
Contents
Agilent VISA User’s Guide

Front Matter ... 7
Notice .. 7
Warranty Information .. 7
U.S. Government Restricted Rights .. 7
Trademark Information ... 8
Printing History ... 8
Copyright Information ... 8

1. Introduction .. 9
What’s in This Guide?.. 11
VISA Overview... 12

Using VISA and SICL ... 12
VISA Support .. 13
VISA Documentation .. 14

2. Building a VISA Application in Windows .. 15
An Example VISA Program .. 17

Example Source Code ... 17
Example Program Contents ... 18

Compiling and Linking a VISA Program 19
Linking to VISA Libraries .. 19
Microsoft Visual C++ Version 6.0 Compilers 19
Borland C++ Version 4.0 Compilers 20

Logging Error Messages.. 21
Using the Event Viewer .. 21
Using the Message Viewer ... 22
Using the Debug Window ... 22

3. Building a VISA Application in HP-UX ... 23
An Example VISA Program ... 25

Example Source Code ... 25
Example Program Contents ... 26
Running the Example Program .. 27

Compiling and Linking a VISA Program....................................... 27
Logging Error Messages.. 27
Using Online Help.. 28

Using the HyperHelp Viewer .. 28
Using HP-UX Manual Pages .. 28
1

4. Programming with VISA ..29
Using Device Sessions...31

Including the VISA Declarations File31
Opening a Device Session ..31
Addressing a Device Session ..34
Closing a Device Session ...36
Searching for Resources ...36

Sending I/O Commands ...39
Types of I/O ..39
Using Formatted I/O ..39
Using Non-Formatted I/O ..48

Using VISA Attributes ..50
What are VISA Attributes? ..50
VISA Resource Attributes ..51
VISA Generic Instrument Attributes 52
VISA Interface-Specific Instrument Attributes 53
VISA Event Attributes ...58

Using Events and Handlers ...59
Events and Attributes ..59
Using the Callback Method ...62
Using the Queuing Method ...70

Trapping Errors and Using Locks...75
Trapping Errors ...75
Using Locks ...77

5. Programming VXI Devices ...85
Introduction to VXI Devices ..87

Interface Descriptions ...87
VXI Device Types ...88

Using High-Level Memory Functions ...89
Programming the Registers ..89
High-Level Memory Functions Examples91

Using Low-Level Memory Functions ...94
Programming the Registers ..94
Low-Level Memory Functions Examples96

Using VXI Backplane Memory I/O Methods99
Example: Using VXI Backplane Memory I/O101

Using the Memory Access Resource ...104
Memory I/O Services ..104
Example: MEMACC Resource Program105
MEMACC Attribute Descriptions ...106
2

Using VXI Specific Attributes .. 110
Using the Map Address as a Pointer 110
Setting the VXI Trigger Line ... 111

6. Programming over LAN ... 113
LAN Overview.. 115

LAN Client/Server Model .. 115
LAN Hardware Architecture .. 115
LAN Software Architecture ... 117
LAN Configuration and Performance 119

Using the LAN ... 120
Communicating with Devices over LAN 120
Using Timeouts over LAN .. 122
Using Signal Handling over LAN 124
Using Service Requests over LAN 125

7. VISA Language Reference .. 127
VISA Functions Overview .. 128
viAssertTrigger... 134
viBufRead .. 136
viBufWrite .. 138
viClear.. 140
 viClose .. 142
viDisableEvent .. 144
viDiscardEvents ... 147
viEnableEvent ... 150
viEventHandler .. 154
viFindNext ... 156
viFindRsrc ... 158
viFlush ... 160
viGetAttribute .. 163
viGpibControlREN ... 165
viIn8, viIn16, and viIn32 .. 167
viInstallHandler .. 169
viLock .. 171
viMapAddress .. 175
viMemAlloc .. 178
viMemFree... 180
viMove ... 181
viMoveAsync.. 184
viMoveIn8, viMoveIn16, and viMoveIn32................................... 187
viMoveOut8, viMoveOut16, and viMoveOut32 190
viOpen ... 193
viOpenDefaultRM .. 196
viOut8, viOut16, and viOut32... 198
3

viPeek8, viPeek16, and viPeek32 ..200
viPoke8, viPoke16, and viPoke32 ..201
viPrintf ..202
viQueryf ..210
viRead ..212
viReadAsync...215
viReadSTB ...217
viScanf..219
viSetAttribute ..228
viSetBuf ..230
viSPrintf ..232
viSScanf ...234
viStatusDesc...236
viTerminate...237
viUninstallHandler...238
viUnlock..240
viUnmapAddress ..241
viVPrintf ..242
viVQueryf..244
viVScanf ...246
viVSPrintf..248
viVSScanf ...250
viWaitOnEvent..252
viWrite...255
viWriteAsync...257

A. VISA System Information ...259

Windows Directory Structure ...261
HP-UX Directory Structure ...262
About the Directories ..263

B. VISA Attributes ...265

VISA Resource Attributes ..267
VISA Generic Instrument Attributes ...268
VISA Interface-Specific Instrument Attributes270

GPIB and GPIB-VXI Interfaces ..270
VXI and GPIB-VXI Interfaces ...270
GPIB-VXI Interface ...272
ASRL Specific INSTR Resource Interface Attributes273
4

MEMACC Resource Attributes .. 275
Generic MEMACC Attributes .. 275
VXI and GPIB-VXI Specific MEMACC Resource Attributes 275
GPIB-VXI Specific MEMACC Resource Attributes 277

VISA Event Attributes ... 278

C. VISA Completion and Error Codes .. 279

Alphabetized Completion and Error Codes................................ 281
Completion and Error Codes for VISA Functions 285

D. VISA Type Definitions .. 309

E. Editing the VISA Configuration ... 313

Editing on Windows 95/98/2000/NT .. 315
Editing on HP-UX... 316

Glossary ... 317

Index ... 321
5

6

Notice

The information contained in this document is subject to change without
notice.

Agilent Technologies shall not be liable for any errors contained in this
document. Agilent Technologies makes no warranties of any kind with
regard to this document, whether express or implied. Agilent Technologies
specifically disclaims the implied warranties of merchantability and fitness
for a particular purpose. Agilent Technologies shall not be liable for any
direct, indirect, special, incidental, or consequential damages, whether
based on contract, tort, or any other legal theory, in connection with the
furnishing of this document or the use of the information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Agilent Technologies
product and replacement parts can be obtained from Agilent Technologies,
Inc.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private
expense. They are delivered and licensed as "commercial computer
software" as defined in DFARS 252.227- 7013 (Oct 1988), DFARS 252.211-
7015 (May 1991) or DFARS 252.227-7014 (Jun 1995), as a "commercial
item" as defined in FAR 2.101(a), or as "Restricted computer software" as
defined in FAR 52.227-19 (Jun 1987)(or any equivalent agency regulation or
contract clause), whichever is applicable. You have only those rights
provided for such Software and Documentation by the applicable FAR or
DFARS clause or the Agilent standard software agreement for the product
involved.
 7

Trademark Information

Microsoft®, Windows ® 95, Windows ® 98, Windows ® 2000, and
Windows NT® are U.S. registered trademarks of Microsoft Corporation.
All other brand and product names are trademarks or registered trademarks
of their respective companies.

Printing History

Edition 1 - May 1996
Edition 2 - September 1996
Edition 3 - February 1998
Edition 4 - July 2000

Copyright Information

Agilent Technologies VISA User’s Guide
Edition 4
Copyright © 1984 -1988 Sun Microsystems, Inc.
Copyright © 1994-1998, 2000 Agilent Technologies, Inc.
All rights reserved.
8

1

Introduction
9

Introduction

This Agilent Technologies VISA User’s Guide describes the Agilent Virtual
Instrument Software Architecture (VISA) library and how to use it to develop
instrument drivers and I/O applications on Windows 95, Windows 98,
Windows NT 4.0, and Windows 2000, and on HP-UX version 10.20.

Before you can use VISA, you must install and configure VISA on your
computer. See the Agilent IO Libraries Installation and Configuration Guide
for Windows for installation on Windows systems. See the Agilent IO
Libraries Installation and Configuration for HP-UX for installation on
HP-UX systems.

Unless indicated, Windows NT refers to Windows NT 4.0. Although VISA
for Windows supports the Visual Basic programming language, this guide
only shows programming techniques using C/C++ language.

If You Need Help:

n In the USA and Canada, you can reach Agilent Technologies at
these telephone numbers:

USA: 1-800-452-4844
Canada: 1-877-894-4414

n Outside the USA and Canada, contact your country’s Agilent support
organization. A list of contact information for other countries is
available on the Agilent web site:

http://www.agilent.com/find/assist

NOTE

The viBufRead, viBufWrite, viGpibControlREN, viSPrintf,
viVSPrintf, viSScanf, and viVSScanf functions are VISA Library
Specification Revision 2.0.1 features that are available with this version of
Agilent VISA.
10 Chapter 1

Introduction
What’s in This Guide?
What’s in This Guide?
This chapter provides an overview of VISA. In addition, this guide contains
the following chapters:

n Chapter 2 - Building a VISA Application in Windows describes how
to build a VISA application in a Microsoft Windows environment. An
example program is provided to help you get started programming
with VISA.

n Chapter 3 - Building a VISA Application in HP-UX describes how to
build a VISA application in the HP-UX environment. An example
program is provided to help you get started programming with VISA.

n Chapter 4 - Programming with VISA describes the basics of VISA
and lists some example programs. The chapter also includes
information on creating sessions, using formatted I/O, events and
handlers, attributes, locking, and more.

n Chapter 5 - Programming VXI Devices describes how to use VISA
to communicate over the VXI and GPIB-VXI interfaces to VXI
instruments.

n Chapter 6 - Programming over LAN provides an overview of the LAN
and describes how to use VISA to communicate with devices over
LAN.

n Chapter 7 - VISA Language Reference provides an alphabetical
reference of supported VISA functions.

n Appendix A - VISA System Information provides information on
VISA software files and system interaction.

n Appendix B - VISA Attributes provides a table of all VISA attributes
and their associated values.

n Appendix C - VISA Completion and Error Codes lists all the
completion and error codes for VISA.

n Appendix D - VISA Type Definitions lists the VISA data types and
their definitions.

n Appendix E - Editing VISA Configuration describes how to edit VISA
configuration to gain better performance.

n Glossary includes a glossary of terms and their definitions.
Chapter 1 11

Introduction
VISA Overview
VISA Overview
VISA is a part of the Agilent IO Libraries. The Agilent IO Libraries consists
of two libraries: Agilent Virtual Instrument Software Architecture (VISA) and
Agilent Standard Instrument Control Library (SICL). This guide describes
VISA for supported Windows and HP-UX environments.

For information on using SICL in Windows, see the Agilent Standard
Instrument Control Library User’s Guide for Windows. For information on
using SICL in HP-UX, see the Agilent Standard Instrument Control Library
User’s Guide for HP-UX.

Using VISA and SICL

Agilent VISA (Virtual Instrument Software Architecture) is an IO library
designed according to the VXIplug&play System Alliance that allows
software developed from different vendors to run on the same system.

Use VISA if you want to use VXIplug&play instrument drivers in your
applications, or if you want the I/O applications or instrument drivers that
you develop to be compliant with VXIplug&play standards. If you are using
new instruments or are developing new I/O applications or instrument
drivers, we recommend you use Agilent VISA.

Agilent Standard Instrument Control Library (SICL) is an I/O library
developed by Hewlett-Packard and Agilent that is portable across many I/O
interfaces and systems. You can use Agilent SICL if you have been using
SICL and want to remain compatible with software currently implemented in
SICL.

NOTE

Since VISA and SICL are different libraries, using VISA functions and
SICL functions in the same I/O application is not supported.
12 Chapter 1

Introduction
VISA Overview
VISA Support

Agilent VISA is an I/O library that can be used to develop I/O applications
and instrument drivers that comply with the VXIplug&play standards.
Applications and instrument drivers developed with VISA can execute on
VXIplug&play system frameworks that have the VISA I/O layer. Therefore,
software from different vendors can be used together on the same system.

9,6$�6XSSRUW�RQ�
:LQGRZV

This 32-bit version of VISA is supported on Windows 95, Windows 98,
Windows NT, and Windows 2000. (Support for the 16-bit version of VISA
was removed in version H.01.00 of the Agilent IO Libraries.) C, C++, and
Visual Basic are supported on all these Windows versions.

For Windows, VISA is supported on the GPIB, VXI, GPIB-VXI, Serial
(RS-232), and LAN interfaces. VISA for the VXI interface on Windows NT is
shipped with the Agilent Embedded VXI Controller product only. LAN
support from within VISA occurs via an address translation such that a
GPIB interface can be accessed remotely over a computer network

9,6$�6XSSRUW�RQ�
+3�8;

VISA is supported on the GPIB, VXI, GPIB-VXI, and LAN interfaces on
HP-UX version 10.20. LAN support from within VISA occurs via an address
translation such that a GPIB interface can be accessed remotely over a
computer network

9,6$�8VHUV VISA has two specific types of users. The first type is the instrumentation
end user who wants to use VXIplug&play instrument drivers in his or her
applications. The second type of user is the instrument driver or I/O
application developer who wants to be compliant with VXIplug&play
standards.

Software development using VISA is intended for instrument I/O and
C/C++ or Visual Basic programmers who are familiar with the Windows 95,
Windows 98, Windows 2000, Windows NT, or HP-UX environment. To
perform VISA installation and configuration on Windows NT or HP-UX, you
must have system administration privileges on the Windows NT system or
super-user (root) privileges on the HP-UX system.
Chapter 1 13

Introduction
VISA Overview
VISA Documentation

This table shows associated documentation you can use when programming
with Agilent VISA in the Windows or HP-UX environment.

Agilent VISA Documentation

Document Description

Agilent IO Libraries Installation and
Configuration Guide for Windows

Shows how to install, configure, and maintain the Agilent IO
Libraries on Windows.

Agilent IO Libraries Installation and
Configuration Guide for HP-UX

Shows how to install, configure, and maintain the Agilent IO
Libraries on HP-UX.

VISA Online Help Information is provided in the form of Windows Help.

VISA Example Programs Example programs are provided online to help you develop
VISA applications.

VXIplug&play System Alliance VISA
Library Specification 4.3

Specifications for VISA.

IEEE Standard Codes, Formats,
Protocols, and Common Commands

ANSI/IEEE Standard 488.2-1992.

VXIbus Consortium specifications
(when using VISA over LAN)

TCP/IP Instrument Protocol Specification - VXI-11, Rev. 1.0
TCP/IP-VXIbus Interface Specification - VXI-11.1, Rev. 1.0
TCP/IP-IEEE 488.1 Interface Specification - VXI-11.2, Rev. 1.0
TCP/IP-IEEE 488.2 Instrument Interface Specification - VXI-11.3,
Rev. 1.0
14 Chapter 1

2

Building a VISA Application in
Windows
15

Building a VISA Application in Windows

This chapter gives guidelines to build a VISA application in a Windows
environment. The chapter contains the following sections:

n An Example VISA Program
n Compiling and Linking a VISA Program
n Logging Error Messages
16 Chapter 2

Building a VISA Application in Windows
An Example VISA Program
An Example VISA Program
This section lists an example program called idn that queries a GPIB
instrument for its identification string. This example assumes a Win32
Console Application using Microsoft or Borland C/C++ compilers on
Windows.

For VISA on Windows 95 or Windows 98, the idn example files are in
\Program Files\VISA\WIN95\AGVISA\SAMPLES. For VISA on
Windows NT or Windows 2000, the idn example files are in
\Program Files\VISA\WINNT\AGVISA\SAMPLES.

Example Source Code
The source file idn.c follows. An explanation of the various function calls in
the example is provided directly after the program listing. If the program runs
correctly, the following is an example of the output if connected to a 54601A
oscilloscope. If the program does not run, see the Event Viewer for a list
of run-time errors.

HEWLETT-PACKARD,54601A,0,1.7

/*idn.c

This example program queries a GPIB device for an

identification string and prints the results. Note

that you must change the address. */

#include <visa.h>

#include <stdio.h>

void main () {

ViSession defaultRM, vi;

char buf [256] = {0};

/* Open session to GPIB device at address 22 */

viOpenDefaultRM(&defaultRM);

viOpen(defaultRM, "GPIB0::22::INSTR",VI_NULL,VI_NULL, &vi);

/* Initialize device */

viPrintf(vi, "*RST\n");

/* Send an *IDN? string to the device */
Chapter 2 17

Building a VISA Application in Windows
An Example VISA Program
viPrintf(vi, "*IDN?\n");

/* Read results */

viScanf(vi, "%t", buf);

/* Print results */

printf("Instrument identification string: %s\n", buf);

/* Close session */

viClose(vi);

viClose(defaultRM);}

Example Program Contents
A summary of the VISA function calls used in the example program follows.
For a more detailed explanation of VISA functionality, see Chapter 4 -
Programming with VISA. See Chapter 7 - VISA Language Reference for
more detailed information on these VISA function calls.

visa.h. This file is included at the beginning of the file to provide the function
prototypes and constants defined by VISA.

ViSession. The ViSession is a VISA data type. Each object that will
establish a communication channel must be defined as ViSession.

viOpenDefaultRM. You must first open a session with the default resource
manager with the viOpenDefaultRM function. This function will initialize
the default resource manager and return a pointer to that resource manager
session.

viOpen. This function establishes a communication channel with the device
specified. A session identifier that can be used with other VISA functions is
returned. This call must be made for each device you will be using.

viPrintf and viScanf. These are the VISA formatted I/O functions that are
patterned after those used in the C programming language. The viPrintf
call sends the IEEE 488.2 *RST command to the instrument and puts it in
a known state. The viPrintf call is used again to query for the device
identification (*IDN?). The viScanf call is then used to read the results.

viClose. This function must be used to close each session. When you close
a device session, all data structures that had been allocated for the session
will be deallocated. When you close the default manager session, all
sessions opened using that default manager session will be closed.
18 Chapter 2

Building a VISA Application in Windows
Compiling and Linking a VISA Program
Compiling and Linking a VISA Program
This section provides a summary of important compiler-specific
considerations for several C/C++ compiler products when developing Win32
applications.

Linking to VISA Libraries
Your application must link to one of the VISA import libraries as follows,
assuming default installation directories.

n VISA on Windows 95 or Windows 98:

C:\Program Files\VISA\WIN95\LIB\MSC\VISA32.LIB
(Microsoft compilers)
C:\Program Files\VISA\WIN95\LIB\BC\VISA32.LIB
(Borland compilers)

n VISA on Windows NT or Windows 2000:

C:\Program Files\VISA\WINNT\LIB\MSC\VISA32.LIB
(Microsoft compilers)
C:\Program Files\VISA\WINNT\LIB\BC\VISA32.LIB
(Borland compilers)

Microsoft Visual C++ Version 6.0 Compilers

1. Select Project | Update All Dependencies from the
menu.

2. Select Project | Settings from the menu.

q Click the C/C++ button.

q Select Code Generation from the Category list box and
select Multi-Threaded using DLL from the Use Run-
Time Libraries list box. (VISA requires these definitions
for Win32.)

q Click OK to close the dialog boxes.
Chapter 2 19

Building a VISA Application in Windows
Compiling and Linking a VISA Program
3. Select Project | Settings from the menu. Click the Link
button and add visa32.lib to the Object / Library
Modules list box. Optionally, you may add the library directly to
your project file. Click OK to close the dialog boxes.

4. You may want to add the include file and library file search paths.
They are set by:

q Select Tools | Options from the menu.

q Click the Directories button to set the include file path.

q Select Include Files from the Show Directories For
list box.

q Click the Add button and type one of the following:
C:\Program Files\VISA\WIN95\INCLUDE OR
C:\Program Files\VISA\WINNT\INCLUDE.

5. Select Library Files from the Show Directories For
list box.

6. Click the Add button and type one of the following:
C:\Program Files\VISA\WIN95\LIB\MSC

OR

C:\Program Files\VISA\WINNT\LIB\MSC

Borland C++ Version 4.0 Compilers
You may want to add the include file and library file search paths. They
are set under the Options | Project menu selection. Double-click
Directories from the Topics list box and add one of the following:

C:\Program Files\VISA\WIN95\INCLUDE
C:\Program Files\VISA\WIN95\LIB\BC

OR

C:\Program Files\VISA\WINNT\INCLUDE
C:\Program Files\VISA\WINNT\LIB\BC
20 Chapter 2

Building a VISA Application in Windows
Logging Error Messages
Logging Error Messages
When developing or debugging your VISA application, you may want to view
internal VISA messages while your application is running. You can do this
by using the Message Viewer utility (for Windows 95 or Windows 98), the
Event Viewer utility (for Windows 2000 or Windows NT), or the Debug
Window (for Windows 95/98/2000/NT). There are three choices for VISA
logging:

n Off (default) for best performance
n Event Viewer/Message Viewer
n Debug Window

Using the Event Viewer
For Windows 2000 or Windows NT, the Event Viewer utility provides a
way to view internal VISA error messages during application execution.
Some of these internal messages do not represent programming errors and
are actually error messages from VISA which are being handled internally
by VISA. The process to use the Event Viewer is:

n Enable VISA logging from the Agilent IO Libraries
Control, click VISA Logging | Event Viewer.

n Run your VISA program.

n View VISA error messages by running the Event Viewer.
From the Agilent IO Libraries Control, click Run Event
Viewer. VISA error messages will appear in the application log of
the Event Viewer utility.
Chapter 2 21

Building a VISA Application in Windows
Logging Error Messages
Using the Message Viewer
For Windows 95 or Windows 98, the Message Viewer utility provides a
way to view internal VISA error messages during application execution.
Some of these internal messages do not represent programming errors and
are actually error messages from VISA which are being handled internally
by VISA.

The Message Viewer utility must be run BEFORE you run your VISA
application. However, the utility will receive messages while minimized.
This utility also provides menu selections for saving the logged messages to
a file and for clearing the message buffer. The process to use the Message
Viewer is:

n Enable VISA logging from the Agilent IO Libraries
Control, click VISA Logging | Message Viewer.

n Start the Message Viewer. From the Agilent IO Libraries
Control, click Run Message Viewer.

n Run your VISA program.

n View error messages in the Message Viewer window.

Using the Debug Window

n When VISA logging is directed to the Debug Window, VISA writes
logging messages using the Win32 API call OutputDebugString().
The most common use for this feature is when debugging your VISA
program using
an application such as Microsoft Visual Studio. In this case, VISA
messages will appear in the Visual Studio output window. The
process to use the Debug Window is:

n Enable VISA logging from the Agilent IO Libraries
Control. Click VISA Logging | Debug Window.

n Run your VISA program from Microsoft Visual Studio (or
equivalent application).

n View error messages in the Visual Studio (or equivalent) output
window.
22 Chapter 2

3

Building a VISA Application in
HP-UX
23

Building a VISA Application in HP-UX

This chapter gives guidelines to build a VISA application on HP-UX version
10.20 or later. The chapter contains the following sections:

n An Example VISA Program
n Compiling and Linking a VISA Program
n Logging Error Messages
n Using Online Help
24 Chapter 3

Building a VISA Application in HP-UX
An Example VISA Program
An Example VISA Program
This section lists and example program called idn that queries a GPIB
instrument for its identification string. The idn example program is located
in the following subdirectory:

opt/vxipnp/hpux/hpvisa/share/examples

Example Source Code
The source file idn.c follows. An explanation of the various function calls in
the example is provided directly after the program listing.

/*idn.c
This program queries a GPIB device for an ID string and prints
the results. Note that you must change the address. */

#include <visa.h>
#include <stdio.h>

void main () {

ViSession defaultRM, vi;
char buf [256] = {0};

/* Open session to GPIB device at address 22 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB0::24::INSTR", VI_NULL,VI_NULL, &vi);

/* Initialize device */
viPrintf(vi, "*RST\n");

/* Send an *IDN? string to the device */
viPrintf(vi, "*IDN?\n");

/* Read results */
viScanf(vi, "%t", buf);

/* Print results */
printf ("Instrument identification string: %s\n", buf);

/* Close sessions */
viClose(vi);
viClose(defaultRM);

}

Chapter 3 25

Building a VISA Application in HP-UX
An Example VISA Program
Example Program Contents
A summary of the VISA function calls used in the example program follows.
For a more detailed explanation of VISA functionality, see Chapter 4 -
Programming with VISA. See Chapter 7 - VISA Language Reference for
more detailed information on these VISA calls.

visa.h. This file is included at the beginning of the file to provide the function
prototypes and constants defined by VISA.

ViSession. The ViSession is a VISA data type. Each object that will
establish a communication channel must be defined as ViSession.

viOpenDefaultRM. You must first open a session with the default resource
manager with the viOpenDefaultRM function. This function will initialize
the default resource manager and return a pointer to that resource manager
session.

viOpen. This function establishes a communication channel with the device
specified. A session identifier that can be used with other VISA functions is
returned. This call must be made for each device you will be using.

viPrintf and viScanf. These are the VISA formatted I/O functions that are
patterned after those used in the C programming language. The viPrintf
call sends the IEEE 488.2 *RST command to the instrument and puts it in
a known state. The viPrintf call is used again to query for the device
identification (*IDN?). The viScanf call is then used to read the results.

viClose. This function must be used to close each session. When you close
a device session, all data structures that had been allocated for the session
will be deallocated. When you close the default manager session, all
sessions opened using that default manager session will be closed.
26 Chapter 3

Building a VISA Application in HP-UX
Compiling and Linking a VISA Program
Running the Example Program
To run the idn example program, type the program name at the command
prompt. For example:

idn

If the program run correctly, the following is an example of the output if
connected to a 54601A oscilloscope:

 Hewlett-Packard,54601A,0,1.7

If you have problems running the idn example program, first check to make
sure the device address specified in your program is correct. If the program
still does not run, check the I/O configuration. See the Agilent I/O Libraries
Installation and Configuration Guide for HP-UX for information on I/O
configuration.

Compiling and Linking a VISA Program
You can create your VISA applications in ANSI C or C++. When compiling
and linking a C program that uses VISA, use the -lvisa command line
option to link in the VISA library routines. The following example creates the
idn executable file:

cc -Aa -o idn idn.c -lvisa

n The -Aa option indicates ANSI C
n The -o option creates an executable file called idn
n The -l option links in the VISA library

Logging Error Messages
To view any VISA internal errors that may occur on HP-UX, edit the
/etc/opt/vxipnp/hpux/hpvisa/hpvisa.ini file. Change the
ErrorLog= line in this file to the following:

ErrorLog=true

The error messages, if any, will be then be printed to stderr.
Chapter 3 27

Building a VISA Application in HP-UX
Using Online Help
Using Online Help
Online help for VISA on HP-UX is provided with Bristol Technology’s
HyperHelp Viewer, or in the form of HP-UX manual pages (man pages), as
explained in the following subsections.

Using the HyperHelp Viewer
The Bristol Technology HyperHelp Viewer allows you to view the VISA
functions online. To start the HyperHelp Viewer with the VISA help file,
type:

hyperhelp/opt/hyperhelp/visahelp.hlp

When you start the Viewer, you can also specify any of the following options

Using HP-UX Manual Pages
To use manual pages, type the HP-UX man command followed by the VISA
function name:

man function

The following are examples of selecting online help on VISA functions:

man viPrintf
man viScanf
man viPeek

-k keyword Opens the Viewer and searches for the specified
keyword.

-p partial_keyword Opens the Viewer and searches for a specific
partial keyword.

-s viewmode Opens the Viewer in the specified viewmode.
If 1 is specified as the viewmode, the Viewer is
shared by all applications. If 0 is specified, a
separate Viewer is opened for each application
(default).

-display display Opens the Viewer on the specified display.
28 Chapter 3

4

Programming with VISA
29

Programming with VISA

This chapter describes how to program with VISA. The basics of VISA are
described, including formatted I/O, events and handlers, attributes, and
locking. Example programs are also provided and can be found in the
SAMPLES subdirectory on Windows environments, or in the examples
subdirectory on HP-UX.

See Appendix A - VISA System Information for the specific location of the
example programs on your operating system. For specific details on VISA
functions, see Chapter 7 - VISA Language Reference.This chapter contains
the following sections:

n Using Device Sessions
n Sending I/O Commands
n Using VISA Attributes
n Using Events and Handlers
n Trapping Errors and Using Locks
30 Chapter 4

Programming with VISA
Using Device Sessions
Using Device Sessions
This section shows how to use VISA device sessions, including:

n Including the VISA Declarations File
n Opening a Device Session
n Addressing a Device Session
n Closing a Device Session
n Searching for Resources

Including the VISA Declarations File
For C and C++ programs, you must include the visa.h header file at the
beginning of every file that contains VISA function calls:

#include "visa.h"

This header file contains the VISA function prototypes and the definitions for
all VISA constants and error codes. The visa.h header file also includes
the visatype.h header file.

The visatype.h header file defines most of the VISA types. The VISA
types are used throughout VISA to specify data types used in the functions.
For example, the viOpenDefaultRM function requires a pointer to a
parameter of type ViSession. If you find ViSession in the visatype.h
header file, you will find that ViSession is eventually typed as an unsigned
long. VISA types are also listed in Appendix D - VISA Type Definitions.

Opening a Device Session
A session is a channel of communication. Sessions must first be opened on
the default resource manager, and then for each device you will be using.
The following is a summary of sessions that can be opened:

n A resource manager session is used to initialize the VISA system.
It is a parent session that knows about all the opened sessions. A
resource manager session must be opened before any other
session can be opened.

n A device session is used to communicate with a device on an
interface. A device session must be opened for each device you will
be using. When you use a device session you can communicate
without worrying about the type of interface to which it is connected.
Chapter 4 31

Programming with VISA
Using Device Sessions
This insulation makes applications more robust and portable across
interfaces. Typically a device is an instrument, but the device could be a
computer, a plotter, or a printer.

5HVRXUFH�0DQDJHU�
6HVVLRQV

There are two parts to opening a communications session with a specific
device. First you must open a session to the default resource manager with
the viOpenDefaultRM function. The first call to this function initializes the
default resource manager and returns a session to that resource manager
session. You only need to open the default manager session once.
However, subsequent calls to viOpenDefaultRM returns a unique session
to the same default resource manager resource.

'HYLFH�6HVVLRQV Next, you open a session with a specific device with the viOpen function.
This function uses the session returned from viOpenDefaultRM and
returns its own session to identify the device session. The following shows
the function syntax:

viOpenDefaultRM(sesn);
viOpen(sesn, rsrcName, accessMode, timeout, vi);

The session returned from viOpenDefaultRM must be used in the sesn
parameter of the viOpen function. The viOpen function then uses that
session and the device address specified in the rsrcName parameter to
open a device session. The vi parameter in viOpen returns a session
identifier that can be used with other VISA functions.

Your program may have several sessions open at the same time by creating
multiple session identifiers by calling the viOpen function multiple times.
The following table summarizes the parameters in the previous function
calls.

NOTE

All devices used must be connected and operational prior to the first VISA
function call (viOpenDefaultRM). The system is configured only on
the first viOpenDefaultRM per process.

Therefore, if viOpenDefaultRM is called without devices connected
and then called again when devices are connected, the devices will not be
recognized. You must close ALL Resource Manager sessions and reopen
with all devices connected and operational.
32 Chapter 4

Programming with VISA
Using Device Sessions
([DPSOH��2SHQLQJ�D�
'HYLFH�6HVVLRQ

This example shows one way of opening device sessions with a GPIB
multimeter and a GPIB-VXI scanner. The example first opens a session
with the default resource manager. The session returned from the resource
manager and a device address is then used to open a session with the GPIB
device at address 22. That session will now be identified as dmm when using
other VISA functions.

The session returned from the resource manager is then used again with
another device address to open a session with the GPIB-VXI device at
primary address 9 and VXI logical address 24. That session will now be
identified as scanner when using other VISA functions. See "Addressing
a Device Session" for information on addressing particular devices.

ViSession defaultRM, dmm, scanner;
.
.
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB0::22::INSTR", VI_NULL, VI_NULL,&dmm);
viOpen(defaultRM, "GPIB-VXI0::24::INSTR", VI_NULL, VI_NULL,&scanner);
.
.
viClose(scanner);
viClose(dmm);
viClose(defaultRM);

Parameter Description

sesn This is a session returned from the viOpenDefaultRM
function that identifies the resource manager session.

rsrcName This is a unique symbolic name of the device (device
address).

accessMode This parameter is not used for VISA 1.0. Use VI_NULL.

timeout This parameter is not used for VISA 1.0. Use VI_NULL.

vi This is a pointer to the session identifier for this particular
device session. This pointer will be used to identify this
device session when using other VISA functions.
Chapter 4 33

Programming with VISA
Using Device Sessions
Addressing a Device Session
As shown in the previous section, the rsrcName parameter in the viOpen
function is used to identify a specific device. This parameter consists of
the VISA interface name and the device address. The interface name is
determined when you run the VISA configuration utility. This name is usually
the interface type followed by a number.

The following table illustrates the format of the rsrcName for different
interface types. INSTR is an optional parameter that indicates that you are
communicating with a resource that is of type INSTR, meaning instrument.
For compatibility with future releases of VISA, you must include the INSTR
parameter in the syntax.

The following table describes the parameters used above.

Interface Syntax

VXI VXI[board]::VXI logical address[::INSTR]

GPIB-VXI GPIB-VXI[board]::VXI logical address[::INSTR]

GPIB GPIB[board]::primary address[::secondary address][::INSTR]

ASRL ASRL[board][::INSTR]

Parameter Description

board This optional parameter is used if you have more
than one interface of the same type. The default
value for board is 0.

VXI logical address This is the logical address of the VXI instrument.

primary address This is the primary address of the GPIB device.

secondary address This optional parameter is the secondary address of
the GPIB device. If no secondary address is
specified, none is assumed.
34 Chapter 4

Programming with VISA
Using Device Sessions
Some examples of valid symbolic names follow.

([DPSOH��2SHQLQJ�D�
'HYLFH�6HVVLRQ

This example shows one way to open a device session with the GPIB device
at primary address 23.

ViSession defaultRM, vi;
.
.
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB0::23::INSTR", VI_NULL, VI_NULL,&vi);
.
.
viClose(vi);
viClose(defaultRM);

Name Description

VXI0::24::INSTR Device at VXI logical address 24 that is of VISA type
INSTR.

VXI2::128 Device at VXI logical address 128, in the third VXI
system (VXI2).

GPIB-VXI0::24 A VXI device at logical address 24. This VXI device is
connected via a GPIB-VXI command module.

GPIB0::7::0 A GPIB device at primary address 7 and secondary
address 0 on the GPIB interface.

ASRL1::INSTR A serial device located on port 1 that is of VISA type
INSTR.
Chapter 4 35

Programming with VISA
Using Device Sessions
Closing a Device Session
The viClose function must be used to close each session. You can close
the specific device session, which will free all data structures that had been
allocated for the session. If you close the default resource manager session,
all sessions opened using that resource manager session will be closed.

Since system resources are also used when searching for resources
(viFindRsrc), the viClose function needs to be called to free up find lists.
See "Searching for Resources" for more information on closing find lists.

Searching for Resources
When you open the default resource manager, you are opening a parent
session that knows about all the other resources in the system. Since the
resource manager session knows about all resources, it has the ability to
search for specific resources and open sessions to these resources. You
can, for example, search an interface for devices and open a session with
one of the devices found.

Use the viFindRsrc function to search an interface for device resources.
This function finds matches and returns the number of matches found
and a handle to the resources found. If there are more matches, use the
viFindNext function with the handle returned from viFindRsrc to
get the next match:

viFindRsrc(sesn, expr, findList, retcnt, instrDesc);
.
.
viFindNext(findList, instrDesc);
.
.
viClose(findList);

Where the parameters are defined as follows.

Parameter Description

sesn The resource manager session.

expr The expression that identifies what to search (see table that
follows).

findList A handle that identifies this search. This handle will then be used
as an input to the viFindNext function when finding the next
match.
36 Chapter 4

Programming with VISA
Using Device Sessions
The handler returned from viFindRsrc should be closed to free up all the
system resources associated with the search. To close the find object, pass
the findList to the viClose function.

Use the expr parameter of the viFindRsrc function to specify the interface
to search. You can search for devices on the specified interface. Use the
following table to determine what to use for your expr parameter.

([DPSOH��6HDUFKLQJ�
9;,�,QWHUIDFH�IRU�
'HYLFHV

This example searches the VXI interface for devices. The number of
matches found is returned in nmatches, and matches points to the string
that contains the matches found. The first call returns the first match found,
the second call returns the second match found, etc. Note that
VI_FIND_BUFLEN is defined in the visa.h declarations file.

ViChar buffer [VI_FIND_BUFLEN];
ViRsrc matches=buffer;
ViUInt32 nmatches;
ViFindList list;
.
.

retcnt A pointer to the number of matches found.

instrDesc A pointer to a string identifying the location of the match. Note
that you must allocate storage for this string.

NOTE

Because VISA interprets strings as regular expressions, the string
GPIB?*INSTR applies to both GPIB and GPIB-VXI devices.

Interface expr Parameter

GPIB GPIB[0-9]*::?*INSTR

VXI VXI?*INSTR

GPIB-VXI GPIB-VXI?*INSTR

GPIB and GPIB-VXI GPIB?*INSTR

All VXI ?*VXI[0-9]*::?*INSTR

ASRL ASRL[0-9]*::?*INSTR

All ?*INSTR
Chapter 4 37

Programming with VISA
Using Device Sessions
viFindRsrc(defaultRM, "VXI?*INSTR", &list, &nmatches,
matches);
.
.
.
viFindNext(list, matches);
.
.
viClose(list);
38 Chapter 4

Programming with VISA
Sending I/O Commands
Sending I/O Commands
This section gives guidelines to send I/O commands, including:

n Types of I/O
n Using Formatted I/O
n Using Non-Formatted I/O

Types of I/O
Once you have established a communications session with a device, you
can start communicating with that device using VISA’s I/O routines. VISA
provides both formatted and non-formatted I/O routines.

n Formatted I/O converts mixed types of data under the control of a
format string. The data is buffered, thus optimizing interface traffic.

n Non-formatted I/O sends or receives raw data to or from a device.
With non-formatted I/O, no format or conversion of the data is
performed. Thus, if formatted data is required, it must be done by
the user.

You can choose between VISA’s formatted and non-formatted I/O routines.
However, since the non-formatted I/O performs the low-level I/O, you should
not mix formatted I/O and non-formatted I/O in the same session. See the
following sections for descriptions and examples using formatted I/O and
non-formatted I/O in VISA.

Using Formatted I/O
The VISA formatted I/O mechanism is similar to the C stdio mechanism.
The VISA formatted I/O functions are viPrintf, viQueryf, and
viScanf. There are also two non-buffered and non-formatted I/O functions
that synchronously transfer data, called viRead and viWrite and two that
asynchronously transfer data, called viReadAsync and viWriteAsync.

These are raw I/O functions and do not intermix with the formatted I/O
functions. See "Non-Formatted I/O" in this chapter. See Chapter 7 - VISA
Language Reference for more information on how data is converted under
the control of the format string.
Chapter 4 39

Programming with VISA
Sending I/O Commands
)RUPDWWHG�,�2�
)XQFWLRQV

As noted, the VISA formatted I/O functions are viPrintf, viQueryf, and
viScanf.

n The viPrintf functions format according to the format string and
send data to a device. The viPrintf function sends separate arg
parameters, while the viVPrintf function sends a list of
parameters in params:

viPrintf(vi, writeFmt[, arg1][, arg2][, ...]);
viVPrintf(vi, writeFmt, params);

n The viScanf functions receive and convert data according to the
format string. The viScanf function receives separate arg
parameters, while the viVScanf function receives a list of
parameters in params:

viScanf(vi, readFmt[, arg1][, arg2][, ...]);
viVScanf(vi, readFmt, params);

n The viQueryf functions format and send data to a device and then
immediately receive and convert the response data. Hence, the
viQueryf function is a combination of the viPrintf and
viScanf functions. Similarly, the viVQueryf function is a
combination of the viVPrintf and viVScanf functions. The
viQueryf function sends and receives separate arg parameters,
while the viVQueryf function sends and receives a list of
parameters in params:

viQueryf(vi, writeFmt, readFmt[, arg1][, arg2][, ...]);
viVQueryf(vi, writeFmt, readFmt, params);

)RUPDWWHG�,�2�
&RQYHUVLRQ�

The formatted I/O functions convert data under the control of the format
string. The format string specifies how the argument is converted before it is
input or output. The format specifier sequence consists of a % (percent)
followed by an optional modifier(s), followed by a conversion character.

%[modifiers]conversion character

Zero or more modifiers may be used to change the meaning of the
conversion character. Modifiers are only used when sending or receiving
formatted I/O. To send formatted I/O, the asterisk (*) can be used to indicate
that the number is taken from the next argument.
40 Chapter 4

Programming with VISA
Sending I/O Commands
However, when the asterisk is used when receiving formatted I/O, it
indicates that the assignment is suppressed and the parameter is discarded.
Use the pound sign (#) when receiving formatted I/O to indicate that an
extra argument is used. The following are supported modifiers. See the
viPrintf function in Chapter 7 - VISA Language Reference for additional
enhanced modifiers (@1, @2, @3, @H, @Q, or @B).

n Field Width. Field width is an optional integer that specifies how
many characters are in the field. If the viPrintf or viQueryf
(writeFmt) formatted data has fewer characters than specified in the
field width, it will be padded on the left, or on the right if the – flag is
present.

You can use an asterisk (*) in place of the integer in viPrintf or
viQueryf (writeFmt) to indicate that the integer is taken from the
next argument. For the viScanf or viQueryf (readFmt) functions,
you can use a # sign to indicate that the next argument is a
reference to the field width.

The field width modifier is only supported with viPrintf and
viQueryf (writeFmt) conversion characters d, f, s, and
viScanf and viQueryf (readFmt) conversion characters c, s,
and [].

Example: Using Field Width Modifier

The following example pads numb to six characters and sends it to
the session specified by vi:

int numb = 61;
viPrintf(vi, "%6d\n", numb);

Inserts four spaces, for a total of 6 characters: 61

n .Precision. Precision is an optional integer preceded by a period.
This modifier is only used with the viPrintf and viQueryf
(writeFmt) functions. The meaning of this argument is dependent on
the conversion character used. You can use an asterisk (*) in place
of the integer to indicate the integer is taken from the next argument.
Chapter 4 41

Programming with VISA
Sending I/O Commands
Example: Using the Precision Modifier

This example converts numb so that there are only two digits to the
right of the decimal point and sends it to the session specified by vi:

float numb = 26.9345;
viPrintf(vi, "%.2f\n", numb);

Sends : 26.93

n Argument Length Modifier. The meaning of the optional argument
length modifier h, l, L, z’’ or Z is dependent on the conversion
character, as listed in the following table. Note that z and Z are not
ANSI C standard modifiers.

Conversion
Character

Description

d Indicates the minimum number of digits to appear is
specified for the @1, @H, @Q, and @B flags, and the
i, o, u, x, and X conversion characters.

f Indicates the maximum number of digits after the
decimal point is specified.

s Indicates the maximum number of characters for the
string is specified.

g Indicates the maximum significant digits are specified.

Argument
Length

Modifier

Conversion
Character

Description

h d, b, B Corresponding argument is a short integer or
a reference to a short integer for d. For b or
B, the argument is the location of a block of
data or a reference to a data array. (B is only
used with viPrintf or viQueryf (writeFmt).)
42 Chapter 4

Programming with VISA
Sending I/O Commands
n , Array Size. The comma operator is a format modifier that allows
you to read or write a comma-separated list of numbers (only valid
with %d and %f conversion characters). It is a comma followed by an
integer. The integer indicates the number of elements in the array.
The comma operator has the format of ,dd where dd is the number
of elements to read or write.

For viPrintf or viQueryf (writeFmt), you can use an asterisk
(*) in place of the integer to indicate that the integer is taken from
the next argument. For viScanf or viQueryf (readFmt), you can
use a # sign to indicate that the next argument is a reference to the
array size.

Example: Using Array Size Modifier

This example specifies a comma-separated list to be sent to the
session specified by vi:

int list[5]={101,102,103,104,105};
viPrintf(vi, "%,5d\n", list);

Sends: 101,102,103,104,105

l d, f,
b, B

Corresponding argument is a long integer or
a reference to a long integer for d. For f, the
argument is a double float or a reference to a
double float. For b or B, the argument is the
location of a block of data or a reference to a
data array. (B is only used with viPrintf or
viQueryf (writeFmt).)

L f Corresponding argument is a long double or
a reference to a long double.

z b, B Corresponding argument is an array of floats
or a reference to an array of floats. (B is only
used with viPrintf or viQueryf (writeFmt).)

Z b, B Corresponding argument is an array of
double floats or a reference to an array of
double floats. (B is only used with viPrintf or
viQueryf (writeFmt).)

Argument
Length

Modifier

Conversion
Character

Description
Chapter 4 43

Programming with VISA
Sending I/O Commands
n Special Characters. Special formatting character sequences will
send special characters. The following describes the special
characters and what will be sent.

The format string for viPrintf and viQueryf (writeFmt) puts a
special meaning on the newline character (\n). The newline
character in the format string flushes the output buffer to the device.
All characters in the output buffer will be written to the device with an
END indicator included with the last byte (the newline character).

This means you can control at what point you want the data written
to the device. If no newline character is included in the format string,
the characters converted are stored in the output buffer. It will
require another call to viPrintf, viQueryf (writeFmt), or
viFlush to have those characters written to the device.

This can be very useful in queuing up data to send to a device. It
can also raise I/O performance by doing a few large writes instead
of several smaller writes. The * while using the viScanf functions
acts as an assignment suppression character. The input is not
assigned to any parameters and is discarded.

Special
Character

Description

\n Sends the ASCII line feed character. The END
identifier will also be sent.

\r Sends an ASCII carriage return character.

\t Sends an ASCII TAB character.

\### Sends ASCII character specified by octal value.

\" Sends the ASCII double quote character.

\\ Sends a backslash character.
44 Chapter 4

Programming with VISA
Sending I/O Commands
Conversion Characters. This table summarizes the conversion characters for
sending and receiving formatted I/O.

Conversion
Character

Description

viPrintf/viVPrintf and viQueryf/viVqueryf (writeFmt)

d, i Corresponding argument is an integer.

f Corresponding argument is a double.

c Corresponding argument is a character.

s Corresponding argument is a pointer to a null terminated
string.

% Sends an ASCII percent (%) character.

o, u, x, X Corresponding argument is an unsigned integer.

e, E, g, G Corresponding argument is a double.

n Corresponding argument is a pointer to an integer.

b, B Corresponding argument is the location of a block of
data.

viPrintf/viVPrintf and viQueryf/viVqueryf (readFmt)

d,i,n Corresponding argument must be a pointer to an integer.

e,f,g Corresponding argument must be a pointer to a float.

c Corresponding argument is a pointer to a character
sequence.

s,t,T Corresponding argument is a pointer to a string.

o,u,x Corresponding argument must be a pointer to an
unsigned integer.

[Corresponding argument must be a character pointer.

b Corresponding argument is a pointer to a data array.
Chapter 4 45

Programming with VISA
Sending I/O Commands
([DPSOH��5HFHLYLQJ�
'DWD�)URP�D�
6HVVLRQ

This example receives data from the session specified by the vi parameter
and converts the data to a string.

char data[180];
viScanf(vi, "%t", data);

)RUPDWWHG�,�2�
%XIIHUV

The VISA software maintains both a read and write buffer for formatted I/O
operations. Occasionally, you may want to control the actions of these
buffers. You can modify the size of the buffer using the viSetBuf function.
See Chapter 7 - VISA Language Reference for more information on this
function.

The write buffer is maintained by the viPrintf or viQueryf (writeFmt)
functions. The buffer queues characters to send to the device so that they
are sent in large blocks, thus increasing performance. The write buffer
automatically flushes when it sends a newline character from the format
string. It may occasionally be flushed at other non-deterministic times, such
as when the buffer fills.

When the write buffer flushes, it sends its contents to the device. If you
set the VI_ATTR_WR_BUF_OPER_MODE attribute to
VI_FLUSH_ON_ACCESS, the write buffer will also be flushed every time
a viPrintf or viQueryf operation completes. See "Using VISA
Attributes" in this chapter for information on setting VISA attributes.

The read buffer is maintained by the viScanf and viQueryf (readFmt)
functions. It queues the data received from a device until it is needed by the
format string. Flushing the read buffer destroys the data in the buffer and
guarantees that the next call to viScanf or viQueryf reads data directly
from the device rather than data that was previously queued.

If you set the VI_ATTR_RD_BUF_OPER_MODE attribute to
VI_FLUSH_ON_ACCESS, the read buffer will be flushed every time a
viScanf or viQueryf operation completes. See "Using VISA Attributes"
in this chapter for information on setting VISA attributes.

You can manually flush the read and write buffers using the viFlush
function. Flushing the read buffer also includes reading all pending response
data from a device. If the device is still sending data, the flush process will
continue to read data from the device until it receives an END indicator from
the device.
46 Chapter 4

Programming with VISA
Sending I/O Commands
([DPSOH��6HQGLQJ�
DQG�5HFHLYLQJ�
)RUPDWWHG�,�2

This C program example shows sending and receiving formatted I/O. The
example opens a session with a GPIB device and sends a comma operator
to send a comma-separated list. This example program is intended to show
specific VISA functionality and does not include error trapping. Error
trapping, however, is good programming practice and is recommended in
your VISA applications. See "Trapping Errors" in this chapter.

This example program is installed on your system in the SAMPLES
subdirectory on Windows environments, or in the examples subdirectory on
HP-UX. See Appendix A - VISA System Information for locations of example
programs on your operating system.

/*formatio.c
This example program makes a multimeter measurement
with a comma-separated list passed with formatted
I/O and prints the results. Note that you must change
the device address. */

#include <visa.h>
#include <stdio.h>

void main () {

ViSession defaultRM, vi;
double res;
double list [2] = {1,0.001};

/* Open session to GPIB device at address 22 */
viOpenDefaultRM(&efaultRM);
viOpen(defaultRM, "GPIB0::22::INSTR", VI_NULL,VI_NULL, &vi);

/* Initialize device */
viPrintf(vi, "*RST\n");

/* Set up device and send comma separated list */
viPrintf(vi, "CALC:DBM:REF 50\n");
viPrintf(vi, "MEAS:VOLT:AC? %,2f\n", list);
/* Read results */
viScanf(vi, "%lf", &res);

/* Print results */
printf("Measurement Results: %lf\n", res);
/* Close session */
viClose(vi);
viClose(defaultRM);}
Chapter 4 47

Programming with VISA
Sending I/O Commands
Using Non-Formatted I/O
There are two non-buffered, non-formatted I/O functions that synchronously
transfer data called viRead and viWrite. Also, there are two non-
formatted I/O functions that asynchronously transfer data called
viReadAsync and viWriteAsync. These are raw I/O functions and
do not intermix with the formatted I/O functions.

1RQ�)RUPDWWHG�,�2�
)XQFWLRQV

The non-formatted I/O functions follow. For more information, see the
viRead, viWrite, viReadAsync, viWriteAsync, and viTerminate
functions in Chapter 7 - VISA Language Reference.

n viRead. The viRead function synchronously reads raw data from
the session specified by the vi parameter and stores the results in
the location where buf is pointing. Only one synchronous read
operation can occur at any one time.

viRead(vi, buf, count, retCount);

n viWrite. The viWrite function synchronously sends the data
pointed to by buf to the device specified by vi. Only one
synchronous write operation can occur at any one time.

viWrite(vi, buf, count, retCount);

n viReadAsync. The viReadAsync function asynchronously reads
raw data from the session specified by the vi parameter and stores
the results in the location where buf is pointing. This operation
normally returns before the transfer terminates. Thus, the operation
returns jobId, which you can use with either viTerminate to abort
the operation or with an I/O completion event to identify which
asynchronous read operation completed.

viReadAsync(vi, buf, count, jobId);

n viWriteAsync. The viWriteAsync function asynchronously
sends the data pointed to by buf to the device specified by vi.
This operation normally returns before the transfer terminates.
Thus, the operation returns jobId, which you can use with either
viTerminate to abort the operation or with anI/O completion event
to identify which asynchronous write operation completed.

viWriteAsync(vi, buf, count, jobId);
48 Chapter 4

Programming with VISA
Sending I/O Commands
([DPSOH��8VLQJ�
1RQ�)RUPDWWHG�
,�2�)XQFWLRQV

This example program illustrates using non-formatted I/O functions to
communicate with a GPIB device. This example program is intended to
show specific VISA functionality and does not include error trapping. Error
trapping, however, is good programming practice and is recommended in
your VISA applications. See "Trapping Errors" in this chapter.

/*nonfmtio.c
This example program measures the AC voltage on a
multimeter and prints the results. Note that you must
change the device address. */

#include <visa.h>
#include <stdio.h>

void main () {

ViSession defaultRM, vi;
char strres [20];
unsigned long actual;

/* Open session to GPIB device at address 22 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB0::22::INSTR", VI_NULL,VI_NULL,
&vi);

/* Initialize device */
viWrite(vi, (ViBuf)"*RST\n", 5, &actual);

/* Set up device and take measurement */
viWrite(vi, (ViBuf)"CALC:DBM:REF 50\n", 16, &actual);
viWrite(vi, (ViBuf)"MEAS:VOLT:AC? 1, 0.001\n", 23,
&actual);

/* Read results */
viRead(vi, (ViBuf)strres, 20, &actual);

/* NULL terminate the string */
strres[actual]=0;

/* Print results */
printf("Measurement Results: %s\n", strres);

/* Close session */
viClose(vi);
viClose(defaultRM);

}

Chapter 4 49

Programming with VISA
Using VISA Attributes
Using VISA Attributes
This section gives guidelines to use VISA attributes, including:

n What are VISA Attributes?
n VISA Resource Attributes
n VISA Generic Instrument Attributes
n VISA Interface-Specific Instrument Attributes
n VISA Event Attributes

What are VISA Attributes?
Attributes are associated with resources or sessions. You can use attributes
to determine the state of a resource or session or to set a resource or
session to a specified state.

Use the viGetAttribute function to read the state of an attribute for a
specified session, event context, or find list. There are read only (RO) and
read/write (RW) attributes. Use the viSetAttribute function to modify
the state of a read/write attribute for a specified session, event context, or
find list.

The pointer passed to viGetAttribute must point to the exact type
required for that attribute: ViUInt16, ViInt32, etc. For example, when
reading an attribute state that returns a ViUInt16, you must declare a
variable of that type and use it for the returned data. If ViString is
returned, you must allocate an array and pass a pointer to that array for the
returned data.

VISA attributes are described in the following subsections. For programming
information on attributes, such as attribute types and ranges, see Appendix
B - VISA Attributes.

([DPSOH��5HDGLQJ�D�
9,6$�$WWULEXWH

This example reads the state of the VI_ATTR_TERMCHAR_EN attribute and
changes it if it is not true.

ViBoolean state, newstate;
newstate=VI_TRUE;
.
.
viGetAttribute(vi, VI_ATTR_TERMCHAR_EN, &state);
if (state err !=VI_TRUE) viSetAttribute(vi,

VI_ATTR_TERMCHAR_EN, newstate);
50 Chapter 4

Programming with VISA
Using VISA Attributes
VISA Resource Attributes
The VISA resource attributes are primarily used to return information about
the VISA version implemented and its manufacturer. Information can also be
obtained about the current resource manager session, as well as the locking
state of a resource.

Attribute Description

VI_ATTR_MAX_QUEUE_LENGTH Specifies the maximum number of
events that can be queued.

VI_ATTR_RM_SESSION Returns the session of the resource
manager that was used to open this
session.

VI_ATTR_RSRC_IMPL_VERSION Returns the resource identification.

VI_ATR_RSRC_LOCK_STATE Returns the current locking state of the
resource.

VI_ATTR_RSRC_MANF_ID Returns the VXI manufacturer’s
identification of the manufacturer that
created the implementation.

VI_ATTR_RSRC_MANF_NAME Returns the VXI manufacturer’s name
of the manufacturer that created the
implementation.

VI_ATTR_RSRC_NAME Returns the identifier of the resource
compliant with the address specified.

VI_ATTR_RSRC_SPEC_VERSION Returns the VISA version.

VI_ATTR_USER_DATA This is a place for you to store your
own data.
Chapter 4 51

Programming with VISA
Using VISA Attributes
VISA Generic Instrument Attributes
The following are generic attributes that can be called on sessions. These
attributes determine such things as when a buffer is flushed, timeout values,
and the type of interface the device is on.

Attribute Description

VI_ATTR_INTF_NUM Returns the board number of the specified
interface.

VI_ATTR_INTF_TYPE Returns the interface type for the specified
session.

VI_ATTR_INTF_INST_NAME Human-readable text describing the
interface.

VI_ATTR_IO_PROT For VXI, specifies if you use normal word
serial or fast data channel (FDC) protocol.
For GPIB, only normal data transfers are
accepted.

VI_ATTR_RD_BUF_OPER_
MODE

Determines when the read buffer is flushed.

VI_ATTR_SEND_END_EN Specifies whether the END is asserted during
the transfer of the last byte of the buffer
during a ViWrite only.

VI_ATTR_SUPPRESS_END_EN Specifies whether the END is suppressed
during a ViRead only.

VI_ATTR_TERMCHAR Specifies if the termination character is to be
used. When VI_ATTR_TERMCHAR_EN is
enabled and the termination character is
read, the read operation will terminate.

VI_ATTR_TERMCHAR_EN Determines if the read operation will
terminate when a termination character is
received.

VI_ATTR_TMO_VALUE Specifies a timeout value.

VI_ATTR_TRIG_ID Specifies the current trigger line.

VI_ATTR_WR_BUF_OPER_
MODE

Determines when the write buffer is flushed.
52 Chapter 4

Programming with VISA
Using VISA Attributes
VISA Interface-Specific Instrument Attributes
The interface-specific attributes provide information about an interface or a
device on an interface. The attributes are listed by interface type.

GPIB and GPIB-VXI Interfaces

VI_ATTR_GPIB_PRIMARY_
ADDR

Returns the primary address of the GPIB
device for the specified session.

VI_ATTR_GPIB_SECONDARY_
ADDR

Returns the secondary address of the
GPIB device for the specified session.

VI_ATTR_GPIB_READDR_EN Specified whether to use repeat
addressing before each read or write
operation.

VI_ATTR_GPIB_UNADDR_EN Specifies whether to unaddress the
device (UNT and UNL) after each read or
write operation.

VXI and GPIB-VXI Interfaces

VI_ATTR_CMDR_LA’ Returns the logical address of the
commander of the VXI device in the
specified session.

VI_ATTR_DEST_INCREMENT Specifies how much the destination
offset is to be incremented after every
transfer in the viMoveOutXX function. If
set to 0, the viMoveOutXX function will
always write to the same element,
essentially treating the destination as a
FIFO register.

VI_ATTR_FDC_CHNL Determines which fast data channel
(FDC) will be used to transfer the buffer.

VI_ATTR_FDC_GEN_SIGNAL_EN Setting this attribute to VI_TRUE lets the
servant send a signal when control of the
FDC channel is passed back to the
commander. This action frees the
commander from having to poll the FDC
header while engaging in an FDC
transfer.
Chapter 4 53

Programming with VISA
Using VISA Attributes
VXI and GPIB-VXI Interfaces (cont’d)

VI_ATTR_FDC_MODE Determines which FDC mode to use
(Normal or Stream mode).

VI_ATTR_FDC_USE_PAIR If set to VI_TRUE, a channel pair will be
used for transferring data. Otherwise,
only one channel will be used.

VI_ATTR_IMMEDIATE_SERV Specifies whether or not the given device
is an immediate servant of the controller
running VISA.

VI_ATTR_MAINFRAME_LA Returns the lowest logical address in the
mainframe. VI_UNKNOWN_LA is
returned if the logical address is not
known.

VI_ATTR_MANF_ID Returns the manufacturer’s identification
number of the VXI device in the specified
session.

VI_ATTR_MEM_BASE Returns the base address of the device
in A24 or A32 VXI memory address
space.

VI_ATTR_MEM_SIZE Returns the size of memory requested by
the device in A24 or A32 VXI address
space.

VI_ATTR_MEM_SPACE Returns the VXI address space used by
the device (A16, A16/A24, or A16/A32).

VI_ATTR_MODEL_CODE Returns the model code of the device in
the specified session.

VI_ATTR_SLOT Returns the physical slot location of the
VXI device in the specified session.

VI_ATTR_SRC_INCREMENT Specifies how much the source offset is
to be incremented after every transfer in
the viMoveIn XX function. Default is 1;
set it to either 0 or 1. If set to 0, the
viMoveIn XX function will always read
from the same element, essentially
treating the source as a FIFO register.
54 Chapter 4

Programming with VISA
Using VISA Attributes
VXI and GPIB-VXI Interfaces (cont’d)

VI_ATTR_VXI_LA Returns the logical address of the VXI
device in the specified session.

VI_ATTR_WIN_ACCESS Returns the mode in which the current
window can be accessed.

VI_ATTR_WIN_BASE_ADDR Returns the base address of the interface
bus to which this window is mapped.

VI_ATTR_WIN_SIZE Returns the size of the region mapped to
this window.

VI_ATTR_SRC_BYTE ORDER Specifies the byte order ot be used in
high-level access operations, such as
viInxx and viMoveInxx , when reading
from the source.

VI_ATTR_DEST_BYTE_ORDER Specifies the byte order ot be used in
high-level access operations, such as
viOutxx and viMoveOutxx , when writing
to the destination.

VI_ATTR_WIN_BYTE_ORDER Specifies the byte order to be used in
low-level access operations, such as
viMapAddress , viPeekxx , and
viPokexx , when accessing the mapped
window.

VI_ATTR_SRC_ACCESS_PRIV Specifies the address modifier used in
high-level access operations, such as
viInxx and viMoveInxx , when reading
from the source.

VI_ATTR_DEST_ACCESS_PRIV Specifies the address modifier used in
high-level access operations, such as
viOutxx and viMoveOutxx , when writing
to the destination.

VI_ATTR_WIN_ACCESS_PRIV Specifies the address modifier to be used
in low-level access operations, such as
viMapAddress , viPeekxx , and
viPokexx , when accessing the mapped
window.
Chapter 4 55

Programming with VISA
Using VISA Attributes
GPIB-VXI Interface

VI_ATTR_INTF_PARENT_NUM Returns the board number of the GPIB
interface to which the GPIB-VXI is
attached.

ASRL Interface

VI_ATTR_ASRL_AVAIL_NUM Returns the number of bytes available in
the global receive buffer.

VI_ATTR_ASRL_BAUD Returns the baud rate of the interface.

VI_ATTR_ASRL_DATA_BITS Returns the number of data bits contained
in each frame (from 5 to 8). The data bits
for each frame are located in the low-order
bits of every byte stored in memory.

VI_ATTR_ASRL_END_IN Indicates the method used to terminate
read operations.

VI_ATTR_ASRL_END_OUT Indicates the method used to terminate
write operations.

VI_ATTR_ASRL_FLOW_CNTRL Returns the kind of flow control that the
transfer mechanism is using.

VI_ATTR_ASRL_PARITY Returns the parity used with every frame
transmitted and received.

VI_ATTR_ASRL_STOP_BITS Returns the number of stop bits used to
indicate the end of a frame.

VI_ATTR_ASRL_CTS_STATE Shows the current state of the Clear To
Send (CTS) input signal.
56 Chapter 4

Programming with VISA
Using VISA Attributes
ASRL Interface (cont’d)

VI_ATTR_ASRL_RTS_STATE Manually assert or unassert the Request
To Send (RTS) output signal. When the
VI_ATTR_ASRL_FLOW_CNTRL attribute is
set to VI_ASRL_FLOW_RTS_CTS, this
attribute is ignored when changed, but can
be read to determine whether the
background flow control is asserting or
unasserting the signal.

VI_ATTR_ASRL_DTR_STATE Manually assert or unassert the Data
Terminal Ready (DTR) output signal.

VI_ATTR_ASRL_DSR_STATE Shows the current state of the Data Set
Ready (DSR) input signal.

VI_ATTR_ASRL_DCD_STATE Shows the current state of the Carrier
Detect (DCD) input signal. The DCD signal
is often used by modems to indicate the
detection of a carrier (remote modem) on
the telephone line. The DCD signal is also
known as Receive Line Signal Detect
(RLSD).

VI_ATTR_RI_STATE Shows the current state of the Ring
Indicator (RI) input signal.
Chapter 4 57

Programming with VISA
Using VISA Attributes
VISA Event Attributes
The following attributes are read-only attributes that can only be read on
event contexts returned from event handlers or viWaitOnEvent.

Attribute Description

VI_ATTR_EVENT_TYPE Returns the type of event enabled.

VI_ATTR_SIGP_STATUS_ID Returns the 16-bit status (ID) value. (Only for
VI_EVENT_VXI_SIGP event type.)

VI_ATTR_RECV_TRIG_ID Returns which trigger line was fired. (Only for
VI_EVENT_TRIG event type.)

VI_ATTR_STATUS Returns the return code of the asynchronous
I/O operation that has completed. (Only for
VI_EVENT_IO_COMPLETION event type.)

VI_ATTR_JOB_ID Returns the job identifier (ID) of the
asynchronous operation that has completed.
(Only for VI_EVENT_IO_COMPLETION
event type.)

VI_ATTR_BUFFER Returns the address of a buffer that was
used in an asynchronous operation. (Only for
VI_EVENT_IO_COMPLETION event type.)

VI_ATTR_RET_COUNT Returns the actual number of elements that
were asynchronously transferred. (Only for
VI_EVENT_IO_COMPLETION event type.)
58 Chapter 4

Programming with VISA
Using Events and Handlers
Using Events and Handlers
This section gives guidelines to use events and handlers, including:

n Events and Attributes
n Using the Callback Method
n Using the Queuing Method

Events and Attributes
Events are special occurrences that require attention from your application.
Event types include Service Requests (SRQs), interrupts, and hardware
triggers. Events will not be delivered unless the appropriate events are
enabled.

(YHQW�1RWLILFDWLRQ There are two ways you can receive notification that an event has occurred:

n Install an event handler with viInstallhandler, and enable one
or several events with viEnableEvent. If the event was enabled
with a handler, the specified event handler will be called when the
specified event occurs. This is called a callback.

n Enable one or several events with viEnableEvent and call the
viWaitOnEvent function. The viWaitOnEvent function will
suspend the program execution until the specified event occurs or
the specified timeout period is reached. This is called queuing.

These methods are independent of each other and one or both can be used
at one time. The callback method is generally used when immediate
response is needed, and the queuing method is for non-critical events.
Chapter 4 59

Programming with VISA
Using Events and Handlers
(YHQWV�7KDW�FDQ�EH�
(QDEOHG

The following events can be enabled. The VI_EVENT_VXI_SIGP and
VI_EVENT_TRIG events are not supported on the GPIB-VXI interface.
Event contexts should not be closed in event handlers. Do not use viClose
to close contexts in event handlers.

*HWWLQJ�(YHQW�
,QIRUPDWLRQ

Once the application has received an event, information about that event
can be obtained by using the viGetAttribute function on that particular
event context. The following table lists the events and associated read-only
attributes that can be read to get event information on a specific event. Use
the VISA viReadSTB function to read the status byte of the service request.

Event Name Description

VI_EVENT_SERVICE_REQ Notification that a device is requesting service.

VI_EVENT_VXI_SIGP Notification that a VXI signal or VXI interrupt
has been received from a device.

VI_EVENT_TRIG Notification that a hardware trigger was
received from a device.

VI_EVENT_IO_COMPLETION Notification that an asynchronous operation
has completed.

Event Name Attributes Data Type Values

VI_EVENT_
SERVICE_REQ

VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_
SERVICE_REQ

VI_EVENT_VXI_SIGP VI_ATTR_EVENT_TYPE
VI_ATTR_SIGP_STATUS_ID

ViEventType
ViUInt16

VI_EVENT_VXI_SIGP
0 to FFFFh

VI_EVENT_TRIG VI_ATTR_EVENT_TYPE
VI_ATTR_RECV_TRIG_ID

ViEventType
ViInt16

VI_EVENT_TRIG
VI_TRIG_TTL0 to
VI_TRIG_TTL7
VI_TRIG_ECL0 to
VI_TRIG_ECL1

VI_EVENT_IO_
COMPLETION

VI_ATTR_EVENT_TYPE

VI_ATTR_STATUS
VI_ATTR_JOB_ID
VI_ATTR_BUFFER
VI_ATTR_RET_COUNT

ViEventType

ViStatus
ViJobId
ViBuf
ViUInt32

VI_EVENT_IO_
COMPLETION
N/A
N/A
N/A
0 to FFFFFFFFh
60 Chapter 4

Programming with VISA
Using Events and Handlers
([DPSOH��5HDGLQJ�
(YHQW�$WWULEXWHV

Once you have decided which attribute to check, you can read the attribute
using the viGetAttribute function. The following example shows one
way you could check which trigger line fired when the VI_EVENT_TRIG
event was delivered.

Note that the context parameter is either the event context passed to your
event handler, or the outcontext specified when doing a wait on event. See
"Using VISA Attributes" in this chapter for more information on reading
attribute states.

ViInt16 state;
.
.
viGetAttribute(context, VI_ATTR_RECV_TRIG_ID, &state);
Chapter 4 61

Programming with VISA
Using Events and Handlers
Using the Callback Method
The callback method of event notification is used when an immediate
response to an event is required. To use the callback method for receiving
notification that an event has occurred, you must do the following. Then,
when the enabled event occurs, the installed event handler is called.

n Install an event handler with the viInstallHandler function
n Enable one or several events with the viEnableEvent function

([DPSOH��8VLQJ�WKH�
&DOOEDFN�0HWKRG

This example shows one way you can use the callback method.

void my_handler (ViSession vi, ViEventType eventType,
ViEvent context, ViAddr usrHandle) {

/* your event handling code here */

}
main(){
ViSession vi;
ViAddr addr=0;
.
.
viInstallHandler(vi, VI_EVENT_SERVICE_REQ, my_handler,
addr);
viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR,
VI_NULL);
.

/* your code here */
.
viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR);
viUninstallHandler(vi, VI_EVENT_SERVICE_REQ, my_handler,
addr);
.
}

62 Chapter 4

Programming with VISA
Using Events and Handlers
,QVWDOOLQJ�+DQGOHUV A handler is installed on a specified session. Only one handler can be
installed on a specific event in a given session, or you can install a different
handler for each event type. However, the same handler can be installed on
more than one event type. Use the following function when installing an
event handler:

viInstallHandler(vi, eventType, handler, userHandle);

Where the parameters are defined as follows.

The userHandle parameter allows you to assign a value to be used with the
handler on the specified session. Thus, you can install the same handler for
the same event type on several sessions with different userHandle values.
The same handler is called for the specified event type.

However, the value passed to userHandle is different. Therefore the
handlers are uniquely identified by the combination of the handler and the
userHandle. This may be useful when you need a different handling method
depending on the userHandle.

([DPSOH��,QVWDOOLQJ�
DQ�(YHQW�+DQGOHU

This example shows how to install an event handler to call my_handler
when a Service Request occurs. Note that VI_EVENT_SERVICE_REQ must
also be an enabled event with the viEnableEvent function for the service
request event to be delivered.

viInstallHandler(vi, VI_EVENT_SERVICE_REQ, my_handler,
addr);

Use the viUninstallHandler function to uninstall a specific handler.
Or you can use wildcards (VI_ANY_HNDLR in the handler parameter) to
uninstall groups of handlers. See viUninstallHandler in Chapter 7 -
VISA Language Reference for more details on this function.

Parameter Description

vi The session on which the handler will be installed.

eventType The event type that will activate the handler.

handler The name of the handler to be called.

userHandle A user value that uniquely identifies the handler for the
specified event type.
Chapter 4 63

Programming with VISA
Using Events and Handlers
:ULWLQJ�WKH�+DQGOHU The handler installed needs to be written by the programmer. The event
handler typically reads an associated attribute and performs some sort of
action. See the event handler in the example program later in this section.

(QDEOLQJ�(YHQWV Before an event can be delivered, it must be enabled using the
viEnableEvent function. This function causes the application to be
notified when the enabled event has occurred, Where the parameters are
defined as follows.

viEnableEvent(vi, eventType, mechanism, context);

Using VI_QUEUE in the mechanism parameter specifies a queuing method
for the events to be handled. If you use both VI_QUEUE and one of the
mechanisms listed above, notification of events will be sent to both
locations. See the next subsection for information on the queuing method.

Parameter Description

vi The session on which the handler will be installed.

eventType The type of event to enable.

mechanism The mechanism by which the event will be enabled. It can be
enabled in several different ways:

Use VI_HNDLR in this parameter to specify that the installed
handler will be called when the event occurs.

Use VI_SUSPEND_HNDLR in this parameter which puts the
events in a queue and waits to call the installed handlers until
viEnableEvent is called with VI_HNDLR specified in the
mechanism parameter. When viEnableEvent is called with
VI_HNDLR specified, the handler for each queued event will be
called.

context Not used in VISA 1.0. Use VI_NULL.
64 Chapter 4

Programming with VISA
Using Events and Handlers
([DPSOH��(QDEOLQJ�D�
+DUGZDUH�7ULJJHU�
(YHQW

This example illustrates enabling a hardware trigger event.

viInstallHandler(vi, VI_EVENT_TRIG, my_handler,&addr);
viEnableEvent(vi, VI_EVENT_TRIG, VI_HNDLR, VI_NULL);

The VI_HNDLR mechanism specifies that the handler installed for
VI_EVENT_TRIG will be called when a hardware trigger occurs.

If you specify VI_ALL_ENABLE_EVENTS in the eventType parameter, all
events that have previously been enabled on the specified session will be
enabled for the mechanism specified in this function call.

Use the viDisableEvent function to stop servicing the event specified.

([DPSOH��7ULJJHU�
&DOOEDFN

This example program installs an event handler and enables the trigger
event. When the event occurs, the installed event handler is called. This
program is intended to show specific VISA functionality and does not include
error trapping. Error trapping, however, is good programming practice and is
recommended in your VISA applications. See "Trapping Errors" in this
chapter.

This example program is installed on your system in the SAMPLES
subdirectory on Windows environments, or in the examples subdirectory
on HP-UX. See Appendix A - VISA System Information for locations of
example programs on your operating system.

/* evnthdlr.c
This example program illustrates installing an event
handler to be called when a trigger interrupt occurs.
Note that you must change the address. */

#include <visa.h>
#include <stdio.h>

/* trigger event handler */
ViStatus _VI_FUNCH myHdlr(ViSession vi, ViEventType

eventType, ViEvent ctx, ViAddr userHdlr){
ViInt16 trigId;

/* make sure it is a trigger event */
if(eventType!=VI_EVENT_TRIG){

/* Stray event, so ignore */
return VI_SUCCESS;

}
/* print the event information */
printf("Trigger Event Occurred!\n");
Chapter 4 65

Programming with VISA
Using Events and Handlers
printf("...Original Device Session = %ld\n", vi);

/* get the trigger that fired */
viGetAttribute(ctx, VI_ATTR_RECV_TRIG_ID, &trigId);
printf("Trigger that fired: ");
switch(trigId){

case VI_TRIG_TTL0:
printf("TTL0");
break;

default:
printf("<other 0x%x>", trigId);
break;

}

printf("\n");

return VI_SUCCESS;
}

void main(){
ViSession defaultRM,vi;

/* open session to VXI device */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "VXI0::24::INSTR", VI_NULL, VI_NULL, &vi);

/* select trigger line TTL0 */
viSetAttribute(vi, VI_ATTR_TRIG_ID, VI_TRIG_TTL0);
/* install the handler and enable it */
viInstallHandler(vi, VI_EVENT_TRIG, myHdlr,
(ViAddr)10);
viEnableEvent(vi, VI_EVENT_TRIG, VI_HNDLR, VI_NULL);
/* fire trigger line, twice */
viAssertTrigger(vi, VI_TRIG_PROT_SYNC);
viAssertTrigger(vi, VI_TRIG_PROT_SYNC);

/* unenable and uninstall the handler */
viDisableEvent(vi, VI_EVENT_TRIG, VI_HNDLR);

viUninstallHandler(vi, VI_EVENT_TRIG, myHdlr,
(ViAddr)10);

/* close the sessions */
viClose(vi);
viClose(defaultRM);

}

66 Chapter 4

Programming with VISA
Using Events and Handlers
([DPSOH��654�
&DOOEDFN

This program installs an event handler and enables an SRQ event. When
the event occurs, the installed event handler is called. This example
program is intended to show specific VISA functionality and does not include
error trapping. Error trapping, however, is good programming practice and is
recommended in your VISA applications. See "Trapping Errors" in this
chapter.

This program is installed on your system in the SAMPLES subdirectory on
Windows environments, or in the examples subdirectory on HP-UX. See
Appendix A - VISA System Information for locations of example programs
on your operating system.

/* srqhdlr.c
This example program illustrates installing an event
handler to be called when an SRQ interrupt occurs.
Note that you must change the address. */

#include <visa.h>
#include <stdio.h>
#if defined (_WIN32)

#include <windows.h> /* for Sleep() */
#define YIELD Sleep(10)

#elif defined (_BORLANDC_)
#include <windows.h> /* for Yield() */
#define YIELD Yield()

#elif defined (_WINDOWS)
#include <io.h> /* for _wyield */
#define YIELD _wyield()

#else
#include <unistd.h>
#define YIELD sleep (1)

#endif

int srqOccurred;

/* trigger event handler */
ViStatus _VI_FUNCH mySrqHdlr(ViSession vi, ViEventType

eventType, ViEvent ctx, ViAddr userHdlr){

ViUInt16 statusByte;

/* make sure it is an SRQ event */
if(eventType!=VI_EVENT_SERVICE_REQ){

/* Stray event, so ignore */
printf("\nStray event of type 0x%lx\n", eventType);
return VI_SUCCESS;
Chapter 4 67

Programming with VISA
Using Events and Handlers
}
/* print the event information */
printf("\nSRQ Event Occurred!\n");
printf("...Original Device Session = %ld\n", vi);

/* get the status byte */
viReadSTB(vi, &statusByte);
printf("...Status byte is 0x%x\n", statusByte);

srqOccurred = 1;
return VI_SUCCESS;

}

void main(){
ViSession defaultRM,vi;
long count;

/* open session to message based VXI device */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB-VXI0::24::INSTR", VI_NULL, VI_NULL,
&vi);

/* Enable command error events */
viPrintf(vi, "*ESE 32\n");

/* Enable event register interrupts */
viPrintf(vi, "*SRE 32\n");

/* install the handler and enable it */
viInstallHandler(vi, VI_EVENT_SERVICE_REQ, mySrqHdlr,
(ViAddr)10);
viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR,
VI_NULL);

srqOccurred = 0;

/* Send a bogus command to the message based device to
cause an SRQ. Note: ’IDN’ causes the error -- ’IDN?’
is the correct syntax */
viPrintf(vi, "IDN\n");

/* Wait a while for the SRQ to be generated and for the
handler to be called. Print something while we wait */
68 Chapter 4

Programming with VISA
Using Events and Handlers
printf("Waiting for an SRQ to be generated .");
for (count = 0 ; (count < 10) && (srqOccurred ==
0);count++) {

long count2 = 0;
printf(".");
while ((count2++ < 100) && (srqOccurred ==0)){

YIELD;
}

}
printf("\n");

/* disable and uninstall the handler */
viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR);
viUninstallHandler(vi, VI_EVENT_SERVICE_REQ, mySrqHdlr,
(ViAddr)10);

/* Clean up after ourselves - don’t leave device in error state */
viPrintf(vi, "*CLS\n");

/* close the sessions */
viClose(vi);
viClose(defaultRM);
printf("End of program\n");}
Chapter 4 69

Programming with VISA
Using Events and Handlers
Using the Queuing Method
The queuing method is generally used when an immediate response from
your application is not needed. To use the queuing method for receiving
notification that an event has occurred, you must do the following:

n Enable one or several events with the viEnableEvent function.
n When ready to query, use the viWaitOnEvent function to check

for queued events.

If the specified event has occurred, then the event information is retrieved
and the program returns immediately. If the specified event has not
occurred, then the program suspends execution until a specified event
occurs or until the specified timeout period is reached.

([DPSOH��8VLQJ�WKH�
4XHXLQJ�0HWKRG

This example program shows one way you can use the queuing method.

main();
ViSession vi;
ViEventType eventType;
ViEvent event;
.
.
viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE,
VI_NULL);
.
.
viWaitOnEvent(vi, VI_EVENT_SERVICE_REQ,
VI_TMO_INFINITE,

&eventType, &event);
.
.
viClose(event);
viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE);
}

70 Chapter 4

Programming with VISA
Using Events and Handlers
(QDEOLQJ�(YHQWV Before an event can be delivered, it must be enabled using the
viEnableEvent function:

viEnableEvent(vi, eventType, mechanism, context);

where the parameters are defined as follows:

When you use VI_QUEUE in the mechanism parameter, you are specifying
that the events will be put into a queue. Then, when a viWaitOnEvent
function is invoked, the program execution will suspend until the enabled
event occurs or the timeout period specified is reached. If the event has
already occurred, the viWaitOnEvent function will return immediately.

([DPSOH��(QDEOLQJ�D�
+DUGZDUH�7ULJJHU�
(YHQW

This example illustrates enabling a hardware trigger event.

viEnableEvent(vi, VI_EVENT_TRIG, VI_QUEUE, VI_NULL);

The VI_QUEUE mechanism specifies that when an event occurs, it will go
into a queue.

If you specify VI_ALL_ENABLE_EVENTS in the eventType parameter, all
events that have previously been enabled on the specified session will be
enabled for the mechanism specified in this function call.

Use the viDisableEvent function to stop servicing the event specified.

:DLW�RQ�WKH�(YHQW When using the viWaitOnEvent function, specify the session, the event
type to wait for, and the timeout period to wait:

viWaitOnEvent(vi, inEventType, timeout, outEventType, outContext);

The event must have previously been enabled with VI_QUEUE specified as
the mechanism parameter.

Parameter Description

vi The session the handler will be installed on.

eventType The type of event to enable.

mechanism The mechanism by which the event will be enabled.
Specify VI_QUEUE to use the queuing method.

context Not used in VISA 1.0. Use VI_NULL.
Chapter 4 71

Programming with VISA
Using Events and Handlers
([DPSOH��:DLW�RQ�
(YHQW�IRU�654

This example shows how to install a wait on event for service requests.

viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE,
VI_NULL);
viWaitOnEvent(vi, VI_EVENT_SERVICE_REQ,
VI_TMO_INFINITE,

&eventType, &event);
.
.
viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE);

Every time a wait on event is invoked, an event context object is created.
Specifying VI_TMO_INFINITE in the timeout parameter indicates that the
program execution will suspend indefinitely until the event occurs. To clear
the event queue for a specified event type, use the viDiscardEvents
function.

([DPSOH��7ULJJHU�
(YHQW�4XHXLQJ

This program enables the trigger event in a queuing mode. When the
viWaitOnEvent function is called, the program will suspend operation until
the trigger line is fired or the timeout period is reached. Since the trigger
lines were already fired and the events were put into a queue, the function
will return and print the trigger line that fired.

This program is intended to show specific VISA functionality and does not
include error trapping. Error trapping, however, is good programming
practice and is recommended in your VISA applications. See "Trapping
Errors" in this chapter.

This example program is installed on your system in the SAMPLES
subdirectory on Windows environments, or in the examples subdirectory
on HP-UX. See Appendix A - VISA System Information for locations of
example programs on your operating system.

/* evntqueu.c
This example program illustrates enabling an event
queue using viWaitOnEvent. Note that you must change
the device address. */

#include <visa.h>
#include <stdio.h>

void main(){
ViSession defaultRM,vi;
ViEventType eventType;
ViEvent eventVi;
ViStatus err;
72 Chapter 4

Programming with VISA
Using Events and Handlers
ViInt16 trigId;

/* open session to VXI device */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "VXI0::24::INSTR", VI_NULL, VI_NULL,
&vi);

/* select trigger line TTL0 */
viSetAttribute(vi, VI_ATTR_TRIG_ID, VI_TRIG_TTL0);

/* enable the event */
viEnableEvent(vi, VI_EVENT_TRIG, VI_QUEUE, VI_NULL);

/* fire trigger line, twice */
viAssertTrigger(vi, VI_TRIG_PROT_SYNC);
viAssertTrigger(vi, VI_TRIG_PROT_SYNC);

/* Wait for the event to occur */
err=viWaitOnEvent(vi, VI_EVENT_TRIG, 10000, &eventType,
&eventVi);
if(err==VI_ERROR_TMO){

printf("Timeout Occurred! Event not received.\n");
return;

}

/* print the event information */
printf("Trigger Event Occurred!\n");
printf("...Original Device Session = %ld\n", vi);

/* get trigger that fired */
viGetAttribute(eventVi, VI_ATTR_RECV_TRIG_ID,
&trigId);
printf("Trigger that fired: ");
switch(trigId){

case VI_TRIG_TTL0:
printf("TTL0");
break;

default:
printf("<other 0x%x>",trigId);
break;

}
printf("\n");

/* close the context before continuing */
viClose(eventVi);
Chapter 4 73

Programming with VISA
Using Events and Handlers
/* get second event */
err=viWaitOnEvent(vi, VI_EVENT_TRIG, 10000, &eventType,
&eventVi);
if(err==VI_ERROR_TMO){

printf("Timeout Occurred! Event not received.\n");
return;

}
printf("Got second event\n");

/* close the context before continuing */
viClose(eventVi);

/* disable event */
viDisableEvent(vi, VI_EVENT_TRIG, VI_QUEUE);

/* close the sessions */
viClose(vi);
viClose(defaultRM);

}

74 Chapter 4

Programming with VISA
Trapping Errors and Using Locks
Trapping Errors and Using Locks
This section gives guidelines to trap errors and to use locks, including:

n Trapping Errors
n Using Locks

Trapping Errors
The example programs in this guide show specific VISA functionality and
do not include error trapping. Error trapping, however, is good programming
practice and is recommended in all your VISA application programs. To trap
VISA errors you must check for VI_SUCCESS after each VISA function call.

If you want to ignore WARNINGS, you can test to see if err is less than (<)
VI_SUCCESS. Since WARNINGS are greater than VI_SUCCESS and
ERRORS are less than VI_SUCCESS, err_handler would only be called
when the function returns an ERROR. For example:

if(err < VI_SUCCESS) err_handler (vi, err);

([DPSOH��&KHFN�IRU�
VI_SUCCESS

This example illustrates checking for VI_SUCCESS. If VI_SUCCESS is not
returned, an error handler (written by the programmer) is called. This must
be done with each VISA function call.

ViStatus err;
.
.
err=viPrintf(vi, "*RST\n");
if (err < VI_SUCCESS) err_handler(vi, err);
.
.

([DPSOH��3ULQWLQJ�
(UURU�&RGH

The following error handler prints a user-readable string describing the error
code passed to the function:

void err_handler(ViSession vi, ViStatus err){

char err_msg[1024]={0};
viStatusDesc (vi, err, err_msg);
printf ("ERROR = %s\n", err_msg);
return;

}

Chapter 4 75

Programming with VISA
Trapping Errors and Using Locks
([DPSOH��&KHFNLQJ�
,QVWUXPHQW�(UURUV

When programming instruments, it is good practice to check the instrument
to ensure there are no instrument errors after each instrument function. This
example uses a SCPI command to check a specific instrument for errors.

void system_err(){

ViStatus err;
char buf[1024]={0};
int err_no;

err=viPrintf(vi, "SYSTEM:ERR?\n");
if (err < VI_SUCCESS) err_handler (vi, err);

err=viScanf (vi, "%d%t", &err_no, &buf);
if (err < VI_SUCCESS) err_handler (vi, err);

while (err_no >0){
printf ("Error Found: %d,%s\n", err_no, buf);
err=viScanf (vi, "%d%t", &err_no, &buf);

}
err=viFlush(vi, VI_READ_BUF);
if (err < VI_SUCCESS) err_handler (vi, err);

err=viFlush(vi, VI_WRITE_BUF);
if (err < VI_SUCCESS) err_handler (vi, err);

}

76 Chapter 4

Programming with VISA
Trapping Errors and Using Locks
Using Locks
In VISA, applications can open multiple sessions to a VISA resource
simultaneously. Applications can, therefore, access a VISA resource
concurrently through different sessions. However, in certain cases,
applications accessing a VISA resource may want to restrict other
applications from accessing that resource.

/RFN�)XQFWLRQV For example, when an application needs to perform successive write
operations on a resource, the application may require that, during the
sequence of writes, no other operation can be invoked through any other
session to that resource. For such circumstances, VISA defines a locking
mechanism that restricts access to resources.

The VISA locking mechanism enforces arbitration of accesses to VISA
resources on a per-session basis. If a session locks a resource, operations
invoked on the resource through other sessions either are serviced or are
returned with an error, depending on the operation and the type of lock used.

If a VISA resource is not locked by any of its sessions, all sessions have full
privilege to invoke any operation and update any global attributes. Sessions
are not required to have locks to invoke operations or update global
attributes. However, if some other session has already locked the resource,
attempts to update global attributes or invoke certain operations will fail.

See descriptions of the individual VISA functions in Chapter 7 - VISA
Language Reference to determine which would fail when a resource is
locked.

YL/RFN�YL8QORFN�
)XQFWLRQV

The VISA viLock function is used to acquire a lock on a resource.

viLock(vi, lockType, timeout, requestedKey, accessKey);

The VI_ATTR_RSRC_LOCK_STATE attribute specifies the current locking
state of the resource on the given session, which can be either
VI_NO_LOCK, VI_EXCLUSIVE_LOCK, or VI_SHARED_LOCK.

The VISA viUnlock function is then used to release the lock on a resource.
If a resource is locked and the current session does not have the lock, the
error VI_ERROR_RSRC_LOCKED is returned.
Chapter 4 77

Programming with VISA
Trapping Errors and Using Locks
9,6$�/RFN�7\SHV VISA defines two different types of locks: Exclusive Lock and Shared Lock.

n Exclusive Lock - A session can lock a VISA resource using the lock
type VI_EXCLUSIVE_LOCK to get exclusive access privileges to the
resource. This exclusive lock type excludes access to the resource
from all other sessions.

If a session has an exclusive lock, other sessions cannot modify
global attributes or invoke operations on the resource. However, the
other sessions can still get atttributes.

n Shared Lock - A session can share a lock on a VISA resource with
other sessions by using the lock type VI_SHARED_LOCK. Shared
locks in VISA are similar to exclusive locks in terms of access
privileges, but can still be shared between multiple sessions.

If a session has a shared lock, other sessions that share the lock
can also modify global attributes and invoke operations on the
resource (of course, unless some other session has a previous
exclusive lock on that resource). A session that does not share the
lock will lack these capabilities.

Locking a resource restricts access from other sessions and, in the case
where an exclusive lock is acquired, ensures that operations do not fail
because other sessions have acquired a lock on that resource. Thus, locking
a resource prevents other, subsequent sessions from acquiring an exclusive
lock on that resource. Yet, when multiple sessions have acquired a shared
lock, VISA allows one of the sessions to acquire an exclusive lock along with
the shared lock it is holding.

Also, VISA supports nested locking. That is, a session can lock the
same VISA resource multiple times (for the same lock type) via multiple
invocations of the viLock function. In such a case, unlocking the resource
requires an equal number of invocations of the viUnlock function. Nested
locking is also explained in detail later in this section.

Some VISA operations may be permitted even when there is an exclusive
lock on a resource, or some global attributes may not be read when there is
any kind of lock on the resource. These exceptions, when applicable, are
mentioned in the descriptions of the individual VISA functions and attributes.

See Chapter 7 - VISA Language Reference for descriptions of individual
functions to determine which are applicable for locking and which are not
restricted by locking.
78 Chapter 4

Programming with VISA
Trapping Errors and Using Locks
/RFN�6KDULQJ Because the locking mechanism in VISA is session-based, multiple threads
sharing a session that has locked a VISA resource have the same privileges
for accessing the resource. Some applications, though, may have separate
sessions to a resource and may want all the sessions in that application to
have the same privilege as the session that locked the resource.

In other cases, there may be a need to share locks among sessions in
different applications. Essentially, a session that acquired a lock to a
resource may share the lock with other sessions it selects, and exclude
access from other sessions.

As previously mentioned, VISA defines the VI_SHARED_LOCK lock type to
give exclusive access privileges to a session along with the capability to
share these exclusive privileges with other sessions at the discretion of the
original session.

When locking the resource using the VI_SHARED_LOCK lock type, the
viLock function returns an accessKey that can be used to share the lock.
The session can then share this lock with any other session by passing
around this accessKey.

Before other sessions can access the locked resource, they need to acquire
the lock by passing the accessKey in the requestedKey parameter of the
viLock function. Invoking viLock with the same key will register the new
session to have the same access privileges as the original session.

The new session that acquired the access privileges through the sharing
mechanism can also pass the accessKey to other sessions for sharing of the
resource, etc. Of course, all the sessions sharing a resource via the shared
lock should synchronize their accesses to maintain a consistent state of the
resource.

VISA also provides the flexibility for the application(s) to specify a key to
use as the accessKey, instead of VISA generating the accessKey. The
application(s) can suggest a key value to use through the requestedKey
parameter of the viLock function. If the resource was not locked, the
resource will use this requestedKey as the accessKey.

If the resource was locked using a shared lock, and the requestedKey
matches the key with which the resource was locked, the resource will grant
shared access to the session. If an application attempts to lock a resource
using a shared lock, but passes VI_NULL as the requestedKey parameter,
then VISA will generate an accessKey for the session.
Chapter 4 79

Programming with VISA
Trapping Errors and Using Locks
A session seeking to share exclusive access to a resource with other
sessions needs to acquire a VI_SHARED_LOCK for this purpose. If it
requests VI_EXCLUSIVE_LOCK instead, no valid accessKey will be
returned. Consequently, the session will not be able to share the lock with
any other sessions.

$FTXLULQJ�DQ�
([FOXVLYH�/RFN�
:KLOH�+ROGLQJ�D�
6KDUHG�/RFN

When multiple sessions have acquired a shared lock on a resource, VISA
allows one of the sessions to acquire an exclusive lock along with the shared
lock it is holding via the viLock function. The session holding both the
exclusive and shared lock will have the same access privileges that it had
when it was holding only the shared lock.

However, this precludes the other sessions holding the shared lock from
accessing the locked resource. This is useful when multiple sessions
holding a shared lock must synchronize operations, or when one of the
sessions must execute a critical operation.

When the session holding the exclusive lock unlocks the resource via the
viUnlock function, all the sessions (including the one that had acquired the
exclusive lock) will again have all the access privileges associated with the
shared lock.

Note that in the reverse case where a session is holding an exclusive lock
only (no shared locks), VISA does not allow it to change to
VI_SHARED_LOCK.

1HVWHG�/RFNV VISA also supports nested locking, in which a session can lock the same
VISA resource multiple times (for the same lock type) via multiple
invocations of the viLock function. Unlocking the resource requires an
equal number of invocations of the viUnlock operation. In other words, for
each invocation of viLock, a lock count will be incremented, and for each
invocation of viUnlock, the lock count will be decremented. A resource will
be truly unlocked only when the lock count is 0 (zero).

Each session maintains a separate lock count for each type of lock.
Therefore, repeated invocations of the viLock function for the same
session will increase the appropriate lock count, depending on the type of
lock requested. In the case of a shared lock, nesting viLock functions will
return with the same accessKey every time. In the case of an exclusive lock,
viLock will not return any accessKey, regardless of whether it is nested or
not.
80 Chapter 4

Programming with VISA
Trapping Errors and Using Locks
For nesting shared locks, VISA does not require an accessKey be passed in
to invoke the viLock function. That is, a session does not need to pass in
the accessKey obtained from the previous invocation of viLock to gain a
nested lock on the resource. However, if an application does pass in an
accessKey when nesting shared locks, it must be the correct one for that
session. See the description of the viLock function in Chapter 7 - VISA
Language Reference for further details on the accessKey parameter.

([DPSOH��([FOXVLYH�
/RFN

This example shows a session gaining an exclusive lock to perform the
viPrintf and viScanf VISA operations on a GPIB device. It then
releases the lock via the viUnlock function.

/* lockexcl.c
This example program queries a GPIB device for an
identification string and prints the results. Note that
you must change the address. */

#include <visa.h>
#include <stdio.h>

void main () {

ViSession defaultRM, vi;
char buf [256] = {0};

/* Open session to GPIB device at address 22 */
viOpenDefaultRM (&defaultRM);
viOpen (defaultRM, "GPIB0::22::INSTR", VI_NULL,VI_NULL,
&vi);

/* Initialize device */
viPrintf (vi, "*RST\n");

/* Make sure no other process or thread does anything
to this resource between the viPrintf() and the viScanf()
calls */

viLock (vi, VI_EXCLUSIVE_LOCK, 2000, VI_NULL,
VI_NULL);

/* Send an *IDN? string to the device */
viPrintf (vi, "*IDN?\n");

/* Read results */
viScanf (vi, "%t", &buf);
Chapter 4 81

Programming with VISA
Trapping Errors and Using Locks
/* Unlock this session so other processes and threads
can use it */
viUnlock (vi);

/* Print results */
printf ("Instrument identification string: %s\n",
buf);

/* Close session */
viClose (vi);
viClose (defaultRM);

}

82 Chapter 4

Programming with VISA
Trapping Errors and Using Locks
([DPSOH��6KDUHG�
/RFN

This example shows a session gaining a shared lock with the accessKey
called lockkey. Other sessions can now use this accessKey in the
requestedKey parameter of the viLock function to share access on the
locked resource. This example then shows the original session acquiring an
exclusive lock while maintaining its shared lock.

When the session holding the exclusive lock unlocks the resource via the
viUnlock function, all the sessions sharing the lock again have all the
access privileges associated with the shared lock.

/* lockshr.c
This example program queries a GPIB device for an
identification string and prints the results. Note
that you must change the address. */

#include <visa.h>
#include <stdio.h>

void main () {

ViSession defaultRM, vi;
char buf [256] = {0};
char lockkey [256] = {0};

/* Open session to GPIB device at address 22 */
viOpenDefaultRM (&defaultRM);
viOpen (defaultRM, "GPIB0::22::INSTR", VI_NULL,VI_NULL,&vi);

/* acquire a shared lock so only this process and processes
that we know about can access this resource */
viLock (vi, VI_SHARED_LOCK, 2000, VI_NULL, lockkey);

/* at this time, we can make ’lockkey’ available to
other processes that we know about. This can be done
with shared memory or other inter-process communication
methods. These other processes can then call
"viLock(vi,VI_SHARED_LOCK, 2000, lockkey, lockkey)"
and they will also have access to this resource. */

/* Initialize device */
viPrintf (vi, "*RST\n");
Chapter 4 83

Programming with VISA
Trapping Errors and Using Locks
/* Make sure no other process or thread does anything
to this resource between the viPrintf() and the
viScanf()calls Note: this also locks out the processes
with which we shared our ’shared lock’ key. */
viLock (vi, VI_EXCLUSIVE_LOCK, 2000, VI_NULL,VI_NULL);
/* Send an *IDN? string to the device */
viPrintf (vi, "*IDN?\n");

/* Read results */
viScanf (vi, "%t", &buf);

/* unlock this session so other processes and threads
can use it */
viUnlock (vi);

/* Print results */
printf ("Instrument identification string: %s\n",
buf);

/* release the shared lock too */
viUnlock (vi);

/* Close session */
viClose (vi);
viClose (defaultRM);

}

84 Chapter 4

5

Programming VXI Devices
85

Programming VXI Devices

VISA supports three interfaces you can use to access VXI: GPIB, VXI, and
GPIB-VXI. This chapter provides information to program VXI devices with
the VXI or GPIB-VXI interfaces, including:

n Introduction to VXI Devices
n Using High-Level Memory Functions
n Using Low-Level Memory Functions
n Using VXI Backplane Memory I/O Methods
n Using the Manual Memory Access Resource (MEMACC)
n Using VXI Specific Attributes

See Chapter 4 - Programming with VISA for general information on VISA
programming for the GPIB, VXI, and GPIB-VXI interfaces. For information
on the specific VISA functions, see Chapter 7 - VISA Language Reference.
86 Chapter 5

Programming VXI Devices
Introduction to VXI Devices
Introduction to VXI Devices
VISA supports three interfaces you can use to access VXI: GPIB, VXI, and
GPIB-VXI. The GPIB interface can be used to access VXI instruments via a
Command Module. In addition, the VXI backplane can be directly accessed
with the VXI or GPIB-VXI interfaces. This section summarizes some VXI
interfaces and VXI device types.

Interface Descriptions

This chapter shows how to use VISA to program VXI instruments over two
different interfaces: VXI and GPIB-VXI. The following table describes these
interfaces.

Interface Description

VXI Interface Uses an embedded VXI controller or other VXI
interface. Accesses VXI instruments directly over the
VXI backplane.

GPIB-VXI
Interface

Uses the GPIB interface connected to a Command
Module to directly access the VXI backplane.

NOTE

You can also use VISA with a GPIB interface to access VXI instruments
via a Command Module. In this case, the GPIB interface communicates
with a Command Module, which then sends commands to the VXI
instruments. There is no direct access to the VXI backplane.

When using the GPIB interface, you will need to use the specific
commands listed in the applicable Command Module manual. Also,
commands created for a specific vendor’s Command Module will
probably not work for another vendor’s Command Module.
Chapter 5 87

Programming VXI Devices
Introduction to VXI Devices
VXI Device Types

This chapter gives guidelines to use the VXI and GPIB-VXI interfaces for
direct access to the VXI backplane. When directly accessing the VXI
backplane, you must know whether you are programming a message-based
or a register-based VXI device (instrument).

0HVVDJH�%DVHG�
'HYLFHV

A message-based VXI device has its own processor that allows it to
interpret high-level commands such as SCPI (Standard Commands for
Programmable Instruments). When using VISA, you can place the
SCPI command within your VISA output function call. Then, the message-
based device interprets the SCPI command.

In this case you can use the VISA formatted I/O or non-formatted I/O
functions and program the message-based device as you would a GPIB
device. However, if the message-based device has shared memory, you
can access the device’s shared memory by doing register peeks and pokes.
VISA provides two different methods you can use to program directly to the
registers: high-level memory functions or low-level memory functions.

5HJLVWHU�%DVHG�
'HYLFHV

A register-based VXI device typically does not have a processor to interpret
high-level commands. Therefore, the device must be programmed with
register peeks and pokes directly to the device’s registers. VISA provides
two different methods you can use to program register-based devices:
high-level memory functions or low-level memory functions.
88 Chapter 5

Programming VXI Devices
Using High-Level Memory Functions
Using High-Level Memory Functions
High-level memory functions allow you to access memory on the interface
through simple function calls. There is no need to map memory to a window.
Instead, when high-level memory functions are used, memory mapping and
direct register access are automatically done.

The tradeoff, however, is speed. High-level memory functions are easier to
use. However, since these functions encompass mapping of memory space
and direct register access, the associated overhead slows program
execution time. If speed is required, use the low-level memory functions
discussed in “Using Low-Level Memory Functions”.

Programming the Registers

High-level memory functions include the viIn and viOut functions for
transferring 8-, 16-, or 32-bit values, as well as the viMoveIn and
viMoveOut functions for transferring 8-, 16-, or 32-bit blocks of data into
or out of local memory. You can therefore program using 8-, 16-, or 32-bit
transfers.

+LJK�/HYHO�0HPRU\�
)XQFWLRQV

This table summarizes the high-level memory functions.

Function Description

viIn8(vi, space, offset,
val8);

Reads 8 bits of data from the specified
offset.

viIn16(vi, space, offset,
val16);

Reads 16 bits of data from the specified
offset.

viIn32(vi, space, offset,
val32);

Reads 32 bits of data from the specified
offset.

viOut8(vi, space, offset,
val8);

Writes 8 bits of data to the specified
offset.

viOut16(vi, space, offset,
val16);

Writes 16 bits of data to the specified
offset.

viOut32(vi, space, offset,
val32);

Writes 32 bits of data to the specified
offset.

viMoveIn8(vi, space, offset,
length, buf8);

Moves an 8-bit block of data from the
specified offset to local memory.
Chapter 5 89

Programming VXI Devices
Using High-Level Memory Functions
8VLQJ�viIn�DQG�
viOut

When using the viIn and viOut high-level memory functions to program to
the device registers, all you need to specify is the session identifier, address
space, and the offset of the register. Memory mapping is done for you. For
example, in this function:

viIn32(vi, space, offset, val32);

vi is the session identifier and offset is used to indicate the offset of the
memory to be mapped. offset is relative to the location of this device’s
memory in the given address space.The space parameter determines which
memory location to map the space. Valid space values are:

n VI_A16_SPACE - Maps in VXI/MXI A16 address space.
n VI_A24_SPACE - Maps in VXI/MXI A24 address space.
n VI_A32_SPACE - Maps in VXI/MXI A32 address space.

The val32 parameter is a pointer to where the data read will be stored.
If, instead, you write to the registers via the viOut32 function, the val32
parameter is a pointer to the data to write to the specified registers. If the
device specified by vi does not have memory in the specified address
space, an error is returned. The following example uses viIn16.

ViSession defaultRM, vi;
ViUInt16 value;
.
viOpenDefaultRM(&&defaultRM);
viOpen(defaultRM, "VXI::24", VI_NULL, VI_NULL, &vi);
viIn16(vi, VI_A16_SPACE, 0x100, &value);

viMoveIn16(vi, space, offset, length,
buf16);

Moves a 16-bit block of data from the
specified offset to local memory.

viMoveIn32(vi, space, offset, length,
buf32);

Moves a 32-bit block of data from the
specified offset to local memory.

viMoveOut8(vi, space, offset, length,
buf8);

Moves an 8-bit block of data from local
memory to the specified offset.

viMoveOut16(vi, space, offset, length,
buf16);

Moves a 16-bit block of data from local
memory to the specified offset.

viMoveOut32(vi, space, offset, length,
buf32);

Moves a 32-bit block of data from local
memory to the specified offset.

Function Description
90 Chapter 5

Programming VXI Devices
Using High-Level Memory Functions
8VLQJ�viMoveIn�
DQG�viMoveOut

You can also use the viMoveIn and viMoveOut high-level memory
functions to move blocks of data to or from local memory. Specifically, the
viMoveIn function moves an 8-, 16-, or 32-bit block of data from the
specified offset to local memory, and the viMoveOut functions moves an
8-, 16-, or 32-bit block of data from local memory to the specified offset.
Again, the memory mapping is done for you. For example, in this function:

viMoveIn32(vi, space, offset, length, buf32);

vi is the session identifier and offset is used to indicate the offset of the
memory to be mapped. offset is relative to the location of this device’s
memory in the given address space. The space parameter determines which
memory location to map the space and the length parameter specifies the
number of elements to transfer (8-, 16-, or 32-bits).

The buf32 parameter is a pointer to where the data read will be stored.
If, instead, you write to the registers via the viMoveOut32 function, the
buf32 parameter is a pointer to the data to write to the specified registers.

High-Level Memory Functions Examples

Two example programs follow that use the high-level memory functions to
read the ID and Device Type registers of a device at the VXI logical address
24. The contents of the registers are then printed out.

The first program uses the VXI interface and the second program accesses
the backplane with the GPIB-VXI interface. These two programs are
identical except for the string passed to viOpen.

([DPSOH��8VLQJ�WKH�
9;,�,QWHUIDFH��+LJK�
/HYHO�

This program uses high-level memory functions and the VXI interface to
read the ID and Device Type registers of a device at VXI0::24.

/* vxihl.c
This example program uses the high-level memory functions
to read the id and device type registers of the device at
VXI0::24. Change this address if necessary. The register
contents are then displayed.*/

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>
Chapter 5 91

Programming VXI Devices
Using High-Level Memory Functions
void main () {

ViSession defaultRM, dmm;
unsigned short id_reg, devtype_reg;

/* Open session to VXI device at address 24 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "VXI0::24::INSTR", VI_NULL,VI_NULL, &dmm);

/* Read instrument id register contents */
viIn16(dmm, VI_A16_SPACE, 0x00, &id_reg);

/* Read device type register contents */
viIn16(dmm, VI_A16_SPACE, 0x02, &devtype_reg);

/* Print results */
printf ("ID Register = 0x%4X\n", id_reg);
printf ("Device Type Register = 0x%4X\n", devtype_reg);

/* Close sessions */
viClose(dmm);
viClose(defaultRM);

}

([DPSOH��8VLQJ�WKH�
*3,%�9;,�,QWHUIDFH�
�+LJK�/HYHO�

This program uses high-level memory functions and the GPIB-VXI interface
to read the ID and Device Type registers of a device at GPIB-VXI0::24.

/*gpibvxih.c
This example program uses the high-level memory functions
to read the id and device type registers of the device at
GPIB-VXI0::24. Change this address if necessary. The
register contents are then displayed.*/

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

void main () {

ViSession defaultRM, dmm;
unsigned short id_reg, devtype_reg;

/* Open session to VXI device at address 24 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB-VXI0::24::INSTR",

VI_NULL,VI_NULL, &dmm);
92 Chapter 5

Programming VXI Devices
Using High-Level Memory Functions
/* Read instrument id register contents */
viIn16(dmm, VI_A16_SPACE, 0x00, &id_reg);

/* Read device type register contents */
viIn16(dmm, VI_A16_SPACE, 0x02, &devtype_reg);

/* Print results */
printf ("ID Register = 0x%4X\n", id_reg);
printf ("Device Type Register = 0x%4X\n", devtype_reg);

/* Close sessions */
viClose(dmm);
viClose(defaultRM);

}

Chapter 5 93

Programming VXI Devices
Using Low-Level Memory Functions
Using Low-Level Memory Functions
Low-level memory functions allow direct access to memory on the interface
just as do high-level memory functions. However, with low-level memory
function calls, you must map a range of addresses and directly access the
registers with low-level memory functions, such as viPeek32 and
viPoke32.

There is more programming effort required when using low-level memory
functions. However, the program execution speed can increase.
Additionally, to increase program execution speed, the low-level memory
functions do not return error codes.

Programming the Registers

When using the low-level memory functions for direct register access, you
must first map a range of addresses using the viMapAddress function.
Next, you can send a series of peeks and pokes using the viPeek and
viPoke low-level memory functions. Then, you must free the address
window using the viUnmapAddress function. A process you could use is:

1. Map memory space using viMapAddress.

2. Read and write to the register’s contents using viPeek32 and
viPoke32.

3. Unmap the memory space using viUnmapAddress.

/RZ�/HYHO�0HPRU\�
)XQFWLRQV

You can program the registers using low-level functions for 8-, 16-, or 32-bit
transfers. This table summarizes the low-level memory functions.

Function Description

viMapAddress(vi, mapSpace,
mapBase, mapSize, access,
suggested, address);

Maps the specified memory space.

viPeek8(vi, addr, val8); Reads 8 bits of data from address
specified.

viPeek16(vi, addr, val16); Reads 16 bits of data from address
specified.
94 Chapter 5

Programming VXI Devices
Using Low-Level Memory Functions
0DSSLQJ�0HPRU\�
6SDFH

When using VISA to access the device’s registers, you must map memory
space into your process space. For a given session, you can have only one
map at a time. To map space into your process, use the VISA
viMapAddress function:

viMapAddress(vi, mapSpace, mapBase, mapSize, access, suggested,
address);

This function maps space for the device specified by the vi session.
mapBase, mapSize, and suggested are used to indicate the offset of the
memory to be mapped, amount of memory to map, and a suggested starting
location, respectively. mapSpace determines which memory location to map
the space. The following are valid mapSpace choices:

VI_A16_SPACE - Maps in VXI/MXI A16 address space.
VI_A24_SPACE - Maps in VXI/MXI A24 address space.
VI_A32_SPACE - Maps in VXI/MXI A32 address space.

A pointer to the address space where the memory was mapped is returned
in the address parameter. If the device specified by vi does not have
memory in the specified address space, an error is returned.

Some example viMapAddress function calls are:

/* Maps to A32 address space */
viMapAddress(vi, VI_A32_SPACE, 0x000, 0x100, VI_FALSE, VI_NULL,

&address);

/* Maps to A24 address space */
viMapAddress(vi, VI_A24_SPACE, 0x00, 0x80, VI_FALSE, VI_NULL,

&address);

viPeek32(vi, addr, val32); Reads 32 bits of data from address
specified.

viPoke8(vi, addr, val8); Writes 8 bits of data to address
specified.

viPoke16(vi, addr, val16); Writes 16 bits of data to address
specified.

viPoke32(vi, addr, val32); Writes 32 bits of data to address
specified.

viUnmapAddress(vi); Unmaps memory space previously
mapped.

Function Description
Chapter 5 95

Programming VXI Devices
Using Low-Level Memory Functions
5HDGLQJ�DQG�:ULWLQJ�
WR�'HYLFH�5HJLVWHUV

When you have mapped the memory space, use the VISA low-level memory
functions to access the device’s registers. First, determine which device
register you need to access. Then, you need to know the register’s offset.
See the applicable instrument User manual for a description of the registers
and register locations. You can then use this information and the VISA low-
level functions to access the device registers.

([DPSOH��8VLQJ�
viPeek16

An example using viPeek16 follows.

ViSession defaultRM, vi;
ViUInt16 value;
ViAddr address;
ViUInt16 value;
.
.
viOpenDefaultRM(&&defaultRM);
viOpen(defaultRM, "VXI::24::INSTR", VI_NULL, VI_NULL, &vi);
viMapAddress(vi, VI_A16_SPACE, 0x00, 0x04, VI_FALSE,

VI_NULL, &address);
viPeek16(vi, addr, &value)

8QPDSSLQJ�0HPRU\�
6SDFH�

Make sure you use the viUnmapAddress function to unmap the memory
space when it is no longer needed. Unmapping memory space makes the
window available for the system to reallocate.

Low-Level Memory Functions Examples

Two example programs follow that use the low-level memory functions to
read the ID and Device Type registers of the device at VXI logical address
24. The contents of the registers are then printed out.

The first program uses the VXI interface and the second program uses the
GPIB-VXI interface to access the VXI backplane. These two programs are
identical except for the string passed to viOpen.

([DPSOH��8VLQJ�WKH�
9;,�,QWHUIDFH��/RZ�
/HYHO�

This program uses low-level memory functions and the VXI interface to read
the ID and Device Type registers of a device at VXI0::24.

/*vxill.c
This example program uses the low-level memory functions to
read the id and device type registers of the device at
VXI0::24. Change this address if necessary. The register
contents are then displayed.*/
96 Chapter 5

Programming VXI Devices
Using Low-Level Memory Functions
#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

void main () {

ViSession defaultRM, dmm;
ViAddr address;
unsigned short id_reg, devtype_reg;

/* Open session to VXI device at address 24 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "VXI0::24::INSTR", VI_NULL,VI_NULL, &dmm);

/* Map into memory space */
viMapAddress(dmm, VI_A16_SPACE, 0x00, 0x10, VI_FALSE,

VI_NULL, &address);

/* Read instrument id register contents */
viPeek16(dmm, address, &id_reg);

/* Read device type register contents */
/* ViAddr is defined as a void * so we must cast it to

something else */
/* in order to do pointer arithmetic */
viPeek16(dmm, (ViAddr)((ViUInt16 *)address + 0x01),

&devtype_reg);

/* Unmap memory space */
viUnmapAddress(dmm);

/* Print results */
printf ("ID Register = 0x%4X\n", id_reg);
printf ("Device Type Register = 0x%4X\n", devtype_reg);

/* Close sessions */
viClose(dmm);
viClose(defaultRM);

}

Chapter 5 97

Programming VXI Devices
Using Low-Level Memory Functions
([DPSOH��8VLQJ�WKH�
*3,%�9;,�,QWHUIDFH�
�/RZ�/HYHO�

This program uses low-level memory functions and the GPIB-VXI interface
to read the ID and Device Type registers of a device at GPIB-VXI0::24.

/*gpibvxil.c
This example program uses the low-level memory functions to
read the id and device type registers of the device at
GPIB-VXI0::24. Change this address if necessary. The
register contents are then displayed.*/

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>
void main () {

ViSession defaultRM, dmm;
ViAddr address;
unsigned short id_reg, devtype_reg;

/* Open session to VXI device at address 24 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB-VXI0::24::INSTR", VI_NULL,VI_NULL,

&dmm);

/* Map into memory space */
viMapAddress(dmm, VI_A16_SPACE, 0x00, 0x10, VI_FALSE,

VI_NULL, &address);

/* Read instrument id register contents */
viPeek16(dmm, address, &id_reg);

/* Read device type register contents */
/* ViAddr is defined as a void * so we must cast it to

something else */
/* in order to do pointer arithmetic */
viPeek16(dmm, (ViAddr)((ViUInt16 *)address + 0x01),

&devtype_reg);

/* Unmap memory space */
viUnmapAddress(dmm);

/* Print results */
printf ("ID Register = 0x%4X\n", id_reg);
printf ("Device Type Register = 0x%4X\n", devtype_reg);
/* Close sessions */
viClose(dmm);
viClose(defaultRM);}
98 Chapter 5

Programming VXI Devices
Using VXI Backplane Memory I/O Methods
Using VXI Backplane Memory I/O Methods
VISA supports three different memory I/O methods for accessing memory
on the VXI backplane, as shown. All three of these access methods can be
used to read and write VXI memory in the A16, A24, and A32 address
spaces. The best method to use depends on the VISA program
characteristics.

n Low-level viPeek/viPoke
q viMapAddress
q viUnmapAddress
q viPeek8, viPeek16, viPeek32
q viPoke8, viPoke16, viPoke32

n High-level viIn/viOut
q viIn8, viIn16, viIn32
q viOut8, viOut16, viOut32

n High-level viMoveIn/viMoveOut
q viMoveIn8, viMoveIn16, viMoveIn32
q viMoveOut8, viMoveOut16, viMoveOut32

8VLQJ�/RZ�/HYHO�
viPeek/viPoke

Low-level viPeek/viPoke is the most efficient in programs that require
repeated access to different addresses in the same memory space.

The advantages of low-level viPeek/viPoke are:

n Individual viPeek/viPoke calls are faster than viIn/viOut or
viMoveIn/viMoveOut calls.

n Memory pointer may be directly dereferenced in some cases for the
lowest possible overhead.

The disadvantages of low-level viPeek/viPoke are:

n viMapAddress call is required to set up mapping before
viPeek/viPoke can be used.

n viPeek/viPoke calls do not return status codes.
n Only one active viMapAddress is allowed per vi session.
n There may be a limit to the number of simultaneous active

viMapAddress calls per process or system.
Chapter 5 99

Programming VXI Devices
Using VXI Backplane Memory I/O Methods
8VLQJ�+LJK�OHYHO�
viIn/viOut

High-level viIn/viOut calls are best in situations where a few widely
scattered memory access are required and speed is not a major
consideration.

The advantages high-level viIn/viOut are:

n Simplest method to implement.
n No limit on number of active maps.
n A16, A24, and A32 memory access can be mixed in a single vi

session.

The disadvantage of high-level viIn/viOut calls is that they are slower
than viPeek/viPoke.

8VLQJ�+LJK�OHYHO�
viMoveIn/
viMoveOut

High-level viMoveIn/viMoveOut calls provide the highest possible
performance for transferring blocks of data to or from the VXI backplane.
Although these calls have higher initial overhead than the viPeek/viPoke
calls, they are optimized on each platform to provide the fastest possible
transfer rate for large blocks of data.

For small blocks, the overhead associated with viMoveIn/voMoveOut
may actually make these calls longer than an equivalent loop of viIn/
viOut calls. The block size at which viMoveIn/viMoveOut becomes
faster depends on the particular platform and processor speed.

The advantages of high-level viMoveIn/viMoveOut are:

n Simple to use.
n No limit on number of active maps.
n A16, A24, and A32 memory access can be mixed in a single vi

session.
n Provides the best performance when transferring large blocks of

data.
n Supports both block and FIFO mode.

The disadvantage of viMoveIn/viMoveOut calls is that they have higher
initial overhead than viPeek/viPoke.
100 Chapter 5

Programming VXI Devices
Using VXI Backplane Memory I/O Methods
Example: Using VXI Backplane Memory I/O

This program demonstrates using various types of VXI memory I/O.

/* memio.c
This example program demonstrates the use of various memory
I/O methods in VISA. */

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

#define VXI_INST "VXI0::24::INSTR"

void main () {
ViSession defaultRM, vi;
ViAddr address;
ViUInt16 accessMode;
unsigned short *memPtr16;
unsigned short id_reg;
unsigned short devtype_reg;
unsigned short memArray[2];

/*Open the default resource manager and a session to our
instrument*/
viOpenDefaultRM (&defaultRM);
viOpen (defaultRM, VXI_INST, VI_NULL,VI_NULL, &vi);

/* ==
Low level memory I/O = viPeek16 = direct memory
dereference (when allowed)
==*/

/* Map into memory space */
viMapAddress (vi, VI_A16_SPACE, 0x00, 0x10, VI_FALSE,
VI_NULL, &address);

/* ==
Using viPeek
==/*

Read instrument id register contents */
viPeek16 (vi, address, &id_reg);
Chapter 5 101

Programming VXI Devices
Using VXI Backplane Memory I/O Methods
/* Read device type register contents
ViAddr is defined as a (void *) so we must cast it
to something else in order to do pointer arithmetic. */

viPeek16 (vi, (ViAddr)((ViUInt16 *)address + 0x01),
&devtype_reg);

/* Print results */
printf (" viPeek16: ID Register = 0x%4X\n", id_reg);
printf (" viPeek16: Device Type Register = 0x%4X\n",
devtype_reg);

/* Use direct memory dereferencing if it is supported */
viGetAttribute(vi, VI_ATTR_WIN_ACCESS, &accessMode);
if (accessMode == VI_DEREF_ADDR) {

/* assign the pointer to a variable of the correct type */
memPtr16 = (unsigned short *)address;

/* do the actual memory reads */
id_reg = *memPtr16;
devtype_reg = *(memPtr16+1);

/* Print results */
printf ("dereference: ID Register = 0x%4X\n", id_reg);
printf ("dereference: Device Type Register = 0x%4X\n",
devtype_reg);

}

/* Unmap memory space */
viUnmapAddress (vi);

/*==
 High Level memory I/O = viIn16
=== */

/* Read instrument id register contents */
viIn16 (vi, VI_A16_SPACE, 0x00, &&id_reg);

/* Read device type register contents */
viIn16 (vi, VI_A16_SPACE, 0x02, &devtype_reg);

/* Print results */
printf (" viIn16: ID Register = 0x%4X\n", id_reg);
printf (" viIn16: Device Type Register = 0x%4X\n",
devtype_reg);
102 Chapter 5

Programming VXI Devices
Using VXI Backplane Memory I/O Methods
/* ===
High Level block memory I/O = viMoveIn16

The viMoveIn/viMoveOut commands do both block read/write
and FIFO read write. These commands offer the best
performance for reading and writing large data blocks on
the VXI backplane. Note that for this example we are only
moving 2 words at a time. Normally, these functions would be
used to move much larger blocks of data.

If the value of VI_ATTR_SRC_INCREMENT is 1 (the default),
viMoveIn does a block read. If the value of
VI_ATTR_SRC_INCREMENT is 0, viMoveIn does a FIFO read.

If the value of VI_ATTR_DEST_INCREMENT is 1 (the default),
then viMoveOut does a block write. If the value of
VI_ATTR_DEST_INCREMENT is 0, viMoveOut does a FIFO write.

== */

/* Demonstrate block read.
Read instrument id register and device type register into
an array.*/
viMoveIn16 (vi, VI_A16_SPACE, 0x00, 2, memArray);

/* Print results */
printf (" viMoveIn16: ID Register = 0x%4X\n", memArray[0]);
printf (" viMoveIn16: Device Type Register = 0x%4X\n",
memArray[1]);

/* Demonstrate FIFO read.
First set the source increment to 0 so we will repetatively
read from the same memory location. */
viSetAttribute(vi, VI_ATTR_SRC_INCREMENT, 0);

/* Do a FIFO read of the Id Register */
viMoveIn16 (vi, VI_A16_SPACE, 0x00, 2, memArray);

/* Print results */
printf (" viMoveIn16: 1 ID Register = 0x%4X\n", memArray[0]);
printf (" viMoveIn16: 2 ID Register = 0x%4X\n", memArray[1]);

/* Close sessions */
viClose (vi);
viClose (defaultRM); }
Chapter 5 103

Programming VXI Devices
Using the Memory Access Resource
Using the Memory Access Resource
For VISA 1.1 and later, the Memory Access Resource (MEMACC) type has
been added to VXI and GPIB-VXI. VXI::MEMACC and GPIB-VXI::MEMACC
allow access to all of the A16, A24, and A32 memory by providing the
controller with access to arbitrary registers or memory addresses on
memory-mapped buses.

The MEMACC resource, like any other resource, starts with the basic
operations and attributes of other VISA resources. For example, modifying
the state of an attribute is done via the the operation viSetAttribute
(see Chapter 7 - VISA Language Reference for details).

Memory I/O Services

Memory I/O services include high-level memory I/O services and low-level
memory I/O services.

+LJK�/HYHO�0HPRU\�
,�2�6HUYLFHV

High-level Memory I/O services allow register-level access to the interfaces
that support direct memory access, such as the VXIbus, VMEbus, MXIbus,
or even VME or VXI memory through a system controlled by a GPIB-VXI
controller. A resource exists for each interface to which the controller has
access.

You can access memory on the interface bus through operations such as
viIn16 and viOut16. These operations encapsulate the map/unmap and
peek/poke operations found in the low-level service. There is no need to
explicitly map the memory to a window.

/RZ�/HYHO�0HPRU\�
,�2�6HUYLFHV

Low-level Memory I/O services also allow register-level access to the
interfaces that support direct memory access. Before an application can use
the low-level service on the interface bus, it must map a range of addresses
using the operation viMapAddress.

Although the resource handles the allocation and operation of the window,
the programmer must free the window via viUnMapAddress when finished.
This makes the window available for the system to reallocate.
104 Chapter 5

Programming VXI Devices
Using the Memory Access Resource
Example: MEMACC Resource Program

This program demonstrates one way to use the MEMACC resource to open
the entire VXI A16 memory and then calculate an offset to address a specific
device.

/* peek16.c */
#include <stdio.h>
#include <stdlib.h>
#include <visa.h>

#define EXIT 1
#define NO_EXIT 0

/* This function simplifies checking for VISA errors. */
void checkError(ViSession vi, ViStatus status, char *errStr,
int doexit){

char buf[256];
if (status >= VI_SUCCESS)

return;
buf[0] = 0;
viStatusDesc(vi, status, buf);
printf("ERROR 0x%lx (%s)\n ’%s’\n", status, errStr, buf);
if (doexit == EXIT)

exit (1);
}

void main() {
ViSession drm;
ViSession vi;
ViUInt16 inData16 = 0;
ViUInt16 peekData16 = 0;
ViUInt8 *addr;
ViUInt16 *addr16;
ViStatus status;
ViUInt16 offset;

status = viOpenDefaultRM (&drm);
checkError(0, status, "viOpenDefaultRM", EXIT);

/* Open a session to the VXI MEMACC Resource*/
status = viOpen(drm, "vxi0::memacc", VI_NULL, VI_NULL,
&vi);
checkError (0, status, "viOpen", EXIT);
Chapter 5 105

Programming VXI Devices
Using the Memory Access Resource
/* Calculate the A16 offset of the VXI REgisters for the
device at VXI logical address 8. */
offset = 0xc000 + 64 * 8;

/* Open a map to all of A16 memory space. */
status = viMapAddress(vi,VI_A16_SPACE,0,0x10000,VI_FALSE,0,
(ViPAddr)(&addr));
checkError(vi, status, "viMapAddress", EXIT);

/* Offset the address pointer retruned from viMapAddress
for use with viPeek16. */
addr16 = (ViUInt16 *) (addr + offset);

/* Peek the contents of the card’s ID register (offset 0
from card’s base address. Note that viPeek does not return
a status code. */
viPeek16(vi, addr16, &peekData16);

/* Now use viIn16 and read the contents of the same
register */
status = viIn16(vi, VI_A16_SPACE, (ViBusAddress)offset,
&inData16);
checkError(vi, status, "viIn16", NO_EXIT);

/* Print the results. */
printf("inData16 : 0x%04hx\n", inData16);
printf("peekData16: ox%04hx\n", peekData16);

viClose(vi);
viClose (drm);

}

MEMACC Attribute Descriptions

*HQHULF�0(0$&&�
$WWULEXWHV

The following Read Only attributes (VI_ATTR_TMO_VALUE is Read/Write)
provide general interface information.

Attribute Description

VI_ATTR_INTF_TYPE Interface type of the given session.

VI_ATTR_INTF_NUM Board number for the given interface.
106 Chapter 5

Programming VXI Devices
Using the Memory Access Resource
9;,�DQG�*3,%�9;,�
6SHFLILF�0(0$&&�
$WWULEXWHV

The following attributes, most of which are read/write, provide memory
window control information.

VI_ATTR_TMO_VALUE Minimum timeout value to use, in
milliseconds. A timeout value of
VI_TMO_IMMEDIATE means operation
should never wait for the device to respond.
A timeout value of VI_TMO_INFINITE
disables the timeout mechanism.

VI_ATTR_INTF_INST_NAME Human-readable text describing the given
interface.

Attribute Description

Attribute Description

VI_ATTR_VXI_LA Logical address of the local controller.

VI_ATTR_SRC_INCREMENT Used in viMoveInxx operation to specify
how much the source offset is to be
incremented after every transfer. The default
value is 1 and the viMoveInxx operation
moves from consecutive elements.

If this attribute is set to 0, the viMoveInxx
operation will always read from the same
element, essentially treating the source as a
FIFO register.

VI_ATTR_DEST_INCREMENT Used in viMoveOutxx operation to specify
how much the destination offset is to be
incremented after every transfer. The default
value is 1 and the viMoveOutxx operation
moves into consecutive elements.

If this attribute is set to 0, the viMoveOutxx
operation will always write to the same
element, essentially treating the destination
as a FIFO register.
Chapter 5 107

Programming VXI Devices
Using the Memory Access Resource
VI_ATTR_WIN_ACCESS Specifies modes in which the current window
may be addressed: not currently mapped,
through the viPeekxx or viPokexx
operations only, or through operations and/or
by directly de-referencing the address
parameter as a pointer.

VI_ATTR_WIN_BASE_ADDR Base address of the interface bus to which
this window is mapped.

VI_ATTR_WIN_SIZE Size of the region mapped to this window.

VI_ATTR_SRC_BYTE_ORDER Specifies the byte order used in high-level
access operations, such as viInxx and
viMoveInxx, when reading from the
source.

VI_ATTR_DEST_BYTE_ORDER Specifies the byte order used in high level
access operations, such as viOutxx and
viMoveOutxx, when writing to the
destination.

VI_ATTR_WIN_BYTE_ORDER Specifies the byte order used in low-level
access operations, such as viMapAddress,
viPeekxx, and viPokexx, when accessing
the mapped window.

VI_ATTR_SRC_ACCESS_PRIV Specifies the address modifier used in high-
level access operations, such as viInxx and
viMoveInxx, when reading from the source.

VI_ATTR_DEST_ACCESS_PRIV Specifies address modifier used in high-level
access operations such as viOutxx and
viMoveOutxx, when writing to destination.

VI_ATTR_WIN_ACCESS_PRIV Specifies address modifier used in low-level
access operations, such as viMapAddress,
viPeekxx, and viPokexx, when accessing
the mapped window.

Attribute Description
108 Chapter 5

Programming VXI Devices
Using the Memory Access Resource
*3,%�9;,�6SHFLILF�
0(0$&&�$WWULEXWHV

The following Read Only attributes provide specific address information
about GPIB hardware.

0(0$&&�5HVRXUFH�
(YHQW�$WWULEXWH

The following Read Only events provide notification that an asynchronous
operation has completed.

Attribute Description

VI_ATTR_INTF_PARENT_NUM Board number of the GPIB board
to which the GPIB-VXI is
attached.

VI_ATTR_GPIB_PRIMARY_ADDR Primary address of the GPIB-VXI
controller used by the session.

VI_ATTR_GPIB_SECONDARY_ADDR Secondary address of the GPIB-
VXI controller used by the
session.

Attribute Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_STATUS Return code of the asynchronous I/O
operation that has completed.

VI_ATTR_JOB_ID Job ID of the asynchronous I/O operation
that has completed.

VI_ATTR_BUFFER Address of a buffer used in an
asynchronous operation.

VI_ATTR_RET_COUNT Actual number of elements that were
asynchronously transferred.
Chapter 5 109

Programming VXI Devices
Using VXI Specific Attributes
Using VXI Specific Attributes
VXI specific attributes can be useful to determine the state of your VXI
system. Attributes are read only and read/write. Read only attributes specify
things such as the logical address of the VXI device and information about
where your VXI device is mapped. this section shows how you might use
some of the VXI specific attributes. See Appendix B - VISA Attributes for
programming information on VISA attributes.

Using the Map Address as a Pointer

The VI_ATTR_WIN_ACCESS read-only attribute specifies how a window
can be accessed. You can access a mapped window with the VISA low-level
memory functions or with a C pointer if the address is de-referenced. To
determine how to access the window, read the VI_ATTR_WIN_ACCESS
attribute.

VI_ATTR_WIN_
ACCESS 6HWWLQJV

The VI_ATTR_WIN_ACCESS read-only attribute can be set to one of the
following:

([DPSOH��8VLQJ�
VI_ATTR_WIN_
ACCESS

This example shows how you can read the VI_ATTR_WIN_ACCESS
attribute and use the result to determine how to access memory.

ViAddr address;
ViUInt16 access;
ViUInt16 value;
.
.
.
viMapAddress(vi, VI_A16_SPACE, 0x00, 0x04, VI_FALSE,

Setting Description

VI_NMAPPED Specifies that the window is not mapped.

VI_USE_OPERS Specifies that the window is mapped and you can only
use the low-level memory functions to access the data.

VI_DEREF_ADDR Specifies that the window is mapped and has a de-
referenced address. In this case you can use the low-
level memory functions to access the data, or you can
use a C pointer. Using a de-referenced C pointer will
allow faster access to data.
110 Chapter 5

Programming VXI Devices
Using VXI Specific Attributes
VI_NULL, &address);
viGetAttribute(vi, VI_ATTR_WIN_ACCESS, &access);
.
.
If(access==VI_USE_OPERS) {

viPeek16(vi, (ViAddr)(((ViUInt16 *)address) +
4/sizeof(ViUInt16)), &value)

}else if (access==VI_DEREF_ADDR){
value=*((ViUInt16 *)address+4/sizeof(ViUInt16));

}else if (access==VI_NMAPPED){
return error;

}
.
.

Setting the VXI Trigger Line

The VI_ATTR_TRIG_ID attribute is used to set the VXI trigger line. This
attribute is listed under generic attributes and defaults to VI_TRIG_SW
(software trigger). To set one of the VXI trigger lines, set the
VI_ATTR_TRIG_ID attribute as follows:

viSetAttribute(vi, VI_ATTR_TRIG_ID, VI_TRIG_TTL0);

The above function sets the VXI trigger line to TTL trigger line 0
(VI_TRIG_TTL0). The following are valid VXI trigger lines:

VXI Trigger Line VI_ATTR_TRIG_ID Value

TTL 0 VI_TRIG_TTL0

TTL 1 VI_TRIG_TTL1

TTL 2 VI_TRIG_TTL2

TTL 3 VI_TRIG_TTL3

TTL 4 VI_TRIG_TTL4

TTL 5 VI_TRIG_TTL5

TTL 6 VI_TRIG_TTL6

TTL 7 VI_TRIG_TTL7

ECL 0 VI_TRIG_ECL0

ECL 1 VI_TRIG_ECL1
Chapter 5 111

Programming VXI Devices
Using VXI Specific Attributes
Once you set a VXI trigger line, you can set up an event handler to be called
when the trigger line fires. See Chapter 4 - Programming with VISA for more
information on setting up an event handler.

Once the VI_EVENT_TRIG event is enabled, the VI_ATTR_TRIG_ID
becomes a read only attribute and cannot be changed. You must set this
attribute prior to enabling event triggers.

The VI_ATTR_TRIG_ID attribute can also be used by the
viAssertTrigger function to assert software or hardware triggers.
If VI_ATTR_TRIG_ID is VI_TRIG_SW, the device is sent a Word Serial
Trigger command. If the attribute is any other value, a hardware trigger is
sent on the line corresponding to the value of that attribute.
112 Chapter 5

6
Programming over LAN
113

Programming over LAN

This chapter gives guidelines to use VISA over a LAN (Local Area Network).
A LAN is a way to extend the control of instrumentation beyond the limits of
typical instrument interfaces. The chapter contents are:

n LAN Overview
n Using the LAN

NOTE

To communicate over the LAN, you must first configure the VISA LAN
Client during Agilent IO Libraries configuration. See the Agilent IO
Libraries Installation and Configuration Guide for installation information.

To start or stop the LAN server, see the Agilent IO Libraries Installation
and Configuration Guide for details.
114 Chapter 6

Programming over LAN
LAN Overview
LAN Overview
This section provides an overview of the LAN, including:

n LAN Client/Server Model
n LAN Hardware Architecture
n LAN Software Architecture
n LAN Configuration and Performance

LAN Client/Server Model

The LAN software provided with VISA allows instrumentation control over a
LAN. Using standard LAN connections, instruments can be controlled from
computers that do not have special interfaces for instrument control.

The LAN software provided with VISA uses the client/server model of
computing. Client/server computing refers to a model where an application
(the client) does not perform all necessary tasks of the application itself.
Instead, the client makes requests of another computing device (the server)
for certain services. Examples include shared file servers, print servers, or
database servers.

The use of LAN for instrument control also provides other advantages
associated with client/server computing, such as resource sharing by
multiple applications/people within an organization or distributed control,
where the computer running the application controlling the devices need not
be in the same room (or even the same building) as the devices.

LAN Hardware Architecture

As shown in the following figure, a LAN client computer system (a Series
700 HP-UX workstation, a Windows 95/98/2000 PC, or a Windows NT PC)
makes VISA requests over the network to a LAN server (a Series 700
HP-UX workstation, a Windows 95/98/2000 PC, a Windows NT PC, or an
E2050 LAN/GPIB Gateway).

The LAN server is connected to the instrumentation or devices to be
controlled. Once the LAN server has completed the requested operation on
the instrument or device, the LAN server sends a reply to the LAN client.
This reply contains requested data and status information that indicates
whether or not the operation was successful.
Chapter 6 115

Programming over LAN
LAN Overview
The LAN server acts as a gateway between the LAN that the client system
supports and the instrument-specific interface that the device supports.
Devices or interfaces that are accessed via one of the LAN-to-instrument/
interface gateways are called a LAN-gatewayed device or a LAN-gatewayed
interface.

LAN Client/Server (Gateway) Architecture

LAN

Client

Server

Series 700s,
Windows 95/98/2000 PCs

or Windows NT PCs

GPIB bus
(or other)

Instrument GPIB Instrument

GPIB
bus

HP E2050
LAN/GPIB
Gateway

Series 700s,
Windows 95/98/2000 PCs

or Windows NT PCs

Gateway
116 Chapter 6

Programming over LAN
LAN Overview
LAN Software Architecture

As shown in the following figure, the client system contains the LAN client
software and the LAN software (TCP/IP) needed to access the server
(gateway). The gateway contains the LAN server software, LAN (TCP/IP)
software, and the instrument driver software needed to communicate with
the client and to control the instruments or devices connected to the
gateway.

/$1�1HWZRUNLQJ�
3URWRFROV

The LAN software provided with VISA is built on top of standard LAN
networking protocols. There are two LAN networking protocols provided
with the VISA software. You can use one or both of these protocols when
configuring your systems (via the Agilent IO Libraries configuration) to use
VISA over LAN.

n SICL LAN Protocol is a networking protocol developed by Hewlett-
Packard and Agilent that is compatible with all VISA LAN products.
This LAN networking protocol is the default choice in the Agilent IO
Libraries configuration when configuring the LAN client. The SICL
LAN protocol on HP-UX 10.20, Windows 95, Windows 98, Windows
2000, and Windows NT supports VISA operations over LAN to GPIB
interfaces.

n TCP/IP Instrument Protocol is a networking protocol developed by
the VXIbus Consortium based on the SICL LAN Protocol that
permits interoperability of LAN software from different vendors who
meet the VXIbus Consortium standards.

Application

SICL

LAN Client

TCP

IP

LAN Interface

LAN Interface

IP

TCP
Instrument

Driver

LAN Server

Instrument
Firmware

Client System Server (Gateway)

Instrument

GPIB bus (or other)

LAN
Chapter 6 117

Programming over LAN
LAN Overview
.

When using either of these networking protocols, the LAN software provided
with VISA uses the TCP/IP protocol suite to pass messages between the
LAN client and the LAN server. The server accepts device I/O requests over
the network from the client and then proceeds to execute those I/O requests
on a local interface (GPIB, etc.).

You can use both LAN networking protocols (SICL LAN Protocol and
TCP/IP Instrument Protocol) with a LAN client. To do this, configure a LAN
client and a VISA LAN client interface for each protocol, one specifying the
SICL LAN Protocol and one specifying the TCP/IP Instrument Protocol.
The LAN client and VISA LAN client are configured during the Agilent IO
Libraries configuration. See the Agilent IO Libraries Installation and
Configuration Guide for information.

When you have configured VISA LAN client interfaces, one specifying SICL
LAN Protocol and one specifying TCP/IP Instrument Protocol, you can
then use the interface name specified during configuration in your VISA
viOpen call of your program. However, the LAN server does not support
simultaneous connections from LAN clients using the SICL LAN Protocol
and from LAN clients using the TCP/IP Instrument Protocol.

/$1�&OLHQW�DQG�
7KUHDGV

You can use multi-threaded designs (where VISA calls are made from
multiple threads) in VISA applications over LAN. However, only one thread
is permitted to access the LAN driver at a time. This sequential handling of
individual threads by the LAN driver prevents multiple threads from colliding
or overwriting one another.

Requests are handled sequentially even if they are intended for different
LAN servers. If you want concurrent threads to be processed simultaneously
with VISA over LAN, use multiple processes.

NOTE

The TCP/IP Instrument Protocol may not be implemented with all LAN
products. The TCP/IP Instrument Protocol on Windows 95, Windows 98,
Windows 2000, and Windows NT supports VISA operations over the LAN
to GPIB interfaces.
118 Chapter 6

Programming over LAN
LAN Overview
/$1�6HUYHU There are three LAN servers that can be used with VISA: the E2050
LAN/GPIB Gateway, an HP Series 700 computer running HP-UX, or a PC
running Windows 95, Windows 98, Windows 2000, or Windows NT. To use
this capability, the LAN server must have a local GPIB interface configured
for I/O. See the Agilent IO Libraries Installation and Configuration Guide for
configuration information.

LAN Configuration and Performance

As with other client/server applications on a LAN, when deploying an
application which uses VISA over LAN, consideration must be given to the
performance and configuration of the network to which the client and server
will be attached. If the network to be used is not a dedicated LAN or
otherwise isolated via a bridge or other network device, current use of the
LAN must be considered.

Depending upon the amount of data to be transferred over the LAN via the
VISA application, performance problems could be experienced by the VISA
application or other network users if sufficient bandwidth is not available.
This is not unique to VISA over LAN, but is a general design consideration
when deploying any client/server application.

If you have questions concerning the ability of your network to handle
VISA traffic, consult with your network administrator or network equipment
providers.

NOTE

Timing of operations performed remotely over a network will be different
from the timing of operations performed locally. The extent of the timing
difference will, in part, depend on the bandwidth of the network and the
traffic on the network being used.
Chapter 6 119

Programming over LAN
Using the LAN
Using the LAN
This section gives guidelines to use the LAN, including:

n Communicating with Devices over LAN
n Using Timeouts over LAN
n Using Signal Handling over LAN
n Using Service Requests over LAN

Communicating with Devices over LAN

VISA supports LAN-gatewayed sessions to communicate with configured
LAN servers. Since the LAN server configuration is determined by the type
of server present, the only action required by the user is to configure VISA
for a VISA LAN Client during Agilent IO Libraries configuration. See the
Agilent IO Libraries Installation and Configuration Guide for information on
configuring a VISA LAN Client.

$GGUHVVLQJ�D�
6HVVLRQ�

In general, the rules to address a LAN session are the same as to address
a GPIB session. The only difference for a LAN session is that you use the
VISA Interface Name (provided during I/O configuration) that relates to the
VISA LAN Client. This example illustrates addressing a GPIB device
configured over the LAN.

This example shows one way to open a device session with a GPIB device
at primary address 23. See Chapter 4 - Programming with VISA for more
information on addressing device sessions.

NOTE

A LAN session to a remote interface provides the same VISA function
support as if the interface was local, except that all VXI specific functions
are not supported over LAN.

GPIB0::7::0 A GPIB device at primary address 7 and secondary
address 0 on the GPIB interface. This GPIB interface
(GPIB0) is configured as a VISA LAN Client in the
Agilent IO Libraries configuration.
120 Chapter 6

Programming over LAN
Using the LAN
ViSession defaultRM, vi;.
.
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB0::23::INSTR", VI_NULL,

VI_NULL, &vi);
. .
viClose(vi);
viClose(defaultRM);

([DPSOH��/$1�
6HVVLRQ

This program opens a session with a GPIB device and sends a comma
operator to send a comma-separated list. The program is intended to show
specific VISA functionality and does not include error trapping. Error
trapping, however, is good programming practice and is recommended in
your VISA applications. See Chapter 4 - Programming with VISA for
information on error trapping.

/*formatio.c
This example program makes a multimeter measurement
with a comma-separated list passed with formatted I/O and
prints the results. Note that you must change the device
address. */

#include <visa.h>
#include <stdio.h>

void main () {

ViSession defaultRM, vi;
double res;
double list [2] = {1,0.001};

/* Open session to GPIB device at address 22 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB0::22::INSTR", VI_NULL,VI_NULL, &vi);

/* Initialize device */
viPrintf(vi, "*RST\n");

/* Set up device and send comma-separated list */
viPrintf(vi, "CALC:DBM:REF 50\n");
viPrintf(vi, "MEAS:VOLT:AC? %,2f\n", list);

/* Read results */
viScanf(vi, "%lf", &res);
Chapter 6 121

Programming over LAN
Using the LAN
/* Print results */
printf ("Measurement Results: %lf\n", res);

/* Close session */
viClose(vi);
viClose(defaultRM);

}

Using Timeouts over LAN

The client/server architecture of the LAN software requires the use of two
timeout values: one for the client and one for the server.

&OLHQW�6HUYHU�
2SHUDWLRQ

The server’s timeout value is specified by setting a VISA timeout via the
VI_ATTR_TMO_VALUE attribute. The server will also adjust the requested
value if infinity is requested. The client’s timeout value is determined by the
values set when you configure the LAN Client during the Agilent IO
Libraries configuration. See the Agilent IO Libraries Installation and
Configuration Guide for configuration information.

When the client sends an I/O request to the server, the timeout value
determined by the values set with the VI_ATTR_TMO_VALUE attribute is
passed with the request. The client may also adjust the value sent to the
server if VI_TMO_INFINITE was specified. The server will use that timeout
in performing the I/O operation, just as if that timeout value had been used
on a local I/O operation.

If the server’s operation is not complete in the specified time, the server will
send a reply to the client which indicates that a timeout occurred, and the
VISA call made by the application will return an error.

When the client sends an I/O request to the server, it starts a timer and
waits for the reply from the server. If the server does not reply in the time
specified, the client stops waiting for the reply from the server and returns
an error.
122 Chapter 6

Programming over LAN
Using the LAN
/$1�7LPHRXW�9DOXHV The LAN Client configuration specifies two timeout-related configuration
values for the LAN software. These values are used by the software to
calculate timeout values. See the Agilent IO Libraries Installation and
Configuration Guide for information on setting these values.

n Server Timeout. Timeout value passed to the server when an
application sets the VISA timeout to infinity(VI_TMO_INFINITE).
Value specifies the number of seconds the server will wait for the
operation to complete before returning an error. If this value is zero
(0), the server will wait forever.

n Client Timeout Delta. Value added to the VISA timeout value
(server’s timeout value) to determine the LAN timeout value
(client’s timeout value). Value specifies the number of seconds.

The timeouts are adjusted using the following algorithm.

n The VISA Timeout, which is sent to the server for the current call,
is adjusted if it is currently infinity (VI_TMO_INFINITE). In that
case, it will be set to the Server Timeout value.

n The LAN Timeout is adjusted if the VISA Timeout plus the Client
Timeout Delta is greater than the current LAN Timeout. In this case,
the LAN Timeout is set to the VISA Timeout plus the Client Timeout
Delta.

n The calculated LAN Timeout increases as necessary to meet the
needs of the application, but never decreases. This avoids the
overhead of readjusting the LAN Timeout every time the application
changes the VISA Timeout.

To change the defaults:

1. Run the IO Config utility (Windows) or the visacfg utility
(HP-UX).

2. Edit the LAN Client interface.

3. Change the Server Timeout or Client Timeout Delta parameter.
(See online help for information on changing these values.)

4. Restart the VISA LAN applications.
Chapter 6 123

Programming over LAN
Using the LAN
$SSOLFDWLRQ�
7HUPLQDWLRQV�DQG�
7LPHRXWV

If an application is killed either via Ctrl+C or the HP-UX kill command
during a VISA operation performed at the LAN server, the server will
continue to try the operation until the server’s timeout is reached.

By default, the LAN server associated with an application using a timeout of
infinity that is killed may not discover that the client is no longer running for
up to two minutes. (If you are using a server other than the LAN server
supported with the product, check that server’s documentation for its default
behavior.)

If both the LAN client and LAN server are configured to use a long timeout
value, the server may appear "hung." If this situation is encountered, the
LAN client (via the Server Timeout value) or the LAN server may be
configured to use a shorter timeout value.

If long timeouts must be used, the server may be reset. An HP-UX server
may be reset by logging into the server host and killing the running
siclland daemon(s). However, this procedure will affect all clients
connected to the server.

A Windows 95, Windows 98, Windows 2000, or Windows NT server may be
reset by typing Ctrl+C in the LAN Server window and then restarting the
server from the Agilent IO Libraries program group. This procedure
will also affect all clients connected to the server.

Using Signal Handling over LAN

VISA uses SIGIO signals for SRQs on LAN interfaces on HP-UX. The
VISA LAN client installs a signal handler to catch SIGIO signals. To enable
sharing of SIGIO signals with other portions of an application, the VISA LAN
SIGIO signal handler remembers the address of any previously installed
SIGIO handler and calls this handler after processing a SIGIO signal itself.

If your application installs a SIGIO handler, it should also remember the
address of a previously installed handler and call it before completing. The
signal number used with LAN (SIGIO) cannot be changed.
124 Chapter 6

Programming over LAN
Using the LAN
Using Service Requests over LAN

If multiple devices assert SRQs at roughly the same time causing the
SRQ line to stay asserted, even after all devices have been polled using
viReadSTB, subsequent service requests from devices may be lost since
the SRQ handler(s) will not be invoked again until the line is cleared.

For SRQs to be reliably delivered, an SRQ handler must not exit without first
clearing the SRQ line. However, VISA does not provided a way to check the
SRQ line. One way to ensure reliable delivery of SRQs is to service all
devices from one handler, disabling all devices from sending additional
SRQs at the top of the handler. One way to do this follows.

disable all devices from requesting service
serial_poll (device1)
if (needs_service) service_device1
serial_poll (device2)
if (needs_service) service_device2
.
.
enable all devices to send service requests

Even if different sessions are in different processes, it is important to stay in
the SRQ handler until the SRQ line is released. However, the only way to
ensure true independence of multiple GPIB processes is to use multiple
GPIB interfaces.

Another way this situation can be avoided is to configure a VISA LAN client
to use the SICL LAN protocol. Then, if the LAN server is a Windows 95,
Windows 98, Windows 2000, Windows NT, or HP-UX 10.x system
running the LAN server that is shipped with this product, this method is
handled transparently.
Chapter 6 125

Programming over LAN
Using the LAN
Notes:
126 Chapter 6

7

VISA Language Reference
127

VISA Language Reference

This chapter describes each function in the VISA library for the Windows
and HP-UX programming environments. VISA functions are listed in
alphabetical order.

VISA Functions Overview
VISA functions can be grouped according to the types of functions
performed, as shown in the following table. The OUT parameters are
identified by the type definition. That is, all OUT parameters are defined
with a pointer type: ViPUInt16, ViPRsrc, etc.

The data types for the VISA function parameters (for example, ViSession,
ViEventType, etc.) are defined in the VISA declarations file. They are also
explained in Appendix D - VISA Type Definitions.

Operation Function (Type Parameter1, Type Parameter2, ...);

Resource Management:
Open Default Resource Manager
Session

viOpenDefaultRM(ViPSession sesn);

Lifecycle:
Open Session

Close Session

viOpen(ViSession sesn, ViRsrc rsrcName,
ViAccessMode accessMode, ViUInt32 timeout,
ViPSession vi);

viClose(ViSession/ViEvent/ViFindList vi);

Characteristic Control:
Get Attribute

Set Attribute

Get Status Code Description

viGetAttribute(ViSession/ViEvent/ViFindList vi,
ViAttr attribute, ViPAttrState attrState);

viSetAttribute(ViSession/ViEvent/ViFindList vi,
ViAttr attribute, ViAttrState attrState);

viStatusDesc(ViSession/ViEvent/ViFindList vi,
ViStatus status, ViPString desc);
128 Chapter 7

VISA Language Reference
VISA Functions Overview
Asynchronous Operation Control:
Terminate Asynchronous Operation viTerminate(ViSession vi, ViUInt16 degree,

ViJobId jobId);

Access Control:
Lock Resource

Unlock Resource

viLock(ViSession vi, ViAccessMode lockType,
ViUInt32 timeout,ViKeyId requestedKey, ViPKeyId
accessKey);

viUnlock(ViSession vi);

Event Handling:
Enable Event

Disable Event

Discard Events

Wait on Event

 Install Handler

 Uninstall Handler

Event Handler Prototype

viEnableEvent(ViSession vi, ViEventType eventType,
ViUInt16 mechanism, ViEventFilter context);

viDisableEvent(ViSession vi, ViEventType
eventType,
ViUInt16 mechanism);

viDiscardEvents(ViSession vi, ViEventType
eventType,
ViUInt16 mechanism);

viWaitOnEvent(ViSession vi, ViEventType
inEventType,

ViUInt32 timeout, ViPEventType outEventType,
ViPEvent outContext);

viInstallHandler(ViSession vi, ViEventType
eventType,
ViHndlr handler, ViAddr userHandle);

viUninstallHandler(ViSession vi, ViEventType
eventType,ViHndlr handler, ViAddr userHandle);

viEventHandler(ViSession vi, ViEventType
eventType,
ViEvent context, ViAddr userHandle);

Searching:
Find Device

Find Next Device

viFindRsrc(ViSession sesn, ViString expr,
ViPFindList findList, ViPUInt32 retcnt, ViPRsrc
instrDesc);

viFindNext(ViFindList findList, ViPRsrc instrDesc);

Operation Function (Type Parameter1, Type Parameter2, ...);
Chapter 7 129

VISA Language Reference
VISA Functions Overview
Basic I/O:
Read Data from Device

Read Data Asynchronously from
Device

Write Data to Device

Write Data Asynchronously to
Device

Assert Software/Hardware Trigger

Read Status Byte

Clear a Device

viRead(ViSession vi, ViPBuf buf, ViUInt32 count,
ViPUInt32 retCount);

viReadAsync(ViSession vi, ViPBuf buf, ViUInt32
count, ViPJobId jobId);

viWrite(ViSession vi, ViBuf buf, ViUInt32 count,
ViPUInt32 retCount);

viWriteAsync(ViSession vi, ViBuf buf,
ViUInt32 count, ViPJobId jobId);

viAssertTrigger(ViSession vi, ViUInt16 protocol);

viReadSTB(ViSession vi, ViPUInt16 status);

viClear(ViSession vi);

Operation Function (Type Parameter1, Type Parameter2, ...);
130 Chapter 7

VISA Language Reference
VISA Functions Overview
Formatted I/O:
Set Size of Buffer

Unformatted Read/Write to
Formatted I/O Buffers

Flush Read and Write Buffers

Convert, Format, and Send
Parameters

Read, Convert, Format, and Store
Data

Write and Read Formatted Data

Write and Read Formatted Data

viSetBuf(ViSession vi, ViUInt16 mask, ViUInt32
size);

viBufRead(vi, buf, count, retCount);
viBufWrite(vi, buf, count, retCount);

viFlush(ViSession vi, ViUInt16 mask);

viPrintf(ViSession vi, ViString writeFmt, arg1,
arg2, ...);

viVPrintf(ViSession vi, ViString writeFmt,
ViVAList params);

viSPrintf(vi, buf, writeFmt, arg1, arg2, ...);
viVSPrintf(vi, buf, writeFmt, params);

viScanf(ViSession vi, ViString readFmt, arg1,
arg2, ...);

viVScanf(ViSession vi, ViString readFmt, ViVAList
params);

viSScanf (vi, buf, readFmt, arg1, arg2, ...);
viVSScanf (vi, buf, readFmt, params);

viQueryf(ViSession vi, ViString writeFmt, ViString
readFmt, arg1, arg2, ...);

viVQueryf(ViSession vi, ViString writeFmt,
ViString readFmt, ViVAList params);

Operation Function (Type Parameter1, Type Parameter2, ...);
Chapter 7 131

VISA Language Reference
VISA Functions Overview
Memory I/O:
Read 8-bit Value from Memory
Space

Read 16-bit Value from Memory
Space

Read 32-bit Value from Memory
Space

Write 8-bit Value to Memory Space

Write 16-bit Value to Memory Space

Write 32-bit Value to Memory Space

Move data from source to
destination

Move data from source to
destination asynchronously

Move 8-bit Value from Device
Memory to Local Memory

Move 16-bit Value from Device
Memory to Local Memory

Move 32-bit Value from Device
Memory to Local Memory

viIn8(ViSession vi, ViUInt16 space, ViBusAddress
offset, ViPUInt8 val8);

viIn16(ViSession vi, ViUInt16 space, ViBusAddress
offset, ViPUInt16 val16);

viIn32(ViSession vi, ViUInt16 space, ViBusAddress
offset,ViPUInt32 val32);

viOut8(ViSession vi, ViUInt16 space, ViBusAddress
offset,ViUInt8 val8);

viOut16(ViSession vi, ViUInt16 space,
ViBusAddress offset, ViUInt16 val16);

viOut32(ViSession vi, ViUInt16 space,
ViBusAddress offset, ViUInt32 val32);

viMove (ViSession vi, ViUInt16 srsSpace,
ViBusAddress srcOffset, ViUInt16 srcWidth, ViUInt16
destSpace, ViBusAddress destOffset, ViUInt16
destWidth, ViBusSize length)

viMoveAsync (ViSession vi, ViUInt16 srsSpace,
ViBusAddress srcOffset, ViUInt16 srcWidth, ViUInt16
destSpace, ViBusAddress destOffset, ViUInt16
destWidth, ViBusSize length, ViJobId jobId)

viMoveIn8(ViSession vi, ViUInt16 space,
ViBusAddress offset,ViBusSize length, ViAUInt8
buf8);

viMoveIn16(ViSession vi, ViUInt16 space,
ViBusAddress offset,ViBusSize length, ViAUInt16
buf16);

viMoveIn32(ViSession vi, ViUInt16 space,
ViBusAddress offset,ViBusSize length, ViAUInt32
buf32);

Operation Function (Type Parameter1, Type Parameter2, ...);
132 Chapter 7

VISA Language Reference
VISA Functions Overview
Move 8-bit Value from Local Memory
to Device Memory

Move 16-bit Value from Local
Memory to Device Memory

Move 32-bit Value from Local
Memory to Device Memory

Map Memory Space

Unmap Memory Space

Read 8-bit Value from Address

Read 16-bit Value from Address

Read 32-bit Value from Address

Write 8-bit Value to Address

Write 16-bit Value to Address

Write 32-bit Value to Address

viMoveOut8(ViSession vi, ViUInt16 space,
ViBusAddress offset,ViBusSize length, ViAUInt8
buf8);

viMoveOut16(ViSession vi, ViUInt16 space,
ViBusAddress offset,ViBusSize length, ViAUInt16
buf16);

viMoveOut32(ViSession vi, ViUInt16 space,
ViBusAddress offset,ViBusSize length, ViAUInt32
buf32);

viMapAddress(ViSession vi, ViUInt16 mapSpace,
ViBusAddress mapBase, ViBusSize mapSize,
ViBoolean access,ViAddr suggested, ViPAddr
address);

viUnmapAddress(ViSession vi);

viPeek8(ViSession vi, ViAddr addr, ViPUInt8 val8);

viPeek16(ViSession vi, ViAddr addr, ViPUInt16
val16);

viPeek32(ViSession vi, ViAddr addr, ViPUInt32
val32);

viPoke8(ViSession vi, ViAddr addr, ViUInt8 val8);

viPoke16(ViSession vi, ViAddr addr, ViUInt16
val16);

viPoke32(ViSession vi, ViAddr addr, ViUInt32
val32);

Shared Memory:
Allocate Memory

Free Memory Previously Allocated

viMemAlloc(ViSession vi, ViBusSize size,
ViPBusAddress offset);

viMemFree(ViSession vi, ViBusAddress offset);

GPIB Specific Services viGpibControlREN(vi, mode);

Operation Function (Type Parameter1, Type Parameter2, ...);
Chapter 7 133

VISA Language Reference
viAssertTrigger
viAssertTrigger

6\QWD[viAssertTrigger(ViSession vi, ViUInt16 protocol);

'HVFULSWLRQ This function asserts a software or hardware trigger dependent on the
interface type. For a GPIB device, the device is addressed to listen, and then
the GPIB GET command is sent.

For a VXI device, if VI_ATTR_TRIG_ID is VI_TRIG_SW, the device is sent
the Word Serial Trigger command. For a VXI device, if VI_ATTR_TRIG_ID
is any other value, a hardware trigger is sent on the line corresponding to the
value of that attribute.

For GPIB and VXI software triggers, VI_TRIG_PROT_DEFAULT is the only
valid protocol. For VXI hardware triggers, VI_TRIG_PROT_DEFAULT is
equivalent to VI_TRIG_PROT_SYNC.

3DUDPHWHUV

5HWXUQ�9DOXHV�

NOTE

This function is not supported with the GPIB-VXI interface.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

protocol IN ViUInt16 Trigger protocol to use during assertion.
Valid values are:
VI_TRIG_PROT_DEFAULT,
VI_TRIG_PROT_ON,
VI_TRIG_PROT_OFF, and
VI_TRIG_PROT_SYNC.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.
134 Chapter 7

VISA Language Reference
viAssertTrigger
Completion Code Description

VI_SUCCESS The specified trigger was successfully
asserted to the device.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this
function.

VI_ERROR_RSRC_LOCKED Specified operation could not be
performed because the resource
identified by vi has been locked for this
kind of access.

VI_ERROR_INV_PROT The protocol specified is invalid.

VI_ERROR_TMO Timeout expired before function
completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred
during transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred
during transfer.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error
occurred during transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_LINE_IN_USE The specified trigger line is currently in
use.

VI_ERROR_NCIC The interface associated with the given vi
is not currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both
NRFD and NDAC are deasserted).

VI_ERROR_INV_SETUP Unable to start operation because setup
is invalid (due to attributes being set to an
inconsistent state).
Chapter 7 135

VISA Language Reference
viBufRead
viBufRead

6\QWD[viBufRead (vi, buf, count, retCount);

'HVFULSWLRQ Similar to viRead, except that the operation uses the formatted I/O read
buffer for holding data read from the device. This operation is similar to
viRead and does not perform any kind of data formatting. It differs from
viRead in that the data is read from the formatted I/O read buffer (the same
buffer as used by viScanf and related operations) rather than directly from
the device. This operation can intermix with the viScanf operation, but use
with the viRead operation is discouraged.

3DUDPHWHUV

Special Values for retCount Parameter

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf OUT ViBuf Represents the location of a buffer
to receive data from the device.

count IN ViUInt32 Number of bytes to be read.

retCount OUT ViUInt32 Represents the location of an integer
that will be set to the number of bytes
actually transferred.

Value Action Description

VI_NULL Do not return the number of bytes transferred.
136 Chapter 7

VISA Language Reference
viBufRead
5HWXUQ�9DOXHV�

6HH�$OVR� viWrite, viScanf

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS The operation completed successfully and
the END indicator was received (for
interfaces that have END indicators).

VI_SUCCESS_TERM_CHAR The specified termination character was read.

VI_SUCCESS_MAX_CNT The number of bytes read is equal to count.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.

VI_ERROR_TMO Timeout expired before function completed.

VI_ERROR_IO An unknown I/O error occurred during
transfer.
Chapter 7 137

VISA Language Reference
viBufWrite
viBufWrite

6\QWD[viBufWrite (vi, buf, count, retCount);

'HVFULSWLRQ Similar to viWrite, except the data is written to the formatted I/O write
buffer rather than directly to the device. This operation is similar to viWrite
and does not perform any kind of data formatting.

It differs from viWrite in that the data is written to the formatted I/O write
buffer (the same buffer as used by viPrintf and related operations) rather
than directly to the device. This operation can intermix with the viPrintf
operation, but mixing it with the viWrite operation is discouraged.

If you pass VI_NULL as the retCount parameter to the viBufWrite
operation, the number of bytes transferred will not be returned. This may be
useful if it is important to know only whether the operation succeeded or
failed.

3DUDPHWHUV

Special Values for retCount Parameter

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf IN ViBuf Represents the location of a data block
to be sent to the device.

count IN ViUInt32 Number of bytes to be written.

retCount OUT ViUInt32 Represents the location of an integer
that will be set to the number of bytes
actually transferred.

Value Action Description

VI_NULL Do not return the number of bytes transferred.
138 Chapter 7

VISA Language Reference
viBufWrite
5HWXUQ�9DOXHV�

6HH�$OVR� viWrite, viBufRead

 Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.

VI_ERROR_TMO Timeout expired before function completed.

VI_ERROR_INV_SETUP Unable to start write operation because
setup is invalid (due to attributes being set
to an inconsistent state).

VI_ERROR_IO An unknown I/O error occurred during
transfer.
Chapter 7 139

VISA Language Reference
viClear
viClear

6\QWD[viClear(ViSession vi);

'HVFULSWLRQ This function performs an IEEE 488.1-style clear of the device. VXI uses the
Word Serial Clear command and GPIB uses the Selective Device Clear
command.

3DUDPHWHUV

5HWXUQ�9DOXHV�

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.

VI_ERROR_TMO Timeout expired before function completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred
during transfer.
140 Chapter 7

VISA Language Reference
viClear
VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred
during transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_NCIC The interface associated with the given vi is
not currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both
NRFD and NDAC are deasserted).

VI_ERROR_INV_SETUP Unable to start operation because setup is
invalid (due to attributes being set to an
inconsistent state).

Error Codes Description
Chapter 7 141

VISA Language Reference
viClose
 viClose

6\QWD[viClose(ViSession/ViEvent/ViFindList vi);

'HVFULSWLRQ This function closes the specified resource manager session, device
session, find list (returned from the viFindRsrc function), or event context
(returned from the viWaitOnEvent function, or passed to an event
handler). In this process, all the data structures that had been allocated for
the specified vi are freed.

3DUDPHWHUV

NOTE

The viClose function should not be called from within an event handler.
In VISA 1.1 and greater, viClose (VI_NULL) returns
VI_WARN_NULL_OBJECT rather than an error.

Name Direction Type Description

vi IN ViSession
ViEvent
ViFindList

Unique logical identifier to a session, event,
or find list.
142 Chapter 7

VISA Language Reference
viClose
5HWXUQ�9DOXHV

6HH�$OVR� viOpen, viFindRsrc, viWaitOnEvent, viEventHandler

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Session closed successfully.

VI_WARN_NULL_OBJECT The specified object reference is uninitialized.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_CLOSING_FAILED Unable to deallocate the previously allocated
data structures corresponding to this session or
object reference.
Chapter 7 143

VISA Language Reference
viDisableEvent
viDisableEvent

6\QWD[viDisableEvent(ViSession vi, ViEventType eventType,
 ViUInt16 mechanism);

'HVFULSWLRQ This function disables servicing of an event identified by the eventType
parameter for the mechanisms specified in the mechanism parameter.
Specifying VI_ALL_ENABLED_EVENTS for the eventType parameter allows
a session to stop receiving all events.

The session can stop receiving queued events by specifying VI_QUEUE.
Applications can stop receiving callback events by specifying either
VI_HNDLR or VI_SUSPEND_HNDLR. Specifying VI_ALL_MECH disables
both the queuing and callback mechanisms.

3DUDPHWHUV

Name Direction Type Description

vi IN ViSession Unique logical identifier to a
session.

eventType IN ViEventType Logical event identifier. (See the
following tables.)

mechanism IN ViUInt16 Specifies event handling
mechanisms to be disabled.
The queuing mechanism is
disabled by specifying
VI_QUEUE.

The callback mechanism is
disabled by specifying VI_HNDLR
or VI_SUSPEND_HNDLR. It is
possible to disable both
mechanisms simultaneously
by specifying VI_ALL_MECH.
(See the following table.)
144 Chapter 7

VISA Language Reference
viDisableEvent
Special Values for eventType Parameter

The following events can be disabled:

Special Values for mechanism Parameter

5HWXUQ�9DOXHV

Value Action Description

VI_ALL_ENABLED_EVENTS Disable all events that were previously enabled.

Event Name Description

VI_EVENT_SERVICE_REQ Notification that a device is requesting service.

VI_EVENT_VXI_SIGP Notification that a VXI signal or VXI interrupt has
been received from a device.

VI_EVENT_TRIG Notification that a hardware trigger was received
from a device.

VI_EVENT_IO_COMPLETION Notification that an asynchronous operation has
completed.

Value Action Description

VI_QUEUE Disable this session from receiving the specified
event(s) via the waiting queue.

VI_HNDLR or
VI_SUSPEND_HNDLR

Disable this session from receiving the specified
event(s) via a callback handler or a callback
queue.

VI_ALL_MECH Disable this session from receiving the specified
event(s) via any mechanism.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Event disabled successfully.

VI_SUCCESS_EVENT_DIS Specified event is already disabled for at least
one of the specified mechanisms.
Chapter 7 145

VISA Language Reference
viDisableEvent
6HH�$OVR See the handler prototype viEventHandler for its parameter
description, and viEnableEvent. Also, see viInstallHandler and
viUninstallHandler descriptions for information about installing and
uninstalling event handlers. See event descriptions for context structure
definitions.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the
resource.

VI_ERROR_INV_MECH Invalid mechanism specified.
146 Chapter 7

VISA Language Reference
viDiscardEvents
viDiscardEvents

6\QWD[viDiscardEvents(ViSession vi, ViEventType eventType,
ViUInt16 mechanism);

'HVFULSWLRQ This function discards all pending occurrences of the specified event types
for the mechanisms specified in a given session. The information about all
the event occurrences which have not yet been handled is discarded. This
function is useful to remove event occurrences that an application no longer
needs.

3DUDPHWHUV

Name Direction Type Description

vi IN ViSession Unique logical identifier to a
session.

eventType IN ViEventType Logical event identifier. (See the
following tables.)

mechanism IN ViUInt16 Specifies the mechanisms for which
the events are to be discarded.
VI_QUEUE is specified for the
queuing mechanism and
VI_SUSPEND_HNDLR is specified
for the pending events in the
callback mechanism. It is possible
to specify both mechanisms
simultaneously by specifying
VI_ALL_MECH. (See the following
table.)
Chapter 7 147

VISA Language Reference
viDiscardEvents
Special Values for eventType Parameter

The following events can be discarded:

Special Values for mechanism Parameter

Value Action Description

VI_ALL_ENABLED_EVENTS Discard events of every type that is enabled.

Event Name Description

VI_EVENT_SERVICE_REQ Notification that a device is requesting service.

VI_EVENT_VXI_SIGP Notification that a VXI signal or VXI interrupt has
been received from a device.

VI_EVENT_TRIG Notification that a hardware trigger was received
from a device.

VI_EVENT_IO_COMPLETION Notification that an asynchronous operation has
completed.

Value Action Description

VI_QUEUE Discard the specified event(s) from the waiting
queue.

VI_SUSPEND_HNDLR Discard the specified event(s) from the callback
queue.

VI_ALL_MECH Discard the specified event(s) from all
mechanisms.
148 Chapter 7

VISA Language Reference
viDiscardEvents
5HWXUQ�9DOXHV

�6HH�$OVR viEnableEvent, viWaitOnEvent, viInstallHandler

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Event queue flushed successfully.

VI_SUCCESS_QUEUE_EMPTY Operation completed successfully, but queue
was empty.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the
resource.

VI_ERROR_INV_MECH Invalid mechanism specified.
Chapter 7 149

VISA Language Reference
viEnableEvent
viEnableEvent

6\QWD[viEnableEvent(ViSession vi, ViEventType eventType,
ViUInt16 mechanism, ViEventFilter context);

'HVFULSWLRQ This function enables notification of an event identified by the eventType
parameter for mechanisms specified in the mechanism parameter. The
specified session can be enabled to queue events by specifying VI_QUEUE.

Applications can enable the session to invoke a callback function to execute
the handler by specifying VI_HNDLR. The applications are required to install
at least one handler to be enabled for this mode.

Specifying VI_SUSPEND_HNDLR enables the session to receive callbacks,
but the invocation of the handler is deferred to a later time. Successive calls
to this function replace the old callback mechanism with the new callback
mechanism.

Specifying VI_ALL_ENABLED_EVENTS for the eventType parameter refers
to all events which have previously been enabled on this session, making it
easier to switch between the two callback mechanisms for multiple events.

3DUDPHWHUV

Name Direction Type Description

vi IN ViSession Unique logical identifier to a
session.

eventType IN ViEventType Logical event identifier. (See the
following tables.)
150 Chapter 7

VISA Language Reference
viEnableEvent
Special Values for eventType Parameter

The following events can be enabled:

mechanism IN ViUInt16 Specifies event handling
mechanisms to be enabled. The
queuing mechanism is enabled
by specifying VI_QUEUE, and
the callback mechanism is
enabled by specifying
VI_HNDLR or
VI_SUSPEND_HNDLR.

It is possible to enable both
mechanisms simultaneously by
specifying "bit-wise OR" of
VI_QUEUE and one of the two
mode values for the callback
mechanism.

context IN ViEventFilter VI_NULL (Not used for VISA
1.0.)

Name Direction Type Description

Value Action Description

VI_ALL_ENABLED_EVENTS Switch all events that were previously enabled to
the callback mechanism specified in the
mechanism parameter.

Event Name Description

VI_EVENT_SERVICE_REQ Notification that a device is requesting service.

VI_EVENT_VXI_SIGP Notification that a VXI signal or VXI interrupt has
been received from a device.

VI_EVENT_TRIG Notification that a hardware trigger was received
from a device.

VI_EVENT_IO_COMPLETION Notification that an asynchronous operation has
completed.
Chapter 7 151

VISA Language Reference
viEnableEvent
Special Values for mechanism Parameter

5HWXUQ�9DOXHV

Value Action Description

VI_QUEUE Enable this session to receive the specified event via
the waiting queue. Events must be retrieved manually
via the viWaitOnEvent function.

VI_HNDLR Enable this session to receive the specified event via
a callback handler, which must have already been
installed via viInstallHandler.

VI_SUSPEND_HNDLR Enable this session to receive the specified event via
a callback queue. Events will not be delivered to the
session until viEnableEvent is invoked again with
the VI_HNDLR mechanism.

NOTE

Any combination of VISA-defined values for different parameters
of this function is also supported (except for VI_HNDLR and
VI_SUSPEND_HNDLR, which apply to different modes of the same
mechanism).

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Event enabled successfully.

VI_SUCCESS_EVENT_EN Specified event is already enabled for at least
one of the specified mechanisms.
152 Chapter 7

VISA Language Reference
viEnableEvent
6HH�$OVR See the handler prototype viEventHandler for its parameter description
and viDisableEvent. Also, see the viInstallHandler and
viUninstallHandler descriptions for information about installing and
uninstalling event handlers.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the
resource.

VI_ERROR_INV_MECH Invalid mechanism specified.

VI_ERROR_INV_CONTEXT Specified event context is invalid.

VI_ERROR_HNDLR_NINSTALLED A handler is not currently installed for the
specified event. The session cannot be
enabled for the VI_HNDLR mode of the
callback mechanism.
Chapter 7 153

VISA Language Reference
viEventHandler
viEventHandler

6\QWD[viEventHandler(ViSession vi, ViEventType eventType,
ViEvent context, ViAddr userHandle);

'HVFULSWLRQ This is a prototype for a function, which you define. The function you define
is called whenever a session receives an event and is enabled for handling
events in the VI_HNDLR mode. The handler services the event and returns
VI_SUCCESS on completion.

Because each eventType defines its own context in terms of attributes, refer
to the appropriate event definition to determine which attributes can be
retrieved using the context parameter.

3DUDPHWHUV

The following table lists the events and the associated read only attributes
that can be read to get event information on a specific event:

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

eventType IN ViEventType Logical event identifier. (See the
following table.)

context IN ViEvent A handle specifying the unique
occurrence of an event.

userHandle IN ViAddr A value specified by an application
that can be used for identifying
handlers uniquely in a session for
an event.

Event Name Attributes Data Type Values

VI_EVENT_SERVICE_
REQ

VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_SERVICE_REQ

VI_EVENT_VXI_SIGP VI_ATTR_EVENT_TYPE
VI_ATTR_SIGP_STATUS_ID

ViEventType
ViUInt16

VI_EVENT_VXI_SIGP
0 to FFFFh
154 Chapter 7

VISA Language Reference
viEventHandler
Use the VISA viReadSTB function to read the status byte of the service
request.

�5HWXUQ�9DOXHV

6HH�$OVR See Chapter 4 - Programming with VISA for more information on event
handling and exception handling.

VI_EVENT_TRIG VI_ATTR_EVENT_TYPE
VI_ATTR_RECV_TRIG_ID

ViEventType
ViInt16

VI_EVENT_TRIG
VI_TRIG_TTL0 to
VI_TRIG_TTL7
VI_TRIG_ECL0 to
VI_TRIG_ECL1

VI_EVENT_IO_
COMPLETION

VI_ATTR_EVENT_TYPE
VI_ATTR_STATUS
VI_ATTR_JOB_ID
VI_ATTR_BUFFER
VI_ATTR_RET_COUNT

ViEventType
ViStatus
ViJobId
ViBuf
ViUInt32

VI_EVENT_IO_COMPLETION
N/A
N/A
N/A
0 to FFFFFFFFh

Event Name Attributes Data Type Values

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Event handled successfully.
Chapter 7 155

VISA Language Reference
viFindNext
viFindNext

6\QWD[viFindNext(ViFindList findList, ViPRsrc instrDesc);

'HVFULSWLRQ This function returns the next resource found in the list created by
viFindRsrc. The list is referenced by the handle that was returned by
viFindRsrc.

3DUDPHWHUV

5HWXUQ�9DOXHV

Name Direction Type Description

findList IN ViFindList Describes a find list. This parameter
must be created by viFindRsrc.

instrDesc OUT ViPRsrc Returns a string identifying the location
of a device. Strings can then be passed
to viOpen to establish a session to the
given device.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Resource(s) found.
156 Chapter 7

VISA Language Reference
viFindNext
6HH�$OVR viFindRsrc

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_NSUP_OPER Given findList does not support this function.

VI_ERROR_RSRC_NFOUND There are no more matches.
Chapter 7 157

VISA Language Reference
viFindRsrc
viFindRsrc

6\QWD[viFindRsrc(ViSession sesn, ViString expr, ViPFindList
findList, ViPUInt32 retcnt, ViPRsrc instrDesc);

'HVFULSWLRQ This function queries a VISA system to locate the resources associated with
a specified interface. This function matches the value specified in the expr
parameter with the resources available for a particular interface.

On successful completion, it returns the first resource found in the list and
returns a count to indicate if there were more resources found that match
the value specified in the expr parameter.

This function also returns a handle to a find list. This handle points to the list
of resources, and it must be used as an input to viFindNext. When this
handle is no longer needed, it should be passed to viClose.

3DUDPHWHUV

Name Direction Type Description

sesn IN ViSession Resource Manager session (should
always be the Default Resource
Manager for VISA returned from
viOpenDefaultRM).

expr IN ViString This expression sets the criteria to
search an interface or all interfaces for
existing devices. (See the following
table for description string format.)

findList OUT ViFindList Returns a handle identifying this
search session. This handle will be
used as an input in viFindNext.

retcnt OUT ViUInt32 Number of matches.

instrDesc OUT ViRsrc Returns a string identifying the
location of a device. Strings can then
be passed to viOpen to establish a
session to the given device.
158 Chapter 7

VISA Language Reference
viFindRsrc
Description String for expr Parameter

5HWXUQ�9DOXHV

6HH�$OVR viFindNext, viClose

Interface Expression

GPIB GPIB[0-9]*::?*INSTR

VXI VXI?*INSTR

GPIB-VXI GPIB-VXI?*INSTR

GPIB and GPIB-VXI GPIB?*INSTR

All VXI ?*VXI[0-9]*::?*INSTR

ASRL ASRL[0-9]*::?*INSTR

All ?*INSTR

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Resource(s) found.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NSUP_OPER The given sesn does not support this function.

VI_ERROR_INV_EXPR Invalid expression specified for search.

VI_ERROR_RSRC_NFOUND Specified expression does not match any devices.
Chapter 7 159

VISA Language Reference
viFlush
viFlush

6\QWD[viFlush(ViSession vi, ViUInt16 mask);

'HVFULSWLRQ� This function manually flushes the read and write buffers associated with
formatted I/O functions.

3DUDPHWHUV

Values for mask Parameter

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

mask IN ViUInt16 Specifies the action to be taken with flushing
the buffer. (See the following table.)

Flag Interpretation

VI_READ_BUF Discard the read buffer contents and, if data
was present in the read buffer and no END-
indicator was present, read from the device
until encountering an END indicator (which
causes the loss of data).

This action resynchronizes the next viScanf
call to read a <TERMINATED RESPONSE
MESSAGE>. (Refer to the IEEE 488.2
standard.)

VI_READ_BUF_DISCARD Discard the read buffer contents (does not
perform any I/O to the device).

VI_WRITE_BUF Flush the write buffer by writing all buffered
data to the device.

VI_WRITE_BUF_DISCARD Discard the write buffer contents (does not
perform any I/O to the device).

VI_ASRL_IN_BUF Discard the receive buffer contents (same as
VI_ASRL_IN_BUF_DISCARD).

VI_ASRL_IN_BUF_DISCARD Discard the receive buffer contents (does not
perform an I/O to the device).
160 Chapter 7

VISA Language Reference
viFlush

5HWXUQ�9DOXHV

VI_ASRL_OUT_BUF Flush the transmit buffer by writing all buffered
data to the device.

VI_ASRL_OUT_BUF_DISCARD Discard the transmit buffer contents (does not
perform any I/O to the device).

NOTE

It is possible to combine any of these read flags with a write flag (and
vice-versa) by ORing the flags. However, combining two read flags or two
write flags in the same call to viFlush is illegal.

In this implementation, it is not possible to discard the ASRL in and
out buffers separately. VI_ASRL_IN_BUF_DISCARD and
VI_ASRL_OUT_BUF_DISCARD must always be set together. If only
one is set, VI_ERROR_INV_MASK is returned.

Flag Interpretation

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Buffers flushed successfully.
Chapter 7 161

VISA Language Reference
viFlush
6HH�$OVR viSetBuf

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_IO Could not perform read/write function because of I/
O error.

VI_ERROR_TMO The read/write function was aborted because
timeout expired while function was in progress.

VI_ERROR_INV_MASK The specified mask does not specify a valid flush
function on read/write resource.
162 Chapter 7

VISA Language Reference
viGetAttribute
viGetAttribute

6\QWD[viGetAttribute(ViSession/ViEvent/ViFindList vi,
ViAttr attribute, ViPAttrState attrState);

'HVFULSWLRQ This function retrieves the state of an attribute for the specified session.

3DUDPHWHUV

Name Direction Type Description

vi IN ViSession
ViEvent
ViFindList

Unique logical identifier to a session,
event, or find list.

attribute IN ViAttr Resource attribute for which the state
query is made.

attrState OUT See Note
below.

The state of the queried attribute for a
specified resource. The interpretation of
the returned value is defined by the
individual resource. Note that you must
allocate space for character strings
returned.

NOTE

The pointer passed to viGetAttribute must point to the exact type
required for that attribute, ViUInt16, ViInt32, etc.. For example, when
reading an attribute state that returns a ViChar, you must pass a pointer
to a ViChar variable. You must allocate space for the returned data.
Chapter 7 163

VISA Language Reference
viGetAttribute
5HWXUQ�9DOXHV

6HH�$OVR viSetAttribute

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Resource attribute retrieved successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NSUP_ATTR The specified attribute is not defined by the
referenced resource.
164 Chapter 7

VISA Language Reference
viGpibControlREN
viGpibControlREN

6\QWD[viGpibControlREN(vi, mode);

'HVFULSWLRQ Controls the state of the GPIB REN interface line and, optionally, the
remote/local state of the device. This operation asserts or deasserts the
GPIB REN interface line according to the specified mode.

The mode can also specify whether the device associated with this session
should be placed in local state (before deasserting REN) or remote state
(after asserting REN). This operation is valid only if the GPIB interface
associated with the session specified by vi is currently the system controller.

An INSTR resource implementation of viGpibControlREN for a
GPIB System supports all documented modes. An INTFC resource
implementation of viGpibControlREN for a GPIB System supports
the modes VI_GPIB_REN_DEASSERT, VI_GPIB_REN_ASSERT, and
VI_GPIB_REN_ASSERT_LLO.

3DUDPHWHUV

Special Values for mode Parameter

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

mode IN ViUInt16 Specifies the state of the REN line and,
optionally, the device remote/local state.

mode Action Description

VI_GPIB_REN_DEASSERT Deassert REN line.

VI_GPIB_REN_ASSERT Assert REN line.

VI_GPIB_REN_DEASSERT_GTL Send the Go To Local command (GTL)
to this device and deassert REN line.

VI_GPIB_REN_ASSERT_ADDRESS Assert REN line and address this device.

VI_GPIB_REN_ASSERT_LLO Send LLO to any devices that are
addressed to listen.
Chapter 7 165

VISA Language Reference
viGpibControlREN
5HWXUQ�9DOXHV

VI_GPIB_REN_ASSERT_ADDRESS_
LLO

Address this device and send it LLO,
putting it in RWLS.

VI_GPIB_REN_ADDRESS_GTL Send the Go To Local command (GTL)
to this device.

mode Action Description

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Resource attribute retrieved successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.

VI_ERROR_NCIC The interface associated with this session
is not currently the controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both
NRFD and NDAC are deasserted).

VI_ERROR_NSYS_CNTLR The interface associated with this session
is not the system controller.

VI_ERROR_INV_MODE The value specified by the mode parameter
is invalid.
166 Chapter 7

VISA Language Reference
viIn8, viIn16, and viIn32
viIn8, viIn16, and viIn32

6\QWD[viIn8(ViSession vi, ViUInt16 space, ViBusAddress offset,
ViPUInt8 val8);

viIn16(ViSession vi, ViUInt16 space, ViBusAddress offset,
ViPUInt16 val16);

viIn32(ViSession vi, ViUInt16 space, ViBusAddress offset,
ViPUInt32 val32);

'HVFULSWLRQ This function reads in an 8-bit, 16-bit, or 32-bit value from the specified
memory space (assigned memory base + offset). This function takes the
8-bit, 16-bit, or 32-bit value from the address space pointed to by space.
The offset must be a valid memory address in the space. This function does
not require viMapAddress to be called prior to its invocation.

If the viSession parameter (vi) refers to an INSTR session, the offset
parameter specifies a relative offset from the start of the instrument’s
address space. If the viSession parameter (vi) refers to a MEMACC
session, the offset parameter is an absolute offset from the start of memory
in that VXI address space.

3DUDPHWHUV

Name Direction Type Description

vi IN ViSession Unique logical identifier to a
session.

space IN ViUInt16 Specifies the address space.
(See the following table.)

offset IN ViBusAddress Offset (in bytes) of the memory to
read from.

val8, val16, or
val32

 OUT ViPUInt8,
ViPUInt16, or
ViPUInt32

Data read from bus (8-bits for
viIn8, 16-bits for viIn16, and
32-bits for viIn32).
Chapter 7 167

VISA Language Reference
viIn8, viIn16, and viIn32
Values for space Parameter

5HWXUQ�9DOXHV

6HH�$OVR viOut8, viOut16, viOut32, viPeek8, viPeek16, viPeek32, viMoveIn8, viMoveIn16,
viMoveIn32

Value Description

VI_A16_SPACE Maps in VXI/MXI A16 address space.

VI_A24_SPACE Maps in VXI/MXI A24 address space.

VI_A32_SPACE Maps in VXI/MXI A32 address space.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this
hardware.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_NSUP_ALIGN_
OFFSET

The specified offset is not properly aligned for the
access width of the operation.
168 Chapter 7

VISA Language Reference
viInstallHandler
viInstallHandler

6\QWD[viInstallHandler(ViSession vi, ViEventType eventType,
ViHndlr handler, ViAddr userHandle);

'HVFULSWLRQ This function allows applications to install handlers on sessions for event
callbacks. The handler specified in the handler parameter is installed along
with previously installed handlers for the specified event. Applications can
specify a value in the userHandle parameter that is passed to the handler on
its invocation. VISA identifies handlers uniquely using the handler reference
and this value.

3DUDPHWHUV

The following events can be enabled:

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

eventType IN ViEventType Logical event identifier.

handler IN ViHndlr Interpreted as a valid reference to a
handler to be installed by an
application.

userHandle IN ViAddr A value specified by an application
that can be used for identifying
handlers uniquely for an event type.

Event Name Description

VI_EVENT_SERVICE_REQ Notification that a device is requesting service.

VI_EVENT_VXI_SIGP Notification that a VXI signal or VXI interrupt
has been received from a device.

VI_EVENT_TRIG Notification that a hardware trigger was
received from a device.

VI_EVENT_IO_COMPLETION Notification that an asynchronous operation has
completed.
Chapter 7 169

VISA Language Reference
viInstallHandler
5HWXUQ�9DOXHV

6HH�$OVR viEventHandler

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Event handler installed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the
resource.

VI_ERROR_INV_HNDLR_REF The given handler reference is invalid.

VI_ERROR_HNDLR_NINSTALLED The handler was not installed. This may be
returned if an application attempts to install
multiple handlers for the same event on the
same session.
170 Chapter 7

VISA Language Reference
viLock
viLock

6\QWD[viLock(ViSession vi, ViAccessMode lockType, ViUInt32
timeout, ViKeyId requestedKey, ViPKeyId accessKey);

'HVFULSWLRQ This function is used to obtain a lock on the specified resource. The caller
can specify the type of lock requested (exclusive or shared lock) and the
length of time the operation will suspend while waiting to acquire the lock
before timing out. This function can also be used for sharing and nesting
locks.

The requestedKey and accessKey parameters apply only to shared locks.
These parameters are not applicable when using the lock type
VI_EXCLUSIVE_LOCK. In this case, requestedKey and accessKey should
be set to VI_NULL. VISA allows user applications to specify a key to be
used for lock sharing through the use of the requestedKey parameter.

Alternatively, a user application can pass VI_NULL for the requestedKey
parameter when obtaining a shared lock, in which case VISA will generate a
unique access key and return it through the accessKey parameter. If a user
application does specify a requestedKey value, VISA will try to use this value
for the accessKey.

As long as the resource is not locked, VISA will use the requestedKey as
the access key and grant the lock. When the operation succeeds, the
requestedKey will be copied into the user buffer referred to by the accessKey
parameter.

The session that gained a shared lock can pass the accessKey to other
sessions for the purpose of sharing the lock. The session wanting to join the
group of sessions sharing the lock can use the key as an input value to the
requestedKey parameter.

VISA will add the session to the list of sessions sharing the lock, as long as
the requestedKey value matches the accessKey value for the particular
resource. The session obtaining a shared lock in this manner will then have
the same access privileges as the original session that obtained the lock.

NOTE

 The viLock function is not supported on network devices.
Chapter 7 171

VISA Language Reference
viLock
It is also possible to obtain nested locks through this function. To acquire
nested locks, invoke the viLock function with the same lock type as the
previous invocation of this function. For each session, viLock and
viUnlock share a lock count, which is initialized to 0. Each invocation of
viLock for the same session (and for the same lockType) increases the
lock count.

A shared lock returns with the same accessKey every time. When a session
locks the resource a multiple number of times, it is necessary to invoke the
viUnlock function an equal number of times in order to unlock the
resource. That is, the lock count increments for each invocation of viLock,
and decrements for each invocation of viUnlock. A resource is actually
unlocked only when the lock count is 0.

3DUDPHWHUV

NOTE

On HP-UX, SIGALRM is used in implementing the viLock when timeout
is non-zero. The viLock function's use of SIGALRM is exclusive – an
application should not also expect to use SIGALRM at the same time.

NOTE

On HP-UX, some semaphores used in locking are permanently allocated
and diminish the number of semaphores available for applications. If the
operating system runs out of semaphores, the number of semaphores
may be increased by doing the following:

1. Run sam.
2. Double-click Kernel Configuration.
3. Double-click Configurable Parameters.
4. Change semmni and semmns to a higher value, such as 300.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

lockType IN ViAccessMode Specifies the type of lock requested,
which can be VI_EXCLUSIVE_LOCK
or VI_SHARED_LOCK.
172 Chapter 7

VISA Language Reference
viLock
timeout IN ViUInt32 Absolute time period (in milliseconds)
that a resource waits to get unlocked
by the locking session before
returning this operation with an error.
VI_TMO_IMMEDIATE and
VI_TMO_INFINITE are also valid
values.

requestedKey IN ViKeyId This parameter is not used and should
be set to VI_NULL when lockType
is VI_EXCLUSIVE_LOCK (exclusive
lock).

When trying to lock the resource as
VI_SHARED_LOCK (shared lock), a
session can either set it to VI_NULL
so that VISA generates an accessKey
for the session, or the session can
suggest an accessKey to use for the
shared lock. See "Description" for
more details.

accessKey OUT ViPKeyId This parameter should be set to
VI_NULL when lockType is
VI_EXCLUSIVE_LOCK (exclusive
lock). When trying to lock the resource
as VI_SHARED_LOCK (shared lock),
the resource returns a unique access
key for the lock if the operation
succeeds. This accessKey can then
be passed to other sessions to share
the lock.

Name Direction Type Description
Chapter 7 173

VISA Language Reference
viLock
5HWXUQ�9DOXHV�

6HH�$OVR viUnlock. For more information on locking, see Chapter 4 - Programming with
VISA.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS The specified access mode was successfully
acquired.

VI_SUCCESS_NESTED_
EXCLUSIVE

The specified access mode was successfully
acquired, and this session has nested exclusive
locks.

VI_SUCCESS_NESTED_
SHARED

The specifed access mode was successfully
acquired, and this session has nested shared
locks.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given vi does not identify a valid session or
object.

VI_ERROR_RSRC_LOCKED The specified type of lock cannot be obtained
because the resource is already locked with a
lock type incompatible with the lock requested.

VI_ERROR_INV_LOCK_TYPE The specified type of lock is not supported by
this resource.

VI_ERROR_INV_ACCESS_KEY The requestedKey value passed is not a valid
access key to the specified resource.

VI_ERROR_TMO The specified type of lock could not be obtained
within the specified timeout period.
174 Chapter 7

VISA Language Reference
viMapAddress
viMapAddress

6\QWD[viMapAddress(ViSession vi, ViUInt16 mapSpace,
ViBusAddress mapBase, ViBusSize mapSize,
ViBoolean access, ViAddr suggested, ViPAddr address);

'HVFULSWLRQ This function maps in a specified memory space. The memory space that is
mapped is dependent on the type of interface specified by the vi parameter
and the mapSpace parameter (see the following table). The address
parameter returns the address in your process space where memory is
mapped.

If the viSession parameter (vi) refers to an INSTR session, the mapBase
parameter specifies a relative offset in the instrument’s mapSpace. If the
viSession parameter (vi) refers to a MEMACC session, the mapBase
parameter is an absolute offset from the start of the VXI mapSpace.

3DUDPHWHUV

NOTE

For a given session, you can only have one map at one time. If you need
to have multiple maps to a device, you must open one session for each
map needed.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a
session.

mapSpace IN ViUInt16 Specifies the address space to
map. (See the following table.)

mapBase IN ViBusAddress Offset (in bytes) of the memory to
be mapped.

mapSize IN ViBusSize Amount of memory to map (in
bytes).

access IN ViBoolean VI_FALSE.
Chapter 7 175

VISA Language Reference
viMapAddress
Values for mapSpace Parameter

5HWXUQ�9DOXHV

suggested IN ViAddr If suggested parameter is not
VI_NULL, the operating system
attempts to map the memory to the
address specified in suggested.
There is no guarantee, however,
that the memory will be mapped to
that address. This function may
map the memory into an address
region different from suggested.

address OUT ViPAddr Address in your process space
where the memory was mapped.

Name Direction Type Description

Value Description

VI_A16_SPACE Maps in VXI/MXI A16 address space.

VI_A24_SPACE Maps in VXI/MXI A24 address space.

VI_A32_SPACE Maps in VXI/MXI A32 address space.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Map successful.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_INV_SPACE Invalid mapSpace specified.
176 Chapter 7

VISA Language Reference
viMapAddress
6HH�$OVR viUnmapAddress

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified region is not accessible from this
hardware.

VI_ERROR_TMO viMapAddress could not acquire resource or
perform mapping before the timer expired.

VI_ERROR_INV_SIZE Invalid size of window specified.

VI_ERROR_ALLOC Unable to allocate window of at least the
requested size.

VI_ERROR_INV_ACC_MODE Invalid access mode.

VI_ERROR_WINDOW_MAPPED The specified session already contains a mapped
window.

VI_ERROR_INV_SETUP Unable to start operation because the setup is
invalid (due to attributes being set to an
inconsistent state).

Error Codes Description
Chapter 7 177

VISA Language Reference
viMemAlloc
viMemAlloc

6\QWD[viMemAlloc(ViSession vi, ViBusSize size, ViPBusAddress
offset);

'HVFULSWLRQ This function returns an offset into a device’s memory region that has been
allocated for use by this session. If the device to which the given vi refers is
located on the local interface card, the memory can be allocated either on
the device itself or on the computer’s system memory.

3DUDPHWHUV

5HWXUQ�9DOXHV

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

size IN ViBusSize Specifies the size of the allocation.

offset OUT ViPBusAddress Returns the offset of the allocated
device memory.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_INV_SIZE Invalid size specified.
178 Chapter 7

VISA Language Reference
viMemAlloc
6HH�$OVR viMemFree

VI_ERROR_ALLOC Unable to allocate shared memory block of the
requested size.

VI_ERROR_MEM_NSHARED The device does not export any memory.

Error Codes Description
Chapter 7 179

VISA Language Reference
viMemFree
viMemFree

6\QWD[viMemFree(ViSession vi, ViBusAddress offset);

'HVFULSWLRQ This function frees the memory previously allocated using viMemAlloc.

3DUDPHWHUV

5HWXUQ�9DOXHV

6HH�$OVR viMemAlloc

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

offset IN ViBusAddress Specifies the memory previously
allocated with viMemAlloc.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_WINDOW_NMAPPED The specified offset is currently in use by
viMapAddress.
180 Chapter 7

VISA Language Reference
viMove
viMove

6\QWD[viMove (ViSession vi, ViUInt16 srcSpace,
 ViBusAddress srcOffset, ViUInt16 srcWidth,
 ViUInt16 destSpace, ViBusAddress destOffset,
 ViUInt16 destWidth, ViBusSize length)

'HVFULSWLRQ This operation moves data from the specified source to the specified
destination. The source and the destination can either be local memory or
the offset of the interface with which this INSTR or MEMACC resource is
associated. This operation uses the specified data width and address space.

If the viSession parameter (vi) refers to an INSTR session, the offset
parameters specify relative offsets from the start of the instrument’s address
space. If the viSession parameter (vi) refers to a MEMACC session, the
offset parameters are absolute offsets from the start of memory in the
specified VXI address space.

3DUDPHWHUV

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

srcSpace IN ViUInt16 Specifies the address space of the
source.

srcOffset IN ViBusAddress Offset of the starting address or
register from which to read.

srcWidth IN ViUInt16 Specifies the data width of the
source.

destSpace IN ViUInt16 Specifies the address space of the
destination.

destOffset IN ViBusAddress Specifies the address space of the
destination

destWidth IN ViUInt16 Specifies the data width of the
destination.
Chapter 7 181

VISA Language Reference
viMove
Valid entries for specifying address space:

Valid entries for specifying widths:

5HWXUQ�9DOXHV

length IN ViBusSize Number of data elements to
transfer, where the data width of the
elements to transfer is identical to
the source data width.

Name Direction Type Description

Value Description

VI_A16_SPACE Address A16 memory address space of the VXI/MXI bus.

VI_A24_SPACE Address A24 memory address space of the VXI/MXI bus.

VI_A32_SPACE Address A32 memory address space of the VXI/MXI bus.

VI_LOCAL_SPACE Addresses the process-local memory (using virtual
address).

Value Description

VI_WIDTH_8 Performs an 8-bit (D08) transfer.

VI_WIDTH_16 Performs a 16-bit (D16) transfer.

VI_WIDTH_32 Performs a 32-bit (D32) transfer.

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this
operation.
182 Chapter 7

VISA Language Reference
viMove
6HH�$OVR viMoveAsync. Also, see MEMACC Resource Description.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.

VI_ERROR_BERR Bus Error occurred during transfer.

VI_ERROR_INV_SPACE Invalid source or destination address
specified.

VI_ERROR_INV_OFFSET Invalid source or destination offset
specified.

VI_ERROR_INV_WIDTH Invalid source or destination width
specified.

VI_ERROR_NSUP_OFFSET Specified source or destination offset is not
accessible from this hardware.

VI_ERROR_NSUP_VAR_WIDTH Cannot support source and destination
widths that are different.

VI_ERROR_INV_SETUP Unable to start operation because setup is
invalid (due to attributes being set to an
inconsistent state).

VI_ERROR_NSUP_WIDTH Specified width is not supported.

VI_ERROR_NSUP_ALIGH_OFFSET The specified offset is not properly aligned
for the access width of the operation.

VI_ERROR_INV_LENGTH Invalid length specified.

Error Codes Description
Chapter 7 183

VISA Language Reference
viMoveAsync
viMoveAsync

6\QWD[viMoveAsync (ViSession vi, ViUInt16 srcSpace,
 ViBusAddress srcOffset, ViUInt16 srcWidth,
 ViUInt16 destSpace, ViBusAddress destOffset,
 ViUInt16 destWidth, ViBusSize length,
 ViJobId jobId)

'HVFULSWLRQ This operation asynchronously moves data from the specified source to the
specified destination. This operation queues up the transfer in the system,
then it returns immediately without waiting for the transfer to complete.
When the transfer terminates, a VI_EVENT_IO_COMPLETE event indicates
the status of the transfer.

The operation returns jobId which you can use either with viTerminate()
to abort the operation or with VI_EVENT_IO_COMPLETION events to
identify which asynchronous move operations completed. The source and
destination can be either local memory or the offset of the device/interface
with which this INSTR or MEMACC Resource is associated. This operation
uses the specified data width and address space.

If the viSession parameter (vi) refers to an INSTR session, the offset
parameters specify relative offsets from the start of the instrument’s address
space. If the viSession parameter (vi) refers to a MEMACC session, the
offset parameters are absolute offsets from the start of memory in the
specified VXI address space.

3DUDPHWHUV

Name Direction Type Description

vi IN ViSession Unique logical identifier to a
session.

srcSpace IN ViUInt16 Specifies the address space of the
source.

srcOffset IN ViBusAddress Offset of the starting address or
register from which to read.

srcWidth IN ViUInt16 Specifies the data width of the
source.
184 Chapter 7

VISA Language Reference
viMoveAsync
Valid entries for specifying address space:

Valid entries for specifying widths:

destSpace IN ViUInt16 Specifies the address space of the
destination.

destOffset IN ViBusAddress Offset of the starting address or
register to write to.

destWidth IN ViUInt16 Specifies the data width of the
destination.

length IN ViBusSize Number of data elements to
transfer, where the data width of
the elements to transfer is identical
to the source data width.

jobId OUT ViJobId Represents the location of an
integer that will be set to the job
identifier of this asynchronous
move operation. Each time an
asynchronous move operation is
called, it is assigned a unique job
identifier.

Name Direction Type Description

Value Description

VI_A16_SPACE Address A16 memory address space of the VXI/MXI bus.

VI_A24_SPACE Address A24 memory address space of the VXI/MXI bus.

VI_A32_SPACE Address A32 memory address space of the VXI/MXI bus.

VI_LOCAL_SPACE Addresses the process-local memory (using virtual
address).

Value Description

VI_WIDTH_8 Performs an 8-bit (D08) transfer.

VI_WIDTH_16 Performs a 16-bit (D16) transfer.

VI_WIDTH_32 Performs a 32-bit (D32) transfer.
Chapter 7 185

VISA Language Reference
viMoveAsync
Special value for jobId parameter:

5HWXUQ�9DOXHV

6HH�$OVR viMove. Also, see the INSTR and MEMACC Resource descriptions.

Value Description

VI_NULL Operation does not return a job identifier.

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Asynchronous operation completed successfully.

VI_SUCCESS_SYNC Operation Perfomed synchronously.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_QUEUE Unable to queue move operation.
186 Chapter 7

VISA Language Reference
viMoveIn8, viMoveIn16, and viMoveIn32
viMoveIn8, viMoveIn16, and viMoveIn32

6\QWD[viMoveIn8(ViSession vi, ViUInt16 space,
ViBusAddress offset, ViBusSize length, ViAUInt8 buf8);

viMoveIn16(ViSession vi, ViUInt16 space,
ViBusAddress offset, ViBusSize length, ViAUInt16 buf16);

viMoveIn32(ViSession vi, ViUInt16 space,
ViBusAddress offset, ViBusSize length, ViAUInt32 buf32);

'HVFULSWLRQ This function moves an 8-bit, 16-bit, or 32-bit block of data from the specified
memory space (assigned memory base + offset) to local memory. This
function reads the 8-bit, 16-bit, or 32-bit value from the address space
pointed to by space. The offset must be a valid memory address in the space.
These functions do not require viMapAddress to be called prior to their
invocation.

If the viSession parameter (vi) refers to an INSTR session, the offset
parameters specify relative offsets from the start of the instrument’s address
space. If the viSession parameter (vi) refers to a MEMACC session, the
offset parameters are absolute offsets from the start of memory in the
specified VXI address space.

3DUDPHWHUV

NOTE

The viMoveIn functions do a block move of memory from a VXI device
if VI_ATTR_SRC_INCREMENT is 1. However, they do a FIFO read of a
VXI memory location if VI_ATTR_SRC_INCREMENT is 0 (zero).

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

space IN ViUInt16 Specifies the address space. (See
the following table.)

offset IN ViBusAddress Offset (in bytes) of the starting
address or register to read from.
Chapter 7 187

VISA Language Reference
viMoveIn8, viMoveIn16, and viMoveIn32
Values for space Parameter

5HWXUQ�9DOXHV

length IN ViBusSize Number of elements to transfer,
where the data width of the elements
to transfer is 8-bits for viMoveIn8,
16-bits for viMoveIn16, or 32-bits
for viMoveIn32.

buf8,
buf16, or
buf32

 OUT ViAUInt8,
ViAUInt16, or
ViAUInt32

Data read from bus (8-bits for
viMoveIn8, 16-bits for
viMoveIn16, and 32-bits for
viMoveIn32).

Name Direction Type Description

Value Description

VI_A16_SPACE Maps in VXI/MXI A16 address space.

VI_A24_SPACE Maps in VXI/MXI A24 address space.

VI_A32_SPACE Maps in VXI/MXI A32 address space.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SPACE Invalid address space specified.
188 Chapter 7

VISA Language Reference
viMoveIn8, viMoveIn16, and viMoveIn32
6HH�$OVR viMoveOut8, viMoveOut16, viMoveOut32, viIn8, viIn16, viIn32

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this hardware.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_INV_LENGTH Invalid length specified.

VI_ERROR_NSUP_ALIGN_
OFFSET

The specified offset is not properly aligned for the
access width of the operation.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid
(due to attributes being set to an inconsistent state).

Error Codes Description
Chapter 7 189

VISA Language Reference
viMoveOut8, viMoveOut16, and viMoveOut32
viMoveOut8, viMoveOut16, and
viMoveOut32

6\QWD[viMoveOut8(ViSession vi, ViUInt16 space,
ViBusAddress offset, ViBusSize length, ViAUInt8 buf8);

viMoveOut16(ViSession vi, ViUInt16 space,
ViBusAddress offset, ViBusSize length, ViAUInt16 buf16);

viMoveOut32(ViSession vi, ViUInt16 space,
ViBusAddress offset, ViBusSize length, ViAUInt32 buf32);

'HVFULSWLRQ This function moves an 8-bit, 16-bit, or 32-bit block of data from local
memory to the specified memory space (assigned memory base + offset).
This function writes the 8-bit, 16-bit, or 32-bit value to the address space
pointed to by space. The offset must be a valid memory address in the space.
This function does not require viMapAddress to be called prior to its
invocation

If the viSession parameter (vi) refers to an INSTR session, the offset
parameters specify relative offsets from the start of the instrument’s address
space. If the viSession parameter (vi) refers to a MEMACC session, the
offset parameters are absolute offsets from the start of memory in the
specified VXI address space.

NOTE

The viMoveOut functions do a block move of memory from a VXI device
if VI_ATTR_DEST_INCREMENT is 1. However, they do a FIFO read of a
VXI memory location if VI_ATTR_DEST_INCREMENT is 0 (zero).
190 Chapter 7

VISA Language Reference
viMoveOut8, viMoveOut16, and viMoveOut32
3DUDPHWHUV

Values for space Parameter

5HWXUQ�9DOXHV

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

space IN ViUInt16 Specifies the address space. (See the
following table.)

offset IN ViBusAddress Offset (in bytes) of the starting
address or register to write to.

length IN ViBusSize Number of elements to transfer,
where the data width of the elements
to transfer is 8-bits for viMoveOut8,
16-bits for viMoveOut16, or 32-bits
for viMoveOut32.

buf8, buf16,
or
buf32

IN ViAUInt8,
ViAUInt16, or
ViAUInt32

Data written to bus (8-bits for
viMoveOut8, 16-bits for
viMoveOut16, and 32-bits for
viMoveOut32).

Value Description

VI_A16_SPACE Maps in VXI/MXI A16 address space.

VI_A24_SPACE Maps in VXI/MXI A24 address space.

VI_A32_SPACE Maps in VXI/MXI A32 address space.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.
Chapter 7 191

VISA Language Reference
viMoveOut8, viMoveOut16, and viMoveOut32
6HH�$OVR viMoveIn8, viMoveIn16, viMoveIn32, viOut8, viOut16, viOut32

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this hardware.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_INV_LENGTH Invalid length specified.

VI_ERROR_NSUP_ALIGN_
OFFSET

The specified offset is not properly aligned for the
access width of the operation.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid
(due to attributes being set to an inconsistent state).
192 Chapter 7

VISA Language Reference
viOpen
viOpen

6\QWD[viOpen(ViSession sesn, ViRsrc rsrcName,
ViAccessMode accessMode, ViUInt32 timeout, ViPSession

vi);

'HVFULSWLRQ This function opens a session to the specified device. It returns a session
identifier that can be used to call any other functions to that device.

3DUDPHWHUV

Name Direction Type Description

sesn IN ViSession Resource Manager session (should
always be the Default Resource
Manager for VISA returned from
viOpenDefaultRM).

rsrcName IN ViRsrc Unique symbolic name of a resource.
(See the following tables.)

accessMode IN ViAccessMode Specifies the modes by which the
resource is to be accessed. The value
VI_EXCLUSIVE_LOCK is used to
acquire an exclusive lock immediately
upon opening a session.

If a lock cannot be acquired, the
session is closed and an error is
returned. The VI_LOAD_CONFIG
value is used to configure attributes
specified by some external
configuration utility. If this value is
not used, the session uses the default
values provided by this specification.

Multiple access modes can be used
simultaneously by specifying a "bit-
wise OR" of the values. (Must use
VI_NULL in VISA 1.0.)
Chapter 7 193

VISA Language Reference
viOpen
Address String Grammar for rsrcName Parameter

Examples of Address Strings for rsrcName Parameter

5HWXUQ�9DOXHV

timeout IN ViUInt32 If the accessMode parameter requires
a lock, this parameter specifies the
absolute time period (in milliseconds)
that the resource waits to get
unlocked before this operation returns
an error. Otherwise, this parameter is
ignored. (Must use VI_NULL in VISA
1.0.)

vi OUT ViPSession Unique logical identifier reference to a
session.

Name Direction Type Description

Interface Grammar

VXI VXI[board]::VXI logical address[::INSTR]

GPIB-VXI GPIB-VXI[board]::VXI logical address[::INSTR]

GPIB GPIB[board]::primary address[::secondary
address][::INSTR]

ASRL ASRL[board][::INSTR]

Address String Description

VXI0::1::INSTR A VXI device at logical address 1 in VXI interface VXI0.

GPIB-VXI::24::
INSTR

A VXI device at logical address 24 in a GPIB-VXI
controlled VXI system.

GPIB::1::0::INSTR A GPIB device at primary address 1 and secondary
address 0 in GPIB interface 0.

ASRL1::INSTR A serial device located on port 1.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.
194 Chapter 7

VISA Language Reference
viOpen
6HH�$OVR viClose

Completion Codes Description

VI_SUCCESS Session opened successfully.

VI_SUCCESS_DEV_NPRESENT Session Opened Successfully, but the device at
the specified address is not responding.

VI_WARN_CONFIG_NLOADED The specified configuration either does not exist
or could not be loaded using VISA-specified
defaults.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NSUP_OPER The given sesn does not support this function.
For VISA, this function is supported only by the
Default Resource Manager session.

VI_ERROR_INV_RSRC_NAME Invalid resource reference specified. Parsing
error.

VI_ERROR_INV_ACC_MODE Invalid access mode.

VI_ERROR_RSRC_NFOUND Insufficient location information or resource not
present in the system.

VI_ERROR_ALLOC Insufficient system resources to open a session.

VI_ERROR_RSRC_BUSY The resource is valid but VISA cannot currently
access it.

VI_ERROR_RSRC_LOCKED Specified type of lock cannot be obtained
because the resource is already locked with a
lock type incompatible with the lock requested.

VI_ERROR_TMO A session to the resource could not be obtained
within the specified timeout period.
Chapter 7 195

VISA Language Reference
viOpenDefaultRM
viOpenDefaultRM

6\QWD[viOpenDefaultRM(ViPSession sesn);

'HVFULSWLRQ This function returns a session to the Default Resource Manager resource.
This function must be called before any VISA functions can be invoked. The
first call to this function initializes the VISA system, including the Default
Resource Manager resource, and also returns a session to that resource.
Subsequent calls to this function return unique sessions to the same Default
Resource Manager resource.

3DUDPHWHUV

�5HWXUQ�9DOXHV

NOTE

All devices to be used must be connected and operational prior to the first
VISA function call (viOpenDefaultRM). The system is configured only
on the first viOpenDefaultRM per process.

If viOpenDefaultRM is first called without devices connected and then
called again when devices are connected, the devices will not be
recognized. You must close ALL Resource Manager sessions and
reopen with all devices connected and operational.

Name Direction Type Description

sesn OUT ViSession Unique logical identifier to a Default Resource
Manager session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Session to the Default Resource Manager resource
created successfully.
196 Chapter 7

VISA Language Reference
viOpenDefaultRM
6HH�$OVR viOpen, viFindRsrc, viClose

Error Codes Description

VI_ERROR_SYSTEM_ERROR The VISA system failed to initialize.

VI_ERROR_ALLOC Insufficient system resources to create a session
to the Default Resource Manager resource.

VI_ERROR_INV_SETUP Some implementation-specific configuration file is
corrupt or does not exist.
Chapter 7 197

VISA Language Reference
viOut8, viOut16, and viOut32
viOut8, viOut16, and viOut32

6\QWD[viOut8(ViSession vi, ViUInt16 space, ViBusAddress offset,
ViUInt8 val8);

viOut16(ViSession vi, ViUInt16 space, ViBusAddress offset,
ViUInt16 val16);

viOut32(ViSession vi, ViUInt16 space, ViBusAddress offset,
ViUInt32 val32);

'HVFULSWLRQ This function writes an 8-bit, 16-bit, or 32-bit word to the specified memory
space (assigned memory base + offset). This function takes the 8-bit, 16-bit,
or 32-bit value and stores its contents to the address space pointed to by
space. The offset must be a valid memory address in the space. This function
does not require viMapAddress to be called prior to its invocation.

If the viSession parameter (vi) refers to an INSTR session, the offset
parameter specifies a relative offset from the start of the instrument’s
address space. If the viSession parameter (vi) refers to a MEMACC
session, the offset parameter is an absolute offset from the start of memory
in that VXI address space.

3DUDPHWHUV

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

space IN ViUInt16 Specifies the address space. (See the
following table.)

offset IN ViBusAddress Offset (in bytes) of the address or
register to write to.

val8,
val16,
or val32

 IN ViUInt8,
ViUInt16, or
ViUInt32

Data to write to bus (8-bits for viOut8,
16-bits for viOut16, and 32-bits for
viOut32).
198 Chapter 7

VISA Language Reference
viOut8, viOut16, and viOut32
Values for space Parameter

5HWXUQ�9DOXHV

6HH�$OVR viIn8, viIn16, viIn32, viPoke8, viPoke16, viPoke32, viMoveOut8, viMoveOut16,
viMoveOut32

Value Description

VI_A16_SPACE Maps in VXI/MXI A16 address space.

VI_A24_SPACE Maps in VXI/MXI A24 address space.

VI_A32_SPACE Maps in VXI/MXI A32 address space.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified offset not accessible from this hardware.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_NSUP_ALIGN_
OFFSET

The specified offset is not properly aligned for the
access width of the operation.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid
(due to attributes being set to an inconsistent state).
Chapter 7 199

VISA Language Reference
viPeek8, viPeek16, and viPeek32
viPeek8, viPeek16, and viPeek32

6\QWD[viPeek8(ViSession vi, ViAddr addr, ViPUInt8 val8);

viPeek16(ViSession vi, ViAddr addr, ViPUInt16 val16);

viPeek32(ViSession vi, ViAddr addr, ViPUInt32 val32);

'HVFULSWLRQ This function reads an 8-bit, 16-bit, or 32-bit value from the address location
specified in addr. The address must be a valid memory address in the
current process mapped by a previous viMapAddress call.

3DUDPHWHUV

5HWXUQ�9DOXHV None.

6HH�$OVR viPoke8, viPoke16, viPoke32, viMapAddress, viIn8, viIn16, viIn32

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

addr IN ViAddr Specifies the source address to read the
value.

val8,
val16, or
val32

 OUT ViPUInt8,
ViPUInt16,
or
ViPUInt32

Data read from bus (8-bits for viPeek8,
16-bits for viPeek16, and 32-bits for
viPeek32).

NOTE

ViAddr is defined as a void *. To do pointer arithmetic, you must cast
this to an appropriate type (ViUInt8, ViUInt16, or ViUInt32). Then,
be sure the offset is correct for the type of pointer you are using. For
example, (ViUInt8 *)addr + 4 points to the same location as
(ViUInt16 *)addr + 2.
200 Chapter 7

VISA Language Reference
viPoke8, viPoke16, and viPoke32
viPoke8, viPoke16, and viPoke32

6\QWD[viPoke8(ViSession vi, ViAddr addr, ViUInt8 val8);

viPoke16(ViSession vi, ViAddr addr, ViUInt16 val16);

viPoke32(ViSession vi, ViAddr addr, ViUInt32 val32);

'HVFULSWLRQ This function takes an 8-bit, 16-bit, or 32-bit value and stores its content to
the address pointed to by addr. The address must be a valid memory
address in the current process mapped by a previous viMapAddress call.

3DUDPHWHUV

5HWXUQ�9DOXHV None.

6HH�$OVR viPeek8, viPeek16, viPeek32, viMapAddress, viOut8, viOut16, viOut32

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

addr IN ViAddr Specifies the destination address to
store the value.

val8,
val16 or
val32

IN ViUInt8,
ViUInt16,
or
ViUInt32

Data written to bus (8-bits for viPoke8,
16-bits for viPoke16, and 32-bits for
viPoke32).

NOTE

ViAddr is defined as a void *. To do pointer arithmetic, you must cast
this to an appropriate type (ViUInt8, ViUInt16, or ViUInt32). Then,
be sure the offset is correct for the type of pointer you are using. For
example, (ViUInt8 *)addr + 4 points to the same location as
(ViUInt16 *)addr + 2.
Chapter 7 201

VISA Language Reference
viPrintf
viPrintf

6\QWD[viPrintf(ViSession vi, ViString writeFmt, arg1, arg2,...);

'HVFULSWLRQ� This function converts, formats, and sends the parameters arg1, arg2, ... to
the device as specified by the format string. Before sending the data, the
function formats the arg characters in the parameter list as specified in the
writeFmt string. You should not use the viWrite and viPrintf functions
in the same session.

The writeFmt string can include regular character sequences, special
formatting characters, and special format specifiers. The regular characters
(including white spaces) are written to the device unchanged. The special
characters consist of \ (backslash) followed by a character. The format
specifier sequence consists of % (percent) followed by an optional modifier
(flag), followed by a conversion character.

3DUDPHWHUV

6SHFLDO�)RUPDWWLQJ�
&KDUDFWHUV

The special formatting characters and what they send to the device are:

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

writeFmt IN ViString String describing the format for
arguments.

arg1, arg2 IN (varies) Parameters format string is applied to.

\n Sends the ASCII LF character. The END identifier will also be
automatically sent.

\r Sends an ASCII CR character.

\t Sends an ASCII TAB character.

\### Sends the ASCII character specified by the octal value.

\" Sends the ASCII double-quote (") character.

\\ Sends a backslash (\) character.
202 Chapter 7

VISA Language Reference
viPrintf
)RUPDW�6SHFLILHUV The format specifiers convert the next parameter in the sequence according
to the modifier and conversion character, after which the formatted data is
written to the specified device. The format specifier has the following syntax:

%[modifiers]conversion character

where conversion character specifies which data type the argument is
represented in. The modifiers are optional codes that describe the target
data.

In the following tables, a d conversion character refers to all conversion
codes of type integer (d, i, o, u, x, X), unless specified as %d only.
Similarly, an f conversion character refers to all conversion codes of type
float (f, e, E, g, G), unless specified as %f only.

Every conversion command starts with the % character and ends with a
conversion character. Between the % character and the conversion
character, the modifiers in the following tables can appear in the sequence.
Chapter 7 203

VISA Language Reference
viPrintf
ANSI C Standard Modifiers

Modifier Supported with
Conversion
Character

Description

An integer
specifying
field width.

d, f, s
conversion
characters

This specifies the minimum field width of the converted argument. If
an argument is shorter than the field width, it will be padded on the
left (or on the right if the - flag is present). An asterisk (*) may be
present in lieu of a field width modifier, in which case an extra arg is
used. This arg must be an integer representing the field width.

Special case: For the @H, @Q, and @B flags, the field width includes
the #H, #Q, and #B strings, respectively.

An integer
specifying
precision.

d, f, s
conversion
characters

The precision string consists of a string of decimal digits. A .
(decimal point) must prefix the precision string. An asterisk (*)
may be present in lieu of a precision modifier, in which case an
extra arg is used. This arg must be an integer representing the
precision of a numeric field. The precision string specifies the
following:

a. The minimum number of digits to appear for the @1, @H, @Q,
and @B flags and the i, o, u, x, and X conversion characters.

b. The maximum number of digits after the decimal point in case of f
conversion characters.

c. The maximum numbers of characters for the string (s) specifier.

d. Maximum significant digits for g conversion character.

An argument
length
modifier.

h, l, L,
z, and Z are
legal values.
(z and Z are
not ANSI C
standard
flags.)

h (d, b, B
conversion
characters)

l (d, f, b, B
conversion
characters)

L (f conversion
character)

z, Z (b, B
conversion
characters)

The argument length modifiers specify one of the following:

a. The h modifier promotes the argument to a short or unsigned
 short, depending on the conversion character type.

b. The l modifier promotes the argument to a long or unsigned long.

c. The L modifier promotes the argument to a long double
parameter.

d. The z modifier promotes the argument to an array of floats.

e. The Z modifier promotes the argument to an array of doubles.
204 Chapter 7

VISA Language Reference
viPrintf
Enhanced Modifiers to ANSI C Standards

The following are the allowed conversion characters. A format specifier
sequence should include one and only one conversion character.

Modifier Supported with
Conversion
Character

Description

A comma (,)
followed by an
integer n, where n
represents the
array size.

 %d and %f only The corresponding argument is interpreted as a reference to
the first element of an array of size n. The first n elements of
this list are printed in the format specified by the conversion
character. An asterisk (*) may be present after the , modifier, in
which case an extra arg is used. This arg must be an integer
representing the array size of the given type.

@1 %d and %f only Converts to an IEEE 488.2 defined NR1 compatible number,
which is an integer without any decimal point (e.g., 123).

@2 %d and %f only Converts to an IEEE 488.2 defined NR2 compatible number.
The NR2 number has at least one digit after the decimal point
(e.g., 123.45).

@3 %d and %f only Converts to an IEEE 488.2 defined NR3 compatible number.
An NR3 number is a floating point number represented in an
exponential form (e.g., 1.2345E-67).

@H %d and %f only Converts to an IEEE 488.2 defined <HEXADECIMAL
NUMERIC RESPONSE DATA>. The number is represented
in a base of sixteen form. Only capital letters should represent
numbers. The number is of the form #HXXX.., where XXX.. is a
hexadecimal number (e.g., #HAF35B).

@Q %d and %f only Converts to an IEEE 488.2 defined <OCTAL NUMERIC
RESPONSE DATA>. The number is represented in a base of
eight form. The number is of the form #QYYY.., where YYY.. is
an octal number (e.g., #Q71234).

@B %d and %f only Converts to an IEEE 488.2 defined <BINARY NUMERIC
RESPONSE DATA>. The number is represented in a base
two form. The number is of the form #BZZZ.., where ZZZ.. is
a binary number (e.g., #B011101001).
Chapter 7 205

VISA Language Reference
viPrintf
Standard ANSI C Conversion Characters

% Send the ASCII percent (%) character.

c Argument type: A character to be sent.

d Argument type: An integer.

Modifier Interpretation

Default
functionality

Print integer in NR1 format (integer without a decimal point).

@2 or @3 The integer is converted into a floating point number and
output in the correct format.

field width Minimum field width of the output number. Any of the six
IEEE 488.2 modifiers can also be specified with field width.

Length modifier l arg is a long integer.

Length modifier h arg is a short integer.

, array size arg points to an array of integers (or long or short integers,
depending on the length modifier) of size array size. The
elements of this array are separated by array size – 1
commas and output in the specified format.

f Argument type: A floating point number.

Modifier Interpretation

Default
functionality

Print a floating point number in NR2 format (a number with
at least one digit after the decimal point).

@1 Print an integer in NR1 format. The number is truncated.

@3 Print a floating point number in NR3 format (scientific
notation). Precision can also be specified.

field width Minimum field width of the output number. Any of the six
IEEE 488.2 modifiers can also be specified with field width.

Length modifier l arg is a double float.

Length modifier L arg is a long double.
206 Chapter 7

VISA Language Reference
viPrintf
Enhanced Format Codes

, array size arg points to an array of floats (or doubles or long doubles),
depending on the length modifier) of size array size. The
elements of this array are separated by array size – 1
commas and output in the specified format.

s Argument type: A reference to a NULL-terminated
string that is sent to the device without change.

b Argument type: A location of a block of data.

Flag or
Modifier

Interpretation

Default
functionality

The data block is sent as an IEEE 488.2 <DEFINITE LENGTH
ARBITRARY BLOCK RESPONSE DATA>. A count (long
integer) must appear as a flag that specifies the number of
elements (by default, bytes) in the block. A field width or
precision modifier is not allowed with this conversion character.

* (asterisk) An asterisk may be present instead of the count. In such a case,
two args are used, the first of which is a long integer specifying
the count of the number of elements in the data block. The
second arg is a reference to the data block. The size of an
element is determined by the optional length modifier (see
below), the default being byte width.

Length
modifier h

The data block is assumed to be an array of unsigned short
integers (16-bits). The count corresponds to the number of words
rather than bytes. The data is swapped and padded into
standard IEEE 488.2 (big endian) format if native computer
representation is different.

Length
modifier l

The data block is assumed to be an array of unsigned long
integers. The count corresponds to the number of longwords
(32-bits). Each longword data is swapped and padded into
standard IEEE 488.2 (big endian) format if native computer
representation is different.

Modifier Interpretation
Chapter 7 207

VISA Language Reference
viPrintf

Length
modifier z

The data block is assumed to be an array of floats. The count
corresponds to the number of floating point numbers (32-bits).
The numbers are represented in IEEE 754 (big endian) format if
native computer representation is different.

Length
modifier Z

The data block is assumed to be an array of doubles. The count
corresponds to the number of double floats (64-bits). The
numbers are represented in IEEE 754 (big endian) format if
native computer representation is different.

B Argument type: A location of a block of data. The
functionality is similar to b, except the data block is
sent as an IEEE 488.2 <INDEFINITE LENGTH
ARBITRARY BLOCK RESPONSE DATA>. This
format involves sending an ASCII LF character with
the END indicator set after the last byte of the block.

y Argument Type: A location of block binary data.

Flag or Modifier Interpretation

Default
functionality

The data block is sent as raw binary data. A count (long
integer) must appear as a flag that specifies the number of
elements (by default, bytes) in the block. A field width or
precision modifier is not allowed with this format code.

* (asterisk) An asterisk may be present instead of the count. In such a
case, two args are used, the first of which is a long integer
specifying the count of the number of elements in the data
block. The second arg is a reference to the data block. The
size of an element is determined by the optional length
modifier (see below), the default being byte width.

Length modifier
h

The data block is an array of unsigned short integers (16-bits).
The count corresponds to the number of words rather than
bytes. If the optional !ol byte order modifier is present, the
data is sent in little endian format. Otherwise, the data is sent
in standard IEEE 488.2 format. Data will be byte swapped and
padded as appropriate if native computer representation is
different.

Flag or
Modifier

Interpretation
208 Chapter 7

VISA Language Reference
viPrintf
5HWXUQ�9DOXHV

6HH�$OVR viVPrintf

Length Modifier
l

The data block is an array of unsigned long integers (32 bits) .
The count corresponds to the number of longwords rather than
bytes. If the optional !ol byte order modifier is present, the
data is sent in little endian format; otherwise, the data is sent in
standard IEE 488.2 format. Data will be byte swapped and
padded as appropriate if native computer representation is
different.

Byte order
modifier !ob

Data is sent in standard IEE 488.2 (big endian) format. This is
the default behavior if neither !ob nor !ol is present.

Byte order
modifier !ol

Data is sent in little endian format.

Flag or Modifier Interpretation

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Parameters were successfully formatted.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_IO Could not perform write function because of I/O error.

VI_ERROR_TMO Timeout expired before write function completed.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not
supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient resources.
Chapter 7 209

VISA Language Reference
viQueryf
viQueryf

6\QWD[viQueryf(ViSession vi, ViString writeFmt,
ViString readFmt, arg1, arg2,...);

'HVFULSWLRQ This function performs a formatted write and read through a single operation
invocation. This function provides a mechanism of "Send, then receive"
typical to a command sequence from a commander device. In this manner,
the response generated from the command can be read immediately.

This function is a combination of the viPrintf and viScanf functions.
The first n arguments corresponding to the first format string are formatted
by using the writeFmt string and then sent to the device. The write buffer is
flushed immediately after the write portion of the operation completes. After
these actions, the response data is read from the device into the remaining
parameters (starting from parameter n + 1) using the readFmt string.

This function returns the same VISA status codes as viPrintf, viScanf,
and viFlush.

3DUDPHWHUV

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

writeFmt IN ViString ViString describing the format of the
write arguments.

readFmt IN ViString ViString describing the format of the
read arguments.

arg1, arg2 IN OUT N/A Parameters on which write and read format
strings are applied.
210 Chapter 7

VISA Language Reference
viQueryf
5HWXUQ�9DOXHV�

6HH�$OVR viPrintf, viScanf, viVQueryf

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Successfully completed the Query operation.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_IO Could not perform read/write operation because of
I/O error.

VI_ERROR_TMO Timeout occurred before read/write operation
completed.

VI_ERROR_INV_FMT A format specifier in the writeFmt or readFmt string
is invalid.

VI_ERROR_NSUP_FMT The format specifier is not supported for current
argument type.

VI_ERROR_ALLOC The system could not allocate a formatted I/O
buffer because of insufficient resources.
Chapter 7 211

VISA Language Reference
viRead
viRead

6\QWD[viRead(ViSession vi, ViPBuf buf, ViUInt32 count,
ViPUInt32 retCount);

'HVFULSWLRQ This function synchronously transfers data from a device. The data that is
read is stored in the buffer represented by buf. This function returns only
when the transfer terminates. Only one synchronous read function can occur
at any one time.

�3DUDPHWHUV

Special value for retCount Parameter:

NOTE

You must set specific attributes to make the read terminate under specific
conditions. See Appendix B - VISA Attributes.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf OUT ViPBuf Represents the location of a buffer to
receive data from device.

count IN ViUInt32 Number of bytes to be read.

retCount OUT ViPUInt32 Represents the location of an integer that
will be set to the number of bytes actually
transferred.

VI_NULL Do not return the number of bytes transferred.
212 Chapter 7

VISA Language Reference
viRead
5HWXUQ�9DOXHV

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS The function completed successfully and the
END indicator was received (for interfaces that
have END indicators).

VI_SUCCESS_TERM_CHAR The specified termination character was read.

VI_SUCCESS_MAX_CNT The number of bytes read is equal to count.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_TMO Timeout expired before function completed.

VI_ERROR_RAW_WR_PROT_
VIOL

Violation of raw write protocol occurred during
transfer.

VI_ERROR_RAW_RD_PROT_
VIOL

Violation of raw read protocol occurred during
transfer.

VI_ERROR_OUTP_PROT_VIOL Device reported an output protocol error
occurred during transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SETUP Unable to start read function because setup is
invalid (due to attributes being set to an
inconsistent state).

VI_ERROR_NCIC The interface associated with the given vi is
not currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD
and NDAC are deasserted).

VI_ERROR_ASRL_PARITY A parity error occurred during transfer.
Chapter 7 213

VISA Language Reference
viRead
6HH�$OVR viWrite

VI_ERROR_ASRL_FRAMING A framing error occurred during transfer.

VI_ERROR_ASRL_OVERRUN An overrun error occurred during transfer. A
character was not read from the hardware
before the next character arrived.

VI_ERROR_IO An unknown I/O error occurred during transfer.

Error Codes Description
214 Chapter 7

VISA Language Reference
viReadAsync
viReadAsync

6\QWD[viReadAsync(ViSession vi, ViPBuf buf, ViUInt32 count,
ViPJobId jobId);

'HVFULSWLRQ This function asynchronously transfers data from a device. The data that is
read is stored in the buffer represented by buf. This function normally returns
before the transfer terminates. An I/O Completion event is posted when the
transfer is actually completed.

This function returns jobId, which you can use either with viTerminate
to abort the operation or with an I/O Completion event to identify which
asynchronous read operation completed.

3DUDPHWHUV

Special value for jobId Parameter:

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf OUT ViPBuf Represents the location of a buffer to receive
data from the device.

count IN ViUInt32 Number of bytes to be read.

jobId OUT ViPJobId Represents the location of a variable that will
be set to the job identifier of this asynchronous
read operation.

VI_NULL Do not return a job identifier.
Chapter 7 215

VISA Language Reference
viReadAsync
5HWXUQ�9DOXHV

6HH�$OVR viRead, viTerminate, viWrite, viWriteAsync

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Asynchronous read operation successfully queued.

VI_SUCCESS_SYNC Read operation performed synchronously.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_QUEUE_ERROR Unable to queue read operation.
216 Chapter 7

VISA Language Reference
viReadSTB
viReadSTB

6\QWD[viReadSTB(ViSession vi, ViPUInt16 status);

'HVFULSWLRQ This function reads a status byte of the service request from a service
requester (the message-based device). For example, on the IEEE 488.2
interface, the message is read by polling devices. For other types of
interfaces, a message is sent in response to a service request to retrieve
status information.

If the status information is only one byte long, the most significant byte is
returned with the zero value. If the service requester does not respond in the
actual timeout period, VI_ERROR_TMO is returned.

3DUDPHWHUV

5HWXUQ�9DOXHV

Name Direction Type Description

vi IN ViSession Unique logical identifier to the session.

status OUT ViPUInt16 Service request status byte.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.
Chapter 7 217

VISA Language Reference
viReadSTB
VI_ERROR_SRQ_NOCCURRED Service request has not been received for
the session.

VI_ERROR_TMO Timeout expired before function completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred
during transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred
during transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_NCIC The interface associated with the given vi is
not currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both
NRFD and NDAC are deasserted).

VI_ERROR_INV_SETUP Unable to start operation because setup is
invalid (due to attributes being set to an
inconsistent state).

Error Codes Description
218 Chapter 7

VISA Language Reference
viScanf
viScanf

6\QWD[viScanf(ViSession vi, ViString readFmt, arg1, arg2,...);

'HVFULSWLRQ This function receives data from a device, formats it by using the format
string, and stores the data in the arg parameter list. The format string can
have format specifier sequences, white space characters, and ordinary
characters.

The white characters (blank, vertical tabs, horizontal tabs, form feeds, new
line/linefeed, and carriage return) are ignored except in the case of %c and
%[]. All other ordinary characters except % should match the next
character read from the device.

A format specifier sequence consists of a %, followed by optional modifier
flags, followed by one of the conversion characters, in that sequence. It is of
the form:

 %[modifiers]conversion character

where the optional modifier describes the data format, while conversion
character indicates the nature of data (data type). One and only one
conversion character should be performed at the specifier sequence. A
format specification directs the conversion to the next input arg.

The results of the conversion are placed in the variable that the
corresponding argument points to, unless the asterisk (*) assignment-
suppressing character is given. In such a case, no arg is used, and the
results are ignored.

The viScanf function accepts input until an END indicator is read or all
the format specifiers in the readFmt string are satisfied. It also terminates
if the format string character does not match the incoming character. Thus,
detecting an END indicator before the readFmt string is fully consumed will
result in ignoring the rest of the format string.

Also, if some data remains in the buffer after all format specifiers in the
readFmt string are satisfied, the data will be kept in the buffer and will be
used by the next viScanf function.
Chapter 7 219

VISA Language Reference
viScanf
3DUDPHWHUV

The following two tables describe optional modifiers that can be used in a
format specifier sequence.

ANSI C Standard Modifiers

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

readFmt IN ViString String describing the format for arguments.

arg1,
arg2

 OUT N/A A list with the variable number of
parameters into which the data is read and
the format string is applied.

Modifier Supported with
Conversion
Character

Description

An integer
representing
the field width

%s, %c, %[]
conversion
characters

It specifies the maximum field width that the argument will take. A #
may also appear instead of the integer field width, in which case the
next arg is a reference to the field width. This arg is a reference to an
integer for %c and %s. The field width is not allowed for %d or %f.

A length
modifier (l,
h, L, z or
Z). z and Z are
not ANSI C
standard
modifiers.

h (d, b
conversion
characters)

l (d, f, b
conversion
characters)

L (f conversion
character)

z, Z (b
conversion
character)

The argument length modifiers specify one of the following:
a. The h modifier promotes the argument to be a reference to a
short integer or unsigned short integer, depending on the conversion
character.

b. The l modifier promotes the argument to point to a long integer or
unsigned long integer.

c. The L modifier promotes the argument to point to a long double
floating point parameter.

d. The z modifier promotes the argument to point to an array of
floats.

e. The Z modifier promotes the argument to point to an array of
double floats.

* (asterisk) All conversion
characters

An asterisk acts as the assignment suppression character. The input
is not assigned to any parameters and is discarded.
220 Chapter 7

VISA Language Reference
viScanf
Enhanced Modifiers to ANSI C Standards

&RQYHUVLRQ�
&KDUDFWHUV

ANSI C Conversion Characters

Modifier Supported
with

Conversion
Character

Description

A comma (,)
followed by an
integer n,
where n
represents the
array size.

 %d and %f
only

 The corresponding argument is interpreted as a
reference to the first element of an array of size n.
The first n elements of this list are printed in the
format specified by the conversion character.

A number sign (#) may be present after the ,
modifier, in which case an extra arg is used. This
arg must be an integer representing the array size
of the given type.

c Argument type: A reference to a character.

Flags or
Modifiers

Interpretation

Default
functionality

 A character is read from the device and stored in the
parameter.

field width field width number of characters are read and stored at the
reference location (the default field width is 1). No NULL
character is added at the end of the data block

NOTE

White space in the device input stream is not ignored when using %c.

d Argument type: A reference to an integer.
Chapter 7 221

VISA Language Reference
viScanf
Flags or Modifiers Interpretation

Default
functionality

Characters are read from the device until an entire number
is read. The number read must be in one of the following
IEEE 488.2 formats:

• <DECIMAL NUMERIC PROGRAM DATA", also known as
NRf.

• Flexible numeric representation (NR1, NR2, NR3, ...).

• <NON-DECIMAL NUMERIC PROGRAM DATA> (#H,
#Q, and #B).

field width The input number will be stored in a field at least this wide.

Length modifier l arg is a reference to a long integer.

Length modifier h arg is a reference to a short integer. Rounding is performed
according to IEEE 488.2 rules (0.5 and up).

, array size arg points to an array of integers (or long or short integers,
depending on the length modifier) of size array size. The
elements of this array should be separated by commas.
Elements will be read until either array size number of
elements are consumed or they are no longer separated
by commas.

f Argument type: A reference to a floating point number.

Flags or Modifiers Interpretation

Default functionality Characters are read from the device until an entire
number is read. The number read must be in either IEEE
488.2 formats: <DECIMAL NUMERIC PROGRAM
DATA> (NRf), or <NON-DECIMAL NUMERIC
PROGRAM DATA> (#H, #Q, and #B).

field width The input number will be stored in a field at least this
wide.

Length modifier l arg is a reference to a double floating point number.

Length modifier L arg is a reference to a long double number.
222 Chapter 7

VISA Language Reference
viScanf
, array size arg points to an array of floats (or doubles or long
doubles, depending on the length modifier) of size array
size. The elements of this array should be separated by
commas. Elements will be read until either array size
number of elements are consumed or they are no longer
separated by commas.

s Argument type: A reference to a string.

Flags or Modifiers Interpretation

Default functionality All leading white space characters are ignored.
Characters are read from the device into the string until a
white space character is read.

field width This flag gives the maximum string size. If the field width
contains a # sign, two arguments are used. The first
argument read gives the maximum string size. The
second should be a reference to a string.

In the case of field width characters already read before
encountering a white space, additional characters are
read and discarded until a white space character is found.
In the case of # field width, the actual number of
characters read are stored back in the integer pointed
to by the first argument.

Flags or Modifiers Interpretation
Chapter 7 223

VISA Language Reference
viScanf
Enhanced Conversion Characters

b Argument type: A reference to a data array.

Flags or Modifiers Interpretation

Default functionality The data must be in IEEE 488.2 <ARBITRARY BLOCK
PROGRAM DATA> format. The format specifier
sequence should have a flag describing the array size,
which will give a maximum count of the number of bytes
(or words or longwords, depending on length modifiers)
to be read from the device. If the array size contains a #
sign, two arguments are used.

The first argument read is a pointer to a long integer
specifying the maximum number of elements that the
array can hold. The second one should be a reference to
an array. Also in this case, the actual number of
elements read is stored back in the first argument. In
absence of length modifiers, the data is assumed to be
of byte-size elements. In some cases, data might be
read until an END indicator is read.

Length modifier h The array is assumed to be an array of 16-bit words, and
count refers to the number of words. The data read from
the interface is assumed to be in IEEE 488.2 (big
endian) byte ordering. It will be byte swapped and
padded as appropriate to the native computer format.

Length modifier l The array is assumed to be a block of 32-bit longwords
rather than bytes, and count refers to the number of
longwords. The data read from the interface is assumed
to be in IEEE 488.2 (big endian) byte ordering. It will be
byte swapped and padded as appropriate to the native
computer format.

Length modifier z The data block is assumed to be a reference to an array
of floats, and count refers to the number of floating point
numbers. The data block received from the device is an
array of 32-bit IEEE 754 format floating point numbers.

Length modifier Z The data block is assumed to be a reference to an array
of doubles, and the count refers to the number of floating
point numbers. The data block received from the device
is an array of 64-bit IEEE 754 format floating point
numbers.
224 Chapter 7

VISA Language Reference
viScanf
t Argument type: A reference to a string.

Flags or Modifiers Interpretation

Default functionality Characters are read from the device until the first END
indicator is received. The character on which the END
indicator was received is included in the buffer.

field width This flag gives the maximum string size. If an END
indicator is not received before field width number of
characters, additional characters are read and discarded
until an END indicator arrives. #field width has the same
meaning as in %s.

T Argument type: A reference to a string.

Flags or Modifiers Interpretation

Default functionality Characters are read from the device until the first
linefeed character (\n) is received. The linefeed
character is included in the buffer.

field width This flag gives the maximum string size. If a linefeed
character is not received before field width number of
characters, additional characters are read and
discarded until a linefeed character arrives.
#field width has the same meaning as in %s.
Chapter 7 225

VISA Language Reference
viScanf

y Argument Type: A location of block binary data.

Flag or
Modifier

Interpretation

Default
functionality

The data block is read as raw binary data. The format specifier
sequence should have a flag describing the array size, which will
give a maximum count of the number of bytes (or words or
longwords, depending on length modifiers) to be read from the
device. If the array size contains a # sign, two arguments are
used.

The first argument read is a pointer to a long integer specifying
the maximum number of elements that the array can hold. The
second argument should be a reference to an array. Also, in this
case, the actual number of elements read is stored back in the
first argument. In the absence of length modifiers, the data is
assumed to be of byte-size elements. In some cases, data might
be read until an END indicator is read.

Length
modifier h

The data block is assumed to be a reference to an array of
unsigned short integers (16-bits). The count corresponds to the
number of words rather than bytes. If the optional !ol byte order
modifier is present, the data being read is assumed to be in little
endian format; otherwise, the data being read is assumed to be in
standard IEE 488.2 format. Data will be byte swapped and
padded as appropriate to native computer format.

Length
Modifier l

The data block is assumed to be a reference to an array of
unsigned long integers (32 bits) . The count corresponds to the
number of longwords rather than bytes. If the optional !ol byte
order modifier is present, the data being read is assumed to be in
little endian format; otherwise, the data being read is assumed to
be in standard IEE 488.2 format. Data will be byte swapped and
padded as appropriate if native computer representation is
different.

Byte order
modifier !ob

Data being read is assumed to be in standard IEE 488.2 (big
endian) format. This is the default behavior if neither !ob nor
!ol is present.

Byte order
modifier !ol

Data being read is assumed to be in little endian format.
226 Chapter 7

VISA Language Reference
viScanf
5HWXUQ�9DOXHV

6HH�$OVR viVScanf

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Data was successfully read and formatted into arg
parameter(s).

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_IO Could not perform read function because of I/O
error.

VI_ERROR_TMO Timeout expired before read function completed.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not
supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient resources.
Chapter 7 227

VISA Language Reference
viSetAttribute
viSetAttribute

6\QWD[viSetAttribute(ViSession/ViEvent/ViFindList vi,
ViAttr attribute, ViAttrState attrState);

'HVFULSWLRQ This function sets the state of an attribute for the specified session.

3DUDPHWHUV

5HWXUQ�9DOXHV

Name Direction Type Description

vi IN ViSession
ViEvent
ViFindList

Unique logical identifier to a session,
event, or find list.

attribute IN ViAttr Resource attribute for which the state
is modified.

attrState IN ViAttrState The state of the attribute to be set for
the specified resource. The
interpretation of the individual attribute
value is defined by the resource.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Attribute value set successfully.

VI_WARN_NSUP_ATTR_STATE Although the specified attribute state is
valid, it is not supported by this resource
implementation. (The application will still
work, but this may have a performance
impact.)
228 Chapter 7

VISA Language Reference
viSetAttribute
6HH�$OVR viGetAttribute. See Appendix B - VISA Attributes for a list of attributes
and attribute values. Chapter 4 - Programming with VISA provides detailed
descriptions of the VISA attributes.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.

VI_ERROR_NSUP_ATTR The specified attribute is not defined by the
referenced resource.

VI_ERROR_NSUP_ATTR_STATE The specified state of the attribute is not valid,
or is not supported as defined by the
resource. (The application probably will not
work if this error is returned.)

VI_ERROR_ATTR_READONLY The specified attribute is read-only.
Chapter 7 229

VISA Language Reference
viSetBuf
viSetBuf

6\QWD[viSetBuf(ViSession vi, ViUInt16 mask, ViUInt32 size);

'HVFULSWLRQ This function sets the size of the read and/or write buffer for formatted I/O
and/or serial communication. The mask parameter specifies whether the
buffer is a read or write buffer. The mask parameter can specify multiple
buffers by "bit-ORing" any of the following values together.

3DUDPHWHUV

Flag Interpretation

VI_READ_BUF Formatted I/O read buffer.

VI_WRITE_BUF Formatted I/O write buffer.

VI_ASRL_IN_BUF Serial communication receive
buffer.

VI_ASRL_OUT_BUF Serial communication transmit
buffer.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

mask IN ViUInt16 Specifies the type of buffer. (See previous
table.)

size IN ViUInt32 The size to be set for the specified buffer(s).
230 Chapter 7

VISA Language Reference
viSetBuf
5HWXUQ�9DOXHV

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Buffer size set successfully.

VI_WARN_NSUP_BUF The specified buffer is not supported.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_ALLOC The system could not allocate the buffer(s) of
the specified size because of insufficient system
resources.

VI_ERROR_INV_MASK The system cannot set the buffer for the given
mask.
Chapter 7 231

VISA Language Reference
viSPrintf
viSPrintf

6\QWD[viSPrintf(vi, buf, writeFmt, arg1, arg2, ...);

'HVFULSWLRQ Same as viPrintf, except the data is written to a user-specified buffer
rather than the device. This operation is similar to viPrintf, except that
the output is not written to the device, but is written to the user-specified
buffer. This output buffer will be NULL terminated.

If the viSPrintf operations outputs an END indicator before all the
arguments are satisfied, the rest of the writeFmt string will be ignored and
the buffer string will still be terminated by a NULL.

3DUDPHWHUV

5HWXUQ�9DOXHV

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf OUT ViBuf Buffer where data are to be written.

writeFmt IN ViString The format string to apply to
parameters in ViVAList.

arg1, arg2 IN N/A A list containing the variable number
of parameters on which the format
string is applied. The formatted data
are written to the specified device.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Parameters were successfully formatted.
232 Chapter 7

VISA Language Reference
viSPrintf
6HH�$OVR viPrintf

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is
invalid.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not
supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O
buffer because of insufficient system resources.
Chapter 7 233

VISA Language Reference
viSScanf
viSScanf

6\QWD[viSScanf(vi, buf, readFmt, arg1, arg2, ...);

'HVFULSWLRQ Same as viScanf, except data are read from a user-specified buffer
instead of a device.

3DUDPHWHUV

5HWXUQ�9DOXHV

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf IN ViBuf Buffer from which data are read and
formatted.

readFmt IN ViString The format string to apply to
parameters in ViVAList.

arg1, arg2 OUT N/A A list with the variable number of
parameters into which the data are
read and the format string is applied.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Data was successfully read and formatted into
arg parameter(s).

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.
234 Chapter 7

VISA Language Reference
viSScanf
VI_ERROR_INV_FMT A format specifier in the readFmt string is
invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not
supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O
buffer because of insufficient system resources.

Error Codes Description
Chapter 7 235

VISA Language Reference
viStatusDesc
viStatusDesc

6\QWD[viStatusDesc(ViSession/ViEvent/ViFindList vi,
ViStatus status, ViPString desc);

'HVFULSWLRQ This function returns a user-readable string which describes the status code
passed to the function.

3DUDPHWHUV

�5HWXUQ�9DOXHV

Name Direction Type Description

vi IN ViSession
ViEvent
ViFindList

Unique logical identifier to a session, event,
or find list.

status IN ViStatus Status code to interpret.

desc OUT ViPString The user-readable string interpretation of
the status code passed to the function. Must
be at least 256 characters to receive output.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Description successfully returned.

VI_WARN_UNKNOWN_STATUS The status code passed to the function could not
be interpreted.
236 Chapter 7

VISA Language Reference
viTerminate
viTerminate

6\QWD[viTerminate(ViSession vi, ViUInt16 degree, ViJobId
jobId);

'HVFULSWLRQ This function requests a VISA session to terminate normal execution of an
asynchronous operation.

3DUDPHWHUV

�5HWXUQ�9DOXHV

�6HH�$OVR viReadAsync, viWriteAsync

Name Direction Type Description

vi IN ViSession Unique logical identifier to an object.

degree IN ViUInt16 VI_NULL

jobId IN ViJobId Specifies an operation identifier.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Request serviced successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_INV_DEGREE Invalid degree specified.

VI_ERROR_INV_JOB_ID Invalid job identifier specified.
Chapter 7 237

VISA Language Reference
viUninstallHandler
viUninstallHandler

6\QWD[viUninstallHandler(ViSession vi, ViEventType eventType,
ViHndlr handler, ViAddr userHandle);

'HVFULSWLRQ This function allows applications to uninstall handlers for events on
sessions. Applications should also specify the value in the userHandle
parameter that was passed to viInstallHandler while installing the
handler. VISA identifies handlers uniquely using the handler reference and
this value. All the handlers, for which the handler reference and the value
matches, are uninstalled.

3DUDPHWHUV

The following events are valid:

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

eventType IN ViEventType Logical event identifier.

handler IN ViHndlr Interpreted as a valid reference to a
handler to be uninstalled by an
application. (See the following table.)

userHandle IN ViAddr A value specified by an application
that can be used for identifying
handlers uniquely in a session for an
event.

Event Name Description

VI_EVENT_SERVICE_REQ Notification that a device is requesting service.

VI_EVENT_VXI_SIGP Notification that a VXI signal or VXI interrupt has
been received from a device.

VI_EVENT_TRIG Notification that a hardware trigger was received
from a device.

VI_EVENT_IO_COMPLETION Notification that an asynchronous operation has
completed
238 Chapter 7

VISA Language Reference
viUninstallHandler
Special Values for handler Parameter

�5HWXUQ�9DOXHV

6HH�$OVR See the handler prototype viEventHandler for its parameter description.
See the viEnableEvent description for information about enabling
different event handling mechanisms. See individual event descriptions for
context definitions.

Value Action Description

VI_ANY_HNDLR Uninstall all the handlers with the matching value in the
UserHandle parameter.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Event handler successfully uninstalled.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the
resource.

VI_ERROR_INV_HNDLR_REF Either the specified handler reference or the
user context value (or both) does not match
any installed handler.

VI_ERROR_HNDLR_NINSTALLED A handler is not currently installed for the
specified event.
Chapter 7 239

VISA Language Reference
viUnlock
viUnlock

6\QWD[viUnlock(ViSession vi);

'HVFULSWLRQ This function is used to relinquish a lock previously obtained using the
viLock function.

3DUDPHWHUV

5HWXUQ�9DOXHV

6HH�$OVR viLock. For more information on locking, see Chapter 4 - Programming
with VISA.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS The lock was successfully relinquished.

VI_SUCCESS_NESTED_
EXCLUSIVE

The call succeeded, but this session still has
nested exclusive locks.

VI_SUCCESS_NESTED_
SHARED

The call succeeded, but this session still has
nested shared locks.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given vi does not identify a valid session or
object.

VI_ERROR_SESN_NLOCKED The current session did not have any lock on the
resource.
240 Chapter 7

VISA Language Reference
viUnmapAddress
viUnmapAddress

6\QWD[viUnmapAddress(ViSession vi);

'HVFULSWLRQ This function unmaps memory space previously mapped by the
viMapAddress function.

3DUDPHWHUV

5HWXUQ�9DOXHV

6HH�$OVR viMapAddress

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_WINDOW_NMAPPED The specified session is not currently mapped.
Chapter 7 241

VISA Language Reference
viVPrintf
viVPrintf

6\QWD[viVPrintf(ViSession vi, ViString writeFmt, ViVAList
params);

'HVFULSWLRQ This function converts, formats, and sends params to the device as specified
by the format string. This function is similar to viPrintf, except that the
ViVAList parameters list provides the parameters rather than separate
arg parameters.

3DUDPHWHUV

5HWXUQ�9DOXHV

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

writeFmt IN ViString The format string to apply to parameters
in ViVAList. See viPrintf for
description.

params IN ViVAList A list containing the variable number of
parameters on which the format string is
applied. The formatted data is written to
the specified device.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Parameters were successfully formatted.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).
242 Chapter 7

VISA Language Reference
viVPrintf
6HH�$OVR viPrintf

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_IO Could not perform write function because of I/O
error.

VI_ERROR_TMO Timeout expired before write function completed.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not
supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient resources.

Error Codes Description
Chapter 7 243

VISA Language Reference
viVQueryf
viVQueryf

6\QWD[viVQueryf(ViSession vi, ViString writeFmt,
ViString readFmt,ViVAList params);

'HVFULSWLRQ This function performs a formatted write and read through a single operation
invocation. This function is similar to viQueryf, except that the ViVAList
parameters list provides the parameters rather than the separate arg
parameter list in viQueryf.

3DUDPHWHUV

5HWXUQ�9DOXHV

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

writeFmt IN ViString The format string is applied to write
parameters in ViVAList.

readFmt IN ViString The format string is applied to read
parameters in ViVAList.

params IN OUT ViVAList A list containing the variable number of write
and read parameters. The write parameters
are formatted and written to the specified
device. The read parameters store the data
read from the device after the format string
is applied to the data.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Successfully completed the Query operation.
244 Chapter 7

VISA Language Reference
viVQueryf
6HH�$OVR viVPrintf, viVScanf, viQueryf

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_IO Could not perform read/write operation because of
I/O error.

VI_ERROR_TMO Timeout occurred before read/write operation
completed.

VI_ERROR_INV_FMT A format specifier in the writeFmt or readFmt
string is invalid.

VI_ERROR_NSUP_FMT The format specifier is not supported for current
argument type.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient resources.
Chapter 7 245

VISA Language Reference
viVScanf
viVScanf

6\QWD[viVScanf(ViSession vi, ViString readFmt, ViVAList params);

'HVFULSWLRQ This function reads, converts, and formats data using the format specifier,
and then stores the formatted data in params. This function is similar to
viScanf, except that the ViVAList parameters list provides the
parameters rather than separate arg parameters.

3DUDPHWHUV

5HWXUQ�9DOXHV

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

readFmt IN ViString The format string to apply to parameters
in ViVAList. See viScanf for description.

params OUT ViVAList A list with the variable number of
parameters into which the data is read
and the format string is applied.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Data was successfully read and formatted into arg
parameter(s).

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.
246 Chapter 7

VISA Language Reference
viVScanf
6HH�$OVR viScanf

VI_ERROR_IO Could not perform read function because of I/O
error.

VI_ERROR_TMO Timeout expired before read function completed.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not
supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O
buffer because of insufficient resources.

Error Codes Description
Chapter 7 247

VISA Language Reference
viVSPrintf
viVSPrintf

6\QWD[viVSPrintf(vi, buf, writeFmt, params);

'HVFULSWLRQ Same as viVPrintf, except data are written to a user-specified buffer
rather than a device. This operation is similar to viVPrintf, except the
output is not written to the device but is written to the user-specified buffer.
This output buffer will be NULL terminated.

If the viVSPrintf operation outputs an END indicator before all the
arguments are satisfied, the rest of the writeFmt string will be ignored and
the buffer string will still be terminated by a NULL.

3DUDPHWHUV

5HWXUQ�9DOXHV

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf OUT ViBuf Buffer where data are to be written.

writeFmt IN ViString The format string to apply to parameters
in ViVAList.

params IN ViVAList A list containing the variable number of
parameters on which the format string is
applied. The formatted data are written to
the specified device.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Parameters were successfully formatted.
248 Chapter 7

VISA Language Reference
viVSPrintf
6HH�$OVR viSPrintf, viVPrintf

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is
invalid.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is
not supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O
buffer because of insufficient resources.
Chapter 7 249

VISA Language Reference
viVSScanf
viVSScanf

6\QWD[viVSScanf(vi, buf, readFmt, params);

'HVFULSWLRQ This operation is similar to viVScanf, except data are read from a user-
specified buffer rather than a device.

3DUDPHWHUV

5HWXUQ�9DOXHV

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf IN ViBuf Buffer from which data are read and
formatted.

readFmt IN ViString The format string to apply to parameters
in ViVAList.

params OUT ViVAList A list with the variable number of
parameters into which data are read and
the format string is applied.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Data were successfully read and formatted
into arg parameter(s).

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.
250 Chapter 7

VISA Language Reference
viVSScanf
6HH�$OVR viSScanf, viVScanf

VI_ERROR_INV_FMT A format specifier in the readFmt string is
invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is
not supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O
buffer because of insufficient resources.

Error Codes Description
Chapter 7 251

VISA Language Reference
viWaitOnEvent
viWaitOnEvent

6\QWD[viWaitOnEvent(ViSession vi, ViEventType inEventType,
ViUInt32 timeout, ViPEventType outEventType,
ViPEvent outContext);

'HVFULSWLRQ This function waits for an occurrence of the specified event for a given
session. In particular, this function suspends execution of an application
thread and waits for an event inEventType for at least the time period
specified by timeout. See the individual event descriptions for context
definitions.

If the specified inEventType is VI_ALL_ENABLED_EVENTS, the function
waits for any event that is enabled for the given session. If the specified
timeout value is VI_TMO_INFINITE, the function is suspended indefinitely.

3DUDPHWHUV

Name Direction Type Description

vi IN ViSession Unique logical identifier to a
session.

inEventType IN ViEventType Logical identifier of the event(s) to
wait for.

timeout IN ViUInt32 Absolute time period in time units
that the resource shall wait for a
specified event to occur before
returning the time elapsed error.
The time unit is in milliseconds.

outEventType OUT ViPEventType Logical identifier of the event
actually received.

outContext OUT ViPEvent A handle specifying the unique
occurrence of an event.
252 Chapter 7

VISA Language Reference
viWaitOnEvent
The following table lists the events and the associated read only attributes
that can be read using viGetAttribute to get event information on a
specific event:

Use the VISA viReadSTB function to read the status byte of the service
request.

Special value for outEventType Parameter

Special value for outContext Parameter:

NOTE

Since system resources are used when waiting for events
(viWaitOnEvent), the viClose function must be called to free up
event contexts (outContext).

Event Name Attributes Data Type Values

VI_EVENT_SERVICE_
REQ

VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_SERVICE_REQ

VI_EVENT_VXI_SIGP VI_ATTR_EVENT_TYPE
VI_ATTR_SIGP_STATUS_ID

ViEventType
ViUInt16

VI_EVENT_VXI_SIGP
0 to FFFFh

VI_EVENT_TRIG VI_ATTR_EVENT_TYPE
VI_ATTR_RECV_TRIG_ID

ViEventType
ViInt16

VI_EVENT_TRIG
VI_TRIG_TTL0 to
VI_TRIG_TTL7
VI_TRIG_ECL0 to
VI_TRIG_ECL1

VI_EVENT_IO_
COMPLETION

VI_ATTR_EVENT_TYPE
VI_ATTR_STATUS
VI_ATTR_JOB_ID
VI_ATTR_BUFFER
VI_ATTR_RET_COUNT

ViEventType
ViStatus
ViJobId
ViBuf
ViUInt32

VI_EVENT_IO_COMPLETION
N/A
N/A
N/A
0 to FFFFFFFFh

VI_NULL Do not return the type of event.

VI_NULL Do not return an event context.
Chapter 7 253

VISA Language Reference
viWaitOnEvent
5HWXUQ�9DOXHV

�6HH�$OVR See Chapter 4 - Programming with VISA for more information on event
handling.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Wait terminated successfully on receipt of an event
occurrence. The queue is empty.

VI_SUCCESS_QUEUE_
NEMPTY

Wait terminated successfully on receipt of an event
notification. There is still at least one more event
occurrence of the specified inEventType type
available for this session.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the
resource.

VI_ERROR_TMO Specified event did not occur within the specified
time period.
254 Chapter 7

VISA Language Reference
viWrite
viWrite

6\QWD[viWrite(ViSession vi, ViBuf buf, ViUInt32 count,
ViPUInt32 retCount);

'HVFULSWLRQ This function synchronously transfers data to a device. The data to be
written is in the buffer represented by buf. This function returns only when
the transfer terminates. Only one synchronous write function can occur at
any one time.

3DUDPHWHUV

Special value for retCount Parameter:

5HWXUQ�9DOXHV

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf IN ViBuf Represents the location of a data block to
be sent to device.

count IN ViUInt32 Specifies number of bytes to be written.

retCount OUT ViPUInt32 Represents the location of an integer that
will be set to the number of bytes actually
transferred.

VI_NULL Do not return the number of bytes transferred.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Transfer completed.
Chapter 7 255

VISA Language Reference
viWrite
6HH�$OVR viRead

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.

VI_ERROR_TMO Timeout expired before function completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred
during transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred
during transfer.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error
occurred during transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SETUP Unable to start write function because setup
is invalid (due to attributes being set to an
inconsistent state).

VI_ERROR_NCIC The interface associated with the given vi is
not currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both
NRFD and NDAC are deasserted).

VI_ERROR_IO An unknown I/O error occurred during
transfer.
256 Chapter 7

VISA Language Reference
viWriteAsync
viWriteAsync

6\QWD[viWriteAsync(ViSession vi, ViBuf buf, ViUInt32 count,
ViPJobId jobId);

'HVFULSWLRQ This function asynchronously transfers data to a device. The data to be
written is in the buffer represented by buf. This function normally returns
before the transfer terminates. An I/O Completion event is posted when the
transfer is actually completed.

This function returns jobId, which you can use either with viTerminate to
abort the operation, or with an I/O Completion event to identify which
asynchronous write operation completed.

3DUDPHWHUV

Special value for jobId Parameter:

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf IN ViBuf Represents the location of a data block to be
sent to the device.

count IN ViUInt32 Specifies number of bytes to be written.

jobId OUT ViPJobId Represents the location of a variable that will
be set to the job identifier of this
asynchronous write operation.

VI_NULL Do not return a job identifier.
Chapter 7 257

VISA Language Reference
viWriteAsync
5HWXUQ�9DOXHV�

6HH�$OVR viRead, viTerminate, viWrite, viReadAsync

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Asynchronous write operation successfully queued.

VI_SUCCESS_SYNC Write operation performed synchronously.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_QUEUE_ERROR Unable to queue write operation.
258 Chapter 7

A

VISA System Information
259

VISA System Information

This appendix provides information about the VISA software files. This
information can be used as reference or for removing VISA software from
your system, if necessary. The appendix contents are:

n Windows Directory Structure
n HP-UX Directory Structure
n About the Directories
260 Appendix A

VISA System Information
Windows Directory Structure
Windows Directory Structure
The VXIplug&play alliance defines directory structures to be used with the
Windows system framework. As shown in the following figure, VISA files are
automatically installed into the WIN95 subdirectory on Windows 95 or
Windows 98 or into the WINNT subdirectory on Windows 2000 or Windows
NT. The [VXIPNPPATH] defaults to \Program Files\VISA, but can be
changed during software installation. The VISA32.DLL file is stored in the
\WINDOWS\SYSTEM subdirectory (Windows 95 or Windows 98) or in the
\WINDOWS\SYSTEM32 subdirectory (Windows 2000 or Windows NT).

AGVISA

WINNT

[VXIPNPPATH]

KBASE

WIN95

LIB

BIN

BC

MSC

INCLUDE

SAMPLES

<INSTRUMENT>

AGVISA

LIB

BIN

BC

MSC

INCLUDE

SAMPLES

<INSTRUMENT>
Appendix A 261

VISA System Information
HP-UX Directory Structure
HP-UX Directory Structure
The VXIplug&play alliance defines a directory structure to be used with the
UNIX system framework. VISA is automatically installed into the following
directory structure on HP-UX 10.20. The [opt] is an optional path that you
can change during the software installation.

opt

vxipnp

kbase

hpux

bin

lib
include

hpvisa
share

<instrument>
examples

man
help
262 Appendix A

VISA System Information
About the Directories
About the Directories

Element Description

The VISA
Subdirectory

Associated readme files, help files and Agilent-
specific DLLs can be found in the VISA subdirectory.

Include Files The VISA.H, VISATYPE.H, and VPPTYPE.H include
files can be found in the INCLUDE subdirectory.

Libraries A VISA library is provided for Microsoft and Borland
compilers on Windows and the C compiler for HP-UX.
You must use the library for your system.

Sample Programs Sample programs are provided for the Windows or
HP-UX operating system, depending on which system
installed. VISA sample programs can be found in the
VISA\SAMPLES subdirectory on Windows or in the
visa/share/examples subdirectory on HP-UX
10.20.

VXIplug&play
Instrument Drivers

All instrument drivers that comply with the
VXIplug&play specification can be found in the
<instrument> subdirectory, where <instrument> is
the base directory of the instrument driver.
Appendix A 263

VISA System Information
About the Directories
Notes:
264 Appendix A

B

VISA Attributes
265

VISA Attributes

This appendix describes VISA attributes, including the following sections.
For descriptions of all the attributes and how to use them, see Chapter 4 -
Programming with VISA.

n VISA Resource Attributes
n VISA Generic Instrument Attributes
n VISA Interface-Specific Instrument Attributes
n ASRL Specific INSTR Resource Interface Attributes
n MEMACC Resource Attributes
n VISA Event Attributes

NOTE

Attributes are local or global. A local attribute only affects the session
specified. A global attribute affects the specified device from any session.
Attributes can also be read only (RO) and read/write (RW).

Use the viGetAttribute function to read the state of an attribute for a
specified session, event context, or find list. Use the viSetAttribute
function to modify the state of a read/write attribute for a specified
session, event context, or find list.
266 Appendix B

VISA Attributes
VISA Resource Attributes
VISA Resource Attributes

Attribute Name RO
or

RW

Local
or

Global

Data Type Range

VI_ATTR_MAX_QUEUE_LENGTH RW1

1. For VISA 1.0, this attribute becomes RO (read only) once viEnableEvent has been called for
the first time.

Local ViUInt32 1 to 32,767 (50 =
default)

VI_ATTR_RM_SESSION RO Local ViSession N/A

VI_ATTR_RSRC_IMPL_
VERSION

RO Global ViVersion 0h to FFFFFFFFh

VI_ATTR_RSRC_LOCK_STATE RO Global ViAccessMode VI_NO_LOCK (default)
VI_EXCLUSIVE_LOCK’
VI_SHARED_LOCK

VI_ATTR_RSRC_MANF_ID RO Global ViUInt16 0h to 3FFFh

VI_ATTR_RSRC_MANF_NAME RO Global ViString N/A

VI_ATTR_RSRC_NAME RO Global ViRsrc N/A

VI_ATTR_RSRC_SPEC_
VERSION

RO Global ViVersion 00100000h (VISA 1.0

default)
00100100h (VISA 1.1

default)

VI_ATTR_USER_DATA RW Local ViAddr N/A
Appendix B 267

VISA Attributes
VISA Generic Instrument Attributes
VISA Generic Instrument Attributes

Attribute Name RO
or

RW

Local
or

Global

Data Type Range

VI_ATTR_INTF_NUM RO Global ViUInt16 0 to FFFFh (0 default)

VI_ATTR_INTF_TYPE RO Global ViUInt16 VI_INTF_VXI
VI_INTF_GPIB
VI_INTF_GPIB_VXI
VI_INTF_ASRL

VI_ATTR_INTF_INST_NAME RO Global ViString N/A

VI_ATTR_IO_PROT RW Local ViUInt16 VI_NORMAL (default)
VI_FDC
VI_HS488
VI_ASRL488

VI_ATTR_RD_BUF_OPER_
MODE

RW Local ViUInt16 VI_FLUSH_ON_ACCESS
VI_FLUSH_DISABLE (default)

VI_ATTR_SEND_END_EN RW Local ViBoolean VI_TRUE (default)
VI_FALSE

VI_ATTR_SUPPRESS_END_
EN

RW Local ViBoolean, VI_TRUE
VI_FALSE (default)

VI_ATTR_TERMCHAR, RW Local ViUInt8, 0 to FFh (0Ah default)

VI_ATTR_TERMCHAR_EN, RW Local ViBoolean, VI_TRUE
VI_FALSE (default)

VI_ATTR_TMO_VALUE RW Local ViUInt32 VI_TMO_IMMEDIATE
1 to FFFFFFFEh
VI_TMO_INFINITE
(2000 milliseconds = default)
268 Appendix B

VISA Attributes
VISA Generic Instrument Attributes
VI_ATTR_TRIG_ID RW1 Local ViInt16 VI_TRIG_SW (default)
VI_TRIG_TTL0 to VI_TRIG_TTL7
VI_TRIG_ECL0 to VI_TRIG_ECL1

VI_ATTR_WR_BUF_OPER_
MOD

RW Local ViUInt16 VI_FLUSH_ON_ACCESS
VI_FLUSH_WHEN_FULL (default)

1. The attribute VI_ATTR_TRIG_ID is RW (readable and writable) when the corresponding ses-
sion is not enabled to receive trigger events. When the session is enabled to receive trigger
events, this attribute is RO (read only).

Attribute Name RO
or

RW

Local
or

Global

Data Type Range
Appendix B 269

VISA Attributes
VISA Interface-Specific Instrument Attributes
VISA Interface-Specific Instrument
Attributes

GPIB and GPIB-VXI Interfaces

VXI and GPIB-VXI Interfaces

Attribute Name RO
or

RW

Local
or

Global

Data Type Range

VI_ATTR_GPIB_PRIMARY_ADDR RO Global ViUInt16 0 to 30

VI_ATTR_GPIB_SECONDARY_ADDR RO Global ViUInt16 0 to 30
VI_NO_SEC_ADDR

VI_ATTR_GPIB_REN_STATE RO Global ViUInt16 VI_STATE_UNKNOWN
VI_STATE_ASSERTED
VI_STATE_UNASSERTED

VI_ATTR_GPIB_READDR_EN RW Local Viboolean VI_TRUE (default)
VI_FALSE

VI_ATTR_GPIB_UNADDR_EN RW Local Viboolean VI_TRUE
VI_FALSE (default)

Attribute Name RO
or

RW

Local
or

Global

Data Type Range

VI_ATTR_CMDR_LA RO Global ViInt16 0 to 255
VI_UNKNOWN_LA

VI_ATTR_DEST_INCREMENT RW Local ViInt32 0 to 1
(1 = default)

VI_ATTR_FDC_CHNL RW Local ViUInt16 0 to 7

VI_ATTR_FDC_GEN_SIGNAL_
EN

RW Local ViBoolean VI_TRUE
VI_FALSE (default)

VI_ATTR_FDC_MODE RW Local ViUInt16 VI_FDC_NORMAL (default)
VI_FDC_STREAM

VI_ATTR_FDC_USE_PAIR RW Local ViBoolean VI_TRUE
VI_FALSE (default)
270 Appendix B

VISA Attributes
VISA Interface-Specific Instrument Attributes
VI_ATTR_IMMEDIATE_SERV RO Global ViBoolean VI_TRUE
VI_FALSE

VI_ATTR_MAINFRAME_LA RO Global ViInt16 0 to 255
VI_UNKNOWN_LA

VI_ATTR_MANF_ID RO Global ViUInt16 0 to FFFh

VI_ATTR_MEM_BASE RO Global ViBusAddress N/A

VI_ATTR_MEM_SIZE RO Global ViBusSize N/A

VI_ATTR_MEM_SPACE RO Global ViUInt16 VI_A16_SPACE (default)
VI_A24_SPACE
VI_A32_SPACE

VI_ATTR_MODEL_CODE RO Global ViUInt16 0 to FFFFh

VI_ATTR_SLOT RO Global ViInt16 0 to 12
VI_UNKNOWN_SLOT

VI_ATTR_SRC_INCREMENT RW Local ViInt32 0 to 1
(1 default)

VI_ATTR_VXI_LA RO Global ViInt16 0 to 255 (VISA 1.0)
0 to 511 (VISA 1.1)

VI_ATTR_WIN_ACCESS RO Local ViUInt16 VI_NMAPPED
VI_USE_OPERS
VI_DEREF_ADDR

VI_ATTR_WIN_BASE_ADDR RO Local ViBusAddress N/A

VI_ATTR_WIN_SIZE RO Local ViBusSize N/A

VI_ATTR_SRC_BYTE_ORDER RW Local ViUInt16 VI_BIG_ENDIAN
VI_LITTLE_ENDIAN

VI_ATTR_DEST_BYTE_ORDER RW Local ViUInt16 VI_BIG_ENDIAN
VI_LITTLE_ENDIAN

VI_ATTR_WIN_BYTE_ORDER RW1 Local ViUInt16 VI_BIG_ENDIAN
VI_LITTLE_ENDIAN

Attribute Name RO
or

RW

Local
or

Global

Data Type Range
Appendix B 271

VISA Attributes
VISA Interface-Specific Instrument Attributes
GPIB-VXI Interface

VI_ATTR_SRC_ACCESS_PRIV RW Local ViUInt16 VI_DATA_NPRIV
VI-DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV
VI_D64_NPRIV
VI_D64_PRIV

VI_ATTR_DEST_ACCESS_PRIV RW Local ViUInt16 VI_DATA_NPRIV
VI-DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV
VI_D64_NPRIV
VI_D64_PRIV

VI_ATTR_WIN_ACCESS_PRIV RW1 Local ViUInt16 VI_DATA_NPRIV
VI-DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV

1. For VISA 1.1, the attributes VI_ATTR_WIN_BYTE_ORDER and VI_ATTR_WIN_ACCESS_PRIV
are RW (readable and writeable) when the corresponding session is not mapped
(VI_ATTR_WIN_ACCESS = = VI_NMAPPED). When the session is mapped, these attributes are
RO (Read Only).

Attribute Name RO
or

RW

Local
or

Global

Data Type Range

Attribute Name RO
or

RW

Local
or

Global

Data Type Range

VI_ATTR_INTF_PARENT_NUM RO Global ViUInt16 0 to FFFFh
272 Appendix B

VISA Attributes
VISA Interface-Specific Instrument Attributes
ASRL Specific INSTR Resource Interface
Attributes

Attribute Name RO
or

RW

Local
or

Global

Data Type Range

VI_ATTR_ASRL_AVAIL_NUM RO Global ViUInt32 0 to FFFFFFFFh

VI_ATTR_ASRL_BAUD RW Global ViUInt32 0 to FFFFFFFFh
(9600 default)

VI_ATTR_ASRL_DATA_BITS RW Global ViUInt16 5 to 8
(8 default)

VI_ATTR_ASRL_END_IN RW Local ViUInt16 VI_ASRL_END_NONE
VI_ASRL_END_LAST_BIT
VI_ASRL_END_TERMCHAR
(default)

VI_ATTR_ASRL_END_OUT RW Local ViUInt16 VI_ASRL_END_NONE (default)
VI_ASRL_END_LAST_BIT
VI_ASRL_END_BREAK

VI_ATTR_ASRL_FLOW_CNTRL RW Global ViUInt16 VI_ASRL_FLOW_NONE (default)
VI_ASRL_FLOW_XON_XOFF
VI_ASRL_FLOW_RTS_CTS

VI_ATTR_ASRL_PARITY RW Global ViUInt16 VI_ASRL_PAR_NONE (default)
VI_ASRL_PAR_ODD
VI_ASRL_PAR_EVEN
VI_ASRL_PAR_MARK
VI_ASRL_PAR_SPACE

VI_ATTR_ASRL_STOP_BITS RW Global ViUInt16 VI_ASRL_STOP_ONE (default)
VI_ASRL_STOP_TWO

VI_ATTR_ASRL_CTS_STATE RO Global ViUInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

VI_ATTR_ASRL_DCD_STATE RO Global ViUInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

VI_ATTR_ASRL_DSR_STATE RO Global ViUInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN
Appendix B 273

VISA Attributes
VISA Interface-Specific Instrument Attributes
VI_ATTR_ASRL_DTR_STATE RW Global ViUInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

VI_ATTR_ASRL_RI_STATE RO Global ViUInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

VI_ATTR_ASRL_RTS_STATE RW Global ViUInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

Attribute Name RO
or

RW

Local
or

Global

Data Type Range
274 Appendix B

VISA Attributes
MEMACC Resource Attributes
MEMACC Resource Attributes

Generic MEMACC Attributes

VXI and GPIB-VXI Specific MEMACC Resource
Attributes

Attribute Name RO
or

RW

Local
or

Global

Data Type Range

VI_ATTR_INTF_NUM RO Global ViUInt16 0 to FFFFh

VI_ATTR_INTF_TYPE RO Global ViUInt16 VI_INTF_VXI
VI_INTF_GPIB_VXI

VI_ATTR_INTF_INST_NAME RO Global ViString N/A

VI_ATTR_TMO_VALUE RW Local ViUInt32 VI_TMO_IMMEDIATE
1 to FFFFFFFEh
VI_TMO_INFINITE

Attribute Name RO
or

RW

Local
or

Global

Data Type Range

VI_ATTR_VXI_LA RO Global ViUInt16 0 to 255

VI_ATTR_SRC_INCREMENT RW Local ViUInt132 0 to 1

VI_ATTR_DEST_INCREMENT RW Local ViUInt132 0 to 1

VI_ATTR_WIN_ACCESS RO Local ViUInt16 VI_NMAPPED
VI_USE_OPERS
VI_DEREF_ADDR

VI_ATTR_WIN_BASE_ADD RO Local ViBusAddress N/A

VI_ATTR_WIN_SIZE RO Local ViBusSize N/A

VI_ATTR_SRC_BYTE_ORDER RW Local ViUInt16 VI_BIG_ENDIAN
VI_LITTLE_ENDIAN

VI_ATTR_DEST_BYTE_ORDER RW Local ViUInt16 VI_BIG_ENDIAN
VI_LITTLE_ENDIAN
Appendix B 275

VISA Attributes
MEMACC Resource Attributes
VI_ATTR_WIN_BYTE_ORDER RW1 Local ViUInt16 VI_BIG_ENDIAN
VI_LITTLE_ENDIAN

VI_ATTR_SRC_ACCESS_PRIV RW Local ViUInt16 VI_DATA_NPRIV
VI-DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV
VI_D64_NPRIV
VI_D64_PRIV

VI_ATTR_DEST_ACCESS_PRIV RW Local ViUInt16 VI_DATA_NPRIV
VI-DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV
VI_D64_NPRIV
VI_D64_PRIV

VI_ATTR_WIN_ACCESS_PRIV RW1 Local ViUInt16 VI_DATA_NPRIV
VI-DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV

1. For VISA 1.1 and later, the VI_ATTR_WIN_BYTE_ORDER and VI_ATTR_WIN_ACCESS_PRIV
attributes are RW (readable and writeable) when the corresponding session is not mapped
(VI_ATTR_WIN_ACCESS = = VI_NMAPPED). When the session is mapped, these attributes
are RO (Read Only).

Attribute Name RO
or

RW

Local
or

Global

Data Type Range
276 Appendix B

VISA Attributes
MEMACC Resource Attributes
GPIB-VXI Specific MEMACC Resource Attributes

Attribute Name RO
or

RW

Local
or

Global

Data Type Range

VI_ATTR_INTF_PARENT_NUM RO Global ViUInt16 0 TO FFFFh

VI_ATTR_GPIB_PRIMARY_ADDR RO Global ViUInt16 0 TO 31

VI_ATTR_GPIB_SECONDARY_ADDR RO Global ViUInt16 0 TO 31
VI_NO_SEC_ADDR
Appendix B 277

VISA Attributes
VISA Event Attributes
VISA Event Attributes

Attribute Name RO
or

RW

Local or
Global

Data Type Range

VI_ATTR_BUFFER RO Local ViBuf N/A

VI_ATTR_EVENT_TYPE RO Local ViEventType VI_EVENT_SERVICE_REQ
VI_EVENT_VXI_SIGP
VI_EVENT_TRIG
VI_EVENT_IO_COMPLETION

VI_ATTR_JOB_ID RO Local ViJobId N/A

VI_ATTR_RECV_TRIG_ID RO Local ViInt16 VI_TRIG_TTL0 to
VI_TRIG_TTL7
VI_TRIG_ECL0 to
VI_TRIG_ECL1

VI_ATTR_RET_COUNT RO Local ViUInt32 0 to FFFFFFFFh

VI_ATTR_SIGP_STATUS_ID RO Local ViUInt16 0 to FFFFh

VI_ATTR_STATUS RO Local ViStatus N/A

NOTE

The VI_EVENT_VXI_SIGP and VI_EVENT_TRIG events are not
supported with the GPIB-VXI interface.
278 Appendix B

C
VISA Completion and Error Codes
279

VISA Completion and Error Codes

This appendix lists VISA completion and error codes, presented in two ways:

n In alphabetical order.

n According to the VISA function that returns the codes. You can use
this list to determine what type of codes to expect from each VISA
function.
280 Appendix C

VISA Completion and Error Codes
Alphabetized Completion and Error Codes
Alphabetized Completion and Error Codes
This table lists VISA completion and error codes in alphabetical order.

Completion Code Description

VI_SUCCESS Operation completed successfully.

VI_SUCCESS_DEV_NPRESENT Session opened successfully, but the device at the specified
address is not responding.

VI_SUCCESS_EVENT_DIS The specified event is already disabled.

VI_SUCCESS_EVENT_EN The specified event is already enabled for at least one
of the specified mechanisms.

VI_SUCCESS_MAX_CNT The number of bytes specified were read.

VI_SUCCESS_NESTED_EXCLUSIVE The specified access mode was successfully acquired
and this session has nested exclusive locks.

VI_SUCCESS_NESTED_SHARED The specified access mode was successfully acquired
and this session has nested shared locks.

VI_SUCCESS_QUEUE_EMPTY The event queue was empty while trying to discard
queued events.

VI_SUCCESS_QUEUE_NEMPTY The event queue is not empty.

VI_SUCCESS_SYNC The read or write operation performed synchronously.

VI_SUCCESS_TERM_CHAR The specified termination character was read.

VI_WARN_CONFIG_NLOADED The specified configuration either does not exist or could
not be loaded using VISA-specified defaults.

VI_WARN_NSUP_ATTR_STATE The attribute state is not supported by this resource.

VI_WARN_NSUP_BUF The specified buffer is not supported.

VI_WARN_UNKNOWN_STATUS The status code passed to the function was unable
to be interpreted.
Appendix C 281

VISA Completion and Error Codes
Alphabetized Completion and Error Codes
Error Code Description

VI_ERROR_ALLOC Insufficient system resources to open a session or to allocate
the buffer(s) or memory block of the specified size.

VI_ERROR_ASRL_PARITY A parity error occurred during transfer.

VI_ERROR_ASRL_FRAMING A framing error occurred during transfer.

VI_ERROR_ASRL_OVERRUN An overrun error occurred during transfer. A character was
not read from the hardware before the next character arrived.

VI_ERROR_ATTR_READONLY The attribute specified is read-only.

VI_ERROR_BERR A bus error occurred during transfer.

VI_ERROR_CLOSING_FAILED Unable to deallocate the previously allocated data structures
for this session.

VI_ERROR_HNDLR_NINSTALLED A handler is not currently installed for the specified event.
The session cannot be enabled for the VI_HNDLR mode
of the callback mechanism.

VI_ERROR_INP_PROT_VIOL Input protocol error occurred during transfer.

VI_ERROR_INV_ACCESS_KEY The requestedKey value passed in is not a valid access
key to the specified resource.

VI_ERROR_INV_ACC_MODE The access mode specified is invalid.

VI_ERROR_INV_CONTEXT The event context specified is invalid.

VI_ERROR_INV_DEGREE The specified degree is invalid.

VI_ERROR_INV_EVENT The event type specified is invalid for the specified resource.

VI_ERROR_INV_EXPR The expression specified is invalid.

VI_ERROR_INV_FMT The format specifier is invalid for the current argument.

VI_ERROR_INV_HNDLR_REF The specified handler reference and/or the user context
value does not match the installed handler.

VI_ERROR_INV_JOB_ID The specified job identifier is invalid.

VI_ERROR_INV_LENGTH The length specified is invalid.

VI_ERROR_INV_LOCK_TYPE The specified type of lock is not supported by this resource.

VI_ERROR_INV_MASK The system cannot set the buffer for the given mask, or the
specified mask does not specify a valid flush operation on
the read/write resource.
282 Appendix C

VISA Completion and Error Codes
Alphabetized Completion and Error Codes
VI_ERROR_INV_MECH The mechanism specified for the event is invalid.

VI_ERROR_INV_MODE The value specified by the mode parameter is invalid.

VI_ERROR_INV_OBJECT The object reference is invalid.

VI_ERROR_INV_OFFSET The offset specified is invalid.

VI_ERROR_INV_PARAMETER The value of some parameter is invalid.

VI_ERROR_INV_PROT The protocol specified is invalid.

VI_ERROR_INV_RSRC_NAME The resources specified are invalid.

VI_ERROR_INV_SESSION The session specified is invalid.

VI_ERROR_INV_SETUP The setup specified is invalid, possibly due to attributes
being set to an inconsistent state, or some implementation-
specific configuration file is corrupt or does not exist.

VI_ERROR_INV_SIZE The specified size is invalid.

VI_ERROR_INV_SPACE The address space specified is invalid.

VI_ERROR_IO Could not perform read/write function because of an I/O
error, or an unknown I/O error occurred during transfer.

VI_ERROR_LINE_IN_USE The specified trigger line is in use.

VI_ERROR_MEM_NSHARED The device does not export any memory.

VI_ERROR_NCIC The session is referring to something other than the
controller in charge.

VI_ERROR_NIMPL_OPER The given operation is not implemented.

VI_ERROR_NLISTENERS No listeners are detected. (Both NRFD and NDAC are
deasserted.)

VI_ERROR_NSUP_ATTR The attribute specified is not supported by the specified
resource.

VI_ERROR_NSUP_ATTR_STATE The state specified for the attribute is not supported.

VI_ERROR_NSUP_FMT The format specifier is not supported for the current
argument type.

VI_ERROR_NSUP_OFFSET The offset specified is not accessible.

VI_ERROR_NSUP_OPER The operation specified is not supported in the given
session.

VI_ERROR_NSUP_WIDTH The specified width is not supported by this hardware.

Error Code Description
Appendix C 283

VISA Completion and Error Codes
Alphabetized Completion and Error Codes
VI_ERROR_NSYS_CNTLR The interface associated with this session is not the
system controller.

VI_ERROR_QUEUE_ERROR Unable to queue read or write operation.

VI_ERROR_OUTP_PROT_VIOL Output protocol error occurred during transfer.

VI_ERROR_RAW_RD_PROT_VIOL A violation of raw read protocol occurred during a transfer.

VI_ERROR_RAW_WR_PROT_VIOL A violation of raw write protocol occurred during a transfer.

VI_ERROR_RSRC_BUSY The resource is valid, but VISA cannot currently access it.

VI_ERROR_RSRC_LOCKED The specified operation could not be performed because the
resource identifed by vi has been locked for this kind of
access.

VI_ERROR_RSRC_NFOUND The expression specified does not match any device, or
resource was not found.

VI_ERROR_SRQ_NOCCURED A service request has not been received for the session.

VI_ERROR_SYSTEM_ERROR Unknown system error.

VI_ERROR_TMO The operation failed to complete within the specified timeout
period.

VI_ERROR_USER_BUF A specified user buffer is not valid or cannot be accessed for
the required size.

VI_ERROR_WINDOW_MAPPED The specified session already contains a mapped window.

VI_ERROR_WINDOW_NMAPPED The specified session is not currently mapped.

Error Code Description
284 Appendix C

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
Completion and Error Codes for VISA
Functions
VISA functions are listed in alphabetical order with associated completion
and error codes for each function.

viAssertTrigger(vi,protocol)

Codes Description

VI_SUCCESS The specified trigger was successfully asserted to the
device.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_INV_PROT The protocol specified is invalid.

VI_ERROR_TMO Timeout expired before function completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error during transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_LINE_IN_USE The specified trigger line is currently in use.

VI_ERROR_NCIC vi does not refer to an interface that is currently the
controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both NRFD and NDAC
are deasserted).

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due to
attributes being set to an inconsistent state).
Appendix C 285

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viBufRead (vi, buf, count, retCount);

viBufWrite (vi, buf, count, retCount);

Codes Description

VI_SUCCESS The operation completed successfully and the END indicator
was received (for interfaces that have END indicators).

VI_SUCCESS_TERM_CHAR The specified termination character was read.

VI_SUCCESS_MAX_CNT The number of bytes read is equal to count.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are
the same value).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout expired before function completed.

VI_ERROR_IO An unknown I/O error occurred during transfer.

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout expired before function completed.

VI_ERROR_INV_SETUP Unable to start write operation because
setup is invalid (due to attributes being set
to an inconsistent state).

VI_ERROR_IO An unknown I/O error occurred during transfer.
286 Appendix C

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viClear(vi)

viClose(vi)

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout expired before function completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_NCIC vi does not refer to an interface that is currently the
controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both NRFD and NDAC
are deasserted).

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due to
attributes being set to an inconsistent state).

Codes Description

VI_SUCCESS Session closed successfully.

VI_WARN_NULL_OBJECT The specified object reference is uninitialized.

VI_ERROR_INV_SESSION The given vi does not identify a valid session.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_CLOSING_FAILED Unable to deallocate the previously allocated data structures
corresponding to this session or object reference.
Appendix C 287

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viDisableEvent(vi,eventType,mechanism)

viDiscardEvents(vi,eventType,mechanism)

viEnableEvent(vi,eventType,mechanism,context)

Codes Description

VI_SUCCESS Event disabled successfully.

VI_SUCCESS_EVENT_DIS Specified event is already disabled for at least one of the specified
mechanisms.

VI_ERROR_INV_SESSION The given vi does not identify a valid session.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_INV_MECH Invalid mechanism specified.

Codes Description

VI_SUCCESS Event queue flushed successfully.

VI_SUCCESS_QUEUE_EMPTY Operation completed successfully, but queue empty.

VI_ERROR_INV_SESSION The given vi does not identify a valid session.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_INV_MECH Invalid mechanism specified.

Codes Description

VI_SUCCESS Event enabled successfully.

VI_SUCCESS_EVENT_EN The specified event is already enabled for at least one of
the specified mechanisms.

VI_ERROR_INV_SESSION The given vi does not identify a valid session.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_EVENT The specified event type is not supported by the resource.

VI_ERROR_INV_MECH Invalid mechanism specified.

VI_ERROR_INV_CONTEXT Invalid event context specified.
288 Appendix C

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viFindNext(findList,instrDesc)

viFindRsrc(sesn,expr,findList,retcnt,instrDesc)

viFlush(vi,mask)

VI_ERROR_HNDLR_NINSTALLED A handler is not currently installed for the specified event.
The session cannot be enabled for the VI_HNDLR mode of
the callback mechanism.

Codes Description

VI_SUCCESS Resource(s) found.

VI_ERROR_INV_SESSION The given findList is not a valid session.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_OPER The given findList does not support this function.

VI_ERROR_RSRC_NFOUND There are no more matches.

Codes Description

VI_SUCCESS Resource(s) found.

VI_ERROR_INV_SESSION The given sesn is not a valid session.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_OPER The given sesn does not support this function.

VI_ERROR_INV_EXPR Invalid expression specified for search.

VI_ERROR_RSRC_NFOUND Specified expression does not match any devices.

Codes Description

VI_SUCCESS Buffers flushed successfully.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_IO Could not perform read/write operation because of I/O error.

Codes Description
Appendix C 289

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viGetAttribute(vi,attribute,attrState)

viGpibControlREN(vi, mode);

VI_ERROR_TMO The read/write operation was aborted because timeout expired while
operation was in progress.

VI_ERROR_INV_MASK The specified mask does not specify a valid flush operation on
read/write resource.

Codes Description

VI_SUCCESS Resource attribute retrieved successfully.

VI_ERROR_INV_SESSION The given vi does not identify a valid session.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_ATTR The specified attribute is not defined by the referenced resource.

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same
value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_NCIC The interface associated with this session is not currently the
controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both NRFD and NDAC are
deasserted).

VI_ERROR_NSYS_CNTLR The interface associated with this session is not the system controller.

VI_ERROR_INV_MODE The value specified by the mode parameter is invalid.

Codes Description
290 Appendix C

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viIn8(vi,space,offset,val8)
viIn16(vi,space,offset,val16)
viIn32(vi,space,offset,val32)

viInstallHandler(vi,eventType,handler,userHandle)

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this hardware.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_NSUP_ALIGN_OFFSET The specified offset is not properly aligned for the access width
of the operation.

Codes Description

VI_SUCCESS Event handler installed successfully.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_EVENT Specified event type is not defined by the resource.

VI_ERROR_INV_HNDLR_REF The given handler reference is invalid.

VI_ERROR_HNDLR_NINSTALLED The handler was not installed. This may be returned if an
application attempts to install multiple handlers for the same
event on the same session.
Appendix C 291

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viLock(vi,lockType,timeout,requestedKey,accessKey)

viMapAddress(vi,mapSpace,mapBase,mapSize,access,suggested,address)

Codes Description

VI_SUCCESS The specified access mode was successfully acquired.

VI_SUCCESS_NESTED_EXCLUSIVE The specified access mode was successfully acquired
and this session has nested exclusive locks.

VI_SUCCESS_NESTED_SHARED The specifed access mode was successfully acquired
and this session has nested shared locks.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_RSRC_LOCKED The specified type of lock cannot be obtained because the
resource is already locked with a lock type incompatible
with the lock requested.

VI_ERROR_INV_LOCK_TYPE The specified type of lock is not supported by this resource.

VI_ERROR_INV_ACCESS_KEY The requestedKey value passed is not a valid access
key to the specified resource.

VI_ERROR_TMO The specified type of lock could not be obtained within the
specified timeout period.

Codes Description

VI_SUCCESS Map successful.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified region is not accessible from this hardware.

VI_ERROR_TMO Could not acquire resource or perform mapping before
the timer expired.
292 Appendix C

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viMemAlloc(vi,size,offset)

viMemFree(vi,offset)

VI_ERROR_INV_SIZE Invalid size of window specified.

VI_ERROR_ALLOC Unable to allocate window of at least the requested size.

VI_ERROR_INV_ACC_MODE Invalid access mode.

VI_ERROR_WINDOW_MAPPED The specified session already contains a mapped window.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due to
attributes being set to an inconsistent state).

Codes Description

VI_SUCCESS The operation completed successfully.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_INV_SIZE Invalid size specified.

VI_ERROR_ALLOC Unable to allocate shared memory block of the requested size.

VI_ERROR_MEM_NSHARED The device does not export any memory.

Codes Description

VI_SUCCESS The operation completed successfully.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_WINDOW_MAPPED The specified offset is currently in use by viMapAddress.

Codes Description
Appendix C 293

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viMove(vi, srcSpace, srcOffset, srcWidth, destSpace, destOffset, destWidth, Length)

viMoveAsync(vi, srcSpace, srcOffset, srcWidth, destSpace, destOffset, destWidth, Length,
jobId)

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_ORDER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SPACE Invalid source or destination address space specified.

VI_ERROR_INV_OFFSET Invalid source or destination offset specified.

VI_ERROR_INV_WIDTH Invalid source or destination width specified.

VI_ERROR_NSUP_OFFSET Invalid source or destination offset is not accessible from this
hardware.

VI_ERROR_NSUP_VAR_WIDTH Cannot support source and destination widths that are
different.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due to
attributes being set to an inconsistent state).

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_NSUP_ALIGN_OFFSET The specified offset is not properly aligned for the access
width of the operation.

VI_ERROR_INV_LENGTH Invalid length specified.

Codes Description

VI_SUCCESS Operation completed successfully.

VI_SUCCESS_SYNC Operation performed synchronously.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.
294 Appendix C

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viMoveIn8(vi,space,offset,length,buf8)
viMoveIn16(vi,space,offset,length,buf16)
viMoveIn32(vi,space,offset,length,buf32)

VI_ERROR_NSUP_ORDER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI-ERROR_QUEUE Unable to queue move operation.

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this hardware.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_INV_LENGTH Invalid length specified.

VI_ERROR_NSUP_ALIGN_
OFFSET

the specified offset is not properly aligned for the access width of the
operation.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due to attributes
being set to an inconsistent state).

Codes Description
Appendix C 295

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viMoveOut8(vi,space,offset,length,buf8)
viMoveOut16(vi,space,offset,length,buf16)
viMoveOut32(vi,space,offset,length,buf32)

viOpen(sesn,rsrcName,accessMode,timeout,vi)

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this hardware.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_INV_LENGTH Invalid length specified.

VI_ERROR_NSUP_ALIGN_OFFSET the specified offset is not properly aligned for the access
width of the operation.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due to
attributes being set to an inconsistent state).

Codes Description

VI_SUCCESS Session opened successfully.

VI_SUCCESS_DEV_NPRESENT session opened successfully, but the device at the specified
address is not responding.

VI_WARN_CONFIG_NLOADED The specified configuration either does not exist or could not
be loaded using VISA-specified defaults.

VI_ERROR_INV_SESSION The given sesn does not identify a valid session.

VI_ERROR_INV_OBJECT The given object reference is invalid.
296 Appendix C

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viOpenDefaultRM(sesn)

viOut8(vi,space,offset,val8)
viOut16(vi,space,offset,val16)
viOut32(vi,space,offset,val32)

VI_ERROR_NSUP_OPER The given sesn does not support this function. For VISA, this
operation is supported only by the Default Resource Manager
session.

VI_ERROR_INV_RSRC_NAME Invalid resource reference specified. Parsing error.

VI_ERROR_INV_ACC_MODE Invalid access mode.

VI_ERROR_RSRC_NFOUND Insufficient location information or resource not present in the
system.

VI_ERROR_ALLOC Insufficient system resources to open a session.

VI_ERROR_RSRC_BUSY The resource is valid, but VISA cannot currently access it.

VI_ERROR_RSRC_LOCKED Specified type of lock cannot be obtained because the resource
is already locked with a lock type incompatible with the lock
requested.

VI_ERROR_TMO A session to the resource could not be obtained within the
specified timeout period.

Codes Description

VI_SUCCESS Session to the Default Resource Manager resource created
successfully.

VI_ERROR_SYSTEM_ERROR The VISA system failed to initialize.

VI_ERROR_ALLOC Insufficient system resources to create a session to the Default
Resource Manager resource.

VI_ERROR_INV_SETUP Some implementation-specific configuration file is corrupt or does
not exist.

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

Codes Description
Appendix C 297

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viPeek8(vi,addr,val8)
viPeek16(vi,addr,val16)
viPeek32(vi,addr,val32)
These functions do not return any completion or error codes.

viPoke8(vi,addr,val8)
viPoke16(vi,addr,val16)
viPoke32(vi,addr,val32)
These functions do not return any completion or error codes.

viPrintf(vi,writeFmt,arg1,arg2)

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this hardware.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_NSUP_ALIGN_
OFFSET

The specified offset is not properly aligned for the access width of
the operation.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due to attributes
being set to an inconsistent state).

Codes Description

VI_SUCCESS Parameters were successfully formatted.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_IO Could not perform write operation because of I/O error.

VI_ERROR_TMO Timeout expired before write operation completed.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

Codes Description
298 Appendix C

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viQueryf(vi,writeFmt,readFmt,arg1,arg2)

viRead(vi,buf,count,retCount)

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because of
insufficient resources.

Codes Description

VI_SUCCESS Successfully completed the Query operation.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_IO Could not perform read/write operation because of I/O error.

VI_ERROR_TMO Timeout occurred before read/write operation completed.

VI_ERROR_INV_FMT A format specifier in the writeFmt or readFmt string is invalid.

VI_ERROR_NSUP_FMT The format specifier is not supported for current argument type.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because of
insufficient resources.

Codes Description

VI_SUCCESS The operation completed successfully and the END indicator
was received (for interfaces that have END indicators).

VI_SUCCESS_TERM_CHAR The specified termination character was read.

VI_SUCCESS_MAX_CNT The number of bytes read is equal to count.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of access.

VI_ERROR_TMO Timeout expired before function completed.

Codes Description
Appendix C 299

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viReadAsync(vi,buf,count,jobId)

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_OUTP_PROT_VIOL Device reported an output protocol error occurred during
transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SETUP Unable to start read operation because setup is invalid
(due to attributes being set to an inconsistent state).

VI_ERROR_NCIC vi does not refer to an interface that is currently the
controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both NRFD and NDAC
are deasserted).

VI_ERROR_ASRL_PARITY A parity error occurred during transfer.

VI_ERROR_ASRL_FRAMING A framing error occurred during transfer.

VI_ERROR_ASRL_OVERRUN An overrun error occurred during transfer. A character was
not read from the hardware before the next character arrived.

VI_ERROR_IO An unknown I/O error occurred during transfer.

Codes Description

VI_SUCCESS Asynchronous read operation successfully queued.

VI_SUCCESS_SYNC Read operation performed synchronously.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_QUEUE_ERROR Unable to queue read operation.

Codes Description
300 Appendix C

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viReadSTB(vi,status)

viScanf(vi,readFmt,arg1,arg2)

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of access.

VI_ERROR_SRQ_NOCCURRED Service request has not been received for the session.

VI_ERROR_TMO Timeout expired before function completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_NCIC vi does not refer to an interface that is currently the
controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both NRFD and NDAC are
deasserted).

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due to
attributes being set to an inconsistent state).

Codes Description

VI_SUCCESS Data was successfully read and formatted into arg parameter(s).

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_IO Could not perform read operation because of I/O error.

VI_ERROR_TMO Timeout expired before read operation completed.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not supported.
Appendix C 301

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viSetAttribute(vi,attribute,attrState)

viSetBuf(vi,mask,size)

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because of
insufficient resources.

Codes Description

VI_SUCCESS All attribute values set successfully.

VI_WARN_NSUP_ATTR_STATE Although the specified state of the attribute is valid, it is not
supported by this resource implementation

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_RSRC_LOCKED The specified operation could not be performed because the
resource identified by vi has been locked for this kind of access.

VI_ERROR_NSUP_ATTR The specified attribute is not defined by the referenced resource.

VI_ERROR_NSUP_ATTR_STATE The specified state of the attribute is not valid, or is not supported
as defined by the resource.

VI_ERROR_ATTR_READONLY The specified attribute is read-only.

Codes Description

VI_SUCCESS Buffer size set successfully.

VI_WARN_NSUP_BUF The specified buffer is not supported.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_ALLOC The system could not allocate the buffer(s) of the specified size
because of insufficient system resources.

VI_ERROR_INV_MASK The system cannot set the buffer for the given mask.

Codes Description
302 Appendix C

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viSPrintf(vi, buf, writeFmt, arg1, arg2, ...);

viSScanf(vi, buf, readFmt, arg1, arg2, ...);

viStatusDesc(vi,status,desc)

Codes Description

VI_SUCCESS Parameters were successfully formatted.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same
value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because of
insufficient system resources.

Codes Description

VI_SUCCESS Data were successfully read and formatted into arg parameter(s).

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same
value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because of
insufficient system resources.

Codes Description

VI_SUCCESS Description successfully returned.

VI_WARN_UNKNOWN_STATUS The status code passed to the function could not be interpreted.
Appendix C 303

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viTerminate(vi,degree,jobId)

viUninstallHandler(vi,eventType,handler,userHandle)

viUnlock(vi)

Codes Description

VI_SUCCESS Request serviced successfully.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_DEGREE Invalid degree specified.

VI_ERROR_INV_JOB_ID Invalid job identifier specified.

Codes Description

VI_SUCCESS Event handler successfully uninstalled.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_INV_HNDLR_REF Either the specified handler reference or the user context value
(or both) does not match any installed handler.

VI_ERROR_HNDLR_NINSTALLED A handler is not currently installed for the specified event.

Codes Description

VI_SUCCESS The lock was successfully relinquished.

VI_SUCCESS_NESTED_EXCLUSIVE The call succeeded, but this session still has nested exclusive
locks.

VI_SUCCESS_NESTED_SHARED The call succeeded, but this session still has nested shared
locks.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_SESN_NLOCKED The current session did not have any lock on the resource.
304 Appendix C

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viUnmapAddress(vi)

viVPrintf(vi,writeFmt,params)

viVQueryf(vi,writeFmt,readFmt,params)

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_WINDOW_NMAPPED The specified session is not currently mapped.

Codes Description

VI_SUCCESS Parameters were successfully formatted.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_IO Could not perform write operation because of I/O error.

VI_ERROR_TMO Timeout expired before write operation completed.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because of
insufficient resources.

Codes Description

VI_SUCCESS Successfully completed the Query operation.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given session or object reference is invalid (both are the same
value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.
Appendix C 305

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viVScanf(vi,readFmt,params)

viVSPrintf(vi, buf, writeFmt, params);

VI_ERROR_IO Could not perform read/write operation because of I/O error.

VI_ERROR_TMO Timeout occurred before read/write operation completed.

VI_ERROR_INV_FMT A format specifier in the writeFmt or readFmt string is invalid.

VI_ERROR_NSUP_FMT The format specifier is not supported for current argument type.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because of
insufficient resources.

Codes Description

VI_SUCCESS Data was successfully read and formatted into arg parameter(s).

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_IO Could not perform read operation because of I/O error.

VI_ERROR_TMO Timeout expired before read operation completed.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because of
insufficient resources.

Codes Description

VI_SUCCESS Parameters were successfully formatted.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same
value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not supported.

Codes Description
306 Appendix C

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viVSScanf(vi, buf, readFmt, params);

viWaitOnEvent(vi,ineventType,timeout,outEventType,outcontext)

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because of
insufficient resources.

Codes Description

VI_SUCCESS Data were successfully read and formatted into arg parameter(s).

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same
value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because of
insufficient resources.

Codes Description

VI_SUCCESS Wait terminated successfully on receipt of an event occurrence.
The queue is empty.

VI_SUCCESS_QUEUE_NEMPTY Wait terminated successfully on receipt of an event notification.
There is still at least one more event occurrence available for this
session.

VI_ERROR_INV_SESSION The given vi does not identify a valid session.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_TMO Specified event did not occur within the specified time period.

Codes Description
Appendix C 307

VISA Completion and Error Codes
Completion and Error Codes for VISA Functions
viWrite(vi,buf,count,retCount)

viWriteAsync(vi,buf,count,jobId)

Codes Description

VI_SUCCESS Transfer completed.

VI_ERROR_INV_SESSION The given vi does not identify a valid session.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error occurred during transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SETUP Unable to start read operation because setup is invalid
(due to attributes being set to an inconsistent state).

VI_ERROR_NCIC vi does not refer to an interface that is currently the
controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both NRFD and NDAC are
deasserted).

VI_ERROR_IO An unknown I/O error occurred during transfer.

Codes Description

VI_SUCCESS Asynchronous write operation successfully queued.

VI_SUCCESS_SYNC Write operation performed synchronously.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_QUEUE_ERROR Unable to queue write operation.
308 Appendix C

D

VISA Type Definitions
309

VISA Type Definitions

VISA Data Type Type Definition Description

ViUInt32 unsigned long A 32-bit unsigned integer.

ViPUInt32 ViUInt32 * The location of a 32-bit unsigned integer.

ViAUInt32 ViUInt32 * The location of a 32-bit unsigned integer.

ViInt32 signed long A 32-bit signed integer.

ViPInt32 ViInt32 * The location of a 32-bit signed integer.

ViAInt32 ViInt32 * The location of 32-bit signed integer.

ViUInt16 unsigned short A 16-bit unsigned integer.

ViPUInt16 ViUInt16 * The location of a 16-bit unsigned integer.

ViAUInt16 ViUInt16 * The location of a 16-bit unsigned integer.

ViInt16 signed short A 16-bit signed integer.

ViPInt16 ViInt16 * The location of a 16-bit signed integer.

ViAInt16 ViInt16 * The location of 16-bit signed integer.

ViUInt8 unsigned char An 8-bit unsigned integer.

ViPUInt8 ViUInt8 * The location of an 8-bit unsigned integer.

ViAUInt8 ViUInt8 * The location of an 8-bit unsigned integer.

ViInt8 signed char An 8-bit signed integer.

ViPInt8 ViInt8 * The location of an 8-bit signed integer.

ViAInt8 ViInt8 * The location of an 8-bit signed integer.

ViAddr void * A type that references another data type.

ViPAddr ViAddr * The location of a ViAddr .

ViChar char An 8-bit integer representing an ASCII character.

ViPChar ViChar * The location of a ViChar.

ViByte unsigned char An 8-bit unsigned integer representing an extended
ASCII character.

ViPByte ViByte * The location of a ViByte.

ViBoolean ViUInt16 A type that is either VI_TRUE or VI_FALSE.
310 Appendix D

VISA Type Definitions
ViPBoolean ViBoolean * The location of a ViBoolean.

ViBuf ViPByte The location of a block of data.

ViPBuf ViPByte The location of a block of data.

ViString ViPChar The location of a NULL-terminated ASCII string.

ViPString ViPChar The location of a NULL-terminated ASCII string.

ViStatus ViInt32 Values that correspond to VISA-defined completion and
error codes.

ViPStatus ViStatus * The location of the completion and error codes.

ViRsrc ViString A ViString type.

ViPRsrc ViString A ViString type.

ViAccessMode ViUInt32 Specifies the different mechanisms that control access
to a resource.

ViBusAddress ViUInt32 Represents the system dependent physical address.

ViBusSize ViUInt32 Represents the system dependent physical address size.

ViAttr ViUInt32 Identifies an attribute.

ViVersion ViUInt32 Specifies the current version of the resource.

ViPVersion ViVersion * The location of ViVersion.

ViAttrState ViUInt32 Specifies the type of attribute.

ViPAttrState void * The location of ViAttrState.

ViVAList va_list The location of a list of variable number of
parameters of differing types.

ViEventType ViUInt32 Specifies the type of event.

ViPEventType ViEventType * The location of a ViEventType.

ViEventFilter ViUInt32 Specifies filtering masks or other information unique
to an event.

ViObject ViUInt32 Contains attributes and can be closed when no longer
needed.

ViPObject ViObject * The location of a ViObject.

ViSession ViObject Specifies the information necessary to manage a
communication channel with a resource.

VISA Data Type Type Definition Description
Appendix D 311

VISA Type Definitions

ViPSession ViSession * The location of a ViSession.

ViFindList ViObject Contains a reference to all resources found during a
search operation.

ViPFindList ViFindList * The location of a ViFindList.

ViEvent ViObject Contains information necessary to process an event.

ViPEvent ViEvent * The location of a ViEvent.

ViHndlr ViStatus (*)
(ViSession#
ViEventType#
ViEvent#
ViAddr)

A value representing an entry point to an operation for use
as a callback.

ViReal32 float A 32-bit# single-precision value.

ViPReal32 ViReal32 * The location of a 32-bit# single-precision value.

ViReal64 double A 64-bit# double-precision value.

ViPReal64 ViReal64 * The location of a 64-bit# double-precision value.

ViJobId ViUInt32 The location of a variable that will be set to the job
identifier.

ViKeyId ViPString The location of a string.

VISA Data Type Type Definition Description
312 Appendix D

E

Editing the VISA Configuration
313

Editing the VISA Configuration

When the Agilent IO Libraries are configured, certain values are used as
defaults in the VISA configuration. In some cases, the default values may
affect your system’s performance. If you are having system performance
problems, you may need to edit the configuration and change some default
values.

This appendix describes how to edit the configuration for VISA on Windows
95, Windows 98, Windows 2000, and Windows NT, and on HP-UX.
314 Appendix E

Editing the VISA Configuration
Editing on Windows 95/98/2000/NT
Editing on Windows 95/98/2000/NT
When you first configured the Agilent IO Libraries, the default configuration
specified that all VISA devices would be identified at runtime. However, this
configuration is not ideal for all users.

If you are experiencing performance problems, particularly during
viOpenDefaultRM, you may want to change the VISA configuration to
identify devices during configuration. This may be especially helpful if you
are using a VISA LAN client. To edit the default VISA configuration on
Windows 95/98/2000 or Windows NT:

1. If you have not already done so, start Windows 95/98/2000 or
Windows NT.

2. Run the IO Config utility, located in the Agilent IO
Libraries program group.

3. Select the interface to be configured from the Configured
Interfaces box and click the Edit button. The Interface Edit
window is now displayed.

4. Click the Edit VISA Config button at the bottom of the window.
The dialog box which allows you to add devices is now displayed.
You can now manually identify devices by clicking the Add Device
button and entering the device address.

5. At this time, you may also click the Auto Add Devices button at the
bottom of the screen to automatically check for devices. If you
select this button, the utility will prompt you to make sure all devices
are connected and turned on. Once this process is complete, you
may edit this list with the Add Device and Remove Device buttons.

6. Once you have completed adding or removing devices, select the
OK button to exit the window. Then exit the IO Config utility to
save the changes you have made.

NOTE

To turn off the default of identifying devices at runtime, unselect the
Identify devices at run-time box at the top of the dialog box
Appendix E 315

Editing the VISA Configuration
Editing on HP-UX
Editing on HP-UX
When you first configured the Agilent IO Libraries, the default configuration
specified that all VISA devices would be identified at runtime. However, this
is not ideal for all users. If you are experiencing performance problems,
particularly during viOpenDefaultRM, you may want to change the
VISA configuration to identify devices during configuration.

To edit the default VISA configuration on HP-UX, use the following
command to run the visacfg utility:

/opt/vxipnp/hpux/hpvisa/visacfg

Follow the instructions provided in the utility. When prompted, select the
Add Device button and add all devices that will be used.
316 Appendix E

Glossary
317

Glossary

address
A string uniquely identifying a particular device on an interface.

attributes
Values that determine the state of a resource. The operational state of
some attributes can be changed.

bus error
An action that occurs when access to a given address fails either
because no register exists at the given address, or the register at the
address refuses to respond.

controller
A device, such as a computer, used to communicate with a remote
device, such as an instrument. In the communications between the
controller and the device, the controller is in charge of and controls the
flow of communication (that is, the controller does the addressing
and/or other bus management).

device
A unit that receives commands from a controller. Typically a device is
an instrument but could also be a computer acting in a non-controller
role, or another peripheral such as a printer or plotter.

device driver
A segment of software code that communicates with a device. It may
either communicate directly with a device by reading to and writing from
registers, or it may communicate through an interface driver.

device session
A session that communicates as a controller specifically with a single
device, such as an instrument.

handler
A software routine used to respond to an asynchronous event such as an
SRQ or an interrupt.
318 Glossary

instrument
A device that accepts commands and performs a test or measurement
function.

interface
A connection and communication media between devices and
controllers, including mechanical, electrical, and protocol connections.

interrupt
An asynchronous event requiring attention out of the normal flow of
control of a program.

mapping
An operation that returns a pointer to a specified section of an address
space and makes the specified range of addresses accessible to the
requester.

process
An operating system object containing one or more threads of execution
that share a data space. A multi-process system is a computer system
that allows multiple programs to execute simultaneously, each in a
separate process environment. A single-process system is a computer
system that allows only a single program to execute at a given point in
time.

register
An address location that controls or monitors hardware.

resource
An instrument while using VISA.

session
An instance of a communications path between a software element and a
resource.

SRQ
Service Request. An asynchronous request (an interrupt) from a remote
device indicating that the device requires servicing.

status byte
A byte of information returned from a remote device showing the current
state and status of the device.
Glossary 319

thread
An operating system object that consists of a flow of control within a
process. A single process may have multiple threads with each having
access to the same data space within the process. However, each thread
has its own stack and all threads may execute concurrently with each
other (either on multiple processors, or by time-sharing a single
processor). Note that multi-threaded applications are only supported
with 32-bit VISA.

VISA
Virtual Instrument Software Architecture. VISA is a common I/O library
where software from different vendors can run together on the same
platform.
320 Glossary

Index
A
Addressing

devices, 34
sessions, 34

Agilent telephone numbers, 10
Agilent web site, 10
Applications, building, 19
Argument length modifier, 42
, array size, 43
ASRL, attributes, 56
Attributes

ASRL, 56
changing, 50
events, 58, 278
generic INSTR, 52, 268
GPIB, 53, 270
GPIB-VXI, 53, 56, 270, 272
interface specific, 53, 270
reading, 50
resource, 51, 267
serial, 56
setting VXI trigger lines, 111
VXI, 53, 110, 270

B
Buffers, formatted I/O, 46
Building DLLs, 19

C
Callbacks and events, 59, 62
Closing sessions, 36
Compiling in HP-UX, 27
Completion codes, 281
Configuration

editing VISA, 314
LAN, 119

Conversion characters, 45
Conversion of formatted I/O, 40
Copyright information, 8

D
Debug window, using, 22
Declarations file, 31
Default resource manager, 31

Device sessions
addressing, 34
closing, 36
opening, 32

Directory structure
HP-UX, 262
Windows, 261

DLLs, building, 19

E
Editing VISA configuration, 314
Enable events

for callback, 64
for queuing, 71

Error codes, 282
Error msgs, logging on HP-UX, 27
Error trapping

instrument errors, 76
Event attributes, 58, 278
Event handler, 64
Event viewer, using, 21
Events

callback, 59, 62
enable for callback, 64
enable for queuing, 71
handlers, 59
hardware triggers, 59
interrupts, 59
queuing, 59, 70
SRQs, 59
wait on event, 71

evnthdlr.c example, 65
evntqueu.c example, 72
Examples

evnthdlr.c, 65
evntqueu.c, 72
formatio.c, 47
formatio.c over LAN, 121
gpibvxi.c, 92
idn.c, 17, 25
lockexcl.c, 81
lockshr.c, 83
nonfmtio.c, 49
running on HP-UX, 27
srqhdlr.c, 67
Index 321

vxihl.c, 91
vxill.c, 96

Exclusive locks, 80

F
Field width, 41
Finding resources, 36
Formatio.c example, 47
Formatio.c example over LAN, 121
Formatted I/O

argument length modifier, 42
, array size, 43
buffers, 46
conversion, 40
conversion characters, 45
field width, 41
functions, 39
special characters, 44

Functions
formatted I/O, 39
iMapAddress, 175
viAssertTrigger, 134
viBufRead, 136
viBufWrite, 138
viClear, 140
viClose, 36, 142
viDisableEvent, 65, 144
viDiscardEvents, 147
viEnableEvent, 64, 71, 150
viEventHandler, 154
viFindNext, 36, 156
viFindRsrc, 36, 158
viFlush, 160
viGetAttribute, 50, 163
viGpibControlREN, 165
viIn16, 89, 167
viIn32, 89, 167
viIn8, 89, 167
viInstallHandler, 63, 169
viLock, 77, 171
viMapAddress, 94, 95
viMemAlloc, 178

viMemFree, 180
viMove, 181
viMoveAsync, 184
viMoveIn16, 89, 187
viMoveIn32, 89, 187
viMoveIn8, 89, 187
viMoveOut16, 89, 190
viMoveOut32, 89, 190
viMoveOut8, 89, 190
viOpen, 32, 193
viOpenDefaultRM, 31, 196
viOut16, 89, 198
viOut32, 89, 198
viOut8, 89, 198
viPeek16, 94, 200
viPeek32, 94, 200
viPeek8, 94, 200
viPoke16, 94, 201
viPoke32, 94, 201
viPoke8, 94, 201
viPrintf, 39, 202
viQueryf, 39, 210
viRead, 212
viReadAsync, 215
viReadSTB, 217
viScanf, 39, 219
viSetAttribute, 228
viSetBuf, 230
viSPrintf, 232
viSScanf, 234
viStatusDesc, 236
viTerminate, 237
viUninstallHandler, 238
viUnlock, 77, 240
viUnmapAddress, 241
viVPrintf, 39, 242
viVQueryf, 39, 244
viVScanf, 39, 246
viVSPrintf, 248
viVSScanf, 250
viWaitOnEvent, 71, 252
viWrite, 255
viWriteAsync, 257
322 Index

G
Generic INSTR attributes, 52, 268
GPIB

attributes, 53, 270
interface, 87

GPIB-VXI
attributes, 53, 56, 110, 270, 272
high-level memory functions, 89
interface, 87
low-level memory functions, 94
mapping memory space, 95
message-based devices, 88
programming overview, 87
register programming, 89, 94
register-based devices, 88
setting trigger lines, 111
writing to registers, 96

Gpibvxi.c example, 92

H
Handlers, 59

event, 64
installing, 63
prototype, 64

Hardware triggers and events, 59
Header file, visa.h, 31
Help

HyperHelp on HP-UX, 28
man pages on HP-UX, 28

High-level functions for VXI, 89
HP-UX

compiling, 27
directory structure, 262
linking, 27
logging messages, 27
online help, 28

HyperHelp on HP-UX, 28

I
Idn.c example, 17, 25
Installing handlers, 63
Instrument errors, 76
Interface specific attributes, 53, 270

Interfaces
GPIB, 87
GPIB-VXI, 87
LAN, 115
VXI, 87

Interrupts and events, 59
IO Libraries, introducing 10

L
LAN

client/server, 115
communication, 120
configuration, 119
networking protocols, 117
overview, 115
performance, 119
servers, 119
SICL LAN Protocol, 117
signal handling, 124
software architecture, 117
TCP/IP Protocol, 117
threads with LAN client, 118
timeouts, 122

LAN client
definition, 115
threads used with, 118

LAN server
definition, 115
description of, 119

Libraries, 19
Linking in HP-UX, 27
Linking to VISA libraries, 19
Lockexcl.c example, 81
Locks

acquiring exclusive lock while
holding shared lock, 80
examples, 81
lockexcl.c example, 81
lockshr.c example, 83
nested, 80
shared, 79
using, 77
Index 323

Lockshr.c example, 83
Logging error messages, 21
Logging messages on HP-UX, 27
Low-level memory for VXI, 94

M
Man pages on HP-UX, 28
MEMACC, 104
Memory I/O perf with VXI, 99
Memory mapping, 95
Memory space, unmapping, 96
Message viewer, using, 22
Message-based devices, 88

N
Nested locks, 80
Networking protocols, 117
Nonfmtio.c example, 49
Non-formatted I/O, 48

O
Online help in HP-UX, 28
Opening sessions, 31

P
Performance

with LAN, 119
with VXI, 99

Printing history, 8
Protocols, networking, 117

Q
Queuing and events, 59, 70

R
Raw I/O, 48
Register programming

high-level memory functions, 89
low-level memory functions, 94
mapping memory space, 95

Register-based devices, 88
Resource attributes, 51, 267
Resource manager, 31
Resource manager session, 31

Resources
finding, 36
locking, 77
MEMACC, 104

Restricted rights, 7
Running an example program, 27

S
Searching for resources, 36
Serial, attributes, 56
Servers, LAN, 119
Sessions

addressing, 34
closing, 36
device, 32
LAN, 120
opening, 31
resource manager, 31

Shared locks, 79, 80
SICL LAN Networking Protocol, 117
Signal handling with LAN, 124
Special characters, 44
Srqhdlr.c example, 67
SRQs and events, 59
Starting the resource manager, 31

T
TCP/IP Networking Protocol, 117
telephone numbers, Agilent, 10
Threads in 32-bit, 118
Timeouts with LAN, 122
Trademark information, 8
Trapping instrument errors, 76
Trigger lines, 111
Triggers and events, 59
Types, VISA, 310

U
Unmapping memory space, 96
Using the debug window, 22
Using the event viewer, 21
Using the message viewer, 22
Using MEMACC, 104
324 Index

V
viAssertTrigger, 134
viBufRead, 136
viBufWrite, 138
viClear, 140
viClose, 36, 142
viDisableEvent, 65, 144
viDiscardEvents, 147
viEnableEvent, 64, 71, 150
viEventHandler, 154
viFindNext, 36, 156
viFindRsrc, 36, 158
viFlush, 160
viGetAttribute, 50, 163
viGpibControlREN, 165
viIn16, 89, 167
viIn32, 89, 167
viIn8, 89, 167
viInstallHandler, 63, 169
viLock, 77, 171
viMapAddress, 94–95, 175
viMemAlloc, 178
viMemFree, 180
viMove, 181
viMoveAsync, 184
viMoveIn16, 89, 187
viMoveIn32, 89, 187
viMoveIn8, 89, 187
viMoveOut16, 89, 190
viMoveOut32, 89, 190
viMoveOut8, 89, 190
viOpen, 32, 193
viOpenDefaultRM, 31, 196
viOut16, 89, 198
viOut32, 89, 198
viOut8, 89, 198
viPeek16, 94, 200
viPeek32, 94, 200
viPeek8, 94, 200
viPoke16, 94, 201
viPoke32, 94, 201
viPoke8, 94, 201
viPrintf, 39, 202
viQueryf, 39, 210
viRead, 212

viReadAsync, 215
viReadSTB, 217
VISA

completion codes, 281
description, 13
documentation, 14
editing configuration, 314
error codes, 282
support, 13
trigger lines, 111
types, 310
users, 13

visa.h header file, 31
viScanf, 39, 219
viSetAttribute, 228
viSetBuf, 230
viSPrintf, 232
viSScanf, 234
viStatusDesc, 236
viTerminate, 237
viUninstallHandler, 238
viUnlock, 77, 240
viUnmapAddress, 241
viVPrintf, 39, 242
viVQueryf, 39, 244
viVScanf, 39, 246
viVSPrintf, 248
viVSScanf, 250
viWaitOnEvent, 71, 252
viWrite, 255
viWriteAsync, 257
VXI

attributes, 53, 110, 270
high-level memory functions, 89
low-level memory functions, 94
mapping memory space, 95
message-based devices, 88
performance, 99
programming overview, 87
register programming, 89, 94
register-based devices, 88
setting trigger lines, 111
writing to registers, 96

Vxihl.c example, 91
Vxill.c example, 96
Index 325

W
Wait on event, 71
Warranty, 7
Web site, Agilent, 10
Windows

building applications, 19
building DLLs, 19
directory structure, 261
linking to VISA libraries, 19

Windows 95
LAN client and threads, 118
threads in 32-bit, 118

Windows NT
LAN client and threads, 118
threads, 118

Writing to VXI registers, 96
326 Index

	Notice
	Warranty Information
	U.S. Government Restricted Rights
	Trademark Information
	Printing History
	Copyright Information
	1 Introduction
	What’s in This Guide?
	VISA Overview
	Using VISA and SICL
	VISA Support
	VISA Documentation

	2 Building a VISA Application in Windows
	An Example VISA Program
	Example Source Code
	Example Program Contents

	Compiling and Linking a VISA Program
	Linking to VISA Libraries
	Microsoft Visual C++ Version 6.0 Compilers
	Borland C++ Version 4.0 Compilers

	Logging Error Messages
	Using the Event Viewer
	Using the Message Viewer
	Using the Debug Window

	3 Building a VISA Application in HP-UX
	An Example VISA Program
	Example Source Code
	Example Program Contents
	Running the Example Program

	Compiling and Linking a VISA Program
	Logging Error Messages
	Using Online Help
	Using the HyperHelp Viewer
	Using HP-UX Manual Pages

	4 Programming with VISA
	Using Device Sessions
	Including the VISA Declarations File
	Opening a Device Session
	Addressing a Device Session
	Closing a Device Session
	Searching for Resources

	Sending I/O Commands
	Types of I/O
	Using Formatted I/O
	Using Non-Formatted I/O

	Using VISA Attributes
	What are VISA Attributes?
	VISA Resource Attributes
	VISA Generic Instrument Attributes
	VISA Interface-Specific Instrument Attributes
	VISA Event Attributes

	Using Events and Handlers
	Events and Attributes
	Using the Callback Method
	Using the Queuing Method

	Trapping Errors and Using Locks
	Trapping Errors
	Using Locks

	5 Programming VXI Devices
	Introduction to VXI Devices
	Interface Descriptions
	VXI Device Types

	Using High-Level Memory Functions
	Programming the Registers
	High-Level Memory Functions Examples

	Using Low-Level Memory Functions
	Programming the Registers
	Low-Level Memory Functions Examples

	Using VXI Backplane Memory I/O Methods
	Example: Using VXI Backplane Memory I/O

	Using the Memory Access Resource
	Memory I/O Services
	Example: MEMACC Resource Program
	MEMACC Attribute Descriptions

	Using VXI Specific Attributes
	Using the Map Address as a Pointer
	Setting the VXI Trigger Line

	6 Programming over LAN
	LAN Overview
	LAN Client/Server Model
	LAN Hardware Architecture
	LAN Software Architecture
	LAN Configuration and Performance

	Using the LAN
	Communicating with Devices over LAN
	Using Timeouts over LAN
	Using Signal Handling over LAN
	Using Service Requests over LAN

	7 VISA Language Reference
	VISA Functions Overview
	viAssertTrigger
	viBufRead
	viBufWrite
	viClear
	viClose
	viDisableEvent
	viDiscardEvents
	viEnableEvent
	viEventHandler
	viFindNext
	viFindRsrc
	viFlush
	viGetAttribute
	viGpibControlREN
	viIn8, viIn16, and viIn32
	viInstallHandler
	viLock
	viMapAddress
	viMemAlloc
	viMemFree
	viMove
	viMoveAsync
	viMoveIn8, viMoveIn16, and viMoveIn32
	viMoveOut8, viMoveOut16, and viMoveOut32
	viOpen
	viOpenDefaultRM
	viOut8, viOut16, and viOut32
	viPeek8, viPeek16, and viPeek32
	viPoke8, viPoke16, and viPoke32
	viPrintf
	viQueryf
	viRead
	viReadAsync
	viReadSTB
	viScanf
	viSetAttribute
	viSetBuf
	viSPrintf
	viSScanf
	viStatusDesc
	viTerminate
	viUninstallHandler
	viUnlock
	viUnmapAddress
	viVPrintf
	viVQueryf
	viVScanf
	viVSPrintf
	viVSScanf
	viWaitOnEvent
	viWrite
	viWriteAsync

	A VISA System Information
	Windows Directory Structure
	HP-UX Directory Structure
	About the Directories

	B VISA Attributes
	VISA Resource Attributes
	VISA Generic Instrument Attributes
	VISA Interface-Specific Instrument Attributes
	GPIB and GPIB-VXI Interfaces
	VXI and GPIB-VXI Interfaces
	GPIB-VXI Interface
	ASRL Specific INSTR Resource Interface Attributes

	MEMACC Resource Attributes
	Generic MEMACC Attributes
	VXI and GPIB-VXI Specific MEMACC Resource Attributes
	GPIB-VXI Specific MEMACC Resource Attributes

	VISA Event Attributes

	C VISA Completion and Error Codes
	Alphabetized Completion and Error Codes
	Completion and Error Codes for VISA Functions

	D VISA Type Definitions
	E Editing the VISA Configuration
	Editing on Windows 95/98/2000/NT
	Editing on HP-UX

	Glossary
	Index

