
Internet Mail Suite
Internet Mail Suite (IMS) lets you do much more than send and receive Internet mail. We kept this name
only for historical reasons. First version of IMS, released as early as in 1996, was handling only Internet
mail related protocols. Later we added the components, implementing other standards, but decided to
keep the name.

And, now, we enhanced it again. Starting from this version, you will be able to create server applications.

Internet Mail Suite contains following components:

• TmsClientSocket - multi-purpose client socket, an ancestor of other high level IMS client components;

• TmsSMTPClient - implementation of Standard Mail Transfer Protocol; Lets you send Internet mail;

• TmsPOPClient - implementation of Post Office Protocol version 3; Lets you receive Internet mail;

• TmsMessage - implementation of Internet Mail message format, according to rfc822; Lets you prepare,
the email messages according to Internet standards, also parse the content of received email messages;

• TmsNNTPClient - implementation of Network News Transfer Protocol; Lets you post and retrieve the
articles to/from the Usenet;

• TmsArticle - modification of TmsMessage component for NNTP;

• TmsFTPClient - implementation of File Transfer Protocol; Lets you transfer the files to/from computers
running FTP server;

• TmsHTTPClient - implementation of Hypertext Transfer Protocol; Allows to retrieve the files from the
Web, also post the data to HTTP servers;

• TmsSimpleListenerSocket - Allows you to write a Server, which does not require to handle multiple
connections;

• TmsListenerSocket - Allows you to develop more complex servers, which can handle multiple
connections in multiple threads.

And, one class, TmsWinsock.    An instance of it, a global object msWinsock, always exists and is always
accessible.    It is declared in msWSock unit.

Installation
How to Register
Special Thanks
How to Contact Us

© ArGo Software Design, 1995-1999

TmsSMTPClient component
properties methods events
unit mssmtp

declaration
TmsSMTPClient = class(TmsClientSocket)

description
Implements SMTP (Simple Mail Transfer Protocol, rfc 821) and allows you to send Internet mail.    Set
Host property to the address of SMTP server you wish to use for sending the data contained in the
MailMessage property.    Call Send method to send single message.

TmsClientSocket Component
properties methods events
unit msSocket;

declaration
TmsClientSocket = class(TmsSocket)

description
Ancestor of all IMS client socket components.    Also can be used separately, to do the conversations with
hosts on the Internet, which are listening to the specific port.

TmsPOPClient Component
properties methods events
unit mspop;

declaration
TmsPOPClient = class(TmsClientSocket);

description

Implements the client side of POP3 (Post Office Protocol, version 3, rfc 1939) and allows you to retrieve
the messages from POP3 server, also, the information about the messages located on the server.

Set Host property to the server you wish to check the messages, you also will need to set UserName and
Password properties, since they are required by POP3.    Then log into the server by calling Login
method, and iterate through the email messages by setting CurrentMessage property to the message
number you are interested in, then retrieve entire message using Retrieve method, or, just it's headers
using RetrieveHeaders method.    The data will be stored in the MailMessage property, which is a
TmsMessage component.    You also can retrieve the information, which is normally not stored in the
message headers, such as message size (by calling GetSize function), or UIDL (by calling GetUIDL
function).    When you are done, you can disconnect from the server, by calling Logout method.

TmsNNTPClient Component
properties methods events
unit msNNTP;

declaration
TmsNNTPClient = class(TmsClientSocket);

descritpion
Implements Network News Transfer Protocol (NNTP, rfc 977), allows you to retrieve and post articles
to/from Usenet.

Set Host property to the news server you wish to use.    Then log into it, calling Login method.    Call
RetrieveNewsgroupList method to retrieve the list of available newsgroups on the server.    If you already
know which newsgroup are you interested in, make it current using Newsgroup property.    After doing it
you the data about the numbers of available articles will be stored in FirstArticle and LastArticle
properties.    Then, you can get the information about available articles in the newsgroup using
GetOverview method.    After you retrieved the information about the articles, you can iterate through
articles using First, Next, and Last methods, by setting CurrentArticle property, and calling Retrieve
method, or call RetrieveArticleByNumber method to get the article into the Article property of
TmsNNTPClient component.    You also can retrieve the articles based on their IDs, without selecting the
current newsgroup, using RetrieveArticleByID method.    You also can prepare the article in the Article
property and post it, using Post method.    Call Logout method when you are done.

If your server requires authorization, you should use Authorization, UserName and Password properties
of TmsNNTPClient component.    This part is written by Mr. Bruce W. Caron - thousands of thanks to
him!!!

TmsFTPClient Component
properties methods events
unit msFTP;

declaration
TmsFTPClient = class(TmsClientSocket);

description
Implements the client side of FTP (File Transfer Protocol, rfc 959).    Allows you to transfer files, also,
retrieve directory information from FTP server.

Set Host property to the server you wish to connect to.    Set appropriately UserName and Password
properties, and call Login method to connect and log into the server.    After this you can use StoreFile and
RetrieveFile methods, also various modifications of these methods, to transfer the files, also, GetDirList
method to retrieve the directory information into the DirList property.    When you are done, call Logout
method to log out of the server and close the connection.

TmsHTTPClient Component
properties methods events
unit msHTTP;

declaration
TmsHTTPClient = class(TmsClientSocket);

description
Implements HyperText Transfer Protocol (HTTP, rfc 2068).    Allows you to retrieve the resources from the
Web, using Get method, also, post the data to HTTP servers, using Post method.

Set URL property to some document or file and call Get method.    The retrieved data will be saved in the
Headers and InStream properties.    Then you can save OutStream into the file, calling, for example
InStream.SaveToFile.

To post the data to the server, set the URL to the application which will be processing the posted data,
and store the data you are going to post in OutStream, then, call Post method.    The reply from the server
will be stored in the Headers and InStream.

Contact
You can contact ArGo Software Design at:

EMail: support@argosoft.com
WWW: http://www.argosoft.com

Fax: +1-416-352-5054

Postal Mail: ArGo Software Designn
4325 Steeles Ave West, #211
North York, Ontario M3N 1V7
Canada

All comments, questions, suggestions or bug reports are welcome.

TmsSimpleListenerSocket Component
properties methods events
unit mssocket;

declaration
TmsSimpleListenerSocket = class(TmsListenerSocketBase);

description
Use this component when you wish to create simple server, which will accept only one connection at a
time.    The actual actions of the server will be performed in the same thread.

Set the Port property you wish your application to listen, and call Start method.    Then, write
OnSLSConnectionRequested event handler.    In this event handler you will be able to send and receive
the data using ServerSocket property of the instance of your TmsSimpleListenerSocket.

The following event handler will receive a string from the client, conver it to the uppercase, send it back,
and close the connection:

procedure MyServerForm.msSimpleListenerSocket1SLSConnectionRequested(Sender:
TObject);
var
 s: string;
begin
 s:=SimpleListenerSocket1.ServerSocket.RecvLine;
 SimpleListenerSocket1.ServerSocket.SendLine(UpperCase(s));
 SimpleListenerSocket1.ServerSocket.Disconnect;
end;

TmsListenerSocket Component
properties methods events
unit msSocket;

declaration
TmsListenerSocket = class(TmsListenerSocketBase);

description
You should use this component when you are develiping a server which will accept mutliple connections
at a time.    For simpler servers use TmsSimpleListenerSocket component.

TmsListenerSocket component will accept connections, and launch a separate thread for each
connection.

Set Port property to the port you wish your server to listen on, then, assign ServerThreadClass property.   
It must be a name of the class, which is created by you and which does actual processing of the server.   
Then call Start method.    Your server is ready to go.

TmsMessage Component
properties methods
unit msMsg;

declaration
TmsMessage = class(TmsCustomMessage);

description
TmsMessage is a Internet-Mail oriented customized TmsCustomMessage component.    Essentially, it is
the same, only difference - it has the properties which are applicable only to Internet Mail (and is not
applicable to Network News), such as Recipients, Priority, and ReturnReceipt.

TmsCustomMessage Component
properties methods
unit msMsg;

declaration

{$IFDEF VCL}
TmsCustomMessage = class(TComponent); // default
{$ELSE}
TmsCustomMessage = class(TPersistent);
{$ENDIF}

description
TmsCustomMessage component is one of the key components of The Internet Mail Suite. This is a
powerful encapsulation of rfc822 message (message in standard Internet format).    You just assign the
values to the properties at runtime or using the Object Inspector, then run SaveToFile or SaveToStream
methods and your message is ready to go!!! Or vise versa, load the rfc822, MIME encoded message,
using LoadFromFile or LoadFromStream method and it will be decoded (if it is possible) and all the
properties of the component will be filled in.    Now you can save the attachments calling SaveAttachment
method, execute them, using ExecuteAttachment method, store the messages into the mailboxes, reply
to the sender and so on.

It is an ancestor of TmsMessage and TmsArticle components, which are respectively used with the
Internet mail and NNTP.

TmsArticle Component
properies methods
unit msMsg;

declaration
TmsArticle = class(TmsCustomMessage);

description
TmsArticle is a NNTP oriented enhancement of TmsCustomMessage component.    It has only one
additional property, Newsgroups, which contains the name of the newsgroups the article was posted in.

TmsSocket Component
properties methods events
unit msSocket;

declaration
TmsSocket = class(TmsSocketBase);

descrition
The common ancestor of all IMS client sockets.    ServerSocket, associated to TmsListenerSocket and
TmsSimpleListenerSocket components, is also of this type.    Implements very important and useful
methods for transmitting and receiving the data.

TmsSocketBase Component
properties
unit msSocket;

declaration
{$IFDEF VCL}
TmsSocketBase = class(TComponent) // default
{$ELSE}
TmsSocketBase = class
{$ENDIF}

description

Common ancestor of all IMS components (both client and server).    Contains methods, properties, and
event handlers which are common for all components.

See also Using IMS in Console Applications

Using IMS in Console Applications
The compiler conditional define VCL controls the way IMS components work in the usual Windows
applications, or console applications and DLLs.

It is declared in the file msdef.inc.    By default it is enabled, and all IMS components are "real"
components, in the sense of Delphi, since they descend from TComponent.    They can be placed on the
component palette and dropped on the form.    In this case, the sockets are non-blocking, and winsock
calls are asynchronous.

But, it causes Delphi to link to your application additional units, which are needed for TComponent class,
and creates additional footprint.

If you are developing traditional Windows application, which uses forms and/or other Delphi components,
the units which participate while you compile your program, will be used anyway, so, there is no need to
change default settings.

But, if you are creating console application, or DLL, which does not use above mentioned units, then, it
would be good idea to disable the conditional define VCL in the file msdef.inc, by editing this file.    In this
case IMS components will descend from TObject.    It means, you will be no longer able to drop the
components on the form (and, there is no need and way of doing it in console applications).    Your
programs will be smaller, but keep in mind, that the default constructors of all components will change
and you will have to call them the following way:

MySMTP:=TmsSMTP.Create;

instead of

MySMTP:=TmsSMTP.Create(OwnerObject);

Also, you will be not able to use Server components.    All sockets will become blocking, and some event
handlers will become unavailable.

SleepTime *
Socket

SleepTime Property
unit msSocket;

applies to
TmsSocketBase class

declaration
SleepTime: Integer;

description
Helps you to control the CPU usage of computer.    If it is larger than -1, IMS will call the Sleep Windows
API function in the loops, with the argument specified in this property.

Not available if VCL conditional define is off.

Socket Property
unit msSocket;

applies to
TmsSocketBase class

declaration
property Socket: TSocket;

description
Handle of the socket associated with the corresponding IMS socket component.

LogFileName
TimeOut *

inherited from TmsSocketBase
SleepTime *
Socket

TimeOut Property
unit msSocket

applies to
TmsSocket class

declaration
property TimeOut : Integer;

description
The number of seconds TmsSocket or its descendants will be waiting for some event related to the
receiving or sending data.    If time expires, EmsTimedOutError exception will be raised. Default value is
60.

EmsTimedOut Exception
unit msdef

description
This exception will be raised if there was no socket activity during the TimeOut period of TmsSocket
component.

Cancel
Disconnect
Read
RecvChunkedStream
RecvLine
RecvLineStream
RecvMultiLines
RecvStream
SaveLogFile
SendChunkedStream
SendLine
SendStream
Write

Cancel Method
unit msSocket

applies to
TmsSocket class

declaration
procedure Cancel;

description
Immediately closes connection with server.    If the application is in the process transferring or receiving
the data, EmsCanceledError exception will be raised.

EmsCanceledError Exception
unit msdef

description
This exception will be raised if the operation has been canceled.

Disconnect Method
unit msSocket

applies to
TmsSocket class

declaration
procedure Disconnect;

description
Tries to gracefully close the connection.    If connection has been already closed, does not perform any
action.

Read Method
unit msSocket;

applies to
TmsSocket component

declaration
function Read(var Buffer; Count : LongInt) : LongInt;

description
Receives Count bytes from the connected socket into the Buffer.    If the operation was successfull,
returns the number of received bytes, if not, returns SOCKET_ERROR (-1).    Works the same way as
Winsock recv function.    It would be better if you use more high level TmsSocket methods for sending or
receiving data.

Write Method
unit msSocket;

applies to
TmsSocket class

declaration
procedure Write(const Buffer; Count : LongInt);

description
Sends the Count bytes, contained in the Buffer, via connected socket.    It would be better if you use more
high level TmsSocket methods for sending or receiving data.

RecvChunkedStream method
unit msSocket;

applies to
TmsSocket component

declaration
procedure RecvChunkedStream(Stream : TStream);

description
Receives so called chunked data, which is used in HTTP.    Used internally in TmsHTTPClient component
and you should not have any need to call this method directly.

SendChunkedStream method
unit msSocket;

applies to
TmsSocket component

declaration
procedure SendChunkedStream(Stream : TStream);

description
Sends so called chunked data, which is used in HTTP.    Currently is not used in IMS, but you may need to
call it if you decide to create HTTP server.

RecvLine method
unit msSocket;

applies to
TmsSocket component

declaration
function RecvLine: string;

description
Receives a sequence of characters, until detects CRLF (^M^J), or LF (^J).    Uses Read method.

SendLine method
unit msSocket;

applies to
TmsSocket component

declaration

procedure SendLine(const s: string);

description
Sends the characters, contained in s, via the open socket, followed by CRLF (^M^J).    Uses Write
method.

RecvLineStream method
unit msSocket;

applies to
TmsSocket component

declaration
procedure RecvLineStream(Stream: TStream; FullSize: LongInt);

description
Majority of standard Internet protocols frequently are sending back the data which contains multiple lines,
followed by the period on the single line (^M^J'.'^M^J), which indicates the end of the data.    This
procedure is designed to handle these kind of data sent by servers.    The data will be received in the
Stream object, FullSize parameter is used to display the transfer progress, if OnTransferProgress event
handler is assigned.    You should pass FullSize, if you already know the size of the data which should be
received, otherwise, you should pass -1.

OnTransferProgress event
unit msSocket;

applies to
TmsSocket classt

declaration
procedure OnTransferProgress: TmsProgressEvent;

description
Can be used to display the progress of the transfer.    Please see TmsProgressEvent for more information.

RecvMultiLines method
unit msSocket;

applies to
TmsSocket component

declaration

procedure RecvMultiLines(Lines: TStrings);

description
Certain commands in standard Internet protocols require the server reply which contains multiple lines.   
This method handles this kind of replies.    It is used internaly in IMS Client components.

RecvStream method
unit msSocket

applies to
TmsSocket class

declaration
procedure RecvStream(Stream : TStream; FullSize, StartPosition: Integer);

description
Receives the data from the server, and stores it into the Stream until connection from the server is reset,
or FullSize bytes have arrived.    If FullSize is -1, then it is ignored.    If StartPosition>0, the data will be
appended to the Stream, starting from the position indicated by this parameter.

SendStream method
unit msSocket;

applies to
TmsSocket class

declaration
procedure SendStream(Stream : TStream; StartPosition: Integer);

description
Sends the content of the Stream, starting from StartPosition.

LogFileName property
unit msSocket;

applies to
TmsSocket component

declaration
LogFileName: string;

description
If this property is assigned, the conversation between the client and the server will be stored into the file,
with the name assigned to this property, after you call SaveLogFile method.

SaveLogFile method
unit msSocket;

applies to
TmsSocket component

declaration
procedure SaveLogFile;

description
If LogFileName property is not blank, the conversation between the client and server will be saved to the
file.    Can be used for debugging.

OnConnected
OnDisconnected
OnOOBData
OnRead
OnTransferProgress
OnWrite

OnConnected event
unit msSocket;

applies to
TmsSocket class

declaration
property OnConnected: TNotifyEvent;

description
This event handler will be triggered as soon as the connection has been established

OnDisconnected event
unit msSocket;

applies to
TmsSocket class

declaration
property OnDisconnected: TNotifyEvent;

description
This event handler will be triggered when connection is closed.

OnOOBData event
unit msSocket;

applies to
TmsSocket class

declaration
OnOOBData: TNotifyEvent;

description
This event handler will be triggered if out of band data arrives.    This event handler is not published, and
is used internally by IMS, namely, TmsFTPClient component.

OnRead and OnWrite events
unit msSocket;

applies to
TmsSocket class

declaration
OnRead: TNotifyEvent;
OnWrite: TNotifyEvent;

description
These event handlers will be triggered when the socket is ready to read (OnRead) or write (OnWrite).   
These event handlers are not published and are used internally...

TmsProgressEvent type
unit msSocket;

declaration
TmsProgressEvent = procedure(Sender: TObject; Perc, ByteCount, LineCount:
LongInt) of Object;

description
This is a type of OnTransferProgress event handler of TmsSocket class.    You can display the progress of
the data transfer.

Meaning of parameters is as follows:

Perc - Percentage of transferred data.    If it is -1, it means that the entire size of the data to be transferred
is not known, and this parameter cannot be used;

ByteCount - Number of transferred bytes.    Works in all cases;;

LineCount - Number of transferred lines.    This parameter will work only in certain cases, e.g., when
retrieving the list of newsgroups using TmsNNTPClient component.    If it is -1, it means that IMS cannot
determine the number of retrieved lines and this parameter should not be used.

Host
Port

inherited from TmsSocket
LogFileName
TimeOut *

inherited from TmsSocketBase
SleepTime *
Socket

Host Property
unit msSocket;

applies to
TmsClientSocket class

declaration
Host: string;

description
The name (e.g., mail.domain.com), or an IP address (e.g. 123.111.211.111) of the computer you are trying
to connect to.    When you call Connect method, the TmsClientSocket component will attempt to the
computer specified in this property, to the port specified in Port property.

Port property (for client components)
unit msSocket;

applies to
TmsClientSocket class

declaration
Port: SmallInt;

description
When you call Connect method, the TmsClientSocket component will attempt to connect to the computer
specified in Host property, to the port specified here...

Connect method
unit msSocket;

applies to
TmsClientSocket class

declaration
procedure Connect; virtual;

description
Attempts to connect to the computer specified in the Host property, on the port specified in Port property.

Connect

inherited from TmsSocket
Cancel
Disconnect
Read
RecvChunkedStream
RecvLine
RecvLineStream
RecvMultiLines
RecvStream
SaveLogFile
SendChunkedStream
SendLine
SendStream
Write

Available
WinsockInfo
LocalName
LocalAddress

OnConnecting

inherited from TmsSocket
OnConnected
OnDisconnected
OnOOBData
OnRead
OnTransferProgress
OnWrite

OnConnecting event
unit msSocket;

applies to
TmsClientSocket component

declaration
OnConnecting: TNotifyEvent;

description
Will be triggered after you call Connect method.    Can be used to display the information, that your
program attempts to connect to the host, e.g.

procedure TForm1.SMTPOnConnecting(Sender: TObject);
begin
 StatusBar.SimpleText:='Connecting to '+SMTP.Host;
end;

TmsWinsock Class
properties methods
unit msWSock;

declaration
TmsWinsock = class

description

TmsWinsock class exports winsock functions from winsock.dll (wsock32.dll).    They are the methods of
this class, which means, if you want to call any winsock function, you can call them via
TmsWinsock.Class.

It also has other useful methods, which can be used to retrieve useful information.    Please keep in mind,
that you do not need to create the instance of this object in your application, since it always exists. Then
name of this global object is msWinsock.    It is declared in the unit msWSock.    Also, we will not be
describing the functions from winsock in this help file.    You will find the descriptions only of methods and
properties which are unique for IMS.

Impotant:    You don't have to create an instance of TmsWinsockClass.    It always exists in your
application, its name is msWinsock, and is declared in msWSock unit.

Available property
unit msWSock;

applies to
TmsWinsock class

declaration
Available: boolean;

description
You can use this property to find out whether Winsock implementation is available on the computer.    You
can check msWinsock.Available property and if it is false, disable winsock related items in your program.

WinsockInfo property
unit msWSock;

applies to
TmsWinsock class

declaration
WinsockInfo: TmsWinsockInfo;

description
Allows you to retrieve the Winsock information.    TmsWinsockInfo record is declared as:

 TmsWinsockInfo = record
 Version : Word;
 HighVersion : Word;
 Description : ShortString;
 SystemStatus : ShortString;
 MaxSockets : Word;
 MaxUdpDg : Word;
 end;

This record is a "Pascalized" version of TWSAData structure, which is declared in winsock.pas and
comes with Delphi.

LocalName property
unit msWSock;

applies to
TmsWinsock class

declaration
LocalName: string;

description
allows you to get the local name of your computer.

LocalAddress property
unit msWSock;

applies to
TmsWinsock class

declaration
LocalAddress: string;

description
Contains the IP address of your computer, in dot separated numeric format.

msGetHostByName
msGetHostByAddr
msGetInAddr

msGetHostByName method
unit msWSock

applies to
TmsWinsock class

declaration
function msGetHostByName(const AName : string) : string;

description
Converts the domain name into the IP address in a dot separated numeric format.

msGetHostByAddr method
unit msWSock;

applies to
TmsWinsock class

declaration
function msGetHostByAddr(const AnAddr : string) : string;

description
Attempts to convert the IP address in a dot separated numeric format into the domain name.    Can be
used to perform the reverse lookup of your own IP address.    For example:

MyReverseDomainName:=msWinsock.msGethostByAddr(msWinsock.LocalAddress);

msGetInAddr method
unit msWSock;

applies to
TmsWinsock class

declaration
function msGetInAddr(const AnAddr : string) : TInAddr;

description
Converts a dot separated numeric IP address into the standard winsock TInAddr structure.

Data
EnvelopeSender
EnvelopeRecipients
MailMessage

inherited from TmsClientSocket
Host
Port

inherited from TmsSocket
LogFileName
TimeOut *

inherited from TmsSocketBase
SleepTime *
Socket

MailMessage property
unit msSMTP;

applies to
TmsSMTPClient and TmsPOPClient components

declaration
MailMessage: TmsMessage;

description
Holds the data which will be sent using TmsSMTPClient component, or which has been retrieved using
TmsPOPClient component.    See the desription of TmsMessage component.

Login
Logout
SendMail
Send

inherited from TmsClientSocket
Connect

inherited from TmsSocket
Cancel
Disconnect
Read
RecvChunkedStream
RecvLine
RecvLineStream
RecvMultiLines
RecvStream
SaveLogFile
SendChunkedStream
SendLine
SendStream
Write

OnAddressRejected event
unit msSMTP;

applies to
TmsSMTPClient component

declaration
OnAddressRejected: TmsAddressRejectEvent;

description
Triggered when the address, supplied in the MailMessage.Recipient has been rejected by the server.   
You have a choice either cancel the sending process, or continue with other recipients.    See the
description of TmsAddressRejectEvent type for more information.

Login method (TmsSMTPClient)
unit msSMTP;

applies to
TmsSMTPClient component

declaration
Procedure Login;

description
Calls Connect method, and, after the connection is established, logs into the SMTP server, sending
appropriate SMTP commands.

Logout method (TmsSMTPClient)
unit msSMTP;

applies to
TmsSMTPClient component

declaration
procedure Logout;

desription
Logs out of SMTP server, by sending QUIT command, and closes the connection, by calling Disconnect
method..

SendMail method
unit msSMTP;

applies to
TmsSMTPClient component

declaration
procedure SendMail;

description
Transfers the data, contained in MailMessage property, to the SMTP server.    You must be logged into the
server, by calling Login method, if you wish to use this method.    This method can be useful if you want to
send multiple messages during the one session, during the single connection to the server.    Don't forget
to call Logout after you are done.    If you wish to send single message during the single connection, use
Send method.

Example:

msSMTPClient1.Login;
for i:=1 to TotalMessageToSend do
begin
 // assign the data to the msSMTPClient1.MailMessage here
 msSMTPClient1.SendMail;
end;
msSMTPClient1.Logout;

Send method
unit msSMTP;

applies to
TmsSMTPClient component

declaration
procedure Send;

description
Logs into the server, sends the MailMessage, and logs out of the server.    Use this method if you wish to
send single message during one connection to the server.    If you wish to send multiple messages, see
SendMail method, along with LogIn and Logout.

OnAddressRejected
OnPreparing
OnSending
OnSent

inherited from TmsClientSocket
OnConnecting

inherited from TmsSocket
OnConnected
OnDisconnected
OnOOBData
OnRead
OnTransferProgress
OnWrite

TmsAddressRejectEvent type
unit mssocket;

declaration
TmsAddressRejectEvent = procedure(Sender: TObject; const TheAddress,
ServerReply: string; var Proceed: boolean) of Object;

description
This is a type of OnAddressRejectedEvent event handler of TmsSMTPClient component.    Some SMTP
servers do checking of the recipients.    If the server does not like a recipient by any reason, it will reject
the address, returning the explanation.    If this situation occurs, the reply string from the server will be in
the ServerReply parameter, the rejected address - in the TheAddress parameter.    In this event handler
you have to set the value of Process parameter.    If you set it to True, the component will attempt to
continue sending other addresses to the server, if it is False, then the message will be not sent. Default
value is False.

OnPreparing event
unit msSMTP;

applies to
TmsSMTPClient component

declaration
OnPreparing: TNotifyEvent;

description
This event handler will be called as soon as TmsSMTPClient component starts the preparation of    the
MailMessage.    If the attachments are large, then it may take some time, and this event handler can be
useful to display the message to the user that the message has been prepared for sending.

OnSending event
unit msSMTP;

applies to
TmsSMTPClient component

declaration
OnSending: TNotifyEvent;

description
You can use this event handler to display to the user that TmsSMTPClient component currently is sending
the message.

OnSent event
unit msSMTP;

applies to
TmsSMTPClient component

declaration
OnSent: TNotifyEvent;

description
Triggered as soon as the mail message has been sent.    Can be used to display the message about it to
the user.

CurrentMessage
MailMessage
Password
TotalMessages
TotalOctets
UserName

inherited from TmsClientSocket
Host
Port

inherited from TmsSocket
LogFileName
TimeOut *

inherited from TmsSocketBase
SleepTime *
Socket

RetrieveAsStream method
unit msPOP

applies to
TmsPOPClient component

declaration
procedure RetrieveAsStream(Stream: TStream);

description
Important: Recommended for advanced users.    Retrieves the current message into the Stream object.   
The stream must exist before calling this method.    Retrieves the message, but does not fill in the
properties of MailMessage property.    Can be useful if you wish to process the data, contained in the mail
message by youself, bypassing TmsMessage component.

We are planning to release the advanced MIME processing components, which will be able to process
much more MIME types than current TmsMessage component.    This method can be used in conjunction
with it.    TmsSMTPClient component also has the properties and a method which would allow you to send
previously prepared data, without using MailMessage property, such as EnvelopeSender,
EnvelopeRecipients, and Data.

CurrentMessage property
unit msPOP;

applies to
TmsPOPClient component

declaration
CurrentMessage: Integer;

description
Has meaning only after calling Login method.    Points to the current message on the server.    The number
is 0-based.    If there are no messages on the server, it will be set to -1, and any attempt to set it to some
other number will not change anything (no error will be generated).    If there are the messages and you
attempt to assign the number which is more than TotalMessages-1, it will be set to the last message.    If
you attempt to set the negative number, it will be set to 0.    No error will be generated.

Data property
unit msSMTP

applies to
TmsSMTPClient component

description
procedure Data: TStream;

declaration
Contains the data which should be actually transferred to to the server.    The stream must exist before
you assign it to this property.

Important: should be used only by advanced users.    Usually, if you fill in the MailMessage property, you
don't need to use Data, EnvelopeSender and EnvelopeRecipients properties.    But if you don't like how
TmsMessage component handles the things, then you can prepare the email message by yourself, and
send it using TmsSMTPClient component.    When you call Send, or SendMail, TmsSMTPClient
component will check whether Data property has the value (it is not nil), and if it does, the data contained
in MailMessage property will be ignored.

We are planning to provide advanced MIME component.    It will be able to handle more advanced MIME
content types than TmsMessage component.    Then these properties will become much more useful.

See also EnvelopeSender, EnvelopeRecipients properties and RetrieveAsStream method of
TmsPOPClient component.

TotalMessages property
unit msPOP

applies to
TmsPOPClient component

declaration
TotalMessages: Integer;

description
Has meaning only after calling Login method, and contains the number of total messages on the server.   
You can iterate through the messages by their numbers, by setting CurrentMessage property from 0 to
TotalMessages-1.

TotalOctets property
unit msPOP

applies to
TmsPOPClient component

declaration
TotalOctets: Integer;

description
Has meaning only after calling Login method.    Contains the size of all messages on the server.

UserName property (TmsPOPClient)
unit msPOP

applies to
TmsPOPClient component

declaration
UserName: string;

description
Name of the user on the POP server.    Along with Password, makes it possible to log into the server.

Password property (TmsPOPClient)
unit msPOP

applies to
TmsPOPClient component

declaration
Password: string;

description
Password of the user account on the POP server.    You also should supply UserName property in order to
log into the server.

Delete
GetUIDL
GetSize
Login
Logout
Retrieve
RetrieveAsStream
RetrieveHeaders

inherited from TmsClientSocket
Connect

inherited from TmsSocket
Cancel
Disconnect
Read
RecvChunkedStream
RecvLine
RecvLineStream
RecvMultiLines
RecvStream
SaveLogFile
SendChunkedStream
SendLine
SendStream
Write

Login method (TmsPOPClient)
unit msPOP

applies to
TmsPOPClient component

declaration
procedure Login;

description
Connects to the server, by calling Connect method, logs into the server, sending the UserName and
Password, and fills in TotalMessages and TotalOctets properties.

Delete method
unit msPOP

applies to
TmsPOPClient component

declaration
procedure Delete;

description
Marks current message for deletion.    Message will be actually deleted only after calling Logout method.   
That's the way POP3 protocol works.

Logout method (TmsPOPClient)
unit msPOP

applies to
TmsPOPClient component

declaration
procedure Login;

description
Logs out from the server, by sending QUIT command, and disconnects from the server, using Disconnect
method.

EnvelopeRecipients property
unit msSMTP

applies to
TmsSMTPClient component

declaration
EnvelopeRecipients: TStrings;

description
Contains the email addresses of recipients.    Used only if Data property is assigned.

Important: should be used only by advanced users.    Usually, if you fill in the MailMessage property, you
don't need to use Data, EnvelopeSender and EnvelopeRecipients properties.    But if you don't like how
TmsMessage component handles the things, then you can prepare the email message by yourself, and
send it using TmsSMTPClient component.    When you call Send, or SendMail, TmsSMTPClient
component will check whether Data property has the value (it is not nil), and if it does, the data contained
in MailMessage property will be ignored.

We are planning to provide advanced MIME component.    It will be able to handle more advanced MIME
content types than TmsMessage component.    Then these properties will become much more useful.

See also Data, EnvelopeSender properties and RetrieveAsStream method of TmsPOPClient component.

EnvelopeSender property
unit msSMTP

applies to
TmsSMTPClient component

declaration
EnvelopeSender: string;

description
Contains the emal address of sender.    Used only if Data property is assigned.

Important: should be used only by advanced users.    Usually, if you fill in the MailMessage property, you
don't need to use Data, EnvelopeSender and EnvelopeRecipients properties.    But if you don't like how
TmsMessage component handles the things, then you can prepare the email message by yourself, and
send it using TmsSMTPClient component.    When you call Send, or SendMail, TmsSMTPClient
component will check whether Data property has the value (it is not nil), and if it does, the data contained
in MailMessage property will be ignored.

We are planning to provide advanced MIME component.    It will be able to handle more advanced MIME
content types than TmsMessage component.    Then these properties will become much more useful.

See also Data, EnvelopeRecipients properties and RetrieveAsStream method of TmsPOPClient
component.

OnMessageRetrieved event
unit msPOP

applies to
TmsPOPClient component

declaration
OnMessageRetrieved: TNotifyEvent;

description
Called when the component has finished the retrieving of the current message.

GetSize method
unit msPOP

applies to
TmsPOPClient component

declaration
function GetSize: Integer;

description
Returns the size of the current message.

GetUIDL method
unit msPOP

applies to
TmsPOPClient component

declaration
function GetUIDL: string;

description
Returns the UIDL of current message.    UIDL is a unique string assigned to the message by POP server.
Note, that not all servers support it.    In this case this function will return blank string.

Retrieve method (TmsPOPClient)
unit msPOP

applies to
TmsPOPClient component

declaration
procedure Retrieve;

description
Retrieves current message.    The component will process the data and fill in the instance of TmsMessage
component, which is assigned to the the MailMessage property.

RetrieveHeaders method (TmsPOPClient)
unit msPOP

applies to
TmsPOPClient component

declaration
procedure RetrieveHeaders;

description
Retrieves headers of the current message, and fills following properties of MailMessage property:

CC,, Recipients, ReturnReceipt, Priority, CharSet, ContentType, Encoding, Headers, Sender, Subject

For example, if you want to retrieve the Date header, you can do

MyPOPClient.RetrieveHeaders;
s:=MyPOPClient.MailMessage.Headers.GetFieldBody('Date');

OnRetrievingMessage
OnMessageRetrieved

inherited from TmsClientSocket
OnConnecting

inherited from TmsSocket
OnConnected
OnDisconnected
OnOOBData
OnRead
OnTransferProgress
OnWrite

Attachments
Body
CharSet
ContentType
Encoding
Headers
Sender
Subject

BCC
CC
Recipients
ReturnReceipt
Priority

inherited from TmsCustomMessage
Attachments
Body
CharSet
ContentType
Encoding
Headers
Sender
Subject

OnRetrievingMessage event
unit msPOP

applies to
TmsPOPClient component

declaration
OnRetrievingMessage: TNotifyEvent;

descritpion
Triggered when TmsPOPClient component starts the retrieving of the message.

Assign
Clear
ExecuteAttachment
LoadFromStream
LoadFromFile
SaveAttachment
SaveToStream
SaveToFile

Newsgroups

inherited from TmsCustomMessage
Attachments
Body
CharSet
ContentType
Encoding
Headers
Sender
Subject

Attachments property
unit
msMsg

applies to
TmsCustomMessage component

declaration
property Attachments : TsmAttList;

description
Contains a list of attachments.    Use Attachments property to access the individual attachment.    For
example, the following code:

s:=MyMessage.Attachments[i].ContentType;

will assign to the string variable s the content type of the attachment no i.

TmsAttList type
unit msMsgCls;

declaration
 TmsAttList = class(TPersistent)
 private
 FList : TList;
 function GetItem(Index : Integer) : TmsAttItem;
 procedure SetItem(Index : Integer; Value : TmsAttItem);
 function GetCount : Integer;
 procedure ReadData(Reader : TReader);
 procedure WriteData(Writer : TWriter);
 protected
 procedure DefineProperties(Filer : TFiler); override;
 public
 constructor Create;
 destructor Destroy; override;

 function Add(Value : TmsAttItem) : Integer;
 function AddFile(const FileName : string) : Integer;
 procedure Clear;
 procedure Delete(Index : Integer);
 procedure Assign(Source : TPersistent); override;
 procedure Exchange(Index1,Index2 : Integer);
 property Count : Integer read GetCount;
 property Items[Index : Integer] : TmsAttItem read GetItem write SetItem;
default;
 end;

description
The list of TmsAttItem objects.    This is the type of the Attachments property of TmsCustomMessage
component.

TmsAttItem type
properties
unit
msMsgCls

declaration
TmsAttItem = class(TPersistent)

description

Encapsulates the Internet mail attachment.    The contents of the attachment is contained in the Contents
property, FileName property is the name of the file attachment.    ContentType is the MIME type, it is
assigned automatically, based on the extension of the FileName, and the data contained in the Windows
registry, but you can still change it, if you assign it after assigning the FileName.    The same applies to the
ContentTransferEncoding property, which indicates the method of the encoding of the attachment.

Contents
ContentType
ContentTransferEncoding
FileName

Contents property
unit
msMsgCls;

applies to
TmsAttItem class

declaration
property Contents : TMemoryStream;

description
Contains the actual contents of the attachment.    It can binary data, such as a contents of the jpeg
picture, or text, if you are sending the text file.

ContentType property (TmsAttItem)
unit
msMsgCls;

applies to
TmsAttItem class;

declaration
property ContentType : ShortString;

description
This is a MIME type of the attachment.    TmsAttItem retrieves the data from the registry, when you set the
FileName property.    This will be the default MIME type.    But you can change it before sending the
message.    This value will appear in the Content-Type header when you are sending the message.

When receiving the message, ContentType property is set to the one contained in the header of the
received message.

ContentTransferEncoding property
unit
msMsgCls;

applies to
TmsAttItem class

declaration
property ContentTransferEncoding : TEncoding;

description
Usually you don't have to use this property.    Before sending the message TmsAttItem will try to figure out
which value to choose to set this property based on the ContentType property.    The following rules apply:
if ContentType contains string 'TEXT', then ContentTransferEncoding will be etQP, otherwise - etBase64.
In other words, for text attachments IMS will use Quoted-Printable encoding methods, for all other cases -
Base64.

TEncoding type is declared in msMsgCls unit as follows:

TEncoding = (etNone, etBase64, etQP);

FileName property
unit
msMsgCls;

applies to
TmsAttItem class

declaration
property FileName : ShortString;

description
File name of the attachment.    Presently the Internet Mail Suite supports only file attachments, if while
decoding the TmsCustomMessage won't find the file name for the attachment, it will assign one itself. On
the other hand, while sending the messages, you cannot add the attachment to the TmCustomMessage
component without specifying the file name.

Body property
unit
msMsg

Applies to:
TmsCustomMessage component;

declaration
property Body : TStrings;

description
This is a body of the message itself.    If typed the message in memo1 and want to send its contents as
email message, or the Usenet article, the following code will do it:

msMessage.Body:=Memo1.Lines;

CharSet property
unit
msMsg;

applies to:
TmsCustomMessage component;

declaration
property CharSet : TmsCharSet;

description
This property will be useful for European and Japanese users.    If this property is set to csISO8859, then
the body will be encoded using Quoted-Printable method, if it is set to csISO2022jp (Japanese character
set), the message headers, such as a subject and the names of the senders and recipients, will be
encoded using Base64 method, as described in rfc1522.

TmsCharSet type
Unit
msMsgCls

Declaration
TmsCharSet = (csUSASCII,csISO8859,csISO2022jp);

Description
a type of CharSet property of the TmsCustomMessage component.    Indicates which character set is to
be used when encoding the message body.

ContentType property (TmsCustomMessage)
unit
msMsg;

applies to:
TmsCustomMessage component;

declaration:
property ContentType : ShortString;

description
This property makes sense only if Encoding property is set to meMIME.

You should not modify this property directly, it will be set automatically by TmsCustomMessage
component.    We did not make it read only because we wanted it to appear in the Object Inspector.    It will
help the users to understand better how it works.

But here is the additional information:

It will be auto generated based on the Body and Attachments properties.    There are the following rules:

a) If the body of the message is empty:
if there is only one attachment, then ContentType is the same as the ContentType property of this
attachment, if there are more than one attachments, then ContentType is multipart/mixed.

b) if the body of the message is not empty:
if there are no attachments, then ContentType is text/plain, otherwise - multipart/mixed. If you wish to
send the html message, then set the property to text/html after you assigned to the Body property html
content.

c) If the body of message is not empty, and the attachments are named as follows:    _alt.xxx.. _alt.yyy
where xxx and yyy are extensions (for example rtf, htm) ContentType will be multipart/alternative.    This
content type requires more explanation and you can read the special section dedicated to the
multipart/alternative messages.

multipart/alternative messages
multipart/alternative type is relatively new and is used only by advanced mail programs, such as the latest
versions of Microsoft Outlook/Outlook Express, and Netscape mail.

Here is how rfc1522 explains this content type::

The multipart/alternative type is syntactically identical to multipart/mixed,
but the semantics are different. In particular, each of the parts is an
"alternative" version of the same information.

Systems should recognize that the content of the various parts are
interchangeable. Systems should choose the "best" type based on the local
environment and preferences, in some cases even through user interaction. As
with multipart/mixed, the order of body parts is significant. In this case,
the alternatives appear in an order of increasing faithfulness to the
original content. In general, the best choice is the LAST part of a type
supported by the recipient system's local environment.

Multipart/alternative may be used, for example, to send mail in a fancy text
format in such a way that it can easily be displayed anywhere

You can generate multipart/alternative messages using TmsCustomMessage component

1. Assign the text/plain version of the message to the Body property of TmsCustomMessage component;

2. Create alternative version(s) as file(s).    Name files as _alt.xxx, where xxx can be, for example, html, rtf
etc.    The file name must but _alt, otherwise TmsCustomMessage component will generate
multipart/mixed message;    The file names in the encoded messages will be suppressed, so you don't
have to worry about ugly file names.    This name is used internally by TmsMessage components, just to
guess that you are trying that to generate multipart/alternative message.

3. Attach _alt.xxx files as attachments.    These files must follow the message body, i.e. the 0th attachment
must be _alt.xxx file. Otherwise multipart/mixed file will be generated;

4. If you want to attach another files, do it after attaching all _alt.xxx files.    In this case the Content-Type
of the message itself will be multipart/mixed, but the alternative parts will be included as a
multipart/alternative subsection;

PLEASE NOTE:    The Internet Mail Suite does not provide any methods to create html or rtf files.    It is
your, programmer's responsibility to handle this.

How to decode multipart/alternative messages

1. Save the received message into the stream/file and call LoadFromStream or LoadFromFile method;

2. If the message does not contain attachments, first section of the message (TmsCustomMessage
assumes that first section is text/plain) will be stored in the Body property, the alternative sections will    be
stored as attachments.    The ContentType will be multipart/alternative;    Names will be _alt.# where # is
the zero-based number of the message;    It is your responsibility to look up the
Attachments[i].ContentType property and

according to its value (e.g. text/html, text/rtf) choose the section you wish to display;

3. If the message contains attachments, the ContentType will be multipart/mixed.    The first section of the

multipart/alternative section (again, TmsCustomMessage will assume that first section is text/plain) will be
stored into the Body property.The following alternative sections will be stored as attachments with names
_alt.#, where # is the zero-based number of the message; Again, it is your responsibility to look up the
Attachments[i].ContentType property and choose the section you wish to display;    The 'real' attachments
will follow the alternative sections.

Please use this feature with caution, if you need assistance or more information, send mail to
archie@argosoft.com.

Encoding property
unit
msMsg;

applies to:
TmsCustomMessage component;

declaration
property Encoding : TmsMsgEncoding;

description
indicates which encoding method (MIME/Base64 or UUCode) to use when sending the messages with
attachments.    Default value is meMIME.

Please note, that if this property is set to meMIME the attachments will be encoded according to the
MIME standards, if it is set to meUU, all attachments, including non-binary ones will be encoded using
UUEncode method.

TmsEncoding type is delcared in the msMsgCls.pas unit as follows:

TmsMsgEncoding = (meMIME, meUU);

Headers property
unit
msMsg;

applies to:
TmsCustomMessage component;

declaration
property Headers : TmsHeaders;

description
A list of headers of the mail message or usenet article.    Items should be in the format requested by
rfc822. TmsCustomMessage component does not do any verification, except when sending a message.   
If you insert the headers which are automatically generated by TmsCustomMessage, they will be
discarded    Use this property only to set additional headers, which are not generated by
TmsCustomMessage component.

For example, the following code will add the X-Mailer header to your outgoing message:

MyMessage.Headers.Add('X-Mailer: My Email Client');

Following headers are automatically generated by TmsCustomMessage component:

From: based on Sender property
Mime-Version: 1.0 hardcoded
Content-Type: based on ContentType property
Content-Transfer-Encoding: based on CharSet property, also on Body properties (see discussion about
ContentType property)

Here are the headers which are generated, in addition to the ones above, by TmsMessage component:

To: based on Recipients property;
CC: based on CC property
Priority: based on Priority property
Return-Receipt: based on ReturnReceipt and Sender properties

And, one header, which is generated by TmsArticle component:
Newsgroups: based on Newsgroups property.

Sender property
unit
msMsg

applies to:
TmsCustomMessage component;

declaration
property Sender : TmsMailAddress;

description
Contains the address and name of sender.    If sending the message, you have to fill in at least the
Address of Sender, otherwise the message will be not sent.

Recipients property
unit
msMsgCls

applies to
TmsMessage component

declaration
property Recipients : TmsAddressList;

description
A list of recipients of mail message.    Probably you will be setting only one recipient, but if you wish to
address the message to many people, you can set multiple addresses.    You can also use CC and BCC
properties for these purposes.    All three properties work the same way, because they all are of the same
type: TmsAddressList.      When sending the message, at list one address field either Recipients or CC
lists must be set.

Example:
The following code adds the address 75231.330@compuserve.com to the list of recipients.    There are
two ways to do it:

procedure TForm1.Button1Click(Sender : TObject);
begin
 msMessage1.Recipients.AddAddress('75231.330@compuserve.com','');
end;

or

procedure TForm1.Button2Click(Sender : TObject);
var
 Addr : TmsMailAddress
begin
 Addr:=TmsMailAddress.Create;
 Addr.Address:='75231.330@compuserve.com';
 msMessage1.Add(Addr);
end;

CC property
unit
msMsg

applies to
TmsMessage component

declaration
property CC : TmsAddressList;

description
Contains a list of Carbon Copy recipients of the email message.    The names listed here will be included
in the outgoing message.    If you want to send a message to someone, but not to include his/her name
and address in the headers of the message, use BCC property.

Priority property
unit
msMsg

applies to
TmsMessage component;

declaration
property Priority : TPriority;

description
Indicates the priority of message. It will work only if receiver agent supports 'X-priority' header. ptLow
priority corresponds to X-priority=5, ptNormal - X-priority=2, ptHigh - X-Priority=1.    Default is ptNormal.

TPriority type is declared in msMsgCls.pas unit as follows:

TPriority = (ptLow,ptNormal,ptHigh);

ReturnReceipt property
unit
msMsg

applies to
TmsMessage component

declaration
property ReturnReceipt : boolean;

description
Is set to true if the message delivery receipt has been requested.    Please keep in mind, that majority of
server do not honor this request.    Default is false.

Newsgroups property
unit msMsg;

applies to
TmsArticle component;

declaration
property NewsGroups : string;

description
Lists newsgroups where the article will be posted if you call msNNTP.PostArticle method, or, if the article
has been retrieved from the server, contains the list of newsgroups where the message was cross posted.
The names of the newsgroups would be comma-separated.

TmsHeaders class
methods
unit msMsgCls;

declaration
TmsHeaders = class(TStringList)

description
Implements Internet message headers.    This is the type of the Headers property of TmsCustomMessage
component. Contains the methods for parsing and retrieving field values.    You can use these methods
when you are looking for some specific values in the message headers.

Contains
GetFieldBody
GetMultilineFieldBody
Remove

Contains method
unit msMsgCls;

applies to
TmsHeaders class

declaration
function Contains(const ss : string; MatchCase : boolean) : boolean;

description
performs simple parsing of the headers and returns true if at least one header contains the string ss
 If MatchCase is true, then search is case sensitive.

GetFieldBody method
unit
msMsgCls

applies to
TmsHeaders class

declaration
function GetFieldBody(FieldName : string) : string;

description
Returns the body of the header field, without the Field name itself, for example, if one of the lines in
TmsHeaders class is

Return-Receipt-To: jdoe@domain.com

the function
GetFieldBody('Return-Receipt-To')

will return

jdoe@domain.com

The search is not case sensitive, you also don't have to pass ':', GetFieldBody function checks for it and
adds ':' if it not present.

To retrieve multiline fields, use GetMultiLineFieldBody method.

GetMultiLineFieldBody method
unit
msMsgCls

applies to
TmsHeaders class

declaration
procedure GetMultiLineFieldBody(FieldName : string; FieldBody : TStringList);

description
Parses the strings contained in the instance of TmsHeaders class and returns the lines it finds related to
the FieldName string.    For example:

assume the message contains the following headers:

CC: John Doe <jdoe@domain.com>, Argosoft <argosoft@interlog.com>
Return-Receipt-To: ao149@torfree.net
CC: janedoe@aol.com (Jane Doe)

the call
GetMultiLineFieldBody('CC',TempStrings);

will fill the Strings property of TempStrings by the following information:

Strings[0] John Doe <jdoe@domain.com>
Strings[1] Argosoft <argosoft@interlog.com>
Strings[2] janedoe@aol.com (Jane Doe)

i.e. all separators will be removed and the method will return the date you can process using the the
procedures from msUtils unit.

Remove method
unit
msMsgCls

applies to
TmsHeaders class

declaration
procedure Remove(FieldName : string);

description
Locates and removes all headers FieldName from the TmsHeaders class.

TmsMailAddress class
unit msMsgCls;

declaration
 TmsMailAddress = class(TPersistent)
 private
 FName : ShortString;
 FAddress : ShortString;
 public
 procedure Assign(Value : TmsMailAddress);
 procedure Edit; virtual;
 procedure Clear;
 published
 property Name : ShortString read FName write FName;
 property Address : ShortString read FAddress write FAddress;
 end;

description
TmsMailAddress contains just two properties: Address and Name, where Address is the Internet email
address and Name is the name of a sender, recipient or the member of CC or BCC list.

Usually, when assigning the values, Name can be omitted, but Address has to be entered.

Subject property
unit
msMsg;

applies to
TmsCustomMessage component

declaration
property Subject: string;

description
A subject line of the mail message or newsgroup article.

Assign method
unit
msMsg

applies to
TmsCustomMessage component

declaration
procedure Assign(Value : TPersistent);

description
If Value is not TmsCustomMessage, raises exception, if Value is TmsCustomMessage then copies full
contents of Value to the current instance.

Clear method (TmsCustomMessage)
unit
msMsg

applies to
TmsCustomMessage component

declaration
procedure Clear;

description
Clears all the contents of the TmsCustomMessage component, resets the counts of all lists to zero and
disposes all allocated memory.    If you wish to send different messages in a row, you have to call this
method, otherwise, if you add new objects to the list properties, old values will be not cleared.    For
example, if you are sending the message with the file attached, then you want to send another message
to another recipient with another attachment, you have to call this method after sending first message,
otherwise, if you use Attachments.AddFile method, old attachment will be not discarded and both
attachments will be sent to second recipient.

ExecuteAttachment method
unit
msMsg

applies to
TmsCustomMessage component

declaration
procedure ExecuteAttachment(Index : Integer);

description
Executes the attachment # Index.    Calls ShellExecute windows API function, which checks if there is
some action associated with 'open'-ing of the attached file and executes it.    The files are temporarily
saved in the temporary directory and are deleted when destroying TmsCustomMessage component.

LoadFromStream method
unit
msMsg

applies to
TmsCustomMessage component

declaration
procedure LoadFromStream(AStream : TStream);

description
Loads the raw email message, received from server, decodes attachments and fills in the fields of
TmsCustomMessage object.    If an error occurs while decoding the data, the entire original message will
be saved as the next available attachment and in the body of message will appear the warning. If you
have the raw email message in the file, use LoadFromFile method, which, internally uses
LoadFromStream method.

LoadFromFile method
unit
msMsg

applies to
TmsCustomMessage component

declaration
procedure LoadFromFile(const FileName : string);

description
Loads the raw email message received from server, decodes attachments and fills in the fields of
TmsCustomMessage object.    If an error occurs while decoding the data, the entire original message will
be saved as the next available attachment and in the body of message will appear the warning. If you
have the raw email message in the stream, use LoadFromStream method.

SaveAttachment method
unit
msMsg

applies to
TmsCustomMessage component

declaration
procedure SaveAttachment(Index : Integer; const Path : string);

description
Saves the attachment # Index (zero based) into the specified directory.    If attachment # Index does not
exist, EListError exception will be raised.    To the file will be assigned the name
Attachments[Index].FileName.

SaveToStream method
unit
msMsg

applies to
TmsCustomMessage component

declaration
procedure SaveToStream(AStream : TStream);

description
prepares rfc822 (ready-to-go) message, i.e. encodes all attachments, prepares all necessary mail
headers and saves the output into the stream.    If you wish to save the message into the file, use
SaveToFile method.

SaveToFile method
unit
msMsg;

applies to
TmsCustomMessage component;

declaration
procedure SaveToFile(const FileName : string);

description
prepares rfc822 (ready-to-go) message, i.e. encodes all attachments, prepares all necessary mail
headers and saves the output into the file with name FileName.    If you wish to save the message into the
stream, use SaveToStream method.

inherited from TmsCustomMessage
Assign
Clear
ExecuteAttachment
LoadFromStream
LoadFromFile
SaveAttachment
SaveToStream
SaveToFile

BCC property
unit
msMsg

applies to
TmsMessage component

declaration
property BCC : TmsAddressList;

description
Contains a list of Blind Carbon Copy recipients of the message.    Blind Carbon Copy recipients are
almost the same as Carbon Copy recipients (property CC), only difference is the names listed in BCC will
not appear in the message.    Because of this, BCC property of received messages is always empty.

TmsAddressList class
unit msMsgCls;

declaration
 TmsAddressList = class(TPersistent)
 private
 FList : TList;
 function GetItem(Index : Integer) : TmsMailAddress;
 procedure SetItem(Index : Integer; Value : TmsMailAddress);
 function GetCount : Integer;
 procedure ReadData(Reader : TReader);
 procedure WriteData(Writer : TWriter);
 protected
 procedure DefineProperties(Filer : TFiler); override;
 public
 constructor Create;
 destructor Destroy; override;
 function Add(Value : TmsMailAddress) : Integer;
 function AddAddress(const TheAddress, TheName : string) : Integer;
 procedure Clear;
 procedure Delete(Index : Integer);
 procedure Assign(Value : TmsAddressList);
 property Count : Integer read GetCount;
 property Items[Index : Integer] : TmsMailAddress read GetItem write
SetItem; default;
 end;

description
List of TmsMailAddress objects.    Contains methods and properties for handling this list.    To add new
mail address to the list use Add or AddAddress method, also contains routines for clearing, deleting and
maintaining the addresses.    This is the type of Recipients, CC and BCC properties of TmsMessage
component.

inherited from TmsCustomMessage
Assign
Clear
ExecuteAttachment
LoadFromStream
LoadFromFile
SaveAttachment
SaveToStream
SaveToFile

Authorization
Boundary
FileName
Headers
InStream
OutStream
Password
PostContentType
Proxy
ProxyAuthorization
ProxyPassword
ProxyUserName
URL
UserAgent
UserName

Inherited from TmsClientSocket
Host
Port

inherited from TmsSocket
LogFileName
TimeOut *

inherited from TmsSocketBase
SleepTime *
Socket

Authorization property (TmsHTTPClient)
unit msHTTP

applies to
TmsHTTPClient component

declaration
Authorization: boolean;

description
Some pages on the web require authorization.    You have to set this property to True, also set UserName
and Password properties in order to access these resources.

TmsHTTPClient component supports only basic authorization.

UserName property (msHTTPClient)
unit msHTTP

applies to
TmsHTTPClient component

declaration
UserName: string;

description
Makes sense only of Authorization is True, and contains the user name which will be used to access the
web resource.    Password property aslo must be set.

Password property
unit msHTTP

applies to
TmsHTTPClient component

declaration
Password: string;

description
Makes sense only of Authorization is True, and contains the password which will be used to access the
web resource.    UserName property aslo must be set.

Login method (TmsFTPClient)
unit msFTP

applies to
TmsFTPClient component

declaration
procedure Login;

description
Connects to the server, by calling Connect method, and logs into it by sending the data contained in
UserName and Password properties.

Boundary property
unit msHTTP;

applies to
TmsHTTPCleint component

declaration
Boundary: string;

description
Should be used only when you are posting the data with the PostContenType multipart/form-data.    Since
the data is multipart, TmsHTTPClient component must transmit it with the Content-Type header.    Note,
that IMS does not provide the tools for generating the multipart/form-data content.

FileName property (TmsHTTPClient)
unit msHTTP;

applies to
TmsHTTPClient component

declaration
FileName: string;

description
This is a read-only property, which will get it's value after you set URL property. It will contain the File
Name of the retrieved resource, to simplify you the way of saving it.

PostContenType property
unit msHTTP

applies to
TmsHTTPClient component

declaration
PostContentType: string;

description
Content Type of the posted data. It can have two values: application/x-www-form-urlencoded, which is the
default and is used for posting simple data, such as a form submissions, or multipart/formdata, which is
used for more complex HTTP operations, such as, file uploads and so on.

URL property
unit
msHTTP

applies to
TmsHTTPClient component

declaration
property URL : string;

description
URL of the document you want to retrieve using TmsHTTPClient component.    It must start with http://.   
After you specify URL you can call Get method and retrieve the document or file.    URL is also an address
of a resource you want to apply the posted data, if you are planning to use Post method.

examples of URL are:
http://www.microsoft.com
http://www.interlog.com/~argosoft/ims.gif

Get method
unit msHTTP

applies to
TmsHTTPClient component

declaration
function Get: Integer;

description
Connects to the server, sends GET HTTP request, retrieves the data sent from the server, and closed the
connection.    Received data will be saved in InStream property.    Return value contains the reply code
sent by server.

Post method
unit msHTTP

applies to
TmsHTTPClient component

declaration
function Post: Integer;

description
Applies HTTP Post method to the resource indicated in URL.    Can be used for posting form data or
sending the files to the server, or for uploading files, if it is supported by servers.

You should supply the URL to which the Post method will be applied and save the data to be transmitted
to OutStream property.

Content-type of data by default is application/x-www-form-urlencoded.    If you wish to send more complex
data, you should generate it yourself, store into the OutStream and change the PostContentType property
to multipart/form-data, as described in rfc1867.

For example, to send the form data:

procedure SendFormData;
var
 Buf : array[0..255] of Char;
begin

StrCopy(@Buf,'email=archie@argosoft.com&realname=Archie&subscribe=subscribe')
;
 agHTTP1.OutStream.Write(Buf,StrLen(@Buf));
 agHTTP1.URL:='http://www.argosoft.com/cgi-bin/guestbook.cgi';
 agHTTP1.Post;
end;

Headers property (TmsHTTPClient)
unit msHTTP;

applies to
TmsHTTPClient component

declaration
Headers: TmsHeaders;

description
Contains the headers for the data returned by server.    Since it's type is TmsHeaders, you can easily get
the values of different headers.    For example, if you wish to get Server header, you can do

s:=MyHTTPClient.Headers.GetFieldBody('Server');

UserAgent property
unit
msHTTP

applies to
TmsHTTPClient component

declaration
property UserAgent : string;

description
Will be sent to the server, as an User-Agent header, when calling the methods of TmsHTTPCleint
components.    This property is not required, but allows you to identify your program to the server.

Proxy property (TmsHTTPClient)
unit
msHTTP

applies to
TmsHTTPClient component

declaration
property Proxy : string;

description
Specifies an address of proxy server.    If your application does not use proxy server, you should leave this
property blank.    If you use proxy server, you also must set a Port property to the port of the proxy server.
Attention users of IMS 1.XX - this is one of the major changes, you should not specify the proxy server
in the domain:port format anymore.    You are setting Proxy to the address of the proxy server, Port - to
the port of the proxy server (not to the port of actual host).

If proxy server requires authorization, you should set ProxyAuthorization property to True, also,
ProxyUserName and ProxyPassword properties.

ProxyUserName property
unit msHTTP

applies to
TmsHTTPClient component

declaration
ProxyUserName: string;

description
Used only if Proxy property is not blank, and ProxyAuthorization property is True.    You should use this
property if you are using proxy server which requries authorization.    ProxyPassword property should be
also set.    IMS supports only basic authorization.

ProxyAuthorization property
unit msHTTP

applies to
TmsHTTPClient component

declaration
ProxyAuthorization: boolean;

description
Should be set to True if you are using proxy server which requires authorization.    ProxyUserName and
ProxyPassword properties must be also set.

ProxyPassword property
unit msHTTP

applies to
TmsHTTPClient component

declaration
ProxyPassword: string;

description
Used only if Proxy property is not blank, and ProxyAuthorization property is True.    You should use this
property if you are using proxy server which requries authorization.    ProxyUserName property also must
be set.

InStream property
unit
msHTTP

applies to
TmsHTTPClient component

declaration
InStream: TStream;

description
That's where the received data will be stored if you use Get, or Post methods of TmsHTTPClient
component.    You can save the retrieved data to file, e.g. calling MyHTTPClient.InStream.SaveToFile()
method...

OutStream property
unit
msHTTP

applies to
TmsHTTPClient component

declaration
OutStream: TStream;

description
Contains the data to be sent to the HTTP server using Post method.    You have to store data you are
going to post in this stream, prior to calling Post method.

For example:

const
 p : PChar = 'firstname=john&lastname=doe';
.
 MyHTTPClient.OutStream.Write(p^,StrLen(p));
 MyHTTPClient.Post;

Head
Get
Post

inherited from TmsClientSocket
Connect

inherited from TmsSocket
Cancel
Disconnect
Read
RecvChunkedStream
RecvLine
RecvLineStream
RecvMultiLines
RecvStream
SaveLogFile
SendChunkedStream
SendLine
SendStream
Write

Head method
unit msHTTP

applies to
TmsHTTPClient component

description
function Head: Integer;

declaration
The same as Get method, but it will not retrieve the data itself, the data will be returned only into the
Headers property.    This method sends HEAD request, instread of GET request.    And, as a reply, the
server returns only headers.    The function will return the reply code from the server.

OnSendingRequest
OnRequestSent

inherited from TmsClientSocket
OnConnecting

inherited from TmsSocket
OnConnected
OnDisconnected
OnOOBData
OnRead
OnTransferProgress
OnWrite

OnRequestSent event
unit msHTTP

applies to
TmsHTTPClient component

declaration
OnRequestSent: TNotifyEvent;

description
Is called after connecting to the server, and sending the http request, such as GET, HEAD, or POST plus
full post data.

OnSendingRequest event
unit msHTTP

applies to
TmsHTTPClient component

declaration
OnSendingRequest: TNotifyEvent;

description
Is called after connecting to the server, but before sending HTTP request.

Login method (TmsNNTPClient)
unit msNNTP

applies to
TmsNNTPClient component

declaration
procedure Login;

description
Connects to the server, specified in Host, using Connect method, also, attempts to retrieve the overview
format, which will be later used when you call GetOverview method.

RetrieveNewsgroupList method
unit msNNTP

applies to
TmsNNTPClient component

declaration
procedure RetrieveNewsgroupList;

description
Retrieves a list of available newsgroup from the server.    You must be logged into the server before
calling this method.    Fills the NewsgroupList property.    Since the operation of the retrieving the
newsgroup lists can be lengthy, retrieved data can be saved into the file using SaveNewsgroupList
method, and retrieved later using LoadNewsgroupList method.

Newsgroup property
unit msNNTP

applies to
TmsNNTPClient component

declaration
Newsgroup: string;

description
Set this property to the name of the newsgroup you are interested in.    You must be logged onto the
server, using Login method.    After setting this newsgroup, FirstArticle, LastArticle, and TotalArticles
properties will get the values.

FirstArticle property
unit msNNTP

applies to
TmsNNTPClient component

declaration
FirstArticle: Integer;

description
Read-Only property.    Has meaning only after logging into the server, using Login method, and selecting
the current newsgroup, by setting Newsgroup property.    Contains the number of first available article in
the newsgroup.

LastArticle property
unit msNNTP

applies to
TmsNNTPClient component

declaration
LastArticle: Integer;

description
Read-Only property.    Has meaning only after logging into the server, using Login method, and selecting
the current newsgroup, by setting Newsgroup property.    Contains the number of last available article in
the newsgroup.

GetOverview method
unit
msNNTP

applies to
TmsNNTPClient component

declaration
procedure GetOverview(FirstMsgNo, LastMsgNo: Integer);

description
You should be logged into the server, and the newsgroup must be selected before calling this method.    It
retrieves the information of messages in the FirstMsgNo - LastMsgNo range and fills in the Overview
property,

RetrieveArticleByNumber method
unit msNNTP

applies to
TmsNNTPClient component

declaration
procedure RetrieveArticleByNumber(Number: Integer);

description
Works the same way as Retrieve method, but instead of current article it retrieves the article specified in
the Number parameter.

Article property
unit msNNTP

applies to
TmsNNTPClient component

declaration
Article: TmsArticle;

description
The usage of this property is analogous to MailMessage property of TmsSMTPClient and TmsPOPClient
properties.

This structure will be filled in automatically after you call Retrieve, RetrieveArticleByNumber, or
RetrieveArticleByID method.    You also have to fill in the properties of this structure before calling Post
method, for posting the article.

RetrieveArticleByID method
unit msNNTP

applies to
TmsNNTPClient component

declaration
procedure RetrieveArticleByID(const ID: string);

description
Retrieves the article by it's unique MessageID.    You must be logged into the server, but you don't have to
select a newsgroup, since ID is unique.

Post method (TmsNNTPClient)
unit msNNTP

applies to
TmsNNTPClient component

declaration
procedure Post;

description
Post the article, which has been previously prepared using Article property to the newsgroups specified in
the Newsgroups property of the Article.    You must be logged onto the server in order to call this function.

Logout method (TmsNNTPClient)
unit msNNTP

applies to
TmsNNTPClient component

declaration
procedure Logout;

description
Logs out from the NNTP server, by sending QUIT command, and disconnects from it, by calling
Disconnect method.

Authorization property (TmsNNTPClient)
unit msNNTP

applies to
TmsNNTPClient component

declaration
Authorization: boolean;

description
Certain servers require the authorization to access certain information.    You should set this property to
True, also, set UserName and Password properties properly if you are dealing with the server which
requires authorization.

UserName property (TmsNNTPClient)
unit msNNTP

applies to
TmsNNTPClient component

declaration
UserName: string;

description
Certain servers require the authorization to access certain information.    If you are dealing with this kind
of server, you should set Authorization property to true, also, assign to this property, also to Password
property, proper values.

Password property (TmsNNTPClient)
unit msNNTP

applies to
TmsNNTPClient component

declaration
UserName: string;

description
Certain servers require the authorization to access certain information.    If you are dealing with this kind
of server, you should set Authorization property to true, also, assign to this property, also to UserName
property, proper values.

Article
Authorization
BOA
CurrentArticle
EOA
FirstArticle
LastArticle
Newsgroup
NewsgroupList
Overview
Password
TotalArticles
UserName

inherited from TmsClientSocket
Host
Port

inherited from TmsSocket
LogFileName
TimeOut *

inherited from TmsSocketBase
SleepTime *
Socket

Retrieve method (TmsNNTPClient)
unit msNNTP

applies to
TmsNNTPClient component

description
procedure Retrieve;

declaration
Retrieves current article.    You must be logged onto the server, and Newsgroup must be selected.   
Retrieves the article, number of which is set in CurrentArticle property.    The article will be placed in
Article property.

BOA property
unit msNNTP

applies to
TmsNNTPClient component

declaration
BOA: boolean;

description
Read-Only property.    It has meaning after you have logged into the server, calling Login method, and
selected the newsgroup, by setting Newsgroup property.    It is true if CurrentArticle is set to the first article
in the newsgroup.    This property allows you to iterate between the articles using First, Next, Last
methods.

CurrentArticle property
unit msNNTP

applies to
TmsNNTPClient component

declaration
CurrentArticle: Integer;

description
Has meaning only after logging on on the server (Login method) and selecting the newsgroup
(Newsgroup property).    Points to the current selected article in the newsgroup.    It is between FirstArticle
and LastArticle...    Keep in mind, that, usually, not all articles between the FirstArticle and LastArticle
range is avaliable. Call of Next method will ensure that the pointer is reset to the next available article.

First method
unit msNNTP

applies to
TmsNNTPClient component

declaration
procedure First;

description
Has meaning only after logging on on the server (Login method) and selecting the newsgroup
(Newsgroup property).    It sets the CurrentArticle pointer to the first available article in the newsgroup.

Next method
unit msNNTP

applies to
TmsNNTPClient component

declaration
procedure Next;

description
Has meaning only after logging on on the server (Login method) and selecting the newsgroup
(Newsgroup property).    Resets the CurrentArticle property to the next available article in the selected
newsgroup.

Last method
unit msNNTP

applies to
TmsNNTPClient component

declaration
procedure Last;

description
Has meaning only after logging on on the server (Login method) and selecting the newsgroup
(Newsgroup property).    Resets the pointer to the current article in the selected newsgroup
(CurrentArticle) to the last available article in the newsgroup.

TotalArticles property
unit msNNTP

applies to
TmsNNTPClient component

declaration
TotalArticle: Integer;

description
Read-Only property.    Has meaning only after logging into the server, using Login method, and selecting
the current newsgroup, by setting Newsgroup property.    Contains the number of available articles in the
newsgroup.    Keep in mind, that does not always equal to LastArticle-FirstArticle+1, because usually not
all articles with the numbers between FirstArticle...LastArticle are available in the newsgroup.

EOA property
unit msNNTP

applies to
TmsNNTPClient component

declaration
EOA: boolean;

description
Read-Only property.    It has meaning after you have logged into the server, calling Login method, and
selected the newsgroup, by setting Newsgroup property.    It is true if CurrentArticle is set to the last article
in the newsgroup.    This property allows you to iterate between the articles using First, Next, Last
methods.

TmsNewsgroupItem class
unit msNNTP

declaration
 TmsNewsgroupItem = class
 protected
 procedure ParseString(const s: string);
 function ToString: string;
 public
 Name: string;
 FirstArticle: LongInt;
 LastArticle: LongInt;
 Flag: Char;
 end;

description
Each item of TmsNewsgroupList class is of this type.    Name property contains the name of the
newsgroup, FirstArticle and LastArticle - numbers of first and last available articles in the newsgroup, Flag
can have following values:

y - posting to the newsgroup is allowed
n - posting to the newsgroup is not allowed
m - the newsgroup is moderated.

NewsgroupList property
unit msNNTP

applies to
TmsNNTPClient component

declaration
NewsgroupList: TmsNewsgroupList;

description
Contains the list of available newsgroups on the server.    You should call RetrieveNewsgroupList method
to retrieve this list.    You also can save the list to the file by calling SaveNewsgroupList method for later
retrieval it using LoadNewsgroupList method.

See the topic related to TmsNewsgroupList for more information.

Overview property
unit
msNNTP

applies to
TmsNNTPClient component

declaration
Overview: TmsOverviewList;

description
Contains a list of the information related to the articles in the newsgroup.    You have to log into the server,
calling Login method, then slect a newsgroup, by setting Newsgroup property, and call GetOverview
method.    Overview list will be filled with the useful information, containing a list of article-related data.   
The demo program, nntpdemo, demonstrates the usage of this property, see also the description of
TmsOverviewList and TmsOverviewItem classes.

GetOverview method uses extended NNTP commands, which are not a part of standard required NNTP
implementation, so, some servers may not support it.    In this case you should use GetHeaders method
to get the information about the messages.

Example:

Say you retrieved the Overview after calling GetOverview method, and wish to find the article which with
the subject containing the string Honda Civic.    Let's attempt to find out whether any of the articles contain
this string:

var
 Found: boolean;
 i: Integer;
begin
 Found:=false; i:=0;
 while (not Found) and (i<MyNNTPClient.Overview.Count) do
 begin
 Found:=LowerCase(MyNNTPClient.Overview[i].Subject)='honda civic';
 if not Found then Inc(i);
 end;

If after completing this loop Found is true, then there is an article cotaining the string we were looking for.
Now we can retrieve it, either by setting the CurrentArticle and calling Retrieve method, like this

MyNNTPClient.CurrentMessage:=MyNNTPClient.Overview[i].ArticleNo;
MyNNTPClient.Retrieve;

or by calling

MyNNTPClient.RetrieveMessageById(MyNNTPClient.Overview[i].MessageId);

SaveNewsgroupList method
unit msNNTP

applies to
TmsNNTPClient component

declaration
procedure SaveNewsgroupList(const FileName: string);

description
Saves the content of NewsgroupList property into the file named FileName.    The list can be retrieved
later using LoadNewsgroupList method.

LoadNewsgroupList method
unit msNNTP

applies to
TmsNNTPClient component

declaration
procedure LoadNewsgroupList(const FileName: string);

description
Loads the list of the newsgroups from the file named FileName.    The list must be previously saved using
SaveNewsgroupList method.    Loaded data will be saved in NewsgroupList property.

TmsNewsgroupList class
unit msNNTP

declaration
 TmsNewsgroupList = class
 private
 FList : TList;
 function Get(Index : Integer) : TmsNewsgroupItem;
 procedure Put(Index : Integer; Value : TmsNewsgroupItem);
 function GetCount : Integer;
 protected
 function PickAPart(s : string; Position : Integer) : string;
 public
 constructor Create;
 destructor Destroy; override;
 function Add(Value : TmsNewsgroupItem) : Integer;
 procedure Delete(Index: Integer);
 procedure SaveToFile(const FileName : string);
 procedure SaveToStream(Stream : TStream);
 procedure LoadFromFile(const FileName : string);
 procedure LoadFromStream(Stream : TStream);
 procedure Clear;
 property Items[Index : Integer] : TmsNewsgroupItem read Get write Put;
default;
 property Count : Integer read GetCount;
 end;

description
Contains a list of TmsNewsgroupItem objects.    Each item of it contains the information about the name of
the newsgroup, also number of the first and last available articles in the group, also flag, which indicates
whether posting is allowed, and if the group is moderated.

This is a type of NewsgroupList property of TmsNNTPClient component.

TmsOverviewList class
unit msNNTP

declaration
 TmsOverviewList = class
 private
 FList: TList;
 function Get(Index: Integer): TmsOverviewItem;
 procedure Put(Index: Integer; Value: TmsOverviewItem);
 function GetCount: Integer;
 public
 constructor Create;
 destructor Destroy; override;
 procedure Clear;
 function Add(Value: TmsOverviewItem): Integer;
 property Count: Integer read GetCount;
 property Items[Index: Integer]: TmsOverviewItem read Get write Put;
default;
 end;

description
This is a type of the Overview property of TmsNNTPClient component.    It is a list of TmsOverviewItem
objects.

TmsOverviewItem class
unit msNNTP

declaration
 TmsOverviewItem = class
 private
 FFmt: TStringList;
 function PickData(const Header,Data: string): string;
 function PickMsgNo(const s: string): Integer;
 procedure ParseString(const s: string);
 public
 ArticleNo: LongInt;
 Subject: string;
 SenderName: string;
 SenderAddress: string;
 Date: TDateTime;
 TimeZone: ShortString;
 MessageID: string;
 References: string;
 Bytes: LongInt;
 Lines: Integer;
 constructor Create(Fmt: TStringList);
 destructor Destroy; override;
 end;

declaration
Each item of TmsOverviewList class, TmsOverviewItem object contains following useful information about
the article:

ArticleNo - Article number.    Can be used for retrieving the article by setting CurrentArticle to this number
and calling Retrieve;

Subject - Subject line of the article;

SenderName - Name of the sender;

SenderAddress - Email address of the sender;

Date - Date when the message was posted, in Delphi TDateTime format;

TimeZone - String representation of the time zone of the sender, according to rfc 822;

MessageID - Unique string which identifies the article.    Can be used for retrieving the article using
RetrieveArticleByID;

References - MessageIDs of the articles the current article refers to;

Bytes - Size of the article in bytes;

Lines - Number of lines in the article

Note, that some of these values can be not available.    In this case string values will be blank, and
numeric values will be set to -1.

First
GetOverview
Last
LoadNewsgroupList
Login
Logout
Next
Post
Retrieve
RetrieveArticleByID
RetrieveArticleByNumber
RetrieveHeader
RetrieveHeaders
RetrieveNewsgroupList
SaveNewsgroupList

inherited from TmsClientSocket
Connect

inherited from TmsSocket
Cancel
Disconnect
Read
RecvChunkedStream
RecvLine
RecvLineStream
RecvMultiLines
RecvStream
SaveLogFile
SendChunkedStream
SendLine
SendStream
Write

RetrieveHeader method
unit msNNTP

applies to
TmsNNTPClient component

declaration
procedure RetrieveHeader(const Header: string): string;

description
Retrieves the data of the header, specified in the Header parameter, of the CurrentArticle.

Example

If you wish to retrieve the subject of the current article, the following should do it:

TheSubject:=MyNNTPClient.RetrieveHeader('Subject');

RetrieveHeaders method (TmsNNTPClient)
unit msNNTP

applies to
TmsNNTPClient component

declaration
procedure RetrieveHeaders;

description
Retrieves headers of the current article, and fills following properties if Article property:

Newsgroups, CharSet, ContentType, Encoding, Headers, Sender, Subject

For example, if you want to retrieve the Organization header, you can do

MyPOPClient.RetrieveHeaders;
s:=MyPOPClient.MailMessage.Headers.GetFieldBody('Oragnization');

OnOverviewItemRetrieved
OnNewsgroupItemRetrieved

inherited from TmsClientSocket
OnConnecting

inherited from TmsSocket
OnConnected
OnDisconnected
OnOOBData
OnRead
OnTransferProgress
OnWrite

OnNewsgroupItemRetrieved event
unit msNNTP

applies to
TmsNNTPClient component

declaration
OnNewsgroupItemRetrieved: TmsNewsgroupItemRetrievedEvent;

description
Triggered after next item of the list of the newsgroup has been retrieved, when RetrieveNewsgroupList
method is running.    It will allow you to display the list of retrieved newsgroups as the information arrives.
But, keep in mind, that it will slow down your program.

example

procedure TNNTPForm.msNNTPClient1NewsgroupItemRetrieved(Sender: TObject;
 NewsgroupItem: TmsNewsgroupItem);
begin
 GroupsListBox.Items.Aded(NewsgroupItem.Name);
end;

TmsNewsgroupItemRetrievedEvent type
unit msNNTP

declaration
 TmsNewsgroupItemRetrievedEvent = procedure(Sender: TObject;
 NewsgroupItem: TmsNewsgroupItem) of Object;

description
This is a type of OnNewsgroupItemRetrieved event handler of TmsNNTPClient component.

OnOverviewItemRetrieved event
unit msNNTP

applies to
TmsNNTPClient component

declaration
OnOverviewItemRetrieved: TmsOverviewItemRetrievedEvent;

description
Triggered after the next item of the overview has been retrieved, when GetOverview method is running.   
It will allow you to display the information about retrieved items information arrives.

TmsOverviewItemRetrievedEvent type
unit msNNTP

declaration
 TmsOverviewItemRetrievedEvent = procedure(Sender: TObject;
 OverviewItem: TmsOverviewItem) of Object;

description
This is a type of OnOverviewItemRetrieved event of TmsNNTPClient component.

UserName property (TmsFTPClient)
unit msFTP

applies to
TmsFTPClient component

declaration
UserName: string;

description
Name of the user on the FTP server.    Along with the Password, makes it possible to log into the server.

Password property (TmsFTPClient)
unit msFTP

applies to
TmsFTPClient component

declaration
Password: string;

description
Contains the password for the user specified in UserName property.

Logout method (TmsFTPClient)
unit msFTP

applies to
TmsFTPClient component

declaration
procedure Logout;

description
Logs out of the FTP server, by sending QUIT FTP command, and closes the connection to the server by
calling Disconnect method.

StoreFile method
unit msFTP

applies to
TmsFTPClient component

declaration
procedure StoreFile(const LocalFilePath, RemoteFilePath: string);

description
Sends the local file, named LocalFilePath to the server, and names it according to the parameter
specified in RemoteFilePath.    You must be logged into the server, by calling Login method, in order to
use this method.

RetrieveFile method
unit msFTP

applies to
TmsFTPClient component

declaration
procedure RetrieveFile(const RemoteFilePath, LocalFilePath: string);

description
Retrieves the file, named RemoteFilePath, from the remote FTP server and stores it as LocalFilePath.   
You mus be logged into the server, using Login method, in order to use this method.

GetDirList method
unit msFTP

applies to
TmsFTPClient component

declaration
procedure GetDirList;

description
Retrieves the information about the current directory on the FTP server, and fills in DirList property.    You
must be logged onto the server, using Login method, before calling this method.

DirList property
unit msFTP

applies to
TmsFTPClient component

declaration
DirList: TmsFTPDirList;

description
Contains the data about the the structure of the directory on the FTP server.    Gets filled in after calling
GetDirList method.

Each item member of the DirList property corresponds to either file, directory name, or, so called link on
the FTP server.    Link is kind of pointer either to the file, or directory in the different directory.    Kind field of
this object indicates whether it is a file (fkFile), Directory (fkDirectory) or Link (fkLink).    FileName contains
the name of the file or directory and is blank for the link, Size contains the size of the file, and has no
meaning when Kind is directory or link.    Date - date/time stamp of the directory or the file, LinkPtr -
contains the name of the linkedh file or directory.

In some cases TmsFTPClient component cannot fill in DirList property, since, as mentioned in the
discussion of ServerType property, the output sent by the server is not standardized, you still can get the
file names and file sizes, using GetFileList and GetFileSize methods, or, if you wish to retrieve the
directory structure 'as is', you can use GetDirectoryOutput method.

Here is an example, which generates the report based on the DirList property:

procedure MakeReport;
var
 i : Integer;
 f : TextFile;
begin
 AssignFile(f,'report.txt');
 Rewrite(f);
 for i:=0 to msFTPClient1.DirList.Count-1 do
 begin
 case msFTPClient1.DirList[i].Kind of
 fkFile : WriteLn(f,'File');
 fkDirectory : WriteLn(f,'Directory');
 fkLink : WriteLn(f,'Link');
 end;
 WriteLn(f,'Name: ',msFTPClient1.DirList[i].FileName);
 WriteLn(f,'Size: ',msFTPClient1.DirList[i].Size);
 WriteLn(f,'Date: ',DateTimeToStr(msFTPClient1.DirList[i].Date);
 if msFTPClient1.DirList[i].Kind=fkLink then
 WriteLn(f,'Link points to: ',msFTPClient1.DirList[i].LinkPtr);
 end;
 CloseFile(f);
end;

CurrentDirectory
DirList
PassiveMode
Password
Proxy
ProxyType
ServerType
TransferType
UserName

inherited from TmsClientSocket
Host
Port

inherited from TmsSocket
LogFileName
TimeOut *

inherited from TmsSocketBase
SleepTime *
Socket

CurrentDirectory property
unit msFTP

applies to
TmsFTPClient component

declaration
CurrentDirectory: string;

description
Contains the name of the current directory on the server.    If you assign to this property another directory,
current directory will be changed.    The "setter" of this property calls ChangeDirectory method.

ChangeDirectory method
unit msFTP

applies to
TmsFTPClient component

declaration
procedure ChangeDirectory(const Path: string);

description
Selects the current directory on the FTP server.    You must be logged into the server before calling this
method.    You also can use CurrentDirectory property to change the current directory.

PassiveMode property
unit msFTP

applies to
TmsFTPClient component

declaration
PassiveMode: boolean;

description
Usually, when FTP client (in this case, TmsFTPClient component) initiates the data transfer with the
server, it are sending the information about the address and the availabe port of the local computer, and
then waits until the server connects to the specified address.    This is the normal mode and is called
active mode.    If you select passive mode (set the property PassiveMode to true),    then the server will not
initiate the connection itself, it will wait until the client does it.    This option is sometimes required by
certain proxy servers.    Default value of this property is False (active mode).

Proxy property (TmsFTPClient)
unit msFTP

applies to
TmsFTPClient component

declaration
Proxy: string;

description
Specifies an address of proxy server.    If your application does not use proxy server, you should leave this
property blank.    If you use proxy server, you also must set a Port property to the port of the proxy server.
Attention users of IMS 1.XX - this is one of the major changes, you should not specify the proxy server
in the domain:port format anymore.    You are setting Proxy to the address of the proxy server, Port - to
the port of the proxy server (not to the port of actual host).

In FTP, you also will need to set ProxyType property.    Check out the proxy server documentation to find
out which method to use.

How to Register

If you live in Canada, please visit http://www.argosoft.com/delphi/canreg.html for registration information.

The retail price of the Internet Mail Suite 2.0 is US$129

If you are the registered user of IMS 1.XX, you can upgrade for US$35.00.

Registered users will receive the complete source code of all units included in the Internet Mail Suite,
technical support by email, bug fixes and free updates until the next major version release.    Usage of the
Internet Mail Suite is royalty free.

You can use the service, provided by DigiBuy to register IMS.    You will have to go to the order web
pages, and submit your order.    You can use the credit card, or check.    DigiBuy also accepts purchase
orders.

If you use your credit card and order the IMS 2.0 (not the upgrade), after submitting the form, DigiBuy will
instantly verify your credit card, and send you the email with the link to the registed version.    So, you can
download the registered version almost instantly.

If you want to order by phone, fax, send to DigiBuy a check, or purchase order, you will still have to
submit the order form, select the payment method, and you will see the appropriate information, how
exactly to order, on their pagest.

Here are the links to the order forms:

IMS 2.0:

http://www.digibuy.com/cgi-bin/order.html?220379+93362900250

Upgrade from IMS 1XX to IMS 2.0:

http://www.digibuy.com/cgi-bin/order.html?220379+93304780544

You also can bypass DigiBuy, and mail us a check directly.    Just complete the form contained in the file
regform.doc (it is located in the IMS directory), and mail it, along with a check, payable to ArGo Software
Design, to the following address:

ArGo Software Design
4325 Steeles Ave West, #211
North York, Ontario M3N 1V7
Canada

As soon as we get your check, we will email you the registered version.

ProxyType property
unit msFTP

applies to
TmsFTPClient component

description
ProxyType: TmsProxyType;

declaration
Currently TmsFTPClient component supports two kinds of FTP proxy servers: so called User with No
Logon (used e.g. by Wingate proxy server), and Proxy Open (used e.g., by CProxy).    We will be adding
more proxy types as far as users request it.    You have to make sure that your proxy type is set properly,
otherwise your application will not work correctly.

TmsProxyType type
unit msFtpCls

declaration
TmsProxyType = (fpUserNoLogon, fpProxyOpen);

description
This is a type of the ProxyType property of TmsFTPClient component.

ServerType property
unit msFTP

applies to
TmsFTPClient component

declaration
ServerType: TmsServerType;

description
Contains the information about the server type.    We had to introduce this property due to the following
problem:    unfortunately the directory data sent by the server after LIST FTP command is not
standardized.    TmsFTPClient component tries to take into the account most common output formats and
parse the data in order to fill in the DirList property.    We extensively tested the component with UNIX and
DOS standard types, which are most common, but there are also another server types which, probably
we cannot handle.

But if you don't need to retrieve the directory data from the server, if you just need to run RetreiveFile
and/or StoreFile methods and their modifications, then you should not have any problems with the server
types.

TmsServerType type
unit msFtpCls

declaration
TmsServerType = (stAuto, stUnix, stDos, stHP3000, stAS400);

description
This is a type of the ServerType property of TmsFTPClient component.

TransferType property
unit msFTP

applies to
TmsFTPClient component

declaration
TransferType: TmsTransferType;

description
Transfer type for files to or from the FTP server.    Should be set to ftBinary for binary files and to ftAscii for
text files.

TmsTransferType type
unit msFtpCls

declaration
TmsTransferType = (ttBinary, ttASCII);

description
This is a type of TransferType property of TmsFTPClient component.

AppendStoreFile
CancelDataTransfer
ChangeDirectory
ChangeToUpperDirectory
DeleteDirectory
EraseFile
GetDirectoryOutput
GetDirList
GetFileList
GetFileSize
Login
Logout
MakeDirectory
RenameFile
ResumeRetrieveFile
ResumeStoreFile
RetrieveFile
StoreFile

inherited from TmsClientSocket
Connect

inherited from TmsSocket
Cancel
Disconnect
Read
RecvChunkedStream
RecvLine
RecvLineStream
RecvMultiLines
RecvStream
SaveLogFile
SendChunkedStream
SendLine
SendStream
Write

TmsFTPDirEntry class
unit msFTPCls

declaration
type
 TmsFTPDirEntry=class
 Kind : TmsFileKind;
 FileName : ShortString;
 Size : LongInt;
 Date : TDateTime;
 LinkPtr : ShortString;
 end;

description
A type of each item of TmsFTPDirList object, which is a type of DirList property of TmsFTPClient
component.

TmsFTPDirList class
unit msFTPCls

declaration
type.
 TmsFTPDirList = class(TPersistent)
 private
 FList : TList;
 FServerType : TmsServerType;
 function Get(Index : Integer) : TmsFTPDirEntry;
 procedure Put(Index : Integer; Value : TmsFTPDirEntry);
 function GetCount : Integer;
 public
 constructor Create;
 destructor Destroy; override;
 function Add(Value : TmsFTPDirEntry) : Integer;
 procedure Assign(Source : TPersistent); override;
 function AddString(const s : string) : Integer;
 procedure Clear;
 property Items[Index : Integer] : TmsFTPDirEntry read Get write Put;
default;
 property Count : Integer read GetCount;
 property ServerType: TmsServerType read FServerType write FServerType;
 end;

declaration
Is a type of the DirList property of TmsFTPClient component.    A list of TmsFTPDirEntry items.

TmsFileKind type
unit
msFTPCls

declaration
type
 TmsFileKind = (fkUnknown, fkFile, fkDirectory, fkLink);

description
Type of the Kind field of TmsFTPDirEntry class.

GetFileList method
unit msFTP

applies to
TmsFTPClient component

declaration
procedure GetFileList(Strings: TStrings);

description
Retrieves the list of the files in the current directory.    You must be logged into the server, also, Strings
object must exist before you call this method.    Strings will be filled with the names of the files and
directories.

example
procedure Form1.GetListOfFiles(const Path: string);
begin
    msFTPClient1.Login;
    msFTPClient1.CurrentDirectory:=Path;
    msFTPClient1.GetFileList(Memo1.Lines);
    msFTPClient1.Logout;
end;

GetFileSize method
unit msFTPCls

applies to
TmsFTPClient component

declaration
function GetFileSize(const FileName: string): LongInt;

description
Returns the size (in bytes) of the specified file.    You must be logged into the server before calling this
method.

GetDirectoryOutput method
unit
msFTP

applies to
TmsFTPClient component

declaration
procedure GetDirectoryOutput(Stream: TStream);

description
Allows you to retrieve the directory structure as it was sent by the server, without parsing it.    If you want
to retrieve the data and have it analized by TmsFTPClient component, use GetDirList method.

You must be logged into the server, also, the Stream must exist before you call this method.

Example
procedure Form1.ShowCurrentDirectoryOutput;
var
 Stream: TStream;
begin
 Stream:=TMemoryStream.Create;
 try
 MyFTPClient.Login;
 MyFTPClient.GetDirectoryOutput(Stream);
 Stream.Position:=0;
 Memo1.Lines.LoadFromStream(Stream);
 MyFTPClient.Logout;
 finally
 Stream.Free;
 end;
end;

AppendStoreFile method
unit msFTP

applies to
TmsFTPClient component

declaration
procedure AppendStoreFile(const LocalFilePath, RemoteFilePath: string);

description
Works the same way as StoreFile method, but instead of creating, or rewriting the file on the remote
server, appens the sent data, contained in the LocalFilePath file, to the file stored on the remote server
stored with the name RemoteFilePath.

CancelDataTransfer method
unit msFTP

applies to
TmsFTPClient component

declaration
procedure CancelDataTransfer;

description
Cancels data transfer, if one is in progress, by sending ABOR command to the server, via control
connection.    If you wish to cancel control connection, call Cancel method.

ChangeToUpperDirectory method
unit msFTP

applies to
TmsFTPClient component

declaration
procedure ChangeToUpperDirectory;

description
Requests from server to change to the parent directory by sending CDUP command through control
channel.    You have to be logged into the server to use this command.

DeleteDirectory method
unit msFTP

applies to
TmsFTPClient component

declaration
procedure DeleteDirectory(const Path: string);

description
Requests from server to delete the directory indicated in Path parameter, by issuing RMD command.   
You have to be logged into the server to use this method.

EraseFile method
unit msFTP

applies to
TmsFTPClient component

declaration
procedure EraseFile(const FileName: string);

description
Requests from server to delete the file indicated in the FileName parameter, by issuing DELE command.
You have to be logged into the server to use this method.

MakeDirectory method
unit msFTP

applies to
TmsFTPClient component

declaration
procedure MakeDirectory(const Path: string);

description
Requests from server to create a directory indicated in Path parameter, by issuing MKD command.    You
have to be logged into the server to use this method.

RenameFile method
unit msFTP

applies to
TmsFTPClient component

declaration
procedure RenameFile(const OldFilePath, NewFilePath: string);

description
Requests from server to rename the file from OldFileName to NewFileName, by issuing RNFRO and
RNTO commands.    You have to be logged into the server to use this method.

ResumeRetrieveFile method
unit msFTP

applies to
TmsFTPClient component

declaration
procedure ResumeRetrieveFile(const RemoteFilePath, LocalFilePath: string;
Marker: LongInt);

description
Resumes file retrieval.    You have to pass the local and remote file names, also a marker, where you wish
to resume the transfer.    The marker is a position in the file stream, where the transfer should be
resumed.    Some servers will not accept this method, but most of them will.    If you will get a
EmsServerError exception when calling this method, it means the server does not support resuming, and
you have to use RetrieveFile method.    You have to be logged into the server to use this method.

EmsServerError type
unit msDef

declaration
type
 EmsServerError = class(Exception);

description
This is the exception which will be raised if the server returns negative reply.

ResumeStoreFile method
unit msFTP

applies to
TmsFTPClient component

declaration
procedure ResumeStoreFile(const LocalFilePath, RemoteFilePath: string;
Marker: LongInt);

declaration
Resumes file upload.    You have to pass the local and remote file names, also a marker, where you wish
to resume the transfer.    The marker is a position in the file stream, where the transfer should be
resumed.    Some servers will not accept this method, but most of them will.    If you will get a
EmsServerError exception when calling this method, it means the server does not support resuming, and
you have to use StoreFile method.    You have to be logged into the server to use this method.

OnDataTransferProgress
OnDataTransferStart
OnDataTransferTerminate
OnLineReceived
OnLineSent

inherited from TmsClientSocket
OnConnecting

inherited from TmsSocket
OnConnected
OnDisconnected
OnOOBData
OnRead
OnTransferProgress
OnWrite

TmsDataTransferProgressEvent type
unit
msFTP

declaration
type
 TmsDataTransferProgressEvent = procedure(Sender: TObject; ByteCount:
LongInt) of Object;

description
This is a type of OnDataTransferProgress event handler of TmsFTPClient component.

OnDataTransferProgress event
unit msFTP

applies to
TmsFTPClient component

declaration
OnDataTransferProgressEvent: TmsDataTransferProgressEvent;

description
Can be used to display the data transfer progress.    ByteCount parameter contains the number of
transferred bytes.    If you wish to display the percentage of the transferred data, you will have to calculate
it yourself. For sending the files, you can find out the entire size of the file you are sending using e.g.,
FileSize function.    When retrieving, you can use GetFileSize method.

OnDataTransferStart event
unit msFTP

applies to
TmsFTPClient component

declaration
OnDataTransferStart: TNotifyEvent;

description
Is called just before the data transfer starts.    Can be used to display the message, that the data transfer
is just about to commence.

OnDataTransferTerminate event
unit msFTP

applies to
TmsFTPClient component

declaration
OnDataTransferTerminate: TNotifyEvent;

description
Called after the data connection is closed.    Can be used to display the message about it.

OnLineReceived event
unit msFTP

applies to
TmsFTPClient component

declaration
OnLineReceived: TmsLineTransferEvent;

description
Is called when a line has been received from the server.    Can be used to log the conversation with the
server, along with OnLineSent event handler.

OnLineSent method
unit msFTP

applies to
TmsFTPClient component

description
OnLineSent: TmsLineTransferEvent;

declaration
Is called when a line has been received from the server.    Can be used to log the conversation with the
server, along with OnLineReceived event handler.

TmsLineTransferEvent type
unit msSocket

declaration
type
 TmsLineTransferEvent = procedure(Sender: TObject; const TheLine: string) of
Object;

description
This is the type of OnLineSent and OnLineReceived event handlers of TmsFTPClient component.   
Parameter TheLine contains the line which has been received or sent via the control connection.

TmsListenerSocketBase component
properties methods events
unit msSocket

declaration
TmsListenerSocketBase = class(TmsSocketBase);

description
An ancestor of TmsSimpleListenerSocket and TmsListenerSocket components.    Contains properties,
methods and events which are common these components.

Port
ServerSocketTimeOut

inherited from TmsSocketBase
SleepTime *
Socket

Port property (for listener components)
unit msSocket

applies to
TmsListenerBase component

declaration
Port: SmallInt;

description
Your server application, which uses TmsListenerSocket or TmsSimpleListenerSocket components, will
start listening on this port after you call Start method.

Start method
unit msSocket

applies to
TmsListenerSocketBase component

declaration
procedure Start;

description
Starts up the server, by listening to the port specified in the Port property.

ServerSocketTimeOut property
unit msSocket

applies to
TmsListenerSocketBase component

declaration
ServerSocketTimeOut: Integer;

description
Sets the time out of the server socket.    Server socket itself is TmsSocket, and this value will be passed to
the TimeOut property of the instance of the server socket.

Start
Stop

Stop method
unit msSocket

applies to
TmsListenerSocketBase component

declaration
procedure Stop;

description
Stops listening to the specified Port, or, in other words, stops the server.    If there are any connections,
call of this method will not disconnect them.

OnStart
OnStop

OnStart event
unit msSocket

applist to
TmsListenerSocketBase component

desclaration
OnStart: TNotifyEvent;

description
Is called when you call Start method.

OnStop event
unit msSocket

applist to
TmsListenerSocketBase component

desclaration
OnStop: TNotifyEvent;

description
Is called when you call Stop method.

ServerSocket

inherited from TmsListenerSocketBase
Port
ServerSocketTimeOut

inherited from TmsSocketBase
SleepTime *
Socket

OnSLSConnectionRequested

inherited from TmsListenerSocketBase
OnStart
OnStop

ServerSocket property
unit msSocket

applies to
TmsSimpleListenerSocket component

description
ServerSocket: TmsSocket;

description
This is the socket you should use when you are writing the handler for doing whatever your server must
do.    You can receive and send the data using the methods of TmsSocket component.

inherited from TmsListenerSocketBase
Start
Stop

OnSLSConnectionRequested event
unit msSocket

applies to
TmsSimpleListenerSocket component

declaration
OnSLSConnectionRequested: TNotifyEvent;

description
You must assign this method to make your server functional.    Use the methods of ServerSocket property
of your instance of TmsSimpleListenerSocket component.    Also, see the example in the
TmsSimpleListenerSocket topic.

ConnectionList
ConnectionCount
ServerThreadClass
SuspendedServer

inherited from TmsListenerSocketBase
Port
ServerSocketTimeOut

inherited from TmsSocketBase
SleepTime *
Socket

ServerThreadClass property
unit msSocket

applies to
TmsListenerSocket component

declaration
ServerThreadClass: TmsServerThreadClass;

description
Very important property of TmsListenerSocket component.    You must create a class, which descends
from TmsServerThread, and assign it's name to this property.    You must override Execute method of
TmsServerThread descendant by putting in your Execute method all the work you wish your server to
perform.

example
Let's create a server which will send the line 'Hi There' as soon as a client connects to it, and then closes
the connection.    First we should create the descendant of TmsServerThread class, which, by itself,
descends from TThread class...

THiThereServer = class(TmsServerThread);
protected
 procedure Execute; override;
end;

procedure THiThereServer.Execute;
begin
 ServerSocket.SendLine('Hi There');
 ServerSocket.Disconnect;
end;

Now, we can do:

procedure MyForm.StartButtonClick(Sender: TObject);
begin
 msListenerSocket1.ServerThreadClass:=THiThereServer;
 msListenerSocket1.Port:=1090; // or whatever
 msListenerSocket1.Start;
end;

TmsServerThread class
unit msSocket

declaration
type
 TmsServerThread=class(TThread)
 public
 Peer: ShortString;
 ServerSocket: TmsSocket;
 procedure Cancel; virtual;
 end;

description
You must override this class, by creating your own class, also override Execute method.    This thread will
be launched whenever connection from the client is requested.

Peer field contains the IP address (in dot separated numeric format) of the client, ServerSocket is an
instance of TmsSocket component, which is created with the TmsServerThead class, procedure Cancel
let's you to write the procedure which would cancel the connection, if it is necessary.

TmsServerThreadClass type
unit msSocket

declaration
TmsServerThreadClass=class of TmsServerThread;

description
This is a type of ServerThreadClass property of TmsListenerSocket component.

SuspendedServer property
unit msSocket

applies to
TmsListenerSocket component

declaration
SuspendedServer: boolean;

description
Must be set to true if you wish to start the execution of the ServerThread manually.    By default is set to
false.

CancelAllConnections

inherited from TmsListenerSocketBase
Start
Stop

ConnectionList property
unit msSocket

applies to
TmsListenerSocket component

declaration
ConnectionList: TmsConnList;

description
Thread safe list of TmsServerThread objects which are currently running, i.e., active connections.    You
can use this property to track the connections, but, we found, that it would be more useful if you could do
it more easily using OnServerThreadStart and OnServerThreadTerminate event handlers, e.g., to display
the connection infos in the ListBox, or ListView.    It would be better, since TmsConnList is not visual.

TmsConnList class
unit msSocket

declaration
 TmsConnList = class
 private
 FCS: TRTLCriticalSection;
 FList: TList;
 function GetCount: Integer;
 function Get(Index: Integer): TmsServerThread;
 procedure Put(Index: Integer; Value: TmsServerThread);
 protected
 procedure LockList;
 procedure UnlockList;
 public
 constructor Create;
 destructor Destroy; override;
 function Add(Item: TmsServerThread): Integer;
 procedure Remove(Item: TmsServerThread);
 procedure Delete(Index: Integer);
 function IndexOf(Value: TmsServerThread): Integer;
 procedure Clear;
 property Count: Integer read GetCount;
 property Items[Index: Integer]: TmsServerThread read Get write Put;
default;
 end;

description
This is a type of ConnectionList property of TmsListenerSocket component.

OnServerThreadStart event
unit msSocket

applies to
TmsListenerSocket component

declaration
OnServerThreadStart: TmsServerThreadEvent;

description
Triggered just before server thread (descendant of TmsServerThread object) starts the execution.    The
parameter ServerThread (see TmsServerThreadEvent type) contains the pointer to it's instance.    You
can use this event handler to do the initialization of the thread, e.g., if you have declared some objects in
the server thread, you can create and initialize them here, rather than writing your own constructor of the
server thread, it might be even safer, then doing it in the thread (Don't forget to clean up them in the
OnServerThreadTerminate event handler).    You also can add use this event handler to display the
information about the connection.

example
Say you decided to write a server, which will read the content of somefile.txt and send it to the client, then
disconnects, and declared the descendant of TmsServerThread like this:

TMyServerThread=class(TmsServerThread)
protected
 procedure Execute; override;
public
 SL: TStrings;
end;

procedure TMyServerThead.Execute;
var
 i: Integer;
begin
 SL.LoadFromFile('somefile.txt');
 for i:=0 to SL.Count-1
 ServerSocket.SendLine(SL[i]);
 ServerSocket.Disconnect;
end;

Then, you assigned this type to the ServerThreadClass property of TmsListenerSocket component:

TmsListenerSocket1.ServerThreadClass:=TMyServerThread;

As you can see, SL object is not created in the thread.    You can create it in OnServerThreadStartEvent:

procedure Form1.msListenerSocket1ServerThreadStart(Sender: TObject;
ServerThread: TmsServerThread);
begin
 (ServerThread as TMyServerThread).SL:=TStringList.Create;
end;

You must free SL object in the OnServerThreadTerminate event handler:

procedure Form1.msListenerSocket1ServerThreadTerminate(Sender: TObject;

ServerThread: TmsServerThread);
begin
 (ServerThread as TMyServerThread).SL.Free;
end;

OnServerThreadTerminate event
unit msSocket

applies to
TmsListenerSocket component

declaration
OnServerThreadTerminate: TmsServerThreadEvent;

description
Called after the connection has been terminated.    ServerThread parameter (see TmsServerThreadEvent
type) contains a pointer to the thread which is about to be terminated.    You can use this event hanlder to
cleanup the data you created in OnServerThreadStart event handler, and so on.    See
OnServerThreadStart topic for more discussion.

ConnectionCount property
unit msSocket

applies to
TmsListenerSocket component

declaration
ConnectionCount: Integer;

description
Count of active connections, or active threads.    This is a read-only property.

CancelAllConnections method
unit msSocket

applies to
TmsListenerSocket component

declaration
procedure CancelAllConnections;

description
Cancels all active connections.    Calls Cancel method of the descendants of the TmsServerThread
object.    In TmsServerThread Cancel is declared as virtual, so you must override this method if you wish
to do some other cleanup work in your thread, othewise, the default method will be called, which just
closes the socket.

OnConnectionRequested
OnServerThreadStart
OnServerThreadTerminate

inherited from TmsListenerSocketBase
OnStart
OnStop

OnConnectionRequested event
unit msSocket

applies to
TmsListenerSocket component

declaration
OnConnectionRequested: TmsRequestEvent;

description
Triggered when the listener socket detects the connection request, just before of creating the server
thread.    Parameter Peer (see TmsRequestEvent type) contains the IP address of the computer which is
trying to connect, in dot separated numeric format.    You can decide whether you wish to accept the
connection, or deny it, by setting Allow parameter appropriately.    Default value is true.

TmsRequestEvent type
unit msSocket

declaration
TmsRequestEvent = procedure(Sender: TObject; const Peer: string; var Allow:
boolean) of Object;

description
This is a type of OnConnectionRequested event handler of TmsListenerSocket component.

TmsServerThreadEvent type
unit msSocket

declaration
TmsServerThreadEvent = procedure(Sender: TObject; ServerThread:
TmsServerThread) of Object;

description
This is a type of OnServerThreadStart and OnServerThreadTerminate event handlers of
TmsListenerSocket component.

What's New in IMS 2
We have rewritten all core units.    Now they should work more efficiently.

TmsSMTP component - Everything is almost the same.    It has been renamed to TmsSMTPClient. We
just added three properties, which are reserved for the future use, for handling more advanced MIME
content types.    Advanced MIME component will be relased later;

TmsPOP component - TmsRemotePOP component does not exist anymore.    Now single POP
component, called TmsPOPClient, does all the job.    MessageList property is gone, since it was causing
memory problems when users were retrieving large messages.    Now, instead of the list, we are using the
MailMessage property.    The property can be filled in after retrieving the single message.    Also,
RemoteInfo classes do not exist, now you can retrieve all the information into the MailMessage headers,
using RetrieveHeader method, and, we have additional methods for the values which are usually not
included in the headers, such as message size (GetSize) and UIDL (GetUIDL);

TmsMessage and TmsArticle components - no changes;

TmsNNTP component - New component, called TmsNNTPClient, now supports extended NNTP
commands, it allows to retrieve the information about the articles much faster then before.

TagFTP component - Now it is called TmsFTPClient.    It supports passive transfers (PassiveMode
property), also has new methods, such as GetFileList, GetFileSize, also, lets you to retrieve the directory
information as it was sent by server, using GetDirectoryOutput method.

TagFinger, TagWhoIs, TagTime components - we removed these components from IMS, since, after the
introduction of TmsClientSocket component, there was really no use to keep the components which deal
with such simple protocols.    We are providing demo programs (see DEMOS directory) which
demonstrate how to use TClientSocket component to implement each of these protocols;

TagRas component - we removed it from IMS.    It will be distributed as freeware.    Main reason - unability
to support it.    RAS appears to behave differently on different Windows versions, even, on different
computers with the same Windows versions.    Another reason - more and more people are getting
connection to the Internet using cable and ASDL...

New components - TmsListenerSocket, TmsSimpleListenerSocket - for creating server applications.   
New class TmsWinsock - lets you to call winsock functions directly, also has couple of useful methods,
which lets you to get the IP address and the domain name of your computer, and more...

More features - you can create CGI applications more efficiently, since simple procedures allow you to get
rid of Delphi footprint.    See Using IMS in Console Applications.

Example Applications
In the DEMOS folder you will find the applications, which demonstrate the usage of the components
included in the Interner Mail Suite:

TmsWinsock
wsInfoDemo.drp - usage of msWinsock object;

TmsClientSocket:
FingerDemo.drp - Finger client
WhoIsDemo.drp - WhoIs client
TimeDemo.drp - Network Time client

TmsSMTPClient, TmsMessage:
smtpdemo.dpr - SMTP client

TmsPOPClient, TmsMessage:
popdemo.drp - POP3 client
spop.dpr - Advanced usage of TmsPOPClient component.    Let's you to preview the messages before
you decide what to do with them;

TmsNNTPClient, TmsArticle:
nntpdemo.drp - NNTP client;

TmsFTPClient
ftpdemo.drp - FTP client
ftpresumedemo.dpr - Shows how to resume file upload/download using TmsFTPClient component

TmsHTTPClient
httpdemo.drp - HTTP client.    Demonstrates the usage of Get method;
httpPosDemo.dpr - Shows how to post the data to the server, using TmsHTTPClient component.

Installation
Delphi 2
Click Component - Install and install the file msreg.pas

Delphi 3
Click Component - Install Packages, and install the package ims2d3.dpl.    You also will need to add the
path to IMS to the Library path.    To do it, click Tools - Environment Options, then select Library tab, and
in the Library Path box add the path to the IMS files, separated by a ";".

Delphi 4
Start up Delphi 4, click Component - Install Packages.    In the Project Options dialog box, click Add
button, and browse until you find ims2.bpl file.    Select it and click Open.    IMS components should
appear in the Internet Mail Suite tab of your component palette.

Now you will need to add the path to IMS in the Library search path.    Click Tools - Environment Options,
select Library tab, click small button next to the Library Path edit box, In the Directories box, in the smaller
edit box, type the path where you placed IMS files (e.g. c:\Ims2), click Add, then click OK, once more -
OK, and you are done.

Special Thanks
Special thanks to Mr. Brian Milburn, Solid Oak Software, Inc., for extensive tests of the The Internet
Mail Suite and very useful advises.

Also to Bruce W. Caron, Luc Wuyts, Martin Baur, Paul Stohr, John Taylor, Jayson Minard, David
Sherman, Alexander Lucke and everyone, who helped to locate bugs in our older, TSMTP, TPOP3
components and in the Internet Mail Suite, also helping us to make out products much more productive
and stable.

