
DS-Animated Cursor Controls Help

Thank you for using the Dave Software Animated Cursor Controls. These controls are the full versions.
You are welcome to distribute them to other people, either as the controls or in your programs. When
distributing the controls, you must make no charge (including disk charges) for them. The controls can be
downloaded from http://www.bigfoot.com/~davesoft/dsaniset.zip

If you find any bugs in the controls, or wish to make suggestions about them, please feel free to email me
at davesoft@bigfoot.com

Before reading this document, you may wish to check out the demo program included with the controls.
This demonstrates the effects of all the properties. If you find any errors in this documentation, please let
me know and I will correct them.

The controls are now at version 1.01

Overview
These controls do two things:

1) They enable you to use Animated Cursors as images on windows that will actually animate
2) They fix an annoying limitation of VB that prevents the use of Colour Static Cursors and, of course,

Animated Cursors

These controls have already gone through a vast amount of beta testing (the Cursor component made it
to Beta #3!). They should be working with a good degree of stability now. Please note that the techniques
used for the Cursor Control are immensely complicated – there may still be mistakes in the code. If you
do find a fault, see if it is consistent and then let me know about it and I will do my best to fix it.
Hopefully, Microsoft will eventually enable the use of Animated Cursors in VB and so the control will
become redundant.

Windows NT Note
The controls behave erratically on Windows NT and the property pages do not function correctly. The

problems appear to be linked to the Windows NT use of Unicode strings. Windows 2000 promises to fix
this problem by eradicating the cross-platform differences between Windows NT and Windows 95/98.
For this reason, I have no plans to make these controls function under Windows NT. They work, but I
cannot guarantee that they will function completely.

Properties

Property Information
Type Default Reference

Image Control
Animate Boolean True When True, the image will Animate. When False,

only Frame #1 is displayed
Animation String N/A Set this to the filename of the cursor required. The

return value of this property should be
disregarded. If you wish to send the binary data
(for example, if the cursor is in a resource file).
Then prefix the data with a “>” and send it as the
Filename field.

Artist String N/A Returns the name of the Artist who wrote the
cursor or {Undefined} if it was not in the file.
Read-only

BackColor RGB Colour Light Grey Sets the Mask colour for the control. All the parts
of the cursor that are in the “mask” colour will be

mailto:davesoft@bigfoot.com
http://www.bigfoot.com/~davesoft/dsielink.zip

set to this colour
CursorName String N/A Returns the name of the cursor or {Untitled} if it

was not in the file. Read-only
GetData String N/A Technically, a function! Returns a string

containing the binary data of the file loaded
LastError Enum NoError NoError – Nothing wrong

FileSystem – Error reading the disk or bad
filename
FileCorrupt – File is not static/animated cursor
Unexpected – Unexplained error

This value must be read as soon as the call is
made. Calls to certain properties will clear the
value of this property

OLEDropMode Enum aciNone Determines if the control accepts OLE Dropping
Time Long N/A Returns the length of time, in milliseconds, that

one complete cycle takes. Returns –1 when no
graphic is loaded

Visible Boolean True Determines if the control is displayed or not

Cursor Control
Cursors Class N/A See below for details of the CursorCol Class. I

recommend that you initialise the control at design
time using the Property and do not actually use
this property – it’s easier!

Events

Only the Image Control has any events. The events are all standard Visual Basic events – please see the
Visual Basic documentation for details on these.

Usage
The Image Control should be pretty much self-explanatory from the properties. The Cursor Control

requires a bit more understanding. Firstly, only controls that have a MousePointer property and an hWnd
property can be used by this control. If you want a cursor on a Label control (which, in the case
annoyingly, has no hWnd – at other times this fact is handy!!!) then draw a picture box that is the same
size, place the label inside it and set the cursor for the Picture Box. This is a quick work around this
problem. Also note that, for the cursor to apply, the MousePointer property of the object must be set to “0
– Default” or “1 – Arrow”. For some annoying reason known only to Microsoft, the PropertyPage and
UserDocument objects do not implement the UserControl.ParentControls property to correctly – I’m
afraid that the control does not work on Property Pages and User Documents.

CursorCol
This class is used to manipulate how the control behaves. Think of the Cursors property as the book,

and the DSAniCursor control as the reader. They are actually totally independent of each other!

NB Only place one Animated Cursor Control on each form. If a second is placed, the form may not
function correctly. A warning message is displayed when you do this. If you persist and distribute an
application that has two controls on one form, because of the risk of interference with other applications,
this nice little message is displayed…

Is this an incentive to obey the last remark? Yes, I thought so!! This message is no joke – one control
on the form will manage all cursors and controls.

Overview
The CursorCol is an object that manipulates two collections. One is a collection of all the objects on

the form that the DSAniCursor is on, the second is a collection of all the Animated Cursors that you wish
to use. You can only assign one Animated Cursor to a control, but one Animated Cursor may be assigned
to more that one control thus…

In this example, Cursor 3 is unused, but still available. Please note that Controls collection is not pre-
initialised. You simply add control names to it. Also the names are not checked – you can add any name
you like, but the cursor will only be applied if it is the name of a control on the form. Control arrays are

Animated Cursors

Cursor 1

Cursor 2

Cursor 3

Controls

Control 1

Control 2

Control 3

referenced as, for example, BtnData(0). The CursorCol class exposes methods for adding and removing
cursors to the control, and for setting the cursor for a control.

Method
F = Function, S = Sub

Information
Parameters Reference

S AddCursor Name (Variant – Collection Key),
Filename (String)

Name is the name by which you will
refer to the cursor when using it with
SetControl. Filename is the filename of
the cursor to load. You can send data
by prefixing it with the “>” character
just as for the Animation property of
the Image Control

F ControlCount Returns Long Returns the number of controls that
have had cursors assigned to them

F ControlData Control-Name (String). Returns String Returns the name of the cursor that the
control “Control-Name” has been
assigned to

F CursorCount Returns Long Returns the number of cursors that
have been loaded

F CursorData Name (Variant – Collection Key).
Returns String

Returns the binary data of the cursor
specified by Name.

F GetLastError Returns long Returns the last error. Check as soon as
the call is made or the error will be
cleared. The error is set 0 after the
function is called

S RemoveControl Name (String) Removes the cursor applied to a
control

S RemoveCursor Name (Variant – Collection Key) Removes a cursor from the collection
and all of the controls that have that
cursor associated with them.

S SetControl Name (String), Cursor (Variant –
Collection Key)

This assigns the loaded cursor “Cursor”
to the control “Name”. Name must be
the exact name of the control (not case
sensitive) or nothing will happen.

Error Codes
0: No Error
1: File not found
2: Disk error
3: Already in collection
4: Data not found
5: Invalid Key (Contained Chr(0) or "{None Set}" was supplied)

This lists the error codes used by each routine. Note that the CursorCount and ControlCount do not set the
GetLastError property. This means that you can still retrieve the error value after calling them. The
“exception” codes shown are the only ones that can ever be “thrown” by the routine.
Method Throws Clears Last Error
AddCursor 1,2,3,5 Yes
RemoveCursor 4 Yes
CursorCount No
CursorData 4 Yes
SetControl 4,5 Yes
RemoveControl 4 Yes
ControlCount No
ControlData 4 Yes

Property Pages

Both controls have two property pages. The Image control has a custom page, “Animated Image
Properties”, and a standard VB Colour page. The Cursor Control has two custom pages, “Cursors” and
“Controls”. The VB Colour page is documented in the VB help file. The other three are below…

“Animated Image Properties”

“Cursors”

“Controls”
This property page has the advantage that you can’t try and specify a control that doesn’t exist!

You can drag
cursors from
Explorer to speed
things up

The filename is
entered here

Enter the Key
for the cursor
that will be
used on the
next page

The Scroll-Bar
enables you to
navigate through the
collection

Click to insert
a cursor into
the collection

Click on the
control that
you wish to
set here

Choose from
the list of
available
cursors here

“{None Set}”
clears the
cursor for the
control

	Overview
	Windows NT Note
	Properties
	Image Control

	Events
	Only the Image Control has any events. The events are all standard Visual Basic events – please see the Visual Basic documentation for details on these.
	Usage
	CursorCol
	Overview
	Error Codes
	Method Throws Clears Last Error

	Property Pages

