
RemoteDataBar ActiveX Control
Properties Methods Events

RemoteDataBar provides access to data stored in a remote OLE DB (ADO) data source through bound
controls.    It communicates with a server machine over HTTP, HTTPS, DCOM (for a local area network),
and any other protocols supported by Microsoft® Remote Data Service® (RDS).    You don’t need to know
about RDS or how it works in order to use RemoteDataBar.

RemoteDataBar thus allows you to bind controls at design time (or run time) to a data source “over the
web”, using a development environment such as Microsoft Visual Basic®.    This can be a tremendous
advantage over other data source objects that either require a direct database connection over a local
network (and consume expensive database resources), or can only be bound to controls on an HTML
page.

Once the server machine is set up to support the communication, in order to access data you’ll need to
place an instance of the control on a form, set the Server property to the server machine’s name or URL,
and set the ADO connection string with the Connect property.    Then you define the source of the data
using the RecordSource property, which is a SQL SELECT statement if you’re accessing a DBMS such
as Oracle, SQL Server or Access.

Connect the RemoteDataBar control to a data-bound control such as the DataGrid, DataCombo, or
TextBox control by setting the DataSource property to the RemoteDataBar control.    For a TextBox
you’ll also need to set the DataField property to the appropriate database field.

At run time, you can change any of these properties to use a different server machine or database.    You
can also change the underlying recordset to a previously opened recordset with the SourceRecordset
property.    You have full access to the underlying recordset through the Recordset property.

Because RemoteDataBar is built on top of the Data Access Objects Client, you have access to its data
services through the Database property.

Because the data access objects client components and RemoteDataBar are so closely tied in with ADO,
you should have access to the ADO documentation to be able to fully understand many of the constants
and parameters used and referred to in this help.    If you are using Visual Basic as your development
environment, then you should add “Microsoft ActiveX Data Objects 2.0 Library” in the “Project—
References” dialog so that you have access to these constants.

bound control

A data-aware control that can provide access to a specific field or fields in a database through a Data
control.    A data-aware control is typically bound to a Data control through its DataSource, DataField and
DataMember properties.    When a Data control moves from one record to the next, all bound controls
connected to the Data control change to display data from fields in the current record.    When users
change data in a bound control and then move to a different record, the changes are automatically saved
in the database.

Data Access Objects Client Overview
See Also

The Data Access Objects Client component provides access to data stored in a remote OLE DB (ADO)
data source.    It communicates with a server machine over HTTP, HTTPS, DCOM (for a local area
network), and any other protocols supported by Microsoft Remote Data Service (RDS). The client
component comprises the Database object, the Parameters collection, and the Parameter object. You
don’t need to know about RDS or how it works in order to use these objects.

Because the Database object deals only with disconnected recordsets, no direct database connections
are maintained by the client; thus, expensive database resources are not consumed, and your application
can scale up well.

Once the server machine is set up to support the communication, in order to access data you’ll need to
declare an instance of the Database object in your code, set the Server property to the server machine’s
name or URL, and set the ADO connection string with the Connect property.    Then you can access data
using the methods of the Database object.

In summary, these are the features of the data access client components:

· get an ADO recordset via a method call
· retrieve multiple recordsets via a single method call
· execute a SQL statement
· call a stored procedure (with input and/or output parameters)
· retrieve a recordset from an Oracle stored procedure
· use a method that takes a recordset, applies the update (on the remote server machine), and returns

a "conflict" recordset consisting of all those records for which an update could not be made
· make your application scale up well, since the component communicates with a server-side ActiveX

DLL residing in Microsoft Transaction Server
· avoid the need to install and keep updating ODBC drivers, SQL*Net (for Oracle), or other database

connectivity software on every client machine in order for applications to work
· avoid the requirement of a full ADO installation.    Only the ADO client components are needed

Because the data access objects client components are so closely tied in with ADO, you should have
access to the ADO documentation to be able to fully understand many of the constants and parameters
used and referred to in this help.

Database Object
Properties Methods Events

Data is retrieved from a remote data source as disconnected ADO recordsets using the GetRS method of
the Database object.    If multiple recordsets are required at once, use the GetRSMultiple method to
minimize network traffic and optimize your application’s performance.    Data is updated either using a
SQL statement via the ExecuteSQL method, by batch update via the UpdateBatch method, or by calling
a stored procedure with the ExecuteStoredProc method.    You can obtain schema information with the
GetSchemaInfo method, which is similar to the ADO GetSchema method.    If you have stored
procedures in an Oracle database that return recordsets, you can retrieve these recordsets using the
GetStoredProcOrclRS method.

For sophisticated multi-user functionality, you can use the UpdateBatchConf method, which returns a
"conflict" recordset consisting of all those records for which an update could not be made.

At run time, you can change the Server and Connect properties to use a different server machine or
database.

Parameters Collection
Properties Methods Events

A Parameters collection contains all the Parameter objects that will be passed into and out of the
ExecuteStoredProc method of the Database object.

Use the Add method to create Parameter objects with the appropriate property settings and append
them to the Parameters collection.    Use the Delete method to remove Parameter objects from the
Parameters collection if necessary.

Parameter Object
Properties Methods Events

With the collections, methods, and properties of a Parameter object, you can do the following:
· Set or return the name of a parameter with the Name property.
· Set or return the value of a parameter with the Value property.
· Set or return parameter characteristics with the Attributes and Direction, Precision,

NumericScale, Size, and DataType properties.

ConflictRecordset Property
See Also Example Applies To

Returns the conflict Recordset object that was populated by a call to the UpdateBatchConf method.   
Read-only.

Syntax

object.ConflictRecordset

The ConflictRecordset property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

Remarks

The ConflictRecordset cannot be assigned to the SourceRecordset property of RemoteDataBar and
sent for a subsequent batch update with the UpdateBatch or UpdateBatchConf methods, since it lacks
the field metadata to make it updatable.

Connect Property
See Also Example Applies To

Sets or returns ADO connection string to be used for data.

Syntax

object.Connect [= string]

The Connect property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

string A string expression that evaluates to a valid ADO
connection string.

Remarks

Refer to ADO help for a description of the parts that make up the connection string.

Server Property, Connect Property, FetchMetaData Property Example

This example shows how the Server, Connect, and FetchMetaData properties can be used to prepare
for retrieving a read-only Recordset.

Private Sub Command1_Click()
 Dim Database1 As New DADAO.Database
 Database1.Server = "http://cawebdev"
 Database1.Connect = "Provider=MSDAORA;Data Source=cadev09;User
ID=it_time;Password=it_time"
 Database1.FetchMetaData = False
End Sub

Count Property
See Also Example Applies To

Indicates the number of objects in a Parameters collection.

Syntax

object.Count

The Count property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

Return Value

Returns a Long value.

Remarks

Use the Count property to determine how many objects are in a Parameters collection.

If you are using Microsoft Visual Basic and want to loop through the members of the collection without
checking the Count property, you can use the For Each...Next statement.

If the Count property is zero, there are no objects in the collection.

Database Property
See Also Example Applies To

Returns the Database object associated with this control.    Read-only.

Syntax

object.Database

The Database property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

Remarks

Use the Database object via this property to obtain further ADO recordsets through code, to execute SQL
statements, call stored procedures, or retrieve schema information.

FetchMetaData Property
See Also Example Applies To

Sets/returns whether field metadata will be retrieved with the recordset.

Syntax

object.FetchMetaData [= value]

The FetchMetaData property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

value A boolean expression that determines whether field
metadata is fetched from the provider.

Settings

The settings for value are:

Setting Description

True Field metadata is fetched.
False Field metadata is not fetched.    The recordset will not be

updatable.

Remarks

Set to this property to True to allow for an updatable Recordset that can be used in a batch update with
the UpdateBatch or UpdateBatchConf methods.

InternetTimeout Property
See Also Example Applies To

Indicates the timeout (in milliseconds) for HTTP transmissions.

Syntax

object.InternetTimeout [= value]

The InternetTimeout property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

value A Long value that determines the number of
milliseconds before a method call times out when using
HTTP.

Recordset Property
See Also Example Applies To

Returns the ADO Recordset object associated with this control.    Read-only.

Syntax

object.Recordset

The Recordset property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

RecordSource Property
See Also Example Applies To

Gets/sets the source of the recordset.

Syntax

object.RecordSource [= string]

The RecordSource property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

string A string expression that evaluates to a valid SQL data
request.

Remarks

In general, this is a SQL statement (using the dialect of the database server), such as “SELECT * FROM
customers”.

Server Property
See Also Example Applies To

Gets or sets the server name and communication protocol.

Syntax

Protocol Description

HTTP object.Server="http://awebsrvr:port"
HTTPS object.Server="https://awebsrvr:port"
DCOM object.Server="machinename"
In-process object.Server=""

Part Description

object An object expression that evaluates to an object in the
Applies To list.

awebsrvr or
machinename

A String that contains a valid Internet or intranet path
and server name.

Remarks

The server is the machine where the Data Access Objects server component is located.    It need not be
the machine where the data source is located.    A connection to the server is made using Remote Data
Service (refer to ADO Help for more details).

If the DCOM protocol is used, machinename is specified without the \\ characters.

SourceRecordset Property
See Also Example Applies To

Sets or returns the underlying ADO Recordset.

Syntax

object.SourceRecordset [= value]

The SourceRecordset property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

value An object variable containing a Recordset object.

Toolbar Property
See Also Example Applies To

Returns the Toolbar control contained in this control.    Read-only.

Syntax

object.Toolbar

The Toolbar property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

Remarks

Using this property, you may access or modify the toolbar contained in a RemoteDataBar object.

UpdateType Property
See Also Example Applies To

Sets or returns how updates are performed.

Syntax

object.UpdateType [= value]

The UpdateType property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

value A constant or Integer value that specifies an update type,
as described in Return Values.

Return Values

Constant Value Description

UpdateTypeBatch 0 A batch update is made with a call to the
UpdateBatch method.

UpdateTypeCurrent 1 Updates are made to the current record
when the Save, Add or Delete buttons are
pressed.

Attributes Property
See Also Example Applies To

Indicates one or more characteristics of a Parameter object.    Refer to ADO documentation.

Syntax

object.Attributes [= long]

The Attributes property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

long A long expression.

DataType Property
See Also Example Applies To

Indicates the data type of a Parameter object.    Refer to ADO documentation.

Syntax

object.DataType [= value]

The DataType property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

value An expression that evaluates to a value in the
ADODB.DataTypeEnum enumeration.

Direction Property
See Also Example Applies To

Indicates whether the Parameter represents an input parameter, an output parameter, or both.

Syntax

object.Direction [= long]

The Direction property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

long A long expression.

Remarks

The client-side Parameter object supplies a ParameterDirectionEnum enumeration that is identical to
the ADODB.ParameterDirectionEnum.    This enumeration is supplied because the ADODB
enumeration is not available if only the ADO/RDS client components are installed on the client machine.

Name Property
See Also Example Applies To

Indicates the name of the Parameter.    Refer to ADO documentation.

Syntax

object.Name [= string]

The Name property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

string A string expression.

NumericScale Property
See Also Example Applies To

Indicates the scale of numeric values in a Parameter object.    Refer to ADO documentation.

Syntax

object.NumericScale [= byte]

The NumericScale property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

byte A byte expression.

Precision Property
See Also Example Applies To

Indicates the degree of precision for numeric values in a Parameter object.    Refer to ADO
documentation.

Syntax

object.Precision [= byte]

The Precision property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

byte A byte expression.

Size Property

See Also Example Applies To

Indicates the maximum size, in bytes or characters, of a Parameter object.    Refer to ADO
documentation.

Syntax

object.Size [= long]

The Size property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

long A long expression.

Value Property
See Also Example Applies To

Indicates the value assigned to a Parameter object.    Refer to ADO documentation.

Syntax

object.Value [= variant]

The Value property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

variant A variant expression.

AboutBox Method
See Also Example Applies To

Displays version information about the control.

Syntax

object.AboutBox

The AboutBox method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

Remarks

Displays the About dialog box for the product.    Use this method to display version information about the
control.

Add Method
See Also Example Applies To

Creates a new Parameter object based on the given arguments and adds it to a Parameters collection.

Syntax

object.Add (ByVal Name As String, ByVal Direction As ParameterDirectionEnum, [ByVal DataType As
ADODB.DataTypeEnum], [ByVal Value As Variant])

The Add method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

Name A string expression that evaluates to the name of the
new object, which must not be the same as any other
object in the collection.

Direction The type of the Parameter object.    See the Direction
property for valid settings.

DataType The data type of the Parameter object.    See the
DataType property for valid settings.

Value The value for the Parameter object.

Remarks

Use the Add method to create a new Parameter object with the specified name, type, direction, size, and
value, and add this to a Parameters collection. Any values you pass in the arguments are written to the
corresponding Parameter properties.

ExecuteSQL Method
See Also Example Applies To

Executes the given SQL statement.

Syntax

object.ExecuteSQL (ByVal sSQL As String, [ByRef RecordsAffected As Long])

The ExecuteSQL method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

sSQL A string expression that evaluates to a SQL query.
RecordsAffected A Long variable to which the provider returns the number

of records that the operation affected.

ExecuteSQL Method Example

This example shows how the ExecuteSQL method can be used to execute a SQL update query.

Private Sub Command1_Click()
 Dim RecsAffected As Long
 Database1.ExecuteSQL "UPDATE vendor SET phone = NULL", RecsAffected
End Sub

ExecuteStoredProc Method
See Also Example Applies To

Executes a stored procedure.

Syntax

object.ExecuteStoredProc (ByVal sCmd As String, Params As Parameters])

The ExecuteStoredProc method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

sCmd A string expression that evaluates to a stored procedure
name.

Params An object variable containing a Parameters collection
object.

Remarks

Use ExecuteStoredProc rather than ExecuteStoredProcQ for better performance in calling a stored
procedure.    The drawback is that the properties of the parameters must be set correctly.

ExecuteStoredProc, Add, Item, Size, Precision, NumericScale Example

This example shows how the ExecuteStoredProc method can be used to execute a stored procedure
that takes two input parameters and one output parameter.

Private Sub Command1_Click()
 Dim oParams As DADAO.Parameters
 Dim lVendorID As Long

 Set oParams = New DADAO.Parameters
 With oParams
 .Add "iname", adParamInput, adVarChar, txtName
 .Item("iname").Size = 20
 .Add "iowed", adParamInput, adNumeric, 2500
 .Item("iowed").Precision = 6
 .Item("iowed").NumericScale = 2
 .Add "ovendor_id", adParamOutput
 End With
 On Error GoTo SP_Error
 Database1.ExecuteStoredProc "insert_vendor", oParams
 On Error GoTo 0
 lVendorID = oParams.Item("ovendor_id").Value
 Exit Sub

SP_Error:
 MsgBox Err.Description
End Sub

ExecuteStoredProcQ Method
See Also Example Applies To

Executes a stored procedure.

Syntax

object.ExecuteStoredProcQ (ByVal sCmd As String, Params As Parameters])

The ExecuteStoredProcQ method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

sCmd A string expression that evaluates to a stored procedure
name.

Params An object variable containing a Parameters collection
object.

Remarks

Use ExecuteStoredProcQ rather than ExecuteStoredProc when performance is not much of an issue,
and where you don't want to specify detailed parameter properties.    This method causes the parameter
information to be retrieved from the provider, which is a potentially resource-intensive operation.

ExecuteStoredProcQ Method Example

This example shows how the ExecuteStoredProcQ method can be used to execute a stored procedure
that takes two input parameters and one output parameter.    Notice that the Size, Precision or
NumericScale properties of the input parameters do not need to be set.

Private Sub Command1_Click()
 Dim oParams As DADAO.Parameters
 Dim lVendorID As Long

 Set oParams = New DADAO.Parameters
 With oParams
 .Add "iname", adParamInput, adVarChar, txtName
 .Add "iowed", adParamInput, adNumeric, 2500
 .Add "ovendor_id", adParamOutput
 End With
 On Error GoTo SP_Error
 Database1.ExecuteStoredProcQ "insert_vendor", oParams
 On Error GoTo 0
 lVendorID = oParams.Item("ovendor_id").Value
 Exit Sub

SP_Error:
 MsgBox Err.Description
End Sub

GetRS Method
See Also Example Applies To

Retrieves an ADO recordset.

Syntax

object.GetRS (ByVal sSQL As String) As ADODB.Recordset

The GetRS method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

sSQL A string expression that evaluates to a valid SQL
statement.

Remarks

Data is retrieved from a remote data source (as specified in the Connect property) as a disconnected
ADO recordset.

GetRSMultiple Method
See Also Example Applies To

Retrieves multiple ADO recordsets.

Syntax

object.GetRSMultiple (ByVal sSQL() As String) As ADODB.Recordset()

The GetRSMultiple method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

sSQL An array of string expressions that evaluate to valid SQL
statements.

Return Value

An array of Recordset objects, where each object is a result of the corresponding SQL statement in the
sSQL array.

Remarks

This method is extremely useful in situations such as initializing controls in a form, where each control
contains data from separate database tables.    Instead of calling GetRS multiple times to initialize each
control, which requires as many round-trip remote procedure calls over a network, use GetRSMultiple to
minimize network traffic and optimize your application’s performance.

GetRSMultiple Method Example

This example shows how the GetRSMultiple method may be used to retrieve one recordset containing
Customers and one containing Employees.

Private Sub Command1_Click()
 Dim asSQL(1) As String
 Dim vaRecordsets As Variant
 Dim rsCustomers As ADODB.Recordset
 Dim rsEmployees As ADODB.Recordset

 asSQL(0) = "SELECT * FROM Customers"
 asSQL(1) = "SELECT * FROM Employees"
 vaRecordsets = Database1.GetRSMultiple(asSQL)
 Set rsCustomers = vaRecordsets(0)
 Set rsEmployees = vaRecordsets(1)
End Sub

GetStoredProcOrclRS Method
See Also Example Applies To

Retrieves a recordset from an Oracle stored procedure.

Syntax

object.GetStoredProcOrclRS (ByVal sCmd As String, ByVal Params As Parameters]) As
ADODB.Recordset

The GetStoredProcOrclRS method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

sCmd A string expression that evaluates to a stored procedure
name.

Params An object variable containing a Recordset object.

Remarks

The Parameter objects contained in the Params argument may be input parameters only.

See Microsoft Knowledge Base article Q176086.    Note that the Microsoft ODBC for Oracle driver must
be used to enable this feature.

GetStoredProcOrclRS Method Example

This example shows how the GetStoredProcOrclRS method can be used to retrieve a Recordset from a
stored procedure in an Oracle database that takes two (input) parameters.

Private Sub Command1_Click()
 Dim Database1 As New DADAO.Database
 Dim Params As DADAO.Parameters
 Dim sCmd As String

 Database1.ServerName = "cawt26"
 Database1.ConnectString = "DRIVER={Microsoft ODBC for
Oracle};UID=co_plan;PWD=co_plan;CONNECTSTRING=cadev09"

 Set Params = New DADAO.Parameters
 With Params
 .Add "iprod_group_id", adParamInput, adNumeric, 1
 .Add "iscenario_id", adParamInput, adNumeric, 1
 End With

 sCmd = "{call gen_projections.proj_by_month(?,?," & _
 "{resultset 60, omonth, omole_units, omole_sales})}"
 On Error GoTo SP_Error
 Set rs = Database1.GetStoredProcOrclRS(sCmd, Params)
 Set DataGrid1.DataSource = rs
 Exit Sub

SP_Error:
 MsgBox Err.Description
End Sub

GetSchemaInfo Method
See Also Example Applies To

Gets database schema information from the provider.

Syntax

object.GetSchemaInfo (ByVal Schema As ADODB.SchemaEnum, [ByVal Restrictions], ByVal
SchemaID)

The GetSchemaInfo method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

Schema
Restrictions
SchemaID

Remarks

The GetSchemaInfo method returns information about the data source, such as information about the
tables on the server and the columns in the tables.

See ADO help for details.

Item Method
See Also Example Applies To

Returns a specific member of a collection by name or ordinal number.

Syntax

object.Item (Index)

The Item method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

Index A Variant that evaluates either to the name or to the
ordinal number of an object in a collection.

Return Value

Returns an object reference.

Remarks

Use the Item method to return a specific object in a collection. If the method cannot find an object in the
collection corresponding to the Index argument, an error occurs.

The Item method is the default method for the Parameters collection; therefore, the following syntax
forms are interchangeable:

collection.Item (Index)
collection (Index)

RefreshData Method
See Also Example Applies To

Refreshes underlying recordset from provider.

Syntax

object.RefreshData

The RefreshData method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

Remarks

This method is particularly useful in multi-user situations, where conflicting updates may occur; records
may be deleted or modified by other users.    After a call to UpdateBatchConf, if there are conflicts then
the user may be presented with the most current data via a call to RefreshData.

Remove Method
See Also Example Applies To

Removes a Parameter object from a Parameters collection.

Syntax

object.Remove (Index)

The Remove method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

Index A string expression representing the name of the object
you want to remove, or the object’s ordinal position
(index) in the collection.

Remarks

Using the Remove method on a collection lets you remove one of the objects in the collection.    You must
use the Parameter object's Name property or its collection index when calling the Remove method—an
object variable is not a valid argument.

UpdateBatch Method (RemoteDataBar)
See Also Example Applies To

Sends changed records to the server for a batch update.

Syntax

object.UpdateBatch ([ByVal AffectRecords As ADODB.AffectEnum = adAffectAll])

The UpdateBatch method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

AffectRecords An ADODB.AffectEnum value that determines how
many records the UpdateBatch method will affect.    See
ADO help.

UpdateBatch Method (Database)
See Also Example Applies To

Sends changed records to the server for a batch update.

Syntax

object. UpdateBatch (ByRef rs As ADODB.Recordset, [ByVal AffectRecords As ADODB.AffectEnum
= adAffectAll])

The UpdateBatch method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

rs An object variable containing a Recordset object.
AffectRecords An ADODB.AffectEnum value that determines how

many records the UpdateBatch method will affect.    See
ADO help.

UpdateBatchConf Method (RemoteDataBar)
See Also Example Applies To

Updates changed records and allows conflicts to be obtained.

Syntax

object.UpdateBatchConf ([ByVal AffectRecords As ADODB.AffectEnum = adAffectAll])

The UpdateBatchConf method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

AffectRecords An ADODB.AffectEnum value that determines how
many records the UpdateBatch method will affect.    See
ADO help.

Remarks

For RemoteDataBar, conflicts can be obtained with the ConflictRecordset property.

If there were no conflicts, call UpdateBatch (on disconnected recordset) to set UnderlyingValue to Value
for all records.

UpdateBatchConf Method (Database)
See Also Example Applies To

Updates changed records and allows conflicts to be obtained.

Syntax

object.UpdateBatchConf (ByRef rs As ADODB.Recordset, ByRef rsConf As ADODB.Recordset,
[ByVal AffectRecords As ADODB.AffectEnum = adAffectAll])

The UpdateBatchConf method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

AffectRecords An ADODB.AffectEnum value that determines how
many records the UpdateBatch method will affect.    See
ADO help.

Remarks

Use the rsConf argument to present information to the user about the conflicts that occurred.

UpdateBatchConf Method, ConflictRecordset Property, RefreshData Method Example

This example shows how the ConflictRecordset property may be used in conjunction with the
UpdateBatchConf method.    UpdateBatchConf performs the batch update and allows detection of
conflicts.    If any conflicts occurred, the DataGrid is populated with the conflicting records, and the
RemoteDataBar object is refreshed with the current data.

Private Sub Command1_Click()
 Me.MousePointer = vbHourglass
 DARemDataBar1.UpdateBatchConf
 If DARemDataBar1.ConflictRecordset Is Nothing Then
 ' If there were no conflicts, call UpdateBatch so that _
 changed records do not get re-submitted (UpdateBatch causes _
 UnderlyingValue to be set to Value for all records).
 DARemDataBar1.Recordset.UpdateBatch
 Else
 DARemDataBar1.RefreshData
 Set DataGrid1.DataSource = DARemDataBar1.ConflictRecordset
 End If
 Me.MousePointer = vbDefault
End Sub

AddRecord Method
See Also Example Applies To

Appends a new record to the recordset.

Syntax

object.AddRecord

The AddRecord method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

Remarks

Use the AddRecord method to add a new record as a result of a user interface action, for example, when
an “Add New” button is pressed.    This method is most commonly used when you are using your own
recordset navigation buttons or toolbar instead of the built-in toolbar.

If the UpdateType property is set to UpdateTypeBatch, then the record will only be added to the local
recordset, and will only be added on the server when the UpdateBatch method is called.

DeleteRecord Method
See Also Example Applies To

Deletes the current record from the recordset.

Syntax

object.DeleteRecord

The DeleteRecord method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

Remarks

Use the DeleteRecord method to delete the current record as a result of a user interface action, for
example, when a “Delete” button is pressed.    This method is most commonly used when you are using
your own recordset navigation buttons or toolbar instead of the built-in toolbar.

If the UpdateType property is set to UpdateTypeBatch, then the record will only be deleted from the
local recordset, and will only be deleted on the server when the UpdateBatch method is called.

FirstRecord Method
See Also Example Applies To

Moves to the first record in the recordset.

Syntax

object.FirstRecord

The FirstRecord method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

Remarks

Use the FirstRecord method to move to the first record as a result of a user interface action, for example,
when a “First Record” button is pressed.    This method is most commonly used when you are using your
own recordset navigation buttons or toolbar instead of the built-in toolbar.

LastRecord Method
See Also Example Applies To

Moves to the last record in the recordset.

Syntax

object.LastRecord

The LastRecord method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

Remarks

Use the LastRecord method to move to the last record as a result of a user interface action, for example,
when a “Last Record” button is pressed.    This method is most commonly used when you are using your
own recordset navigation buttons or toolbar instead of the built-in toolbar.

NextRecord Method
See Also Example Applies To

Moves to the next record in the recordset.

Syntax

object.NextRecord

The NextRecord method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

Remarks

Use the NextRecord method to move to the next record as a result of a user interface action, for
example, when a “Next Record” button is pressed.    This method is most commonly used when you are
using your own recordset navigation buttons or toolbar instead of the built-in toolbar.

PreviousRecord Method
See Also Example Applies To

Moves to the previous record in the recordset.

Syntax

object.PreviousRecord

The PreviousRecord method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

Remarks

Use the PreviousRecord method to move to the previous record as a result of a user interface action, for
example, when a “Previous Record” button is pressed.    This method is most commonly used when you
are using your own recordset navigation buttons or toolbar instead of the built-in toolbar.

SaveRecord Method
See Also Example Applies To

Saves changes to the current record.

Syntax

object.SaveRecord

The SaveRecord method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

Remarks

Use the SaveRecord method to save the current record as a result of a user interface action, for
example, when a “Save” button is pressed.    This method is most commonly used when you are using
your own recordset navigation buttons or toolbar instead of the built-in toolbar.

If the UpdateType property is set to UpdateTypeBatch, then the record will only be updated in the local
recordset, and will only be updated on the server when the UpdateBatch method is called.

UndoRecord Method
See Also Example Applies To

Restores fields in the current record to their original values.

Syntax

object.UndoRecord

The UndoRecord method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

Remarks

Use the UndoRecord method to undo editing changes to a record before the “Save” button is pressed.   
This method is most commonly used when you are using your own recordset navigation buttons or
toolbar instead of the built-in toolbar.

BeforeDelete Event
See Also Example Applies To

Fired before the current record is deleted.

Syntax

Private Sub object_BeforeDelete ([index As Integer,] rs As ADODB.Recordset, ByVal db As
Database, adStatus As ADODB.EventStatusEnum)

The BeforeDelete event syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

index An integer that identifies a control if it is in a control
array.

rs An object variable containing a Recordset object.
db An object variable containing a Database object.
adStatus An ADODB.EventStatusEnum status value.    Refer to

ADO Help.

BeforeInsert Event
See Also Example Applies To

Fired before the current record is inserted.

Syntax

Private Sub object_BeforeInsert ([index As Integer,] rs As ADODB.Recordset, ByVal db As Database,
adStatus As ADODB.EventStatusEnum)

The BeforeInsert event syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

index An integer that identifies a control if it is in a control
array.

rs An object variable containing a Recordset object.
db An object variable containing a Database object.
adStatus An ADODB.EventStatusEnum status value.    Refer to

ADO Help.

BeforeInsert Event, GetRS Method Example

This example shows how an Oracle sequence can be used to fill in the value of a primary key field of a
record that is about to be inserted into the local recordset.    This technique mimics the Microsoft Access
“AutoNumber” functionality.

Private Sub DARemDataBar1_BeforeInsert(rs As ADODB.Recordset, _
 ByVal db As DADAO.Database, adStatus As ADODB.EventStatusEnum)
 Dim sSQL As String
 Dim rsTmp As Recordset

 sSQL = "SELECT vendor_seq.nextval FROM DUAL"
 Set rsTmp = db.GetRS(sSQL)
 rs("vendor_id") = rsTmp(0).Value
End Sub

BeforeUndo Event
See Also Example Applies To

Fired before changes are undone to the current record.

Syntax

Private Sub object_BeforeUndo ([index As Integer,] rs As ADODB.Recordset, ByVal db As Database,
adStatus As ADODB.EventStatusEnum)

The BeforeUndo event syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

index An integer that identifies a control if it is in a control
array.

rs An object variable containing a Recordset object.
db An object variable containing a Database object.
adStatus An ADODB.EventStatusEnum status value.    Refer to

ADO Help.

BeforeUpdate Event
See Also Example Applies To

Fired before the current record is updated.

Syntax

Private Sub object_BeforeUpdate ([index As Integer,] rs As ADODB.Recordset, ByVal db As
Database, adStatus As ADODB.EventStatusEnum)

The BeforeUpdate event syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

index An integer that identifies a control if it is in a control
array.

rs An object variable containing a Recordset object.
db An object variable containing a Database object.
adStatus An ADODB.EventStatusEnum status value.    Refer to

ADO Help.

