Lﬁ Logbook Control (vBX version 1.0, OCX version 1.1)

Properties Events Help file revision 1.1.1

Overview

Thank you for evaluating or using the Logbook control. This software component implements a scrolling
message console with very flexible file logging and time stamping capabilities.

Check out what is new in this release.
The most relevant features of this control are:

- It comes as an ActiveX control (OCX) in both 16-bit and 32-bit versions. An earlier version (1.0) is still
available as a VBX for use in Visual Basic 3.

- Clients write messages to the object, which time stamps and formats them. The messages are then
shown in a configurable scrolling window and optionally logged to a file.

- Messages can have a "severity" attribute (e.g. 'debug’, 'info’, 'alert’). The object can filter messages
whose severity is below a certain level.

- The control can track time in several ways, such as: 'current time', 'time since log started' and 'time
since last message'. A user-defined time stamp format can also be specified.

- A path (directory) for the log file location and an explicit file name can be specified. Optionally, the
object will automatically name the files by encoding the time of creation.

- Logging can be started, stopped, paused and resumed. Event procedures are available for log-a-
message and status change (i.e. start/stop/pause/error) events.

- The control can open the log file automatically and close it after a time-out has occurred or a certain
number of messages has been logged.

- The control keeps statistics of the number of messages that were logged, ignored and lost (i.e. sent
when logging was off or paused). These counters can be dumped to the log itself, or queried as
separate read-only properties.

- Finally, the control supports DDE conversations. It can receive messages to be logged via DDE
and/or echo the logged messages to DDE clients.
Introduction
Information Installation
Programmers's guide

Tutorial Properties
Methods Events

Tutorial

The following figure shows a simple Visual Basic form filled with a single Logbook instance.

The control appears as a scrolling list box. Messages are formatted and time-stamped before being sent
to the console and file. Here the logbook is using a disk file, and the file name has been automatically
generated by encoding the current date and time.

Irilarial Massages Clinnt Messagan Tima-Coded File Name

ed: 8 Lozt 4 lgnomed 0

Tene Stamp it I Wereago Texd Slatestios
The message source can be identified with a ClientID tag. This tag can be provided together with the
text message or is taken from the ClientID property.

In the example shown above, a single "Clock" Timer object is sending the messages. Its messages are
identified by the "CLK" ClientID tag and are shown as "Client Messages" in the figure

Here housekeeping messages generated internally by the control are marked with the "Log" ID tag and
are shown as "Internal Messages" in the figure. The ID for internal messages is taken from the object
Caption property.

To learn how to build a simple program like the one shown above, select one of the following topics:

Design
Operation
Notes

Design

Using the OCX version of the control

If you are using a Visual Basic 4 or better, you can use the OCX version of the control. You should
include the appropriate version of the control (LOGBK16.0CX for Visual Basic 4/16 bit or
LOGBK32.0CX for 32-bit versions of Visual Basic) in your project. To pick the useful constants for the
control you can then either use the provided support file LOGBOOK.BAS or get them directly from the
OCX using the Visual Basic object browser (hitting the F2 key).

For simplicity, in this help file we will use the constants as they are defined in the LOGBOOK.BAS file
(see below). The equivalent new-style constants should be easy to find and pick from the object
browser.

Using the VBX version of the control

If you are using a 16-bit version of Visual Basic, such as version 3 or version 4/16, you can use the VBX
version of the control. Be aware that the VBX version, using a now obsolete object architecture, is
missing some functionality with respect to the OCX. Such differences are noted in the help file wherever
appropriate.

In order to use the control, you should first of all include the files LOGBOOK.VBX and LOGBOOK.BAS
in your project. The .BAS file will enable you to use the predefined constants that appear in this
document. You can then add one or more Logbook control instances to your forms.

Basic settings

If only one client is using the Logbook (as is the case with the example shown in the first Tutorial page)
the messages attributes ClientlD and ClientLevel can be set to default values from Visual Basic
Design-Mode editor. These will determine the default identifier for the message source and the default
severity level for messages.

Note that these attributes are quietly overridden when the Logbook generates messages internally and
can also be overridden on a message-by-message basis by clients. They will be used whenever the
source ID or the severity level are left unspecified in subsequent logging commands.

The following table summarises the control properties that have been set at design time for the tutorial
example (some actually are the default values):

Name Value Comment
Append True Append to existing file (if any)
Name "Logbook1" Automatically set at creation
Caption "Logbook1" As above, used as ID
ClientID "CLK" Used as default when logging
ClientLevel 2 - Information As above
Epoch 94 Year '0' (1st digit in file name) is '94
FileName " Generate time-coded file names
FilePath "CATMP" Place where files are stored
FilterLevel 1 - Diagnostic Discards only 0-level messages
LogToFile True Enables writing to a disk file
TimeFormat "HH:MM:SS" Used for making time-stamps
TimeStyle 1 - Time of day Source time for time-stamps

Note: If the sample messages in the control appear with odd times, you probably need to set the
TimeZone environment variable.

Next Page: Operation

Operation

Controlling the Log

Logging is normally started and stopped with a program statement, calling one of the appropriate
Methods, such as Start or Stop.

A very simple program may choose to start and stop the log from the Form_Load and Form_Unload
event SUBs, as in the following example.

' the following will only work for OCX versions of the control,
' VBXs can only use the "Action" property
Sub Form_Load ()
Logbook1.Start
End Sub

An even simplier program can set the AutoStart property to True and let the control initialize and open
the log file automatically when the first message is logged.

With VBX versions of the control, you cannot use the above methods, but rather assign a value to the
Action property. The example Visual Basic form shown in the first Tutorial page has an "Action"

menu, where the single menu entries trigger the following Visual Basic code:

' the following will work for both VBX and OCX versions of the control
Sub mAction_Click (Index As Integer)

Logbook1.Action = Index
End Sub

This means that menu item #0 will start the log (open the file and enable message logging to the
console and file), while menu item #1 will stop the log (dump statistics, close the file and disable
further logging), and so on for the other indices.

Logging Messages
There are several ways of logging a message:

1 - Use the .Log method (OCX only). Optionally, client ID and severity can be specified, overriding
the default values.

" Note: only the first parameter is needed, others are optional
Logbook1.Log "Test Message", Myld$, SeverityLevel%

2 - Assign a value to the LogMessage property, using the default values for client ID and severity
level:

Logbook1.LogMessage = "Test Message"

3 - Use the standard Visual Basic Addltem method, optionally composing a string with the client id,
separated from the message with a TAB character.

Logbook1.Addltem "CLK" & Chr$(9) & "Test Message", SeverityLevel

Additionally, since LogMessage is the control default property, you could even write statement #2 as:
Logbook1 = "Test Message"

Note that, in case #3, the control interprets the optional numeric parameter of the Addltem method as
the "severity level" of the message being logged. This value overrides the current setting of the
ClientLevel property without permanently changing its value. As shown in the sample code, the
ClientID can also be overridden by prepending a string to the message text and inserting a TAB
character (ASCII 9) in between.

In case #2, the message is simply logged using the current setting for the ClientLevel and ClientlD

properties. The same happens in case #1 if you omit to specify the last two parameters.

Next Page: Notes

Notes

Using the Logbook with DDE

The Logbook control can receive messages through DDE while acting as either a client or server. These
situations are depicted in the two diagrams below.

When the Logbook is running as a server (diagram 1), multiple clients can send messages at the same
time poking the link (i.e. a Visual Basic program can invoke a LinkPoke method on a client control). To
prevent the messages from being echoed back to the clients, these links should be set to MANUAL.

Note that, at the same time, there may be one or more other DDE clients that do not send messages to
the logbook, but only act as "receivers" (i.e. Client #3 in diagram 1). These will usually have their link set
to AUTOMATIC and will receive copies of the formatted logged messages.

When the Logbook is running as a client (diagram 2), only 1 source can send messages to it through the
link, which may be set to AUTOMATIC, MANUAL or NOTIFY as appropriate.

Logbook as DDE Sarvaer

Stardard Link

Stancarg Lirk u:,
Diagram 1 — Logbook az DDE Client
.
Diagram 2
Note:

When sending messages to a logbook control via DDE, there is no way to provide the ClientLevel
information separately from the message. For this reason, messages sent through DDE can only
override the current ClientLevel setting by embedding the level as a 1-character digit at the front of
the string. The ClientID string can be included between the level digit and the message body,
separated from the rest by a TAB (ASCII 9) character.

Example:

SourceControl.Text = "3"+"CLK" & Chr$(9) & "Test Message"
SourceControl.LinkPoke

When receiving messages from a logbook, the whole, formatted message is sent.

Version History

OCX Version 1.1

OCX-only (now ActiveX) version of the control, available in 16 and 32-bit versions, with several
additional features:

*

*

New Methods (Start, Stop, Pause, Resume) can be used instead of the old-style Action property.

There is a new preferred method: Log, for logging messages to the control, as opposed to the old
LogMessage property and Addltem method.

The control now has convenient property pages for all relevant options.
It is possible to show the property page dialog at run time using the Properties method.

It can show the severity level of a message as 1st field in the log file (off by default for compatibiltiy
with old log file format).

There are 4 flag properties for showing or turning off the different fields of a message: ShowLevel,
ShowTime, ShowlD, ShowMessage

It is now possible to specify a Separator string which is inserted between the log fields. By default, a
single space is used, but this can be set to a TAB, a comma, or any other string for subsequent easy
manipulation of the log file.

There is now a LogToConsole property, for simmertry with LogToFile. Note: changing LogToFile is
only effective before Log is opened.

The FilePath property can now explicitely contain one DOS-style environment variable, like
%TEMP%, that is interpreted at run-time. The full log file path used while logging can be retrieved
from the FileFullPath property.

An AutoStart property has been defined that, when True, makes the control start a log file on the
first received message. You no longer have to explicitely start the log.

The 3-char limit in the ClientID has been eliminated. Ids can now be as long as you like. The default
client ID is now "?7?7?".

When the control is used in a different host from Visual Basic, the Format$() syntax for TimeFormat
is not longer available. In this case the control falls back to a C-language style syntax for the time
stamps.

The control can now be shown with either a "flat" or a 3D look, according to the setting of the
Appearance property.

OCX Version 1.0

A preliminary port of the custom control as a 16-bit OLE control (OCX), with equivalent functionality to
the VBX version.

VBX Version 1.0

Initial release, VBX only.

Properties

All of the non-standard properties for this control are listed in the following table. For information on the
remaining properties, see the standard Visual Basic documentation.

Properties:

About hFile Showlevel
Action LogMessage ShowMessage
Append LogToConsole ShowTime
AutoStart LogToFile StopMsgLimit
ClientIlD MaxConsoleMsg StopTimeOut
ClientlLevel Msglgnored Status

Epoch MsglLogged TimeFormat
FileFullPath MsgNotLogged TimeStyle
FileName Separator TimeZone
FilePath ShowlD UpTime

FilterLevel

About

Dummy property, used to trigger a dialog box with some information about the VBX (version and
copyright) from a visual programming environment (e.g. VBasic in design mode).

Notes: Not available at run-time.

Action

This property is actually used to implement custom methods that "trigger" some action in the object. This
is the only way such commands can be given to the VBX version of the control. With OCX versions of
the control, it is possible to use the corresponding Methods.

The following actions are available:

LOG_ACTION_START
LOG_ACTION_STOP

0 Start logging and tracking time, possibly open log file.

1 Stop logging and tracking time, possibly close log file. This action

implicitly perform a LOG_ACTION_STATUS before logging is stopped.

2 Pause logging (messages will not be displayed or written to the file),

but keep stats and possibly leave the log file open.

LOG_ACTION_RESUME =3 Resume a paused logging.

LOG _ACTION_RESET =4 Resetinternal counters, turn off auto-deactivation (zeroes time-out
and message limit), resets the filtering threshold to
LOG_LEVEL_INFO. It does not clear the console contents, and does
not alter the logging status.

LOG_ACTION_STATUS =5 Logadump of the current Logbook statistics. The message has
severity = LOG_LEVEL_DIAGN (= 1), and will be filtered out with the
default threshold settings. This allows you to enable or disable the
status output by simply changing the filtering level, rather than
modifying the code.

LOG_ACTION_PROPS =6 (OCX only) Show the modal Properties dialog box. The application is

suspended while the dialog is shown.

LOG_ACTION_PAUSE

If, as a consequence of this action a change of the Status property occurs, a Change event will be
fired, and an appropriate message will be logged, with severity = LOG_LEVEL_INFO. These messages
can be filtered out by rising the current severity threshold.

Naturally, some actions require that the logbook object be in a certain status to be effective. E.g.: you
can resume a paused log, but not a stopped one. In the current version of the control, applying an action
when the object is in the wrong state does not cause an error: the action is silently ignored.

Type: Integer

Notes: Available only at run-time, write-only.

Append

When this option is True, if the file that is going to be opened for logging already exists on disk, the
object shall append messages to the existing file rather than overwrite it. This option applies to both
user-specified file names and to automatically generated, time-coded file names.

Type: Integer
Default Value: True

ClientID

When logging messages using the LogMessage property, it is possible to indicate the default "sender
ID" of the client by setting this property. The ID remains in effect for all subsequent messages that do
not explicitely specify a different ID.

When using other techniques for logging messages that explicitely allow you to specify a client ID, such
as the Log Method, the setting of ClientID will silently be overridden for that specific message (i.e. the
message will get the ID specified in the Log method, but this property will not be set to the new value).

Type: String
Default Value: "

ClientLevel

When logging messages using the LogMessage property, it is possible to indicate the severity level at
which the client is sending messages by setting this property. The level remains in effect for all
subsequent messages that do not explicitely specify a different severity level.

For a list of the available levels, see the FilterLevel property.

Type: Integer
Default Value: LOG_LEVEL_INFO (=2)

ShowLevel, ShowTime, ShowlD, ShowMessage

These properties indicate which fields of the message should be displayed on the console and written to
the log file. When all are True, the message is formatted as follows:

<level> <time stamp> <client id> <message text>
Example:
2 10:22:37 CLK A sample message

Type: Integer
Default Value: False, True, True, True

Epoch

The year that is taken as '0' when building a time-coded FileName. For example, when Epoch=95, a
log-file named "20122117.LOG" indicates it was generated on Jan 12, 1997, at 21:17.

Type: Integer
Default Value: 94

FilePath

Directory where log files (if LogToFile =True) are created. This property does not contain the actual file
name, which can be controlled with the separate FileName property.

It is possible, in the OCX version of the control, to include in the path specification one environment
variable, using the standard DOS syntax (%var_name%). In this way, it is possible to specify a system-
dependent path in a portable way. In effect, the default value for this property specifies the log files to be
placed in the temporary DOS/Windows system directory.

Note: the full log file path used while logging can be retrieved from the FileFullPath property.

Type: String
Default Value: "% TEMP%"

FileFullPath

This read-only propery will return the full log-file path name currently used by the control while writing to
a disk log. It is made up by the catenation of the FilePath property (resolving any embedded
environment variables) and the FileName property (resolving any dynamic generation of time-encoded
file names).

Type: String

Notes: Available only at run-time, read-only.

FileName

Name of the log file. If different from the empty string ("), the object will use it literally, appending it to
the FilePath property. When set to an empty string, the logbook will use a default file naming scheme,
where the name is a time-code string formatted as follows:

YDDDHHMM.LOG
Where:

Y 1-digit year (starting with 0 = Epoch)
DDD day-of year (1, 2....)

HH hour (0..23)

MM minute (0..59)

Note: the full log file path used while logging can be retrieved from the FileFullPath property.

Type: String
Default Value: "" (forces time-coded naming scheme)

hFile

MS-Windows operating system file handle used by the Logbook control. This 16-bit value can be passed
to MS-Windows system calls in order to write to the file directly, without going through the control
methods. It will be valid (non-null) only when the log file is open (i.e. Status = LOG_OPEN o
LOG_PAUSED and LogToFile = True).

Type: Integer
Default Value: 0 (closed file)

Notes: Available only at run-time, read-only.

FilterLevel

Severity threshold. Messages tagged with a severity level below the current FilterLevel will be
ignored. The available levels are:

LOG_LEVEL DEBUG =0 A debugging message

LOG_LEVEL_DIAGN =1 Adiagnostics message, still not an error
LOG_LEVEL_INFO =2 Normal information or notification of events
LOG_LEVEL _WARN =3 Notification of unusual events, may require attention
LOG_LEVEL_ERROR =4 Definitely an error condition, but may still be harmless
LOG_LEVEL_ALERT =5 Serious error, definitely requires immediate intervention

LOG_LEVEL_CRITICAL =6 Critical error or damage, system may be blowing, bail out.

Type: Integer
Default Value: LOG_LEVEL_INFO (=2)

LogMessage

This property can be assigned to the actual message to be logged.

If the current status of the object is LOG_ON, this triggers a Log event and eventually causes the
message to be logged to console and (optionally) to a disk file. This is exactly the same thing that
happens when calling the Addltem or the Log methods.

The only difference is that, when using this property, the message level and the client ID are taken from
the ClientLevel and ClientID properties, while Additem and Log allow to specify one or both these
parameters in a single action, overriding the default properties.

It is also possible to read this property. It will return the last message that was written to the log (by
either the control itself or by a client). The returned string will hold the complete, formatted message,
including time-stamp and ClientID tag. If no message has been logged yet, an empty string (") will be
returned.

Type: String

Notes: Unavailable at design time. This is the default control property, and is used as the
control value.

Example:

' Set client id, client message severity, then log a message.
Sub Button1_Click ()
Logbook1.ClientID = "XYZ"
Logbook1.ClientLevel = LOG_LEVEL_ERROR
Logbook1.LogMessage = "A button-triggered error"

' Test sending another message using the control default property feature
Logbook1 = "A message logged by assigning to the default property"
End Sub

LogToFile

Actually write messages to file or not. If this property is False when the log is Started, no file is opened.
Subsequent messages will only be sent to the console window, according to the setting of the
corresponding LogToConsole.

Note that leaving a blank string as the log FileName will not disable writing to a disk file, but rather
causes the object to use an incremental time-code naming scheme. Hence this separate flag to turn
disk file usage on or off.

Type: Integer

Default Value: False

LogToConsole

Write messages to the console or not. This is independent from logging to a file, which is controlled by
the corresponding LogToFile property.

Type: Integer
Default Value: False

MsglLogged
Number of messages logged to window (and optionally to file).

This value is reset to 0 when a new log is started or when the log object is explicitly reset with
LogbookObj.Action=LOG_ACTION_RESET or when a Clear method is invoked.

Type: Integer
Default Value: 0

Notes: Available only at run-time, read only.

MsgNotLogged

Number of messages not logged because the object was in LOG_PAUSED or LOG_OFF Status, but

that were above the current FilterLevel threshold (that is, they would have been logged under normal
conditions).

This value is reset to 0 when a new log is started or when the log object is explicitly reset with
LogbookObj.Action=LOG_ACTION_RESET or when a Clear method is invoked.

Type: Integer
Default Value: 0

Notes: Available only at run-time, read only.

Msglgnored

Number of messages ignored because their severity was lower than the current severity threshold
defined by the FilterLevel property.

The count of ignored messages proceeds regardless of the current logging status. This means the
logbook will count ignored messages even if the log file is currently closed.

This value is reset to 0 when a new log is started or when the log object is explicitly reset with
LogbookObj.Action=LOG_ACTION_RESET or when a Clear method is invoked.

Type: Integer
Default Value: 0

Notes: Available only at run-time, read only.

MaxConsoleMsg

Backlog of messages to show on the scrolling console window. Excess messages shall be removed
from the console history, and will be lost, unless the object is also logging them to a file.

Type: Integer
Default Value: 100
Notes: If the user is holding the scrollbar with the mouse, removal of excess messages is

deferred until the mouse button is released, so this limit can be temporarily
exceeded.

Status

The current status of the object, as affected by an Action performed on it or some other external event.
The possible states are:

LOG_OFF =0 Notlogging (file closed, not tracking time). Messages sent when in this status
that would have been logged are "lost" (the object just counts them in
MsgNotLogged).

LOG_PAUSED =1 Has an active log (tracks time and maybe has an open file , but is currently not
logging the messages sent to it). Messages sent when in this status are also
"lost" (the object just counts them in MsgNotLogged).

LOG_ON =2 Running and logging to console and possibly to file.

LOG_ERROR =3 Something failed (e.g. failed to open the log-file, etc.). The object behaves like
in the OFF status.

On a change of the Status property, a Change event will be fired. Note that the VBX does not generate
run-time errors internally. So, to catch events like a log-file open failure, you have to use the Change
event and check for a LOG_ERROR status.

Type: Integer
Default Value: LOG_OFF (=0)
Notes: Available only at run-time, read only.

StopMsgLimit

When this property is set to a value > 0, the logbook will automatically execute a LOG_ACTION_STOP
after the specified number of messages have been logged.

When the log is closed, the Change event procedure is fired, with Reason = LOG_RES_MSG_LIMIT
(=1).

Type: Integer
Default Value: 0 (off)
Example:

You can use this feature is to limit the size of individual log-files to some manageable extent. In this
case, you should leave the FileName property blank (to get unique, automatically generated file names)
and re-start the file from within the Change event procedure, as shown below:

' Start a new log file after it auto-closed at a certain size
Sub Logbook1_Change (Reason As Integer)
If Logbook1.Status = LOG_OFF And Reason = LOG_REAS_MSG_LIMIT Then
Logbook1.Action = LOG_ACTION_START
End If
End Sub

StopTimeOut

Time-Out (in seconds) after which the object automatically performs a LOG_ACTION_STOP. Can be
used to record messages in the log for a given period of time. When the log is closed, the Change
event procedure is fired, with Reason = LOG_RES_TIME_OUT (=2).

The count starts from the moment the log was started (if the property is assigned at design time or
before starting the log), or, if the log is already open, every time that the property is assigned.

For example, setting the property to 10 with the log open will stop the log 10 seconds after the
assignment.

Setting this property to 0 disables the time-out feature. This action will also turn off a time-out count that
was already in progress.

Stopping and restarting the log manually will also restart the count.

Type: Integer
Default Value: 0 (off)

TimeStyle

Time-tracking method . This property defines the meaning of the time stamp, i.e. what value is formatted
into the message, rather than how it is formatted.

Possible values:
LOG_TIME_NONE

]
o

No time-tracking. No time-stamp will be added to the messages,
regardless of the selected format.

Uses current date and time.

Uses time since the log was started.

Time since last message.

LOG_TIME_OF_DAY
LOG_TIME_SINCE_START
LOG_TIME_DIFFERENCE

Innn
WN -

Styles 2 and 3 are accurate within a year. When these time-tracking methods are selected, using month
name, day-of-week and other such components in the time-stamp format string, will give unpredictable
and weird results.

Type: Integer
Default Value: LOG_TIME_OF_DAY (= 1)

TimeFormat

This string property defines the formatting template used when composing the time stamp that is printed

in front of logged messages.

When the control is used with Visual Basic, the format of this string is exactly as defined for the Visual
Basic Format$() function, so it can be used to specify hours, minutes, seconds or dates in short and

long format, day-of-the-week, etcetera. See the standard Visual Basic help for the Format$() string
syntax specification.

When the OCX version of the control is used in different hosts from Visual Basic, the Format$() syntax

will not be available. In this case the OCX will fall back to a subset of the C-style strftime() function
syntax, as specified in the following table:

%o
%H
%M
%S
%d
%m
Yoy
%w
%%
%B
%A
%a
%b
%Z
%I
%p
%Y

Day of the year as a decimal number (001-366)

hour in 24 hour format

minute (0-59)

seconds (0-59)

Day of the month as a decimal number (01-31)

Month as a decimal number (01-12)

Year without the century as a decimal number (00-99)
Weekday as a decimal number (0-6; Sunday is 0)
percent sign

Full month name (January-December)

Full weekday name (Sunday-Saturday)

Abbreviated weekday name (Sun-Sat)

Abbreviated month name (Jan-Dec)

Time zone name or abbreviation; no characters if time zone is unknown
Hour in 12-hour format (01-12)

AM/PM indicator for a 12-hour clock

Year with the century as a decimal number

Note that the range of formatting options available in the two environment are not fully equivalent.

Type:

String

Default Value: "HH:MM:SS" in Visual Basic e.g. "18:20:00"

"%H:%M:%S" in other hosts

UpTime

Number of seconds elapsed since the log was started. This value is zero when log is OFF. It will keep
incrementing even if logging is currently paused.

This value can be formatted into hours, minutes and seconds from Visual Basic with a statement like:
Print Format$(TimeSerial (0,0,Logbook1.UpTime),"HH:MM:SS")

Type: Long
Notes: Not available at design time, read-only at run-time.

TimeZone

The time routines inside the control require that the Time Zone environment variable (TZ) should be
properly set up. This is usually done inside your autoexec.bat, (in Windows 3.x and Windows 95) with a
statement like:

SET TZ=<your time zone string, e.g. MET-1MEDST>

In Windows NT, there is no autoexec.bat file. Environment variables can be set or checked using the
System tool in the control panel.

Note that setting the time zone in Windows from the control panel is not enough. The run-time library for
the C programming language, used in the control, insists that the world should be a UNIX system, so it
will not fetch the information from Windows, but rather from an environment variable as it happens in
UNIX.

Even more stubbornly, If you dont have this variable set in autoexec.bat, by default the library will
assume that you live in California and set itself for Pacific Standard Time (PST8PDT).

Last, note that the syntax for the TZ environment variable uses a time offset which is opposite to the
normal conventions. The reason is that, given its american origins, the variable indicates the difference
from local time to Universal Coordinate Time (i.e. GMT) and not viceversa. As a consequence, a central
european time zone of GMT+1 must be encoded with a -1 offset (MET-1), while the american pacific
time zone (GMT-8) gets encoded as PST+8.

A wrong or missing setting of the TZ variable will cause odd times to appear when you select the time-
of-day TimeStyle. If you live in Europe, your times will be ahead by 8 or 9 hours.

So, we suggest you fix your autoexec.bat file if you haven not already done so. We provide the
TimeZone control property only for debugging your setting and playing around before you fix it
permanently.

This property will show you the current TZ setting (so if you see PST8PDT you know it is missing). It will
also let you modify the control TZ setting, but after changing it you will notice some strange effects:

1 You will affect ALL Logbook 16-bit controls in the system (because time routines use shared, global
variables, including TZ, contained in the control DLL)

2 Changes will NOT be saved in the Visual Basic project. You do not want to distribute applications
which force an incorrect TZ on the target system, do you? So, next time you reload the project, TZ
will still be wrong if you have not set it up in autoexec.bat.

3 Changes are not system-wide, i.e. the environment of other, different applications also using the TZ
variable will not be affected, because the 'master copy' created at system startup cannot be
touched by any program, as happens for other application-specific copies created from it.

Type: String
Notes: Will NOT be saved in the project like other VB properties.

Separator

This property specifies a string that is used to separate the fields in a message when it is logged to the
console or to the file. By default, a single space is used, for compatilbility with the old log file format
used by the VBX version of the control.

You can set this property to anything convenient to enable post-processing of the log file, such as TAB
character, a comma and any convenient spacing. The same string is inserted between all of the log
message fields.

Type: String

Default Value: A single space (" ")

Methods

The following methods are only implemented in the OCX versions of the control:

Log MsgText, Log a message. The Client/D and ClientLevel paramters are

ClientID, optional. When unspecified, the corresponding properties are

ClientLevel used as default values.

Pause Pause logging, messages sent to the control while paused will
be lost.

Resume Resume normal logging

WriteStatus Write log statistics to the log file itself

Start Start Logging, opening a new log file if required

Stop Stop Logging, closing the log file if required

Reset Reset counters and options to the default values.

Properties Show the modal Property Page dialog for changing options at
run-time. The application is suspended while the dialog is
shown.

A typical logging sequence using the above methods would be:

Sub Sample_Log ()
Logbook1.Start ' open the log file
Logbookl.Log "message 1", "test", 1 'log messages at various levels
Logbookl.Log "message 2", "test", 2
Logbookl.Log "message 3", "test", 3
Logbookl.Pause ' temporarily suspend logging
Logbookl.Log "Lost Message", "test",3
Logbookl1l.Resume

Logbook1.WriteStatus " write logging statistics
Logbook1.Log "Last Message" " use default ID and level
Logbook1.Stop

End Sub

Unlike OCX's, VBX controls can not define arbitrary new methods. For this reasons, the VBX version of
the control do not have the methods described above, but can only provide a dummy property, Action to
implement the same functionality. The Action property is also available in the OCX version, for
compatibility with older code, but it is recommended that you use the methods shown above.

However, even VBX's can re-implement some of the predefined methods if this makes sense. So, both
VBX and OCX versions of the control can support the following methods, traditionally available in all
Visual Basic controls:

Addltem Clear

Additem
Log a message to the object console (and possibly to the log file), optionally specifying a severity level.

Note: /In OCX versions of the control, this method is considered obsolete. You should use the Log
method instead, which is simplier and gives you more control over logging.

If Message$ contains a TAB character (ASCII 9), the characters before the tab are taken as a "client ID",
truncated to 3 characters and placed between the time-stamp and the message body, with proper
formatting.

This method allows clients to specify all 3 parameters (sender id, message and severity) in a single
action. Alternatively, it is possible to assign values to the ClientID and ClientLevel properties, then send
the message by assigning it to the LogMessage property.

The message level and client id specified with this method override the current settings of the
ClientLevel and ClientlD properties, which, however, are left unaltered.

If the current status of the object is LOG_ON, a Log event will be fired, before the message is filtered
and written to the window and file. This means that the event procedure has a chance to modify the
message and/or its severity level before the message is processed for logging.

Syntax: Logbook.Addltem Message$, Severity
Example:

'Send clientid, message and severity in a single action.
Sub Button1_Click ()

Logbook1.Addltem "XYZ" & Chr$(9) & "A button-triggered error”", LOG_LEVEL_ERROR
End Sub

Clear

Clears the console window and reset all the internal logbook statistics. This method does not affect the
current log-file (if any is used).

This command is slightly different from Action=LOG_ACTION_RESET. Both commands reset the
internal counters, but:

- Clear also clears the console window, but does not alter the current FilterLevel or zap the automatic
log-off features.

- LOG_ACTION_RESET does not clears the console , but resets the current FilterLevel and disables
the automatic log-off features by zeroing their counters.

Syntax: Logbook.Clear

Events

The following table lists the event that apply only to the Logbook control or that require special
consideration when used with it. For information on the remaining events, see the standard Visual Basic
documentation.

Events:
*Change Log

Standard Properties

Please refer to the Visual Basic on-line help documentation regarding custom controls for information on
this property, event or method.

Log

A message was submitted for logging, while logging is active (Status = LOG_ON). The event is fired
before the message is processed (i.e. filtered against the current severity threshold and written to the
console and file).

This event procedure is fired only when a client logs a message, not when the message is written by the
control itself (even if this happens in response to an Action):

This provides a flexible hook for implementing sophisticated message filtering and formatting. (e.g.
filtering messages from a specific client). A message can be filtered out by lowering its Level below the
current filtering threshold.
Syntax:

Logbook_Log (SenderlD As String, Message As String, Level As Integer)
Example:

' Declass some messages and cause them to be filtered out.
Sub Logbook1_Log (SenderID As String, message As String, Level As Integer)
If SenderID = "XYZ" Then

Level =0
Debug.Print "Msg from XYZ will be ignored"
End If

End Sub

Change

This event is fired when some Action or other event triggered a change of status in the logbook object.
This hook can be used to provide some visual feedback of the logbook status, or to perform some
sophisticated log-file management task, such as re-opening a log file that was closed on a time-out or
when a message number limit was exceeded.

The Reason parameter can be used to discriminate what caused the object to change its status. The
possible values are:

LOG_REAS_ACTION =0 Caused by an assignment to the Action property
LOG_REAS MSG LIMIT 1 The obj turned itself off because the StopMsgLimit was reached
LOG_REAS TIME_OUT 2 The obj turned itself off because the StopTimeOut was reached

LOG_REAS_ERROR =3 Some error occurred (like a file 1/O error)
Syntax: Logbook_Change (Reason As Integer)
Example:

' Show the reasons why the object changes state
Sub Logbook1_Change (Reason As Integer)

Select Case Logbook1.Status
Case LOG_OFF
Select Case Reason
Case LOG_REAS_ACTION
Debug.Print "STOP: on command"
Case LOG_REAS_MSG_LIMIT
Debug.Print "STOP: Message limit reached"
Case LOG_REAS_TIME_OUT
Debug.Print "STOP: Time Out"
End Select
Case LOG_PAUSED
Debug.Print "PAUSE: Reason ="; Reason
Case LOG_ON
Debug.Print "START: Reason ="; Reason
Case LOG_ERROR
Debug.Print "ERROR: Error ="; Reason
End Select

End Sub

Eo) Logbook Control Installation

Welcome to the Logbook Control installation!

Before you proceed, maybe you should check out what is new in this release. Also make sure you
understand how to use the different Variants of the control: VBX, 16-bit OCX and 32-bit OCX (ActiveX).

Notes

The Logbook controls contained in the distribution archives are fully functional. However, you will require
a license file in order to get rid of the warning dialog both at programming time and in executables. To
register and obtain the license, see the Information page.

In order to keep the file size down, this archive does not contain the shared Microsoft DLL that are
needed to run this control:

MFC40.DLL, MSVCRT40.DLL (32-bit version)
0OC25.DLL (16-bit version)

You probably already have these DLLs on your system, but just in case, they are available for download,
together with the latest release of the control, at http://www.multimedia.it/andy/logbook/download or
from in most on-line software archives.

Depending on the package you have downloaded, you may be able to perform an automatic installation
or a manual one, as described in the following.

Automatic Installation Procedure

If you have unpacked the OCX distribution and are running Windows 95, NT 4 or anything better, you
can install the software by double clicking on the SETUP.EXE program from the Windows Explorer.
This will install the controls, help file and sample applications on your system.

Please check out the Manual Installation Procedure detailed below anyway. Point 4 explains how you
can use Visual Basic to check that the controls are properly registered, while point 2 explains how to
install the license file that you may receive separately.

To uninstall the software, use the Windows Control Panel, "software" applet. In the list you find on the
Add/Remove Software page, you should see an entry named Logbook Control. Select it and click on
the Add/Remove button.

Manual Installation Procedure

1. Move the selected control file(s) and LOGBOOK.HLP in a directory of your choice. Usually custom
controls are installed in the C:\Windows\System directory (Windows 3.x, Windows 95), but this is not
a strict requirement.

For simplicity, in the following we will assume you are installing on either a Windows 3.x or Windows
95 system. But, be aware that, on Windows NT computers, 16-bit controls normally go in the C:
\Winnt\System directory, while 32-bit controls go in the C:\Winnt\System32 directory.

In design mode, the control can be loaded from any directory, and it will attempt to locate the help file
in the directory where the control was loaded from.

In run-time mode (when used by a compiled program), the control should be somewhere in the
search path.

2. The license file should be placed in the \WINDOWS directory. Of course, you should not distribute
the license file with executable programs you write.

3. The LOGBOOK.BAS file can be placed in your program source code directory and added to your VB
project. Using this file is not strictly needed with OCX versions of the control, since constants can be
read and copied into your project source code using Visual Basic object browser.

4. Before you load any of the example programs, make sure you REGISTER the control with the
system from Visual Basic. To do this, load Visual Basic with a new, blank project, then select the
TOOLS menu, CUSTOM CONTROLS. Click the BROWSE button. Go to the directory where the
OCX control is installed, then select it into the project. Close the Controls window clicking OK. At this
point Visual Basic should have registered the control and it should work with all existing programs.

5. For automatic conversion of Visual Basic programs from VBX to the OCX version of the control, edit
VB.INI (normally in cA\AWINDOWS); locate the section named

[VBX Conversions16]

and add the following (on a single line):

LOGBOOK.VBX={813AE543-40C5-11D0-B4D8-444553540000}#1.0#0;C:
\WINDOWS\SYSTEM\LOGBK16.0CX

You can do the same for the 32-bit version of the control. The VB.INI section to edit is [VBX
Conversions32] and the line to add is:

LOGBOOK.VBX={813AE543-40C5-11D0-B4D8-444553540000}#1.0#0;C:
\WINDOWS\SYSTEM\LOGBK32.0CX

Of course if you installed the controls in other directories than the default C:\Windows\System, you
should correct the paths in the two statements above accordingly.

Information

Foreword

This control began its life as a spare time self-training project on custom controls and Windows
programming. Day after day, feature after feature, the control became a nice piece of software, and it
was really a shame to let it gather dust in a drawer.

This software was never actually intended for commercial use. However, just in case, there is a license
mechanism built in that should convince you to check with the author before you attempt to make
money out of it. Please read the following sections for details.

See also the version history.

| sincerely hope that you have as much fun using this software as | had writing it.
Copyright Notice

The Logbook Control is Copyright © 1995 by A.Zanna. - All rights reserved.

Windows, Windows NT, Windows 95, Visual Basic, Excel, Access, Office, Visual Basic for Applications,
VBScript, Windows Entertainment Packs, Visual C++, Front Page, ActiveX and Internet Explorer are
either trademarks or registered trademarks of Microsoft Corporation.

Disclaimer

THIS SOFTWARE AND THE ACCOMPANYING FILES ARE PROVIDED "AS IS" AND WITHOUT
WARRANTIES AS TO PERFORMANCE OF MERCHANTABILITY OR ANY OTHER WARRANTIES
WHETHER EXPRESSED OR IMPLIED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DAMAGES, INCLUDING ANY LOSS OF PROFITS, LOSS OF DATA, INCLUDING BUT NOT LIMITED
TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT DAMAGES ARISING FROM THE USE
OF THIS SOFTWARE.

Distribution

The distribution package for this version of the Logbook software must include at least the following
files:

LOGBOOK.VBX LOGBOOK.HLP
LOGBK16.0CX LOGBOOK.BAS
LOGBK32.0CX README.TXT

This package can be freely distributed, provided that:

1) The distributor acknowledges that this software was designed, implemented and is still owned by
the original author, who reserves all rights to it.

2) ltis not bundled with a commercial product, with the possible exceptions of software collections as
clarified below.

3) All the files in the package are included and no changes of any kind are made to the original files.

4) No charge or donation is requested for any copy of this software itself, however made, except for
the cost of physical support, transmission medium and time required to perform the copy.

Given that clause #3 above is respected, it is explicitly allowed to include the Logbook software in
shareware and freeware collections on networks, BBS and CD-ROMs or other distribution media, where
a profit margin is taken for the sole sake of supporting the said software archives.

In all other circumstances, written permission must be obtained from the author prior to distribution.

The custom control files (LOGBOOK.VBX, LOGBK16.0CX, LOGBK32.0CX) can be distributed alone
only as part of a commercial product and only if the author of that product has a valid license for the
Logbook software. This license cannot be transferred to users or purchasers of the said commercial

product.
User License
This package can be freely used for any legitimate personal, non-commercial purpose.

When used as component of a commercial program, the producer is required to contact the Logbook
author in order to obtain permission, in the form of a specific development license file (see Registration
Information below).

The author reserves all right to change the distribution and licensing policy for any future major version
of the Logbook software and derived products.

Source code for this package is not freely available. It can, however, be purchased from the author.
About the Author

The author (Andy Zanna) is an electronic engineer with a broad experience in software design and
production on a wide range of systems, from home computers to real-time systems, enterprise servers
and large networks.

This software is in no way related to the author's real work or to the company where he is employed.
Registrations, information queries and suggestions should be addressed to:
A.Zanna

Hauptstr. 41

D-71263

Merklingen - Weil der Stadt
Germany

phone: +49-7033-33800
E-mail: zanna@multimedia.it

Registration Information

If you register this control, you will receive a license file that will get rid of the warning dialog that is
displayed when the control is loaded at design or run-time. You will then be able to compile stand-alone
applications and distribute them free of royalty. You will also receive notifications of updates and a right
to use all minor updates (e.g. 1.x) with the same license.

The registration fee is US$ 25 or equivalent in major currencies (DM, UK Pound, F Franks), should be
sent by mail money order to the address above.

You should add another 5% if you require that the software and the license be sent to you via ordinary
mail, rather than E-mail.

You should also send a registration notice by ordinary mail or E-mail (preferably) to the address above,
indicating your name, company (if applicable), mail and E-mail addresses.

AutoStart

This property, when True, makes the control start a log file on the first received message, exactly as if a
Start Methods, or Action had been called.

Taking advantage of this property, extremely simple programs could contain no code for starting and
stopping the log file.

Type: Integer
Default Value: False

Control Variants

The Logbook control comes in three different variants, as described below. Depending on your
development environment, you may want to install any or all of these.

LOGBOOK.VBX (available in the VBX distribution only) is suitable for use with 16-bit versions of
Visual Basic. It will work fine with Visual Basic 3.0 and 4.0/16 bit. It will not work
with 32-bit versions of the language or with Visual Basic for Applications

LOGBK16.0CX (available in the OCX distribution only) is an ActiveX control suitable for use with all
16-bit environments that support this format, including Visual Basic 4.0/16 and 16-
bit versions of Visual Basic for Application (i.e. 16-bit Microsoft Office products).

LOGBK32.0CX (available in the OCX distribution only) is an ActiveX control suitable for use with all
32-bit environments that support this format, including Visual Basic 4.0/32 or better,
32-bit versions of Visual Basic for Application (i.e. 32-bit Microsoft Office products),
Visual C++ and Web pages.

Note: "ActiveX control" is just the most recent denomination of what used to be called OLE controls, or
OCX's. With respect to the functionality of the control and its documentation, all three denominations are
equivalent.

Note: the distribution archive should also include the following essential files:
LOGBOOK.HLP the help file
LOGBOOK.BAS support file for program development

Web Pages

General Considerations

The Logbook control (32-bit OCX version), like any ActiveX control, can be inserted in a Web page and
used from VBScript or JavaScript programs. Users with an ActiveX-capable browser (currently only
Microsoft Internet Explorer 3 or better) would then be able to load and see the programs.

However, given the specific functionality of the Logbook control, | believe it is very unlikely that a
programmer will want or need to embed it in a web page rather than in a VC++ or Visual Basic program.

Just as a reference, if you really plan on doing this anyway, you will need all the documentation and
tools that are available in the ActiveX SDK archive from the Microsoft Web site
(http://www.microsoft.com/activex)

Security

There is an important security issue with this control. By its nature, it must be able to write to an
arbitrary-named physical disk file. As such, it is potentially dangerous. For instance, an Internet hacker
may program the control to overwrite config.sys on one or more target computers.

For these reasons, the control is purposedly not marked as safe for loading and scripting in a Web
environment. Internet Explorer will warn the user about potential security issues with it and will refuse to
load it unless the safety level is set to medium or low in the Options panel.

Property Pages

The Logbook Control Properties dialog box contains the following pages:

General Groups the most important properties that need to be set: what to call the log file,
where to put it, how long the console history buffer should be and what level of
severity is required before a message is logged

Time Lets you specify how the control tracks time and stamps the messages in the log
file.
Messages Allows you to specify which fields of a message are shown and logged, as long as

the default values for the client-specific fields. You can also set the field separator
characters here.

Open/Close Here you can enable the features that make the control automatically open and
close the log file in specific circumstances.

Colors Lets you specify the foreground and background colors for the console window
text.

Fonts Allows you to set font type, size and style for the control console window.

