
24-10-24 EasyX – Getting Started

Document: Tutorial and Tips & Tricks

Date: 11-08-98

Version: 1.1

Modifications since version 1.1

None…

Modifications since version 1.0:

Windowed Direct Draw

Overview

The EasyX control is an ActiveX control, which enables the programmer to tap into the realm of
DirectX. The control is specifically designed to be used with Visual Basic, but should be
compatible with any environment that supports ActiveX technology.
 This document is divided into two sections, the first being a tutorial on the use of the control,
and the second section is a Tips & tricks section on developing with the control. For other
samples on using the EasyX control refer to the 6 undocumented samples and the Pong game
supplied with the package.

Tutorials

This section of covers two basic tutorials on using the EasyX control:

Tutorial 1: Using EasyX’s DirectDraw functions

Tutorial 2: Using EasyX’s DirectSound functions

Tutorial 1

This tutorial demonstrates the use of the following functions:

InitDirectDraw
LoadBitmapFile
FillSurface
FlipSurface
MakeSprite
DrawSprite

Setting up

Start a new Visual Basic project (Standard exe) and ad an EasyX control to it.
(or you could just open the tutorial1 in the tutorials folder)

Rankan © 1998

24-10-24 EasyX – Getting Started

Before any functions are called, there is one thing that must be set, the .Window property of
the control. This property is takes a hWnd parameter of a standard window. So the first thing
to do, after declaring some variables, is to set this parameter in the Form_Load() procedure:

EasyX1.Window = Me.hWnd

The next thing to do is to initialize DirectDraw. This step will set the screen properties and
display the DirectX primary surface. It is very important to check the return value from this
function, since it is the only indication on whether DirectDraw or the screen mode is supported.
In this application only a 8 bit color depth mode is needed, so we specify 8 bit which is 256
color mode.

Here we check it against the EX_OK constant, which is defined in the EX_CONSTANTS module.
If the return value is not EX_OK, then a different mode is tried and so on. If none of the
modes are initialized successfully we notify the user and quit. The reason for this could be
either that the display card does not support DirectX or that an older version of DirectX is
installed (remember that EasyX requires DirectX 5.0).

rt = EasyX1.InitDirectDraw(320, 200, 8)

If rt <> EX_OK Then
 'try a different format
 rt = EasyX1.InitDirectDraw(640, 480, 8)

 If rt <> EX_OK Then 'hmmm wrong again..try another
 rt = EasyX1.InitDirectDraw(800, 600, 8)

 If rt <> EX_OK Then 'that´s it..no more..
 MsgBox "Direct draw could not initializee", vbOKOnly, "Failure"
 Exit Sub
 End If
 End If
End If

After initializing the screen mode, it is time to load the surfaces. In this demonstration two
simple surfaces are created with the LoadBitmapFile function. We specify the bitmap file name,
and the color key (-1). This value ensures that the upper-left pixel in the bitmap are the
transparent color, which is not blitted on the back buffer doing a DrawSprite operation. Since
this mode is 8 bit, any other value specified as the color key would be an index into the palette
associated with the surface.
 After loading the bitmap, a check of the return value is done. If the return value is less than
0, then an error has occurred and the user is notified.

'load the surfaces
AppPath = App.Path & "\"

SurfaceYellow = EasyX1.LoadBitmapFile(AppPath & "easyx.bmp", -1)

If SurfaceYellow < 0 Then
MsgBox "Could not load graphics" & vbCrLf & "Make sure that the graphic files
are there",_ vbOKOnly, "Failure"

 EasyX1.EndDirectX
 Unload Me
 Exit Sub
End If

Rankan © 1998

24-10-24 EasyX – Getting Started

SurfaceBlack = EasyX1.LoadBitmapFile(AppPath & "easyx1.bmp", -1)

If SurfaceBlack < 0 Then
 MsgBox "Could not load graphics" & vbCrLf & "Make sure that the graphic
files are there", vbOKOnly, "Failure"
 EasyX1.EndDirectX
 Unload Me
 Exit Sub
End If

Now that the surfaces are loaded, it is time to set up the sprites, which are used to draw onto
the back buffer. Sprites are created as an area on a given surface. A Sprite created with the
MakeSprite function is not physically an image, but instead an area upon the given surface,
which will be drawn when the function DrawSprite is called.
Two sprites are defined in this application, one for each surface. Each sprite is defined as the
whole surface. But you could easily use any given size for a sprite, as long as they are within
the dimensions of the surface.

'make the sprites
SpriteYellow = EasyX1.MakeSprite(0, 0, 100, 50, SurfaceYellow)

SpriteBlack = EasyX1.MakeSprite(0, 0, 100, 50, SurfaceBlack)

Now everything that is needed is set up, the back buffer is filled with black, using the
FillSurface function. 0 is used as the index to the surface palette, since index 0 is almost
always black (and index 255 is almost always white). Lastly the back buffer is flipped, so the
pure black screen is shown.

'color the background black
EasyX1.FillSurface 0, EX_PRIMARYSURFACE
'and flip the color to make it visible
EasyX1.FlipSurface

Everything is now loaded and ready for action. All the action takes place in the in
Form_KeyDown event.

The first things to check is whether the user pressed the escape key, if so end the DirectDraw
session and program.

If KeyCode = vbKeyEscape Then
 EasyX1.EndDirectX
 Unload Me
End If

If the user presses the ‘A’ key the sprite defined as SpriteBlack will be drawn onto the back
buffer. This is done in three steps: first clear the buffer with the FillSurface function (white),
then draw the actual function, using the DrawSprite function and then flip the back buffer onto
to the primary surface. Pretty simple. One thing to note though, is the DrawSprite function.
The first two arguments specifies the upper left corner of the sprite, the next two specify the
width and height of the sprite. In this example they are equal to the dimensions of the sprite,
but the values could actually be any value greater than 0. The function will stretch the sprite to
fit the new dimensions.
The same routine is used if the user presses the ‘B’ key, except that the SpriteYellow is used.

Rankan © 1998

24-10-24 EasyX – Getting Started

If KeyCode = vbKeyA Then
 'fill the surface first
 EasyX1.FillSurface 255, EX_PRIMARYSURFACE
 'draw the sprite
 EasyX1.DrawSprite 100, 100, 100, 50, SpriteBlack
 'flip it
 EasyX1.FlipSurface
End If

If KeyCode = vbKeyB Then
 'fill the surface first
 EasyX1.FillSurface 255, EX_PRIMARYSURFACE
 'draw the sprite
 EasyX1.DrawSprite 100, 100, 100, 50, SpriteYellow
 'flip it
 EasyX1.FlipSurface
End If

If the user presses the ‘C’ key, both the sprite will be drawn using the same routines as above,
except that the SpriteYellow sprite will be stretched to double size, in order to demonstrate the
stretching capabilities of the DrawSprite function.

If KeyCode = vbKeyC Then
 'fill the surface first
 EasyX1.FillSurface 255, EX_PRIMARYSURFACE
 'draw the sprite
 EasyX1.DrawSprite 100, 100, 100, 50, SpriteBlack
 EasyX1.DrawSprite 0, 0, 200, 100, SpriteYellow
 'flip it
 EasyX1.FlipSurface
End If

If the user presses the ‘D’ key, the surface is filled with palette index entry 30 and flipped onto
the primary surface.

If KeyCode = vbKeyD Then
 'fill the surface first
 EasyX1.FillSurface 30, EX_PRIMARYSURFACE
 'flip it
 EasyX1.FlipSurface
End If

Tutorial 2

This tutorial will demonstrate the use of EasyX’s DirectSound functions. The following functions
will be used:

CreateStaticSound
CreateStreamingSound
PlayStaticSound
PlayStreamingSound
SetStaticPan
SetStreamingPan
SetStaticVolume

Rankan © 1998

24-10-24 EasyX – Getting Started

SetStreamingVolume

Open up the tutorial2 project. As you can see there are five command buttons on the form.
Three of these are dealing with the static sounds, and the other two are dealing with the
streaming sound. But before any sounds are played, an initialization of DirectSound is needed.
This is done in the Form_Load procedure:

First the Window property of the control is set. (Remember this)

Then we call and check the initialization of DirectSound:

'''do not forget this
EasyX1.Window = Me.hWnd
''''''''''''''''''''''''

'initialize sound
rt = EasyX1.InitializeSound()

If rt <> EX_OK Then
 MsgBox "Sound could not initialize", vbOKOnly
 Unload Me
 Exit Sub
End If

As usual we end the application if an error occurred.

The next thing to do is to load the sounds. First sound to be loaded is the Static sound and
then the streaming sound. As usual the return values (actually the sound indexes) are checked
and if any error has occurred, the user is notified.

AppPath = App.Path & "\"

'load sounds
StaticSound = EasyX1.CreateStaticSound(AppPath & "boink.wav")

If StaticSound < 0 Then
 MsgBox "Static sound could not be loaded", vbOKOnly
 cmdStatic.Enabled = False
End If

StreamSound = EasyX1.CreateStreamingSound(AppPath & "countdown.wav")

If StreamSound < 0 Then
 MsgBox "Static sound could not be loaded", vbOKOnly
 cmdStream.Enabled = False
End If

Everything is now loaded and ready for use. All the action happens in the command buttons.

The first (cmdStatic) plays the static sound in a non looping manner, by using the
PlayStaticSound function and supplying the sound index (StaticSound).

Private Sub cmdStatic_Click()

EasyX1.PlayStaticSound StaticSound, 0

Rankan © 1998

24-10-24 EasyX – Getting Started

End Sub

If you want to play the boink sound twice at the same time, you have two options, either load
it anew or create a duplicate. You should always choose the duplicate option, since this makes
use of the existing sound resource, instead of loading the sound again which takes up new
resources. To duplicate a sound use the DuplicateStaticSound function.(only static sounds can
be duplicated)

Private Sub cmdStaticDuplicate_Click()

StaticDuplicate = EasyX1.DuplicateStaticSound(StaticSound)

cmdStaticPlayDup.Enabled = True

End Sub

To play the newly duplicated sound, simply use the PlayStaticSound function, supplying the
index of the duplicated sound.

Private Sub cmdStaticPlayDup_Click()

EasyX1.PlayStaticSound StaticDuplicate, 0

End Sub

To play the streaming sound, use the function PlayStreamingSound, as is done in the
cmdStream click procedure.

Private Sub cmdStream_Click()

EasyX1.PlayStreamingSound StreamSound, 0

cmdStopStream.Enabled = True

End Sub

Since streaming sounds are usually longer than static sounds an option to stop it from playing
is supplied in the cmdStopStream procedure.

Private Sub cmdStopStream_Click()

cmdStopStream.Enabled = False

EasyX1.StopStreamingSound StreamSound

End Sub

That is actually it, very easy and quick to set up.

Rankan © 1998

24-10-24 EasyX – Getting Started

Tips and Tricks

This section is divided into three sections, a DirectDraw section, a DirectSound Section and a
DirectInput section. Each section briefly describes some features of the way that EasyX
implements each technology and then gives some pointers on how to avoid errors.

DirectDraw and EasyX

EasyX implements DirectDraw in a very straightforward and easy manner. When DirectDraw is
initialized with the InitDirectDraw function, a primary display surface and a back buffer is
created. These two surfaces are flipped when calling the FlipSurface function, meaning that
everything drawn onto the back buffer, are now shown on the screen. Always remember this,
since you can not draw on the primary surface through EasyX, only onto the back buffer.
To use graphics with EasyX two steps must be performed. The first step is to load the graphics
using the LoadBitmapFile function, this function, if successful, will return an index to the
loaded bitmap surface. Then a sprite must be defined using the MakeSprite function. The sprite
is defined as an area on the bitmap surface supplied to the function. This will enable you to
define several sprites on a single surface, and thereby using bitmaps consisting of several
sprites (this is actually the recommended way to do it, check out the undocumented sample in
this package). When the sprite should be drawn, use the DrawSprite function. This function
should be supplied with the details on where to draw the sprite and what dimensions the sprite
should have. The DrawSprite function will stretch the sprite to fit the dimensions supplied to
the function. To make the sprite appear on the screen, use the FlipSurface function.

To summon up on this information:

To initialize DirectDraw:

1) Set the Window property of the EasyX control.
2) Initialize DirectDraw with the InitDirectDraw function.

To use graphics:

1) Load a bitmap with LoadBitmapFile function.
2) Make a sprite on the surface created in step 1, with the MakeSprite function.
3) Draw the defined sprite with the DrawSprite function.
4) Flip the back buffer with the FlipSurface function.

A big warning is place at this point. Since speed is essential in Drawing sprites, filling and
slipping surfaces, error checking in the EasyX control has been kept to a minimum in some
functions. So if you try to fill a surface with FillSurface function and DirectDraw has not been
initialized correctly, you will get an runtime ‘Automation Error’. So take great care when
initializing DirectDraw, and check the return values. Likewise when loading bitmaps and
defining sprites.

Tips:

 Always check return values when initializing and setting up the application.
 Do not use the form where the control is placed for anything else than keeping the control
 Use the FillSurface function to fill the back buffer, before any drawings are made.
 Always moderate the bitmaps loaded into surfaces, not too small and not too big. This

saves resources used on both the video cards and system memory.
 Remember that you can free all surfaces with the ReleaseSurfaces function.

Rankan © 1998

24-10-24 EasyX – Getting Started

 Do not use the Do – Loop scenario in the undocumented samples as the Main function,
since its execution speed varies.

 Always use the constants defined in the EX_CONSTANTS module

Windowed DirectDraw

As of version 1.1 EasyX will enable the developer to use DirectDraw® in windowed applications.
This provides the developer with bundle of opportunities, primarily the fact that the application
will operate in the normal Windows environment. One very important thing to note is that both
modes can not be used at the same time. Either the ‘normal’ exclusive mode is used or the
windowed mode is used. Using Windowed DirectDraw might seem to be the best choice,
because all normal functions that applies to the Window environment can be used. But, and
there is a big but, some very profound restrictions apply. The most important thing is the lack
of page flipping, which is a primary feature of full screen DirectDraw. And other very important
‘feature’ is the fact that the application resides on the normal desktop, and is therefore subject
to normal windows behavior. This is an especially important fact to take into account, when
running in a palettized mode.
 To create a windowed DirectDraw session with EasyX, start by setting the Window property of
the control. After this, very important step, a call to the IWInitDirectDraw will initialize and
create the primary surface of the window. This function takes one parameter, a string to a
bitmap file, from which a palette will be created and attached to the primary surface. This
parameter is only useful in palettized mode. If the mode is palettized and an empty string is
passed, a standard palette will be created and attached to the surface. When operating in
palettized mode it is always a good idea to pass a string to a bitmap when initializing
DirectDraw, this way the graphics that the DirectDraw application uses will always look like
they should. But setting a specific palette when initializing is not always enough, since the
palette may be changed by the system, if the application loses focus. So when the application
gets activated again, the palette will be the one the prior application used, and the graphics
may look a little funny. To prevent the funny looking graphics, use the function
IWResetSurfaces, which will reset the palette and reload all the surfaces, so that they once
more look normal. All this is of course only a problem in palettized mode.
 The other major concern with windowed DirectDraw is the fact that flipping surfaces are
unavailable, and the fact that the developer is allowed to blit directly to the primary surface.
The result will usually be flickering and tearing. To counter this a fake back buffer can be
created, using the IWCreateFakeBackBuffer function. The basic principle is that instead of
using the normal IWDrawSprite function to the sprite, the IWDrawToBackBuffer is used.
Thereby drawing all sprites into the fake back buffer. When it is time to update the primary
surface, the IWDrawFakeToPrimary function is used to draw everything in the back buffer to
the primary surface. This technique is also known as double buffering. By using this method,
the whole surface is updated all at once, and thus avoids flickering and tearing. This of course
requires two blits, instead of just one blit to the primary surface, which means it is slower, but
nicer. Loading graphics to a windowed DirectDraw session is done in exactly the same way as
with full screen modes.

To initialize DirectDraw in a Windowed mode:

1) Set the Window property of the EasyX control.
2) Initialize DirectDraw with the IWInitDirectDraw function.

To use the fake back buffer:

1) Create the fake back buffer with IWCreateFakeBackBuffer function
2) Draw all the sprites into the fake back buffer with the IWDrawToBackBuffer function
3) Draw the back buffer onto the primary surface using the IWDrawFakeToPrimary function

Rankan © 1998

24-10-24 EasyX – Getting Started

Tips with Windowed DirectDraw

 Only use the IW specific functions for drawing in a windowed mode
 All functions regarding DirectInput and DirectSound still works normally in windowed mode
 Use the IWResetSurfaces function to reload the surfaces and palette when the application

has lost focus and gets it again.
 Avoid tearing by using double buffering with the IWCreateFakeBackBuffer and related

functions.

DirectSound and EasyX

EasyX implements DirectSound in two ways, a Static way and a Streaming way. The static way
is used with short, often played sounds, which are not taking up many resources. The
streaming way are used with longer sounds, which are being streamed internally by EasyX into
a sound buffer, and from the sound buffer mixed into the primary buffer, and then played.
Sounds, which are longer than 4 seconds of play, should always be created as a streaming
sound, while sounds shorter than 2 seconds should always be static sounds.
 Before any sounds are created, the Window property should be set and then DirectSound
should be initialized with the InitializeSound function. After this initialization, sounds are
created with either the CreateStaticSound or the CreateStreamingSound functions. The sound
file used to create sounds must a regular PCM WAV format. Whether it is stereo or mono does
not matter, but it must be a PCM - format.
 After creating the sounds, they can be played with either PlayStaticSound or
PlayStreamingSound. These functions take two arguments, the sound index and a flag, which
determines whether the sound should be looped.
 One thing to remember is that all the sounds playing are mixed together into the primary
buffer and played from there.
 EasyX implements some special effects for use with DirectSound, these are the volume and
pan setting functions. Especially the pan functions are useful in game programming as a
special effect to use when sounds can come from the left or right side (see the Pong game).

To summon up on DirectSound:

To initialize DirectSound with EasyX:

1) Set the Window property of the control
2) Initialize DirectSound with InitializeSound function

To play a sound:

1) Created (or rather load) the sound with the CreateStaticSound or CreateStreamingSound
functions, depending on the kind of sound which is being loaded.

2) Play the sound with PlayStaticSound or PlayStreamingSound functions.

Tips

 Remember that both of the Play…Sound functions will return immediately after starting the
sound player functions.

 Setting the pan value of specific sounds can create some special directional effects.
 Always duplicate static sounds, instead of reloading the same sound file into a new buffer.

Rankan © 1998

24-10-24 EasyX – Getting Started

DirectInput and EasyX

DirectInput is a technology that enables the user to directly communicate with the hardware,
instead of going through the normal windows message system. This version of EasyX supports
only the keyboard and mouse as DirectInput objects, future versions will probably support all
ranges of DirectInput objects. The first thing to do when using DirectInput through EasyX is
(as usual) to set the Window property of the control. After this a call to the InitDirectInput
function is made. DirectInput is now set up, and the next thing to is to create the DirectInput
objects, mouse or keyboard. This is done through the CreateMouse and CreateKeyboard
functions. The device objects are then created (remember to check the return values), but can
not be used before the objects are acquired through the AcquireKeyboard or AcquireMouse
functions.
 After this initialization the device object(s) are set up and ready to use. If the keyboard has
been chosen as a device, the different state of the keys can be checked with the GetKeyState
function. The function takes one argument, the keyboard key that should be checked. The
return values from the function are EX_KEYDOWN, EX_KEYNOTDOWN or
EX_DEVICENOTACQUIRED. In the last case a simple call to AcquireKeyboard should fix it. The
other two values are flags indicating whether the key that was passed to the function is
pressed or not pressed. The values of the different keys are defined in the EX_CONSTANTS
module. This kind of ‘polling’ scenario might seem a bit awkward (at least for the VB
programmer), but it is very much faster than the usual event system, plus you can check for
multiple keys (with successive calls to the GetKeyState function), and react specifically when
multiple keys are pressed.
 With the mouse as the device object you have two choices, either set the control to event
notification or use the GetMouseState function. The recommended choice is the GetMouseState
function, since it is faster and more efficient. The GetMouseState function takes three
arguments, which are filled with the appropriate values from the function. The X and Y
coordinate are relative values, meaning that they represent the movement of the mouse since
the last call to the function. The Button argument is filled with values, as represented in the
constants EX_LEFTBUTTON, EX_RIGHTBUTTON and EX_BOTHBUTTONS, which are declared in
the EX_CONSTANTS module. The event notification is set with the SetMouseEvents function.
When the event is set, the event EasyX_MouseEvent will be fired when the mouse state
changes. As with the other mouse functions, the values X and Y are relative to last event, and
the Button parameter is represented in the same way as with the GetMouseState function.

To summon up on DirectInput through EasyX:

Create a DI object:

1) Set the Window property of the control
2) Initialize DirectInput with InitDirectInput function
3) Create a device object with either CreateKeyboard or CreateMouse functions
4) Acquire the created device with either AcquireKeyboard or AcquireMouse functions
To use the keyboard object

1) Call the GetKeyState function with the key in question as the parameter
2) Check the return value from the GetKeyState function.

To use the mouse object

1) Either set the Event notification with the SetMouseEvents function or check the state with
the GetMouseState function.

2) Remember that all coordinate values are relative values

Rankan © 1998

24-10-24 EasyX – Getting Started

Tips

 Remember to acquire the device before use
 Always check return values for the EX_DEVICENOTACQUIRED value, reacquire the device if

the value was returned
 Make sure that everything is initialized properly
 Remember that the usual Windows mouse cursor disappears when the mouse is acquired.

So in order to use a mouse cursor the program has to programmatically create one. See
the EX_3 sample in the undocumented samples.

Rankan © 1998

	Overview
	Tutorials
	Tutorial 1
	Setting up

	Tutorial 2

	Tips and Tricks
	DirectDraw and EasyX
	Windowed DirectDraw
	Tips with Windowed DirectDraw

	DirectSound and EasyX
	Tips

	DirectInput and EasyX
	Tips

