
About Fishhead Software

URL:

www.fishware.com

Email: (for fastest reponse)

support@fishware.com

Voice:

630-892-6958

Fax:

630-892-6958

Write:

Fishhead Software
900 Ogden Avenue      Suite 363
Downers Grove, IL 60515

Source Code

Remember:    You can not distribute the source code or use any portion of it to create commercial,
shareware, or freeware ActiveX controls or similar software.

Modifying the source code to create an OCX for your company

Please do the following to the modified control:
· Change the project name and description;
· Change the class name of the control;
· Change the EXE name;
· Change version information to reflect your company;

Note:    other people have bought the control and may sell their applications to the same client.    Taking
these precautions will save you and our clients many headaches.

System Requirements

The system requirements are as follows:

Windows 95 or Windows NT 4.0
Visual Basic 4.0 (32 bit) or Visual Basic 5.0 or higher
386 or higher processor
8 MB RAM
2 MB disk space

fsShare    ActiveX    Demo Version 1.00

About Fishhead Software Copyright

fsShare ActiveX gives the developer an alternative way to communicate to other applications without the
use of DDE, clipboard or other COM methods.

fsShare5.exe for use with Visual Basic 4.0 and 5.0
GUID = C8CD6D7E-4ACD-11D2-A281-000000000000
Requires MSVBVM50.DLL

fsShare6.exe for use with Visual Basic 6.0
GUID = 15D4F55F-49FD-11D2-A27F-000000000000
Requires MSVBVM60.DLL

Getting Started
Frequently Asked Questions
Features and Uses

Methods
Events
Constants

System Requirements

Visit Fishhead Software on the WEB

www.fishware.com

Getting Started

fsShare is easy to use.    To try it out, we will create two projects: a server and a client.

Server Application:

1. Create a new project.    Select the "standard exe" project type.    Name this project Server.

2. From the References dialog, select "Fishhead Software fsShare Demo".

3.    Add a form.

4. Now add the following variables to the form's declaration section:

Private m_Share As fsShare
Private WithEvents m_Events As fsEvents
Private m_ServerHandle As Long

5. Next, in the Form_Initialize event, add the set statements for the variables define above.

Private Sub Form_Initialize()
 
          Set m_Share = New fsShare
          Set m_Events = m_Share.fsEvents
 
          m_ServerHandle = m_Share.StartServer("sample server")
 
End Sub

6. Then in the Form_Terminate event, add the following:

Private Sub Form_Terminate()
 
          m_Share.StopServer
 
End Sub

7.    So far we haven't done anything useful, now lets save some data for the client application to use.    In
the Form_Load event add the following:

        Call m_Share.PutData("Company", "Fishhead Software")
        Call m_Share.PutData("Product", "fsShare")

8.    Lets also print out the messages the server application will receive using fsShare.    Add the following:

Private Sub m_Events_ReceiveMessage(ByVal Handle As Long, ByVal Message As Long, ByVal Data As
Variant)

            MsgBox "Handle:" & Str$(Handle) & "          Message:" & Str$(Message) & "          Data:" & Data

End Sub

9. Now compile and save this project as Server.exe.

Client Application:

1. Create a new project.    Select the "standard exe" project type.    Name this project Client.

2. From the References dialog, select "Fishhead Software fsShare for VB 5" for Visual Basic 4 and 5
applications or select "Fishhead Software fsShare for VB 6" for Visual Basic 6 applications.    This must
be the same as the one you selected for the Server application.

3.    Add a form.

4. Now add the following variables to the form's declaration section:

Private m_Share As fsShare
Private WithEvents m_Events As fsEvents
Private m_ServerHandle As Long
Private m_ClientHandle As Long

5. Next, in the Form_Initialize event, add the set statements for the variables define above.

Private Sub Form_Initialize()
 
          Set m_Share = New fsShare
          Set m_Events = m_Share.fsEvents

          m_ClientHandle = m_Share.ConnectClient("sample server", "sample client")
          m_ServerHandle = m_Share.GetServerHandle
 
End Sub

6. Then in the Form_Terminate event, add the following:

Private Sub Form_Terminate()
 
          m_Share.DisconnectClient
 
End Sub

7.    So far we haven't done anything useful, now lets save some data for the client application to use.    In
the Form_Load event add the following:

        ' * test to see if the server handle is valid
        If m_ServerHandle <> fsSHHNoServerHandle Then
                    MsgBox m_Share.GetData("Company")
                    MsgBox m_Share.GetData("Product")
        End If

8.    Lets also print out the messages the server application will receive using fsShare.    Add the following:

Private Sub m_Events_ReceiveMessage(ByVal Handle As Long, ByVal Message As Long, ByVal Data As
Variant)

            MsgBox "Handle:" & Str$(Handle) & "          Message:" & Str$(Message) & "          Data:" & Data

End Sub

9. Now compile and save this project as Client.exe.

Try it out

1. Run the server application.

2. Run the client application.    Did the client get the saved data?

Frequently Asked Questions

· Can I use fsShare5 with fsShare6 in the same set of applications?

Yes, but the applications that use fsShare5 will not be able to communicate with applications that use
fsShare6.    To get all applications to communicate, use fsShare6 or fsShare5, but not both.

· I am unable to receive events, what is wrong?

You will need to create three variables, as below, in the declaration section of a form.    In the second
declaration, notice the use of WithEvents.    This tells Visual Basic you want to receive events for this
object.    Visual Basic will then create two events labeled: m_Events_Error and
m_Events_ReceiveMessage.

Private m_Share As fsShare
Private WithEvents m_Events As fsEvents
Private m_Handle As Long

Next, in the Form_Initialize event, add the set statements for the variables define above.

Private Sub Form_Initialize()
 
        Set m_Share = New fsShare
        Set m_Events = m_Share.fsEvents
 
        m_Handle = m_Share.ConnectClient("any server name", "my client")
 
End Sub

· I tried to install fsShare (fsShare5.exe/fsShare6.exe) onto my clients machine, but when my
application runs it gets an error message for unappropriate license file, why?

This happen because fsShare was not installed correctly.    Your installation program will need to install
fsShare5.exe and/or fsShare6.exe into the system or system32 sub directory and execute them.    fsShare
will them update the registry with the correct information.

Features and Uses

Features

· Small footprint;
· Uses standard Visual Basic runtime DLL, no additional DLLs or OCXs required;
· Safe and easy to use;
· Allows a system of applications on the same computer to communicate among themselves without the

need of DDE, clipboard or other COM methods;
· Handles multiple servers and clients and multiple instances of servers and clients;
· Servers can talk to servers, clients can talk to clients on the same server;
· A system can easily save and/or pass data to other applications within the system;
· An application can fire messages (events) in other applications;

Uses

· When there is a need for two or more applications to communicate to each other;
· When data needs to be passed to another application and current methods are inadequate;

Copyright and Trademarks

COPYRIGHT: © 1998 Fishhead Software.    All Rights Reserved.

fsShare is published under license agreement by Fishhead Software and is protected by United States
copyright laws and international treaty provisions.

TRADEMARKS:    Microsoft and Windows are registered trademarks of Microsoft Corporation. All other
brand and product names are trademarks or registered trademarks of their respective holders.

Constants

Public Enum fsSHFireMessages
                          fsSHFMServerStarted = 1
                          fsSHFMClientStarted = 2
                          fsSHFMServerAcknowledge = 3
                          fsSHFMClientAcknowledge = 4
                          fsSHFMClientUnloading = 398
                          fsSHFMServerUnloading = 399
                          fsSHFMUser = 400
End Enum

Public Enum fsSHHandle
                          fsSHHNoServerHandle = -2147480001
                          fsSHHNoClientHandle = -2147380001
End Enum

Public Enum fsSHError
                          fsSHErrNoServerOrClientActive =    -2147181503
                          fsSHErrServerNotAvailable = -2147181502
                          fsSHErrInvalidServerName = -2147181501
                          fsSHErrInvalidClientName = -2147181500
                          fsSHErrNotValidHandle = -2147181499
                          fsSHErrItemNotFound = -2147181498
                          fsSHErrInvalidItemName = -2147181497
                          fsSHErrItemIsReadOnly = -2147181496
                          fsSHErrIndexOutofRange = -2147181495
                          fsSHErrNotValidMessage = -2147181494
End Enum

Methods

Clear
ConnectClient
DisconnectClient
FireDataMessage
FireObjectMessage
fsEvents
GetClientInfo
GetData
GetDataByIndex
GetIndex
GetObject
GetObjectByIndex
GetServerHandle
PutData
PutDataByIndex
PutObject
PutObjectByIndex
SetDefaultServer
SetReadOnly
SetReadOnlyByIndex
StartServer
StopServer
Version

Clear Method

Removes all data associated to the client or server.

Syntax

object.Clear

The Clear method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object.

Remarks

The Clear method, when used by the client, will remove all data items created by the client.    When used
by the server, the Clear method will remove all the data items created by the server and its clients.   
When unloading an application, it is not necessary to call this method.    fsShare will automatically free the
data items.    When a client unloads, fsShare will remove the data associated to that client.    When the
server unloads, fsShare will remove all the data for the server and its clients.

Example

m_Share.Clear

ConnectClient Method

Connects a client application to the server application.

Syntax

object.ConnectClient (ByVal ServerName As String, ByVal ClientName As String) As Long

The ConnectClient method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;
ServerName    The name of the server to attach to.    It must be at least three characters long and leading

and trailing spaces will be removed;
ClientName      The name of the client.    It must be at least three characters long and leading and trailing

spaces will be removed;

Remarks

The ConnectClient method will connect the client to the named server application.    This method will
return the client handle.

The ConnectClient method will cause several ReceiveMessage events to be fired.    The client will send
fsSHFMClientStarted message to the server and to the other attached clients.    The server will respond
by sending a fsSHFMServerAcknowledge message to the client.    The attached clients will respond by
sending a fsSHFMClientAcknowledge message to the client.    In each case, the handle and the name will
be sent with the message.

Example

Private m_ServerHandle As Long
Private m_ClientHandle As Long
Private m_ClientHandles() As Long
Private m_ClientHandlesCount As Long
Private m_Share As fsShare
Private WithEvents m_Events As fsEvents

Private Sub Form_Initialize()
 
        Set m_Share = New fsShare
        Set m_Events = m_Share.fsEvents
 
End Sub

Private Sub Form_Load ()

         m_ServerHandle = fsSHHNoServerHandle
          m_ClientHandle = m_Share.ConnectClient("Pacific",    "Dolphin")

End Sub

Private Sub Form_Unload(Cancel As Integer)

            m_Share.DisconnectClient

End Sub

Private Sub m_Events_ReceiveMessage(ByVal Handle As Long, ByVal Message As Long, ByVal Data As
Variant)

              Select Case Message

              Case fsSHEMServerAcknowledge

 ' ** The server will send this message, letting this client know the server's handle
                          m_ServerHandle = Handle

              Case fsSHEMClientAcknowledge
 
                          ' ** Each client will send this message, letting this client know about the other clients
                            m_ClientHandlesCount = m_ClientHandlesCount + 1
                            ReDim Preserve m_ClientHandles(m_ClientHandlesCount) As Long
                            m_ClientHandles(ClientHandlesCount) = Handle

              Case fsSHEMServerStarted

 ' ** The server will send this message when it starts, this will only happen when the client starts
before the server
                            m_ServerHandle = Handle

              Case fsSHEMClientStarted
 
                          ' ** The cleint will send this message when it starts
                            m_ClientHandlesCount = m_ClientHandlesCount + 1
                            ReDim Preserve m_ClientHandles(m_ClientHandlesCount) As Long
                            m_ClientHandles(m_ClientHandlesCount) = Handle

              Case fsSHEMServerUnloading

                            ' ** The server will send this message when it unloads

    m_ServerHandle = fsSHHNoServerHandle

              End Select

End Sub

DisconnectClient Method

Disconnects a client application from the server application.

Syntax

object.DisconnectClient

The DisconnectClient method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;

Remarks

This method will disconnect a client from the server application.    It is optional to call this method.   
fsShare will automatically disconnect a client when the client gets unloaded.    This method will fire
fsSHFMClientUnloading message to all attached clients and to the server.

Example

Private m_ServerHandle As Long
Private m_ClientHandle As Long
Private m_ClientHandles() As Long
Private m_ClientHandlesCount As Long
Private m_Share As fsShare
Private WithEvents m_Events As fsEvents

Private Sub Form_Initialize()
 
        Set m_Share = New fsShare
        Set m_Events = m_Share.fsEvents
 
End Sub

Private Sub Form_Load ()

         m_ServerHandle = fsSHHNoServerHandle
          m_ClientHandle = m_Share.ConnectClient("Pacific",    "Dolphin")

End Sub

Private Sub Form_Terminate()

            m_Share.DisconnectClient

End Sub

FireDataMessage Method

Fires a message to a client or server passing a variant.

Syntax

object.FireDataMessage (ByVal ToHandle As Long, ByVal Message As Long, ByVal Data Variant)

The FireDataMessage method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;
ToHandle           An active server or client handle;
Message              The type of message being sent;
Data                          The data to be passed to the server or client;

Remarks

Use the FireDataMessage method to communicate with servers and clients.    The ToHandle must be an
active server or client handle.    The Message must be a value greater than fsSHEMUser. The Data field
can be a string, a numeric,    any array, a form, a record set, or an ActiveX control.    Be aware, when
passing an object, it may use its default value.    To ensure an object gets passed, use FireObjectMessage
instead.

Predefined Messages

The following message are automatically sent by fsShare:

  Triggered
Message  Value                    Method Description
¯¯¯
¯
fsSHFMServerStarted                                1 StartServer Sent by a server to unattached
clients
fsSHFMClientStarted                                2 ConnectClient Sent by client to server and
other attached clients
fsSHFMServerAcknowledge 3 ConnectClient Sent by server to attaching client

StartServer Sent by server to started server
fsSHFMClientAcknowledge 4 ConnectClient Sent by attached clients to attaching
client

StartServer Sent by unattached clients to starting server
fsSHFMClientUnloading                  398 DisconnectClient Sent by client to server and
other clients
fsSHFMServerUnloading                    399 StopServer Sent by server to other servers
and attached clients

Add the following value to your messages (values below this are reserved for fsShare):
fsSHFMUser = 400

Example

Public Const cCityMessage = 1 + fsSHFMUser          ' ** User/Application define message
' ** ...

Call m_Share.FireDataMessage(m_ServerHandle, cCityMessage, "Aurora") ' ** tell server the name of
the city

FireObjectMessage Method

Fires a message to a client or server passing an object.

Syntax

object.FireObjectMessage (ByVal ToHandle As Long, ByVal Message As Long, ByVal Data As Object)

The FireObjectMessage method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;
ToHandle           An active server or client handle;
Message              The type of message being sent;
Data                          The data object to be passed to the server or client;

Remarks

Use the FireObjectMessage method to communicate with servers and clients.    The ToHandle must be an
active server or client handle.    The Message must be a value greater than fsSHEMUser. Unlike
FireDataMessage, FireObjectMessage requires    the Data field to be an object type. An Object type can a
Visual Basic form or ActiveX control.

Predefined Messages

The following message are automatically sent by fsShare:

  Triggered
Message  Value                    Method Description
¯¯¯
¯
fsSHFMServerStarted                                1 StartServer Sent by a server to unattached
clients
fsSHFMClientStarted                                2 ConnectClient Sent by client to server and
other attached clients
fsSHFMServerAcknowledge 3 ConnectClient Sent by server to attaching client

StartServer Sent by server to started server
fsSHFMClientAcknowledge 4 ConnectClient Sent by attached clients to attaching
client

StartServer Sent by unattached clients to starting server
fsSHFMClientUnloading                  398 DisconnectClient Sent by client to server and
other clients
fsSHFMServerUnloading                    399 StopServer Sent by server to other servers
and attached clients

Add the following value to your messages (values below this are reserved for fsShare):
fsSHFMUser = 400

Example

Public Const cCommandButtonMessage = 2 + fsSHFMUser          ' ** User/Application define message
' ** ...
Call m_ Share.FireObjectMessage(m_ServerHandle, cCommandButtonMessage, Command1) ' ** pass

the command button 1 to the server

fsEvents Method

Allows the application to have events.

Syntax

object.fsEvents () As fsEvents

The fsEvents method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;

Remarks

The fsEvents method allows an application to receive fsShare events.    You will need to create a variable
with the keyword WithEvents and the set the variable as fsShare.fsEvents type.

Example

Private m_Share As fsShare
Private WithEvents m_Events As fsEvents

Private Sub Form_Initialize()
 
        Set m_Share = New fsShare
        Set m_Events = m_Share.fsEvents
 
End Sub

' ** These two events are available when used with WithEvents and Set above
Private Sub m_Events_Error (ByVal nError As Long, ByVal Description As String, bCancel As Boolean)

End Sub

Private Sub m_Events_ReceiveMessage (ByVal Handle As Long, ByVal Message As Long, ByVal Data
As Variant)

End Sub

GetClientInfo Method

The GetClientInfo method returns the number of attached clients and fills in the arrays with client
information.

Syntax

object.GetClientInfo (Handles() As Long, Names() As String) As Variant

The GetClientInfo method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;
Handles()            An array of client handles;
Names()                An array of client names;

Remarks

The GetClientInfo method useful when you need to fire messages to selected group of clients.

Example

Public m_ClientCount As Long
Public m_ClientHandles() As Long
Public m_ClientNames() As String

' ** ...

m_ClientCount = m_Share.GetClientInfo(m_ClientHandles(), m_ClientNames())

GetData Method

Returns a data item previously saved by PutData or PutObject.

Syntax

object.GetData (ByVal ItemName As String) As Variant

The GetData method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;
ItemName         The name of a data item;

Remarks

The GetData method will return a value for the passed in ItemName.    In the case GetData cannot find
the ItemName, it will return vbEmpty variant data type. When returning an object type, the use of Set is
required.

Example

Dim m_EmployeeName As Variant
m_EmployeeName = m_Share.GetData("Emp_Name")

GetDataByIndex Method

Returns a data item previously saved by PutData.

Syntax

object.GetDataByIndex (ByVal ItemIndex As Long) As Variant

The GetDataByIndex method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;
ItemIndex            The position within the list of data items;

Remarks

The GetDataByIndex method will return a value for the passed in ItemIndex.    In the case
GetDataByIndex is not valid, this method will return vbEmpty variant data type.    The GetDataByIndex
method can be substantially faster than GetData method.    To get the index for an ItemName, save the
value returned by PutData.

Example

Dim m_EmployeeName As Variant
Dim m_EmployeeNameIndex As Long

m_EmployeeNameIndex = m_Share.PutData("Emp_Name", "John Doe")

' ** ...

m_EmployeeName = m_Share.GetDataByIndex(m_EmployeeNameIndex)

GetIndex Method

Returns the data item's index.

Syntax

object.GetIndex (ByVal ItemName As String) As Long

The GetIndex method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;
ItemName         The name of a data item;

Remarks

The GetIndex method will return the index for a data item.    If an error occurrs or the data item is not
found, then zero gets return.    This method will not generate any trapable errors, making it convient for
testing if a data item and server is available.

Example

Dim i As Long
Dim EmployeeName As String

i = GetIndex("Emp_Name")
If i then
            EmployeeName = m_Share.GetDataByIndex(i)
End If

GetObject Method

Returns a data item previously saved by PutObject.

Syntax

object.GetObject (ByVal ItemName As String) As Variant

The GetObject method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;
ItemName         The name of a data item;

Remarks

The GetObject method will return a value for the passed in ItemName.    In the case GetObject cannot find
the ItemName, it will return vbEmpty variant data type. Since GetObject only returns object, the use of Set
is required.
To return other types, use GetData.

Example

Dim m_form As Variant
Set m_form = m_Share.GetObject("frmMain")

GetObjectByIndex Method

Returns a data item previously saved by PutObject.

Syntax

object.GetObjectByIndex (ByVal ItemIndex As Long) As Variant

The GetObjectByIndex method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;
ItemIndex            The position within the list of data items;

Remarks

The GetObjectByIndex method will return an object value for the passed in ItemIndex.    In the case
GetObjectByIndex is not valid, this method will return vbEmpty variant data type.    The GetObjectByIndex
method can be substantially faster than GetObject method.    To get the index for an ItemName, save the
value returned by PutObject.    The GetObjectByIndex requires the use of set.

Example

Dim m_Form As Variant
Dim m_FormIndex As Long

m_FormIndex = m_Share.PutObject("frmMain", m_Form)

' ** ...

Set m_Form = m_Share.GetObjectByIndex(m_FormIndex)

GetServerHandle Method

Returns the handle to the connected server.

Syntax

object.GetServerHandle () As Long

The GetServerHandle method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;

Remarks

In order for a client application to communicate with a server application, the client needs to know the
server handle.
The GetServerHandle method will retrieve the server handle.    Once the server handle been retrieved,
the client application can use the FireMessage method to send messages to the server.

Example

Dim ServerHandle As Long
ServerHandle = m_Share.GetServerHandle
If ServerHandle > fsSHHNoServerHandle Then
            ' ** A valid server handle
Else
              ' ** Not attached to a server
End If

PutData Method

The PutData method saves the data into fsShare memory.

Syntax

object.PutData (ByVal ItemName As String, ByVal Data As Variant, Optional ByVal Keep As Boolean) As
Long

The PutData method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;
ItemName          The name for the date being saved;
Data                          The value to be saved for later retrieval;
Keep                          (Optional) Tells fsShare to keep the data item.    (Default: False)

Remarks

fsShare provides four methods for passing data between applications: PutData, PutObject,
FireDataMessage and FireObjectMessage.    The PutData and PutObject methods allows an application
to save data into fsShare memory area.    fsShare will ensure only applications that are attached to the
same server can access the data.    fsShare allocates separate memory areas for each server, even if
they are multiple instances of each other.    However, if two servers want to communicate to each other,
they can by using the FireDataMessage and FireObjectMessage methods.

Another aspect of PutData is the return value.    The return value can be zero, if the ItemName was not
added, or the ItemIndex.    The returned ItemIndex value can be used by subsequent calls to
PutDataByIndex and GetDataByIndex with substantial improvements in performance.

The Keep parameter tells fsShare to keep the data item even after the client has unloaded.    By default,
fsShare will remove all data items created by the client once the clients gets disconnected.    This
parameter has no effect for server applications.

Example

Dim ItemIndex As Long

ItemIndex = m_Share.PutData("Company Name", "Fishhead Software")

' ** ...

Dim CompanyName As String
If ItemIndex > 0 Then
            CompanyName = m_Share.GetDataByIndex(ItemIndex)
End If

PutDataByIndex Method

The PutDataByIndex method saves the data into fsShare memory using the ItemName's index.

Syntax

object.PutDataByIndex (ByVal ItemIndex As Long, ByVal Data As Variant) As Long

The PutDataByIndex method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;
ItemIndex            The index into the ItemName list;
Data                          The value to be saved for later retrieval;

Remarks

The PutDataByIndex works the same as PutData, except it uses the ItemIndex instead of the ItemName.
Before, PutDataByIndex can be used, the Item must have been saved previously with PutData or
PutObject.    The return value from PutData and PutObject is the ItemIndex.    This value can then be used
by PutDataByIndex to improve performance.    Like PutData, PutDataByIndex will return zero if the data
could not be saved, or the ItemIndex.

Example

Dim ItemIndex As Long

ItemIndex = m_Share.PutData("Company Name", "Fishhead Software")

' ** ...

If ItemIndex > 0 Then
          ItemIndex = m_Share.PutDataByIndex(ItemIndex, "")
End If

' ** ...

Dim CompanyName As String
If ItemIndex > 0 Then
            CompanyName = m_Share.GetDataByIndex(ItemIndex)
End If

PutObject Method

The PutObject method saves the object into fsShare memory.

Syntax

object.PutData (ByVal ItemName As String, ByVal Data As Object) As Long

The PutData method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;
ItemName          The name for the date being saved;
Data                          The object to be saved for later retrieval;

Remarks

fsShare provides four methods for passing data between applications: PutData, PutObject,   
FireDataMessage and FireObjectMessage.    The PutData and PutObject methods allows an application
to save data into fsShare memory area.    fsShare will ensure only applications that are attached to the
same server can access the data.    fsShare allocates separate memory areas for each server, even if
they are multiple instances of each other.    However, if two servers want to communicate to each other,
they can by using the FireDataMessage or FireObjectMessage method.

Another aspect of PutObject is the return value.    The return value can be zero, if the ItemName was not
added, or the ItemIndex.    The returned ItemIndex value can be used by subsequent calls to
PutObjectByIndex and GetObjectByIndex with substantial improvements in performance.

Example

Dim ItemIndex As Long

ItemIndex = m_Share.PutObject("Grid", DBGrid1)

' ** ...

Dim grd As Variant
If ItemIndex > 0 Then
            Set grd = m_Share.GetObjectByIndex(ItemIndex)
            MsgBox grd.Row
End If

PutObjectByIndex Method

The PutObjectByIndex method saves an object into fsShare memory using the ItemName's index.

Syntax

object.PutObjectByIndex (ByVal ItemIndex As Long, ByVal Data As Object) As Long

The PutObjectByIndex method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;
ItemIndex            The index into the ItemName list;
Data                          The object to be saved for later retrieval;

Remarks

The PutObjectByIndex works the same as PutObject, except it uses the ItemIndex instead of the
ItemName.    Before, PutObjectByIndex can be used, the Item must have been saved previously with
PutObject.    The return value from PutObject is the ItemIndex.    This value can then be used by
PutObjectByIndex to improve performance.    Like PutObject, PutObjectByIndex will return zero if the data
could not be saved, or the ItemIndex.

Example

Dim ItemIndex As Long

ItemIndex = m_Share.PutObject("Grid", DBGrid1)

' ** ...

If ItemIndex > 0 Then
            ItemIndex =    m_Share.PutObjectByIndex(ItemIndex, DBGrid1)
End If

SetDefaultServer Method

Sets the attached server as the default server.

Syntax

object.SetDefaultServer ()

The SetDefaultServer method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;

Remarks

In evironments where there can be more than one instance of the server application, calling the
SetDefaultServer method
resolves issues of the client application attaching to the wrong server.    By default, the last server load
becomes the default server.    If there can be only one instance of the server, then there is no need to call
this method.

Example

Call m_Share.SetDefaultServer

SetReadOnly Method

The SetReadOnly method sets the ItemName read only flag.

Syntax

object.SetReadOnly (ByVal ItemName As String, ByVal bFlag As Boolean) As Long

The SetReadOnly method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;
ItemName          The name for the date being saved;
bFlag                        A True/False flag for the indicating the ItemName is read only. Default: False;

Remarks

The SetReadOnly method sets the internal read and write flag for an ItemName. The flag can be set to
true or false.    When set to True, an application cannot change an ItemName value.    When set to False,
the default setting, an application can change the ItemName's value at any time.

Another aspect of SetReadOnly is the return value.    The return value can be zero, if the ItemName was
cannot be found, or the ItemIndex into ItemName list.    The returned ItemIndex value can be used by
subsequent calls to PutDataByIndex and GetDataByIndex and SetReadOnlyByIndex with substantial
improvements in performance.

Example

Dim ItemIndex As Long

ItemIndex = m_Share.SetReadOnly("Company Name", True)

SetReadOnlyByIndex Method

The SetReadOnlyByIndex method sets the ItemName read only flag using its index.

Syntax

object.SetReadOnlyByIndex (ByVal ItemIndex As Long, ByVal bFlag As Boolean) As Long

The SetReadOnlyByIndex method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;
ItemIndex           The index into the ItemName list;
bFlag                       A True/False flag for the indicating the ItemName is read only. Default: False;

Remarks

The SetReadOnlyByIndex method sets the internal read and write flag for an ItemName. The flag can be
set to true or false.    When set to True, an application cannot change an ItemName value.    When set to
False, the default setting, an application can change the ItemName's value at any time.

Another aspect of SetReadOnlyByIndex is the return value.    The return value can be zero, if the
ItemIndex is not valid, or the ItemIndex into ItemName list.    The returned ItemIndex value can be used by
subsequent calls to PutDataByIndex and GetDataByIndex and SetReadOnlyByIndex with substantial
improvements in performance.

Example

Dim ItemIndex As Long

If ItemIndex > 0 then
          ItemIndex = m_Share.SetReadOnlyByIndex(ItemIndex, True)
End If

StartServer Method

Sets an application as the server application.

Syntax

object.StartServer (ByVal ServerName As String) As Long

The StartServer method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;
ServerName    The name of the server.    It must be at least three characters long and leading and trailing

spaces will be removed;

Remarks

The StartServer method tells fsShare which application is the server application.    In each system, one
application must be designated as the server application.    The server application is typically the first
application loaded into memory.    Before using GetData or PutData, a server must be active.

The StartServer method fires the fsSHFMServerStarted to all unattached clients and other instances of
the server.

Example

Private m_ServerHandle As Long
m_ServerHandle = m_Share.StartServer("Ocean")

StopServer Method

Tells fsShare this application is no longer the server application.

Syntax

object.StopServer

The StopServer method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;

Remarks

The StopServer method tells fsShare the application is no longer the server application.    After callling this
method, subsequent calls to GetData and PutData will fail.    The StopServer method will remove all data
pretaining to this server.

The StopServer method fires the fsSHFMServerUnloading to all attached clients and other instances of
the server.

Example

Call m_Share.StopServer

Version Method

Returns the version number for fsShare.

Syntax

object.Version () As String

The Version method syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;

Remarks

The Version method will return a the saved version information in the form of major.minor.revision.

Example

MsgBox m_Share.Version    ' Will display 1.00.0000 for the first release

Events

Error
ReceiveMessage

Error Event

The Error event gets fired when an error occurs.

Syntax

Private Sub object_Error (ByVal nError As Long, ByVal Description As String, bCancel As Boolean)

The Error event syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object.

nError                      The error number being generated

  If nError > 0 then
  (see Visual Basic help)
  else it will be one of the following:
  fsSHErrNoServerOrClientActive = "No server or client active" = -2147181503
  fsSHErrServerNotAvailable                = "Server not available"                =
-2147181502
  fsSHErrInvalidServerName                = "Invalid server name 'n'"          =
-2147181501
  fsSHErrInvalidClientName                  = "Invalid client name 'n'"            =
-2147181500
  fsSHErrNotValidHandle                        =    "Not a valid handle"                    =
-2147181499
  fsSHErrItemNotFound                            = "Item 'n' not found"                        =
-2147181498
  fsSHErrInvalidItemName                      = "Invalid item name 'n'"              =
-2147181497
  fsSHErrItemIsReadOnly                        = "Item 'n' is read only"                =
-2147181496
  fsSHErrIndexOutofRange                    = "Index out of range"                    =
-2147181495
  fsSHErrNotValidMessage                  = "Not a valid message"              =
-2147181494

Description       A string value representing the generated error.

bCancel                Determines if an error message dialog displays.    When set to False, the default, fsShare
will display an error message.    When set to True, no message will be displayed by fsShare.

Remarks

This event is useful if you want to centralize your error handling or prevent fsShare from displaying an
error (set bCancel = True).

ReceiveMessage Event

The ReceiveMessage event gets fired when a message is sent to an application .

Syntax

Private Sub object_ReceiveMessage (ByVal Handle As Long, ByVal Message As Long, ByVal Data As
Variant)

The Error event syntax has these parts:

Part                            Description
¯¯
object                      An object expression that evaluates to fsShare object;

Handle                  A handle to the calling application;

Message              The message sent by the calling application

 Predefined Messages

The following message are automatically sent by fsShare:

  Triggered
Message  Value                    Method Description
¯¯¯
¯
fsSHFMServerStarted                                1 StartServer Sent by a server to unattached
clients
fsSHFMClientStarted                                2 ConnectClient Sent by client to server and
other attached clients
fsSHFMServerAcknowledge 3 ConnectClient Sent by server to attaching client

StartServer Sent by server to started server
fsSHFMClientAcknowledge 4 ConnectClient Sent by attached clients to attaching
client

StartServer Sent by unattached clients to starting server
fsSHFMClientUnloading                  398 DisconnectClient Sent by client to server and
other clients
fsSHFMServerUnloading                    399 StopServer Sent by server to other servers
and attached clients

Add the following value to your messages (values below this are reserved for fsShare):
fsSHFMUser = 400

Data                          A variant representing the data, if any, sent to the receiving application;

