
Matrix unit

!!! ENTER DESCRIPTION HERE

Components

Types
glindex
glmbynp
glmvector
glnpbym
glnpbynp
glnpvarray
glnpvector

Routines

Constants

glnpvector type

Unit
Matrix

Declaration
glnpvector = array[0..cMAXVARS] of float;

Description
Used internally by matrix routines.    This is also the type for the first parameter in the Predict function.   
The user will need to declare a variable of type glnpvector in order to use the method.

Maxdata unit

This unit is provided to allow the user to modify the floating point type and largest dataset which can be
loaded into the regression buffer.

This is included for 16-bit and otherwise memory-limited systems.

Types
float

Constants
cMAXDATA

float type

Unit
Maxdata

Declaration
float = double;

Description
The float type is used throughout the MLRegress component set.    The user can define the type to
represent floating point arithmetic in all calculations.    This allows the user to modify output precision, and
the size of the dataset which can be loaded, based on memory availability.

The default value is double, however the user can define the float type to:

float = extended;
float = double;
float = real;
float = single;

The ability to redefine the float type is particularly useful in the 16-bit version where limited resources may
be available.

Mlrquery unit

The Mlrquery unit contains the complete definition of the TMLRQuery component.

Components
TMLRQuery

Types
See Mlrtypes unit
See MaxData unit

Routines
See Mlrtypes unit

Constants
See MaxData unit

 TMLRQuery Component
Properties Methods

Unit
Mlrquery

Description
The TMLRQuery component is descendent from TQuery and includes several additional properties and
methods which enable it to perform multiple linear and curvilinear regression on data stored in the tables
accessed by the query.

Use the TMLRQuery component with SQL to define the dataset on which to perform the regression.    In
addition to the Properties and Methods linked above, TMLRQuery has all properties, methods, and
events of the TQuery component.

Differences in the use of TMLRTable and TMLRQuery primarily include the fact that data from multiple
tables can be used to define a regression.    In addition, it can be easier to filter the records used in the
dataset based on non-indexed tables.

Example    (assumes defined MLRQuery1: TMLRQuery;)
begin
    with MLRQuery1 do
        begin
                Close;
                SQL.Clear;
                SQL.Add('Select * From "PATIENTS.DB"');
                SQL.Add('Where Diagnosis = "Glaucoma"');
                Open
        end
end;
 
The user can now run regression on various fields of this dataset, knowing that only patients with
Glaucoma will be included in the regression.

Properties
 Run-time only

 Key properties

 About DegreesOfFreedom SSR
 b Description SST

 ControlVar01 e syx
 ControlVar02 F x
 ControlVar03 n xBar
 ControlVar04 nControls xMax
 ControlVar05 Regressed xMin
 ControlVar06 ReportMessage xStdErr
 ControlVar07 ResponseVarY y
 ControlVar08 RSquared yBar
 ControlVar09 ShowLoadProgress yHat
 ControlVar10 ShowWarnings yMax
 corr SSE yMin
 covar sSquared yStdErr
 cVariable

Methods

 Key methods

 Execute Output ReLoad
 LoadValues Predict ShowPlots

About property

Applies to
TMLRQuery, TMLRTable

Declaration
property About: TAbout;

Description
The About property contains version and registration information about the associated component.    The
dialog box displayed when clicking the TAbout ellipses displays current registration information, or fields
for entering information.

b property

Applies to
TMLRQuery, TMLRTable

Declaration
property b[Index: word]: double;

Description
The property b accesses the coefficient vector for the resulting regression.    b[0] is the constant in the
estimate of the regression model equation

y = b0 + b1x1 + ... + bnxn + e

b[1],...,b[n] represent the remaining regression coefficient estimates.

ControlVar01 property

Applies to
TMLRQuery, TMLRTable

Declaration
property ControlVar01: TIndepVar;

Description
This is the first of the independent variable properties for the given MLRQuery or MLRTable component.   
For methods and usage, see the TIndepVar class topic in this help file.

All ControlVarxx properties are identical in capabilities.

ControlVar02 property

Applies to
TMLRQuery, TMLRTable

Declaration
property ControlVar02: TIndepVar;

Description
See ControlVar01.

ControlVar03 property

Applies to
TMLRQuery, TMLRTable

Declaration
property ControlVar03: TIndepVar;

Description
See ControlVar01.

ControlVar04 property

Applies to
TMLRQuery, TMLRTable

Declaration
property ControlVar04: TIndepVar;

Description
See ControlVar01.

ControlVar05 property

Applies to
TMLRQuery, TMLRTable

Declaration
property ControlVar05: TIndepVar;

Description
See ControlVar01.

ControlVar06 property

Applies to
TMLRQuery, TMLRTable

Declaration
property ControlVar06: TIndepVar;

Description
See ControlVar01.

ControlVar07 property

Applies to
TMLRQuery, TMLRTable

Declaration
property ControlVar07: TIndepVar;

Description
See ControlVar01.

ControlVar08 property

Applies to
TMLRQuery, TMLRTable

Declaration
property ControlVar08: TIndepVar;

Description
See ControlVar01.

ControlVar09 property

Applies to
TMLRQuery, TMLRTable

Declaration
property ControlVar09: TIndepVar;

Description
See ControlVar01.

ControlVar10 property

Applies to
TMLRQuery, TMLRTable

Declaration
property ControlVar10: TIndepVar;

Description
See ControlVar01.

corr property

Applies to
TMLRQuery, TMLRTable

Declaration
property corr[Index1,Index2: word]: double;

Description
This property allows the user to access the correlation matrix of b for the completed regression.    The
correlation matrix is (n+1)x(n+1), with corr having indexes ranging from 0,...,n.

covar property

Applies to
TMLRQuery, TMLRTable

Declaration
property covar[Index1,Index2: word]: double;

Description
This property allows the user to access the variance-covariance matrix of b for the completed regression.
The variance-covariance matrix is (n+1)x(n+1), with the property covar having indexes ranging from
0,...,n.

Example Usage (assuming defined MLRTable1:TMLRTable;)
var i,j: word;    covarStr:string;
begin
    covarStr := 'Variance-Covariance Matrix';
    with MLRTable1 do
        for i := 0 to nControls do
            begin
                  covarStr := covarStr + #10#13;
                  for j := 0 to nControls do
                      covarStr := covarStr +'        '+ floatToStr(covar[i,j])
            end ;
    MessageDlg(covarStr,mtInformation,[mbOK],0)
end;

cVariable property

Applies to
TMLRQuery, TMLRTable

Declaration
property cVariable[Index: word]: TIndepVar;

Description
This property allows access to the independent variables defined in the regression model as a contiguous
group.    This is useful since any of the MLRTable or MLRQuery ControlVarxx properties might be inactive.
The regression model might have, for a number of modeling reasons, a situation where, e.g.,

ControlVar01.Field1 = 'Age'
ControlVar01.Transformation = 'None'

and
ControlVar10.Field1 = 'Experience'
ControlVar10.Transformation = 'None'

and where ControlVar02.Transformation = ... = ControlVar09.Transformation = 'Inactive'.

This is a valid model with two independent variables.    In this case, nControls would be equal to 2 and all
properties of ControlVar01 would be accessible through cVariable[1] and all properties of ControlVar10
would be accessible through cVariable[2].    The inactive properties ControlVar02 through ControlVar09
would not be accessible through cVariable.    So for the situation described above, we would have

cVariable[1].OutputTerm = 'Age'
cVariable[2].OutputTerm = 'Experience'

This property is used primarily for reporting purposes.    Note that the user could also access the
ControlVarxx properties directly to obtain output; however, (s)he would first have to examine each of the
available control variables to determine which ones are active in order to view valid output.

NOTE:
cVariable cannot be used in the modeling process.    It is a read-only property.

DegreesOfFreedom property

Applies to
TMLRQuery, TMLRTable

Declaration
property DegreesOfFreedom: word;

Description
This is the degrees of freedom for the Residuals.

DegreesOfFreedom = n - (m + 1),

where
n = number of observations in the regression model
m = number of independent variables

Description property

Applies to
TMLRQuery, TMLRTable

Declaration
property Description: string;

Description
This is a design-time and run-time property where the user can define the nature of the regression
problem.    This description will be shown on the default Output Report.

e property

Applies to
TMLRQuery, TMLRTable

Declaration
property e[Index: word]:;

Description
The e property accesses the individual residual values resulting from the regression.    The residuals can
be plotted against any relevant measure, e.g.,

input order
any of the independent variables
dependent variable
fitted value of the dependent variable

The user can use any plotting or charting software to graph the residuals, or the included Plot function
can be used.

F property

Applies to
TMLRQuery, TMLRTable

Declaration
property F: double;

Description
This property is read-only, and returns the value of the F* statistic with (m,n) degrees of freedom,

where

m = number of independent variables    (regression DOF)
n = number of observations - m - 1    (residual DOF)

n property

Applies to
TMLRQuery, TMLRTable

Declaration
property n: word;

Description
This is a read property which indicates the number of records    successfully read into the regression
buffer. The value of n will differ from the value of the RecordCount property if there are any records with
null field values in a regression-defined datafield, or if any record violates a transformation.

nControls property

Applies to
TMLRQuery, TMLRTable

Declaration
property nControls: word;

Description
This is a read property which returns the number of active control (independent) variables in a regression
model.

Regressed property

Applies to
TMLRQuery, TMLRTable

Declaration
property Regressed: Boolean;

Description
The Regressed property simply returns True if the Execute method has been run.    Otherwise, its value is
False.

ReportMessage property

Applies to
TMLRQuery, TMLRTable

Declaration
property ReportMessage: string;

Description
The ReportMessage appears on the default Output Report form provided by MLRTable and MLRQuery.   
The user can enter his/her company, department, project, or product name here.

ResponseVarY property

Applies to
TMLRQuery, TMLRTable

Declaration
property ResponseVarY: TDependentVar;

Description
The ResponseVarY property contains the name and transformation, if any, on the datafield in the dataset
defined as the dependent variable.

RSquared property

Applies to
TMLRQuery, TMLRTable

Declaration
property RSquared: double;

Description
This is the multiple correlation coefficient squared, calculated from the regression.

ShowLoadProgress property

Applies to
TMLRQuery, TMLRTable

Declaration
property ShowLoadProgress: boolean;

Description
Set the ShowLoadProgress property to True to enable the dialog and gauge which shows the progress of
data being loaded into the regression buffer.    This is useful during loading of large datasets.

ShowWarnings property

Applies to
TMLRQuery, TMLRTable

Declaration
property ShowWarnings: boolean;

Description
The setting of this property determines whether or not Warning and Informational dialogs will be shown
when there is an anomaly with the loading or execution of the regression.

An example of an informational message would be a warning of dataset larger than the maximum buffer
size, or zero degrees of freedom for the regression.    Warning messages are automatically disabled and
reenabled during the use of Optigress(tm) optimal regression modeling unit.

Fatal Error messages are NOT disabled by the setting of ShowWarnings.

SSE property

Applies to
TMLRQuery, TMLRTable

Declaration
property SSE: double;

Description
The property SSE is a read property to access the sum of squares for the residuals.

In multiple regression,

SSE = (y - xb)'(y - xb)

where
y = vector of response variable values,
x = matrix of control variable values,
b = vector of regression coefficients,

and
(y-xb)' is the transpose of (y-xb)

sSquared property

Applies to
TMLRQuery, TMLRTable

Declaration
property sSquared: double;

Description
The property sSquared, based on the regression, is the best estimate of the variance s^2.

sSquared = SSE/(n - p)

where
n = number of observations
p = number of parameters in the model (number of independent variables + 1)

SSR property

Applies to
TMLRQuery, TMLRTable

Declaration
property SSR: double;

Description
The property SSR accesses the sum-of-squares for the regression.    Mathematically, in vector terms,

SSR = b'x'y - n(yBar)^2
where

y = vector of response variable observations,
x = matrix of control variable observations,
x' = transpose of x
b = vector of regression coefficients,    b' = transpose of b
n = number of observations,
yBar = mean value of the response variable observations

Informal note: understanding the mathematical details of the derivation of SSR is not necessary for
successful and effective use of the MLR components.

SST property

Applies to
TMLRQuery, TMLRTable

Declaration
property SST: double;

Description
The property SST is the total the sum-of-squares.    Of course,

SST = SSE + SSR

Mathematically

SST = y'y - n(yBar)^2
where

y = vector of response variable observations,
n = number of observations,
yBar = mean value of the response variable observations

syx property

Applies to
TMLRQuery, TMLRTable

Declaration
property syx: double;

Description
The property syx gives the conditional value of the sample std. deviation of y given the associated values
of x.

syx = sqrt(sSquared)
= sqrt(SSE/(n - p))

x property

Applies to
TMLRQuery, TMLRTable

Declaration
property x[Index1,Index2: word]: double;

Description
Property x gives access to the x matrix of independent variable values.    The value of Index1 ranges from
1 to n, and Index2 ranges from 1 to c,

where

n = number of observations
c = number of independent variables in the model

xBar property

Applies to
TMLRQuery, TMLRTable

Declaration
property xBar[Index: word]: double;

Description
The property xBar provides the sample mean value of the independent variables in the model referenced
by Index.    Index ranges from 1 to c,

where

c = number of independent variables in the model.

Example
begin
      Edit1.Text := floatToStr(MLRTable1.xBar[2])
end;

{The above code would show the mean value of control variable 2 of MLRTable1}

xMax property

Applies to
TMLRQuery, TMLRTable

Declaration
property xMax[Index: word]: double;

Description
The property xMax accesses the maximum value of each of the the independent variables in the model
referenced by Index.    Index ranges from 1 to c,

where

c = number of independent variables in the model.

xMin property

Applies to
TMLRQuery, TMLRTable

Declaration
property xMin[Index: word]: double;

Description
The property xMin accesses the minimum value of each of the the independent variables in the model
referenced by Index.    Index ranges from 1 to c,

where

c = number of independent variables in the model.

xStdErr property

Applies to
TMLRQuery, TMLRTable

Declaration
property xStdErr[Index: word]: double;

Description
The property xStdErr, for each control variable in the model, returns the computed standard error based
on the values and number of observations.

for each j = 1,..., c (the number of control variables)

xStdErr[j] = [1/(n - 1)]Sqrt(Sum((x[i,j] - xBar[j])^2))

where the above sum is from i = 1,...,n (the number of observations).

y property

Applies to
TMLRQuery, TMLRTable

Declaration
property y[Index: word]: double;

Description
The value of property y is the ith value of the response variable for the regression when y[i] is accessed.
Index ranges from 1,...,n

where
n = number of observations

yBar property

Applies to
TMLRQuery, TMLRTable

Declaration
property yBar: double;

Description
The property yBar is the sample mean of all observations of the response variable y.

yHat property

Applies to
TMLRQuery, TMLRTable

Declaration
property yHat[Index: word]: double;

Description
The ith value of property yHat is the fitted (predicted) value of y, based upon the ith value(s) of the control
variables for the regression.

There are 1,...,n such fitted values when n is the number of observations.

yMax property

Applies to
TMLRQuery, TMLRTable

Declaration
property yMax: double;

Description
The property yMax accesses the maximum value among the response variable observations.

yMin property

Applies to
TMLRQuery, TMLRTable

Declaration
property yMin: double;

Description
The yMin property provides the minimum value of all observations of response variable y.

yStdErr property

Applies to
TMLRQuery, TMLRTable

Declaration
property yStdErr: double;

Description
The property yStdErr, for the response variable in the model, returns the computed standard error based
on the values and number of observations.

yStdErr = [1/(n - 1)]Sqrt(Sum((y[i] - yBar)^2))

where the above sum is from i = 1,...,n (the number of observations).

Execute method

Applies To
TMLRQuery, TMLRTable

Declaration
procedure Execute;

Description
The Execute procedure is used to run the regression after successful load of the dataset.    The Execute
method should only be implemented after the LoadValues method has returned True.    If LoadValues has
returned false, floating point exceptions are almost certain to occur.

Example    (assumes defined MLRQuery1: TMLRQuery;)
begin
    with MLRQuery1 do
          if LoadValues then

Execute
end;

LoadValues method

Applies To
TMLRQuery, TMLRTable

Declaration
function LoadValues: boolean;

Description
The LoadValues method will load all data from the defined dataset, using the datafields and
transformations defined in the regression model.    A regression cannot be attempted without first calling
the LoadValues method.    A successful load will exclude any records with null field values if that field is
defined in the regression and will also exclude any records that would violate the defined transformations.

The LoadValues method will check for obvious data patterns that would result in a singular regression
matrix, or insufficient degrees of freedom.

Returns True if no problems with the dataset are found during loading, False if there are problems.
Problem datasets also provide Error message dialogs.

Output method

Applies To
TMLRQuery, TMLRTable

Declaration
procedure Output;

Description
The Output procedure opens the default Report form showing the output of the successful regression.

Predict method

Applies To
TMLRQuery, TMLRTable

Declaration
function Predict(var x: glnpvector; np: integer): double;

Description
Use the Predict function to view the projected value of an input vector processed through the regression
model.

NOTE:
The input values to the vector x above must consider any transformation of the input datafields in the
original model.    For example, if the model transformation uses Population/1000, the value for the
corresponding element of x should be scaled before input.    Thus, a prediction based on data for New
York City should have population value input as 8000 as opposed to 8,000,000.

See Also
Process Method

ReLoad method

Applies To
TMLRQuery, TMLRTable

Declaration
function ReLoad: boolean;

Description
Calling LoadValues has no effect if the regression buffer has already been loaded from the dataset.    The
function ReLoad actually forces the MLRQuery or MLRTable to perform a fresh load of the data into the
regression buffer.    This is obviously useful if, for example, new data has been added to the underlying
table since the last regression, or the model has been changed programatically, and an updated
regression is desired.

The ReLoad function is used strategically by the Optigress(tm), optimal regression modeling unit (available
separately) which performs exhaustive combinatorial search to find the best regression model.

ShowPlots method

Applies To
TMLRQuery, TMLRTable

Declaration
procedure ShowPlots;

Description
This procedure opens the plot form, allowing the user to view scatter plots of    response variable vs. any
control variable, residuals vs. response variable, residuals vs. any control variable, residuals vs. input
order, or the cumulative distribution function plot.

Mlrtable unit

The Mlrtable contains the complete definition of the TMLRTable component.

Components
TMLRTable

Types
See Mlrtypes unit
See MaxData unit

Routines
See Mlrtypes unit

Constants
See MaxData unit

 TMLRTable Component
Properties Methods

Unit
Mlrtable

Description
The TMLRTable component is descendent from TTable and includes several additional properties and
methods which enable it to perform multiple linear and curvilinear regression on data stored in the tables
to which it is attached.

In addition to the Properties and Methods linked above, TMLRTable has all properties, methods, and
events of the TTable component.

Properties

 Run-time only
 Key properties

 About DegreesOfFreedom SSR
 b Description SST

 ControlVar01 e syx
 ControlVar02 F x
 ControlVar03 n xBar
 ControlVar04 nControls xMax
 ControlVar05 Regressed xMin
 ControlVar06 ReportMessage xStdErr
 ControlVar07 ResponseVarY y
 ControlVar08 RSquared yBar
 ControlVar09 ShowLoadProgress yHat
 ControlVar10 ShowWarnings yMax
 corr SSE yMin
 covar sSquared yStdErr
 cVariable

Methods

 Key methods

 Execute Output ReLoad
 LoadValues Predict ShowPlots

Mlrtypes unit

Welcome to the MLRegress series components for Multivariate Regression Analysis.

The Mlrtypes unit is used as the help Contents and introduction to the regression components help file,
since Mlrtypes contains all of the supporting class and type declarations for the properties used by the
TMLRTable and TMLRQuery components.

Classes
TAbout
TDependentVar
TIndepVar

Types
TDatasetPtr

Routines
NumericField

Constants
No user interactive constants in Mlrtypes.

TAbout Class
Methods

Unit
Mlrtypes

Description
The TAbout class defines the parameters for the About property of the MLRQuery and MLRTable
components.    The declaration is:

TAbout = class(TStringList);

The user name and registration code properties are stored as elements of the string list.    The elements
are set, modified, and accessed through the following (public) methods:

procedure SetName(Value: string);   
procedure SetCode(Value: string);

      function Name: string;
              function Code: string;

Methods

 Key methods

 Code SetCode SetName
 Name

Code method

Applies To
TAbout

Declaration
function Code: string;

Description
The Code method returns the current value of the registration code for the current instance of the
component with the corresponding About property.

Used internally by the MLRTable and MLRQuery components.    Is NULL if no code has been assigned.   
If no valid code has been assigned, the components are IDE Only, trial versions.

Name method

Applies To
TAbout

Declaration
function Name: string;

Description
Name returns the registered user's name.

SetCode method

Applies To
TAbout

Declaration
procedure SetCode(Value: string);

Description
Use SetCode to enter the registration code (exactly as) supplied by Applied Analytic Systems when the
component set is registered.    Without a valid registration code, the component can be used only in a trial
(Delphi IDE) mode.

This procedure is needed only when components are created and used programmatically.    In design
mode, the registration code can be entered on the About form.

SetName method

Applies To
TAbout

Declaration
procedure SetName(Value: string);

Description
Use SetName to enter the user name (exactly as) supplied by Applied Analytic Systems when the
component set is registered.    Without a valid user name/registration code combination, the component
can be used only in a trial (Delphi IDE) mode.

This procedure is needed only when components are created and used programmatically.    In design
mode, the user name can be entered on the About form.

TDependentVar Class
Methods

Unit
Mlrtypes

Description
The TDependentVar class defines the capabilities and parameters for the response variable property of
the MLRQuery and MLRTable components.    The declaration is:

TDependentVar = class(TStringList);

All properties are stored as elements of the string list.    The elements are set, modified, and accessed
through the following (public) methods:

Modeling Methods:
      procedure SetTransformation(const parValue: string);
      procedure SetField(const parValue: string);

procedure SetScaleFactor(const parValue: string);

      function Process(Dataset: TDatasetPtr): double;

Output Methods:
      function Transformation: string;
      function FieldName: string;
      function ScaleFactor: string;
      function OutputTerm: string;

Typically, the user will have need for the Output Methods for regression reporting.    The modeling
methods need to be used only when creating and modeling components programmatically.    Otherwise,
design-time properties are set in the property editors (highly recommended).

Methods

 Key methods

 FieldName ScaleFactor SetScaleFactor
 OutputTerm SetField SetTransformation
 Process SetParameters Transformation

FieldName method

Applies To
TDependentVar

Declaration
function FieldName: string;

Description
The FieldName method accesses the datafield value defined in a ResponseVarY transformation.    This
the actual name of the field in the underlying table.    This value will always be valid for any defined
ResponseVar.

OutputTerm method

Applies To
TDependentVar, TIndepVar

Declaration
function OutputTerm: string;

Description
The OutputTerm function returns the appropriate expression for the given independent or dependent
variable, based upon the definition of the transformation used to define the variable and the name of the
datasource datafield name.

Example OutputTerms
Population/1000
ln(Pressure)
Price*Quantity

Example Usage (assumes var X, Y, b0, b1: string;)
begin
    with MLRTable1 do
        begin
            b0 := floatToStr(b[0]);
            b1 := floatToStr(b[1]);
            Y := ResponseVarY.OutputTerm;
            X := ControlVar01.OutputTerm;
            Edit1.Text := Y+' = '+b0+'    +    '+b1+'*('+X+')'
        end
 end;

Possible Edit1.Text Value after above code:

Sales/100    = 1.520 +    2.491*(Population/1000)

Process method

Applies To
TDependentVar, TIndepVar

Declaration
function Process(Dataset: TDatasetPtr): double;

Description
This function is used internally by the MLRTable and MLRQuery components to compute the value of the
response and control variables as the data is loaded into the regression buffers.    Since the control and
response variables allow transformation of the data, mathematical operations are performed based on
one (or possibly two) dataset datafield(s) and a transformation function.

Process is also useful to the programmer when using the Predict function on records from any TTable or
TQuery containing identically named fields having the same type of numeric data.    This is the situation
shown in the example below.

Using Process is necessary whenever transformations have been employed, or if there is any uncertainty
about whether the regression has been performed using transformed datafields.

Example Usage (assumes var Query1:TQuery;
MLRTable1:TMlrTable;
w:glnpvector; k,m:word;
y: array[1..100] of double;)

{Assumes that a successful regression has been
 performed using MLRTable1. }

begin
    with Query1 do
        begin
            Close;
            SQL.Clear;
            SQL.Add('Select * From "SALES.DB"');
            SQL.Add('Where Store = "Memphis"');
            Open
        end;
    with MLRTable1 do
        begin
            m := nControls;
            k := 1;
            Query1.First;
            while not Query1.EOF and (k <= 100) do
                  begin
                      for i := 1 to m do
                          w[i] := cVariable[i].Process(@Query1);
                      y[k] := Predict(w,m);
                      k := k + 1;
                      Query1.Next          { "Predict" Sales for 100 Memphis store transactions }
                  end
        end
 end;

ScaleFactor method

Applies To
TDependentVar, TIndepVar

Declaration
function ScaleFactor: string;

Description
Scalefactor returns the string representation of the value of the divisor defined by a transformation of type
'Scaled'.

SetField method

Applies To
TDependentVar

Declaration
procedure SetField(const parValue: string);

Description
The procedure Setfield is used to set the ResponseVarY field to the datafield name in the MLRTable or
MLRQuery which will be used for the dependent variable.

This procedure is used internally by the response variable property editor.    When creating and setting
components programmatically, the parValue parameter would be set to the name of the datafield in the
underlying dataset.    parValue must match exactly, the name of an existing numeric type datafield.

Example
begin
    MLRQuery1.ResponseVarY.SetTransformation('None')
    MLRQuery1.ResponseVarY.SetField('Crime Rate')
end;

SetParameters method

Applies To
TDependentVar, TIndepVar

Declaration
procedure SetParameters(const parType: integer; const parValue: string);

Description
This procedure is used internally only.

SetScaleFactor method

Applies To
TDependentVar, TIndepVar

Declaration
procedure SetScaleFactor(const parValue: string);

Description
The SetScaleFactor procedure is used under the Scaled transformation to set the value by which to
divide DataField1.

This procedure is used internally by the control variable property editor.    When creating and setting
components programmatically, the parValue parameter would be set to the string representation of the
floating point number by which divide DataField1.    The number represented by    parValue must be non-
zero.

Example
begin
    with MLRTable2 do
        begin
              ResponseVarY.SetTransformation('Scaled');
              ResponseVarY.SetField('Lottery Ticket Sales');
              ResponseVarY.SetScaleFactor('1000');
              ControlVar01.SetTransformation('Scaled');
              ControlVar01.SetField1('Population');
              ControlVar01.SetScaleFactor('1000');
          end
end;

NOTE:
The above example can be implemented without code, using the ControlVar and ResponseVar property
editors.

SetTransformation method

Applies To
TDependentVar, TIndepVar

Declaration
procedure SetTransformation(const parValue: string);

Description
The SetTransformation procedure is used to define the transformation to apply to the control variable
and/or the response variable.

This procedure is used internally by the control variable and response variable property editors.    When
creating and setting components programmatically, the parValue parameter would be set to the string
representation of the desired transformation.

For the ResponseVarY property, four (4) (string-valued)    transformations are defined:

Transformation Meaning and Conditions

'Inverse': ResponseVarY = 1/datafield
(datafield nonzero for all records)

'Log': ResponseVarY = ln(datafield)
(datafield positive for all records)

'None': ResponseVarY = datafield

'Scaled': ResponseVarY = datafield/scalefactor
(scalefactor nonzero)

For the ControlVarxx property, eight (8) (string-valued) transformations are defined:

Transformation Meaning and Conditions
'Inactive': ControlVarxx not in current model

'Inverse': ControlVarxx = 1/datafield1
(datafield1 nonzero for all records)

'Log': ControlVarxx = ln(datafield1)
(datafield1 positive for all records)

'None': ControlVarxx = datafield1

'Power': ControlVarxx = datafield1^exponent
(exponent integer valued)

'Product': ControlVarxx = datafield1*datafield2

'Quotient': ControlVarxx = datafield1/datafield2     
(datafield2 nonzero for all records)

'Scaled': ControlVarxx = datafield1/scalefactor   
(scalefactor nonzero)

'Sqrt': ControlVarxx = sqrt(datafield1)   
(datafield1 positive for all records)

Before using one of the transformations above, the user should have sufficient reason to believe that
none of the values contained in the records in the dataset violate the conditions of the transformation.

Example
begin
    with MLRTable2 do
        begin
              ResponseVarY.SetTransformation('Scaled');
              ResponseVarY.SetField('Lottery Ticket Sales');
              ResponseVarY.SetScaleFactor('1000');
              ControlVar01.SetTransformation('Scaled');
              ControlVar01.SetField1('Local Population');
              ControlVar01.SetScaleFactor('1000');
              ControlVar02.SetTransformation('Product');
              ControlVar02.SetField1('Total Local Income');
              ControlVar02.SetField2('Local Population')
            end
end;

NOTE:
The above example can be implemented without code, using the ControlVar and ResponseVar property
editors.

Transformation method

Applies To
TDependentVar, TIndepVar

Declaration
function Transformation: string;

Description
The Transformation function returns the string-valued representation of the user-defined transformation.   
This function is valid for any ControlVarxx or ResponseVarY property.    It is expressed in the context of
the name of the datafield(s) attached by the ControlVar or ResponseVar property.

For the ControlVarxx property, eight (8) (string-valued) transformations are defined:

Transformation Meaning
'Inactive': ControlVarxx not in current model

'Inverse': ControlVarxx = 1/datafield1
'Log': ControlVarxx = ln(datafield1)
'None': ControlVarxx = datafield1
'Power': ControlVarxx = datafield1^exponent
'Product': ControlVarxx = datafield1*datafield2
'Quotient': ControlVarxx = datafield1/datafield2     
'Scaled': ControlVarxx = datafield1/scalefactor   
'Sqrt': ControlVarxx = sqrt(datafield1)   

For the ResponseVarY property, four (4) (string-valued)    transformations are defined:
Transformation Meaning
'Inverse': ResponseVarY = 1/datafield
'Log': ResponseVarY = ln(datafield)
'None': ResponseVarY = datafield
'Scaled': ResponseVarY = datafield/scalefactor

TIndepVar Class
Methods

Unit
Mlrtypes

Description
The TIndepVar class defines the capabilities and parameters for the control variable(s) property of the
MLRQuery and MLRTable components.    The declaration is:

TIndepVar = class(TStringList);

All properties are stored as elements of the string list.    The elements are set, modified, and accessed
through the following (public) methods:

Modeling Methods:
        procedure SetTransformation(const parValue: string);
      procedure SetField1(const parValue: string);
      procedure SetField2(const parValue: string);
      procedure SetUsage(const parValue: string);
      procedure SetExponent(const parValue: string);
      procedure SetScaleFactor(const parValue: string);

      function Process(DataSet: TDatasetPtr): double;

Output Methods:
      function Transformation: string;
      function Field1: string;
      function Field2: string;
      function Exponent: string;
      function ScaleFactor: string;
      function OutputTerm: string;

Typically, the user will have need for the Output Methods for regression reporting.    The modeling
methods need to be used only when creating and modeling components programmatically.    Otherwise,
design-time properties are set in the property editors (highly recommended).

Methods

 Key methods

 Exponent ScaleFactor SetScaleFactor
 Field1 SetExponent SetTransformation
 Field2 SetField1 SetUsage
 OutputTerm SetField2 Transformation
 Process SetParameters Usage

Exponent method

Applies To
TIndepVar

Declaration
function Exponent: string;

Description
The Exponent method returns the string representation of the value of the exponent under the Power
transformation.    Note that ControlVarxx.Exponent only returns a valid expression when
ControlVarxx.Transformation = 'Power'.

Field1 method

Applies To
TIndepVar

Declaration
function Field1: string;

Description
The Field1 method accesses the datafield1 value defined in a ControlVarxx transformation.    This the
actual name of the field in the underlying table.    This value will always be valid for any defined
ControlVar.

Field2 method

Applies To
TIndepVar

Declaration
function Field2: string;

Description
The Field2 method accesses the datafield2 value defined in a ControlVarxx transformation.    This the
actual name of the field in the underlying table.    This field name returned by Field2 is only valid when the
transformation is either 'Product' or 'Quotient'.

SetExponent method

Applies To
TIndepVar

Declaration
procedure SetExponent(const parValue: string);

Description
The SetExponent procedure is used under the Power transformation to set the power to which to raise
DataField1.

This procedure is used internally by the control variable property editor.    When creating and setting
components programmatically, the parValue parameter would be set to the string representation of the
integer to raise DataField1.    parValue must represent a positive integer.    In addition, parValue can be set
to '1/2' to allow a square root transformation.    The string value '1/2' is the only value other than a positive
integer that will be accepted.

Example
begin
    with MLRTable2 do
        begin
              ResponseVarY.SetTransformation('None');
              ResponseVarY.SetField('Wattage');
              ControlVar01.SetTransformation('Power');
              ControlVar01.SetField1('Current');
              ControlVar01.SetExponent('2')
          end
end;

NOTE:
The above example can be implemented without code, using the ControlVar and ResponseVar property
editors.

SetField1 method

Applies To
TIndepVar

Declaration
procedure SetField1(const parValue: string);

Description
The procedure Setfield1 is used to set the ControlVarxx DataField1 to the datafield name in the MLRTable
or MLRQuery which will be used for the dependent variable.

This procedure is used internally by the control variable property editor.    When creating and setting
components programmatically, the parValue parameter would be set to the name of the datafield in the
underlying dataset.    parValue must match exactly, the name of an existing numeric type datafield.

Example
begin
    MLRTable1.ControlVar01.SetField1('Average Education')
end;

NOTE:
DataField1 is a "private" property implemented as an element of the TStringList array, which is the base
class for TIndepVar.    DataField1 is used in all transformations for a ControlVarxx property.

SetField2 method

Applies To
TIndepVar

Declaration
procedure SetField2(const parValue: string);

Description
The procedure Setfield2 is used to set the optional ControlVarxx DataField2 to the datafield name in the
MLRTable or MLRQuery which will be used for the dependent variable under certain transformations.

This procedure is used internally by the control variable property editor.    When creating and setting
components programmatically, the parValue parameter would be set to the name of the datafield in the
underlying dataset.    parValue must match exactly, the name of an existing numeric type datafield.

Example
begin
      with MLRTable1 do
          begin
        ControlVar01.SetField1('Volume');

ControlVar01.SetField2('Concentration')
          end
end;

NOTE:
DataField2 is a "private" property implemented as an element of the TStringList array, which is the base
class for TIndepVar.    DataField2 is used in only the following transformations for a ControlVarxx
property:    Product, Quotient.

SetUsage method

Applies To
TIndepVar

Declaration
procedure SetUsage(const parValue: string);

Description
Used internally.

Usage method

Applies To
TIndepVar

Declaration
function Usage: string;

Description
This is an internally used function for the control variable property editor.

TDatasetPtr type

Unit
Mlrtypes

Declaration
TDatasetPtr = ^TDataset;

Description
This defines a pointer to a dataset (TQuery or TTable and descendants).    Used internally by several
procedures.

cMAXDATA constant

Unit
Maxdata

Declaration
cMAXDATA = 125; { for 16-bit
cMAXDATA = 1500; for 32-bit }

Description
The constant cMAXDATA allows the user to modify the maximum size of the regression buffer.    This
should be adjusted to accommodate the maximum amount of data based on available memory.

This constant usually requires no adjustment under 32-bit versions.

glindex type

Unit
Matrix

Declaration
glindex = array[1..cMAXVARS] of integer;

Description
Used internally by matrix routines.

glmbynp type

Unit
Matrix

Declaration
glmbynp = array[1..cMAXDATA,1..cMAXVARS] of float;

Description
Used internally by matrix routines.

glmvector type

Unit
Matrix

Declaration
glmvector = array[1..cMAXDATA] of float;

Description
Used internally by matrix routines.

glnpbym type

Unit
Matrix

Declaration
glnpbym = array[1..cMAXVARS,1..cMAXDATA] of float;

Description
Used internally by matrix routines.

glnpbynp type

Unit
Matrix

Declaration
glnpbynp = array[1..cMAXVARS,1..cMAXVARS] of float;

Description
Used internally by matrix routines.

glnpvarray type

Unit
Matrix

Declaration
glnpvarray = array[1..cMAXVARS] of glnpvector;

Description
Used internally by matrix routines.

NumericField routine

Unit
Mlrtypes

Declaration
function NumericField(field: TField): boolean;

Description
The NumericField function is used primarily by the MLRCtrl and MLRResp property editors to list only the
numeric fields in a table to include in a regression model.    The user can access this function to verify that
a field to include in a regression is a valid numeric field when using the controls programmatically (rather
than design-time).

