
Introduction
Welcome to VideoSoft VSFlexGrid Pro 6.0®.

VSFlexGrid Pro 6.0 includes VSFlexGrid, a full-featured grid control and VSFlexString, a powerful regular
expression engine.

VSFlexGrid incorporates the latest in Microsoft data-binding technologies--ADO 2.0 and OLEDB, as well as
DAO--giving you the flexibility to choose when to migrate your applications to the newest generation of data
access methods as your needs dictate.

If you are upgrading from a previous version of VSFlex, look at the New Features in VSFlexGrid Pro 6.0 section
of the documentation.

VideoSoft custom controls are innovative, flexible, and powerful. If you like VSFlexGridPro, make sure you check
out our other award-winning products, which are described in the VideoSoft Products section.

Our distribution policy is as innovative as the controls. We want every Microsoft Visual Basic® programmer to get
copies of our products and try them for as long as they wish. Those who like the products and find them useful
may purchase licenses at reasonable prices. The only restriction is that unlicensed copies of the software will
display a VideoSoft banner whenever they are loaded, to remind developers to license the product.

We are confident that you will like VideoSoft VSFlexGrid Pro 6.0. If you have any suggestions or ideas for new
features that you'd like to see included in a future version, or ideas for new controls, please call us or write:

VideoSoft
5900-T Hollis Street
Emeryville, CA 94608
510-595-2400 (phone)
510-595-2424 (fax)
http://www.videosoft.com

Upgrading to VSFlexGrid Pro 6.0
Projects that use VSFlex3 may be upgraded to to VSFlexGrid Pro 6.0 using the conversion utility provided in the
distribution package.

The conversion utility is a Visual Basic program called CONVERT, and its source code is included should you
want to see exactly what it does.

The utility reads the name of an existing Visual Basic project, parses the names of all forms, then makes all the
changes needed to each file. The routine saves the original files with a "bak" extension that is appended to the
original file name (e.g. Form1.frm becomes Form1.frm.bak).

The utility will convert most existing projects 100 percent automatically. There is only one exception, where
additional (manual) changes may be necessary. Projects that build custom outlines using the IsSubtotal property
to create nodes and the RowData property to set their level must be edited to use the new RowOutlineLevel
property instead of RowData. Read the list below for additional information.

The following list explains the changes needed to convert the project and why they are necessary:

Class names and GUIDs have changed

This affects declarations made inside .frm and .vbp files. It also affects the declarations of the OLEDragDrop
events, which include a parameter of type vsDataObject.

These changes were made to avoid conflicts with VSFlex3 projects. Both versions of the control may coexist on
the same computer.

Some Event names and parameter lists have changed

The Validate event has been renamed to ValidateEdit in order to avoid conflicts with Visual Basic 6's ambient
Validate event.

The UserResized event has been renamed to AfterUserResize for consistency with the new BeforeUserResize
event.

The Compare event has had its parameter list changed for consistency. The Row1 and Row2 parameters used to
be ByRef and are now ByVal.

The OLEDragDrop events have changed slightly because of the vsDataObject parameter, which includes the
library name.

RowData and ColData are now Variants

These properties used to be of type Long. They were changed to type Variant to increase their flexibility and
usefulness. Since Variants can hold long values, this should not break any existing code.

RowData is no longer used for outlining

In previous versions of the grid control, the RowData property was used to determine the level of outline nodes
(or subtotals). This prevented the use of that property for other purposes.

To remedy this, a new property called RowOutlineLevel has been added to the control, and is used to determine
the level of outline nodes.

Projects that build custom outlines using the IsSubtotal property to create nodes and the RowData property to
set their level must be changed manually to accommodate this change. The conversion utility does not attempt to
fix this.

Installing VSFlexGrid Pro 6.0
To install VideoSoft VSFlexGrid Pro 6.0, use the SETUP.EXE utility provided on the distribution CD or diskettes.
When you are prompted, enter the registration key (found on the CD case or on the diskette itself) exactly as it is
printed and click REGISTER to complete the registration process. You may register any other VideoSoft products
for which you have purchased a registration key at this time as well.

The following files will be installed into your WINDOWS\HELP directory:

VSFLEX6.HLP: This file contains the VSFlexGrid Pro 6.0 online help topics.
VSFLEX6.CNT: This file contains the VSFlexGrid Pro 6.0 online help contents.

The following OCX files will be installed into your WINDOWS\SYSTEM directory:

VSFLEX6.OCX: This file contains the VSFlexGrid Pro 6.0 ActiveX controls with ADO data-binding.
VSFLEX6D.OCX: This file contains the VSFlexGrid Pro 6.0 ActiveX controls with DAO data-binding.

The following folders will be created by the setup utility:

VS: Main VideoSoft directory to store VideoSoft control information.
VS\VSFLEX6: Contains sample Visual Basic projects, utilities, and the README.TXT file which discusses
version specific information.

Installing a demo version

If you wish to try VideoSoft VSFlexGrid Pro 6.0 or any of our other products, and do not have a registration key,
use the SETUP.EXE utility provided on the distribution CD. When prompted, leave the registration key box blank,
then press FINISH.

The only difference between unregistered (demonstration) and registered (purchased) versions of our products is
that registered versions will stamp every application you compile so a VideoSoft banner will not appear when your
users run the applications.

Uninstalling VSFlexGrid Pro 6.0

To uninstall VideoSoft VSFlexGrid Pro 6.0, use the UNSETUP.EXE utility provided on the VSFlexGrid Pro 6.0
installation CD or diskettes. Just run the UNSETUP.EXE utility and it will remove all VSFLEX files from your
\Windows\System directory.

Licensing
You may use VSFlexGrid Pro 6.0 for development with Microsoft Visual Basic 5.0 or later, and any other
programming environment. You may distribute tools created with VideoSoft VSFlexGrid Pro 6.0 free of royalties.
You may include copies of the OCX files with as many copies of your application as you ship.

End-users of your applications are not licensed to use VSFlexGrid Pro 6.0 for any development, and may not
redistribute any OCX files.

You are not allowed to distribute any VSFlexGrid Pro 6.0 files to others for development purposes. Nor are you
permitted to add or transfer the VSFlexGrid Pro 6.0 key to the registrty of your user's computer(s).

Groups of multiple developers may be interested in acquiring VideoSoft product site licenses. Please contact
VideoSoft for details.

If you haven't yet registered your copy of VideoSoft VSFlexGrid Pro 6.0 and would like to do it now, just fill out
the Order Form included in this documentation.

Product Support
Product support for VideoSoft VSFlexGrid Pro 6.0 is available to licensed users through the following channels:

Internet support.vsflex@videosoft.com
Website http://www.videosoft.com
Mail VideoSoft

5900-T Hollis Street
Emeryville, CA 94608

Phone 510-595-2400
FAX 510-595-2424

You can always find the latest version of VideoSoft VSFlexGrid Pro 6.0 on our Web page
(http://www.videosoft.com).    Before calling for technical support, please identify the version of VideoSoft
VSFlexGrid Pro 6.0 that you are using to help our technicians expedite your queries.    The version number
appears in the About box that pops up when you double-click the About property in the VSFlexGrid Pro ActiveX
controls.

Also, please read the Frequently Asked Questions section of the help file or the VSFLEX FAQ page on our Web
site (http://www.videosoft.com). These resources contain answers given by our technical support staff to our
customers' most commonly asked questions, and there is a good chance you may find useful information there.

New Features in VSFlexGrid Pro 6.0
This section summarizes the new features in VideoSoft VSFlexGrid Pro 6.0. If you are familiar with previous
versions of VSFLEX, this section will get you up to speed quickly. For details on each new feature, check the
main body of the documentation.

Masked Editing

VSFlexGrid Pro 6.0 has much more powerful editing features than before.

The new EditMask and ColEditMask properties allow you to specify input masks for automatic input feedback
and validation. The mask syntax is similar to the one used by the Microsoft MaskedEdit control and by Microsoft
Access.

New Edit Properties and Events

VSFlexGrid Pro 6.0 implements several properties and events similar to those provided by the built-in TextEdit
and ComboBox controls. These new properties and events give you total control over editing.

The new Edit properties are: EditMask, EditSelStart, EditSelLength, EditSelText, and EditMaxLength. These
properties also apply to the ComboBox editor.

The new Combo properties are: ComboCount, ComboData, ComboIndex, and ComboItem. These properties
also apply to the ListBox editor.

There is also a new event, ChangeEdit, that is fired whenever the contents of the editor changes.

Translated Combos

The new ColComboList property has two advantages over the traditional ComboList property:

1) You set ColComboList once for each column, and you no longer have to worry about setting it in response to
the BeforeEdit event. This makes your code cleaner and faster.

2) The ColComboList may be used as a data dictionary.

For example, say you have a column that holds the employee type, which could be one of the following: Full-time,
Part-time, Contractor, Intern, or Other. These will often come from a database, where they will have a unique
entry ID.

You may associate the entry IDs with items on the list, and the control will store the IDs and translate them
automatically before displaying them.

Multi-Column Combos

The syntax of the ComboList property has been extended to allow for multi-column lists to be displayed in the
drop-down part of the list, and for items to have arbitrary data items attached to them.

Drop-down/Pop-up Buttons

The VSFlexGrid control displays drop-down buttons automatically for cells with associated combo boxes or drop-
down lists. The user may edit the cells directly, by clicking the button with the mouse. (In previous versions, the
user had to start editing the cell before the box would appear. You may revert to the old behavior by setting the
ShowComboButton property to False.)

In addition, you may now display pop-up buttons in cells. Just set the ComboList property to an ellipsis ("...") in

response to the BeforeEdit event and a pop-up button will appear on the cell. If the user clicks the button, the
control will fire a CellButtonClick event to which you may respond accordingly.

Cell Property

This new property allows reading or writing any cell properties directly to individual cells or ranges (without
selecting them).

There are more than 20 cell properties that you access, including text, alignment, fonts, colors, pictures, and even
a new CellData value that you may use to store custom information with individual calls.

For example, the code below makes an entire range of cells boldface:

 fa.Cell(flexcpFontBold, 1, 1, 10) = True

RowData, ColData are now Variants

You are no longer limited to storing long values in the RowData and ColData properties. Now these properties
are Variants, which means you may associate virtually any data (e.g. strings, objects) with individual rows and
columns.

Note that Variants can hold Long values, so most existing VSFlex3 code you have should work with no changes,
with one exception: If you used these properties in VSFlex3 and assigned Variant values to either RowData or
ColData, the values were automatically converted into Longs. If your code relied on this conversion it may break,
since now the actual Variants are assigned to RowData and ColData with no conversion. This distinction is
especially important when dealing with objects.

For example, consider the following code:

 Dim rs as RecordSet
 fa.RowData(r) = rs!Field(0)

In VSFlex3, this would assign a numeric value to RowData. This could be the value of the Field object's default
property, or zero if the field is empty.

VSFlexGridPro 6.0 will store a reference to the object instead.

If you want to maintain the original behavior, you need to perform the conversion explicitly, as the code below
shows:

 Dim rs as RecordSet
 fa.RowData(r) = CLNG(rs!Field(0))

FindRow

The new FindRow method allows you to look up specific rows based on their RowData values. You can also
search rows based on the cell data values for a specific column.

The search is much faster and more convenient than a Visual Basic loop.

Improved Outlining

The new OutlineCol property allows the outline tree to be displayed in any column, including those which hold
data. The control will take care of the indentation for you.

The outline/subtotal levels are no longer stored in the RowData property. This means you may use RowData
freely, even when dealing with outlines. To retrieve or set the outline/subtotal levels, use the new
RowOutlineLevel property.

Note that you may need to modify your existing code slightly when porting old projects: if you used the RowData
property to set outline levels, you should change that to use the new RowOutlineLevel property instead.

Clicking on outline symbols collapses or expands individual branches, as before. Shift or control clicking on the
symbols collapses the entire outline to the level of the branch clicked. This new behavior is similar to clicking the
buttons on the OutlineBar.

The outline tree is drawn with dotted lines, similar to the standard Windows Tree control, and the drawing is
smoother and faster than before.

Import/Export Comma- or Tab-Delimited Files

The SaveGrid and LoadGrid methods have been upgraded. Now they allow saving and loading of Excel-
compatible comma-delimited or tab-delimited text files.

Bind VSFlexGrid to Visual Basic Arrays or to other VSFlexGrids

The new BindToArray method allows you to bind a VSFlexGrid control to a Visual Basic array of variants. Then
you don't have to copy data between the array and the control: the control displays values read from the array
and writes them back into it automatically.

The array must have at least two dimensions and it must be an array of variants. If the array has more than two
dimensions, you may display one "page" of it at a time, and you may easily "flip pages".

The BindToArray method also allows you to bind a VSFlexGrid to another. This way, you may create different
"views" of the same data without having to keep duplicate copies of the data.

ExplorerBar

The new ExplorerBar property allows users to use column headings to sort and pivot columns without any code.

By default, the ExplorerBar works like the one in Microsoft's Internet Explorer 4: One click sorts the column in
ascending order, the next in descending order. Any non-fixed column may be dragged to any non-fixed position.

RowHidden, ColHidden

Now you can hide rows and columns by setting the RowHidden and ColHidden properties. This is better than
setting RowHeight or ColWidth to zero, because you may hide and unhide rows and columns without having to
save/restore their original dimensions.

AutoSearch

Set the AutoSearch property to flexSearchFromTop or flexSearchFromCursor, and the control will look for data
(in the current column) as the user types what she is looking for. The search is case-insensitive, and partial
matches are displayed as the user types.

Improved Formatting

The VSFlexGrid control allows you to format dates using Visual Basic-like formatting strings. Just set the
ColFormat property to "Short Date", for example. Or define your own custom format for dates using the same
familiar syntax used with Visual Basic's Format function.

The VSFlexGrid control supports number scaling the same way Visual Basic does. Include a percent sign in the
format and the value shown will be multiplied by 100, with a trailing percentage sign added. Include a decimal
right after the thousand separator (",.") and the value will be divided by 1,000.

Automatic CheckBoxes

When a column has its ColDataType property set to flexDTBoolean, the control will automatically display its
values as check boxes. The control will automatically map cell contents onto boolean values and vice-versa. This
feature is especially convenient in bound mode when editing recordsets that contain boolean fields.

You may also assign custom strings to represent boolean values. To do this, set the ColFormat property to a
string containing the values you want to display, separated by a semicolon (e.g. "True;False", "Si;No", "Ja;Nein",
"Oui;Non").

ScrollTips

The new ScrollTips property allows you to display a tooltip over the vertical scrollbar as the user moves the scroll
thumb, just like Excel and Word do. This makes it easy for users to browse and find specific rows on large data
sets.

Enumerate selected rows

When you set the SelectionMode property to flexSelectionListBox, the control allows you to select rows by
control-clicking them.

You can now enumerate the selected rows using two new properties, SelectedRows and SelectedRow. This is
much faster than scanning the entire control for selected rows.

Automatic Auditing

The VSFlexGrid control keeps track of the state of each row for you. The new RowStatus property is set
automatically to reflect the status of the row (new, modified, updated). The RowStatus property is read/write, so
you may define and assign your own constants to it.

Miscellaneous Improvements

The VSFlexGrid control implements a number of significant miscellaneous improvements:

Proportionally-sized scrollbars show how large the visible area of the document is compared to the entire
document.

The AutoSize method has a new optional parameter, ExtraSpace, that allows you to specify extra width or height,
in Twips, for the columns or rows being resized.

Merging has been improved. Painting is faster, merged cells may be highlighted when selected, and the
MergeCells property has two new settings: flexFixedOnly and flexSpill.

There are new events for better UI control: BeforeMouseDown and BeforeUserResize.

There is a new Explorer-style setting for the GridLines and GridLinesFixed properties. It gives them a 3D look
similar to the Windows common controls.

New RowHeightMax, ColWidthMax, and ColWidthMin properties to work with RowHeightMin.

Faster painting, smoother scrolling, especially when displaying merged cells.

Stable sorting algorithm: The sorting keeps the relative order of records when the sorting key is the same. For
example, if you sort a list of files by name, then by extension, file names will still be sorted within each extension
group.

More robust validation: When the ValidateEdit event fails, the user is returned to the same cell, and is back in

edit mode. Previously, the user was returned to the cell, but not in edit mode. You had to write code to enable this.

The Subtotal method has an additional optional parameter (TotalOnly) that allows you to specify whether subtotal
rows should include only a title and a subtotal or whether they should also include data. (The latter is the default).

Better support for pictures in cells, custom-sized icons and palette support.

FlexString Improvements

Now you can use an optional index with the MatchStart, MatchLength, MatchString, TagStart, TagLength, and
TagString properties. This makes your code more compact and more readable.

No Dependencies

VSFlexGrid Pro 6.0 does not depend on any MFC .DLLs or separate OCXs. This makes deployment much
easier, since you need only include the VSFLEX6.OCX file with your application.

Overview
The VideoSoft VSFlexGrid Pro 6.0 package consists of two ActiveX controls:

VSFlexGrid
A powerful, full-featured grid. It provides new ways to display, edit, format, organize, summarize, and print tabular
data. VideoSoft VSFlexGrid Pro supports comma- and tab-delimited files from Microsoft Access and Excel, 2D
and 3D arrays, automatic and multiple totaling and subtotaling, mouse-activated scroll tips, and an innovative
grid-to-grid data binding feature. VSFlexGrid incorporates the latest in Microsoft data-binding technologies--ADO
2.0 and OLE DB, as well as DAO, support OLE drag-and-drop editing, and works equally well in both bound and
unbound modes.

VSFlexGrid adds versatile data-presentation tools to your database applications that maximize end-user
customization capabilities with features that include in-cell editing, cell merging, Outlook-style sorting by column
headings, and advanced outlining capabilities. Featuring automatic auditing which tracks data changes, improved
object model for easier cell formatting, translated drop-downs, combo box drop-downs and multi-column drop-
downs, VSFlexGrid is easy to use, has a small footprint and is the fastest grid control on the market.

VSFlexString
A flexible regular expression engine. It features pattern matching as well as regular expression text matching.
vsFlexString's automatic replace capabilities immediately replaces all matches with the new assigned string. And
Tag matching capabilities determine which parts of the string matched what parts of the pattern.

VSFlexGrid features an optional index with the MatchStart, MatchLength, MatchString, TagStart, TagLength,
and TagString properties to make your code more compact and more readable.

VSFlexGrid QuickStart
This section takes you step by step through the creation of three Visual Basic projects using the VSFlexGrid
control:

Edit Demo
A data-entry tool with editable fields, drop-down lists, check boxes, and custom controls.

Data Analysis Demo
Merge, sort, subtotal, and rearrange data.

Outline Demo
Structure data with subtotals; collapse and expand details.

OLE Drag and Drop Demo
How to implement automatic and custom OLE Drag and Drop.

Visual C++ Demo
How to handle optional parameters and picture properties in C++.

These are simple programs that focus on using the VSFlexGrid control. We tried to reduce the amount of coding
to a minimum, just enough to show how common tasks can be easily accomplished with the VSFlexGrid. For
more realistic and complex projects, please refer to the samples on the distribution CD or disks.

Edit Demo
This sample starts with a basic data-entry grid, then adds the following features:

- Data formatting
- Check boxes
- Drop-down lists
- Input masks
- Complex data validation
- Clipboard support

Here is what the final application will look like:

Step 1: Create the Control

Start a new Visual Basic project including VSFlexGrid Pro 6.0 (if you don't know how to add OCX files to a
project, consult the Visual Basic documentation). The VSFlexGrid icon will be added to the Visual Basic toolbox.

Create a VSFlexGrid object on the form by clicking the VSFlexGrid icon on the toolbox, then clicking on the form
and dragging until the object is the proper size.

Next, use the Visual Basic properties window to set the following control properties:

 (Name) = fa
 Editable = True
 Cols = 5
 FixedCols = 0
 FormatString = "=Product|Region|Sales Person|" & ">Amount Sold|Bonus"

That's it. Press F5 to run the project, and you can start typing data into the control. Press F2 or the space bar to
edit existing entries, or just type new entries over existing ones.

Step 2: Data Formatting

When displaying numeric or date values, you will typically want to adopt a consistent format for the values. The
VSFlexGrid allows you to do this using the ColFormat property. This property allows you to assign a format to
each column. The formats are similar to the ones recognized by the Visual Basic Format function.

The ColFormat    property must be assigned at runtime. A good place to do it is in the Form_Load event, as show
below:

 Private Sub Form_Load()

 ' format column 3 (Amount Sold) to display currency
 fa.ColFormat(3) = "$#,###.00"

 End Sub

This code assigns a format to column 3 (Amount Sold). The format specifies that values should be displayed with
a currency sign, thousand separators, and two decimals.

The ColFormat property does not affect the cell content, only the way it is displayed. You may change the format
freely without modifying the underlying data.

Step 3: Check Boxes

When displaying boolean (True/False) values, you have the option of using check boxes instead of True/False
strings or 1/0 values. This has the advantage of preventing users from entering bad values.

Column 4 (Bonus) contains boolean values (either someone gets a bonus or not). To display the values as
checkboxes, set the ColDataType property to flexdtBoolean. The control will automatically display and manage
the check boxes.

The ColDataType property must be assigned at runtime. Change the Form_Load routine as shown below:

 Private Sub Form_Load()

 ' format column 3 (Amount Sold) to display currency
 fa.ColFormat(3) = "$#,###.00"

 ' make column 4 (Bonus) a boolean column
 fa.ColDataType(4) = flexdtBoolean

 End Sub

Users may toggle the check boxes by clicking them or by selecting them with the keyboard and then hitting enter
or space. Press F5 to run the project again, then type a few sales amounts and give bonuses to some people.

Step 4: Drop-Down Lists

Entering data is a tedious and error-prone process. Drop-down lists are great because they minimize the amount
of typing you must do, reduce the chance of errors, and increase the consistency of the data.

Let's assume that our sample project only involves sales of three products (Applets, Widgets, and Gadgets), in
four regions (North, South, East, and West), and that there are three full-time sales people (Mary, Sarah, and
Paula).

Typing repetitive data would be inefficient and error-prone. A much better approach would be to use drop-down
lists to let users pick the appropriate entry from lists. The VSFlexGrid allows you to assign a list of choices to
each column using the ColComboList property. The list consists of a string with choices, separated by pipe
characters ("|").

The ColComboList property must be assigned at runtime. Change the Form_Load routine as shown below:

 Private Sub Form_Load()

 ' format column 3 (Amount Sold) to display currency
 fa.ColFormat(3) = "$#,###.00"

 ' make column 4 (Bonus) a boolean column
 fa.ColDataType(4) = flexdtBoolean

 ' assign combo lists to each column
 fa.ColComboList(0) = "Applets|Wahoos|Gadgets"
 fa.ColComboList(1) = "North|South|East|West"
 fa.ColComboList(2) = "|Mary|Paula|Sarah"

 End Sub

Notice how the last ColComboList string starts with a pipe. This will allow users to type additional names that are
not on the list. In other words, these values will be edited using a drop-down combo, as opposed to a drop-down
list as the others. There are syntax options to create multi-column lists and translated lists as well. See the control
reference for more details.

Press F5 to run the project again, then move the cursor around. When you move the cusrsor to one of the

columns that have combo lists, a drop-down button becomes visible. You may click on it to show the list, or simply
type the first letter of an entry to highlight it on the list.

Step 5: Input Masks

When picking data from a list, there's usually little need for data validation. When input values are typed in,
however, you will often want to make sure it is valid.

In our example, we would like to prevent users from typing text or negative values in column 3 (Amount Sold).
You can do this using the ColEditMask property, which assigns an input mask to a column that governs what the
user can type into that field.

The ColEditMask property must be assigned at runtime. Change the Form_Load routine as shown below:

 Private Sub Form_Load()

 ' format column 3 (Amount Sold) to display currency
 fa.ColFormat(3) = "$#,###.00"

 ' assign edit mask to column 3 (Amount Sold)
 fa.ColEditMask(3) = "######.##"

 ' make column 4 (Bonus) a boolean column
 fa.ColDataType(4) = flexdtBoolean

 ' assign combo lists to each column
 fa.ColComboList(0) = "Applets|Wahoos|Gadgets"
 fa.ColComboList(1) = "North|South|East|West"
 fa.ColComboList(2) = "|Mary|Paula|Sarah"

 End Sub

The edit mask ensures that the user will not type anything into column 3 except numbers. The syntax for the
ColEditMask property allows you to specify several types of input. See the control reference for details.

Step 6: Complex Data Validation

Input masks are convenient to help users input properly formatted data. They also help with simple data validation
tasks. In many situations, however, you may need to perform more complex data validation. In these cases, you
should use the ValidateEdit event.

For example, let's say some anti-trust regulations prevent us from being able to sell Applets in the North region.
To prevent data-entry mistakes and costly lawsuits, we want to prevent users from entering this combination into
the control. We can do it with the following routine:

 Private Sub fa_ValidateEdit(ByVal Row As Long, _
 ByVal Col As Long, Cancel As Boolean)
 Dim rgn As String, prd As String

 ' collect the data we need
 Select Case Col
 Case 0
 prd = fa.EditText
 rgn = fa.TextMatrix(Row, 1)
 Case 1
 prd = fa.TextMatrix(Row, 0)
 rgn = fa.EditText
 End Select

 ' we can't sell Applets in the North Region...
 If prd = "Applets" And rgn = "North" Then
 MsgBox "Regulation #12333AS/SDA-23 " & _
 "Prevents us from selling " & prd & _
 " in the " & rgn & " Region. Please verify input."
 Cancel = True
 End If
 End Sub

The function starts by gathering the input that needs to be validated. Note that the values being checked are
retrieved using the EditText property. This is necessary because they have not yet been applied to the control.

If the test fails, the function displays a warning and then sets the Cancel parameter to True, which cancels the
edits and puts the cell back in edit mode so the user can try again.

Press F5 to run the project again, then try inputting some bad values. You will see that the control will reject them.

Step 7: Clipboard Support

The Windows clipboard is a very useful device for transfering information between applications. Adding clipboard
support to VSFlexGrid projects is very easy. All it takes is the following code:

 Private Sub fa_KeyDown(KeyCode%, Shift%)
 Dim Cpy As Boolean, Pst As Boolean

 ' copy: ctrl-C, ctrl-X, ctrl-ins
 If KeyCode = vb Key C And Shift = 2 Then Cpy = True
 If KeyCode = vb Key X And Shift = 2 Then Cpy = True
 If KeyCode = vb Key Insert And Shift = 2 Then Cpy = True

 ' paste: ctrl-V, shift-ins
 If KeyCode = vb Key V And Shift = 2 Then Pst = True
 If KeyCode = vb Key Insert And Shift = 1 Then Pst = True

 ' do it
 If Cpy Then
 Clipboard.Clear
 Clipboard.SetText fa.Clip
 ElseIf Pst Then
 fa.Clip = Clipboard.GetText
 End If
 End Sub

The routine handles all standard keyboard commands related to the clipboard: CTRL-X, CTRL-C, or CTRL-INS to
copy, and CTRL-V or SHIFT-INS to paste. The real work is done by the Clip property, which takes care of copying
and pasting the clipboard text over the current range.

Another great Windows feature that is closely related to clipboard operations is OLE Drag and Drop. VSFlexGrid
has two properties, OleDragMode and OLEDropMode, that help implement this feature. Just set both properties
to their automatic settings and you will be able to drag selections by their edges and drop them into other
applications such as Microsoft Excel, or drag ranges from an Excel spreadsheet and drop them into the
VSFlexGrid control.

Press F5 to run the project again, then try copying and pasting some data. You will notice that it is possible to
paste invalid data, because our paste code does not do any data validation. This is left as an exercise for the
reader.

Outline Demo
This sample shows how you can use the VSFlexGrid as an outliner to display structured (or hierarchical) data.

When used as an outliner, the VSFlexGrid control behaves like a Tree control, displaying nodes that can be
collapsed or expanded to show branches containing subordinate data.

The sample reads several .INI files and presents each one as a node. Each file node has a collection of sub-
nodes that contain sections within the corresponding .INI file. Each section node contains branches that show the
tokens and settings stored in the corresponding section. Here is how the final project will look:

Step 1: Create the Control

Start a new Visual Basic project including VSFlexGrid Pro 6.0 (if you don't know how to add OCX files to a
project, consult the Visual Basic documentation). The VSFlexGrid icon will be added to the Visual Basic toolbox.

Create a VSFlexGrid object on the form by clicking the VSFlexGrid icon on the toolbox, then clicking on the form
and dragging until the object is the proper size.

Next, use the Visual Basic properties window to set the following control properties:

 (Name) = fa
 Cols = 3
 ExtendLastCol = True
 FixedCols = 0
 Rows = 1
 FormatString = "Node|Token|Setting"
 OutlineBar = flexOutlineBarComplete
 GridLines = flexGridNone
 MergeCells = flexMergeSpill
 AllowUserResising = flexResizeColumns

We set the OutlineBar property to be able to see the outline tree. You can create outlines without trees, but the
user will not be able to collapse and expand the nodes (unless you write code to do it).

We also set the MergeCells property to flexMergeSpill, so long entries may extend into adjacent empty cells. This
is often a good setting to use when building outlines.

Now the control is ready. We can start adding some code to it.

Step 2: Read the Data and Build the Outline

Double-click the form and add the following code to the Form_Load event:

 Private Sub Form_Load()

 ' suspend repainting to increase speed
 fa.Redraw = False

 ' populate the control
 AddNode "Win.ini"
 AddNode "System.ini"
 AddNode "vb.ini"

 ' expand outline, resize to fit, collapse outline
 fa.Outline -1
 fa.AutoSize 1, 2
 fa.Outline 1

 ' repainting is back on
 fa.Redraw = True
 End Sub

The routine starts by setting the Redraw property to False. This suspends repainting while we populate the
control, and increases speed significantly.

Then the AddNode routine is called to populate the control with the contents of three .INI files which you are
likely to have on your system: Win, System, and Vb. The AddNode routine is shown below.

Finally, the outline is totally expanded, the AutoSize method is called to adjust column widths to their contents,
and the outline is collapsed back to level 1 so the file and section nodes will be displayed.

The AddNode routine does most of the work. It reads an .INI file and populates the control, creating nodes and
branches according to the contents of the file. Here is the AddNode routine:

 Sub AddNode(inifile As String)
 Dim ln As String, p As Integer
 With fa

 ' create file node
 .AddItem inifile
 .IsSubtotal(Rows - 1) = True
 .Cell(flexcpFontBold, Rows - 1, 0) = True

 ' read ini file
 Open "c:\windows\" & inifile For Input As #1
 While Not EOF(1)
 Line Input #1, ln

 ' if this is a section, add node
 If Left(ln, 1) = "[" Then
 .AddItem Mid(ln, 2, Len(ln) - 2)
 .IsSubtotal(Rows - 1) = True
 .RowOutlineLevel(Rows - 1) = 1
 .Cell(flexcpFontBold, Rows - 1, 0) = True

 ' if this is regular data, add branch
 ElseIf InStr(ln, "=") > 0 Then
 p = InStr(ln, "=")
 .AddItem vbTab & Left(ln, p - 1) & vbTab & Mid(ln, p + 1)
 End If
 Wend
 Close #1
 End With
End Sub

The AddNode routine is a little long, but it is fairly simple. It starts by adding a row containing the name of the .INI
file being read. It marks the row as a subtotal using the IsSubtotal property so the control will recognize it as an
outline node.

Next, the routine reads the INI file line by line. Section names are enclosed in square brackets. The code adds
them to the control and then marks them as subtotals much the same way it marked the file name. The difference
is that here it also sets the RowOutlineLevel property to 1, indicating this node is a child of the previous level-0
node (the one that contains the file name).

Finally, lines containing data are parsed into tokens and settings and then added to the control. They are not
marked as subtotals.

Step 3: Use the Outline

Press F5 to run the project, and you will see the outline in action. If you click on one of the nodes, it will expand or
collapse to show or hide the data under it.

You may also shift-click on a node to expand the entire outline to the node's level, or shift-ctrl-click on a node to
collapse the entire outline to that level. For example, if you shift-click on a file name, you will see all file names
and all sections, but no token data. If you shift-ctrl-click on a file name, you will see all file names, and nothing
else.

Step 4: Custom Mouse and Keyboard Handling

The VSFlexGrid provides the expanding and collapsing for you, but you may extend and customize its behavior.
Every time a branch is expanded or collapsed, the control fires the Collapsed event so you may take actions in
response to that.    Furthermore, you may use the IsCollapsed property to get and set the collapsed state of each
branch in code.

For example, the following code allows users to expand and collapse outline branches by double-clicking on a
row itself, rather than on the outline bar.    Here's the code to do it:

 Private Sub fa_DblClick()
 Dim r As Long
 With fa
 r = .Row
 If .IsCollapsed(r) = flexOutlineCollapsed Then
 .IsCollapsed(r) = flexOutlineExpanded
 Else
 .IsCollapsed(r) = flexOutlineCollapsed
 End If
 End With
 End Sub

The code checks the current row. If it is collapsed, then it expands it. Otherwise, it collapses it. Collapsing a detail
row collapses its entire parent node.

We can use the same code to implement the keyboard interface. We just call the DblClick event handler from the
KeyPress handler:

 Private Sub fa_KeyPress(KeyAscii As Integer)
 If KeyAscii = vbKeyReturn Then fa_DblClick
 End Sub

This closes the Outline demo. Press F5 to run the project one last time and test the additional mouse and
keyboard handling.

Data Analysis Demo
This sample starts with a grid containing sales data for different products, regions, and salespeople, then adds the
following features:

- Dynamic layout (column order)
- Automatic sorting
- Cell merging
- Automatic subtotals
- Outlining

Here is how the final application will look:

Step 1: Create the Control

Start a new Visual Basic project including VSFlexGrid Pro 6.0 (if you don't know how to add OCX files to a
project, consult the Visual Basic documentation). The VSFlexGrid icon will be added to the Visual Basic toolbox.

Create a VSFlexGrid object on the form by clicking the VSFlexGrid icon on the toolbox, then clicking on the form
and dragging until the object is the proper size.

Next, use the Visual Basic properties window to set the control name to fa.

2: Initialize and populate the grid

There are many methods available to populate a VSFlexGrid control. Often, you will simply connect it to a
database using the DataSource property. Or you could load the data from a file using the LoadGrid method.
Finally, you may use the AddItem method to add rows or the Cell property to assign data to cells.

In this demo, we will generate some random data and assign it to the control using the Cell property. This is done
at the Form_Load event:

 Private Sub Form_Load()

 ' initialize the control
 fa.Cols = 4
 fa.FixedCols = 0
 fa.GridLinesFixed = flexGridExplorer
 fa.AllowUserResizing = flexResizeBoth
 fa.ExplorerBar = flexExMove

 ' define some sample data
 Const slProduct = "Product|Flutes|Saxophones|Drums|" & _

 "Guitars|Trombones|Keyboards|Microphones"
 Const slAssociate = "Associate|John|Paul|Mike|Paula|Sylvia|Donna"
 Const slRegion = "Region|North|South|East|West"
 Const slSales = "Sales|14323|2532|45342|43432|75877|4232|4543"

 ' populate the control with the data
 FillColumn fa, 0, slProduct
 FillColumn fa, 1, slAssociate
 FillColumn fa, 2, slRegion
 FillColumn fa, 3, slSales
 fa.ColFormat(3) = "#,###"

 End Sub

This routine uses a helper function called FillColumn that fills an entire column with data drawn randomly from a
list. This is a handy function for demos, and here is the code:

 Sub FillColumn(fa As vsFlexGrid, ByVal c As Long, ByVal s As String)
 Dim r As Long, i As Long, cnt As Long
 ReDim lst(0) As String

 ' build list of data values
 cnt = 0
 i = InStr(s, "|")
 While i > 0
 lst(cnt) = Left(s, i - 1)
 s = Mid(s, i + 1)
 cnt = cnt + 1
 ReDim Preserve lst(cnt) As String
 i = InStr(s, "|")
 Wend
 lst(cnt) = s

 ' set values by randomly picking from the list
 fa.Cell(flexcpText, 0, c) = lst(0)
 For r = fa.FixedRows To fa.Rows - 1
 i = (Rnd() * 1000) Mod cnt + 1
 fa.Cell(flexcpText, r, c) = lst(i)
 Next

 ' do an autosize on the column we just filled
 fa.AutoSize c, , , 300
 End Sub

This concludes the first step. Press F5 to run the project, and you will see a grid loaded with data. Because the
ExplorerBar property is set to flexExMove, you may drag column headings around to reorder the columns.

The data presented is almost useless, however, because it is not presented in an organized way. We will fix that
next.

Step 2: Automatic Sorting

The first step in organizing the data is sorting it. Furthermore, we would like the data to be sorted automatically
whenever the user reorders the columns.

After the user reorders the columns, the VSFlexGrid control fires the AfterMoveColumn event. We will add an
event handler to sort the data using the Sort property. (Note that if the grid were bound to a database, you would
need to set the DataMode property to flexDMFree to be able to sort using the Sort property.)

Here is the code:

 Private Sub fa_AfterMoveColumn(ByVal Col As Long, Position As Long)

 ' sort the data from first to last column
 fa.Select 1, 0, 1, fa.Cols - 1
 fa.Sort = flexSortGenericAscending
 fa.Select 1, 0

 End Sub

The AfterMoveColumn routine starts by selecting the first non-fixed row in the control using the Select method.
Next, it sorts the entire control in ascending order using the Sort property.

To start with a sorted grid, we will also add a call to the AfterMoveColumn routine to the end of the Form_Load
handler.

 Private Sub Form_Load()

 ' initialize the control
 ' …
 ' define some sample data
 ' …
 ' populate the control with the data
 ' …

 ' organize the data
 fa_AfterMoveColumn 0, 0

 End Sub

Press F5 to run the project again, and try reordering the columns by dragging their headings around. Whenever
you move a column, the data is automatically sorted, which makes it much easier to interpret. But we're just
getting started.

Step 3: Cell Merging

The ability to dynamically merge cells is one of the features that sets the VSFlexGrid apart from other grid
controls. Merging cells groups them visually, making the data easier to interpret.

To implement cell merging, we need only add two lines of code to the Form_Load event handler:

 Private Sub Form_Load()

 ' initialize the control
 ' …
 ' define some sample data
 ' …
 ' populate the control with the data
 ' …

 ' set up cell merging (all columns)
 fa.MergeCells = flexMergeRestrictAll
 fa.MergeCol(-1) = True

 ' organize the data
 ' …

 End Sub

The new code sets the MergeCells property, which works over the entire control, then sets the MergeCol
property to True for all columns (the -1 index may be used as a wildcard for all properties that apply to rows and
columns).

Press F5 again to run the project. This time it looks very different from a typical grid. The cell merging makes
groups of data stand out visually and help interpret the information.

Step 4: Automatic Subtotals

Now that the data is sorted and grouped, we will add code to calculate subtotals. With the subtotals, the user will
be able to see what products are selling more, in what regions, and which salespeople are doing a good job.

Adding subtotals to a VSFlexGrid control is easy. The Subtotal method handles most of the details.

The subtotals need to be recalculated after each sort, so we will add the necessary code to the

AfterMoveColumn event. Here is the revised code:

 Private Sub fa_AfterMoveColumn(ByVal Col As Long, Position As Long)

 ' suspend repainting to get more speed
 fa.Redraw = False

 ' sort the data from first to last column
 fa.Select 1, 0, 1, fa.Cols - 1
 fa.Sort = flexSortGenericAscending
 fa.Select 1, 0

 ' calculate subtotals
 fa.Subtotal flexSTClear
 fa.Subtotal flexSTSum, -1, 3, , 1, vbWhite, True
 fa.Subtotal flexSTSum, 0, 3, , vbRed, vbWhite, True
 fa.Subtotal flexSTSum, 1, 3, , vbBlue, vbWhite, True

 ' autosize
 fa.AutoSize 0, fa.Cols - 1, , 300

 ' turn repainting back on
 fa.Redraw = True

 End Sub

This code starts by setting the Repaint property to False. This suspends all repainting while we work on the grid,
which avoids flicker and increases speed.

Then the subtotals are calculated using the Subtotal method. The first call removes any existing subtotal rows,
cleaning up the grid. The next three calls add subtotal rows. We start by adding a grand total, then subtotals on
sales grouped by columns 0 and 1. (For now, we are assuming that sales figures will be on column 3.)

After adding the subtotals, we use the AutoSize method to make sure all columns are wide enough to display the
new data.

Finally, the Redraw property is set back to True, at which point the changes become visible.

If you run the project now, you will see that it almost works. The problem is that we are assuming that sales
figures will be on column 3, and if the user moves the figures to the left, the subtotals will just add up to zero.

To prevent this from happening, we can trap the BeforeMoveColumn event and prevent the user from moving
the sales figures column.

Here is the code:

 Private Sub fa_BeforeMoveColumn(ByVal Col As Long, Position As Long)

 ' don't move sales figures
 If Col = fa.Cols - 1 Then Position = -1

 End Sub

We should also prevent the sales column from having merged cells. Merging these values could be confusing
because identical amounts would be merged and appear to be a single entry. To do this, we need to go back to
the Form_Load event handler and add one line of code:

 Private Sub Form_Load()

 ' initialize the control
 ' …
 ' define some sample data
 ' …
 ' populate the control with the data
 ' …

 ' set up cell merging (all columns)
 fa.MergeCells = flexMergeRestrictAll

 fa.MergeCol(-1) = True
 fa.MergeCol(fa.Cols - 1) = False

 ' organize the data
 ' …

 End Sub

We are done with the subtotals. If you run the project now, you will see how easy it is to understand the picture
behind the sales figures. You can organize the data by product, by region, or by salesperson and quickly see who
is selling what and where.

We are now almost done with this demo. The last step is to add outlining to the control, so users can hide or show
details and get an even clearer picture.

Step 5: Outlining

The outlining capabilities of the VSFlexGrid control rely on subtotals. When outlining, each subtotal row is treated
as a node that can be collapsed or expanded. Nested subtotals are treated as nested nodes. Any rows that are
not subtotal rows are treated as branches, which contain detail data.

Because we have already implemented subtotals, adding the outline capabilities is just a matter of adding one
more line of code to the Form_Load event handler. The new code sets the OutlineBar property, which displays a
tree structure with buttons that the user may click to collapse or expand the outline. Here is what the Form_Load
routine should look like by now:

 Private Sub Form_Load()

 ' initialize the control
 ' …
 ' define some sample data
 ' …
 ' populate the control with the data
 ' …
 ' set up cell merging (all columns)
 ' …

 ' set up outlining
 fa.OutlineBar = flexOutlineBarComplete

 ' organize the data
 ' …

 End Sub

That concludes this demo. Run the project one last time and try clicking on the outline buttons. Clicking will toggle
the state of the node between collapsed and expanded. Shift-clicking or ctrl-shift-clicking will set the outline level
for the entire control.

Cell Flooding Demo
This example demonstrates how to use the Cell property to format individual cells. The demo uses flooding to
create a display combining numbers and bars.

Here is how the final application will look:

This project is very simple. It consists of a single routine, the Form_Load event handler. Here is the code, followed
by some comments:

 Private Sub Form_Load()
 Dim i As Long
 Dim max As Double

 ' initialize array with random data
 Dim count(1, 7) As Single
 For i = 0 To 7
 count(0, i) = Rnd * 100
 count(1, i) = Rnd * 100
 Next

 ' initialize control
 fa.Cols = 3
 fa.Rows = 9
 fa.FloodColor = RGB(100, 255, 100)
 fa.ColAlignment(0) = flexAlignCenterCenter
 fa.ColAlignment(1) = flexAlignRightCenter
 fa.ColAlignment(2) = flexAlignLeftCenter
 fa.Cell(flexcpText, 0, 0) = "Age Range"
 fa.Cell(flexcpText, 0, 1) = "Females"
 fa.Cell(flexcpText, 0, 2) = "Males"
 fa.ColFormat(-1) = "#.##"

 ' make data bold
 fa.Cell(flexcpFontBold, 1, 1, _
 fa.Rows - 1, fa.Cols - 1) = True

 ' place text in cells, keep track of maximum
 For i = 0 To 7
 fa.Cell(flexcpText, i + 1, 0) = _
 10 * i & " - " & (10 * (i + 1) - 1)
 fa.Cell(flexcpText, i + 1, 1) = count(0, i)
 fa.Cell(flexcpText, i + 1, 2) = count(1, i)
 If count(0, i) > max Then max = count(0, i)
 If count(1, i) > max Then max = count(1, i)
 Next

 ' set each cell's flood percentage,
 ' using max to scale from 0 to -100 for column 1
 ' and from 0 to 100 for column 2:
 For i = 0 To 7
 fa.Cell(flexcpFloodPercent, i + 1, 1) = _
 -100 * count(0, i) / max
 fa.Cell(flexcpFloodPercent, i + 1, 2) = _
 100 * count(1, i) / max

 Next

End Sub

The code starts by declaring and populating an array with random data. The data will be used later to populate
the control.

Then the control is initialized. The code sets the number of rows and columns, column alignments, column titles,
and the format that is to be used when displaying data. Note that when setting the ColFormat property, the -1
index is used as a wildcard so the setting is applied to all columns.

The Cell property is then used to set the font of the scrollable area to bold. It takes only a single statement,
because the Cell property accepts a whole range as a parameter.

Next, the array containing the data is copied to the control (again using the Cell property). The code keeps track
of the maximum value assigned to any cell in order to scale the flood percentages later.

Finally, the Cell property is used one last time to set the flood percentages. The percentages on the first column
are set to negative values, which causes the bars to be drawn from right to left. The percentages on the second
column are set to positive values, which causes the bars to be drawn from left to right.

Cell ToolTip Demo
The example below shows how you can use the MouseRow and MouseCol properties to implement tooltips with
text that changes as the mouse moves over the control.

 Sub fa_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)
 Static r As Long, c As Long
 Dim nr As Long, nc As Long

 ' get coordinates
 nr = fa.MouseRow
 nc = fa.MouseCol

 ' update tooltip text
 If c <> nc Or r <> nr Then
 r = nr
 c = nc
 fa.ToolTipText = "Row:" & r & " Col:" & c
 End If

 ' other processing...
 ' ...
 End Sub

The code keeps track of the last cell for which tooltips were displayed, and refreshes the ToolTipText only when
needed. This is done to avoid flicker.

RenderControl Demo
The example below shows how you can print a report based on a VSFLEX Grid Pro 6.0 control using VideoSoft's
VSPrinter control.

The VSPrinter control is part of VSVIEW 3.0, a separate VideoSoft product.

The example assumes you have a VSFlexGrid control named fa and a VSPrinter control named vp on your
form.

 Sub PrintFlexGrid()
 vp.StartDoc
 vp.RenderControl = fa.hWnd
 vp.EndDoc
 End Sub

The routine above is really all you need in order to print simple reports. By setting some properties on the
VSPrinter control, the report may be shown on a print preview window, rendered on the printer, or saved to a file.

For printing complex reports, the VSFlexGrid control exposes events that allow you to control page breaks and to
supply header rows which get printed at the top of each new page. The code below illustrates the use of these
events:

 ' BeforePageBreak: controls page breaks
 ' we assume we have subtotals above details, and prevent subtotal rows from
 ' being the last on a page
 Private Sub fa_BeforePageBreak(ByVal Row As Long, BreakOK As Boolean)
 With fa

 ' if this row is a subtotal heading, we can't break here
 If .IsSubtotal(Row) Then
 BreakOK = False
 End If
 End With
 End Sub

 ' GetHeaderRow: supplies header rows for new pages
 ' we assume we have title rows with RowData set to -1 that we want to show
 ' above the data
 Private Sub fa_GetHeaderRow(ByVal Row As Long, HeaderRow As Long)
 Dim r As Long

 ' ignore if the top row is a header already
 If fa.RowData(Row) = -1 Then Exit Sub

 ' we need a header, so find one
 For r = fa.FixedRows To fa.Rows - 1
 If fa.RowData(r) = -1 Then
 HeaderRow = r
 Exit Sub
 End If
 Next
 End Sub

OLE Drag and Drop Demo
This sample shows how to implement automatic and manual OLE drag and drop using VSFlexGrid Pro 6.0.

OLE drag and drop can be a little confusing at first, because of all the properties, methods, objects and events
that may be involved in the process. However, you only need to handle a few of these events in order to make
OLE drag and drop work for you. This demo illustrates the basic concepts and procedures you will need.

Here is how the final application will look:

The three controls shown are OLE drag drop sources and targets. This means you can drag data from one control
to the others, or between any of the controls and external applications.

Step 1: Create the Controls

Start a new Visual Basic project including VSFlexGrid Pro 6.0 (if you don't know how to add OCX files to a
project, consult the Visual Basic manual). The VSFlexGrid icon will be added to the Visual Basic toolbox.

Create two VSFlexGrid objects on the form by clicking the VSFlexGrid icon on the toolbox, then clicking on the
form and dragging until the objects are the proper size.

Set the name of the VSFlexGrid controls to faDDManual and faDDAuto.

Now add a Microsoft Rich Textbox control to the form (register the Richtx32.ocx file if this control is not on your
custom control list).

Step 2: Initialize the Controls

We could have set the initial properties of the faDDManual and faDDAuto controls using the Visual Basic
properties window, but chose to do it using the Form_Load event instead. Here is the routine that initializes the
controls:

 Private Sub Form_Load()

 ' initialize manual control
 With faDDManual
 .Cell(flexcpText, 0, 0) = "Manual"
 .FixedCols = 0
 .Editable = True
 .OLEDragMode = flexOLEDragManual

 .OLEDropMode = flexOLEDropManual
 End With

 ' initialize auto control
 With faDDAuto
 .Cell(flexcpText, 0, 0) = "Auto"
 .FixedCols = 0
 .Editable = True
 .OLEDragMode = flexOLEDragAutomatic
 .OLEDropMode = flexOLEDropAutomatic
 End With

 End Sub

The code makes both grids editable, so you can type into them, and sets the OLEDragMode and OLEDropMode
properties to make each control an OLE drag-and-drop source and a target.

There is no need to initialize the Rich Editbox, since its OLEDragMode and OLEDropMode properties are set to
automatic by default.

That's all it takes to implement automatic OLE drag and drop. If you run the project now, you will be able to drag
text from the Rich Editbox into the faDDAuto grid. You may also drag files from the Window Explorer, ranges from
Microsoft Excel, or text from Microsoft Word.

You can also drag selections from the faDDAuto grid into any OLE drop target (including other areas of the same
control). To do this, select a range and move the mouse cursor to an edge around the selection. The cursor will
turn into a default OLE drag cursor, as the picture below shows. Click the left mouse button and start dragging.
The cursor will give you visual feedback whenever you move it over an OLE drop target.

As you can see, implementing automatic OLE drag and drop is easy. Just set the OLEDragMode and
OLEDropMode properties to automatic and you are done.

Sometimes you may want to customize the way in which OLE drag and drop works. This sample shows how you can
do that by customizing both the drag (OLE source) behavior and the drop (OLE target) behavior of the faDDManual
control.

Step 3: Manual OLE Drag

We will customize the behavior of the faDDManual control as an OLE drag source in two ways:
1)    We will initiate dragging whenever the user clicks on the current cell, and
2)    We will add a copyright notice to the contents being dragged from the control.

Because the OLEDragMode property of the faDDManual control is set to flexOLEDragManual, you need to initiate
the OLE dragging operation with code, using the OLEDrag method. To do this we will add code to handle the
BeforeMouseDown event. When the user clicks on the active cell, we call the OLEDrag method. Here is the code:

 Private Sub faDDManual_BeforeMouseDown(ByVal Button As Integer, _
 ByVal Shift As Integer, _
 ByVal X As Single, ByVal Y As Single, _
 Cancel As Boolean)
 With faDDManual

 ' if the click was on the active cell, start dragging

 If .MouseRow = .Row And .MouseCol = .Col Then

 ' use OLEDrag method to start manual OLE drag operation
 ' this will fire the OLEStartDrag event, which we will use
 ' to fill the DataObject with the data we want to drag.
 faDDManual.OLEDrag

 ' tell grid control to ignore mouse movements until the
 ' mouse button goes up again
 Cancel = True
 End If

 End With
 End Sub

The code above checks whether the user clicked on the active cell. If so, it calls the OLEDrag method and sets the
Cancel parameter to True.

Note that we have not specified what the data is. In automatic mode, the control assumed that you wanted to drag the
current selection. In manual mode, you are responsible for providing the data.

When the OLEDrag method is called, the control fires the OLEStartDrag event, which gives you access to a
DataObject object. You must store the data that will be dragged into the DataObject so that the target object can get
to it. Here is the code:

 Private Sub faDDManual_OLEStartDrag(Data As VSFlex6Ctl.vsDataObject,
 AllowedEffects As Long)

 ' set contents of data object for manual drag
 Dim s$
 s = faDDManual.Clip & vbCrLf & "Copyright 1998 VideoSoft"
 Data.SetData s, vbCFText

 End Sub

The code takes the current selection (contained in the Clip property), appends a copyright notice to it, and then
assigns it to the Data parameter. This is the data that will be exposed to the OLE drop targets.

If you run the project now, and type some data into the faDDManual control, you will be able to drag it to one of the
other controls on the form. Notice how the copyright notice gets appended to the selection when you make the drop.

Step 3: Manual OLE Drop

We will customize the behavior of the faDDManual control as an OLE drop target so that when a list of files is
dropped, it opens the first file on the list and displays the contents of the first 10 lines in that file. (The default behavior
is to treat lists of files as text, and paste the file names.)

When the user drops an OLE data object on a VSFlexGrid control with the OLEDropMode property set to
flexOLEDropManual, the control fires the OLEDragDrop event. The data object being dropped is passed as a
parameter (Data) that you may query for the type of data you want.

The routine below checks to see if Data contains a list of files. If so, it opens the first file on the list and reads the
contents of its first 10 lines. If the Data parameter does not contain any files, then the routine tries to get its text
contents. Either way, the routine transfers the data to the grid using the Clip property.

Here is the routine:

 Private Sub faDDManual_OLEDragDrop(Data As VSFlex6Ctl.vsDataObject, _
 Effect As Long, _
 ByVal Button As Integer, _
 ByVal Shift As Integer, _
 ByVal X As Single, ByVal Y As Single)
 Dim r As Long, c As Long, i As Integer, s As String

 With faDDManual

 ' get drop location
 r = .MouseRow
 c = .MouseCol

 ' if we're dropping files, open the file and paste contents
 If Data.FileCount > 0 Then
 On Error Resume Next
 Open Data.Files(0) For Input As #1
 For i = 0 To 10
 Line Input #1, s
 .Cell(flexcpText, r + i, c) = s
 Next
 Close #1

 ' drop text using the Clip property
 ElseIf Data.GetFormat(vbCFText) Then
 s = Data.GetData(vbCFText)
 .Select r, c, .Rows - 1, .Cols - 1
 .Clip = s
 .Select r, c

 ' we don't accept anything else
 Else
 MsgBox "Sorry, we only accept text and files..."
 End If
 End With

 End Sub

That concludes this demo. Run the project again and try dragging and dropping between the controls and other
applications.

Visual C++ Demo
The VSFlexGrid Pro 6.0 documentation is geared toward Visual Basic users. However, many other development
environments are capable of hosting ActiveX controls, including Microsoft Visual C++, Internet Explorer, Microsoft
Access, and others.

This demo shows the basic techniques you will need to use VSFlexGrid Pro 6.0 with Visual C++. (The other
environments mentioned are very similar to Visual Basic.)
To follow this demo, you must know how to use the Visual C++ development environment and you must also
know C++ (or at least C).

The Visual C++ sample project is similar to the Visual Basic Outline Demo that is also a part of this
documentation, but it adds a few extra bells and whistles (such as cell pictures), just to show how this is done in
C++.

The sample reads several INI files and presents each one as a node. Each file node has a collection of sub-
nodes that contain sections within the corresponding INI file. Each section node contains branches that show the
tokens and settings stored in the corresponding section.

Here is what the final application will look like:

Step 1: Create the project

Start Microsoft Visual C++ and select File|New. You will see a tabbed dialog that lists the types of files you may
create.

Select the Projects tab, then click the MFC AppWizard (EXE) option and type the path where you want to place
the new project. Also type in the project name, OutlineC.

Click OK and the MFC App Wizard will appear. On the first page, click the Dialog Based option button. Click
Finish to accept all other defaults and create the project. You will see a dialog with some information about the
new project. Click OK.

Step 2: Add the VSFlexGrid Control to the Project

Now that the project has been created, we need to add the VSFlexGrid control to the project. (This is equivalent
to adding the control to the Visual Basic toolbox.) The exact steps may vary a little depending on the version of
Visual C++ you are using.

In VC++ 5, select the Project|Add and Controls… menu. You will see a list of elements that you can add to the
project. Select Registered ActiveX Controls by double clicking it. A list of registered ActiveX controls will appear.
If the VSFlexGrid control does not appear on the list, you need to register it.

Select the VideoSoft VSFlexGrid control, then click Insert.

You will see a dialog informing you of the classes that will be generated by the Wizard: CvsFlexGrid, COleFont,
and COlePicture. These classes are wrappers that the Wizard creates for you based on information it retrieves
from the control's type library. Click OK to proceed, then Close to dismiss the components dialog.

Go to the VC++ workspace window and select the Files pane. You will see that VC++ added a few files to the
project, including vsflexgrid.h and vsflexgrid.cpp. If you open these files, you will see that they define members to
access every property and method of the underlying object. For example, the Row property of the VSFlexGrid
ActiveX control is read or set using the GetRow and SetRow methods of the CvsFlexGrid C++ class.

Step 3: Create the VSFlexGrid Control

Go to the VC++ workspace window and select the Resources pane. Because this is a dialog-based MFC
application, you can design the application by dragging and dropping controls on the main dialog (or form). It's
almost like designing a form in Visual Basic.

Open the main dialog (called IDD_OUTLINEC_DIALOG) by double-clicking on it. Then delete the TODO label,
pick a VSFlexGrid control from the toolbox and drop it on the form. Adjust the size of the dialog and the control
until you are happy with the layout.

Now right-click on the control and select Properties… from the popup menu. Select the All pane and click the
pushpin to keep the window on top of the others while you initialize the control's properties. Use the properties
window to apply these settings (the same we used in the Outline demo):

 Cols = 3
 ExtendLastCol = True
 FixedCols = 0
 Rows = 1
 FormatString = "Node|Token|Setting"
 OutlineBar = flexOutlineBarComplete
 GridLines = flexGridNone
 MergeCells = flexMergeSpill
 AllowUserResising = flexResizeColumns

Save your project and press F5 to run it. Visual C++ will build the project and you will see that the control is
created and initialized properly. Click OK or Cancel when you are done.

Step 3: Create a Member Variable to Access the Control

Remember how the wizard created wrapper classes to enable easy access to the control? Now we will create a
member variable m_fa of type CvsFlexGrid. This variable will be attached to the control on the form, and it will
allow us to read and set the object's properties, trap events and so on.

Return to the VC++ workspace window and select the Resources pane. Open the main dialog (called
IDD_OUTLINEC_DIALOG) by double-clicking on it.

Now hold down the CONTROL key and double-click on the VSFlexGrid control. You will see a dialog prompting
you to enter a variable name. Type m_fa and click OK. The Wizard will create the variable and initialize it for you.

Step 4: Read the Data and Build the Outline

In the Outline sample, we placed the code to read the data in the Form_Load event. In this sample we will use
the OK button instead.

Open the dialog in the Visual C++ resource editor, then type CTRL-W (for Wizard). You will see a dialog that lets
you add event handlers to each element on the form.
On the Object Ids list, select IDOK. On the Messages list, select BN_CLICKED. Now click the Add Function
button, and then the Edit Code button.

This will open the code editor. You will see that the Wizard already added the function declaration for you. Now
type the following code:

 void COutlineCDlg::OnOK()
 {
 // TODO: Add extra validation here
 // comment the following line to avoid closing the
 // dialog when the user clicks OK:
 //CDialog::OnOK();

 // initialize variant to use as optional parameter
 COleVariant varDefault;
 V_VT(&varDefault) = VT_ERROR;

 // suspend repainting to increase speed
 m_fa.SetRedraw(FALSE);

 // populate the control
 AddNode("Win.ini");
 AddNode("System.ini");
 AddNode("vb.ini");

 // expand outline, resize to fit, collapse outline
 m_fa.Outline(-1);
 COleVariant vCol((short)2, VT_I2);
 m_fa.AutoSize(1, vCol, varDefault, varDefault);
 m_fa.Outline(1);

 // repainting is back on
 m_fa.SetRedraw(TRUE);
 }

The first thing to notice is that you should comment out the line that calls the default handler for this event
(CDialog::OnOK()). The default handler closes the dialog when the user clicks OK, which is not what we want
here.

Next, we declare a varDefault variable of type variant and initialize it with type VT_ERROR.

This is necessary because many of the methods in the VSFlexGrid control take optional parameters. In Visual
Basic, optional means you don't have to supply them at all. In Visual C++, optional means you don't have to
supply the value, but the parameter must still appear in the function calls. This is what the varDefault variable
does: it is a parameter without a value. (You may prefer to modify the CvsFlexGrid wrapper classes and overload
the methods to user friendlier parameter lists. We chose not to do it here to keep the example simple.)

The code then calls the AddNode function to populate the grid, just like the Visual Basic version of the program
did. The AddNode function will be discussed later.
Finally, the code calls the AutoSize method, which takes three variant parameters. One of them holds the value 2
(the last column to be autosized) and the others use varDefault, which means the control will use default values.

Like before, the AddNode routine does most of the work. It reads an INI file and populates the control, creating
nodes and branches according to the contents of the file. Here is the C++ version of the AddNode routine
(remember to add its declaration to the OutlineCDlg.h file):

 void COutlineCDlg::AddNode(LPSTR inifile)
 {
 long row;

 // initialize variant to use as optional parameter
 COleVariant varDefault;
 V_VT(&varDefault) = VT_ERROR;

 // create file node
 m_fa.AddItem(inifile, varDefault);
 row = m_fa.GetRows() - 1;
 m_fa.SetIsSubtotal(row, TRUE);
 m_fa.Select(row, 0, varDefault, varDefault);
 m_fa.SetCellFontBold(TRUE);

 // read ini file
 CString fn = (CString)"c:\\windows\\" + (CString)inifile;

 FILE* f = fopen(fn, "rt");
 while (f && !feof(f)) {
 char ln[201];
 fgets(ln, 200, f);

 // if this is a section, add section node
 if (*ln == '[') {
 char* p = strchr(ln, ']');
 if (p) *p = 0;
 m_fa.AddItem(ln + 1, varDefault);
 row = m_fa.GetRows() - 1;
 m_fa.SetIsSubtotal(row, TRUE);
 m_fa.SetRowOutlineLevel(row, 1);
 m_fa.Select(row, 0, varDefault, varDefault);
 m_fa.SetCellFontBold(TRUE);

 // if this is regular data, add branch
 } else if (strchr(ln, '=')) {
 char* p = strchr(ln, '=');
 *p = 0;
 CString str = (CString)"\t" + (CString)ln +
 (CString)"\t" + (CString)(p + 1);
 m_fa.AddItem(str.GetBuffer(0), varDefault);
 }
 }
 if (f) fclose(f);
}

This routine is a line-by-line translation of the Visual Basic AddNode routine presented in the Outline demo. It
uses the MFC CString class to create some of the strings, and a few additional variants for parameters.

The routine starts by adding a row containing the name of the INI file being read. It marks the row as a subtotal
using the SetIsSubtotal method so the control will recognize it as an outline node.

Next, the routine reads the INI file line by line. Section names are enclosed in square brackets. The code adds
them to the control and marks them as subtotals the same way it marked the file name. The difference is that here
the SetRowOutlineLevel method is used to indicate that this node is a child of the previous level-0 node (the one
that contains the file name).

Finally, lines containing data are parsed into token and setting and then added to the control. They are not
marked as subtotals.

Step 5: Use the Outline

Press F5 to run the project, click the OK button, and you will see the outline in action. If you click on one of the
nodes, it will expand or collapse to show or hide the data under it.
You may also SHIFT-click on a node to expand the entire outline to the node's level, or SHIFT-CTRL-click on a
node to collapse the entire outline to that level. For example, if you SHIFT-click on a file name, you will see all file
names and all sections, but no token data. If you SHIFT-CTRL-click on a file name, you will see all file names,
and nothing else.

Step 6: Custom Mouse and Keyboard Handling

To add custom mouse and keyboard handling similar to those implemented in the Visual Basic version of    the
Outline demo, we need to handle the DblClick and KeyPress events.

Adding the event handlers is easy: click CTRL-W to invoke the Wizard, select the VSFLEXGRID1 object on the
Object Ids list, then select each event and click the Add Function button. When you are done, click the Edit
Code button and type the following code:

 #define flexOutlineExpanded 0
 #define flexOutlineSubtotals 1
 #define flexOutlineCollapsed 2

 void COutlineCDlg::OnDblClickVsflexgrid1()
 {
 // double clicking on a row expands or collapses it
 long r = m_fa.GetRow();
 if (m_fa.GetIsCollapsed(r) == flexOutlineCollapsed)
 m_fa.SetIsCollapsed(r, flexOutlineExpanded);
 else
 m_fa.SetIsCollapsed(r, flexOutlineCollapsed);
 }

 void COutlineCDlg::OnKeyPressVsflexgrid1(short FAR* KeyAscii)
 {
 if (*KeyAscii == VK_RETURN) {
 OnDblClickVsflexgrid1();
 *KeyAscii = 0;
 }
 }

Again, the code is a line-by-line translation of the Visual Basic Outline example.

Step 7: Cell Pictures

The final step shows how you can add cell pictures using C++.

First of all, you need to use the VC++ resource editor and add two bitmap resources to the project. Make the
bitmaps approximately 15 by 15 pixels in size and name them IDB_FILE and IDB_SECTION.

Then, make the following changes to the AddNode routine (the changes are marked in boldface):

 #include <afxctl.h>
 void COutlineCDlg::AddNode(LPSTR inifile)
 {
 long row;

 // initialize pictures
 CPictureHolder picFile, picSection;
 picFile.CreateFromBitmap(IDB_FILE);
 picSection.CreateFromBitmap(IDB_SECTION);

 // initialize variant to use as optional parameter
 …

 // create file node
 …
 m_fa.SetCellFontBold(TRUE);
 m_fa.SetCellPicture(picFile.GetPictureDispatch());

 // read ini file
 …
 // if this is a section, add section node
 …
 m_fa.SetCellFontBold(TRUE);
 m_fa.SetCellPicture(picSection.GetPictureDispatch());

 // if this is regular data, add branch
 …
 }
 if (f) fclose(f);
}

The first line added includes the MFC header file afxctl.h. This file defines CPictureHolder, a handy class for
manipulating OLE pictures.

The next three lines added declare a CPictureHolder variable for each bitmap, and load the bitmaps using the
CreateFromBitmap method.

Finally, the SetCellPicture method is used to assign the pictures to cells that are file and section nodes.

This concludes this demo. Run the project once again to see the final result.

VSFlexString QuickStart
This section takes you through four examples and the step-by-step creation of a Visual Basic project using the
vsFlexArray control:

Regular Expressions
Illustrates the notation used in regular expression text matching.

Matching Demo
An example of vsFlexString's text matching capabilites.

Replacing Demo
An example of vsFlexString's automatic replace capabilites.

Tag Match Demo
An example using vsFlexString's tag matching capabilities.

Expression Evaluator Demo
This sample takes you step by step through the creation of a Visual Basic project using the vsFlexString control.
It features pattern matching and shows how vsFlexString can be used to implement a mathematical expression
evaluator.

These are simple programs that focus on using the vsFlexString control. We tried to reduce the amount of
coding to a minimum, just enough to show how common tasks can be easily accomplished with the vsFlexString.
For more realistic (and ambitious) projects, please check out the samples on the distribution CD or disks.

Regular Expressions
The VSFlexString control finds patterns in strings. The pattern being searched (stored in the Pattern property) is
a regular expression.

A regular expression is a notation for specifying strings. Like an arithmetic expression, a regular expression is a
basic expression or one created by applying operators to simpler expressions. The VSFlexString control
recognizes the following operators (special characters):

Char Description
^ Matches the beginning of a string.
$ Matches the end of a string.
. Matches any character.
[] Character class (any of).
[^] Complemented character class (any but).
* Repeat previous zero or more times.
+ Repeat previous one or more times.
? Repeat previous zero or one time.
\ Treat next character as a literal (e.g. \. means period).
{} Tagged match.

The following examples illustrate how these characters are used:

Pattern Description
^stuff Strings that start with "stuff".
stuff$ Strings that end with "stuff".
^...$ Any 3-character string.
[AEIOU] Any uppercase vowel.
[0-9] Any digit.
[A-Za-z][0-9] Any letter followed by any digit.
[^0-9] Any character except a digit.
[A-Z][0-9]* Any upper-case letter followed zero or more of digits.
[A-Z][0-9]+ Any upper-case letter followed one or more of digits.
[A-Z][0-9]? Any upper-case letter followed by one optional digit.
[+-]?[0-9]+ Any integer preceded by an optional sign.

Expression Evaluator Demo
This sample project illustrates some of VSFlexString's pattern matching capabilities. It shows how VSFlexString
can be used to implement a mathematical expression evaluator. You can use this project as is, to allow users to
enter expressions instead of numeric constants, or use it as a starting point for a more sophisticated evaluator
with variables and custom functions.

Here is how the final application will look:

Step 1: Create the Controls

Start a new Visual Basic project including VideoSoft VSFLEX Grid Pro 6.0 (if you don't know how to add OCXs
to a project, consult the Visual Basic documentation). The VSFlexString icon will be added to the Visual Basic
toolbox.

Create a VSFlexString object on the form by clicking the VSFlexString icon on the toolbox, then clicking on the
form and dropping it on the form. Also create two text boxes and a command button. Arrange the controls and
resize the form so it looks like the picture above.

Click on the VSFlexString control and use the Visual Basic properties window to change its name to fs.

Step 2: Evaluating Expressions

This project consists basically of a single recursive function that uses the VSFlexString control to evaluate the
expressions typed in the text box.

This function, which we will write later, needs to be connected to the command button through the
Command1_Click event handler. All we need is a single line of code:

 Sub Command1_Click ()

 ' evaluate the expression in Text1 and
 ' show the result in Text2
 Text2 = Format(Eval(Text1), "0.00")

 End Sub

That leaves only the Eval function, which takes a string containing a mathematical expression as a parameter and
returns a value. Here is the code that implements the Eval function:

 Function Eval(ByVal s As String) As Double
 Dim s1$, s2$, s3$
 Dim v#

 ' get ready to parse
 fs = Trim(s) ' set breakpoint on this line

 ' interpret sub-expressions enclosed in parentheses
 fs.Pattern = "{.*}({[^()]*}){.*}"
 If fs.MatchCount > 0 Then

 s1 = fs.TagString(0) ' stuff to the left
 s2 = fs.TagString(1) ' sub-expression
 s3 = fs.TagString(2) ' stuff to the right
 Debug.Print "match: "; s1; " #<(># "; s2; " #<)># "; s3
 v = Eval(s2) ' evaluate sub-expression
 Eval = Eval(s1 + Format(v) + s3)
 Exit Function
 End If

 ' add and subtract (high-priority operators)
 fs.Pattern = "{.+}{[+-]}{.+}"
 If fs.MatchCount > 0 Then
 s1 = fs.TagString(0) ' operand 1
 s2 = fs.TagString(2) ' operand 2
 Debug.Print "match: "; s1; " #<+-># "; s2
 Select Case fs.TagString(1)
 Case "+": Eval = Eval(s1) + Eval(s2)
 Case "-": Eval = Eval(s1) - Eval(s2)
 End Select
 Exit Function
 End If

 ' multiply and divide (lower-priority operators)
 fs.Pattern = "{.+}{[*/]}{.+}"
 If fs.MatchCount > 0 Then
 s1 = fs.TagString(0) ' operand 1
 s2 = fs.TagString(2) ' operand 2
 Debug.Print "match: "; s1; " #<*/># "; s2
 Select Case fs.TagString(1)
 Case "*": Eval = Eval(s1) * Eval(s2)
 Case "/": Eval = Eval(s1) / Eval(s2)
 End Select
 Exit Function
 End If

 ' power (lowest-priority operator)
 fs.Pattern = "{.+}^{.+}"
 If fs.MatchCount > 0 Then
 s1 = fs.TagString(0) ' operand 1
 s2 = fs.TagString(1) ' operand 2
 Debug.Print "match: "; s1; "#<^>#"; s2
 Eval = Eval(s1) ^ Eval(s2)
 Exit Function
 End If

 ' number (nothing else matched, so this should be a number)
 fs.Pattern = "^-?[0-9]+\.?[0-9]*$"
 If fs.MatchCount > 0 Then
 Eval = Val(s)
 Else
 Debug.Print "Eval Error: "; fs: Beep
 End If
 End Function

This routine handles all basic operators taking into account their precedence (i.e., power before division before
sum). It also handles sub-expressions contained in parentheses.

If you understand how VSFlexString works, the Eval function is pretty simple. It consists of a pattern that repeats
itself. The VSFlexString is used to parse each expression into its components, according to operator priority
rules, then Eval is called recursively to evaluate each component.

The typical pattern has this format: "{.+}{[*/]}{.+}". The "{+.}" matches runs of one or more characters. The "{[*/]}"
matches a single asterisk or a slash. The other patterns have similar interpretations.

Press F5 to run the project and type an expression such as "(2*(5+3)+144^0.5)/7". Then click the command
button and the result (4) will appear on the second text box. The debug window will show a trace of the Eval
function. Here's a commented version of the output:

 match: (2* #<(># 5+3 #<)># +144^0.5)/7 found sub-expression

 match: 5 #<+-># 3 found +
 match: #<(># 2*8+144^0.5 #<)># /7 found sub-expression
 match: 2*8 #<+-># 144^0.5 found +
 match: 144 #<^># 0.5 found ^
 match: 2 #<*/># 8 found *
 match: 28 #<*/># 7 found /

The trace shows the order in which matches were found and operations executed. You may want to place a
breakpoint at the top of the Eval routine and see what happens after each match.

If you want, try adding support for variables and functions such as Sin, Cos, etc. It is easy, all you have to do is
add the appropriate patterns and corresponding blocks of code.

Matching Demo
Whenever a string is assigned to either the Text or Pattern properties, the VSFlexString control scans the text to
find as many matches as it can. The number of matches found is stored in the MatchCount property. Information
about individual matches can be retrieved using the MatchString, MatchStart, and MatchLength properties.

For example, the following code scans a string that consists of clients names and phone numbers, separated by
commas. It then prints a list of the clients in the San Francisco area (area code 415).

The pattern used assumes that all area codes are three digit numbers enclosed in parentheses. The entries we
are interested in are strings that do not contain commas and that do contain the string "(415)".

 ClientList = "John Doe: (415) 555-1212," & _
 "Mary Smith: (212) 555-1212," & _
 "Dick Tracy: (412) 555-1212," & _
 "Martin Long: (415) 555-1212," & _
 "Leo Getz: (510) 555-1212," & _
 "Homer Simpson: (415) 555-1212"
 fs.Text = ClientList
 fs.Pattern = "[^,]*(415)[^,]*"
 Debug.Print fs.MatchCount " match(es) found."
 For i = 0 to fs.MatchCount - 1
 Debug.Print "found: "; fs.MatchString(i)
 Next

 found: John Doe: (415) 555-1212
 found: Martin Long: (415) 555-1212
 found: Homer Simpson: (415) 555-1212

Replacing Demo
You can replace matches automatically, using the Replace property. For example, say you wanted to change all
instances of the (415) area code to (510). The following code does that:

 ClientList = "John Doe: (415) 555-1212," & _
 "Mary Smith: (212) 555-1212," & _
 "Dick Tracy: (412) 555-1212," & _
 "Martin Long: (415) 555-1212," & _
 "Leo Getz: (510) 555-1212," & _
 "Homer Simpson: (415) 555-1212"
 fs.Text = ClientList
 fs.Pattern = "(415)"
 fs.Replace = "(510)"

When a string is assigned to the Replace property, the VSFlexString control immediately replaces all matches
with the new string.

This is convenient, but VSFlexString goes way beyond simple search and replace. You can use tags to control
each part of each match. For an example, see the Tag Matches Demo.

Tag Matches Demo
The VSFlexString control allows you to tag matches using curly brackets. By tagging the matches, you can
determine which parts of the string matched what parts of the pattern.

For example, say you have a database that contains people's names. But the same name may be stored as
"John Doe", "John Francis Doe", "John F. Doe", or "Doe, John". You could use the following code to clean the
data, converting all entries to the latter type:

 Private Function CleanName(n$) As String

 ' assign pattern
 ' |tag(0)---| |tag(1)---|
 fs.Pattern = "^{[A-Za-z]+}[^,]* {[A-Za-z]+}$"

 ' try match
 fs.Text = n

 ' if a match was found, replace name with
 ' tag1 (last name), comma, tag0 (first name)
 If fs.MatchCount > 0 Then
 CleanName = fs.TagString(1) & ", " & fs.TagString(0)

 ' otherwise, return original name
 Else
 CleanName = n
 End If

 End Function

You may test the function using the Visual Basic debug (immediate mode) window:

 ? CleanName("John Doe")
 Doe, John
 ? CleanName("John Doe")
 Doe, John
 ? CleanName("Doe, John")
 Doe, John
 ? CleanName("John F. Doe")
 Doe, John
 ? CleanName("John Francis Doe")
 Doe, John
 ? CleanName("John Francis Jr.")
 John Francis Jr.

Pretty neat, huh? Note that the last try fails, because the last name is not supposed to contain periods. The
function just returns the original string.

To understand how this works, you need to understand the pattern. (This one is not trivial.)

 ' |tag(0)---| |tag(1)---|
 fs.Pattern = "^{[A-Za-z]+}[^,]* {[A-Za-z]+}$"

The initial character ("^") matches the beginning of a string.

The next part, ("[A-Za-z]+") means a sequence of one or more letters. This will match the first name. By
enclosing this expression in curly brackets, we are telling the VSFlexString control to tag it, so we can refer to it
later.

The next part, ("[^,]* "), means a sequence of zero or more non-comma characters followed by a space. This
will match optional middle names and initials. It will also prevent matches when the input contains commas (we
assume it is already properly formatted in this case).

The next part is similar to the one used to match the first name. This one will match the last name.

Finally, the trailing character ("$") matches the end of a string.

Whenever a match occurs with this pattern, the tagged parts of the match can be retrieved using the TagString
property. In this case, we have two tags: TagString(0) matches the first name, and TagString(1) matches the last
name. With these, it is easy to rewrite the name in the format we want.

Writing the patterns is not difficult, but it does require some practice. This sample is a good starting point.

vsFlexGrid Object
Properties          Methods          Events

Object Name: VSFlexGrid
Description: :-) VideoSoft VSFlexGrid 6.0
Properties: 145
Events: 35
Methods: 15

Before you can use a VSFlexGrid object in your application, you must add the VSFLEX6.OCX file to your project.

To distribute applications you create with the VSFlexGrid object, you must install and register it on the user's
computer. The Setup Wizard provided with Visual Basic provides tools to help you do that. Please refer to the
Visual Basic manual for details.

AddItem Method
See Also          Examples          Applies to

Adds a row to the control.

Syntax
[form!]vsFlexGrid.AddItem Item As String, [Row As Variant]

Remarks
The parameters for the AddItem method are described below:

Item As String
String expression to add to the control. Use the tab character (vbTab or Chr$(9)) to separate multiple strings you
want inserted into each column of a newly added row.

Row As Long    (optional)
Zero-based index representing the position within the control where the new row is placed. If Row is omitted, the
new row is appended as the last one.

AfterDataRefresh Event
See Also          Examples          Applies to

Fired after reading data from the record source.

Syntax
Private Sub vsFlexGrid_AfterDataRefresh()

Remarks
This event is useful when the control is bound and you want to work on data that comes from a database.    For
example, you may want to calculate subtotals or format individual cells.

You cannot do this in the Form_Load event because the data has not been read at that point of execution.

AfterEdit Event
See Also          Examples          Applies to

Fired after the control exits cell edit mode.

Syntax
Private Sub vsFlexGrid_AfterEdit(ByVal Row As Long,    ByVal Col As Long)

Remarks
This event is fired after the contents of a cell have been changed by the user.

The AfterEdit event is useful for performing actions such as resorting the data or calculating subtotals.

The AfterEdit event is not useful for validation, because it is fired after the changes have been applied to the
control.

To validate user-entered data, use the ValidateEdit event instead.

AfterMoveColumn Event
See Also          Examples          Applies to

Fired after a column is moved by dragging on the ExplorerBar.

Syntax
Private Sub vsFlexGrid_AfterMoveColumn(ByVal Col As Long, Position As Long)

Remarks
This event is only fired if the column was moved by dragging it in the ExplorerBar. It is not fired after moving
columns with the ColPosition property.

This event is useful if you want to sort or recalculate subtotals on the grid after moving its columns.

AfterSort Event
See Also          Examples          Applies to

Fired after a column is sorted by a click on the ExplorerBar.

Syntax
Private Sub vsFlexGrid_AfterSort(ByVal Col As Long, Order As Integer)

Remarks
This event is only fired if the sorting was caused by a click on the ExplorerBar. It is not fired after sorting with the
Sort property.

This event is useful if you want to recalculate subtotals on the grid after sorting a column.

AfterUserResize Event
See Also          Examples          Applies to

Fired after the user resizes a row or a column.

Syntax
Private Sub vsFlexGrid_AfterUserResize(ByVal Row As Long,    ByVal Col As Long)

Remarks
The user may resize rows and columns depending on the setting of the AllowUserResizing property.

If the user resized a row, the Row parameter contains the index of the row that was resized and the Col
parameter contains -1. If the user resized a column, the Col parameter contains the index of the column that was
resized and the Row parameter contains -1.

AllowBigSelection Property
See Also          Examples          Applies to

Returns or sets whether clicking on the fixed area will select entire columns and rows.

Syntax
[form!]vsFlexGrid.AllowBigSelection[= {True | False}]

Remarks
If the AllowBigSelection property is set to True, clicking on the top left fixed cell selects all cells in the sheet.

Data Type
Boolean

Default Value
True

AllowSelection Property
See Also          Examples          Applies to

Returns or sets whether the user can select ranges of cells with the mouse and keyboard.

Syntax
[form!]vsFlexGrid.AllowSelection[= {True | False}]

Remarks
Set this property to False to prevent users from extending the selection by clicking and dragging or using the
cursor keys.

This is useful if you are using VSFlexGrid to implement some custom user interface elements such as menus
and property sheets.

Data Type
Boolean

Default Value
True

AllowUserResizing Property
See Also          Examples          Applies to

Returns or sets whether the user is allowed to resize rows and columns with the mouse.

Syntax
[form!]vsFlexGrid.AllowUserResizing[= AllowUserResizeSettings]

Remarks
Valid settings for the AllowUserResizing property are:

Value Constant
0 flexResizeNone
1 flexResizeColumns
2 flexResizeRows
3 flexResizeBoth

If this property is set to a value other than flexResizeNone, the user can resize rows or columns at runtime by
using the mouse, as with the Microsoft Grid control.

If you intend to use this property, you should not set the Gridlines property to FlexGrid none.

To resize rows or columns, the mouse must be over the fixed area of the control, and close to a border between
rows or columns. The mouse pointer will then change into a sizing pointer and the user can drag the row or
column to change the row height or column width.

Rows with zero height and columns with zero width cannot be resized by the user. If you want to make them very
small but still resizable, set their height or width to one pixel, not to zero. For example:

 fa.ColWidth(5) = Screen.TwipsPerPixelX

The BeforeUserResize event is fired before resizing starts, and may be used to prevent resizing of specific rows
and columns. The AfterUserResize event is fired after resizing, and may be used to validate the user's action.

Data Type
AllowUserResizeSettings (Enumeration)

Default Value
flexResizeNone (0)

Archive Method
See Also          Examples          Applies to

Adds, extracts, or deletes files from a vsFlex archive file.

Syntax
[form!]vsFlexGrid.Archive ArcFileName As String, FileName As String, Action As ArchiveSettings

Remarks
This method allows you to combine several files into one, optionally compressing the data. This is especially
useful for applications that store data in several grids.

To save the grid to a file, use the SaveGrid method. To load the data back from the file, use the LoadGrid
method. To obtain information from an archive file, use the ArchiveInfo property.

The parameters for the Archive method are described below:

ArcFileName As String
This parameter contains the name of the archive file, including its path.

FileName As String
This parameter contains the name of the file to be added, deleted, or extracted from the archive.

Action As ArchiveSettings
This parameter can be one of the following:

Constant Description
arcAdd Adds the file FileName to the archive ArcFileName, compressing it.

If the archive file does not exist, it is created.
If the file is already present in the archive, it is overwritten with the new contents.

arcStore Adds the file FileName to the archive ArcFileName, without compressing it.
If the archive file does not exist, it is created.
If the file is already present in the archive, it is overwritten with the new contents.

arcDelete Removes the file FileName from the archive ArcFileName.
arcExtract Creates a copy of the    file FileName on the disk.

The file is created on the directory specified in the FileName parameter,
or in the archive directory if no path is specfied.

ArchiveInfo Property
See Also          Examples          Applies to

Gets information from a vsFlex archive file.

Syntax
[form!]vsFlexGrid.ArchiveInfo(ArcFileName As String, InfoType As ArchiveInfoSettings, [Index As Variant])

Remarks
This property returns information from an archive file created with the Archive method.

The parameters for the ArchiveInfo property are described below:

ArcFileName as String
This parameter contains the name of the archive file, including its path.

InfoType As ArchiveInfoSettings
This parameter can be one of the following:

Constant Description
arcFileCount Returns the number of files in the archive.
arcFileName Returns the name of a file in the archive.
arcFileSize Returns the original size of a file in the archive.
arcFileCompressedSize Returns the compressed size of a file in the archive.

Index As Integer    (optional)
This parameter specifies which file in the archive should be processed. It ranges from zero to the number of files
in the archive minus 1.

For example, the code below lists the contents of an archive file.

 Sub ArcList(fn$)
 Dim i As Long, cut As Long
 With fa
 On Error Resume Next
 cnt = .ArchiveInfo(fn, arcFileCount)
 Debug.Print "Archive "; fn; " ("; cnt; " files)"
 Debug.Print "Name", "Size", "Compressed"
 For i = 0 To cnt - 1
 Debug.Print .ArchiveInfo(fn, arcFileName, i),
 Debug.Print .ArchiveInfo(fn, arcFileSize, i),
 Debug.Print .ArchiveInfo(fn, arcFileCompressedSize, i)
 Next
 If Err > 0 Then MsgBox "An error occurred while processing " & fn
 End With
 End Sub

Data Type
Variant

AutoResize Property
See Also          Examples          Applies to

Returns or sets whether column widths will be automatically adjusted when data is loaded.

Syntax
[form!]vsFlexGrid.AutoResize[= {True | False}]

Remarks
If the AutoResize property is set to True, the control automatically resizes its columns to fit the widest entry every
time new data is read from the database. This occurs by default when the control is loaded and every time the
data source is refreshed.

This property only works when the control is bound to a database. If the control is not bound to a database, you
may use the AutoSize method to adjust column widths after changes are made to the grid contents.

Data Type
Boolean

Default Value
True

AutoSearch Property
See Also          Examples          Applies to

Returns or sets whether the control will search for entries as they are typed.

Syntax
[form!]vsFlexGrid.AutoSearch[= AutoSearchSettings]

Remarks
The AutoSearch property allows the user to look for data by typing the string for which they are looking.

If AutoSearch is on, the control will search the current column as the user types. The control will move the
selection and highlight partial matches. The search is case-insensitive.

To cancel a search, the user may press Escape or simply move the selection with the mouse or cursor keys.

If AutoSearch is on and the Editable property is set to True, the user will need to hit Enter, Space, or F2 to start
editing cells. Other keys are used for searching.

The effects of the settings for the AutoSearch property are described below:

Constant Description
flexSearchNone Turns AutoSearch off.
flexSearchFromTop AutoSearch from the first row.
flexSearchFromCursor AutoSearch from the current row.

Data Type
AutoSearchSettings (Enumeration)

Default Value
flexSearchNone (0)

AutoSize Method
See Also          Examples          Applies to

Resizes column widths or row heights to fit cell contents.

Syntax
[form!]vsFlexGrid.AutoSize Col1 As Long, [Col2 As Variant], [Equal As Variant], [ExtraSpace As Variant]

Remarks
The parameters for the AutoSize method are described below:

Col1 As Long, Col2 As Long
Specify the first and last columns to be resized so their widths fit the widest entry in each column. The valid range
for these parameters is between 0 and Cols -1. Col2 is optional.    If it is omitted, only Col1 is resized.

Equal As Variant    (optional)
If True, all columns between Col1 and Col2 are set to the same width. If False, then each column is resized
independently. This parameter is optional and defaults to False.

ExtraSpace As Variant    (optional)
Allows you to specify extra spacing, in twips, to be added in addition to the minimum required to fit the widest
entry. This is often useful if you wish to leave extra room for pictures or margins within cells.

The AutoSize method may also be used to resize row heights. This is useful when text is allowed to wrap within
cells (see the WordWrap property) or when cells have fonts of different sizes (see the Cell property).

The AutoSizeMode property determines whether AutoSize will adjust column widths or row heights.

AutoSizeMode Property
See Also          Examples          Applies to

Returns or sets whether AutoSize will adjust column widths or row heights to fit cell contents.

Syntax
[form!]vsFlexGrid.AutoSizeMode[= AutoSizeSettings]

Remarks
Valid settings for the AutoSizeMode property are:

Value Constant
0 flexAutoSizeColWidth
1 flexAutoSizeRowHeight

The effect of the settings for the AutoSizeMode property are described below:

flexAutoSizeColWidth
This setting causes the AutoSize method to adjust the widths of the specified columns to accommodate the
longest entry in each column.

flexAutoSizeRowHeight
This setting causes the AutoSize method to adjust the height of each row in the specified columns to
accommodate the longest entry in each row. This is useful when text is allowed to wrap within cells (see the
WordWrap property) or when cells have fonts of different sizes (see the Cell property).

Data Type
AutoSizeSettings (Enumeration)

Default Value
flexAutoSizeColWidth (0)

BackColor* Property
See Also          Examples          Applies to

Returns or sets the background color of the non-fixed cells.

Syntax
[form!]vsFlexGrid.BackColor[= colorref&]

Remarks
The VSFlexGrid control has several properties that allow you to customize its colors. The picture below shows
these properties and to which part of the control each one refers:

To set the background color of individual cells or ranges, use the Cell(flexcpBackColor) property. To set the
background color of the current selection, use the CellBackColor property.

Data Type
Color

BackColorAlternate Property
See Also          Examples          Applies to

Returns or sets the background color for alternate rows (set to 0 to disable).

Syntax
[form!]vsFlexGrid.BackColorAlternate[= colorref&]

Remarks
If you set the BackColorAlternate property to a value other than False (zero), the color specified is used to paint
every other row in the control, creating a checkbook look.

Using this property is faster and more efficient than using the CellBackColor property to paint every other row.
Besides, the alternating colors are preserved even if you sort the grid or add and remove rows.

Data Type
Color

Default Value
Windows (System Color)

BackColorBkg Property
See Also          Examples          Applies to

Returns or sets the background color of the area not covered by any cells.

Syntax
[form!]vsFlexGrid.BackColorBkg[= colorref&]

Remarks
See the BackColor property for a diagram.

Data Type
Color

Default Value
Button Shadow

BackColorFixed Property
See Also          Examples          Applies to

Returns or sets the background color of the fixed rows and columns.

Syntax
[form!]vsFlexGrid.BackColorFixed[= colorref&]

Remarks
See the BackColor property for a diagram.

Data Type
Color

Default Value
Button Face (System Color)

BackColorSel Property
See Also          Examples          Applies to

Returns or sets the background color of the selected cells.

Syntax
[form!]vsFlexGrid.BackColorSel[= colorref&]

Remarks
See the BackColor property for a diagram.

Data Type
Color

BeforeDataRefresh Event
See Also          Examples          Applies to

Fired before reading data from the record source.

Syntax
Private Sub vsFlexGrid_BeforeDataRefresh(Cancel As Boolean)

Remarks
This event is fired when the control is bound, right before a batch of data is loaded from the database.

You may trap this event and prevent the data from being loaded if you wish. You may later force the data to be
loaded by using the DataRefresh method.

BeforeEdit Event
See Also          Examples          Applies to

Fired before the control enters cell edit mode.

Syntax
Private Sub vsFlexGrid_BeforeEdit(ByVal Row As Long,    ByVal Col As Long, Cancel As Boolean)

Remarks
This event is fired immediately before the control enters cell-editing mode. It allows you to prevent editing, to
supply a list of choices for a combo list with the ComboList property, or to specify an edit mask with the
EditMask property.

The BeforeEdit event occurs after the KeyDown event. Unless the edit mode is cancelled by setting the Cancel
parameter to True in the BeforeEdit event, KeyDown is followed by KeyPressEdit event, not by KeyPress.

The parameters for the BeforeEdit event are described below:

Row As Long, Col As Long
These parameters specify which cell is about to be edited.

Cancel As Boolean
This parameter is False by default. If you set it to True, then the control prevents the built-in cell editor from being
activated, and the cell retains its value.

BeforeMouseDown Event
See Also          Examples          Applies to

Fired before the control processes the MouseDown event.

Syntax
Private Sub vsFlexGrid_BeforeMouseDown(ByVal Button As Integer,    ByVal Shift As Integer,    ByVal X As
Single,    ByVal Y As Single, Cancel As Boolean)

Remarks
The parameters for this event are identical to the ones in the MouseDown event, plus an additional Cancel
parameter that allows you to prevent the default processing.

This event is useful if you want to process some mouse actions yourself, instead of relying on the control's default
processing.

For example, the following routine detects shift-clicks and uses them to build and save a list of selected rows.
Then it initiates a drag operation using Visual Basic's Drag method, and cancels the default processing so the
control does not modify the selection.

 Private Sub fa_BeforeMouseDown(ByVal Button As Integer, _
 ByVal Shift As Integer, _
 ByVal X As Single, ByVal Y As Single, Cancel As Boolean)

 ' use shift to drag (ctrl selects)
 If Shift <> 1 Then Exit Sub

 ' build a list of what we'll be dragging
 Dim i As Long
 fa.Tag = ""
 For i = 0 To fa.SelectedRows - 1
 fa.Tag = fa.Tag & vbCrLf & vbTab & fa.Cell(flexcpText, fa.SelectedRow(i), 0)
 Next

 ' start dragging
 fa.Drag

 ' cancel remaining mouse events
 Cancel = True
 End Sub

BeforeMoveColumn Event
See Also          Examples          Applies to

Fired before a column is moved by dragging on the ExplorerBar.

Syntax
Private Sub vsFlexGrid_BeforeMoveColumn(ByVal Col As Long, Position As Long)

Remarks
This event is only fired if the column was moved by dragging it into the ExplorerBar. It is not fired after before
moving with the ColPosition property.

This event is useful when you want to prevent the user from moving certain columns to invalid positions. You may
do so by modifying the value of the Position parameter. For example, if you set Position = Col, the column will not
be moved.

BeforePageBreak Event
See Also          Examples          Applies to

Fired while printing the control to control page breaks.

Syntax
Private Sub vsFlexGrid_BeforePageBreak(ByVal Row As Long, BreakOK As Boolean)

Remarks
This event is fired while the control is being rendered on a page or print preview window using VideoSoft's
VSPrinter control. If you are not using VSPrinter to render the control, you do not need to handle this event at all.

Set the BreakOK parameter to True to indicate that row number Row is an acceptable place to insert a page
break, or set it to False to indicate otherwise.

See also the GetHeaderRow event and the RenderControl Demo.

For more information on using VSPrinter to render other controls, refer to the VSPrinter documentation.

BeforeScrollTip Event
See Also          Examples          Applies to

Fired before a scroll tip is shown so you can set the ScrollTipText property.

Syntax
Private Sub vsFlexGrid_BeforeScrollTip(ByVal Row As Long)

Remarks
This event is fired only if the ScrollTips property is set to True. It allows you to set the ScrollTipText property to a
descriptive string for the given row.

For more details, see the ScrollTips property.

BeforeSort Event
See Also          Examples          Applies to

Fired before a column is sorted by a click on the ExplorerBar.

Syntax
Private Sub vsFlexGrid_BeforeSort(ByVal Col As Long, Order As Integer)

Remarks
This event is only fired if the sorting was caused by a click on the ExplorerBar. It is not fired before sorting with
the Sort property.

This event is useful when you want to prevent the user from sorting certain columns or to specify custom sorting
orders for specific columns. You may do so by modifying the value of the Order parameter.

BeforeUserResize Event
See Also          Examples          Applies to

Fired before the user starts resizing a row or column, allows cancel.

Syntax
Private Sub vsFlexGrid_BeforeUserResize(ByVal Row As Long,    ByVal Col As Long, Cancel As Boolean)

Remarks
The user may resize rows and columns depending on the setting of the AllowUserResizing property.

If the user is about to start resizing a row, the Row parameter contains the index of the row to be resized and the
Col parameter contains -1. If the user is about to start resizing a column, the Col parameter contains the index of
the column to be resized and the Row parameter contains -1.

You may prevent the user from resizing specific rows and columns by setting the Cancel parameter to True.

BindToArray Method
See Also          Examples          Applies to

Binds the grid to an array of variants to be used as storage.

Syntax
[form!]vsFlexGrid.BindToArray VariantArray As Variant, [RowDim As Variant], [ColDim As Variant], [PageDim
As Variant], [CurrentPage As Variant]

Remarks
This method allows you to bind the VSFlexGrid control to a Visual Basic array of Variants. Then you don't have to
copy data between the array and the control: the control displays values read from the array and writes them back
into it automatically.

The array must have at least two dimensions and it must be an array of Variants. If the array has more than two
dimensions, you may use the control to display one "page" of it at a time, and you may easily "flip pages".

The parameters on this method allow you to control how the rows and columns map onto the array's dimensions.
By default, columns bind to the first array dimension (0) and rows bind to the second array dimension (1). This is
the order used by ADO when returning recordsets.

The advantage of this default setting is that you may add or remove rows while preserving existing data using
Visual Basic's Redim Preserve statement, which only allows the last dimension to be modified. If you don't like
the default setting, you may define things differently.

The mapping is always from LBound to UBound on all dimensions. If you want to hide some rows or columns, set
their height or width to zero. The binding does not apply to fixed rows or columns. It works only for the scrollable
(data) part of the control.

After you change an array that is bound to a flex (any values in it or its dimensions), you should tell the control to
repaint itself so the changes become visible to the user. You may do this with the Refresh method or by using the
BindToArray method again.

To unbind the control, call the BindToArray method with a Null parameter:

fa.BindToArray Null).

The example below illustrates several variations on this theme. The demo project included in the distribution
package has more examples.

 ' ** Two-dimensional binding:
 Dim arr(4, 8)

 ' Default binding:
 fa.BindToArray arr
 ' fa now has 5 non-fixed columns (0-4) and 9 non-fixed rows (0-8).
 ' fa and arr are mapped like this:
 ' arr(i, j) = fa.TextArray(j - fa.FixedRows, i - fa.FixedCols)

 ' Transposed binding:
 fa.BindToArray arr, 0, 1
 ' fa now has 9 non-fixed columns (0-8) and 5 non-fixed rows (0-4).
 ' fa and arr are mapped like this:
 ' arr(i, j) = fa.TextArray(i - fa.FixedRows, j - fa.FixedCols)

 ' ** Three-dimensional binding (aka cube, notebook):
 ReDim arr(4, 8, 12)

 ' Default binding:
 fa.BindToArray a
 ' by default, the last dimension becomes the "pages", and the
 ' current page is the first (0), so
 ' fa now has 5 non-fixed columns (0-4) and 9 non-fixed rows (0-8).
 ' fa and arr are mapped like this:

 ' arr(i, j, 0) = fa.TextArray(j - fa.FixedRows, i - fa.FixedCols)

 ' Page Flipping:
 fa.BindToArray a, , , , 2
 ' the row, col, and page settings are the default, and the current
 ' page is 2 (instead of the default 0), so
 ' fa now has 5 non-fixed columns (0-4) and 9 non-fixed rows (0-8).
 ' fa and arr are mapped like this:
 ' arr(i, j, 2) = fa.TextArray(j - fa.FixedRows, i - fa.FixedCols)

The BindToArray method also allows you to bind the control to another VSFlexGrid control. This way, you may
create different "views" of the same data without having to keep duplicate copies of the data. The syntax is the
same:

    fa.BindToArray faSource

In this case, the fa control will display the data stored in the faSource control. Changes to cells in either control
will reflect on the other.

When binding to another VSFlexGrid control, the fixed cells are bound as well as the scrollable ones. The binding
only applies to the data, not to the cell formats.

BottomRow Property
See Also          Examples          Applies to

Returns the zero-based index of the last row displayed in the control.

Syntax
val& = [form!]vsFlexGrid.BottomRow

Remarks
The bottom row returned may be only partially visible.

You cannot set this property. To scroll the contents of the control through code, set the TopRow and LeftCol
properties instead. Or you may bring a cell into view by reading the CellTop property.

Data Type
Long

Cell Property
See Also          Examples          Applies to

Sets or returns cell properties for an arbitrary range.

Syntax
[form!]vsFlexGrid.Cell(Setting As CellPropertySettings, [R1 As Long], [C1 As Long], [R2 As Long], [C2 As Long]) [
= Value]

Remarks
The Cell property allows allows you to read or set cell properties directly to individual cells    or ranges (without
selecting them).

The parameters for the Cell property are described below:

Setting As CellPropertySettings
This parameter determines which cell property will be read or set. The settings available are:

Constant Gets or Sets which cell property
flexcpText Text (or clip string for selections).
flexcpValue Numerical value of the cell's text (read-only)
flexcpTextDisplay Formatted text (read only)
flexcpData User-defined Variant attached to cell
flexcpFont Entire font
flexcpFont* Font properties (see CellFontName etc)
flexcpTextStyle Text style (see CellTextStyle)
flexcpAlignment Text alignment (see CellAlignment)
flexcpPicture Cell Picture (see CellPicture)
flexcpPictureAlignment Picture alignment (see CellPictureAlignment)
flexcpChecked Check box (see CellChecked)
flexcpBackColor Back color (see CellBackColor)
flexcpForeColor Fore color (see CellForeColor)
flexcpFloodPercent Flood percent (see CellFloodPercent)
flexcpFloodColor Flood color (see CellFloodColor)
flexcpCustomFormat Whether a cell has custom formatting

Row1 As Long    (optional)
The Row1, Col1, Row2, and Col2 parameters are optional. When reading cell properties, only cell (Row1, Col1) is
used. When setting, the whole range is affected. The only exception is when you read the flexcpText property of a
range. In this case, a clip string is returned containing the text in the whole selection.

The default value for Row1 and Col1 is the current row and the current column (Row and Col properties). Thus, if
they are not supplied, the current cell is used.

The default value for Row2 and Col2 is Row1 and Col1. Thus, if they are not supplied, a single cell is used.

For example:

 ' set the font to bold on cell (1,1)
 fa.Cell(flexcpFontBold, 1, 1) = True

 ' set the font to bold on cells (1,1)-(10,1)
 fa.Cell(flexcpFontBold, 1, 1, 10) = True

Most of the settings listed above can also be read or set through other properties (e.g. Text, TextArray, etc).
Using the Cell property is often more convenient, however, because you it lets you specify the cell range.

A couple of settings are not accessible through other properties and deserve additional comments:

flexcpTextDisplay
This setting allows you to get the formatted contents of the cell, as it is displayed to the user. For example, if a cell
contains the string "1234" and the ColFormat property is set to "#,###.00", this setting will return "1,234.00".

flexcpData
This settings allows you to attach custom information to individual cells, the same way the RowData and ColData
properties allow you to attach custom information to rows and columns. Note that in VSFlexGrid Pro 6.0, these
values are Variants, which means you may associate virtually any type of data to a cell, including strings, longs,
objects, arrays, etc.

flexcpFont
This setting allows you to assign fonts to cells in one step. This is much more efficient than setting each font
property individually. For example, instead of writing:

 fa.CellFontName = "Arial"
 fa.CellFontSize = 8
 fa.CellFontBold = True

you may write

 fa.Cell(flexcpFont) = Text1.Font

flexcpCustomFormat
This setting returns a Boolean value that indicates whether a cell has any custom formatting associated with it
(e.g. back color, font, data, etc). You may also set this to False to clear any custom formatting a cell may have.

Data Type
Variant

CellAlignment Property
See Also          Examples          Applies to

Returns or sets the alignment of text in the selected cell or range.

Syntax
[form!]vsFlexGrid.CellAlignment[= AlignmentSettings]

Remarks
Valid settings for the CellAlignment property are:

Value Constant
0 flexAlignLeftTop
1 flexAlignLeftCenter
2 flexAlignLeftBottom
3 flexAlignCenterTop
4 flexAlignCenterCenter
5 flexAlignCenterBottom
6 flexAlignRightTop
7 flexAlignRightCenter
8 flexAlignRightBottom
9 flexAlignGeneral

Changing this property affects the current cell or the current selection, depending on the setting of the FillStyle
property. To set the alignment of an arbitrary range of cells (not necessarily the current selection), use the Cell
property instead.

Data Type
AlignmentSettings (Enumeration)

CellBackColor Property
See Also          Examples          Applies to

Returns or sets the background color of the selected cell or range.

Syntax
[form!]vsFlexGrid.CellBackColor[= colorref&]

Remarks
Setting this property to zero (black) causes the control to paint the cell using the standard colors (set by the
BackColor and BackColorAlternate properties). Therefore, to set this property to black, use RGB(1,1,1) instead of
RGB(0,0,0).

Changing this property affects the current cell or the current selection, depending on the setting of the FillStyle
property. To set the back color of an arbitrary range of cells (not necessarily the current selection), use the Cell
property instead.

Data Type
Color

CellBorder Method
See Also          Examples          Applies to

Draws a border around and within the selected cells.

Syntax
[form!]vsFlexGrid.CellBorder Color As Color, Left As Integer, Top As Integer, Right As Integer, Bottom As Integer,
Vertical As Integer, Horizontal As Integer

Remarks
The CellBorder method allows you to draw borders around groups of cells. It works on the current selection, so in
order to use it, you must start by selecting the group of cells where the border is to be drawn. Then call the
CellBorder method using the following parameters:

Color As Color
This parameter determines the color of the border.

Left, Top, Right, Bottom As Integer
These parameters specify the width, in pixels, of the border to be drawn around the selection. Specify zero to
remove the border, or any negative number to preserve the existing border.

Vertical, Horizontal As Integer
These parameters specify the width, in pixels, of the borders to be drawn inside the selection in the vertical and
horizontal directions. Specify zero to remove the border, or any negative number to preserve the existing border.

For example, the code below draws blue borders around a selected range:

 Private Sub Form_Load()
 With fa
 ' draw borders around a table
 .Select 1, 1, 4, 4
 .CellBorder RGB(0, 0, 125), 2, 3, 2, 2, 1, 1

 ' apply special formatting to first line of table
 .Select 1, 1, 1, 4
 .CellBorder RGB(0, 0, 125), -1, -1, -1, 3, 0, 0

 End With
 End Sub

The result looks like this:

CellButtonClick Event
See Also          Examples          Applies to

Fired after the user clicks a cell button.

Syntax
Private Sub vsFlexGrid_CellButtonClick(ByVal Row As Long,    ByVal Col As Long)

Remarks
This event is fired when the user clicks an edit button on a cell. Typically, this event is used to pop up a custom
editor for the cell (e.g. dialogs for selecting colors, dates, files, pictures, and so on.).

Edit buttons are displayed on the right side of a cell, with an ellipsis caption ("..."). (They are similar to the buttons
displayed in the Visual Basic property window next to picture properties.)

To create an edit button on a cell, you must set the Editable property to True and set the ComboList (or
ColComboList) property to an ellipsis.

For example, the following code assigns edit buttons to the first column of a grid, then traps the CellButtonClick
event to show a color-pick dialog and to assign the selected color to the cell background:

 Private Sub Form_Load()
 With fa
 Private Sub fa_CellButtonClick(ByVal Row As Long, ByVal Col As Long)
 With CommonDialog1
 .ShowColor
 fa.Cell(flexcpBackColor, Row, Col) = .Color
 End With
 End Sub

CellChecked Property
See Also          Examples          Applies to

Returns or sets whether a grid cell has a check mark in it.

Syntax
[form!]vsFlexGrid.CellChecked[= CellCheckedSettings]

Remarks
Valid settings for the CellChecked property are:

Constant Description
flexNoCheckbox The cell has no check box. This is the default setting.
flexChecked The cell has a check box that is checked.
flexUnchecked The cell has a check box that is not checked.

If the cell has a check box and the Editable property is set to True, the user can toggle the check boxes by
clicking them with the mouse or by hitting the space or return keys on the keyboard. Either way, the AfterEdit
event is fired after the toggle so you can take appropriate action.

The check box may appear on the left, right, or center of the cell, depending on the setting of the
CellPictureAlignment property.

Changing this property affects the current cell or the current selection, depending on the setting of the FillStyle
property. To set check box values of an arbitrary range of cells (not necessarily the current selection), use the Cell
property instead.

Data Type
CellCheckedSettings (Enumeration)

Default Value
flexNoCheckbox

CellFloodColor Property
See Also          Examples          Applies to

Returns or sets the color to be used for flooding a cell.

Syntax
[form!]vsFlexGrid.CellFloodColor[= colorref&]

Remarks
This property overrides the FloodColor property to determine the color to be used for flooding individual cells. For
performance reasons, these colors are always mapped to the nearest solid color.

Setting this property to zero (black) causes the control to paint the cell using the standard colors (set by the
FloodColor property). Thus, to set this property to black, use RGB(1,1,1) instead of RGB(0,0,0).

Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To set the flood color of an arbitrary range of cells (not necessarily the current selection), use the Cell
property instead.

The Cell Flooding Demo shows how this property is used.

Data Type
Color

CellFloodPercent Property
See Also          Examples          Applies to

Returns or sets the percentage of flooding for a cell.

Syntax
[form!]vsFlexGrid.CellFloodPercent[= value As Integer]

Remarks
This property allows you to fill up a portion of a cell so it can be used as a progress indicator or a bar in a bar
chart.

Setting this property to a value between -100 and 100 causes the cell to be filled with the color specified by the
FloodColor property or CellFloodColor property.

Positive values fill the cell from left to right. Negative values fill it from right to left.

Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To set the flood color of an arbitrary range of cells (not necessarily the current selection), use the Cell
property instead.

The Cell Flooding Demo shows how this property is used.

Data Type
Integer

CellFontBold Property
See Also          Examples          Applies to

Returns or sets the Bold attribute of the font of the selected cell or range.

Syntax
[form!]vsFlexGrid.CellFontBold[= {True | False}]

Remarks
Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To set the font of an arbitrary range of cells (not necessarily the current selection), use the Cell property
instead.

Data Type
Boolean

CellFontItalic Property
See Also          Examples          Applies to

Returns or sets the Italic attribute of the font of the selected cell or range.

Syntax
[form!]vsFlexGrid.CellFontItalic[= {True | False}]

Remarks
Changing this property affects the current cell or the current selection, depending on the setting of the FillStyle
property. To set the font of an arbitrary range of cells (not necessarily the current selection), use the Cell property
instead.

Data Type
Boolean

CellFontName Property
See Also          Examples          Applies to

Returns or sets the name of the font of the selected cell or range.

Syntax
[form!]vsFlexGrid.CellFontName[= value As String]

Remarks
Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To set the font of an arbitrary range of cells (not necessarily the current selection), use the Cell property
instead.

Setting this property to an empty string resets the cell formatting and causes the default font to be used.

Data Type
String

CellFontSize Property
See Also          Examples          Applies to

Returns or sets the size of the font of the selected cell or range.

Syntax
[form!]vsFlexGrid.CellFontSize[= value As Single]

Remarks
Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To set the font of an arbitrary range of cells (not necessarily the current selection), use the Cell property
instead.

Setting this property to zero resets the cell formatting and causes the default font to be used.

Data Type
Single

CellFontStrikethru Property
See Also          Examples          Applies to

Returns or sets the Strikethru attribute of the font of the selected cell or range.

Syntax
[form!]vsFlexGrid.CellFontStrikethru[= {True | False}]

Remarks
Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To set the font of an arbitrary range of cells (not necessarily the current selection), use the Cell property
instead.

Data Type
Boolean

CellFontUnderline Property
See Also          Examples          Applies to

Returns or sets the Underline attribute of the font of the selected cell or range.

Syntax
[form!]vsFlexGrid.CellFontUnderline[= {True | False}]

Remarks
Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To set the font of an arbitrary range of cells (not necessarily the current selection), use the Cell property
instead.

Data Type
Boolean

CellFontWidth Property
See Also          Examples          Applies to

Returns or sets the width of the font of the selected cell or range.

Syntax
[form!]vsFlexGrid.CellFontWidth[= value As Single]

Remarks
Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To set the font of an arbitrary range of cells (not necessarily the current selection), use the Cell property
instead.

Setting this property to zero causes the default font width to be used.

Data Type
Single

CellForeColor Property
See Also          Examples          Applies to

Returns or sets the foreground color of the selected cell or range.

Syntax
[form!]vsFlexGrid.CellForeColor[= colorref&]

Remarks
Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To set the font of an arbitrary range of cells (not necessarily the current selection), use the Cell property
instead.

Setting this property to zero (black) causes the control to paint the cell using the standard color (set by the
ForeColor property). Thus, to set this property to black, use RGB(1,1,1) instead of RGB(0,0,0).

Data Type
Color

CellHeight Property
See Also          Examples          Applies to

Returns the height of the selected cell, in twips. Also brings the cell into view, scrolling if necessary.

Syntax
val& = [form!]vsFlexGrid.CellHeight

Remarks
The CellHeight property, CellWidth property, CellTop property, and CellLeft property are useful for placing other
controls over or near a specific cell. Whenever you read any of these properties, the control assumes that you
want to work on the current cell and it automatically brings it into view, scrolling if necessary.

Data Type
Long

CellLeft Property
See Also          Examples          Applies to

Returns the left (x) coordinate of the selected cell relative to the control, in twips. Also brings the cell into view,
scrolling if necessary.

Syntax
val& = [form!]vsFlexGrid.CellLeft

Remarks
The CellHeight property, CellWidth property, CellTop property, and CellLeft property are useful for placing other
controls over or near a specific cell. Whenever you read any of these properties, the control assumes that you
want to work on the current cell and it automatically brings it into view, scrolling if necessary.

Data Type
Long

CellPicture Property
See Also          Examples          Applies to

Returns or sets the picture displayed in a selected cell or range.

Syntax
[form!]vsFlexGrid.CellPicture[= Picture]

Remarks
You can set this property at runtime using Visual Basic's LoadPicture function on a bitmap, icon, or metafile, or
by assigning to it another control's Picture property.

Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To assign pictures to an arbitrary range of cells (not necessarily the current selection), use the Cell
property instead.

Each cell may contain text and a picture. The relative position of the text and picture is determined by the
CellAlignment property and CellPictureAlignment property.

Data Type
Picture

CellPictureAlignment Property
See Also          Examples          Applies to

Returns or sets the alignment of the pictures in the selected cell or range.

Syntax
[form!]vsFlexGrid.CellPictureAlignment[= PictureAlignmentSettings]

Remarks
Valid settings for the CellPictureAlignment property are:

Value Constant
0 flexPicAlignLeftTop
1 flexPicAlignLeftCenter
2 flexPicAlignLeftBottom
3 flexPicAlignCenterTop
4 flexPicAlignCenterCenter
5 flexPicAlignCenterBottom
6 flexPicAlignRightTop
7 flexPicAlignRightCenter
8 flexPicAlignRightBottom
9 flexPicAlignStretch
10 flexPicAlignTile

This property also governs the alignment of check boxes in the cells (see the CellChecked property).

Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To set the picture alignment of an arbitrary range of cells (not necessarily the current selection), use the
Cell property instead.

Data Type
PictureAlignmentSettings (Enumeration)

CellTextStyle Property
See Also          Examples          Applies to

Returns or sets 3D effects for text in a selected cell or range.

Syntax
[form!]vsFlexGrid.CellTextStyle[= TextStyleSettings]

Remarks
The effect of the settings for the CellTextStyle property are described below:

Value Constant
0 flexTextFlat
1 flexTextRaised
2 flexTextInset
3 flexTextRaisedLight
4 flexTextInsetLight

Constants flexTextRaised and flexTextInset work best for large and bold fonts. Constants flexTextRaisedLight and
flexTextInsetLight work best for small regular fonts.

Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To set the picture alignment of an arbitrary range of cells (not necessarily the current selection), use the
Cell property instead.

Data Type
TextStyleSettings (Enumeration)

CellTop Property
See Also          Examples          Applies to

Returns the top (y) coordinate of the selected cell relative to the control, in twips. Also brings the cell into view,
scrolling if necessary.

Syntax
val& = [form!]vsFlexGrid.CellTop

Remarks
The CellHeight property, CellWidth property, CellTop property, and CellLeft property are useful for placing other
controls over or near a specific cell. Whenever you read any of these properties, the control assumes that you
want to work on the current cell and it automatically brings it into view, scrolling if necessary.

Data Type
Long

CellWidth Property
See Also          Examples          Applies to

Returns the width of the selected cell, in twips. Also brings the cell into view, scrolling if necessary.

Syntax
val& = [form!]vsFlexGrid.CellWidth

Remarks
The CellHeight property, CellWidth property, CellTop property, and CellLeft property are useful for placing other
controls over or near a specific cell. Whenever you read any of these properties, the control assumes that you
want to work on the current cell and it automatically brings it into view, scrolling if necessary.

Data Type
Long

ChangeEdit Event
See Also          Examples          Applies to

Fired after the text in the editor has changed.

Syntax
Private Sub vsFlexGrid_ChangeEdit()

Remarks
This event is fired while in edit mode, whenever the contents of the editor is modified or a new selection is made
from a drop-down list.

Clear Method (vsFlexGrid Object)
See Also          Examples          Applies to

Clears the contents of the control. Optional parameters specify what to clear and where.

Syntax
[form!]vsFlexGrid.Clear [Where As Variant], [What As Variant]

Remarks
The parameters for the Clear method are described below:

Where    (optional)
This parameter specifies what part of the control should be cleared. Valid settings are:

Constant Description
flexClearEverywhere Clear everywhere (default)
flexClearScrollable Clear scrollable region
flexClearSelection Clear selection

What    (optional)
This parameter specifies what should be cleared. Valid settings are:

Constant Description
flexClearEverything Clear everything (default)
flexClearText Clear text only
flexClearFormatting Clear formatting (including pictures)
flexClearData Clears all data (RowData, ColData, CellData)

The Clear method does not affect the number of rows and columns on the control.

ClientHeight Property
See Also          Examples          Applies to

Returns the height of the control's client area, in twips.

Syntax
val& = [form!]vsFlexGrid.ClientHeight

Remarks
The ClientHeight and ClientWidth property are useful for setting column widths and row heights proportionally to
the size of the control.

Data Type
Long

ClientWidth Property
See Also          Examples          Applies to

Returns the width of the control's client area, in twips.

Syntax
val& = [form!]vsFlexGrid.ClientWidth

Remarks
The ClientHeight and ClientWidth properties are useful for setting column widths and row heights proportionally
to the size of the control.

The example below shows how to make a control with equal-width columns that extend across the entire control.
Note that the ExtendLastCol property is set to True to eliminate round-off errors.

 ' ColWidth(-1) means all columns
 fa.ColWidth(-1) = fa.ClientWidth \ fa.Cols

 ' make last column extend to fix round-off errors
 fa.ExtendLastCol = True

Data Type
Long

Clip Property
See Also          Examples          Applies to

Returns or sets the contents of a range.

Syntax
[form!]vsFlexGrid.Clip[= value As String]

Remarks
The string assigned to the Clip property may contain the contents of multiple rows and columns. Tab characters
(vbTab or Chr$(9)) indicate column breaks, and carriage return characters (vbCr or Chr$(13)) indicate row breaks.

When a string is assigned to the Clip property, only the selected cells are affected. If there are more cells in the
selected region than are described in the clip string, the remaining cells are left alone. If there are more cells
described in the clip string than in the selected region, the extraneous portion of the clip string is ignored.

The example below puts text into a selected area two rows high and two columns wide.

 ' build clip string
 Dim s$
 s = "1st" & vbTab & "a" & vbCr
 s = s & "2nd" & vbTab & "b"

 ' paste it over current selection
 fa.Clip = s

Data Type
String

Col Property
See Also          Examples          Applies to

Returns or sets the zero-based index of the current column.

Syntax
[form!]vsFlexGrid.Col[= value As Long]

Remarks
Use the Row and Col properties to make a cell current or to find out which row or column contains the current
cell.    Columns and rows are numbered from zero, beginning at the top for rows and at the left for columns.

Setting the Row and Col properties automatically resets RowSel property and ColSel property, so the selection
becomes the current cell. Therefore, to specify a block selection, you must set Row and Col first, then set
RowSel and ColSel. Alternatively, you may use the Select method to do it all with a single statement.

Note that the Row and Col properties are not the same as the Rows    and Cols properties.

Data Type
Long

ColAlignment Property
See Also          Examples          Applies to

Returns or sets the alignment of the given column.

Syntax
[form!]vsFlexGrid.ColAlignment(Col As Long)[= AlignmentSettings]

Remarks
Valid settings for the ColAlignment property are:

Value Constant
0 flexAlignLeftTop
1 flexAlignLeftCenter
2 flexAlignLeftBottom
3 flexAlignCenterTop
4 flexAlignCenterCenter
5 flexAlignCenterBottom
6 flexAlignRightTop
7 flexAlignRightCenter
8 flexAlignRightBottom
9 flexAlignGeneral

Any column may have an alignment that is different from other columns. This property affects all cells in the
specified column, including those in fixed rows (unless you override this setting with the FixedAlignment
property).

If Col is -1 the setting is applied to all columns.

To set the alignment of the fixed parts of a column, use the FixedAlignment property. To set individual cell
alignments, use the CellAlignment or the Cell properties. To set column alignments at design time, use the
FormatString property.

Data Type
AlignmentSettings (Enumeration)

Default Value
flexAlignGeneral (9)

ColComboList Property
See Also          Examples          Applies to

Returns or sets the list to be used as a drop-down on the specified column.

Syntax
[form!]vsFlexGrid.ColComboList(Col As Long)[= value As String]

Remarks
This property is similar to the ComboList property, except it applies to entire columns. This is often more
convenient that using the ComboList property because you may set the ColComboList property once for each
column, whereas the ComboList property normally needs to be set in the BeforeEdit event.

Another difference is that the ColComboList property acts as a data dictionary, allowing you to map numeric
values to string entries. The control will hold the numeric values, but will display the associated strings. This
mapping is useful for displaying numeric fields that correspond to entries on a list or on a database table.

For example, you may have a column that holds the employee type, which could be one of the following: Full-
time, Part-time, Contractor, Intern, or Other.

These values will often come from a database, where they will have a unique entry ID. These should be included
in the ColComboList string using the following syntax:

 ColComboList(colEmployeeType) = & _
 "#1;Full time|#23;Part time|#65;Contractor|#78;Intern|#0;Other"

After editing, the column will contain the numbers for each entry (i.e. 1 for full-time, 23 for part-time, 65 for
contractor etc.). The control will display the full text, however.

This translation is optional. If you omit the entry ID, the control will store the full text.

You may retrieve the number using the Cell(flexcpText), Text, or TextMatrix properties. You may retrieve the
associated text using the Cell(flexcpTextDisplay) property. For example:

 Debug.Print fa.Cell(flexcpText), fa.Cell(flexcpTextDisplay)
 23 Part time

For more details on list syntax, including multi-column lists, see the ComboList property.

Data Type
String

ColData Property
See Also          Examples          Applies to

Returns or sets a user-defined variant associated with the given column.

Syntax
[form!]vsFlexGrid.ColData(Col As Long)[= value As Variant]

Remarks
The RowData and ColData properties allow you to associate values with each row or column on the control.

A typical use for these properties is to keep indices into an array of data structures associated with each row, or
pointers to objects represented by the data in the row or column. The values assigned will remain current even if
you sort the control or move its columns.

You may also associate values to individual cells using the Cell property.

Because these properties hold Variants, you have extreme flexibility in the types of information you may associate
with each row, column or cell. The examples below shows some valid uses for these properties.

Store a long that represents a unique ID:

 fa.RowData(i) = 212

Store a string that holds non-numeric information:

 fa.RowData(i) = "Hello"

Store a pointer to another control:

 fa.RowData(i) = ListBox1
 Debug.Print fa.RowData(i).List(0), fa.RowData(i).List(1)
 First Item Second Item

Store a pointer to an object:

 Dim x As Collection
 Set x = New Collection
 x.Add "Arnold"
 x.Add "Billy"
 x.Add "Cedric"
 fa.RowData(i) = x
 Debug.Print fa.RowData(i).Item(2)
 Billy

Upgrade Note:
In previous versions, these properties were of type Long. Using Variants means you have more flexibility. Also,
previous versions used the RowData property in subtotaling and outlining, to store the outline level. This is no
longer the case. The outline level is now set with the RowOutlineLevel property.

Data Type
Variant

ColDataType Property
See Also          Examples          Applies to

Returns or sets the data type for the column.

Syntax
[form!]vsFlexGrid.ColDataType(Col As Long)[= DataTypeSettings]

Remarks
Valid settings for the ColDataType property are:

Value Constant
0 flexDTEmpty
2 flexDTShort
3 flexDTLong
4 flexDTSingle
5 flexDTDouble
6 flexDTCurrency
7 flexDTDate
8 flexDTString
11 flexDTBoolean
20 flexDTLong8
30 flexDTStringC
31 flexDTStringW

This property is automatically set for each column when the control is data bound, so you can determine the data
type of each field. When not in bound mode, you may set this property using code.

There are two column types that receive special treatment from the control:

If a column is of type flexDTDate, the control takes that into account when sorting the column.

If a column is of type flexDTBoolean, the control will display check boxes instead of strings. The mapping
between strings and check boxes follows the rules for Variant conversion: any non-zero value and the "True"
string are displayed as checked boxes; zero values are displayed as unchecked boxes.

For example:

 fa.ColDataType(1) = flexDTBoolean
 fa.TextMatrix(1, 1) = 1 ' checked
 fa.TextMatrix(2, 1) = True ' checked
 fa.TextMatrix(3, 1) = "True" ' checked
 fa.TextMatrix(4, 1) = 0 ' not checked
 fa.TextMatrix(5, 1) = "False" ' not checked
 fa.TextMatrix(6, 1) = "foobar" ' not checked

If you want to display custom strings for boolean values instead of check boxes, set the ColFormat property to a
string containing the values you want to display for True and False values, separated by a semicolon. For
example:

 fa.ColDataType(2) = flexDTBoolean
 fa.ColFormat(2) = "Yes;Not Available" ' or "True;False", "On;Off", "Yes;No", etc.

Data Type
DataTypeSettings (Enumeration)

Default Value
flexDTEmpty (0)

ColEditMask Property
See Also          Examples          Applies to

Returns or sets the input mask used to edit cells on the specified column.

Syntax
[form!]vsFlexGrid.ColEditMask(Col As Long)[= value As String]

Remarks
This property is similar to the EditMask property, except it applies to entire columns. This is often more
convenient than using the EditMask property because you may set the ColEditMask property once for each
column, whereas the EditMask property normally needs to be set in the BeforeEdit event.

For more details and syntax documentation, see the EditMask property.

Data Type
String

ColFormat Property
See Also          Examples          Applies to

Returns or sets the format used to display numeric values.

Syntax
[form!]vsFlexGrid.ColFormat(Col As Long)[= value As String]

Remarks
This property allows you to define a format to be used for displaying numerical, boolean, or date/time values. The
syntax for the format string is similar but not identical to the syntax used with Visual Basic's Format command.

Formatting Numbers:

The characters used to format numerical values are as follows:

Char Description
$ A locale-dependent currency sign is prepended to the output.
, Locale-dependent thousand separators are added to the output.
(Negative values are displayed enclosed in parentheses.
. The number of decimals is determined by the number of "0" or "#" characters after the decimal

point.
% The value is multiplied by 100 and followed by a percent sign.
,. The value is divided by 1000 and displayed with thousand separators.

Formatting Boolean Values:

If a column's ColDataType property is set to flexDTBoolean, the control will display checkboxes by default. If you
want to represent the boolean values in other ways (e.g. True/False, On/Off, Yes/No), then set the ColFormat
property to a string containing the values you want to display for True and False values, separated by a
semicolon. For example:

 fa.ColDataType(2) = flexDTBoolean
 fa.ColFormat(2) = "Yes;Not Available" ' or "True;False", "On;Off", "Yes;No", etc.

Formatting Dates and Times:

The characters used to format date/time values is the same as the one used with Visual Basic's Format
command (including predefined strings such as "Short Date").

The ColFormat property does not modify the underlying data, only the way it is displayed. You may retrieve the
data using the Cell(flexcpText), Text, or TextMatrix properties. You may retrieve the display text using the
Cell(flexcpTextDisplay) property. For example:

 fa.Cell(flexcpText, 1, 1) = "-12345"

 fa.ColFormat(1) = "#,###.00"
 Debug.Print fa.Cell(flexcpTextDisplay, 1, 1)
 -12,345.00
 fa.ColFormat(1) = "($#,###.00)"
 Debug.Print fa.Cell(flexcpTextDisplay, 1, 1)
 ($12,345.00)
 fa.ColFormat(1) = "($#,.00)"
 Debug.Print fa.Cell(flexcpTextDisplay, 1, 1)
 ($12.35)

 fa.Cell(flexcpText, 1, 1) = "6 Aug 98"

 fa.ColFormat(1) = "Short Date"
 Debug.Print fa.Cell(flexcpTextDisplay, 1, 1)
 8/6/98
 fa.ColFormat(1) = "Long Date"
 Debug.Print fa.Cell(flexcpTextDisplay, 1, 1)
 Thursday, August 06, 1998

Data Type
String

ColHidden Property
See Also          Examples          Applies to

Returns or sets whether a column is hidden.

Syntax
[form!]vsFlexGrid.ColHidden(Col As Long)[= {True | False}]

Remarks
Use the ColHidden property to hide and display columns. This is a better approach than setting the column's
ColWidth property to zero, because it allows you to display the column later with its original width.

Hidden columns are ignored by the AutoSize method.

Data Type
Boolean

ColIsVisible Property
See Also          Examples          Applies to

Returns whether a given column is currently within view.

Syntax
val% = [form!]vsFlexGrid.ColIsVisible(Col As Long)

Remarks
The ColIsVisible and RowIsVisible properties are used to determine whether the specified column or row is
within the visible area of the control or whether it has been scrolled off the visible part of the control.

If a column has zero width or is hidden but is within the scrollable area, ColIsVisible will return True.

Data Type
Boolean

Collapsed Event
See Also          Examples          Applies to

Fired after the user expands or collapses a row group in an outline.

Syntax
Private Sub vsFlexGrid_Collapsed()

Remarks
This event is fired after the collapsed state of a row or group of rows changes.

This event may be caused by a call to the Outline method, by setting the IsCollapsed property, or by user
interaction with the OutlineBar.

See the Outline Demo for an example.

ColPos Property
See Also          Examples          Applies to

Returns the left (x) coordinate of a column relative to the edge of the control, in twips.

Syntax
val& = [form!]vsFlexGrid.ColPos(Col As Long)

Remarks
This property is similar to the CellLeft property, except ColPos applies to an arbitrary column and will not cause
the control to scroll. The CellLeft property applies to the current selection and reading it will make the current cell
visible, scrolling the contents of the control if necessary.

Data Type
Long

ColPosition Property
See Also          Examples          Applies to

Moves a given column into a new position.

Syntax
[form!]vsFlexGrid.ColPosition(Col As Long)[= NewPosition As Long]

Remarks
The Col and NewPosition must be valid column numbers (in the range 0 to Cols - 1), or an error will be
generated.

When a column or row is moved with ColPosition or RowPosition, all formatting information moves with it,
including width, height, alignment, colors, fonts, etc. To move text only, use the Clip property instead.

The example below shows how to make a column the leftmost column when the user clicks on it.

 Sub fa_Click ()
 Dim col As Long

 ' find out which column was clicked
 col = fa.MouseCol

 ' move it all the way to the left
 fa.ColPosition(col) = fa.FixedCols
 End Sub

The ColPosition property gives you programmatic control over the column order. You may also use the
ExplorerBar property to allow users to move columns with the mouse.

Data Type
Long

Cols Property
See Also          Examples          Applies to

Returns or sets the total number of columns in the control.

Syntax
[form!]vsFlexGrid.Cols[= value As Long]

Remarks
Use the Rows and Cols properties to get the dimensions of the control or to resize the control dynamically at
runtime.

The minimum number of rows and columns is 0. The maximum number is limited by the memory available on
your computer.

If the control runs out of memory while trying to add rows, columns, or cell contents, it will trigger a Visual Basic
error. To make sure your code works properly when dealing with large controls, you should add error-handling
code to your programs.

Data Type
Long

ColSel Property
See Also          Examples          Applies to

Returns or sets the extent of a range of columns.

Syntax
[form!]vsFlexGrid.ColSel[= value As Long]

Remarks
Use the RowSel and ColSel properties to select a specific region of the control from code, or to determine the
dimensions of an area that the user has selected.

The cursor is the cell at Row, Col. The selection is the region between rows Row and RowSel and columns Col
and ColSel. Note that RowSel may be above or below Row, and ColSel may be to the left or to the right of Col.

Note:
Whenever you set the Row and Col properties, RowSel and ColSel are automatically reset so the cell with
coordinates (Row, Col) becomes the current selection. Therefore, if you want to select a block of cells from code,
you must set the Row and Col properties first, then set RowSel and ColSel (or use the Select method to do it all
with a single statement).

Data Type
Long

ColSort Property
See Also          Examples          Applies to

Returns or sets the sorting order for each column (for use with the Sort property).

Syntax
[form!]vsFlexGrid.ColSort(Col As Long)[= SortSettings]

Remarks
This property allows you to specify different sorting orders for each column on the grid. The most common
settings for this property are flexSortGenericAscending and flexSortGenericDescending. For a complete list of
possible settings, see the Sort property.

To perform the sort using the settings assigned to each column, set the Sort property to flexSortUseColSort.

To sort dates, set the column's ColDataType property to flexDTDate.

Data Type
SortSettings (Enumeration)

Default Value
flexSortNone (0)

ColWidth Property
See Also          Examples          Applies to

Returns or sets the width of the specified column in twips.

Syntax
[form!]vsFlexGrid.ColWidth(Col As Long)[= value As Long]

Remarks
Use this property to set the width of a column at runtime. To set column widths at design time, use the
FormatString property. To set width limits for all columns, use the ColWidthMin and ColWidthMax properties.

If Col is -1, then the specified width is applied to all columns.

If you specify a width of -1, the column width is reset to its default value, which depends on the control's current
font.

To set column widths automatically, based on the contents of the control, use the AutoSize method.

If you specify a width of 0, the column becomes invisible. If you want to hide a column, however, consider using
the ColHidden property instead. This allows you to make the column visible again with the same width it had
before it was hidden. Also, hidden columns are ignored by the AutoSize method.

Data Type
Long

ColWidthMax Property
See Also          Examples          Applies to

Returns or sets the maximum column width, in twips.

Syntax
[form!]vsFlexGrid.ColWidthMax[= value As Long]

Remarks
Set this property to a non-zero value to set a maximum limit to column widths. This is often useful when you use
the AutoSize method to automatically set column width to prevent extremely long entries from making columns
too wide.

See also the ColWidthMin, RowHeightMax, and RowHeightMin properties.

Data Type
Long

Default Value
0

ColWidthMin Property
See Also          Examples          Applies to

Returns or sets the minimum column width, in twips.

Syntax
[form!]vsFlexGrid.ColWidthMin[= value As Long]

Remarks
Set this property to a non-zero value to set a minimum limit to column widths. This is often useful when you use
the AutoSize method to automatically set column widths to prevent empty columns from becoming too narrow.

See also the ColWidthMax, RowHeightMax, and RowHeightMin properties.

Data Type
Long

Default Value
0

ComboCount Property
See Also          Examples          Applies to

Returns the number of items in the editor's combo list.

Syntax
val& = [form!]vsFlexGrid.ComboCount

Remarks
The ComboCount property allows you to customize editing when using drop-down or combo lists. It is valid only
while the user is editing a value using a list.

For example, the code below traps the Home key and selects a specific name instead of moving the cursor to the
first item on the list. The example also illustrates the use of other related properties, ComboItem and
ComboIndex.

 Private Sub fa_KeyDownEdit(ByVal Row As Long, _
 ByVal Col As Long, _
 KeyCode As Integer, _
 ByVal Shift As Integer)
 Dim i As Long

 ' make sure we're editing with a list and the home key was pressed
 If Col = 2 And KeyCode = vb Key Home Then

 ' eat the key
 KeyCode = 0

 ' select "Cedric"
 For i = 0 To vsFlexGrid1.ComboCount - 1
 If vsFlexGrid1.ComboItem(i) = "Cedric" Then
 vsFlexGrid1.ComboIndex = i
 End If
 Next
 End If
 End Sub

Data Type
Long

ComboData Property
See Also          Examples          Applies to

Returns the long value associated with an item in the editor's combo list.

Syntax
val& = [form!]vsFlexGrid.ComboData([Index As Variant])

Remarks
You may assign data values to list items when you define the list, using the ComboList or ColComboList
properties.

Assigning data values to list items serves two purposes:

1) If you do it using the ColComboList property, the control stores the data value instead of the string. See the
ColComboList property for details.

2) If you do it using the ComboList property, the control does not perform any mapping. In this case, the value is
available for use by the programmer, for example to store an index into an array or a database record ID.

Data Type
Long

Default Value
-1

ComboIndex Property
See Also          Examples          Applies to

Returns or sets the zero-based index of the current selection in the editor's combo list.

Syntax
[form!]vsFlexGrid.ComboIndex[= value As Long]

Remarks
The ComboIndex property allows you to customize editing when using drop-down or combo lists. It is valid only
while the user is editing a value using a list.

See the ComboCount property for an example.

Data Type
Long

ComboItem Property
See Also          Examples          Applies to

Returns the string associated with an item in the editor's combo list.

Syntax
val$ = [form!]vsFlexGrid.ComboItem([Index As Variant])

Remarks
The ComboItem property allows you to customize editing when using drop-down or combo lists. It is valid only
while the user is editing a value using a list.

See the ComboCount property for an example.

Data Type
String

ComboList Property
See Also          Examples          Applies to

Returns or sets the list to be used as a drop-down when editing a cell.

Syntax
[form!]vsFlexGrid.ComboList[= value As String]

Remarks
The ComboList property controls the type of editor to be used when editing a cell. You may use a text box, drop-
down list, drop-down combo, or an edit button to pop up custom editor forms.

To use the ComboList property, set the Editable property to True, and respond to the BeforeEdit event by
setting the ComboList property to a string containing the proper options, described below.

Editing Options

To edit the cell using a regular text box, set the ComboList property to an empty string (""). You may also define
an edit mask using the EditMask property.

To edit the cell using a drop-down list, set the ComboList property to a string containing the available options,
separated by pipe characters ("|"). For example:

    ComboList = "ListItem 1|ListItem 2".

To edit the cell using a drop-down combo, set the ComboList property to a string containing the available options,
separated by pipe characters ("|") and starting with a pipe character. For example:

    ComboList = "|ComboItem 1|ComboItem 2".

You can also use edit masks with drop-down combos using the EditMask property.

To display an edit button, set the ComboList property to a string containing an ellipsis (...). Edit buttons look like
regular push buttons, aligned to the right of the cell, with an ellipsis as a caption. When the user clicks on the edit
button, the control fires the CellButtonClick event. For example:

    ComboList = "..."

List Syntax

In addition to the basic list syntax described above, you may create lists that define multi-column drop-downs and
translated lists (lists where each item has an associated numerical value).

To define multi-column lists, separate columns with tab characters (Chr(9), or vbTab). When you define a multi-
column combo, only one column is displayed in the cell (the others are visible only on the drop-down list). By
default, the first column is the one that is displayed in the cell. To display a different column instead, add a string
with the format "*nnn;" to the first item, where nnn is the zero-based index of the column to be displayed.

To create a translated list, attach a numerical value to each list item by adding a string with format "#xxx;" to the
beginning of the row, where xxx is the numerical value. This value may be read while editing the cell using the
ComboData property.

For example:

 s = "|#10*1;Getz" & vbTab & "Stan" & vbTab & "1 Sansome" & vbTab & "972-4323" & _
 "|#20;Mindelis" & vbTab & "Nuno" & vbTab & "2 5th" & vbTab & "972-2321" & _
 "|#30;Davis" & vbTab & "Miles" & vbTab & "1 High" & vbTab & "345-2342" & _
 "|#40;Johnson" & vbTab & "Bob" & vbTab & "5 Hemlock" & vbTab & "342-2321"
 fa.ComboList = s

The code above will display a drop-down combo with four columns. The items will have associated data values
10, 20, 30, and 40. The value    displayed in the cells will be the one in column 1 (first name). Because the first
character is a pipe, the box will be a drop-down combo, as opposed to a drop-down list box.

What is the difference between ComboList and ColComboList?

The ComboList and ColComboList properties are closely related. They have the same function, and the syntax
used to define the lists is exactly the same. There are two differences:

The ColComboList property applies to an entire column. It may be set once, when the control is loaded, and then
you can forget about it. The ComboList property applies to the current cell only. To use it, you need to trap the
BeforeEdit event and set ComboList to the list that is applicable to the call about to be edited.

The ColComboList property performs data translation. If data values are supplied, they are stored on the grid,
not the actual string. The ComboList property does not perform this translation.

If all cells in a column are items picked from the same list, as is the case in most database applications, use the
ColComboList property. You will not need to handle the BeforeEdit event and your code will be cleaner and
more efficient. Also, you have the option of using data translation, which simplifies the code and increases data
integrity.

If different cells in the same column have different lists, as for example in a property window, then you should use
the ColComboList property instead. You will need to trap the BeforeEdit event and you will have the automatic
value translation.

Data Type
String

Compare Event
See Also          Examples          Applies to

Fired when the Sort property is set to flexSortCustom, to allow custom comparison of rows.

Syntax
Private Sub vsFlexGrid_Compare(ByVal Row1 As Long,    ByVal Row2 As Long, Cmp As Integer)

Remarks
When the Sort property is set to flexSortCustom, this event is fired several times, to compare pairs of rows. The
event handler should compare rows Row1 and Row2 and return the result in the Cmp parameter:

Value Description
    -1 if Row1 should appear before Row2
      0 if the rows are equal
    +1 if Row1 should appear after Row2.

Note that custom sorts are orders of magnitude slower than the built-in sorts, so you should avoid using them
unless your data sets are small.

Usually, there are    good alternatives to a custom sort:

If you are sorting dates, set the ColDataType property to flexDTDate and the generic sorting settings will sort the
dates correctly.

If you are sorting international strings, the generic and string settings will sort the value correctly.

If you want to sort based on arbitrary criteria (e.g. "Urgent", "High", "Medium", "Low"), use a hidden column with
numerical values that correspond to the criteria you are using.

DataMember Property
See Also          Examples          Applies to

Returns or sets the data member.

Syntax
[form!]vsFlexGrid.DataMember[= value As String]

Remarks
This property is available only in the ADO version of the VSFlexGrid control. The DAO version is provided for
compatibility with older version of the control. The ADO version supports OLEDB, the new Microsoft standard for
database connectivity.

The DataMember property is used when the DataSource property is set to a source defined with the Visual Basic
Data Environment. It contains the name of the data member to retrieve from the object referenced by the
DataSource property.

The Data Environment maintains collections of data (data sources) containing named objects (data members)
that will be represented as Recordset objects. The DataMember property determines which object specified by
the DataSource property will be bound to the control.

Note that if you are binding the control to a data control, you don't need to set this property. Data controls contain
only one data member which is used by default.

See also the DataSource and DataMode properties.

Data Type
String

DataMode Property
See Also          Examples          Applies to

Returns or sets the type of data binding used by the control when it is connected to a data source (read-only or
read/write).

Syntax
[form!]vsFlexGrid.DataMode[= DataModeSettings]

Remarks
Valid settings for the DataMode property are:

Value Constant
0 flexDMFree
1 flexDMBound

The effect of the settings for the DataMode property are described below:

flexDMFree
This setting causes the data to be read from the database when the program starts, when the data source is
refreshed, and when the user calls the DataRefresh method. Any direct changes to the database (edits and
cursor movements) are ignored by the control. The flexDMFree setting is equivalent to the data binding
implemented in the MSFlexGrid control.

flexDMBound
This setting causes the data in the database to be permanently synchronized with the control. The current row is
linked to the database cursor, so when the Row property changes, the database cursor moves and vice-versa. All
edits to the control contents are updated in the database and vice-versa. The flexDMBound setting is similar to
the data binding implemented in the Microsoft DBGrid control.

When the DataMode property is set to flexDMBound, some properties and methods are disabled or their behavior
is restricted:

AddItem
The second parameter of the AddItem method, the position where the new row should be inserted, is ignored.
New rows are always appeded at the bottom of the database.

Rows, Cols
These properties become read-only. You may add or remove records from the database one at a time using the
AddItem and RemoveItem methods.

FixedRows,    FixedCols
These properties become read-only at runtime. You need to decide how many fixed rows and columns you want
at design time.

Sort, RowPosition
These properties are disabled. You may sort the database records by modifying the SQL statement in the data
source.

IsSubtotal
This property becomes read-only. You may add or clear subtotals using the Subtotal method.

Data Type
DataModeSettings (Enumeration)

Default Value
flexDMFree (0)

DataRefresh Method
See Also          Examples          Applies to

Forces the control to re-fetch all data from its data source.

Syntax
[form!]vsFlexGrid.DataRefresh

Remarks
If you trap the BeforeDataRefresh event and refuse to load new data from the database, you may later want to
force a data refresh by using this method.

DataSource Property
See Also          Examples          Applies to

Returns or sets the data source.

Syntax
[form!]vsFlexGrid.DataSource[= DataSource]

Remarks
This property behaves differently in the DAO and ADO versions of the VSFlexGrid control. The DAO version is
provided for compatibility with older version of the control. The ADO version supports OLEDB, the new Microsoft
standard for database connectivity.

DAO version (VSFlex6d.ocx)
This property can only be set at design time. Use Visual Basic's properties window to set the DataSource
property to a Data control already on the form. Once this property is set, the contents of the grid will be updated
whenever the associated Data control is refreshed or when the DataRefresh method is called.

OLEDB/ADO version (VSFlex6.ocx)
The DataSource parameter is a reference to an object that qualifies as a data source, including ADO Recordset
objects and classes or user controls defined as data sources.

You may set the DataSource property at design time using the properties window. When you select the
DataSource property, you will get a drop-down list enumerating the sources available. These include sources
defined with Visual Basic's Data Environment as well as any controls defined as data sources, such as the
Microsoft ADO data control.

You may also set the DataSource property at runtime using the Visual Basic Set statement, as shown below:

 ' ADODC1 is a Microsoft ADO Data control
 Set fa.DataSource = ADODC1

See also the DataMember and DataMode properties.

Data Type
DataSource

DrawCell Event
See Also          Examples          Applies to

Fired when the OwnerDraw property is set to allow custom cell drawing.

Syntax
Private Sub vsFlexGrid_DrawCell(ByVal hDC As Long,    ByVal Row As Long,    ByVal Col As Long,    ByVal Left
As Long,    ByVal Top As Long,    ByVal Right As Long,    ByVal Bottom As Long, Done As Boolean)

Remarks
The DrawCell event is fired before the contents of a cell are painted.

The DrawCell event is fired only if the OwnerDraw property is set to a non-zero value, to allow for custom
drawing on selected cells.

The parameters for the DrawCell event are described below:

hDC As Long
This parameter contains a handle to the control's device context. The hDC parameter is required by all Windows
GDI calls.

Row, Col As Long
These parameters define the cell that is about to be drawn.

Left, Top, Right, Bottom As Long
These parameters define the rectangle that contains the cell. The coordinates are given in pixels, so they can be
used directly in the GDI calls.

Done As Boolean
This parameter should be set to True to indicate that the event did, in fact, handle the drawing. Set it to False to
indicate that you don't want to paint this particular cell and the control should handle it instead.

Note:
Owner-drawn cells are a fairly advanced feature that requires knowledge of the Windows GDI calls. If you decide
to use this feature, our technical support technicians will probably not be able to help you with problems you may
encounter. Efficient painting is also fundamental to the perceived speed of your application, so use this feature
only if you really need it, and make sure your own painting code is as fast as possible.

For an example, refer to the OwnerDraw demo included in the distribution package.

Editable Property
See Also          Examples          Applies to

Returns or sets whether the control allows in-cell editing.

Syntax
[form!]vsFlexGrid.Editable[= {True | False}]

Remarks
If the Editable property is set to True, the control provides in-cell editing.

By default, the control goes into editing mode when the user presses the edit key (F2), the space bar, or any
printable character. You may force the control into cell-editing mode by using the EditCell method, or prevent it
from entering edit mode by trapping the BeforeEdit event and setting the Cancel parameter to True.

You may choose to use a regular edit box, drop-down list or drop-down combo, depending on the setting of the
ComboList and ColComboList properties. You may also specify an editing mask using the EditMask and
ColEditMask properties. Set these properties in response to the BeforeEdit event.

You may perform data validation in response to the ValidateEdit event, and perform post-editing work such as
resorting the control in response to the AfterEdit event.

Data Type
Boolean

Default Value
False

EditCell Method
See Also          Examples          Applies to

Activates edit mode.

Syntax
[form!]vsFlexGrid.EditCell

Remarks
If the Editable property is set to True, the control goes into editing mode automatically when the user presses the
edit key (F2), the space bar, or any printable character.    You may use the EditCell method to force the control
into cell-editing mode.

Note that EditCell will force the control into editing mode even if the Editable property is set to False. You may
even use it to allow editing of fixed cells.

A typical use for this method is shown in the example below. The code traps the right mouse button to initiate
editing.

 Sub fa_MouseDown(Button As Integer, Shift As Integer, X!, Y!)
 If Button = vb Right Button Then
 fa.Select fa.MouseRow, fa.MouseCol
 fa.EditCell
 End If
 End Sub

EditMask Property
See Also          Examples          Applies to

Returns or sets the input mask used to edit cells.

Syntax
[form!]vsFlexGrid.EditMask[= value As String]

Remarks
The EditMask property allows you to specify an input mask for automatic input formatting and validation. The
mask syntax is similar to the one used by the Microsoft MaskedEdit control and by Microsoft Access.

Set the EditMask property in response to the BeforeEdit event, in the same way you would set the ComboList
property.

If the same mask is used to edit all values in a column, use the ColEditMask property instead. This tends to
simplify the code because you don't need to trap the BeforeEdit event.

When the user is done editing, the ValidateEdit event will be fired as usual. The Cancel parameter will be set to
True if the mask was not filled out properly, so in most cases you don't event need to implement the handler. The
default behavior ensures that only valid data will be entered.

The EditMask must be a string composed of the following symbols:

1) Wildcards
0 digit
9 digit or space
digit or sign
L letter
? letter or space
A letter or digit
a letter, digit, or space
& any character

2) Localized characters
. localized decimal separator
, localized thousand separator
: localized time separator
/ localized date separator

3) Command characters
\ next character is taken as a literal (not a special character)
> translate letters to uppercase
< translate letters to lowercase
; group delimiter (see below)

The group delimiter character is used to control additional options. If present in the mask string, then the part of
the mask to the left of the first delimiter is used as the actual mask. The part to the right is interpreted in this way:

1 - if a lowercase 'q' is present, the control edits in 'quiet' mode (no beeps on invalid characters),
2 - the last character is used as a placeholder (instead of the default underscore).

For example:

 ' set the mask so the user can enter a phone number,
 ' with optional area code, and a state in capitals.
 ' this will beep on invalid keys.
 fa.EditMask = "(###) 000-0000 St\ate\: >LL"

 ' similar mask, but in quiet mode (no beep for wrong keys)

 ' and with an asterisk instead of underscore for a placeholder:
 fa.EditMask = "(###) 000-0000 St\ate\: >LL;q;*"

Here are some commented examples:

"St\ate\; >LL"
Is a valid format. The 'a' and ';' characters are escaped and thus taken as literals. The '>' is used to ensure that
the next two characters will be represented in uppercase.

"St\ate\; >LL;q;*"
Is a valid format. It is similar to the previous example, but the 'q' after the delimiter puts the control in quiet mode.
An asterisk '*' is used as placeholder instead of the underscore, because that is the last character after the
delimiter.

"St; >LL"
This is an invalid format. The mask itself is just "St" (the part to the left of the ';' delimiter. There are no wildcards,
so the user can't type anything. If he could, the placeholder character would be "L" (last character after the ';'
delimiter).

"; >LL"
This is an invalid format. The first character is a delimiter, so there is no real mask at all.

Data Type
String

EditMaxLength Property
See Also          Examples          Applies to

Returns or sets the maximum number of characters that can be entered in the editor.

Syntax
[form!]vsFlexGrid.EditMaxLength[= value As Long]

Remarks
Set this property in the BeforeEdit event to limit the length of the text that may be entred while editing a cell.

Setting EditMaxLength to 0 allows editing of strings up to about 32k characters.

Changing this property while editing a cell does not affect the contents of the editor but will affect subsequent
editing.

Data Type
Long

Default Value
0

EditSelLength Property
See Also          Examples          Applies to

Returns or the number of characters selected in the editor.

Syntax
[form!]vsFlexGrid.EditSelLength[= value As Long]

Remarks
This property works in conjunction with the EditSelStart and EditSelText properties, while the control is in cell-
editing mode.

Use these properties for tasks such as setting the insertion point, establishing an insertion range, selecting
substrings in the editor, or clearing text. Used in conjunction with the Visual Basic Clipboard object, these
properties are useful for copy, cut, and paste operations.

When working with these properties, note that:

1) Setting SelLength less than 0 causes a runtime error.
2) Setting SelStart greater than the text length sets the property to the existing text length; changing SelStart
changes the selection to an insertion point and sets SelLength to 0.
3) Setting SelText to a new value sets SelLength to 0 and replaces the selected text with the new string.

Data Type
Long

EditSelStart Property
See Also          Examples          Applies to

Returns or sets the starting point of text selected in the editor.

Syntax
[form!]vsFlexGrid.EditSelStart[= value As Long]

Remarks
This property works in conjunction with the EditSelLength and EditSelText properties, while the control is in cell-
editing mode.

Use these properties for tasks such as setting the insertion point, establishing an insertion range, selecting
substrings in the editor, or clearing text. Used in conjunction with the Visual Basic Clipboard object, these
properties are useful for copy, cut, and paste operations.

When working with these properties, note that:

1) Setting SelLength less than 0 causes a runtime error.
2) Setting SelStart greater than the text length sets the property to the existing text length; changing SelStart
changes the selection to an insertion point and sets SelLength to 0.
3) Setting SelText to a new value sets SelLength to 0 and replaces the selected text with the new string.

Data Type
Long

EditSelText Property
See Also          Examples          Applies to

Returns or sets the string containing the current selection in the editor.

Syntax
[form!]vsFlexGrid.EditSelText[= value As String]

Remarks
This property works in conjunction with the EditSelStart and EditSelLength properties, while the control is in
cell-editing mode.

Use these properties for tasks such as setting the insertion point, establishing an insertion range, selecting
substrings in the editor, or clearing text. Used in conjunction with the Visual Basic Clipboard object, these
properties are useful for copy, cut, and paste operations.

When working with these properties, note that:

1) Setting SelLength less than 0 causes a runtime error.
2) Setting SelStart greater than the text length sets the property to the existing text length; changing SelStart
changes the selection to an insertion point and sets SelLength to 0.
3) Setting SelText to a new value sets SelLength to 0 and replaces the selected text with the new string.

Data Type
String

EditText Property
See Also          Examples          Applies to

Returns or sets the text in the cell editor.

Syntax
[form!]vsFlexGrid.EditText[= value As String]

Remarks
The EditText property allows you to read and modify the contents of the cell editor while it is active.

This property is useful mainly for handling the ValidateEdit event.

Data Type
String

Ellipsis Property
See Also          Examples          Applies to

Returns or sets whether the control will display ellipsis (...) after long strings.

Syntax
[form!]vsFlexGrid.Ellipsis[= EllipsisSettings]

Remarks
The Ellipsis property determines how the control displays strings that are too long to fit the available space in a
cell. By setting this property to a non-zero value, you can force the display of an ellipsis symbol ("...") to indicate
that part of the string has been truncated.

The effect of the settings for the Ellipsis property are described below:

Constant Description
flexNoEllipsis Text is truncated, no ellipsis characters are displayed.
flexEllipsisEnd Ellipsis characters displayed at the end of the string.
flexEllipsisPath Disk path-style ellipsis, appears in the middle of the string.

Data Type
EllipsisSettings (Enumeration)

Default Value
flexNoEllipsis (0)

EnterCell Event
See Also          Examples          Applies to

Fired when a cell becomes active.

Syntax
Private Sub vsFlexGrid_EnterCell()

Remarks
This event is fired after a cell becomes current, either as a result of mouse/keyboard action, or when the current
selection is modified programatically.

Error Event (vsFlexGrid Object)
See Also          Examples          Applies to

Fired after a data-access error.

Syntax
Private Sub vsFlexGrid_Error(ByVal ErrorCode As Long, ShowMsgBox As Boolean)

Remarks
This event is fired after a non-fatal data-access error. Normally, this error indicates that an update to the database
failed because of the data was of the wrong type or because the value entered would violate database integrity
rules.

If you do not handle this event, the control will display a message box informing the user that an error occurred.
Execution will continue normally and the control will display the value as retrieved from the database.

You may trap this event to suppress the dialog box, perhaps replacing it with a custom one.

ExplorerBar Property
See Also          Examples          Applies to

Returns or sets whether column headers are used to sort and/or move columns.

Syntax
[form!]vsFlexGrid.ExplorerBar[= ExplorerBarSettings]

Remarks
The ExplorerBar property allows users to use column headings to sort and move columns without any code.

The effect of the settings for the ExplorerBar property are described below:

Constant Description
flexExNone No ExplorerBar. Fixed rows behave as usual.
flexExSort Users may sort columns by clicking on their headings.
flexExMove Users may move columns by dragging their headings.
flexExSortAndMove Users may sort and move columns.

By default, the ExplorerBar works like the one in Microsoft's Internet Explorer 4: One click sorts the column in
ascending order, the next in descending order. Any non-fixed column may be dragged to any non-fixed position.

The control fires events that allow you to customize this behavior. The events are BeforeSort, AfterSort,
BeforeMoveColumn, and AfterMoveColumn.

You must have at least one fixed row to be able to use the ExporerBar.

Data Type
ExplorerBarSettings (Enumeration)

Default Value
flexExNone (0)

ExtendLastCol Property
See Also          Examples          Applies to

Returns or sets whether the last column should be adjusted to fit the control's width.

Syntax
[form!]vsFlexGrid.ExtendLastCol[= {True | False}]

Remarks
This property only affects painting. It does not modify the ColWidth property of the last column.

Data Type
Boolean

Default Value
False

FillStyle Property
See Also          Examples          Applies to

Returns or sets whether changes to the Text or format properties apply to the current cell or to the entire
selection.

Syntax
[form!]vsFlexGrid.FillStyle[= FillStyleSettings]

Remarks
The settings for the FillStyle property are described below:

flexFillSingle
Setting the Text property or any of the cell formatting properties affects the current cell only.

flexFillRepeat
Setting the Text property or any of the cell formatting properties affects the entire selected range.

The FillStyle property also determines whether changes caused by in-cell editing should apply to the current cell
only or to the entire selection.

FillStyle is ignored if SelectionMode is flexSelectionListBox.

Data Type
FillStyleSettings (Enumeration)

Default Value
flexFillSingle (0)

FindRow Property
See Also          Examples          Applies to

Returns the index of a row that contains a specified string or RowData value.

Syntax
val& = [form!]vsFlexGrid.FindRow(Item As Variant, [Row As Variant], [Col As Variant])

Remarks
The FindRow method allows you to look up specific rows based on their RowData values. You can also search
rows based on the cell data values for a specific column. The search is much faster and more convenient than a
Visual Basic loop.

The parameters for the FindRow property are described below:

Item As Variant
This parameter contains the data for which you are looking.

Row As Variant    (optional)
This parameter contains the rows where the search should start. The default value is FixedRows.

Col As Variant    (optional)
This parameter tells the control which column should be searched. By default, this value is set to -1, which means
the control will look for matches against RowData. If Col is set to a value greater than -1, then the control will look
for matches against the cell's data values for the given column.

If you assign a unique value to a row's RowData property, you can later find it quickly and easily using the
FindRow method.

The example below shows how this method is used:

 ' assign some data to row 30 and cell (30, 5)
 fa.RowData(30)="MyRow"
 fa.Cell(flexcpData, 40, 5)="MyCell"

 ' locate a row based on its RowData value
 Debug.Print fa.FindRow("MyRow")
 30

 ' this fails because no rows have RowData = "MyCell"
 Debug.Print fa.FindRow("MyCell")
 -1

 ' locate a row based on cell data for column 5
 Debug.Print fa.FindRow("MyCell", , 5)
 40

Data Type
Long

FixedAlignment Property
See Also          Examples          Applies to

Returns or sets the alignment for the fixed rows in a column.

Syntax
[form!]vsFlexGrid.FixedAlignment(Col As Long)[= AlignmentSettings]

Remarks
The FixedAlignment property behaves like the ColAlignment property except that it only affects the alignment of
fixed cells. You can use this property to align headings differently than the rest of the cells.

You can also use the Cell property to control the alignment of individual cells.

For a list of valid settings, see the ColAlignment property.

Data Type
AlignmentSettings (Enumeration)

Default Value
flexAlignLeftTop (0)

FixedCols Property
See Also          Examples          Applies to

Returns or sets the total number of fixed (non-scrollable) columns.

Syntax
[form!]vsFlexGrid.FixedCols[= value As Long]

Remarks
A fixed column is a stationary column on the left side of the control. A fixed row is a stationary row along the top of
the control. You can have zero or more fixed columns and zero or more fixed rows.

Fixed columns and rows do not move when the other columns or rows in the control are scrolled through. You can
select the colors, font, grid and text style use for the fixed columns and rows.

Fixed columns and rows are typically used in spreadsheet applications to display row numbers and column
headers or in database applications to show field names.

Setting FixedCols to a value exceeding the number of columns will result in a runtime error.

Data Type
Long

Default Value
1

FixedRows Property
See Also          Examples          Applies to

Returns or sets the total number of fixed (non-scrollable) rows.

Syntax
[form!]vsFlexGrid.FixedRows[= value As Long]

Remarks
A fixed column is a stationary column on the left side of the control. A fixed row is a stationary row along the top of
the control. You can have zero or more fixed columns and zero or more fixed rows.

Fixed columns and rows do not move when the other columns or rows in the control are scrolled. You can select
the colors, font, grid and text style use for the fixed columns and rows.

Fixed columns and rows are typically used in spreadsheet applications to display row numbers and column letters
or in database applications to show field names.

Setting FixedRows to a value exceeding the number of rows will result in a runtime error.

Data Type
Long

Default Value
1

FloodColor Property
See Also          Examples          Applies to

Returns or sets the color used to flood cells.

Syntax
[form!]vsFlexGrid.FloodColor[= colorref&]

Remarks
The color specified is used for painting the flooded portion of cells which have the CellFloodPercent property set
to a non-zero value. To maximize performance, this color is always mapped to the nearest solid color.

To control the flooding color of individual cells, set the Cell(flexcpFloodColor) property.

For details and an example, see the CellFloodPercent property.

Data Type
Color

FocusRect Property
See Also          Examples          Applies to

Returns or sets the type of focus rectangle to be displayed around the current cell.

Syntax
[form!]vsFlexGrid.FocusRect[= FocusRectSettings]

Remarks
The effect of the settings for the FocusRect property are described below:

Constant Description
flexFocusNone No focus rectangle is shown.
flexFocusLight Show one pixel wide focus rectangle.
flexFocusHeavy Show two pixels wide focus rectangle.
flexFocusSolid Show solid rectangle (the color is determined by the BackColorSel property).
flexFocusRaised Show raised frame.
flexFocusInset Show inset frame.

If a focus rectangle is drawn, then the current cell is painted using the regular background color, as in most
spreadsheets and grids. Otherwise, the current cell is painted using the selection color (BackColorSel).

Data Type
FocusRectSettings (Enumeration)

Default Value
flexFocusLight (1)

ForeColor* Property
See Also          Examples          Applies to

Returns or sets the foreground color of the non-fixed cells.

Syntax
[form!]vsFlexGrid.ForeColor[= colorref&]

Remarks
This property works in conjunction with the ForeColorFixed, and ForeColorSel properties to specify the color
used to draw text.

ForeColor determines the color used to draw text in the scrollable area of the control.

ForeColorFixed determines the color used to draw text in the fixed rows and columns.

ForeColorSel determines the color used to draw text in selected cells.

You may set the text color of individual cells using the Cell(flexCPForeColor) property.

Data Type
Color

ForeColorFixed Property
See Also          Examples          Applies to

Returns or sets the foreground color of the fixed rows and columns.

Syntax
[form!]vsFlexGrid.ForeColorFixed[= colorref&]

Remarks
This property works in conjunction with the ForeColor and ForeColorSel properties to specify the color used to
draw text.

ForeColor determines the color used to draw text in the scrollable area of the control.

ForeColorFixed determines the color used to draw text in the fixed rows and columns.

ForeColorSel determines the color used to draw text in selected cells.

You may set the text color of individual cells using the Cell(flexCPForeColor) property.

Data Type
Color

ForeColorSel Property
See Also          Examples          Applies to

Returns or sets the foreground color of the selected cells.

Syntax
[form!]vsFlexGrid.ForeColorSel[= colorref&]

Remarks
This property works in conjunction with the ForeColor property and ForeColorFixed property to specify the color
used to draw text.

ForeColor determines the color used to draw text in the scrollable area of the control.

ForeColorFixed determines the color used to draw text in the fixed rows and columns.

ForeColorSel determines the color used to draw text in selected cells.

You may set the text color of individual cells using the Cell(flexCPForeColor) property.

Data Type
Color

FormatString Property
See Also          Examples          Applies to

Assigns column widths, alignments, and fixed row and column text.

Syntax
[form!]vsFlexGrid.FormatString[= value As String]

Remarks
Use FormatString at design time to define the following elements of the control: number of rows and columns,
text for row and column headings, column width, and column alignment.

The FormatString is made up of segments separated by pipe characters ("|"). The text between pipes defines a
column, and it may contain the special alignment characters "<", "^", or ">", to align the entire column to the left,
center, or right. The text is assigned to row zero, and its width defines the width of each column.

The FormatString may also contain a semi-colon (";"), which causes the remaining of the string to be interpreted
as row heading and width information. The text is assigned to column zero, and the longest string defines the
width of column zero.

If the first character in the FormatString is an equals sign ("="), then all non-fixed rows will have the same width.

The control will create additional rows and columns to accommodate all fields defined by the FormatString, but it
will not delete rows or columns if a few fields are specified.

See the FormatString Demo for some examples.

Data Type
String

GetHeaderRow Event
See Also          Examples          Applies to

Fired while printing the control to set repeating header rows.

Syntax
Private Sub vsFlexGrid_GetHeaderRow(ByVal Row As Long, HeaderRow As Long)

Remarks
This event is fired while the control is being rendered on a page or print preview window using VideoSoft's
VSPrinter control. If you are not using VSPrinter to render the control, you do not need to handle this event at all.

The GetHeaderRow event allows you to set a repeating header at the top of each page. While printing, the
GetHeaderRow event is fired at the beginning of each page (except the first) and you can return the number of a
row that should be used as a header on each page. This is especially useful for printing complex reports that
require control over page breaks.

The parameters for the GetHeaderRow event are described below:

Row As Long
This parameter contains the number of the row that will be the first on a page.

HeaderRow As Long
This parameter is initially set to -1, meaning no heading row is needed. If you want a header row on the page, set
HeaderRow to the number of a row to be used as the header.

For more details, see the BeforePageBreak event and the RenderControl Demo.

GetMergedRange Method
See Also          Examples          Applies to

Returns the range of merged cells that includes a given cell.

Syntax
[form!]vsFlexGrid.GetMergedRange Row As Long, Col As Long, R1 As Long, C1 As Long, R2 As Long, C2 As
Long

GridColor Property
See Also          Examples          Applies to

Returns or sets the color used to draw the grid lines between the non-fixed cells.

Syntax
[form!]vsFlexGrid.GridColor[= colorref&]

Remarks
The GridColor property is ignored when GridLines property is set to one of the 3D styles. Raised and inset grid
lines are always drawn using the system-defined colors for shades and highlights.

Data Type
Color

GridColorFixed Property
See Also          Examples          Applies to

Returns or sets the color used to draw the grid lines between the fixed cells.

Syntax
[form!]vsFlexGrid.GridColorFixed[= colorref&]

Remarks
The GridColorFixed property is ignored when GridLines property is set to one of the 3D styles. Raised and inset
grid lines are always drawn using the system-defined colors for shades and highlights.

Data Type
Color

GridLines Property
See Also          Examples          Applies to

Returns or sets the type of lines to be drawn between non-fixed cells.

Syntax
[form!]vsFlexGrid.GridLines[= GridStyleSettings]

Remarks
Valid settings for the GridLines property are:

Value Constant Description
0 flexGridNone No grid lines
1 flexGridFlat Regular grid lines
2 flexGridInset Inset grid lines
3 flexGridRaised Raised grid lines
4 flexGridFlatHorz Regular horizontal grid lines
5 flexGridInsetHorz Inset horizontal grid lines
6 flexGridRaisedHorz Raised horizontal grid lines
7 flexGridSkipHorz Alternating horizontal grid lines
8 flexGridFlatVert Regular vertical grid lines
9 flexGridInsetVert Inset vertical grid lines
10 flexGridRaisedVert Raised vertical grid lines
11 flexGridSkipVert Alternating vertical grid lines
12 flexGridExplorer Button-like 3D edges

The GridColor property determines the color of the grid lines when the GridLines property is set to one of the flat
styles (flexGridFlat, flexGridFlatHorz, flexGridVert).    Raised and inset grid lines are always drawn using the
system-defined colors for shades and highlights.

Data Type
GridStyleSettings (Enumeration)

Default Value
flexGridFlat (1)

GridLinesFixed Property
See Also          Examples          Applies to

Returns or sets the type of lines to be drawn between fixed cells.

Syntax
[form!]vsFlexGrid.GridLinesFixed[= GridStyleSettings]

Remarks
Valid settings for the GridLinesFixed property are thes same as for the GridLines property.

The GridColorFixed property determines the color of the grid lines when the GridLineFixed property is set to
one of the flat styles (flexGridFlat, flexGridFlatHorz, flexGridVert). Raised and inset grid lines are always drawn
using the system-defined colors for shades and highlights.

Data Type
GridStyleSettings (Enumeration)

Default Value
flexGridInset (2)

GridLineWidth Property
See Also          Examples          Applies to

Returns or sets the width of the grid lines, in pixels.

Syntax
[form!]vsFlexGrid.GridLineWidth[= value As Integer]

Remarks
The GridLineWidth property determines the thickness, in pixels, of the grid lines when the GridLineWidth
property or GridLinesFixed property is set to one of the flat styles (flexGridFlat, flexGridFlatHorz,
flexGridFlatVert). Raised and inset grid lines are always one pixel wide.

Data Type
Integer

Default Value
1

HighLight Property
See Also          Examples          Applies to

Returns or sets whether selected cells will be highlighted.

Syntax
[form!]vsFlexGrid.HighLight[= ShowSelSettings]

Remarks
Valid settings for the HighLight property are:

Value Constant
0 flexHighlightNever
1 flexHighlightAlways
2 flexHighlightWithFocus

When this property is set to flexHighlightNever and the user selects a range of cells, there is no visual cue to
show which cells are selected.

Highlighting ranges that contain merged cells may lead to non-rectangular shapes being highlighted. If this is
undesirable, you may disable it by setting the HighLight property to flexHighlightNever or by setting the
AllowSelection property to False.

Data Type
ShowSelSettings (Enumeration)

Default Value
flexHighlightAlways (1)

IsCollapsed Property
See Also          Examples          Applies to

Returns or sets whether an outline row is collapsed or expanded.

Syntax
[form!]vsFlexGrid.IsCollapsed(Row As Long)[= CollapsedSettings]

Remarks
The effect of the settings for the IsCollapsed property are described below:

Constant Description
flexOutlineExpanded Show all subordinate rows
flexOutlineSubtotals Show only subordinate nodes
flexOutlineCollapsed Hide all subordinate rows

You may read this property to determine whether a row is visible or has been collapsed and is therefore hidden
from view. You may set it to expand or collapse an outline branch programmatically.

When an outline branch is collapsed or expanded, either through code or as a result of a mouse action, the
control fires the Collapsed event.

If you set this property and there are no subtotal rows in the control, an Invalid Index runtime error will occur.

For more details on creating and using outlines, see the Outline Demo.

Data Type
CollapsedSettings (Enumeration)

IsSelected Property
See Also          Examples          Applies to

Returns or sets whether a row is selected (for listbox-type selections).

Syntax
[form!]vsFlexGrid.IsSelected(Row As Long)[= {True | False}]

Remarks
This property allows you to select individual rows, not necessarily adjacent, independently of the RowSel property
and ColSel property.

To implement this type of row selection, you will typically set the SelectionMode property to flexSelectionListBox,
which allows the user to select individual rows using the mouse or the keyboard, and to toggle the selection for a
row by CTRL-clicking on it.

If you set SelectionMode property to something other than flexSelectionListBox, you may still select and de-
select rows using the IsSelected property, but the user will not be able to alter the selection with the mouse or
keyboard (unless you write the code to do it).

Data Type
Boolean

IsSubtotal Property
See Also          Examples          Applies to

Returns or sets whether a row contains subtotals (as opposed to data).

Syntax
[form!]vsFlexGrid.IsSubtotal(Row As Long)[= {True | False}]

Remarks
This property allows you to determine whether a given row is a regular row or a subtotal row, or to create subtotal
rows manually (as opposed to using the Subtotal method).

There are two differences between subtotal rows and regular rows:

1) Subtotal rows may be added and removed automatically with the Subtotal method.
2) When using the control as an outliner, subtotal rows behave as outline nodes, while regular rows behave as
branches.

You may use this property to build custom outlines. This requires three steps:

1) Set the IsSubtotal property to True for all outline nodes.
2) Set the RowOutlineLevel property for each outline node.
3) Set the OutlineBar and OutlineCol properties if you want to display an outline tree which the user can use to
collapse and expand the outline.

For more details, see the Outline Demo.

Data Type
Boolean

KeyDownEdit Event
See Also          Examples          Applies to

Fired when the user presses a key in cell-editing mode.

Syntax
Private Sub vsFlexGrid_KeyDownEdit(ByVal Row As Long,    ByVal Col As Long, KeyCode As Integer,    ByVal
Shift As Integer)

Remarks
This event is similar to the standard KeyDown event, except it is fired while the grid is in edit mode.

The editor has three modes: text, drop-down combo, or drop-down list. The mode used is determined by the
ComboList and ColComboList properties.

While editing with the text editor or with a drop-down combo, you may set or retrieve the contents of the editor
using the EditText property. You may manipulate the contents of the editor using the EditSelStart,
EditSelLength, and EditSelText properties.

While editing with drop-down lists or drop-down combos, you may set or retrieve the contents of the editor using
the ComboItem, ComboIndex, ComboCount, and ComboData properties.

KeyPressEdit Event
See Also          Examples          Applies to

Fired when the user presses a key in cell-editing mode.

Syntax
Private Sub vsFlexGrid_KeyPressEdit(ByVal Row As Long,    ByVal Col As Long, KeyAscii As Integer)

Remarks
This event is similar to the standard KeyPress event, except it is fired while the grid is in edit mode.

The editor has three modes: text, drop-down combo, or drop-down list. The mode used is determined by the
ComboList and ColComboList properties.

While editing with the text editor or with a drop-down combo, you may set or retrieve the contents of the editor
using the EditText property. You may manipulate the contents of the editor using the EditSelStart,
EditSelLength, and EditSelText properties.

While editing with drop-down lists or drop-down combos, you may set or retrieve the contents of the editor using
the ComboItem, ComboIndex, ComboCount, and ComboData properties.

The main use for this event is to filter keys as they are typed while the control is in cell-editing mode. For
example, the code below shows how you can convert input to upper-case or restrict data entry to numeric values
only.

 Sub VSFlexGrid_KeyPressEdit(Row As Long, Col As Long, KeyAscii As Integer)
 Select Case Col

 ' column 1 entries are upper case
 ' so use VB's UCase function to convert the character
 Case 1
 KeyAscii = Asc(UCase$(Chr$(KeyAscii)))

 ' column 2 entries are numeric
 ' so set KeyAscii to 0 if it is not a digit
 Case 2
 If KeyAscii < vb Key 0 Or KeyAscii > vb Key 9 Then KeyAscii = 0
 End Select
 End Sub

Note that you could also restrict the input of non-digits using the EditMask or ColEditMask properties.

KeyUpEdit Event
See Also          Examples          Applies to

Fired when the user presses a key in cell-editing mode.

Syntax
Private Sub vsFlexGrid_KeyUpEdit(ByVal Row As Long,    ByVal Col As Long, KeyCode As Integer,    ByVal Shift
As Integer)

Remarks
This event is similar to the standard KeyUp event, except it is fired while the grid is in edit mode.

The editor has three modes: text, drop-down combo, or drop-down list. The mode used is determined by the
ComboList and ColComboList properties.

While editing with the text editor or with a drop-down combo, you may set or retrieve the contents of the editor
using the EditText property. You may manipulate the contents of the editor using the EditSelStart,
EditSelLength, and EditSelText properties.

While editing with drop-down lists or drop-down combos, you may set or retrieve the contents of the editor using
the ComboItem, ComboIndex, ComboCount, and ComboData properties.

LeaveCell Event
See Also          Examples          Applies to

Fired before the current cell changes to a different cell.

Syntax
Private Sub vsFlexGrid_LeaveCell()

Remarks
This event is fired before the cursor leaves the current cell, either as a result of mouse/keyboard action, or when
the current selection is modified programatically.

LeftCol Property
See Also          Examples          Applies to

Returns or sets the zero-based index of the leftmost non-fixed column displayed in the control.

Syntax
[form!]vsFlexGrid.LeftCol[= value As Long]

Remarks
Setting the LeftCol property causes the control to scroll through its contents horizontally so that the given column
becomes the leftmost visible column. This is often useful when you want to synchronize two or more controls so
that when one of them scrolls, the other scrolls as well.

To scroll vertically, use the TopRow property.

When setting this property, the largest possible column number is the total number of columns minus the number
of columns that will fit the display. Attempting to set LeftCol to a greater value will cause the control to set it to the
largest possible value (no error will occur).

If you need to ensure that a certain cell is visible, do not use this property. Simply make the cell current by setting
the Row property and Col property, then bring it into view by reading the CellTop property. (You may restore the
original selection later, if you wish.)

Data Type
Long

LoadGrid Method
See Also          Examples          Applies to

Loads grid contents and format from a file.

Syntax
[form!]vsFlexGrid.LoadGrid FileName As String, LoadWhat As SaveLoadSettings, [FixedCells As Variant]

Remarks
This method loads grid from a file previously saved with the SaveGrid method, comma-delimited text file (CSV
format) such as an Excel text file, or a tab-delimited text file.

The parameters for the LoadGrid method are described below:

FileName As String
This parameter contains the name of the file, including the path.

LoadWhat As SaveLoadSettings
This parameter specifies what should be loaded. Valid options are:

Value Description
flexFileAll Load all formatting and data available in the file
flexFileData Load only the data
flexFileFormat Load only the formatting
flexFileCommaText Load from comma-delimited text file
flexFileTabText Load from tab-delimited text file

FixedCells As Variant (optional)
If this parameter is set to False (the default), then values read from a text file are not stored in the fixed cells --
only the scrollable part of the grid is used. If this parameter is set to True, then fixed rows and columns are also
used to hold the data.

When loading text files, rows and columns are added to the grid if needed to accommodate the file contents.

MergeCells Property
See Also          Examples          Applies to

Returns or sets whether cells with the same contents will be merged into a single cell.

Syntax
[form!]vsFlexGrid.MergeCells[= MergeSettings]

Remarks
The MergeCells property is used in conjunction with the MergeRow, MergeCol, and MergeCompare properties
to control whether and how cells are merged for display.

Merging cells allows you to display data in a clear, appealing way because it highlights groups of identical
information. It also gives you flexibility to build tables similar to the ones you can create in HTML or using
Microsoft Word, both of which support merged cells.

To create tables with merged cells, you must set the MergeCells property to a value other than flexMergeNever,
and then set the MergeRow and MergeCol properties to True for the rows and columns you wish to merge (this
last step is not necessary when using the    flexMergeSpill mode).

After these properties are set, the control will automatically merge neighboring cells that have the same contents.
Whenever the cell contents change, the control updates the merging state.

Valid settings for the MergeCells property are:

Value Constant
0 flexMergeNever
1 flexMergeFree
2 flexMergeRestrictRows
3 flexMergeRestrictColumns
4 flexMergeRestrictAll
5 flexMergeFixedOnly
6 flexMergeSpill

The flexMergeSpill setting is a little different from the others. It is the only setting that does not require you to set
the MergeCol and MergeRow properties, and that does not merge cells with identical settings. Instead, it allows
cells with long entries to spill onto adjacent cells as long as they are empty. This is often useful when creating
outlines. You may use a narrow column to hold group titles, which can then spill onto the cells to the right.

The picture below shows an example using the flexMergeSpill setting. Notice how some cells with long entries
spill onto adjacent empty cells or get truncated if the adjacent cell is not empty:

The difference between the Free and Restricted settings is whether cells with the same contents should always

be merged (Free settings) or only when adjacent cells to the left or to the top are also merged.

The flexMergeFixedOnly setting is useful if you want to create tables with merged headings, but you don't want
the data to be merged.

The examples below illustrate the difference.

 ' regular spreadsheet view
 With fa
 .MergeCells = flexMergeNever
 .MergeCol(0) = True: .MergeCol(1) = True: .MergeCol(2) = True
 .MergeCol(3) = False
 End With

 ' free merging: notice how the first region cell (East) merges
 ' across employees (Donna and John) to its left.
 With fa
 .MergeCells = flexMergeFree
 .MergeCol(0) = True: .MergeCol(1) = True: .MergeCol(2) = True
 .MergeCol(3) = False
 End With

 ' restricted merging: notice how the first region cell (East)
 ' no longer merges across employees to its left.
 With fa
 .MergeCells = flexMergeRestrictAll
 .MergeCol(0) = True: .MergeCol(1) = True: .MergeCol(2) = True
 .MergeCol(3) = False
 End With

Data Type
MergeSettings (Enumeration)

Default Value
flexMergeNever (0)

MergeCol Property
See Also          Examples          Applies to

Returns or sets whether a column will have its cells merged (see also the MergeCells property).

Syntax
[form!]vsFlexGrid.MergeCol(Col As Long)[= {True | False}]

Remarks
The MergeCol property is used in conjunction with the MergeCells, MergeRow, and MergeCompare properties
to control whether and how cells are merged for display.

The MergeCells property is used to enable cell merging for the entire control. After setting it to an appropriate
value, the MergeRow and MergeCol properties are used to determine which rows and columns should have their
cells merged.

By default, MergeRow and MergeCol are set to False, so no merging takes place. If you set them to True for a
specific row or column, then adjacent cells in that row or column will be merged if their contents are equal. The
rule used to compare cell contents is controlled by the MergeCompare property.

For more details and examples, see the MergeCells property.

Data Type
Boolean

MergeCompare Property
See Also          Examples          Applies to

Returns or sets the type of comparison used when merging cells.

Syntax
[form!]vsFlexGrid.MergeCompare[= MergeCompareSettings]

Remarks
The MergeCompare property is used in conjunction with the MergeCells, MergeRow, and MergeCol properties
to control whether and how cells are merged for display.

Valid setting for the MergeCompare property are:

Constant Description
flexMCExact Exact match required to merge cells
flexMCNoCase Case-insensitive matching
flexMCTrimNoCase Case-insensitive matching, leading and trailing blanks ignored

For more details, see the MergeCells property.

Data Type
MergeCompareSettings (Enumeration)

Default Value
flexMCExact

MergeRow Property
See Also          Examples          Applies to

Returns or sets whether a row will have its cells merged (see also the MergeCells property).

Syntax
[form!]vsFlexGrid.MergeRow(Row As Long)[= {True | False}]

Remarks
The MergeRow property is used in conjunction with the MergeCells, MergeCol, and MergeCompare properties
to control whether and how cells are merged for display.

The MergeCells property is used to enable cell merging for the entire control. After setting it to an appropriate
value, the MergeRow and MergeCol properties are used to determine which rows and columns should have their
cells merged.

By default, MergeRow and MergeCol are set to False, so no merging takes place. If you set them to True for a
specific row or column, then adjacent cells in that row or column will be merged if their contents are equal. The
rule used to compare cell contents is controlled by the MergeCompare property.

For more details and examples, see the MergeCells property.

Data Type
Boolean

MouseCol Property
See Also          Examples          Applies to

Returns the zero-based index of the column under the mouse pointer.

Syntax
val& = [form!]vsFlexGrid.MouseCol

Remarks
The MouseRow and MouseCol properties return the mouse pointer coordinates referenced by rows and
columns.

These properties are often useful when handling the BeforeMouseDown event, because it is fired before the
selection is updated. They are also useful when handling other mouse events that do not change the selection,
such as mouse moves or right-button clicks. Finally, they are also good for detecting clicks on the fixed areas of
the grid.

Typical uses for these properties include displaying help information or tooltips when the user moves the mouse
over a selection, and the implementation of manual drag-and-drop manipulation of OLE objects.

Data Type
Long

MouseRow Property
See Also          Examples          Applies to

Returns the zero-based index of the row under the mouse pointer.

Syntax
val& = [form!]vsFlexGrid.MouseRow

Remarks
The MouseRow and MouseCol properties return the mouse pointer coordinates in terms of rows and columns.

These properties are often useful when handling the BeforeMouseDown event, because it is fired before the
selection is updated. They are also useful when handling other mouse events that do not change the selection,
such as mouse moves or right-button clicks. Finally, they are also good for detecting clicks on the fixed areas of
the grid.

Typical uses for these properties include displaying help information or tooltips when the user moves the mouse
over a selection, and the implementation of manual drag-and-drop manipulation of OLE objects.

Data Type
Long

MultiTotals Property
See Also          Examples          Applies to

Returns or sets whether subtotals will be displayed in a single row when possible.

Syntax
[form!]vsFlexGrid.MultiTotals[= {True | False}]

Remarks
If you set the MultiTotals property    to True, then subtotal rows created by the Subtotal method may contain
aggregate values for multiple columns. Otherwise, new subtotal rows are created for each aggreagate value.

The examples below show the difference:

 With fa
 .MultiTotals = True
 .Subtotal flexSTClear
 .Subtotal flexSTSum, 1, 2, , vbRed, vbWhite, True
 .Subtotal flexSTSum, 1, 3, , vbRed, vbWhite, True
 End With

 With fa
 .MultiTotals = False
 .Subtotal flexSTClear
 .Subtotal flexSTSum, 1, 2, , vbRed, vbWhite, True
 .Subtotal flexSTSum, 1, 3, , vbRed, vbWhite, True
 End With

Data Type
Boolean

Default Value
True

OLECompleteDrag Event
See Also          Examples          Applies to

Fired after a drop to inform the source component that a drag action was either performed or canceled.

Syntax
Private Sub vsFlexGrid_OLECompleteDrag(Effect As Long)

Remarks
The OLECompleteDrag event is the final event to be called in an OLE drag/drop operation. This event informs
the source component of the action that was performed when the object was dropped onto the target component.
The target sets this value through the effect parameter of the OLEDragDrop event. Based on this information, the
source can then determine the appropriate action it needs to take. For example, if the object was moved into the
target (vbDropEffectMove), the source should delete the object from itself after the move.

The parameter for the OLECompleteDrag is a long integer set by the source object identifying the action that has
been performed, thus allowing the source to take appropriate action if the component was moved (such as the
source deleting data if it is moved from one component to another). The possible values are the following:

Constant Description
vbDropEffectNone Drop operation was cancelled.
vbDropEffectCopy Drop results in a copy from the source to the target. The original data remains.
vbDropEffectMove Drop moves the data from the source to the target. The original data should be

deleted.

OLEDrag Method
See Also          Examples          Applies to

Initiates an OLE drag operation.

Syntax
[form!]vsFlexGrid.OLEDrag

Remarks
When the OLEDrag method is called, the control's OLEStartDrag event event occurs, allowing it to supply data
to a target component.

OLEDragDrop Event
See Also          Examples          Applies to

Fired when a source component is dropped onto a target component.

Syntax
Private Sub vsFlexGrid_OLEDragDrop(Data As vsDataObject, Effect As Long,    ByVal Button As Integer,    ByVal
Shift As Integer,    ByVal X As Single,    ByVal Y As Single)

Remarks
The parameters for the OLEDragDrop event are described below:

Data As vsDataObject
An object containing formats that the source will provide and (possibly) the data for those formats. If no data is
contained in the object, it is provided when the control calls the GetData method. The SetData and Clear
methods cannot be used here.

Effect As Long
A long integer set by the target component identifying the action that has been performed (if any), thus allowing
the source to take appropriate action if the component was moved (such as the source deleting the data). The
possible values are:

Constant Description
vbDropEffectNone Drop operation was cancelled.
vbDropEffectCopy Drop results in a copy from the source to the target. The original data remains.
vbDropEffectMove Drop moves the data from the source to the target. The original data should be

deleted.

Button As Integer
An integer which acts as a bit field corresponding to the state of a mouse button when it is depressed. The left
button is bit 0 (vbLeftButton), the right button is bit 1 (vbRightButton), and the middle button is bit 2
(vbMiddleButton). These bits correspond to the values 1, 2, and 4, respectively. It indicates the state of the
mouse buttons; some, all, or none of these three bits can be set, indicating that some, all, or none of the buttons
are depressed.

Shift As Integer
An integer which acts as a bit field corresponding to the state of the SHIFT, CTRL, and ALT keys when they are
depressed. The SHIFT key is bit 0, the CTRL key is bit 1, and the ALT key is bit 2. These bits correspond to the
values 1 (vbShiftMask), 2 (vbCtrlMask), and 4 (vbAltMask), respectively. The shift parameter indicates the state
of these keys; some, all, or none of the bits can be set, indicating that some, all, or none of the keys are
depressed. For example, if both the CTRL and ALT keys were depressed, the value of shift would be 6.

X, Y As Single
These parameters specify the current location of the mouse pointer, in twips.

OLEDragMode Property
See Also          Examples          Applies to

Returns or sets whether the control can act as an OLE drag source, either automatically or under program control.

Syntax
[form!]vsFlexGrid.OLEDragMode[= OLEDragModeSettings]

Remarks
Valid settings for the OleDragMode property are:

flexOleDragManual
When OLEDragMode is set to flexOleDragManual, you must call the OleDrag method to start dragging, which
then triggers the OLEStartDrag event.

flexOleDragAutomatic
When OLEDragMode is set to flexOleDragAutomatic, the control fills a DataObject object with the data it
contains and sets the effects parameter before initiating the OLEStartDrag event when the user attempts to drag
out of the control. This gives you control over the drag/drop operation and allows you to intercede by adding or
modifying the data that is being dragged.

Note
If the DragMode property is set to Automatic, the setting of OLEDragMode is ignored, because regular Visual
Basic drag-and-drop events take precedence.

Data Type
OleDragModeSettings (Enumeration)

Default Value
flexOleDragManual (0)

OLEDragOver Event
See Also          Examples          Applies to

Fired when a component is dragged over another.

Syntax
Private Sub vsFlexGrid_OLEDragOver(Data As vsDataObject, Effect As Long,    ByVal Button As Integer,    ByVal
Shift As Integer,    ByVal X As Single,    ByVal Y As Single, State As Integer)

Remarks
The parameters for the OLEDragOver event are described below:

Data As vsDataObject
An object containing formats that the source will provide and (possibly) the data for those formats. If no data is
contained in the object, it is provided when the control calls the GetData method. The SetData and Clear
methods cannot be used here.

Effect As Long
A long integer initially set by the source object identifying all effects it supports. This parameter must be correctly
set by the target component during this event. The value of effect is determined by logically Ording together all
active effects. The target component should check these effects and other parameters to determine which actions
are appropriate for it, and then set this parameter to one of the allowable effects (as specified by the source) to
specify which actions will be performed if the user drops the selection on the component. The possible values are:

Constant Description
vbDropEffectNone Drop operation was cancelled.
vbDropEffectCopy Drop results in a copy from the source to the target. The original data remains.
vbDropEffectMove Drop moves the data from the source to the target. The original data should be

deleted.

Button As Integer
An integer which acts as a bit field corresponding to the state of a mouse button when it is depressed. The left
button is bit 0, the right button is bit 1, and the middle button is bit 2. These bits correspond to the values 1, 2, and
4, respectively. It indicates the state of the mouse buttons; some, all, or none of these three bits can be set,
indicating that some, all, or none of the buttons are depressed.

Shift As Integer
An integer which acts as a bit field corresponding to the state of the SHIFT, CTRL, and ALT keys when they are
depressed. The SHIFT key is bit 0, the CTRL key is bit 1, and the ALT key is bit 2. These bits correspond to the
values 1, 2, and 4, respectively. The shift parameter indicates the state of these keys; some, all, or none of the
bits can be set, indicating that some, all, or none of the keys are depressed. For example, if both the CTRL and
ALT keys are depressed, the value of shift would be 6.

X, Y As Single
These parameters specify the current location of the mouse pointer, in twips.

State As Integer
An integer that corresponds to the transition state of the control being dragged in relation to a target form or
control. The possible values are:

Constant Description
vbEnter Source component is being dragged within the range of a target.
vbLeave Source component is being dragged out of the range of a target.
vbOver Source component has moved from one position in the target to another.

OLEDropMode Property
See Also          Examples          Applies to

Returns or sets whether the control can act as an OLE drop target, either automatically or under program control.

Syntax
[form!]vsFlexGrid.OLEDropMode[= OLEDropModeSettings]

Remarks
The effect of the settings for the OleDropMode property are described below:

flexOleDropNone
The control does not accept OLE drops and displays the No Drop cursor.

flexOleDropManual
The target component triggers the OLE drop events, allowing the programmer to handle the OLE drop operation
in code.

flexOleDropAutomatic
The control automatically accepts OLE drops if the DataObject object contains data in string or file formats.

Data Type
OleDropModeSettings (Enumeration)

Default Value
flexOleDropNone (0)

OLEGiveFeedback Event
See Also          Examples          Applies to

Fired after every OLEDragOver event to allow the source component to provide visual feedback to the user.

Syntax
Private Sub vsFlexGrid_OLEGiveFeedback(Effect As Long, DefaultCursors As Boolean)

Remarks
The parameters for the OLEGiveFeedback event are described below:

Effect As Long
A long integer set by the target component in the OLEDragOver event specifying the action to be performed if the
user drops the selection on it. This allows the source to take the appropriate action (such as giving visual
feedback). The possible values are:

Constant Description
vbDropEffectNone Drop operation was canceled.
vbDropEffectCopy Drop results in a copy from the source to the target. The original data remains.
vbDropEffectMove Drop moves the data from the source to the target. The original data should be

deleted.

DefaultCursors As Boolean
A boolean value which determines whether Visual Basic uses the default or a user-defined mouse cursor. If you
set this parameter to False, the mouse cursor must be set with the MousePointer property of the Screen object.

OLESetData Event
See Also          Examples          Applies to

Fired on the source component when a target component performs the GetData method on the source’s
DataObject object.

Syntax
Private Sub vsFlexGrid_OLESetData(Data As vsDataObject, DataFormat As Integer)

Remarks
In certain cases, you may wish to defer loading data into the DataObject object of a source component to save
time, especially if the source component supports many formats. This event allows the source to respond to only
one request for a given format of data. When this event is called, the source should check the format parameter to
determine what needs to be loaded and then perform the SetData method on the DataObject object to load the
data which is then passed back to the target component.

The parameters for the OLESetData event are described below:

Data As vsDataObject
An object in which to place the requested data. The component calls the SetData method to load the requested
format.

DataFormat As Integer
An integer specifying the format of the data that the target component is requesting. The source component uses
this value to determine what to load into the DataObject object.

OLEStartDrag Event
See Also          Examples          Applies to

Fired after an OLE drag operation is started (manually or automatically).

Syntax
Private Sub vsFlexGrid_OLEStartDrag(Data As vsDataObject, AllowedEffects As Long)

Remarks
This event is fired when the OleDrag method is invoked, or when the OleDragMode property is set to
flexOleDragAutomatic and the user initiates an OLE drag/drop operation with the mouse.

This event specifies the data formats and drop effects that the control supports (by default, a string containing the
current selection). It can also be used to insert data into the vsDataObject object.

The parameters for the OLEStartDrag event are described below:

Data As vsDataObject
An object containing formats that the source will provide. You may provide the values for this parameter in this
event.

AllowedEffects As Long
A long integer containing the effects that the source component supports. The possible values are:

Constant Description
vbDropEffectNone Drop operation was canceled.
vbDropEffectCopy Drop results in a copy from the source to the target. The original data remains.
vbDropEffectMove Drop moves the data from the source to the target. The original data should be

deleted.

Outline Method
See Also          Examples          Applies to

Sets an outline level for displaying subtotals.

Syntax
[form!]vsFlexGrid.Outline Level As Integer

Remarks
This method collapses or expands an outline to the level specified. If the Level parameter is negative, then the
outline is totally expanded.

To set up an outline structure using automatic subtotals, see the Subtotal method. To set up a custom outline
structure, see the IsSubtotal property.

OutlineBar Property
See Also          Examples          Applies to

Returns or sets the type of outline bar that should be displayed.

Syntax
[form!]vsFlexGrid.OutlineBar[= OutlineBarSettings]

Remarks
This property determines whether the control should display an outline bar when it is used as an outliner. The
outline bar contains a tree similar to the one in Windows Explorer. It shows the outline's structure and has buttons
that can be used to collapse and expand parts of the outline.

Clicking on a collapsed branch (with a plus sign) expands it. Clicking on an expanded branch (with a minus sign)
collapses it. Shift and shift-control clicking on a branch expands or collapses the entire outline to the level of the
branch that was clicked.

After the user expands or collapses the outline using the outline bar, the controls fires the Collapsed event.

By default, the outline bar is drawn on the first column of the control. You may choose to display it in a different
column by setting the OutlineCol property. The color used to draw the outline tree is specified by the TreeColor
property.

Valid settings for this property are:

Constant Description
flexOutlineBarNone No outline bar
flexOutlineBarComplete Complete outline tree plus button row on top
flexOutlineBarSimple Complete outline tree
flexOutlineBarSymbols Outline symbols (no lines connecting + and - signs)

The flexOutlineBarComplete only displays the button row if the outline bar is displayed in a fixed column (i.e.
OutlineCol < FixedCols).

Data Type
OutlineBarSettings (Enumeration)

Default Value
flexOutlineBarNone (0)

OutlineCol Property
See Also          Examples          Applies to

Returns or sets the column used to display the outline tree.

Syntax
[form!]vsFlexGrid.OutlineCol[= value As Long]

Remarks
The OutlineCol property works in conjunction with the OutlineBar property to control the appearance and
behavior of the outline tree.

By default, the OutlineCol property is set to zero, so the outline bar (if present) is displayed on the first column of
the control. You may use OutlineCol to place the outline tree in a different column. If you place the outline tree in
a column that contains data, the entries will be indented to accommodate the tree.

Typically, you should use the AutoSize method after setting this property, to ensure that the tree and data on that
column will be fully visible.

Data Type
Long

Default Value
0

OwnerDraw Property
See Also          Examples          Applies to

Returns or sets whether and when the control will fire the DrawCell event.

Syntax
[form!]vsFlexGrid.OwnerDraw[= OwnerDrawSettings]

Remarks
The OwnerDraw property allows the application to add custom graphics or text to cells. It determines whether the
control should fire the DrawCell event to allow the application to perform custom drawing.

The effect of the settings for the OwnerDraw property are described below:

flexODNone
This setting indicates that the control should perform all drawing itself. The DrawCell event does not get fired at
all. This is the default setting.

flexODOver
This setting indicates that the control should draw the cell as normal, then fire the DrawCell event so the
application can add text or graphics to the default cell contents.

flexODContent
This setting indicates that the control should draw the cell background, including any pictures, but no text. The
control will fire the DrawCell event so the application can draw the text itself.

flexODComplete
This setting indicates that the control should draw nothing at all in the cell. The control will fire the DrawCell event
and the application becomes responsible for drawing the entire cell.

flexODOverFixed, flexODContentFixed, flexODCompleteFixed
These settings are similar to the ones described above, but they indicate the application will only perform custom
drawing on fixed cells. This allows some optimization, because the DrawCell event    is fired only for the fixed
cells.

For more details, see the DrawCell event.

Data Type
OwnerDrawSettings (Enumeration)

Default Value
flexODNone (0)

Picture* Property
See Also          Examples          Applies to

Returns a picture of the entire control.

Syntax
val% = [form!]vsFlexGrid.Picture

Remarks
This property returns a picture (bitmap) representation of the entire control, including rows and columns that are
not visible on the screen.    If you have a control with 1000 rows, for example, the bitmap will include all of them,
and the picture will be huge.

To create a picture of a part of the control, write a routine to hide all the elements you don't want to show, get the
picture, and then restore the control.

To reduce memory requirements for the bitmap and increase speed, you may consider setting the PictureType
property to flexPictureMonochrome. The picture will not look as nice, but it will require less memory.

The example below shows a routine that creates a picture of the the current selection.    It traps out-of-memory
errors and automatically switches to monochrome mode if required.

 Sub CopySelectionAsBitmap(fa As Control)
 Dim i&, tr&, lc&, hl%

 ' save current settings
 With fa
 hl = .HighLight
 tr = fa.TopRow
 lc = fa.LeftCol

 ' hide non-selected rows and columns
 .HighLight = 0
 For i = .FixedRows To .Rows - 1
 If i < .Row Or i > .RowSel Then .RowHidden(i) = True
 Next
 For i = .FixedCols To .Cols - 1
 If i < .Col Or i > .ColSel Then .ColHidden(i) = True
 Next

 ' scroll to top left corner
 .TopRow = .FixedRows
 .LeftCol = .FixedCols

 ' copy picture (with error-trapping)
 Clipboard.Clear
 On Error Resume Next
 .PictureType = flexPictureColor
 Clipboard.SetData .Picture
 If Error <> 0 Then
 fa.PictureType = flexPictureMonochrome
 Clipboard.SetData fa.Picture
 Endif

 ' restore control
 For i = .FixedRows To .Rows - 1
 If i < .Row Or i > .RowSel Then .RowHidden(i) = False
 Next
 For i = .FixedCols To .Cols - 1
 If i < .Col Or i > .ColSel Then .ColHidden(i) = False
 Next
 .TopRow = tr
 .LeftCol = lc
 .Highlight = hl
 End With
 End Sub

Data Type
Picture

PicturesOver Property
See Also          Examples          Applies to

Returns or sets whether text and pictures should be overlaid in cells.

Syntax
[form!]vsFlexGrid.PicturesOver[= {True | False}]

Remarks
If the PicturesOver property is set to True, pictures and text overlap within cells. This setting is useful for
displaying pictures that look like button frames or other elements on which text should be overlaid.

If the PicturesOver property is set to False, pictures are drawn next to the text. This setting is useful for
displaying icons next to text.

Data Type
Boolean

Default Value
False

PictureType Property
See Also          Examples          Applies to

Returns or sets the type of picture returned by the Picture property.

Syntax
[form!]vsFlexGrid.PictureType[= PictureTypeSettings]

Remarks
The effect of the settings for the PictureType property are described below:

flexPictureColor
This setting causes the Picture property to generate a color bitmap of the control. This mode creates high quality
pictures, but they may be quite large and slow to manipulate. Use this setting if the control has only a few rows, or
if it contains pictures that should be rendered faithfully.

flexPictureMonochrome
This setting causes the Picture property to generate a monochrome bitmap of the control. This mode creates
lower quality pictures which consume less memory and are faster to manipulate. Use this mode if the control is
large or if a lower quality picture is acceptable.

For more details and sample code, see the Picture property.

Data Type
PictureTypeSettings (Enumeration)

Default Value
flexPictureColor (0)

Redraw Property
See Also          Examples          Applies to

Enables or disables redrawing of the VSFlexGrid control.

Syntax
[form!]vsFlexGrid.Redraw[= {True | False}]

Remarks
Use Redraw property to reduce flicker and increase speed while making extensive updates to the contents of the
control. Set Redraw to False before making the changes, make the changes, then set Redraw property back to
True.

For example, the code below turns repainting off, changes to the contents of the control, and then turns repainting
back on to show the results.

 Sub UpdateGrid()
 Dim i As Long

 ' avoid flicker
 fa.Redraw = False

 ' update control contents
 fa.Rows = fa.FixedRows
 For i = 0 To NRECORDS - 1
 fa.AddItem RECORD(i)
 Next

 ' show results
 fa.Redraw = True
 End Sub

Note
Using the Redraw property is especially important when adding large numbers of rows to the grid, because each
time a row is added, the control needs to recalculate the scroll ranges even if the new row is not visible. By using
the Redraw property, you may increase speed by an order of magnitude when populating a grid.

Data Type
Boolean

Default Value
True

RemoveItem Method
See Also          Examples          Applies to

Removes a row from the control.

Syntax
[form!]vsFlexGrid.RemoveItem [Row As Variant]

Remarks
The Row parameter determines which row should be removed from the control. The parameter is zero-based -- it
must be in the range between 0 and Rows-1, or an Invalid Index error will be triggered.

RightCol Property
See Also          Examples          Applies to

Returns the zero-based index of the last column displayed in the control

Syntax
val& = [form!]vsFlexGrid.RightCol

Remarks
The right column returned may be only partially visible.

You cannot set this property. To scroll throguh the contents of the control through code, set the TopRow and
LeftCol properties instead. Or you may bring a cell into view by reading the CellTop property.

Data Type
Long

Row Property
See Also          Examples          Applies to

Returns or sets the zero-based index of the current row.

Syntax
[form!]vsFlexGrid.Row[= value As Long]

Remarks
Use the Row and Col    properties to make a cell current or to find out which row or column contains the current
cell.

Columns and rows are numbered from zero, beginning at the top for rows and at the left for columns.

Setting the Row and Col properties automatically resets RowSel    and ColSel    properties, so the selection
becomes the current cell. Therefore, to specify a block selection, you must set Row and Col first, then set
RowSel and ColSel. Alternatively, you may use the Select method to do it all with a single statement.

Data Type
Long

RowColChange Event
See Also          Examples          Applies to

Fired when the current cell changes to a different cell.

Syntax
Private Sub vsFlexGrid_RowColChange()

Remarks
This event is fired when the Row or Col properties change, either as a result of user actions (mouse or keyboard)
or through code.

This event is not fired when the selection changes (RowSel or ColSel properties) but the active cell (Row, Col)
remains the same. In this case, the SelChange event is fired instead.

RowData Property
See Also          Examples          Applies to

Returns or sets a user-defined variant associated with the given row.

Syntax
[form!]vsFlexGrid.RowData(Row As Long)[= value As Variant]

Remarks
The RowData and ColData properties allow you to associate values with each row or column on the control.

A typical use for these properties is to keep indices into an array of data structures associated with each row, or
pointers to objects represented by the data in the row or column. The values assigned will remain current even if
you sort the control or move its columns.

You may also associate values to individual cells using the Cell property.

Because these properties hold Variants, you have extreme flexibility in the types of information you may associate
with each row, column, or cell. The examples below shows some valid uses for these properties.

Store a long that represents a unique ID:

 fa.RowData(i) = 212

Store a string that holds non-numeric information:

 fa.RowData(i) = "Hello"

Store a pointer to another control:

 fa.RowData(i) = ListBox1
 Debug.Print fa.RowData(i).List(0), fa.RowData(i).List(1)
 First Item Second Item

Store a pointer to an object:

 Dim x As Collection
 Set x = New Collection
 x.Add "Arnold"
 x.Add "Billy"
 x.Add "Cedric"
 fa.RowData(i) = x
 Debug.Print fa.RowData(i).Item(2)
 Billy

Data Type
Variant

RowHeight Property
See Also          Examples          Applies to

Returns or sets the height of the specified row in twips.

Syntax
[form!]vsFlexGrid.RowHeight(Row As Long)[= value As Long]

Remarks
Use this property to set the height of a row at runtime. To set height limits for all rows, use the RowHeightMin
and RowHeightMax properties.

If Row is -1, then the specified height is applied to all rows.

If you specify a height of -1, the row height is reset to its default value, which depends on size and type of the
control's current font.

To set row heights automatically, based on the contents of the control, use the AutoSizeMode property and the
AutoSize method.

If you specify a height of 0, the column becomes invisible. If you want to hide a row, however, consider using the
RowHidden property instead. This allows you to make the row visible again with the same height it had before it
was hidden. Also, hidden rows are ignored by the AutoSize method.

Data Type
Long

RowHeightMax Property
See Also          Examples          Applies to

Returns or sets the maximum row height, in twips.

Syntax
[form!]vsFlexGrid.RowHeightMax[= value As Long]

Remarks
Set this property to a non-zero value to set a maximum limit to row heights. This is often useful when you use the
AutoSize method to automatically set row heights, to prevent some rows from becoming too large.

See also the ColWidthMin, ColWidthMax, and RowHeightMin properties.

Data Type
Long

Default Value
0

RowHeightMin Property
See Also          Examples          Applies to

Returns or sets the minimum row height, in twips.

Syntax
[form!]vsFlexGrid.RowHeightMin[= value As Long]

Remarks
Set this property to a non-zero value to set a minimum limit to row heights. This is often useful when you use the
AutoSize method to automatically set row heights, to prevent some rows from becoming too short. This may also
be useful when you want to use small fonts, but don't want the rows to become short.

See also the ColWidthMin, ColWidthMax, and RowHeightMax properties.

Data Type
Long

Default Value
0

RowHidden Property
See Also          Examples          Applies to

Returns or sets whether a row is hidden.

Syntax
[form!]vsFlexGrid.RowHidden(Row As Long)[= {True | False}]

Remarks
Use the RowHidden property to hide and display rows. This is a better approach than setting the row's
RowHeight property to zero, because you may later show the row without restoring its original height.

When the control collapses or expands an outline branch, either as a result of user mouse action or
programmatically (see the Subtotal method and IsCollapsed property), it sets the RowHidden property
accordingly.

Hidden rows are ignored by the AutoSize method.

Data Type
Boolean

RowIsVisible Property
See Also          Examples          Applies to

Returns whether a given row is currently within view.

Syntax
val% = [form!]vsFlexGrid.RowIsVisible(Row As Long)

Remarks
The ColIsVisible and RowIsVisible properties are used to determine whether the specified column or row is
within the visible area of the control or whether it has been scrolled off the visible part of the control.

If a row has zero height or is hidden but is within the scrollable area, RowIsVisible will return True.

Data Type
Boolean

RowOutlineLevel Property
See Also          Examples          Applies to

Returns or sets the outline level for a subtotal row.

Syntax
[form!]vsFlexGrid.RowOutlineLevel(Row As Long)[= value As Integer]

Remarks
Each subtotal row has a level that is used to indicate which column is being grouped. The subtotal level is also
used for outlining. When you create subtotals using the Subtotal method, the level is set automatically based on
the GroupOn parameter. When you create an outline manually, use the RowOutlineLevel property to set the
outline level for each subtotal row.

For more details and an example, see the Subtotal method.

Data Type
Integer

RowPos Property
See Also          Examples          Applies to

Returns the top (y) coordinate of a row relative to the edge of the control, in twips.

Syntax
val& = [form!]vsFlexGrid.RowPos(Row As Long)

Remarks
This property is similar to the CellTop property, except RowPos applies to an arbitrary row and will not cause the
control to scroll. The CellTop property applies to the current selection and reading it will make the current cell
visible, scrolling the contents of the control if necessary.

Data Type
Long

RowPosition Property
See Also          Examples          Applies to

Moves a given row into a new position.

Syntax
[form!]vsFlexGrid.RowPosition(Row As Long)[= NewPosition As Long]

Remarks
The Row and NewPosition must be valid row numbers (in the range 0 to Rows - 1), or an error will be generated.

When a column or row is moved with ColPosition or RowPosition, all formatting information moves with it,
including width, height, alignment, colors, fonts, etc. To move text only, use the Clip property instead.

See the ColPosition property for an example.

Data Type
Long

Rows Property
See Also          Examples          Applies to

Returns or sets the total number of rows in the control.

Syntax
[form!]vsFlexGrid.Rows[= value As Long]

Remarks
Use the Rows and Cols properties to get the dimensions of the control or to resize the control dynamically at
runtime.

The minimum number of rows and columns is 0. The maximum number is limited by the memory available on
your computer.

If the control runs out of memory while trying to add rows, columns, or cell contents, it will trigger a Visual Basic
error. To make sure your code works properly when dealing with large controls, you should add error-handling
code to your programs.

Data Type
Long

RowSel Property
See Also          Examples          Applies to

Returns or sets the extent of a range of rows.

Syntax
[form!]vsFlexGrid.RowSel[= value As Long]

Remarks
Use the RowSel and ColSel properties to select a specific region of the control from code, or to determine the
dimensions of an area that the user has selected.

The cursor is the cell at Row, Col. The selection is the region between rows Row and RowSel    and columns Col
and ColSel. Note that RowSel may be above or below Row, and ColSel may be to the left or to the right of Col.

Note:
Whenever you set the Row and Col properties, RowSel and ColSel are automatically reset so the cursor
becomes the current selection. Therefore, if you want to select a block of cells from code, you must set the Row
and Col properties first, then set RowSel and ColSel (or use the Select method to do it all with a single
statement).

Data Type
Long

RowStatus Property
See Also          Examples          Applies to

Sets or returns a value that indicates whether a row has been added, deleted, or modified.

Syntax
[form!]vsFlexGrid.RowStatus(Row As Long)[= RowStatusSettings]

Remarks
The RowStatus property is set by the control to reflect the status of the row. This allows you to determine
whether a row has just been created, whether it was modified by the program itself, or whether it was edited by
the user.

The control automatically assigns the following values to each row:

Constant Description
flexrsNew When the row is created.
flexrsUpdated When the program modifies a row by writing to it.
flexrsModified When the user modifies a row by editing it.
flexrsDeleted Not assigned by the control.

Each new action updates the row status and replaces the previous value. For example, if you create a new
instance of the control, all rows will have RowStatus = flexrsNew. If you then assign values to one of the rows, its
status will become flexrsUpdated. If the user then edits one or more values on this row, the status becomes
flexrsModified.

The flexrsDeleted value is never really assigned to a row, but is the value returned when you ask for a row that
does not exist (e.g. RowState(-1)).

The RowStatus property is read/write, so you may define and assign your own constants to it. If you do so, define
your own enumeration and use values above 100 to avoid conflict with the control-defined constants and future
values that may be added in future releases of the control.

Data Type
RowStatusSettings (Enumeration)

SaveGrid Method
See Also          Examples          Applies to

Saves grid contents and format to a file.

Syntax
[form!]vsFlexGrid.SaveGrid FileName As String, SaveWhat As SaveLoadSettings, [FixedCells As Variant]

Remarks
This method saves a grid to a binary or to a text file. The grid may be retrieved later with the LoadGrid method.
Grids saved to text files may also be read by other programs, such as Microsoft Excel or Microsoft Word.

The parameters for the SaveGrid method are described below:

FileName As String
This parameter contains the name of the file, including the path.

SaveWhat As SaveLoadSettings
This parameter specifies what should be saved. Valid options are:

Constant Description
flexFileAll Save all formatting and data
flexFileData Save only the data
flexFileFormat Save only the formatting
flexFileCommaText Save data to a comma-delimited text file
flexFileTabText Save data to a tab-delimited text file

FixedCells As Variant    (optional)
If this parameter is set to False (the default), then values in fixed cells are not saved to text files -- only the
scrollable part of the grid is saved. If this parameter is set to True, then fixed rows and columns are also saved.

The flexFileFormat option saves global formatting only. It does not save any cell-specific information, not even the
number of rows and columns. This allows you to use this setting to create formats that can be applied to existing
grids even if they have different dimensions.

Because column widths and row heights are related to the number of rows and columns on the grid, they are not
saved or restored if you use the flexFileFormat option.

The following is a list of the properties that do get saved and restored if you use the flexFileFormat option:
BackColor, ForeColor, BackColorBkg, BackColorAlternate, BackColorFixed, ForeColorFixed, BackColorSel,
ForeColorSel, TreeColor, SheetBorder, GridLines, GridLinesFixed, GridLineWidth, GridColor, GridColorFixed,
TextStyle, TextStyleFixed, ScrollBars, SelectionMode, RowHeightMin, MergeCells, SubtotalPosition, OutlineBar,
Font, and WordWrap.

Scroll Event
See Also          Examples          Applies to

Fired after the control scrolls.

Syntax
Private Sub vsFlexGrid_Scroll()

Remarks
This event is useful to synchronize the scrolling of multiple controls. You may do this by reading the TopRow and
LeftCol properties, then assigning their values to other controls.

ScrollBars Property
See Also          Examples          Applies to

Returns or sets whether the control will display horizontal or vertical scroll bars.

Syntax
[form!]vsFlexGrid.ScrollBars[= ScrollBarsSettings]

Remarks
Valid settings for the ScrollBars property are:

Value Constant
0 flexScrollBarNone
1 flexScrollBarHorizontal
2 flexScrollBarVertical
3 flexScrollBarBoth

Scroll bars are displayed only if the contents of the control extend beyond its borders. For example, a horizontal
scroll bar appears when the control is not wide enough to display all columns at once.

If the control has no scroll bars in either direction, it will not allow any scrolling in that direction, even if the user
uses the keyboard to select a cell that is outside the visible area of the control. However, you may still scroll the
control through code by setting the TopRow    and LeftCol properties.

Data Type
ScrollBarsSettings (Enumeration)

Default Value
flexScrollBarBoth (3)

ScrollTips Property
See Also          Examples          Applies to

Returns or sets whether tool tips are shown while the user scrolls vertically.

Syntax
[form!]vsFlexGrid.ScrollTips[= {True | False}]

Remarks
Use this property to display a tooltip over the vertical scrollbar as the user moves the scroll thumb. This allows the
user to see which row will become visible when he releases the scroll thumb.

This feature makes it easy for users to browse and find specific rows on large data sets. This feature is especially
useful if the ScrollTrack property is set to False, because then the control will not scroll until the thumb track is
released.

To implement this feature in your programs, you must do two things:

1) Set the ScrollTips property to True
2) Respond to the BeforeScrollTip event by setting the ScrollTipText property to text that describes the given
row.

For example:

 fa.ScrollTrack = False
 fa.ScrollTips = True

 Private Sub fa_BeforeScrollTip(ByVal Row As Long)

 ' the ScrollTip will show a string such as
 ' "Row 5: Accounts Receivable"
 fa.ScrollTipText = " Row " & Row & ": " & _
 fa.Cell(flexcpTextDisplay, Row, 0) & " "
 End Sub

Note that you may also implement regular tooltips in Visual Basic by trapping the MouseMove event and setting
the ToolTipText property.

Data Type
Boolean

Default Value
False

ScrollTipText Property
See Also          Examples          Applies to

Returns or sets the tool tip text shown while the user scrolls vertically.

Syntax
[form!]vsFlexGrid.ScrollTipText[= value As String]

Remarks
Set this property in response to the BeforeScrollTip event to display information describing a given row as the
user scrolls the contents of the control.

For more details, see the ScrollTips property.

Data Type
String

ScrollTrack Property
See Also          Examples          Applies to

Returns or sets scrolling should occur while the user moves the scroll thumb.

Syntax
[form!]vsFlexGrid.ScrollTrack[= {True | False}]

Remarks
This property is usually set to False to avoid excessive scrolling and flickering. Set it to True if you want to
emulate other controls that have this behavior.

Either way, you may use the ScrollTips property to provide the user with additional information while he scrolls
the contents of the control.

Data Type
Boolean

Default Value
False

SelChange Event
See Also          Examples          Applies to

Fired after the selected range changes.

Syntax
Private Sub vsFlexGrid_SelChange()

Remarks
This event is fired when the Row, Col, RowSel or ColSel properties change, either as a result of user actions
(mouse or keyboard) or through code.

This event is also fired while the user extends the selection with the mouse.

Select Method
See Also          Examples          Applies to

Selects a range of cells.

Syntax
[form!]vsFlexGrid.Select Row As Long, Col As Long, [RowSel As Variant], [ColSel As Variant]

Remarks
The Select method allows you to select ranges or cells (by omitting the last two paramters) with a single
command.

This method is more efficient than setting the Row, Col, RowSel, and ColSel properties separately and makes
the code more readable.

SelectedRow Property
See Also          Examples          Applies to

Returns the position of a selected row when SelectionMode is set to flexSelectionListBox.

Syntax
val& = [form!]vsFlexGrid.SelectedRow(Index As Long)

Remarks
This property works in conjunction with the SelectedRows property to enumerate all selected rows in the control.

These properties are especially useful when the SelectionMode property is set to flexSelectionListBox, which
allows the user to select multiple, non-adjacent rows.

Using the SelectedRows and SelectedRow properties to enumerate all selected rows is much faster than
scanning the entire control for selected rows by reading the IsSelected property.

For example, write

 For i = 0 to fa.SelectedRows - 1
 Debug.Print "Row "; fa.SelectedRow(i); " is selected"
 Next

instead of

 For i = 0 to fa.Rows
 If fa.IsSelected(i) Then Debug.Print "Row "; i; " is selected"
 Next

Data Type
Long

SelectedRows Property
See Also          Examples          Applies to

Returns the number of selected rows when SelectionMode is set to flexSelectionListBox.

Syntax
val& = [form!]vsFlexGrid.SelectedRows

Remarks
This property works in conjunction with the SelectedRow property to enumerate all selected rows in the control.

These properties are especially useful when the SelectionMode property is set to flexSelectionListBox, which
allows the user to select multiple, non-adjacent rows.

Using the SelectedRows and SelectedRow properties to enumerate all selected rows is much faster than
scanning the entire control for selected rows by reading the IsSelected property.

For an example, see the SelectedRows property.

Data Type
Long

SelectionMode Property
See Also          Examples          Applies to

Returns or sets whether the control will select cells in a free range, by row, by column, or like a listbox.

Syntax
[form!]vsFlexGrid.SelectionMode[= SelModeSettings]

Remarks
The settings for the SelectionMode property are described below:

flexSelectionFree
This setting allows selections to be made as usual, spreadsheet-style.

flexSelectionByRow
This setting forces selections to span entire rows, as in a record-based display.

flexSelectionByColumn
This setting forces selections to span entire columns, as if selecting ranges for a chart or fields for sorting.

flexSelectionListBox
This setting forces selections to span entire rows and allows for extended selections spanning non-adjacent rows.
CTRL-clicking with the mouse toggles the selection for an individual row. Dragging the mouse over a group of
rows toggles their selected status.

The IsSelected property allows you to read and set the selected status of individual rows.

You may prevent selection by setting the AllowSelection property to false.

Data Type
SelModeSettings (Enumeration)

Default Value
flexSelectionFree (0)

SheetBorder Property
See Also          Examples          Applies to

Returns or sets the color used to draw the border around the sheet.

Syntax
[form!]vsFlexGrid.SheetBorder[= colorref&]

Remarks
This property is useful if you want to make a grid look like a page, with no border around the cells. To do this, set
the SheetBorder and BackColorBkg properties to the same color as the grid background (BackColor property).

Data Type
Color

ShowComboButton Property
See Also          Examples          Applies to

Returns or sets whether drop-down buttons are shown when editable cells are selected.

Syntax
[form!]vsFlexGrid.ShowComboButton[= {True | False}]

Remarks
If the ShowComboButton property is set to True, VSFlexGrid will display drop-down buttons automatically when
cells with associated combo boxes or drop-down lists are selected. The user may edit the cells directly, by clicking
the button with the mouse.

If the ShowComboButton property is set to False, the drop-downs will only appear when the control enters edit
mode (either as a result of keyboard action or when the EditCell method is used.

You should only set this property to False if the grid columns are narrow and you don't want the drop-down
buttons to obscure cell contents while not editing.

Data Type
Boolean

Default Value
True

Sort Property
See Also          Examples          Applies to

Sets a sorting order for the selected rows using the selected columns as keys.

Syntax
[form!]vsFlexGrid.Sort = SortSettings

Remarks
The Sort property allows you to sort a range or rows in ascending or descending order based on the values in
one or more columns.

The range of rows to be sorted is specified by setting the Row and RowSel    properties. If Row and RowSel are
the same, the control assumes that you want to sort all non-fixed rows.

They keys used for sorting are determined by the Col and ColSel properties, always from the left to the right. For
example, if Col = 3 and ColSel = 1, the sort would be done according to the contents of columns 1, then 2, then
3.

The sorting algorithm used by the VSFlexGrid control is "stable": this means that the sorting keeps the relative
order of records when the sorting key is the same. For example, if you sort a list of files by name, then by
extension, file names will still be sorted within each extension group.

Valid settings for the Sort property are:

Value Constant
0 flexSortNone
1 flexSortGenericAscending
2 flexSortGenericDescending
3 flexSortNumericAscending
4 flexSortNumericDescending
5 flexSortStringNoCaseAscending
6 flexSortStringNoCaseDescending
7 flexSortStringAscending
8 flexSortStringDescending
9 flexSortCustom
10 flexSortUseColSort

The method used to compare the rows is determined by the settings shown above.    Most settings have names
that are self-descriptive. The exceptions are flexSortCustom, flexSortUseColSort, and flexSortNone.

The flexSortCustom setting is the most flexible. It fires a Compare event that allows you to compare rows in any
way you wish, using any columns in any order. However, flexSortCustom is also much slower that the others,
typically by a factor of 10, so it should be used only when really necessary. If you want to sort based on arbitrary
criteria (e.g. "Urgent", "High", "Medium", "Low"), use a hidden column with numerical values that correspond to
the criteria you are using.

The flexSortUseColSort allows you to use different settings for each column, as determined by the ColSort
property. Using this setting, you may sort some columns in ascending and others in descending order.

The flexSortNone setting is useful only if you assign it to the ColSort property and later sort the control with the
flexSortUseColSort setting. In this case, flexSortNone allows you to specify columns that should be ignored by the
sorting process.

To sort dates, make sure the column contianing dates has its ColDataType property set to flexDTDate. This will
allow the control to sort them properly. For example:

 fa.ColDataType(i) = flexDTDate
 fa.Col = i
 fa.Sort = flexSortGenericAscending

The example below shows how the Sort property is used:

 ' fill control with random data
 fa.Cols = 2
 fa.FixedCols = 0
 FillColumn fa, 0, "Name|Andrew|John|Paul|Mary|Tom|Dick|Harry"
 FillColumn fa, 1, "Number|12|32|45|2|65|8|87|34"

 ' sort by name
 fa.Select 1, 0
 fa.Sort = flexSortGenericAscending

 ' sort by name and number
 fa.Select 1, 0, 1, 1
 fa.Sort = flexSortGenericAscending

If you want to select different sorting orders for each column, either sort them one by one or use the ColSort property
and the flexSortUseColSort setting. Here is an example that sorts the names in ascending order and the numbers in
descending order:

 fa.ColSort(0)=flexSortGenericAscending
 fa.ColSort(1) = flexSortGenericDescending
 fa.Select 1, 0, 1, 1
 fa.Sort = flexSortUseColSort

Data Type
SortSettings (Enumeration)

Subtotal Method
See Also          Examples          Applies to

Inserts rows with summary data.

Syntax
[form!]vsFlexGrid.Subtotal Function As SubtotalSettings, [GroupOn As Long], [TotalOn As Long], [Format As
String], [BackColor As Color], [ForeColor As Color], [FontBold As Boolean], [Caption As String], [MatchFrom
As Long], [TotalOnly As Boolean]

Remarks
The Subtotal method adds subtotal rows which summarize the data in the control.

Subtotal rows are used for summarizing data and for displaying outlines. You may use the Subtotal method to
create subtotal rows automatically, or the IsSubtotal property to create them manually.

Each subtotal row has a level that is used to indicate which column is being grouped. The subtotal level is also
used for outlining. When you created subtotals using the Subtotal method, the level is set automatically based on
the GroupOn parameter. When you create an outline manually, use the RowOutlineLevel property to set the
outline level for each subtotal row.

Subtotal rows may be added at the top or at the bottom of the values being summarized. This is determined by
the SubtotalPosition property. When creating outlines, you will typically use the SubtotalPosition property is
used to place the subtotals above the data. When creating reports, you will typically use the SubtotalPosition
property to place the subtotals below the data.

The parameters for the Subtotal method are described below:

Function As SubtotalSettings
This parameter specifies the type of aggregate function to be used for the subtotals. Valid settings are:

Constant Description
flexSTNone Outline only, no aggregate values
flexSTClear Clear all subtotals
flexSTSum Sum
flexSTPercent Percent of total sum
flexSTCount Row count
flexSTAverage Average
flexSTMax Maximum
flexSTMin Minimum
flexSTStd Standard deviation
flexSTVar Variance

GroupOn As Long    (optional)
This parameter specifies the column that contains the categories for calculation of a subtotal. By default, the
control assumes that all data is sorted from the leftmost column to the column specified as GroupOn.
Consequently, a subtotaling break occurs whenever there is a change in any column from the leftmost one up to
and including the column specified as GroupOn.

To create subtotals based on a column or range of columns that does not start with the leftmost column, use the
MatchFrom parameter.    If MatchFrom is specified, the control generates subtotal line only on a change of data in
any column between and including column MatchFrom and GroupOn.

For example, to subtotal values in column 3 of the control whenever there are changes in column 2 only, use

 .Subtotal flexSTSum, 2, 3, , , , , 2

TotalOn As Long    (optional)
This parameter specifies the column that contains the values to use when calculating the total.

Format As String (optional)
This parameter specifies the format to be used for displaying the results. The syntax for the format string is similar
but not identical to the syntax used with Visual Basic's Format command. For a detailed description of the syntax
used to specify formats, see the ColFormat property.

BackColor, ForeColor As Color    (optional)
These parameters specify the colors to be used for the cells in the subtotal rows.

FontBold As Boolean    (optional)
This parameter specifies whether text in the subtotal rows should be boldfaced.

Caption As Variant    (optional)
This parameter specifies the text that should be put in the subtotal rows. If omitted, the text used is the function
name plus the category name (e.g. "Total Widgets"). If supplied, you may add a "%s" marker to indicate a place
where the category name should be inserted (e.g. "The %s Count").

MatchFrom As Variant    (optional)
When deciding whether to insert a subtotal row between two adjacent rows, the control compares the values in
columns between MatchFrom and GroupOn. If any of these cells are different, a subtotal row is inserted. The
default value for MatchFrom is FixedCols, which means all columns to the left of and including GroupOn must
match, or a subtotal row will be inserted. If you set MatchFrom to the same value as GroupOn, then subtotal rows
will be inserted whenever the contents of the GroupOn column change.

TotalOnly As Boolean (optional)
By default, the control will copy the contents of all columns between MatchFrom and GroupOn to the new subtotal
row, and will place the calculated value on column TotalOn. If you set the TotalOnly parameter to True, the control
will not copy the contents of the rows. The subtotal row will contain only the title and the calculated value.

The example below shows how to use the Subtotal method.

 ' this assumes we have a populated grid fa with
 ' 4 columns: product, employee, region, and sales
 fa.ColFormat(3) = "$(#,###.00)" ' set format for calculated totals
 fa.Subtotal flexSTClear ' remove old values

 ' calculate subtotals (the order doesn't matter)
 ' (sales values to be added are in column 3)
 ' col 0: product
 fa.Subtotal flexSTSum, 0, 3, , vbRed
 ' col 1: employee
 fa.Subtotal flexSTSum, 1, 3, , vbGreen
 ' col 2: region
 fa.Subtotal flexSTSum, 2, 3, , vbBlue

 ' total on a negative column to get a grand total
 fa.Subtotal flexSTSum, -1, 3, , vbblue, vbwhite, true

The parameters in the Subtotal method allow a great deal of customization. The example below shows how the
Caption and TotalOnly parameters can be used to generate report-type subtotals:

 fa.ColFormat(3) = "$(#,###.00)" ' set format for calculated totals
 fa.Subtotal flexSTClear ' remove old values

 ' calculate subtotals (the order doesn't matter)
 ' (sales values to be added are in column 3)
 ' col 0: product
 fa.Subtotal flexSTSum, 0, 3, , vbRed ,,," TotPrd %s",,True
 ' col 1: employee
 fa.Subtotal flexSTSum, 1, 3, , vbGreen,,," TotEmp %s",,True
 ' col 2: region
 fa.Subtotal flexSTSum, 2, 3, , vbBlue ,,," TotRgn %s",,True

 ' total on a negative column to get a grand total
 fa.Subtotal flexSTSum, -1, 3, , vbblue, vbwhite, true

SubtotalPosition Property
See Also          Examples          Applies to

Returns or sets whether subtotals should be inserted above or below the totaled data.

Syntax
[form!]vsFlexGrid.SubtotalPosition[= SubtotalPositionSettings]

Remarks
Valid settings for the SubtotalPosition property are:

Value Constant
0 flexSTBelow
1 flexSTAbove

Setting flexSTAbove is typically used to create outlines. This way, the subtotal rows (which correspond to outline
nodes) appear above the data to which they refer. Setting flexSTBelow is typically used to create reports. This
way, the subtotal rows appear below the data to which they refer.

Data Type
SubtotalPositionSettings (Enumeration)

Default Value
flexSTAbove (1)

TabBehavior Property
See Also          Examples          Applies to

Returns or sets whether the tab key will move focus between controls (VB default) or between grid cells.

Syntax
[form!]vsFlexGrid.TabBehavior[= TabBehaviorSettings]

Remarks
Valid settings for the TabBehavior property are:

Constant Description
flexTabControls Tab key is used to move to the next or previous control on the form.
flexTabCells Tab key is used to move to the next or previous cell on the control.

Data Type
TabBehaviorSettings (Enumeration)

Default Value
flexTabControls (0)

Text Property (vsFlexGrid Object)
See Also          Examples          Applies to

Returns or sets the contents of the selected cell or range.

Syntax
[form!]vsFlexGrid.Text[= value As String]

Remarks
When retrieving, the Text property always retrieves the contents of the current cell defined by the Row and Col
properties.

When setting, the Text property sets the contents of the current cell or of the current selection depending on the
setting of the FillStyle property.

You may read or set the contents of an arbitrary cell using the Cell(flexcpText) or the TextMatrix properties.

You may read the formatted contents of a cell using the Cell(flexcpTextDisplay) property.

You may read the value of a cell using the Cell(flexcpValue), Value, and ValueMatrix properties. This is useful
when the cell contains text that is formatted with thousand separators, which are not recognized by the Visual
Basic Val function.

Data Type
String

TextArray Property
See Also          Examples          Applies to

Returns or sets the contents of a cell identified by a single index.

Syntax
[form!]vsFlexGrid.TextArray(Index As Long)[= value As String]

Remarks
This property is provided for backward compatibility with earlier versions of this control. New applications should
use the Cell(flexcpText) or TextMatrix properties.

Data Type
String

TextMatrix Property
See Also          Examples          Applies to

Returns or sets the contents of a cell identified by its row and column coordinates.

Syntax
[form!]vsFlexGrid.TextMatrix(Row As Long, Col As Long)[= value As String]

Remarks
The TextMatrix property allows you to set or retrieve the contents of a cell without changing the Row property
and Col property.

See also the Cell property, which allows you to set or retrieve text, pictures and formatting information for a cell or
range of cells.

Data Type
String

TextStyle Property
See Also          Examples          Applies to

Returns or sets 3D effects for displaying text in non-fixed cells.

Syntax
[form!]vsFlexGrid.TextStyle[= TextStyleSettings]

Remarks
Valid settings for the TextStyle property are:

Value Constant
0 flexTextFlat
1 flexTextRaised
2 flexTextInset
3 flexTextRaisedLight
4 flexTextInsetLight

Settings flexTextRaised and flexTextInset work best for large and bold fonts. Settings flexTextRaisedLight and
flexTextInsetLight work best for small fonts.

You may set the text style for the fixed cell using the TextStyleFixed property, or set the text style for individual
cells and ranges using the Cell(flexcpTextStyle) property.

Data Type
TextStyleSettings (Enumeration)

Default Value
flexTextFlat (0)

TextStyleFixed Property
See Also          Examples          Applies to

Returns or sets 3D effects for displaying text in fixed cells.

Syntax
[form!]vsFlexGrid.TextStyleFixed[= TextStyleSettings]

Remarks
Valid settings for this property are the same as those for the TextStyle property.

Data Type
TextStyleSettings (Enumeration)

Default Value
flexTextFlat (0)

TopRow Property
See Also          Examples          Applies to

Returns or sets the zero-based index of the topmost non-fixed row displayed in the control.

Syntax
[form!]vsFlexGrid.TopRow[= value As Long]

Remarks
Use this property to read or set the top visible row of the control, causing it to scroll if necessary.    Use the
LeftCol property to determine the leftmost visible column.

When setting this property, the largest possible value is the total number of rows minus the number of rows that
will fit the display. Attempting to set TopRow to a greater row number will cause the control to set it to the largest
possible value (no error will be generated).

If you need to ensure that a certain cell is visible, do not use this property. Simply make the cell current by setting
the Select method, then bring it into view by reading the CellTop property.

Data Type
Long

TreeColor Property
See Also          Examples          Applies to

Returns or sets the color used to draw the outline tree.

Syntax
[form!]vsFlexGrid.TreeColor[= colorref&]

Remarks
The outline tree is drawn only when the OutlineBar property is set to a non-zero value and the control contains
subtotal rows. It allows users to collapse and expand the outline.

For details on outlines and an example, see the Outline method.

Data Type
Color

ValidateEdit Event
See Also          Examples          Applies to

Fired before the control exits cell edit mode.

Syntax
Private Sub vsFlexGrid_ValidateEdit(ByVal Row As Long,    ByVal Col As Long, Cancel As Boolean)

Remarks
The ValidateEdit event is fired before any changes made by the user are committed to the cell.

You may trap this event to read the contents of the cell editor with the EditText property and to make sure the
entry is valid for the given cell (Row, Col). If the entry is invalid set the Cancel parameter to True. The changes
will be discarded and the control will remain in edit mode.

If you want to validate keys as they are typed into the editor, use the KeyPressEdit or the ChangeEdit events.

For more details on in-cell editing, see the Editable and ComboList properties.

The example below shows a typical use of the ValidateEdit event. Column 1 only accepts strings, and column 2
only accepts numbers greater than zero.

 Sub fa_ValidateEdit(ByVal Row As Long, ByVal Col As Long, cancel As Boolean)
 Dim c$

 ' different validation rules for each column
 Select Case col

 ' column 1 only accepts strings
 Case 1
 c = Left$(fa.EditText, 1)
 If UCaseS(c) < "A" And UCase$(c) > "Z" Then Beep: Cancel = True

 ' column 2 only accepts numbers > 0
 Case 2
 If Val(fa.EditText) <= 0 Then Beep: Cancel = True

 End Select
 End Sub

Note:
In previous versions of this control, this event was called Validate. The name of the event was changed to avoid
conflicts with Visual Basic 6.0's new Validate event.

Value Property
See Also          Examples          Applies to

Returns the numeric value of the current cell.

Syntax
val# = [form!]vsFlexGrid.Value

Remarks
This property is similar to Visual Basic's Val function, except it interprets localized thousand separators, currency
signs, and parenthesized negative values.

For example, if the current cell contains the string "$(1,234.56)", the Value property will return the value -1234.56.

To retrieve the value of an arbitrary cell without selecting it first, use the ValueMatrix property.

Note
This property is not an expression evaluator.    If the current cell contains the string "2+2", for example, the Value
property will return 2 instead of 4. The Visual Basic statement Val("2+2") also returns 2.

Data Type
Double

ValueMatrix Property
See Also          Examples          Applies to

Returns the numeric value of a cell identified by its row and column coordinates.

Syntax
val# = [form!]vsFlexGrid.ValueMatrix(Row As Long, Col As Long)

Remarks
This property is similar to the Value property, except it allows you to specify the cell whose value is to be
retrieved.

Data Type
Double

Version Property (vsFlexGrid Object)
See Also          Examples          Applies to

Returns the version of vsFlex currently loaded in memory.

Syntax
val% = [form!]vsFlexGrid.Version

Remarks
You may want to check this value at the Form_Load event, to make sure the version that is executing is at least
as current as the version used to develop your application.

The version number is a three digit integer where the first digit represents the major version number and the last
two represent the minor version number. For example, version 6.00 returns 600.

This property is read-only.

Data Type
Integer

Default Value
600

VirtualData Property
See Also          Examples          Applies to

Returns or sets whether all data is fetched from the data source at once or as needed.

Syntax
[form!]vsFlexGrid.VirtualData[= {True | False}]

Remarks
The VirtualData property works when the control is data-bound.

If VirtualData is set to True, data is retrieved from the data source only when it is needed (for displaying or
reading its value, for example). This saves time and memory.

If VirtualData is set to False, the entire dataset is read from the data source into memory, all at once. This
process may be slow, especially if the data source is large (over about 5,000 records).

See also the DataSource and DataMode properties.

Data Type
Boolean

Default Value
True

WordWrap Property
See Also          Examples          Applies to

Returns or sets whether text wider that its cell will wrap.

Syntax
[form!]vsFlexGrid.WordWrap[= {True | False}]

Data Type
Boolean

vsFlexString Object
Properties          Methods          Events

Object Name: VSFlexString
Description: :-) VideoSoft VSFlexString 6.0
Properties: 17
Events: 0
Methods: 0

Before you can use a VSFlexString object in your application, you must add the VSFLEX6.OCX file to your
project.

To distribute applications you create with the VSFlexString object, you must install and register it on the user's
computer. The Setup Wizard provided with Visual Basic provides tools to help you do this. Please refer to the
Visual Basic manual for details.

The VSFlexString control allows you to incorporate regular-expression text matching into your Visual Basic
programs. This allows you to parse complex text input easily, or to offer regular expression search-and-replace
features such as those found in professional packages like Microsoft Word, Visual C++, and Visual Basic.

VSFlexString looks for text patterns on its Text property, and lets you inspect and change the matches it finds.
The text patterns are specified through the Pattern property, using regular expressions.

CaseSensitive Property
See Also          Examples          Applies to

Returns or sets whether matching is case-sensitive.

Syntax
[form!]vsFlexString.CaseSensitive[= {True | False}]

Remarks
Setting CaseSensitive to True will in some cases allow you to use simpler, regular expressions.    Setting it to
False gives more control over the matching process.

Data Type
Boolean

Error Property (vsFlexString Object)
See Also          Examples          Applies to

Returns status information after setting the Pattern or Text properties.

Syntax
val% = [form!]vsFlexString.Error

Remarks
You should always check the Error property when a match fails. Possible values for this property are:

Value Constant
0 flexErrNone
1 flexErrOutOfMemory
2 flexErrSquareB
3 flexErrCurlyB
4 flexErrBadPattern
5 flexErrBadTagIndex
6 flexErrNoMatch
7 flexErrInvalidMatchIndex

flexErrOutOfMemory
Occurs if you assign a string that is too long for the Text property or a pattern that is too complex for the Pattern
property.

flexErrSquareB, flexErrCurlyB
Occurs when you assign a pattern with unbalanced square or culry brackets ([,], {, }) to the Pattern    property. If
you want to locate brackets within the search string, remember to escape them with the backslash character (i.e.
use "\{" instead of "{").

flexErrBadPattern
Occurs when you try to retrieve the results of a match and the Pattern or Text properties are empty.

flexErrBadTagIndex
Occurs when you use a tag in a replacement string for which there is no match (e.g. Pattern    = "{[a-z]*}    ",
Replace = "{0} {1}": the Pattern defines one tag only, and the replacement string references two).

flexErrNoMatch
Occurs when you try to retrieve the results of a match and the match failed.

flexErrInvalidMatchIndex
Occurs when you try to select a match greater than or equal to the number of matches (MatchCount).

Data Type
StringErrorSettings (Enumeration)

MatchCount Property
See Also          Examples          Applies to

Returns the number of matches found after setting the Pattern or Text properties.

Syntax
val& = [form!]vsFlexString.MatchCount

Remarks
You can retrieve information about each match by setting the MatchIndex property to a value between 0 and
MatchCount - 1 and then reading the MatchLength, MatchStart, and MatchString properties.

Data Type
Long

MatchIndex Property
See Also          Examples          Applies to

Returns or sets the zero-based index of the current match when there are multiple matches.

Syntax
[form!]vsFlexString.MatchIndex[= value As Long]

Remarks
You can retrieve information about each match by setting the MatchIndex property to a value between 0 and
MatchCount    - 1 and then reading the MatchLength, MatchStart, and MatchString properties.

Alternatively, you may specify the MatchIndex as an index when you read the MatchLength, MatchStart, and
MatchString properties. This is a new feature in version 6 of the control. For example:

 ' show all matches
 Dim i As Long
 For i = 0 to fs.MatchCount - 1
 Debug.Print "[" & fs.MatchString(i) & "]"
 Next

Data Type
Long

MatchLength Property
See Also          Examples          Applies to

Returns the length of the current match, in characters.

Syntax
val& = [form!]vsFlexString.MatchLength([MatchIndex As Variant])

Remarks
You can retrieve information about each match by setting the MatchIndex property to a value between 0 and
MatchCount    - 1 and then reading the MatchLength, MatchStart, and MatchString properties.

Data Type
Long

MatchStart Property
See Also          Examples          Applies to

Returns the zero-based position of the current match within the Text string.

Syntax
val& = [form!]vsFlexString.MatchStart([MatchIndex As Variant])

Remarks
You can retrieve information about each match by setting the MatchIndex property to a value between 0 and
MatchCount - 1 and then reading the MatchLength, MatchStart, and MatchString properties.

Data Type
Long

MatchString Property
See Also          Examples          Applies to

Returns or sets the string corresponding to the current match.

Syntax
[form!]vsFlexString.MatchString([MatchIndex As Variant])[= value As String]

Remarks
You can retrieve information about each match by setting the MatchIndex property to a value between 0 and
MatchCount - 1 and then reading the MatchLength, MatchStart, and MatchString properties.

Data Type
String

Pattern Property
See Also          Examples          Applies to

Returns or sets the regular expression used for matching against the Text string.

Syntax
[form!]vsFlexString.Pattern[= value As String]

Remarks
The regular expression syntax recognized by vsFlexString is based on the following special characters:

Char Description
^ Beginning of a string.
$ End of a string.
. Any character.
[list] Any character in list.
[^list] Any character not in list.
? Repeat previous zero or one time.
* Repeat previous zero or more times.
+ Repeat previous one or more times.
\ Escape next character.
{pat} Tag this part of the match.

For example,

 fs.Pattern = "^stuff" ' any string starting with "stuff"
 fs.Pattern = "stuff$" ' any string ending with "stuff"
 fs.Pattern = "o.d" ' "old", "odd", "ord", etc
 fs.Pattern = "o[ld]d" ' "old" or "odd" only
 fs.Pattern = "o[^l]d" ' "not "old"
 fs.Pattern = "od?" ' "o" or "od"
 fs.Pattern = "od*" ' "o", "od", "odd"
 fs.Pattern = "od+" ' "od", "odd", etc
 fs.Pattern = "\." ' decimal point (needs escape character)

Data Type
String

Replace Property
See Also          Examples          Applies to

Sets a string to replace all matches.

Syntax
[form!]vsFlexString.Replace = value As String

Remarks
The replacement occurs as soon as you assign the new text to the Replace property. To perform the replacement
on several strings, you must set both the Text and Replace properties for each original string.

The Replace string may contain tags, specified using curly brackets with the tag number between them, e.g.
"{n}". The tags expand into the portions of the original Text string that were matched to the corresponding tags in
the search Pattern. The example below illustrates this:

 ' set up a pattern to search for a filename and extension:
 ' the curly brackets define two tags
 ' (note how the period is escaped with a backslash)
 fs.Pattern = "{[A-Za-z0-9_]+}\.{...}"

 ' assign a string to be matched against the pattern
 ' tag 0 will match the filename, tag 1 the extension
 fs.Text = "AUTOEXEC.BAT"

 ' expand the string (note that each tag may be used several times)
 fs.Replace = "File {0}.{1}, Name: {0}, Ext: {1}"

 Debug.Print fs.Text
 File AUTOEXEC.BAT, Name: AUTOEXEC, Ext: BAT

Data Type
String

Soundex Property
See Also          Examples          Applies to

Returns a phonetic code representing the current Text string.

Syntax
val$ = [form!]vsFlexString.Soundex

Remarks
This property allows you to search a database for strings even if you don't know the exact spelling. The database
must include a Soundex field that encodes another field such as last name. When doing the search, look for the
Soundex code instead of looking for the name.

The Soundex code consists of an uppercase letter followed by up to three digits. It is built by assigning codes to
each character of the input string, then discarding vowels and repeated codes. The table below shows a few
strings and their Soundex codes:

 Andersen, Anderson, Anders: A536
 Agassis, Agassi, Agaci: A2
 Nixon, Nickson: N25
 Johnson, Jonson: J525
 Johnston: J523
 Rumpelstiltskin, Runpilztiskin, Rumpel: R514

The advantages of this system are that the code is short, that it will rarely miss a match, and that the system is
widely known and already implemented in many databases (the Soundex method was developed in 1918 by
M.K. Odell and R.C. Russel). The disadvantage is that it will often find spurious matches that are only vaguely
similar to the search string.

Data Type
String

TagCount Property
See Also          Examples          Applies to

Returns the number of tags found after setting the Pattern, Text, or MatchIndex properties.

Syntax
val& = [form!]vsFlexString.TagCount

Remarks
You can retrieve information about each tag by setting the TagIndex property to a value between 0 and
TagCount - 1 and reading the TagLength, TagStart, and TagString properties.

Tags are defined by enclosing parts of the regular expression string in the Pattern property between curly
brackets.

 fs.Text = "Mary had a little lamb"
 fs.Pattern = "Mary had {.*}"

 Debug.Print fs.TagCount; fs.TagIndex; "[" & fs.TagString & "]"
 1 0 [a little lamb]

Data Type
Long

TagIndex Property
See Also          Examples          Applies to

Returns or sets the index of the current tag when there are multiple tags in the Pattern string.

Syntax
[form!]vsFlexString.TagIndex[= value As Long]

Remarks
You can retrieve information about the current tag by reading the TagLength, TagString, and TagStart
properties.

The TagIndex property can range from 0 to TagCount - 1.

The example below shows how the TagIndex property works:

 ' set some text
 fs.Text = "Mary had a little lamb"

 ' define a patern with two tags
 fs.Pattern = "{[^]*} had {.*}"

 ' show tag 0
 fs.TagIndex = 0
 Debug.Print "[" & fs.TagString & "]"
 [Mary]

 ' show tag 1
 fs.TagIndex = 1
 Debug.Print "[" & fs.TagString & "]"
 [a little lamb]

Alternatively, you may specify the TagIndex as an index when you read the TagString property. This is a new
feature in version 6 of the control. For example:

 ' show tag 0
 Debug.Print "[" & fs.TagString(0) & "]"
 [Mary]

 ' show tag 1
 fs.TagIndex = 1
 Debug.Print "[" & fs.TagString(1) & "]"
 [a little lamb]

Data Type
Long

TagLength Property
See Also          Examples          Applies to

Returns the length of the current tag, in characters.

Syntax
val& = [form!]vsFlexString.TagLength([TagIndex As Variant])

Remarks
You can retrieve information about the current tag by reading the TagLength, TagStart, and TagString
properties.

Data Type
Long

TagStart Property
See Also          Examples          Applies to

Returns the position of the current tag within the Text string, starting from zero.

Syntax
val& = [form!]vsFlexString.TagStart([TagIndex As Variant])

Remarks
You can retrieve information about the current tag by reading the TagLength, TagStart, and TagString
properties.

Data Type
Long

TagString Property
See Also          Examples          Applies to

Returns or sets the string corresponding to the current tag.

Syntax
[form!]vsFlexString.TagString([TagIndex As Variant])[= value As String]

Remarks
You can retrieve information about the current tag by reading the TagLength, TagStart, and TagString
properties.

If you assign a new string to the TagString property, vsFlexString will modify the string in the Text property and
will attempt a new match.

Data Type
String

Text Property (vsFlexString Object)
See Also          Examples          Applies to

Returns or sets the text to be scanned searching for the Pattern string.

Syntax
[form!]vsFlexString.Text[= value As String]

Remarks
VSFlexString will attempt a match as soon as you assign a string to the Text or Pattern properties.

To find out how many matches were found, read the MatchCount property.

To retrieve information about each match, set the MatchIndex property to a value between 0 and MatchCount -
1, then read the MatchLength, MatchStart, and MatchString properties.

Data Type
String

Version Property (vsFlexString Object)
See Also          Examples          Applies to

Returns the version of vsFlex currently loaded in memory.

Syntax
val% = [form!]vsFlexString.Version

Remarks
You may want to check this value at the Form_Load event, to make sure the version that is executing is at least
as current as the version used to develop your application.

The version number is a three digit integer where the first digit represents the major version number and the last
two represent the minor version number. For example, version 6.00 returns 600.

This property is read-only.

Data Type
Integer

Frequently Asked Questions
This section contains answers to the most common questions people ask our technical support staff.    You should
read this section even if you have not experienced any problems, especially if you are using Visual C++.    You
may find some useful tips here.

How do I update a project file that uses VSFLEX3 to VSFlexGrid Pro 6.0?

Use CONVERT, the conversion utility provided with VSFlexGrid Pro 6.0. The CONVERT utility also allows you to
convert between the ADO/RDO and OLEDB/ADO versions of VSFlexGrid Pro 6.0.

The CONVERT utility handles practically all aspects of the conversion automatically. There are only three areas
that require your attention:

1) If your VSFlex3 project builds custom outlines using the IsSubtotal and RowData properties, you will need to
manually modify it to use RowOutlineLevel instead of RowData. This is because VSFlexGrid reserves the
RowData property for exclusive use by the programmer.

2) If your VSFlex3 project uses cell merging, you may want to set the HighLight property to 0 (flexHighlightNever)
to keep the same behavior you had before. This is because VSFlexGrid, unlike VSFlex3, allows highlighting of
selected ranges even when cells are merged.

3) If your VSFlex3 project assigns Variant values to the RowData or ColData properties, you should add code to
convert the Variant value into a Long before the assignment (you may use VB's CLNG() function). This is because
these properties used to be of type Long, and are now Variants.

The CONVERT utility is supplied in source code format, so you may modify it if you need to.

What is difference between VSFLEX6.OCX and VSFLEX6D.OCX?

The VSFlexGrid Pro package includes two OCX files:

VSFLEX6.OCX contains the version with OLEDB/ADO data-binding. You may bind the control to any ADO data
source, including the ADO data control that ships with VB6.

VSFLEX6D.OCX contains the version with DAO/RDO data-binding. You may bind the control to the traditional
data sources (built-in DAO data control, RDO data control).

The controls included in each file are functionally identical, but have slightly different names and GUIDs. This
allows programs using both versions to run simultaneously on the same computer without conflict.
Before starting a new project or migrating an existing project to VSFlexGrid Pro 6.0, you should decide which
version to use. The following information will help you make the decision:

1) If you are planning to migrate DAO database applications to OLEDB/ADO, use VSFLEX6.OCX.

2) If you are planning to migrate DAO database applications to VB6, but still want to use DAO or RDO, use
VSFLEX6D.OCX.

3) If you are using the VSFlexGrid in unbound mode (i.e., not bound to any databases at all), then you should use
VSFLEX6D.OCX (the DAO/RDO version). This is because ADO-based controls will not load on computers that
don't have ADO installed (even if the control does not use its ADO features.)

You cannot use VSFLEX6.OCX on a computer that does not have ADO installed. VB6 installs ADO automatically.
VB5 and VB4 do not. In the future, most computers will have ADO available as part of the system. Until then,
VSFLEX6D.OCX is a better choice for unbound-mode development because it has no dependencies.

Whichever version you decide to use, you may easily switch later using the CONVERT utility supplied with
VSFlexGrid Pro 6.0.

Does VSFlexGrid 6.0 work with VB4-16 or any other 16-bit environments?

Sorry, it does not. VSFlexGrid Pro 6.0 is a 32-bit-only product.

If your application needs to run under 16-bits, you may still use VSFlex3, which VideoSoft still supports.

When adding VSFLEX6.OCX to my VB4 or VB5 project, I get the following error message: "Error loading
DLL". What is wrong?

VSFLEX6.OCX contains the OLEDB/ADO version of the VSFlexGrid control. Because of that, it requires the ADO
system DLL's in order to run (the same is true for the OLEDB controls that ship with VB6).

To use VSFLEX6.OCX on a computer that only has VB4 or VB5 installed, you will need to install the ADO system
DLL's.

If you are not using OLEDB/ADO, consider using the VSFLEX6D.OCX version of the controls, which is not
subject to this limitation.

My VSFLEX 3.0 project works fine in VB 5.0, but in VB 6.0 I get the following error message: "Procedure
declaration does not match description of event or procedure having the same name". What is wrong?

Visual Basic 6.0 introduced a Validate event (with one argument) that is supplied and managed by VB itself. This
causes a conflict with the VSFlexArray 3.0 control's built-in Validate event which has three arguments. (If you
don't place any code in the Validate event, the problem does not arise since the event is never handled.)

In VSFlexGrid Pro, this problem has been solved by renaming the built-in event to ValidateEdit. The upgrading
utility that ships with the new control performs this translation automatically, so upgrading code from VSFlexArray
is not a problem.

If you are upgrading from VB 5.0 to VB 6.0 but not from VSFlexArray to VSFlexGrid Pro, there is an easy
workaround. The code below shows how this can be done using the BeforeEdit and AfterEdit events instead of
Validate:

 Private Sub fa_BeforeEdit(ByVal Row As Long, ByVal Col As Long, Cancel As Boolean)

 ' save original content in Tag property
 fa.Tag = fa.TextMatrix(Row, Col)

 End Sub

 Private Sub fa_AfterEdit(ByVal Row As Long, ByVal Col As Long)

 ' no change? then don't validate
 If fa.Tag = fa.TextMatrix(Row, Col) Then Exit Sub

 ' valid new value? then we're done
 ' (in this example value has to be up to 100)
 If Val(fa.TextMatrix(Row, Col)) <= 100 Then Exit Sub

 ' beep to warn user the input was rejected
 Beep

 ' Option 1: light validation
 ' restore original cell content
 fa.TextMatrix(Row, Col) = fa.Tag

 ' Option 2: robust validation
 ' use Timer to restore cursor and get into edit mode
 fa.Tag = Row & "," & Col
 Timer1.Enabled = True

 End Sub

 Private Sub Timer1_Timer()

 ' do this once per call
 Timer1.Enabled = False

 ' parse row and col where validation failed
 Dim r&, c&
 r = Val(fa.Tag)
 c = InStr(fa.Tag, ",")
 If c 0 Then c = Val(Mid(fa.Tag, c + 1))

 ' select the cell and try again
 fa.Select r, c
 fa.EditCell

 End Sub

Does VSFlexGrid 6.0 work with VB4, VB5 and VB6?

VSFlexGrid Pro 6.0 works with any 32-bit version of Visual Basic. Ideally, however, you should use it with VB5 or
later.

When used with VB4, the optional parameters in some properties are not interpreted as optional by VB. The most
important property affected by this is the Cell property, which has the following syntax:

 [v =] fa.Cell(iProp, [Row1], [Col1], [Row2], [Col2])

In VB5 or VB6, you may omit all or some of the last four parameters. In VB4, you must supply all five.

This limitation does not apply to optional parameters in methods, only to optional parameters in properties.

How do I limit the length of text entries in a column?

Set the EditMaxLength property in response to the BeforeEdit event.

There are several ways to add data to a VSFlexGrid control. Which one is the fastest?

The fastest way to add data is using the TextMatrix or the Cell properties. The slowest way is using the AddItem
method, because it adds rows in addition to data.

If the data is already loaded in an array of Variants, then the BindToArray method is even faster. (BindToArray
does not actually load the data, it just tells the control where the data is).

Whatever method you choose, make sure you set the Redraw property to False before you start populating the
grid, and set it back to True when you are done. This may increase speed by an order of magnitude, especially
when using AddItem.

How can I add or delete a column at a given position?

To add a column at a specific position: create the new column by incrementing the Cols property, then move it to
the desired position using the ColPosition property.

To delete a column at a specific position: move the column to the right using the ColPosition property, then
delete it by decrementing the Cols property.

The following VB code shows how to do it: it deletes the current column or inserts a new column to the left of the
current column, depending on which button was clicked.

 Private Sub Command1_Click(Index As Integer)
 With fa

 ' insert column
 If Index = 0 Then
 .Cols = .Cols + 1 ' add column
 .ColPosition(.Cols - 1) = .Col ' move into place

 ' delete column
 Else
 .ColPosition(.Col) = .Cols - 1 ' move to right
 .Cols = .Cols - 1 ' delete column
 End If
 End With

 End Sub

How can I implement OLE Drag and Drop?

To implement automatic OLE Drag and Drop, set the OLEDragMode or OLEDropMode properties to the
automatic settings, and you are done.

To implement manual OLE Drag and Drop, you will need to write some code. See the OLE Drag and Drop Demo
for an example that implements both manual and automatic OLE Drag and Drop.

How can I print the contents of a VSFlexGrid control?

VSFlexGrid has a Picture property that may be assigned to Visual Basic's Printer object. This method works
well for grids that will fit on a single page.

For grids that span multiple pages, you should consider using VideoSoft's VSPrinter control (part of the VSVIEW
product). The VSPrinter control has a RenderControl property that you can use to print grids of any size. This
method will also allow you to control page breaks, create repeating headings, and preview the document.

How do I handle optional parameters in VSFlexGrid using C++?

Optional parameters are always variants.    If you want to make the parameter an integer then edit the vsFlexGrid
wrapper files that Visual C++® creates for you and overload the appropriate method or property.

For example, if you add the functions below to the vsFlexGrid.cpp file (and the corresponding declarations to
vsFlexGrid.h), then you can use the AddItem method with a nice clean syntax:

 void CvsFlexGrid::AddItem(LPCTSTR Item) {
 VARIANT v;
 V_VT(&v) = VT_ERROR;
 AddItem(Item, v);
 }

 void CvsFlexArray::AddItem(LPCTSTR Item, int i) {
 VARIANT v;
 V_VT(&v) = VT_I2;
 V_I2(&v) = (short)i;
 AddItem(Item, v);
 }

This lets you write the following:

 fa.AddItem("hello\tmy friend"); // append as last row and
 for (i = 1; i < 10; i++)
 fa.AddItem("hello\tmy friend", i); // insert as ith row

This solution applies to all properties and methods that take optional parameters.

How do I set a picture in VSFlexGrid using C++?

Here's some code that shows how you can set the VSFlexGrid's CellPicture property (or any other ActiveX
picture property, actually) from C++ when the user clicks on the control.

Using the AppWizard, generate a new project with as a dialog-based app with the OLE controls option set to True.
After creating the project, add a VSFlexGrid control to the form and connect it to the m_flex member variable.

Add a bitmap resource and set its id to IDB_ARROWPIC.

Add the following handler for the m_flex Click event:

 // include MFC header that declares the CPictureHolder class, which
 // is the easiest way to deal with OLE-based pictures
 #include "afxctl.h"

 // this is the click event handler, and also the only custom function in this project
 void CTestCDlg::OnClickFlex()
 {
 // Create a CPictureHolder variable that will hold the picture.
 // (For details, see the ctlPict.cpp file in your MFC\SRC directory.)
 CPictureHolder pic;

 // Initialize the picture holder by giving it a picture to hold.
 // In this case, we're giving it the resource ID of a bitmap, but
 // CPictureHolder can also handle icons and metafiles.
 pic.CreateFromBitmap(IDB_ARROWPIC);

 // Tell the control to show the picture. Because we're handling
 // a click event, the row and column have already been selected.
 m_flex.SetCellPicture(pic.GetPictureDispatch());
 }

VideoSoft Products
VideoSoft VSDATA™
A very small, very fast database engine.

VSData
A complete database engine in one ActiveX Control.    Along with it's speed and small size, VideoSoft VSDATA
also provides the developer with full support for multimedia applications.

VideoSoft VSDIRECT™ 1.0
Active X control package that allows Visual Basic developers to exploit the power and speed of Microsoft DirectX
technology.

VSDirectDraw
Accesses DirectDraw which works with various creative interfaces that accelerate animation techniques through
direct access to video memory and hardware.

VSDirectSound
Accesses DirectSound which enables hardware and software sound mixing and playback.

VSDirectPlay
Accesses DirectPlay which provides connectivity of games over a modem link or network.

VideoSoft VSDOCX™ 1.0
VideoSoft VSDOCX automatically creates documentation for any ActiveX component. The core documentation is
extracted directly from the component, so it is always 100% up-to-date and accurate. The user does not need
access to the component source code.    The documentation may be extended and customized as it is created,
and revised later. Output is in the form of Word documents, Access databases, HTML files and help files.   
Custom reports may be generated in user-defined styles.

VideoSoft VSFLEX ® 3.0
A set of two custom controls for analyzing, formatting, and displaying information.

VSFlexArray
A new way to display and operate on tabular data. VSFlexArray gives you total flexibility to display, sort, merge
and format tables containing strings and pictures.

VSFlexString
A powerful regular expression engine. With VSFlexString, you can find and replace patterns in strings. Use it to
provide regular expression search-and-replace capabilities or to parse input strings.

VideoSoft VS-OCX ® /VSVBX™ (version 6)
A set of three custom controls for interface design and text parsing.

VSElastic
Smart containers that resize themselves and their child controls, automatically create labels and 3-D frames for its
child controls, and can also be used as progress indicators and labels.

VSIndexTab
Allows you to group controls by subject, using the familiar notebook metaphor that has become a Windows
standard.

VSAwk

Parsing engine named and patterned after the popular Unix utility, plus a powerful expression evaluator.

VideoSoft VSSPELL™ 1.0
A set of two custom controls that allow you to easily add spell checking and thesaurus functionality to any
Windows application.

VSSpell
A control that allows you to instantly access an extensive American English dictionary with more than 50,000
entries. Add full fledged spell checking to your apps with no code and quickly customize functionality like
automatic or manual correction, generation of suggestions for specific words, etc. A utility is included to easily
build and maintain custom dictionaries. VSSpell is also compatible with dictionary files created by Microsoft Word.

VSThesaurus
A control that allows you to access an American English thesaurus with more than 30,000 entries.    VSThesaurus
has properties and methods that allow you to both build and maintain thesaurus files.

VideoSoft VSVIEW ® version 3.0
A set of four custom controls for creating, viewing, and printing text and graphics.

VSPrinter
A much improved printer object with word wrap, headers and footers, multi-column printing, graphics, zooming
and panning, and multi-page Print Preview capability.

VSViewPort
A control that gives you a scrollable virtual area so you can fit more controls in your windows. Use it to implement
custom Print Preview, fill-out forms, and programs with scrollable pictures or control lists.

VSDraw
A versatile drawing control that lets you create complex images, view them on the screen, copy them to the
clipboard, or print them. Use it to create technical drawings, maps, and diagrams.

VSInForm
A control that you can drop into any container to customize its title bar, frame, resizing behavior, and frame
buttons. VSInForm also allows you to monitor the clipboard, drag and drop files from File manager, and more.

Order Form
(You may print this form by selecting the File|Print command.)

To: VideoSoft
5900-T Hollis Street, Emeryville, California 94608
Toll-Free: 1(888) ACTIVEX * Tel: (510) 595-2400 * Fax: (510) 595-2424

CUSTOMER INFORMATION

Name:__

Company:___

Address:___

City:__________________________________State:______________

Zip:______________Country:_________________________________

Phone:_____________________ Fax:__________________________

Email:___

PRODUCT INFORMATION
 QUANTITY PRICE (US$)
PRODUCT (in units) (per unit) TOTAL
===
ElasticLight 6.0 (ActiveX-32 Only) __________ $49 ________

VS-OCX 6.0 (includes ElasticLight) __________ $149 ________
VS-OCX 6.0 Upgrade from 5.0 __________ $99 ________

VSVIEW 3.0 __________ $249 ________
VSVIEW 3.0 Upgrade from 2.0 __________ $129 ________
VSVIEW 3.0 Upgrade from 1.0 __________ $198 ________

VSFLEX 3.0 __________ $249 ________
VSFLEX 3.0 Upgrade from 2.0 __________ $129 ________
VSFLEX 3.0 Upgrade from 1.0 __________ $198 ________

VSFlexGrid Pro 6.0 __________ $299 ________
VSFlexGrid Pro 6.0 Upgrade from 3.0 __________ $159 ________
VSFLEX 3.0 Upgrade from 2.0, 1.0 or __________ $249 ________
 competitive* grid

VSFlexGrid Pro 6.0 plus Subscription __________ $398 ________
VSFlexGrid Pro 6.0 Upgrade from 3.0 __________ $258 ________
 plus Subscription
VSFLEX 3.0 Upgrade from 2.0, 1.0 or __________ $348 ________
 competitive* grid plus
 Subscription

VSDATA 1.0 (ActiveX-32 Only) __________ $199 ________

VSREPORTS 1.0 (ActiveX-32 Only) __________ $149 ________

VSDOCX 1.0 __________ $249 ________

VSDIRECT 1.0 (ActiveX-32 Only) __________ $189 ________

VSSPELL 1.0 __________ $149 ________

VSFORUM/ASP __________ $499 ________

===

 Total units: __________

 Shipping and Handling Charges (see below): ________

 Subtotal: ________

 CA Sales Tax 8.50% (California customers only): ________

 Total: ________

SHIPPING AND HANDLING CHARGES:

Regular Mail: $7 for the first unit, $3 for each additional unit
2 day (UPS): $15 for the first unit, $7 for each additional unit
Overnight (UPS): $25 for the first unit, $7 for each additional unit
Canada: $15 for the first unit, $3 for each additional unit
Other International: $15 for the first unit, $9 for each additional unit

** Please note: UPS and Federal Express charges vary depending on weight
and destination. You can prevent shipment delays by preapproving courier
charges (up to $50) when you initial here: _________.

PAYMENT METHOD

[] Here's my check for US$ _______.
 NOTE: Checks must be drawn on U.S. Banks only.

[] Charge my...
 [] MasterCard [] American Express
 [] Visa [] Discover

 Card #:__________________________________ Expires:________

 Signature:___

** US Customers only: For your security and to help eliminate credit card
fraud, if you're paying via credit card, please provide the street address
number and zip code of your credit card billing address.
For example, if your credit card bill is mailed to 5900 Hollis Street, the
street address number is 5900.

Street Address Number: ________________ Zip Code: ________________

* COMPETITIVE UPGRADES FOR VSFlexGrid Pro 6.0
You are eligible to upgrade to VSFlexGrid Pro 6.0 for $249 if you are a licensed user of one of the following
products: VSFLEX 2.0, VSFLEX 1.0, Visual Basic 5.0, Visual Basic 6.0, True DBGrid, DataWidgets, Spread,
GridEx, Formula One, or Data Table.

