Contents

Introduction

This ActiveX control is an encryption control based upon the WWII German Enigma encryption
machine. It is one of the world's most known and popular ways to encrypt data. Enigma has
multiple rotors, ring settings, start positions, and an advanced rotor and reflector generator using
numeric seeds. This gives it the most advanced and strongest protection against decryption
methods such as the brute force attack.

Properties
Events

Methods

Registering
About

Properties
RotorOrder1..

RingSetting1..
StartPosition1..
SourceFile

TargetFile
Text

>
Q.
D
X

—
=

e
am
To
Ta
ReflectorSeed
RotorSeed

Z
D

Bk

RotorOrder1..

RotorOrder1..10 refers to all of the rotor order properties from 1 to 10. RotorOrder1 is the property
that stores the numer that sets that particular ring.

Syntax
object.RotorOrder1 [= expression]

The RotorOrder1 property syntax has these parts:

object An object expression that evaluates to an object in the Applies To list.
expression A double expression identifying the object. The default is the number 1.

Reference
Rotor orders are used to change the way the algorithm encrypts data.

See Also

RingSetting1..
StartPosition1..

RingSetting1..
RingSetting1..10 refers to all of the ring setting properties from 1 to 10. RingSetting1 is the property
that stores the numer that sets that particular ring.

Syntax
object.RingSetting1 [= expression]

The RingSetting1 property syntax has these parts:

object An object expression that evaluates to an object in the Applies To list.
expression A double expression identifying the object. The default is the number 1.

Reference
Ring Settings are used to change the way the algorithm encrypts data.

See Also
RotorOrder1..
StartPosition1..

StartPosition1..

StartPosition1..10 refers to all of the rotor order properties from 1 to 10. StartPosition1 is the property
that stores the numer that sets that particular ring.

Syntax
object.StartPosition1 [= expression]

The StartPosition1 property syntax has these parts:

object An object expression that evaluates to an object in the Applies To list.
expression A double expression identifying the object. The default is the number 1.

Reference
Start positions are used to change the way the algorithm encrypts data.

See Also
RotorOrder1..

RingSetting1..

SourceFile
SourceFile property stores the path of the file that is to be encrypted.

Syntax
object.SourceFile [= expression]

The SourceFile property syntax has these parts:

object An object expression that evaluates to an object in the Applies To list.
expression A string expression identifying the object. The default is a zero-length string ("").

Reference
Example:

Form1.EnigmaControl1.SourceFile = "c:\windows\temp}\file1"
Form1.EnigmaControl1.TargetFile = "c:\windows\temp\file2"
Form1.EnigmaControl1.EncryptFile Progressbar1

See Also

TargetFile
EncryptFile

TargetFile

TargetFile property stores the path of the file that is to be written as encrypted.
Syntax
object.TargetFile [= expression]

The TargetFile property syntax has these parts:

object An object expression that evaluates to an object in the Applies To list.
expression A string expression identifying the object. The default is a zero-length string ("").

Reference
Example:

Form1.EnigmaControl1.SourceFile = "c:\windows\temp}\file1"
Form1.EnigmaControl1.TargetFile = "c:\windows\temp\file2"
Form1.EnigmaControl1.EncryptFile Progressbar1

Heading
SourceFile
EncryptFile

EncryptFile

Syntax

Object.EncryptFile ProgressBar

Object: refers to the enigma control.
ProgressBar: refers to a progressbar control. (Optional)

Reference

This method encrypts a file where the path of the file is placed in the sourcefile property and writes
the result file using the path placed in the targetfile property.

An additional control can be used to display the progress of the encryption. This method is
compatible with Microsoft's Windows progress bar and Sheridan's SSPanel control.

Example:

Form1.EnigmaControl1.SourceFile = "c:\windows\temp\file1.txt"
Form1.EnigmaControl1.TargetFile = "c:\windows\temp\file2.txt"
Form1.EnigmaControl1.EncryptFile ProgressBar1

See Also

Encrypt
SourceFile

TargetFile

Encrypt

Object.Encrypt

Object: is the enigma control.

Reference
This method encrypts the string placed in the text property of the control

Example:

Form1.EnigmaControl1.Text = Form1.Text1.Text
Form1.EnigmaControl1.Encrypt
Form1.Label1.Caption = Form1.EnigmaControl1.Text

See Also

EncryptFile
Text

Text

ComboBox control (Style property set to 0 [Dropdown Combo] or to 1 [Simple Combo]) and TextBox
controlreturns or sets the text contained in the edit area.

ComboBox control (Style property set to 2 [Dropdown List]) and ListBox controlreturns the selected
item in the list box; the value returned is always equivalent to the value returned by the expression
List(Listindex). Read-only at design time; read-only at run time.

Grid controlreturns or sets the text contained in a cell or range of cells. Not available at design time.
Syntax
object.Text [= string]

The Text property syntax has these parts:

objectAn object expression that evaluates to an object in the Applies To list.
string A string expression specifying text.

Reference
At design time only, the defaults for the Text property are:

ComboBox and TextBox controlsthe control's Name property.
ListBox controla zero-length string ("").

For a ComboBox with the Style property set to 0 (Dropdown Combo) or to 1 (Simple Combo) or for a
TextBox, this property is useful for reading the actual string contained in the edit area of the control.
For a ComboBox or ListBox control with the Style property set to 2 (Dropdown List), you can use the
Text

property to determine the currently selected item.

The Text setting for a TextBox control is limited to 2048 characters unless the MultiLine property is
True, in which case the limit is about 32K.

For a Grid control, you can add text to a single cell by setting the Text property. This property
applies to the cell defined by the current values of the Grid control's Row and Col properties.

You can use the Text and FillStyle properties to add the same text to a highlighted range of cells.
When FillStyle = 0, the text assigned to the Text property is added only to the cell defined by the
current Row and Col property values. When FillStyle = 1, the text is added to all cells whose
CellSelected property setting is True.

You can also use the Clip property to fill a range of cells. For example, you might want to paste a
large block of information from the Clipboard into a Grid control.

Index

Returns or sets the number that uniquely identifies a control in a control array. Available only if the
control is part of a control array.

Syntax
object[(number)].Index

The Index property syntax has these parts:

objectAn object expression that evaluates to an object in the Applies To list.
number A numeric expression that evaluates to an integer that identifies an
individual control within a control array.

Settings

The settings for number are:

No value (Default) Not part of a control array.

010 32,767 Partof an array. Specifies an integer greater than or equal to

0 that identifies a control within a control array. All controls ina
control array have the same Name property. Visual Basic
automatically assigns the next integer available within the control array.
Reference

Because control array elements share the same Name property setting, you must use the Index
property in code to specify a particular control in the array. Index must appear as an integer (or a
numeric expression evaluating to an integer) in parentheses next to the control array namefor
example, MyButtons(3). You can also use the Tag property setting to distinguish one control from
another within a control array.

When a control in the array recognizes that an event has occurred, Visual Basic calls the control
array's event procedure and passes the applicable Index setting as an additional argument. This
property is also used when you create controls dynamically at run time with the Load statement or
remove them with the Unload statement.

Although Visual Basic assigns, by default, the next integer available as the value of Index for a new
control in a control array, you can override this assigned value and skip integers. You can also set
Index to an integer other than 0 for the first control in the array. If you reference an Index value in
code that doesn't identify one of the controls in a control array, a Visual Basic run-time error occurs.

Note To remove a control from a control array, change the control's Name property setting, and
delete the control's Index property setting.

Left

Leftreturns or sets the distance between the internal left edge of an object and the left edge of its
container.

Topreturns or sets the distance between the internal top edge of an object and the top edge of
its container.

Syntax

object.Left [= value]
object.Top [= value]

The Left and Top property syntaxes have these parts:

objectAn object expression that evaluates to an object in the Applies To list.
value A numeric expression specifying distance.

Reference

For a form, the Left and Top properties are always expressed in twips; for a control, they are
measured in units depending on the coordinate system of its container. The values for these
properties change as the object is moved by the user or by code. For a Timer control, these
properties aren't available at run time.

For both properties, you can specify a single-precision number.

Use the Left, Top, Height, and Width properties for operations based on an object's external
dimensions, such as moving or resizing. Use the ScaleLeft, ScaleTop, ScaleHeight, and ScaleWidth
properties for operations based on an object's internal dimensions, such as drawing or moving
objects that are contained within the object. The scale-related properties apply only to PictureBox
controls and Form and Printer objects.

Name

Returns the name used in code to identify a form, control, or data access object.
Syntax
object.Name

The object placeholder represents an object expression that evaluates to an object in the Applies To
list. If object is omitted, the form associated with the active form module is assumed to be object.

Reference

The default name for new objects is the kind of object plus a unique integer. For example, the first
new Form object is Form1, a new MDIForm object is MDIForm1, and the third TextBox control you
create on a form is Text3.

An object's Name property must start with a letter and can be a maximum of 40 characters. It can
include numbers and underline (_) characters but can't include punctuation or spaces. Forms can't
have the same name as another public object such as Clipboard, Screen, or App. Although the
Name property setting can be a keyword, property name, or the name of another object, this can
create conflicts in your code.

You can use a form's Name property with the Dim statement at run time to create other instances of
the form. You can't have two forms with the same name at design time.

You can create an array of controls of the same type by setting the Name property to the same
value. For example, when you set the name of all option buttons in a group to MyOpt, Visual Basic
assigns unique values to the Index property of each control to distinguish it from others in the array.
Two controls of different types can't share the same name.

For the Application object that is exposed or supplied by Visual Basic to add-ins, the Name property
setting is always Microsoft Visual Basic. For a Property object that is exposed or supplied by Visual
Basic to add-ins, the Name property setting is the same as the name listed in the Visual Basic (VB)
object library in the Object Browser.

Note Although Visual Basic often uses the Name property setting as the default value for the
Caption, LinkTopic, and Text properties, changing one of these properties doesn't affect the others.

Top

Leftreturns or sets the distance between the internal left edge of an object and the left edge of its
container.

Topreturns or sets the distance between the internal top edge of an object and the top edge of
its container.

Syntax

object.Left [= value]
object.Top [= value]

The Left and Top property syntaxes have these parts:

objectAn object expression that evaluates to an object in the Applies To list.
value A numeric expression specifying distance.

Reference

For a form, the Left and Top properties are always expressed in twips; for a control, they are
measured in units depending on the coordinate system of its container. The values for these
properties change as the object is moved by the user or by code. For a Timer control, these
properties aren't available at run time.

For both properties, you can specify a single-precision number.

Use the Left, Top, Height, and Width properties for operations based on an object's external
dimensions, such as moving or resizing. Use the ScaleLeft, ScaleTop, ScaleHeight, and ScaleWidth
properties for operations based on an object's internal dimensions, such as drawing or moving
objects that are contained within the object. The scale-related properties apply only to PictureBox
controls and Form and Printer objects.

Tag

Returns or sets an expression that stores any extra data needed for your program. Unlike other
properties, the value of the Tag property isn't used by Visual Basic; you can use this property to
identify objects.

Syntax

object.Tag [= expression]

The Tag property syntax has these parts:

objectAn object expression that evaluates to an object in the Applies To list.
expression A string expression identifying the object. The default is a zero-length string (™).

Reference

You can use this property to assign an identification string to an object without affecting any of its
other property settings or causing side effects. The Tag property is useful when you need to check
the identity of a control or MDIForm object that is passed as a variable to a procedure.

Tip When you create a new instance of a form, assign a unique value to the Tag property.

ReflectorSeed

ReflectorSeed is the property that stores the numeric seed needed for the random number generator
to generate a new reflector.

Syntax
object.ReflectorSeed [= expression]

The ReflectorSeed property syntax has these parts:

object An object expression that evaluates to an object in the Applies To list.
expression A double expression identifying the object. The default is the number 1.

Reference
Example:

Form1.EnigmaControl1.ReflectorSeed = 972942
Form1.EnigmaControl1.GenReflector

See Also
GenReflector
RotorSeed

GenReflector
Object.GenReflector

Object: refers to the Enigma control.

Reference
GenReflector generates a new reflector rotor based upon the ReflectorSeed property.

Example:

Form1.EnigmaControl1.ReflectorSeed = 4923864
Form1.EnigmaControl1.GenReflector

See Also
GenRotors
ReflectorSeed
RotorSeed

GenRotors
Object.GenRotors

Object: refers to the Enigma control.

Reference
GenRotors generates a new set of rotors based upon the RotorSeed.

Example:

Form1.EnigmaControl1.RotorSeed = 835983
Form1.EnigmaControl1.GenRotors

See Also
GenReflector
RotorSeed
ReflectorSeed

RotorSeed

RotorSeed is the property that stores the numeric seed needed for the random number generator to
generate new rotors.

Syntax
object.RotorSeed [= expression]

The RotorSeed property syntax has these parts:

object An object expression that evaluates to an object in the Applies To list.
expression A double expression identifying the object. The default is the number 1.

Reference
Example:

Form1.EnigmaControl1.RotorSeed = 972942
Form1.EnigmaControl1.GenReflector

See Also
GenRotors
ReflectorSeed

Events

OnRotorOrder1..10Change
OnRingSetting1..10Change
OnStartPosition1..10Change
PostEncryption
PreEncryption
PostFileEncryption
PreFileEncryption
OnReflectorSeedChange
OnRotorSeedChange

OnRotorOrder1..Change

This section includes events from OnRotorOrder1Change to OnRotorOrder..Change.
OnRotorOrder1Change indicates that a ring setting has changed.

Syntax
Private Sub object_OnRotorOrder1Change([index As Integer])

The OnRotorOrder1Change event syntax has these parts:

objectAn object expression that evaluates to an object in the Applies To list.
index An integer that uniquely identifies a control if it's in a control array.

Reference

The OnRotorOrder1Change event procedure can synchronize or coordinate data display among
controls.

Note A Change event procedure can sometimes cause a cascading event. This occurs when the
control's Change event alters the control's contents, for example, by setting a property in code that
determines the control's value, such as the Text property setting for a TextBox control. To prevent a
cascading event:

If possible, avoid writing a Change event procedure for a control that alters that control's contents. If
you do write such a procedure, be sure to set a flag that prevents further changes while the current
change is in progress.

Avoid creating two or more controls whose Change event procedures affect each other, for
example, two TextBox controls that update each other during their Change events.

Avoid using a MsgBox function or statement in this event for HScrollBar and VScrollBar
controls.

See Also
OnStartPosition1..10Change
OnRingSetting1..10Change

OnStartPosition1..Change

This section includes events from OnStartPosition1Change to OnStartPosition..Change.
OnStartPosition1Change indicates that a ring setting has changed.

Syntax
Private Sub object_OnStartPosition1Change([index As Integer])

The OnStartPosition1Change event syntax has these parts:

objectAn object expression that evaluates to an object in the Applies To list.
index An integer that uniquely identifies a control if it's in a control array.

Reference

The OnStartPosition1Change event procedure can synchronize or coordinate data display among
controls.

Note A Change event procedure can sometimes cause a cascading event. This occurs when the
control's Change event alters the control's contents, for example, by setting a property in code that
determines the control's value, such as the Text property setting for a TextBox control. To prevent a
cascading event:

If possible, avoid writing a Change event procedure for a control that alters that control's contents. If
you do write such a procedure, be sure to set a flag that prevents further changes while the current
change is in progress.

Avoid creating two or more controls whose Change event procedures affect each other, for
example, two TextBox controls that update each other during their Change events.

Avoid using a MsgBox function or statement in this event for HScrollBar and VScrollBar
controls.

See Also
OnRingSetting1..10Change
OnRotorOrder1..10Change

OnRingSetting1..Change

This section includes events from OnRingSetting1Change to OnRingSetting..Change.
OnRingSetting1Change indicates that a ring setting has changed.

Syntax
Private Sub object_OnRingSetting1Change([index As Integer])

The OnRingSetting1Change event syntax has these parts:

objectAn object expression that evaluates to an object in the Applies To list.
index An integer that uniquely identifies a control if it's in a control array.

Reference

The OnRingSetting1Change event procedure can synchronize or coordinate data display among
controls.

Note A Change event procedure can sometimes cause a cascading event. This occurs when the
control's Change event alters the control's contents, for example, by setting a property in code that
determines the control's value, such as the Text property setting for a TextBox control. To prevent a
cascading event:

If possible, avoid writing a Change event procedure for a control that alters that control's contents. If
you do write such a procedure, be sure to set a flag that prevents further changes while the current
change is in progress.

Avoid creating two or more controls whose Change event procedures affect each other, for
example, two TextBox controls that update each other during their Change events.

Avoid using a MsgBox function or statement in this event for HScrollBar and VScrollBar
controls.

See Also
OnStartPosition1..10Change
OnRotorOrder1..10Change

PostEncryption

This event is fired after encryption has taken place.
Syntax
Private Sub object_PostEncryption([index As Integer,]keyascii As Integer)

The PostEncryption event syntax has these parts:

objectAn object expression that evaluates to an object in the Applies To list.
index An integer that uniquely identifies a control if it's in a control array.

Reference
Example:

Private Sub EnigmaControl1_PostEncryption()
MsgBox "Encryption complete..."
End Sub

See Also
PreEncryption

PreEncryption

This event is fired before encryption has taken place.
Syntax
Private Sub object_PreEncryption([index As Integer,]keyascii As Integer)

The PreEncryption event syntax has these parts:

objectAn object expression that evaluates to an object in the Applies To list.
index An integer that uniquely identifies a control if it's in a control array.

Reference
Example:

Private Sub EnigmaControl1_PreEncryption()
Response% = MsgBox("Encrypt text?",36,"Encrypt")
If Response% = VBYes Then

End If
End Sub

See Also
PostEncryption

PostFileEncryption

This event is fired after a file has been encrypted.
Syntax
Private Sub object_PostFileEncryption([index As Integer,]keyascii As Integer)

The PostFileEncryption event syntax has these parts:

objectAn object expression that evaluates to an object in the Applies To list.
index An integer that uniquely identifies a control if it's in a control array.

Reference
Example:

Private Sub EnigmaControl1_PostFileEncryption()
MsgBox "File encrypted..."
End Sub

See Also
PreFileEncryption

PreFileEncryption

This event is fired before a file has been encrypted.
Syntax
Private Sub object_PreFileEncryption([index As Integer,]keyascii As Integer)

The PreFileEncryption event syntax has these parts:

objectAn object expression that evaluates to an object in the Applies To list.
index An integer that uniquely identifies a control if it's in a control array.

Reference
Example:

Private Sub EnigmaControl1_PreFileEncryption()
Response% = MsgBox("Encrypt this file?",36,"Encrypt File")
If Response% = VBYes Then

End If
End Sub

See Also
PostFileEncryption

OnReflectorSeedChange

Indicates that the ReflectorSeed property value has changed.
Syntax
Private Sub object_OnReflectorSeedChange([index As Integer])

The OnReflectorSeedChange event syntax has these parts:

objectAn object expression that evaluates to an object in the Applies To list.
index An integer that uniquely identifies a control if it's in a control array.

Reference

The OnReflectorSeedChange event procedure can synchronize or coordinate data display among
controls.

Note A Change event procedure can sometimes cause a cascading event. This occurs when the
control's Change event alters the control's contents, for example, by setting a property in code that
determines the control's value, such as the Text property setting for a TextBox control. To prevent a
cascading event:

If possible, avoid writing a Change event procedure for a control that alters that control's contents. If
you do write such a procedure, be sure to set a flag that prevents further changes while the current
change is in progress.

Avoid creating two or more controls whose Change event procedures affect each other, for
example, two TextBox controls that update each other during their Change events.

Avoid using a MsgBox function or statement in this event for HScrollBar and VScrollBar
controls.

See Also
OnRotorSeedChange

OnRotorSeedChange

Indicates that the contents of a control have changed.
Syntax
Private Sub object_OnRotorSeedChange([index As Integer])

The OnRotorSeedChange event syntax has these parts:

objectAn object expression that evaluates to an object in the Applies To list.
index An integer that uniquely identifies a control if it's in a control array.

Reference

The OnRotorSeedChange event procedure can synchronize or coordinate data display among
controls.

Note A Change event procedure can sometimes cause a cascading event. This occurs when the
control's Change event alters the control's contents, for example, by setting a property in code that
determines the control's value, such as the Text property setting for a TextBox control. To prevent a
cascading event:

If possible, avoid writing a Change event procedure for a control that alters that control's contents. If
you do write such a procedure, be sure to set a flag that prevents further changes while the current
change is in progress.

Avoid creating two or more controls whose Change event procedures affect each other, for
example, two TextBox controls that update each other during their Change events.

Avoid using a MsgBox function or statement in this event for HScrollBar and VScrollBar
controls.

See Also
OnReflectorSeedChange

Methods

Encrypt
EncryptFile
GenReflector
GenRotors

Registering

To register, do one of the following:
1 Go to our on-line ordering page at http://www.dlcomputing.com.

2 E-mail us the completed registration form to DLCSales@dJuno.com. The registration form is
located under the File Lock 98 start-up menu.

3 Fax us the completed registration form to (205) 350-4366.
4 Request registration by voice at (205) 350-5024 and a sales representative will return your call.
5 Send payment in U.S. currency to D & L Computing, Inc. at the following address:

Address: D & L Computing, Inc.
P.O. Box 6141
Huntsville, AL 35824

D & L Computing, Inc. accepts checks, money orders, purchase orders (with prior approval),
American Express, MasterCard, and VISA. See our web site for our new, faster check processing
capability that could prevent delay in mailing your personal check to us!

Note

Please note that the price, address and telephone numbers are subject to change. See our web site
for the latest information. All orders are processed within 48-hours of receipt. All returned checks
are subject to a $20 service charge. Purchase orders should be faxed to (205) 350-4366 to obtain
prior approval to prevent delay in processing purchase.

About

This ActiveX control is based upon the W.W. I| German enigma machine used by the German
military. It is said that the enigma machine was the toughest encryption to break; however, the
British and the Polish ser only able to break the code due to the capture of an actual enigma
machine and a cypher book of settings. Using computers, we now can create unlimited virtual
enigma machine configurations to give the most powerful encryption available.

Warning

The U.S. government has placed strict export laws on encryption routines. Please be advised that if
a program is developed using this package, the programmer is solely responsible in adhereing to
federal law. Please keep a close check on the updating of these laws.

D & L Computing, Inc.
Please check out our web site at http://www.dlcomputing.com.

