execute function on. If empty string is specified, function will be
executed on the local computer. Remember to free retrieved TStringList after it is not
necessary any more.

