
        Help for MouseWheel
Properties                        Events                        Methods                        Frequently Asked Questions

How To Buy This Software

Order Form

Getting Custom Controls Written

Licensing Information

Description

Add IntelliMouse support to your 32-bit applications with the Mabry MouseWheel control. The wheel is
supported in Microsoft Office 97 and now it can be supported in your applications.

MouseWheel is a VB5 ActiveX control that allows your programs to take advantage of the powerful
scrolling capabilities of the new IntelliMouse by Microsoft.    Your users can easily scroll and select data
without removing their hand from the mouse.

Uses:

 - Select radio buttons and toggle checkboxes.

 - Quickly scroll through large amounts of text.

 - Set the value of a spin control.

 - Provide for both horizontal and vertical scrolling.

 - Perfect for any object that utilizes scrolling, such as list boxes, speadsheets, File and Directory lists,
etc.

 - Scrolling is handled automatically.

Features:

 - Since event notifications occur both before and after the user moves the wheel, your application can
intercept the wheel movement to enhance or override scrolling.

 - Events indicate which mouse button is pressed so your application actions can be tailored for different
combinations of wheel movement and button selection.

 - A property allows you to specify whether the mouse coordinates are relative to the object that the
mouse is over or relative to the entire screen.

 - Another property determines whether events are fired for the control under the mousepointer or the
control with focus.

MouseWheel can be used in any 32-bit development environment that supports ActiveX controls.

File Name

MWHEEL.OCX

ActiveX Compatibility

VB 4.0 (32-bit), 5.0 and 6.0

ActiveX Built With

Microsoft Visual Basic v5

ActiveX - Required DLLs

VB 5.0 Run-Time DLLs
MSVBVM50.DLL

Distribution Note       When you develop and distribute an application that uses this control, you should
install the control file into the user's Windows SYSTEM directory.    The control file has version
information built into it.    So, during installation, you should ensure that you are not overwriting a newer

version.

MouseWheel Properties

Properties that have special meaning for this control or that only apply to this control are marked with an
asterisk (*).

* CoordType Property

* hWndNotify Property

* Present Property

* ScrollLines Property

* ScrollWhich Property

MouseWheel Events

Events that have special meaning for this control or that only apply to this control are marked with an
asterisk (*).

* AfterMouseWheel Event

* BeforeMouseWheel Event

MouseWheel Methods

Methods that have special meaning for this control or that only apply to this control are marked with an
asterisk (*).

* HorzScroll Method

* Refresh Method

Frequently Asked Questions

General Questions

I've installed Mousewheel, but when I attempt to bring up the Custom Control dialog box in VB4 I get a
"Object server not correctly registered" message. What's wrong and will this cause problems?

I've installed Mousewheel, but when I attempt to bring up the Custom Control
dialog box in VB4 I get a "Object server not correctly registered" message. What's
wrong and will this cause problems?

Frequently Asked Questions

This is a known Microsoft problem. ActiveX controls created in VB5 will install a registry key that VB4
doesn't recognize. Each time VB4 (or Access95) searches the registry to display the valid controls it
finds this key that it doesn't recognize and shows the message box.    You can either ignore this
message or go to Microsoft's KnowledgeBase and look up Article ID: Q161827 for instructions on
editing the registry to correct this.

How To Buy This Software

CREDITS

MouseWheel was written by Karl Peterson.

CONTACT INFORMATION

Orders, inquiries, technical support, questions, comments, etc. can be sent to mabry@mabry.com on
the Internet.    Our mailing address/contact information is:

Mabry Software, Inc.
503 316th Street Northwest
Stanwood, WA    98292

Sales: 1-800-99-MABRY (U.S. Only)
Voice: 360-629-9278
Fax: 360-629-9278
Web: http://www.mabry.com

COST

The price of MouseWheel (control only) is US$25 (US$30 for International orders).    The cost of
MouseWheel and the Visual Basic source code (of the control itself) is US$75 (US$80 for International
orders).

Prices are subject to change without notice.

Printed manuals are available at US$12.50 per copy.

DELIVERY METHODS

We can ship this software to you via air mail and/or e-mail.

Air Mail - you will receive diskettes, a printed manual (if purchased), and printed receipt if you choose
this delivery method.    The costs are:

US$10.00 US Priority Mail
US$15.00 Airborne Express 2nd Day (US deliveries only)
US$20.00 Airborne Express Overnight (US deliveries only)
US$20.00 Global Priority Mail (Int'l deliveries only; Western Europe, Pacific Rim and
Canada only)
US$45.00 International Airborne Express (Int'l deliveries only)

E-Mail - We can ship this package to you via e-mail.    You need to have an e-mail account that can
accept large file attachments (which includes CompuServe, AOL, and most Internet providers).    We will
e-mail a receipt to you.

Be sure to include your full mailing address with your order.    Sometimes (on the Internet) the package
cannot be e-mailed, so we are forced to send it through the normal mails.

CompuServe E-Mail - CompuServe members can use the software registration forum (GO SWREG) to
register this package.    MouseWheel's SWREG ID number is 15753.    The source code version's ID
number is 15754.    PLEASE NOTE: When you order through SWREG, we send the registered package
to your CompuServe account (not your Internet or AOL account) within a few hours.

ORDER / PAYMENT METHODS

You can order this software by phone, fax, e-mail, mail.    For your convenience, an order form has been
provided that you can print out directly from this help file.

Please note that orders must include all information that is requested on our order form.      Your
shipment WILL BE DELAYED if we have to contact you for additional information (such as phone
number, street address, etc.).

You can pay by credit card (VISA, MasterCard, American Express, Discover, NOVUS), check (U.S.
dollars drawn on a U.S. bank), cash, International Money Order, International Postal Order, Purchase
Order (established business entities only - terms net 30), or wire transfer.

WIRE TRANSFER INFORMATION

Here is the information you need regarding our account for a wire funds transfer:

Bank Name: SeaFirst - Stone Way Branch
Bank Address: 3601 Stone Way North

Seattle, WA    98103
Bank Phone: 206-585-4951

Account Name: Mabry Software, Inc.
Routing Number: 12000024
Account Number: 16311706

If you are paying with a wire transfer of funds, please add US$25.00 to your order.    This is the fee that
SeaFirst Bank charges Mabry Software.    Also, please ADD ANY ADDITIONAL FEES THAT YOUR
BANK MAY CHARGE for wire transfer service. If you are paying with a    wire transfer, we must have full
payment deposited to our account before we can ship your order.

Copyright © 1997-1998 by Mabry Software, Inc.

 MouseWheel Order Form

Use the Print Topic... command from the File menu to print this order form.

Mail this Mabry Software, Inc.
form to: 503 316th Street Northwest

Stanwood, WA    98292

Phone: 360-629-9278
Fax: 360-629-9278
Internet: mabry@mabry.com
Web: www.mabry.com

Where did you get this copy of MouseWheel?

__

Name: __

Ship to: __

__

__

__

Phone: ___

Fax: ___

E-Mail: ___

Credit Card #: _______________________________________ exp. __________________

P.O. # (if any): ____________________ Signature ____________________________________

qty ordered ____ REGISTRATION
$25.00 ($30.00 international).    Check or money order in U.S. currency drawn
on a U.S. bank.    Add $10.00 per order for shipping and handling. Add $12.50
per printed manual.

qty ordered ____ SOURCE CODE AND REGISTRATION
$75.00 ($80.00 international).    Check or money order in U.S. currency drawn
on a U.S. bank.    Add $10.00 per order for shipping and handling. Add $12.50
per printed manual.

See Also

BeforeMouseWheel Event

See Also

AfterMouseWheel Event

HorzScroll Method

See Also

AfterMouseWheel Event

BeforeMouseWheel Event

See Also

BeforeMouseWheel Event

See Also

AfterMouseWheel Event

BeforeMouseWheel Event

HorzScroll Method

See Also

Refresh Method

ScrollLines Property

See Also

Present Property

ScrollLines Property

See Also

AfterMouseWheel Event

BeforeMouseWheel Event

Present Property

Refresh Method

See Also

AfterMouseWheel Event

BeforeMouseWheel Event

AfterMouseWheel Event
See Also                        Frequently Asked Questions

Description

Event fires immediately after the wheel has been turned. Scrolling has already occurred, if the control
supports scrolling and if scrolling has not been cancelled in the BeforeMouseWheel event.

Syntax

Sub object_AfterMouseWheel([index As Integer,] hWnd As Long, delta As Long, shift As Long,
button As Long, X As Long, Y As Long)

The syntax of the AfterMouseWheel event has these parts:

Part Description

object A MouseWheel control.

index An integer that identifies a control if it's in a control array.

hWnd A long integer representing the hWnd property of the form or control receiving
notification.

delta A long integer indicating direction and magnitude of mouse wheel event. This value is
either 120 or -120 (Microsoft's documentation notes that they may change this in future
releases of the Intellimouse). Positive indicates the wheel was turned forward; negative
means the wheel was turned backward.

shift A long integer that corresponds to the state of the SHIFT, CTRL, and ALT keys at the
time of the event. The shift argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2).
These bits correspond to the values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the keys are pressed. For example,
if both CTRL and ALT are pressed, the value of shift is 6.

button A long integer that identifies the state of the mouse buttons when the wheel was turned.
The button argument is a bit field with bits corresponding to the left button (bit 0), right
button (bit 1), and middle or wheel button (bit 2). These bits correspond to the values 1,
2, and 4, respectively.

X A long integer that specifies the current horizontal location of the mouse pointer. The
value is always expressed in pixels, and is either relative to the screen or the notified
control, based on the setting of the CoordType property.

Y A long integer that specifies the current vertical location of the mouse pointer. The value
is always expressed in pixels, and is either relative to the screen or the notified control,
based on the setting of the CoordType property.

Remarks

The AfterMouseWheel event is most useful when you need to add "scrolling" capabilities to controls that
aren't generally used in this manner. For example, to allow users to toggle a checkbox or flip between
option buttons with their mouse wheel, use:

Private Sub MouseWheel1_AfterMouseWheel(ByVal hWnd As Long, ByValDelta As
Long, ByVal Shift As Long, ByVal Button As Long, ByVal X As Long,ByVal Y As
Long)
 Dim i As Long
 Select Case hWnd
 Case Check1.hWnd
 Check1.Value = Abs(Not CBool(Check1.Value))
 Case Option1(0).hWnd, Option1(1).hWnd, Option1(2).hWnd
 For i = 0 To 2
 Option(i).Value = (Option(i).hWnd = hWnd)
 Next i
 End Select

End Sub

BeforeMouseWheel Event
See Also                        Frequently Asked Questions

Description

Event fires immediately after the wheel has turned, but before scrolling occurs.

Syntax

Sub object_BeforeMouseWheel([index As Integer,] hWnd As Long, delta As Long, shift As Long,
button As Long, X As Long, Y As Long, cancel As Boolean)

The syntax of the BeforeMouseWheel event has these parts:

Part Description

object A MouseWheel control.

index An integer that identifies a control if it's in a control array.

hWnd A long integer representing the hWnd property of the form or control receiving
notification.

delta A long integer indicating direction and magnitude of mouse wheel event. This value is
either 120 or -120 (Microsoft's documentation notes that they may change this in future
releases of the Intellimouse). Positive indicates the wheel was turned forward; negative
means the wheel was turned backward.

shift A long integer that corresponds to the state of the SHIFT, CTRL, and ALT keys at the
time of the event. The shift argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2).
These bits correspond to the values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the keys are pressed. For example,
if both CTRL and ALT are pressed, the value of shift is 6.

button A long integer that identifies the state of the mouse buttons when the wheel was turned.
The button argument is a bit field with bits corresponding to the left button (bit 0), right
button (bit 1), and middle or wheel button (bit 2). These bits correspond to the values 1,
2, and 4, respectively.

X A long integer that specifies the current horizontal location of the mouse pointer. The
value is always expressed in pixels, and is either relative to the screen or the notified
control, based on the setting of the CoordType property.

Y A long integer that specifies the current vertical location of the mouse pointer. The value
is always expressed in pixels, and is either relative to the screen or the notified control,
based on the setting of the CoordType property.

cancel Setting this value to True will prevent any automated scrolling from occurring in the
control referenced by the hWnd parameter.

Remarks

The BeforeMouseWheel event is most useful when you need to override or enhance the auto-scrolling
capabilities that MouseWheel adds to your forms. For example, you may want to scroll horizontally if the
user simultaneously presses and turns the mouse wheel:

Private Sub MouseWheel1_BeforeMouseWheel(ByVal hWnd As Long, ByValDelta As
Long, ByVal Shift As Long, ByVal Button As Long, ByVal X As Long,ByVal Y As
Long, Cancel As Boolean)
 Select Case hWnd
 Case Text1.hWnd, ListView1.hWnd
 If Button = vbMiddleButton Then
 Call MouseWheel1.HorzScroll(hWnd, Delta)
 Cancel = True
 End If
 End Select
End Sub

CoordType Property
See Also                        Frequently Asked Questions

Description

Sets or returns whether coordinates are relative to the control or to the screen.

Syntax

object.CoordType [= integer]

The syntax of the CoordType property has these parts:

Part Description

object A MouseWheel control.

integer An integer which determines the origin type of the coordinates.

Remarks

Returns or sets a value that determines whether mouse coordinates passed to the BeforeMouseWheel
and AfterMouseWheel events are relative to the screen or relative to the control being notified.

This property can have one of two values:

Constant Value Description

ScreenRelative 0 Sets coordinate references relative to screen.

ControlRelative 1 Sets coordinate references relative to notified control.

Coordinates are always returned in pixels.

Data Type

Integer

HorzScroll Method
See Also                        Frequently Asked Questions

Description

Method used to initiate horizontal scrolling rather than, or in addition to, the default vertical scrolling.

Syntax

object.HorzScrollhWnd,delta

The syntax of the HorzScroll method has these parts:

Part Description

object Required. A MouseWheel control.

hWnd Required. A long integer that specifies the window handle of the control with which to
perform automatic horizontal scrolling.    The control must support horizontal scrolling.

delta Required. A long integer indicating direction and magnitude of mouse wheel event. This
value is either 120 or -120 (Microsoft's documentation notes that they may change this in
future releases of the Intellimouse). Positive indicates the wheel was turned forward;
negative means the wheel was turned backward.

Remarks

Uses the same strategy as default vertical scrolling to scroll a window horizontally. May be used in
addition to, or in place of, default scrolling.    For example, you may want to scroll horizontally if the user
simultaneously presses and turns the mouse wheel:

Private Sub MouseWheel1_BeforeMouseWheel(ByVal hWnd As Long, ByValDelta As
Long, ByVal Shift As Long, ByVal Button As Long, ByVal X As Long,ByVal Y As
Long, Cancel As Boolean)
 Select Case hWnd
 Case Text1.hWnd, ListView1.hWnd
 If Button = vbMiddleButton Then
 Call MouseWheel1.HorzScroll(hWnd, Delta)
 Cancel = True
 End If
 End Select
End Sub

hWndNotify Property
See Also                        Frequently Asked Questions

Description

Returns or sets window handle values which are to be monitored in order to insure notification of mouse
wheel events. Setting this property for a control prevents an override of the event by the operating
system.

Syntax

object.hWndNotify(hWnd) [= boolean]

The syntax of the hWndNotify property has these parts:

Part Description

object A MouseWheel control.

hWnd A long integer which contains the the .hWnd property of a control.

boolean A boolean expression which indicates whether or not to monitor this control for mouse
wheel events.

Remarks

In general, the MouseWheel control will automatically notify you, and attempt to scroll the appropriate
window, whenever the user turns the mouse wheel. This ideal situation is complicated by the fact that
Windows NT 4.0 now directly supports roller mice. Under Windows NT 4.0, this property must be set for
controls that contain a scroll bar.    By setting this property, you will guarantee that mouse wheel
messages, for controls that contain scroll bars, will get through to your application. Again, this is only a
factor for controls with scrollbars, such as multiline textboxes and listboxes.

The default handling by the operating system may be all you need or want.    However, there may be
times when notification is required.    For example, if you want the ability to Cancel mouse wheel events
in BeforeMouseWheel or issue a horizontal scroll in addition to or instead of the default vertical scroll,
then you must set this property.

Private Sub Form_Load()
 '
 ' Turn on notification for these windows.
 ' Only required in WinNT.
 '
 MouseWheel1.hWndNotify(Text1.hWnd) = CBool(Check1.Value)
 MouseWheel1.hWndNotify(List1.hWnd) = CBool(Check1.Value)
 MouseWheel1.hWndNotify(ListView1.hWnd) = CBool(Check1.Value)
End Sub

Data Type

Boolean

Present Property
See Also                        Frequently Asked Questions

Description

Returns a value indicating whether or not the mouse wheel is enabled.

Syntax

object.Present

The syntax of the Present property has these parts:

Part Description

object A MouseWheel control.

Remarks

This property will report True if the mouse wheel has been enabled in the user's Control Panel.    This
property will report False if the mouse wheel is not present or if the mouse wheel has not been enabled.

This property is read-only and only available at run-time

Data Type

Boolean

Refresh Method
See Also                        Frequently Asked Questions

Description

Method used to refresh values returned by the Present and ScrollLines properties.

Syntax

object.Refresh

The syntax of the Refresh method has these parts:

Part Description

object Required. A MouseWheel control.

Remarks

Users are free to change the number of lines to scroll and the enabled state of the mouse wheel at any
time.    These values are either stored in the registry or may be obtained directly from the driver,
depending on the operating system. The Refresh method queries for the latest settings.

ScrollLines Property
See Also                        Frequently Asked Questions

Description

Returns a value indicating how many "lines" to scroll with each turn of the wheel.

Syntax

object.ScrollLines

The syntax of the ScrollLines property has these parts:

Part Description

object A MouseWheel control.

Remarks

This value reflects the user's Control Panel setting for the number of "lines" (or records) to scroll with
each turn of the mouse wheel.

If this value is -1, you should scroll an entire page of data (up or down).

This property is read-only and only available at run-time.

Data Type

Long

ScrollWhich Property
See Also                        Frequently Asked Questions

Description

Returns or sets a value which determines whether the control with focus or the control under the mouse
is scrolled as the user turns the mouse wheel.

Syntax

object.ScrollWhich [= integer]

The syntax of the ScrollWhich property has these parts:

Part Description

object A MouseWheel control.

integer An integer which determines which control receives notifications.

Remarks

Ordinarily, the control with focus receives notifications of scroll events.    However, there are times when
you may wish scrolling to follow the mouse. There is no set standard behavior, and use of this property
is highly application specific.

If this property is set to ControlUnderMouse and the mouse pointer is not over any control, the form
itself will recieve notification of mouse wheel events.

This property can have one of two values:

Constant Value Description

ControlWithFocus 0 Notifications sent to the ActiveControl.

ControlUnderMouse 1 Notifications sent to the control under the mouse
pointer.

Data Type

Integer

Getting Custom Controls Written
If you or your organization would like to have custom controls written, you can contact us at the
following:

Mabry Software, Inc.
503 316th Street Northwest
Stanwood, WA    98292

Phone: 360-629-9278
Fax: 360-629-9278

Internet: mabry@mabry.com

You can also contact Zane Thomas.    He can be reached at:

Zane Thomas
Post Office Box 121
Indianola, WA    98342

Internet: zane@mabry.com

Licensing Information
Legalese Version

Mabry Software grants a license to use the enclosed software to the original purchaser.    Copies may
be made for back-up purposes only.    Copies made for any other purpose are expressly prohibited, and
adherence to this requirement is the sole responsibility of the purchaser.

Customer written executable applications containing embedded Mabry products may be freely
distributed, without royalty payments to Mabry Software, provided that such distributed Mabry product is
bound into these applications in such a way so as to prohibit separate use in design mode, and that
such Mabry product is distributed only in conjunction with the customers own software product.    The
Mabry Software product may not be distributed by itself in any form.

Neither source code for Mabry Software products nor modified source code for Mabry Software
products may be distributed under any circumstances, nor may you distribute .OBJ, .LIB, etc. files that
contain our routines. This control may be used as a constituent control only if the compound control
thus created is distributed with and as an integral part of an application.    Permission to use this control
as a constituent control does not grant a right to distribute the license (LIC) file or any other file other
than the control executable itself. This license may be transferred to a third party only if all existing
copies of the software and its documentation are also transferred.

This product is licensed for use by only one developer at a time.    Mabry Software expressly prohibits
installing this product on more than one computer if there is any chance that both copies will be used
simultaneously.    This restriction also extends to installation on a network server, if more than one
workstation will be accessing the product.    All developers working on a project which includes a Mabry
Software product, even though not working directly with the Mabry product, are required to purchase a
license for that Mabry product.

This software is provided as is.    Mabry Software makes no warranty, expressed or implied, with regard
to the software.    All implied warranties, including the warranties of merchantability and fitness for a
particular use, are hereby excluded.

MABRY SOFTWARE'S LIABILITY IS LIMITED TO THE PURCHASE PRICE.    Under no circumstances
shall Mabry Software or the authors of this product be liable for any incidental or consequential
damages, nor for any damages in excess of the original purchase price.

To be eligible for free technical support by telephone, the Internet, CompuServe, etc. and to ensure that
you are notified of any future updates, please complete the enclosed registration card and return it to
Mabry Software.

English Version

We require that you purchase one copy of a control per developer on a project.    If this is met, you may
distribute the control with your application royalty free.    You may never distribute the LIC file.    You may
not change the product in any way that removes or changes the requirement of a license file.

We encourage the use of our controls as constituent controls when the compound controls you create
are an integral part of your application.    But we don't allow distribution of our controls as constituents of
other controls when the compound control is not part of an application.    The reason we need to have
this restriction is that without it someone might decide to use our control as a constituent, add some
trivial (or even non-trivial) enhancements and then sell the compound control.    Obviously there would
be little difference between that and just plain reselling our control.

If you have purchased the source code, you may not re-distribute the source code either (nor may you
copy it into your own project).    Mabry Software retains the copyright to the source code.

Your license is transferable.    The original purchaser of the product must make the transfer request.   
Contact us for further information.

The sample versions of our products are intended for evaluation purposes only.    You may not use the
sample version to develop completed applications.

