CSUB Utility Contents

CSUB Overview

CSUB Environment

CSUB Call Interface

Building a CSUB

COM Variables

Display and Keyboard Routines

C Language Examples

Include File Listings

Copyright© 2005 TransEra



CSUB Overview

The CSUB Toolkit allows one to build compiled subprograms for HTBasic. A compiled subprogram, or
CSUB, runs directly on the processor hardware and has access to all of it’s power and functionality. Many
functions can be performed with CSUBs that otherwise would be impossible with BASIC programs.

Once built, a CSUB may be loaded into HTBasic with LOADSUB and deleted with DELSUB just as any
other SUB program. CSUBs may be stored in a PROG file and loaded along with other subprograms.

Manual Organization

This section of the manual presents the basic information required to write, test, and build a CSUB
routine. The following list explains what each chapter describes.

CSUB Overview, contains information about the required tools, supported CSUB development
languages, development support options, special projects support, distribution media, and installation
instructions.

CSUB Environment, describes the CSUB execution environment, error reporting conventions, elements
of a CSUB, and CSUB resource restrictions.

CSUB Parameters, describes how HTBasic passes CALL parameters to the CSUB, data and dimension
pointer types, the dimension table, how to handle OPTIONAL arguments, and the NPAR value.

Building a CSUB, presents the steps required to build a CSUB for use with the HTBasic for Windows
version.

COM Variables, describes the com_var function, used to locate COM memory variables, the movable
nature of COM data, and the use of COM statements in CSUB prototype definitions. Two program
examples are presented that demonstrate how to use the com_var function.

Display and Keyboard Routines, describes the display and keyboard routines available to a CSUB.

C Examples, provides simple C language CSUB examples. Also included is an example that defines
several CSUBs combined into one CSUB context.

Include File Listings, lists the C language include files.



CSUB Languages

CSUBs may be written in any language that can handle C type argument pointers. The CSUB object code
is linked into a Windows DLL or dynamic linked library. The HTBasic CSUB utility combines an HTBasic
SUB definition file and the DLL control information to create a PROG file. This help file describes how to
use the C language to create CSUBs.



Pascal CSUB's

Because of major differences in the HTBasic CSUB environment and computer resources, this CSUB
Toolkit does not provide specific help in converting existing HP 9000 Workstation Pascal CSUBs.



Development Support

Creating an HTBasic Windows CSUB involves some knowledge of the Windows and C language runtime
environments.

Windows CSUB Toolkit Files

The HTBasic Windows CSUB Toolkit consists of an include file, the HTBasic CSUB utility program and a
C language example program.

Filename Description

CSUB.EXE Windows CSUB Builder Utility

CSUB.HLP Windows CSUB Builder Help file

CSUBW.H Windows CSUB include file

EXAMPLE Windows C language example program directory
The Windows CSUB example program files are located in the \HTBWIN\CSUB\EXAMPLE directory.
Filename Description

WINTEST.MAK Visual C++ make file

WINTEST.DEF Linker DEF

WINTEST.DLL Windows DLL file

WINTEST.C C source

WINTEST.PRO CSUB Prototype PROG file

WINTEST.CSB CSUB PROG file

RUNTEST.BAS BASIC Test program for Wintest CSUB



CSUB Environment

This chapter describes the CSUB execution environment, error reporting conventions, elements of a
CSUB, and resource restrictions.

CSUB routines run directly on the processor and have access to all of its instructions and power. They
execute as if they were internal HTBasic routines using the HTBasic processor stack. Arguments are
passed to the CSUB using the normal C language calling method.

The value returned from the CSUB by the C return statement is used as the BASIC error value. A zero
value denotes no error. Error values should be limited to values in the range 1 through 32760 and should
correspond to the HTBasic error values. If a non-zero value is returned the line number reported will be
the line number of the CALL statement.

A floating point exception handler is set up to return control to HTBasic upon any floating point exception.
It uses a longjmp function to return control to HTBasic’s CALL routine and includes the floating-point error
code. The line number reported with the error will be the line number of the CALL statement.

Care must be taken to insure that all user and C runtime library routines function correctly within the
CSUB environment.



Dynamic Link Libraries

Dynamic Link Library CSUBs

HTBasic for Windows can execute certain types of Windows 32-bit DLLs (Dynamic Link Libraries) as
CSUBs. This requires the addition of the DLL and calling information to the CSUB context.

CSUB Elements

A Windows CSUB is identical to a tokenized SUB program with the addition of Windows DLL information.
The CSUB program context is made up of normal tokenized BASIC program lines with the supporting
symbol, name, and dimension tables. There are no relocation table or object code sections. The DLL
information section contains the name of the DLL and other CSUB calling information.

Dynamic Link Library Routines

The Windows 32-bit DLL is generated by a compiler and linker combination that makes DLLs compatible
with the Win32 DLL format for Intel processors. The DLL can access all the standard C library runtime
routines as well as those described in the Microsoft Win32 Programmer’s Reference, with the exceptions
noted in the Microsoft Win32s User’s Guide. A DLL destined to be a CSUB can also use any of the
routines documented in the "Display and Keyboard Routines” section to access the display and keyboard
through HTBasic for Windows.



CSUB Call Interface

This chapter describes how HTBasic passes CALL arguments to the CSUB, how to define data and
dimension table pointers, and how to handle OPTIONAL arguments.



CALL Actions

When a CALL statement is executed, the normal HTBasic parameter matching and expression evaluation
occurs up to the point where the interpreter would execute the first tokenized SUB program line. At that
point, the CSUB routine is called and it executes as if it were another internal HTBasic routine. After
control returns to HTBasic the return value is tested for an error condition and the interpreter continues
execution.



Pass by Reference

All CALL arguments are passed by reference. That is, all user arguments are pointers to the data. Simple
numeric variables generate one pointer that points to the variable data. Strings and Array variables
generate two pointers. The first points to the first element of the data array and the second points to the
array dimension table. The array elements are stored in row-major order. String elements are made up of
the current string length followed by the string character data.



Pointer Types

The include file csub.h defines the parameter pointer types and data structures. These parameter types
and their pointer names are summarized in the following table.

BASIC Type C Type

INTEGER intptr

REAL realptr

COMPLEX cpxptr

Numeric Array realptr or intptr and dimptr
String strptr and dimptr

String Array strptr and dimptr



Dimension Table

The dimension table is organized as follows:

Name Size Description

elen 2 bytes Element Length

tae 4 bytes NOD/Total Allocated Elements

cae 4 bytes Current Allocated Elements

sbs[0] 4 bytes Base and Size Elements (first subscript)
sbs[5] 4 bytes Base and Size Elements (sixth subscript)

The elen item defines the element length. It is 2 for INTEGER, 8 for REAL, 16 for COMPLEX, or the
string dimensioned length. Only the elen item is defined for simple string variables.

The tae item defines the total number of allocated elements in the lower 24 bits and the number of
dimensions in the upper 8 bits. Use the NOD macro defined in csub.h to extract this value.

The cae item defines the current number or elements in use. This value can be different from the value of
tae if the program has executed a REDIM statement.

The sbs item defines the base and size values for each dimension. Only the dimensioned number of sbs
items are allocated and defined. For example: If an array is defined with one subscript, only one sbs item
is allocated and defined.

INTEGER Arguments

For INTEGER arguments the CSUB routine requires a pointer to the integer data value. This is defined as
follows:

100 SUB TEST1 (INTEGER A)

int testl( int NPAR, intptr a)

Where NPAR is the number of arguments in the CALL and a is a pointer to the integer data.
REAL Arguments

For REAL arguments the CSUB routine requires a pointer to the real data value. This is defined as
follows:

110 SUB TEST2 (REAL B)

int test2( int NPAR, realptr Db)

Where NPAR is the number of arguments in the CALL and b is a pointer to the real data.
COMPLEX Arguments

For COMPLEX arguments the CSUB routine requires a pointer to the complex data value. This is defined
as follows:

120 SUB TEST3 (COMPLEX C)

int test3( int NPAR, cpxptr c)

Where NPAR is the number of arguments in the CALL and c is a pointer to the complex data.
Array Arguments

For Array arguments the CSUB routine requires two pointers, one for the data and one for the array
dimension table. This is defined as follows:

130 SUB TEST4 (INTEGER A(*))
int test4( int NPAR, intptr a, dimptr ad )

Where NPAR is the number of arguments in the CALL, a is a pointer to the array data, and ad is a pointer



to the array dimension table. The array data elements are stored in row-major order.
String Arguments

For string arguments the CSUB routine requires two pointers, one for the string data structure and one for
the string dimension table. This is defined as follows:

140 SUB TESTS5( C$ )
int test5( int NPAR, strptr c¢, dimptr cd )
Where c is a pointer to the string data, ¢d is a pointer to the string dimension table.

The string data is made up of two parts, the current string length followed by the string data. See the
csub.h include file for detailed information about string data.

String Array Arguments

For string array arguments the CSUB routine requires two pointers, one for the string data structure and
one for the string array dimension table. This is defined as follows:

150 SUB TEST6( DS$(*) )
int test6( int NPAR, strptr d, dimptr dd)

Where d is a pointer to the string array data, and dd is a pointer to the string array dimension table. The
string array elements are stored in row-major order.



Optional Arguments

The int value of NPAR is passed as the first item in the CSUB parameter list so the CSUB can know the
number of arguments in the CALL statement. Omitted OPTIONAL arguments are passed as NULL
pointers. The CSUB can use the value of NPAR to determine the number of passed arguments or it can
test the argument pointer values before they are used. For example:

if ( NPAR > 4
*b = result;
else
return( 143

if( b )

*b = result;
else

return( 143

)

) ;

) ;

/*

/*

/*

/*

OK for use */

missing OPTIONAL argument */

OK for use */

missing OPTIONAL argument */

This chapter described how HTBasic passes CALL arguments to the CSUB, how to define data and
dimension table pointers, and how to handle OPTIONAL arguments.



Building a CSUB

This chapter presents the steps required to build a Windows 32-bit DLL CSUB for use with HTBasic for
Windows.

There are six steps used to build a CSUB.

* Define the CALL interface.

* Create the CSUB prototype PROG file.

» Write the CSUB routines.

* Debug the CSUB in a stand-alone environment.

» Link the CSUB, helper routines, and CSUB header.
* Run the HTBasic CSUB utility.

Each of these steps is explained on the following pages.



Define the CALL Interface

The first step in building a CSUB is to define the CALL interface. This amounts to defining the number,
type, and order of the CSUB arguments. They are defined using the SUB program line syntax and may be
of type REAL, INTEGER, COMPLEX, or String. They may be simple variables or arrays.

Using the HTBasic SUB statement syntax, define the CSUB arguments that are required. INTEGER A,
specifies a simple integer variable, whereas INTEGER A(*) specifies an integer array. A$, specifies a

simple string variable, whereas A$(*) specifies a string array. This information will be used to create the
CSUB prototype in the next step.



Create the CSUB Prototype

Once the CSUB arguments are defined, you can proceed to create the CSUB prototype PROG file. It
provides the CSUB name and argument definitions that will be used later by the CSUB builder utility. It is
created from within HTBasic using the EDIT mode as follows:

* Enter the SUB, any COM, and SUBEND program lines.
* Move back to the SUB line and press INSERT-LINE.
* Enter 1 END.

For example:

1 END
10 SUB Testl2( INTEGER A(*), REAL B, C$ )
20 SUBEND

This creates a small main context and a SUB context named Test12. If you are defining several entry
points in one CSUB context then continue to enter the additional SUB definitions after the first. For
example:

30 SUB Testl3( AS$, INTEGER B, C )
40 SUBEND

After all the desired SUBs have been defined you must pre-run the program and then store it as a PROG
file as follows:

* Press the STEP key or enter RUN to pre-run the SUB program.
* STORE the program to a PROG file:

STORE "your_routine.pro"

Remember that if you include COM statements in a SUB definition, you must enter the full COM definition
in the main context to allow a prerun. For more information on using COM variables in CSUBs, see the
"COM Variables" section.



Write the CSUB Routines

Once the CSUB prototype PROG file is created, you can proceed to write the CSUB routines. The basic
outline of a CSUB routine in the C language is as follows:

/* Define Static Data Here */
static int saveit;
static char name[20];

int name ( int NPAR, parameters.... ) {
code to implement function

return error;

}
static int other routines( parameters.... ) {
code to implement function

}

Remember that the C language routine receives the value of NPAR as the first argument and that it must
return an error value. Define all global data and routines as static to make the DLL symbol table as small
as possible.

CSUB Examples
Complete working C language CSUB examples are given later in this manual.
Routine Name

You may choose any routine name that is unique from any other DLL routine name in use in the Windows
system.



Debug the CSUB

A Windows CSUB may be debugged using any debugger that can work with Windows 32-bit DLLs.
Simple debugging may be done using the Windows sprintf and MessageBox functions.

For large amounts of debugging, it may be better to write a WinMain program and link it directly to the
CSUB as a static object, and then debug the WinMain program with the integrated debugger available

with most compilers.



Compiling the CSUB

The CSUB is compiled using a compiler capable of producing Windows 32- bit DLLs, such as Microsoft
Visual C++ version 2.0 or above or Borland C++ version 4.0 or above. These 32-bit DLLs must be

compatible with the Win32 calling standard.



Link the CSUB

The routines in the CSUB are linked to become a Windows 32-bit DLL, by being made into a library and
then converted to a DLL by combining the library and a definitions file using a DLL-builder. The definitions
file should contain, as a minimum, a LIBRARY section naming the library and an EXPORTS section

naming each CSUB entry point. See the example files TEST.DEF and TEST.MAK to see how this is done
using the Microsoft 32-bit linker.



HTBasic CSUB Utility

The HTBasic CSUB utility accepts as input the prototype PROG file with one or more SUB program
definitions and the name of the DLL that contains the routines. It produces an output PROG file that
combines all the SUB program definitions and the DLL information into one CSUB context.

The CSUB utility is run from the Tools menu from within HTBasic.

“3 HTBasic CSUB Utility

Che

Input:

Source file .PRO - HTBasic PROG header file.

Output file .CSB - file containing CSUB to be loaded into HTBasic for Windows.
DLL DLL file name.

The CSUB is output to the PROG file by the utility. All the SUB prototype routines and the DLL information
are combined and output as one CSUB context.

CSUB DLL Pathname

The CSUB DLL is stored in the CSUB definition and is used to load the DLL when the CSUB is executed.
It is normally specified with a .DLL suffix. Use the exact case of the CSUB DLL file name.

When no path is specified, HTBasic will search for the DLL in the following sequence:
1) The home directory for HTBasic,
2) The current directory,
3) The Windows system directory
4) The Windows directory
5) The directories listed in the PATH environment variable.
Please refer to the WIN32 Programmer’s Reference manual for more information on DLLs.



Loading and Storing the CSUB

The resulting CSUB can now be loaded into HTBasic memory and stored to a PROG file as if it were a
normal SUB program. All CSUBs defined in one CSUB context will be treated as a group by the HTBasic
LOADSUB and DELSUB statements. Use the name of the first CSUB to load or delete the entire CSUB

context.
If you SAVE a program that contains a CSUB you will get just the CSUB program lines in the output file.

When you attempt to GET the program, the CSUB program lines will be reported as syntax errors. To fix
this problem, delete the CSUB lines and LOADSUB the CSUBs from a valid PROG file.

Remember that the Windows DLL file is now a part of the HTBasic program. It must be available on the
computer system that is running the program that calls the CSUB.



Unexpected Operation

Once these steps have been completed, you are ready to test the new CSUB inside HTBasic. If the
CSUB operates unexpectedly inside HTBasic, first check the link map for any library routines that might
not operate correctly within the HTBasic CSUB environment. If you do not see any that look suspicious,
perform further testing in a stand-alone environment to try and find the problem.



COM Variables

This chapter describes the com_var function, used to locate COM memory variables, the movable nature
of COM data, and the use of COM statements in CSUB prototype definitions. Two example C programs
are presented to demonstrate how to access COM variables.

You may access COM variables from within a CSUB. The com_var function is used to return a pointer to
either the start of the specified COM variable data area, its dimension table, or the start of the specified
COM data area. If the COM area is not defined or if the variable is not defined, or if the variable is not an
array, a null pointer is returned. The function is defined as:



com_var Function

void *com var (char *name, int varnum, int ptrtype);

The first argument is a pointer to the COM area name. The name is specified with the first character in
upper case and the rest in lower case. The blank COM area name is specified as a single space.

The second argument is the COM variable number. Its value ranges from zero through the number of
defined variables in the COM area. COM variables are numbered in left to right order starting with 1. If a
zero is specified, the start of the COM data area is returned. If too large a variable number is specified, a
null pointer is returned.

The third argument specifies the type of pointer to return. A zero specifies the variable data pointer and a
one specifies the dimension table entry pointer. If a dimension table pointer is requested for a variable
that is not a string or an array, a null pointer is returned.



Movable COM Data

Because a COM data area may be moved during a RUN, GET, or LOAD statement, you should always
call com_var to get the current address before accessing the data area. Do not save the address for use
in a later invocation of the CSUB.



Prototype COM Lines

Include COM program lines in the BASIC prototype definition only if you need to insure that the COM data
area is left in memory between LOAD statements. COM program lines are specified after the SUB line
and before the SUB END line. They will be displayed when the CSUB s listed. You must specify the full
COM area definition in the Main program context to allow the SUB prototype to be prerun.



COM Examples

The following examples show how to access a COM area or individual COM variables from within a

CSUB.

This example shows how to access a COM area from a C subprogram.

10 COM /Test/ B,
20 MAT I=(10)

30 CALL Tcoml

40 PRINT I(0)

50 END

60 SUB Tcoml

70

80 I(0)=I(2)*56
90 SUBEND
Prototype

1

2 END

10 SUB Tcoml

20

30 SUBEND

C Program

#include "csub.h"

INTEGER I(9),

A$[100]

COM /Test/B, INTEGER I (*),AS$

COM /Test/ B, INTEGER I (9),A$[100]

COM /Test/ B, INTEGER I (*),AS$

struct test

{

T_
T_
T_
U_

}i

tcoml (

FLT b;
INT i[10];
SUBS 1;
CHAR a[100];

npar

int npar;

{

T_

INT c;

struct test *t;

/* COM

/*
/~k
/*
/*

REAL

INTEGER I (0:9)
AS[100]
AS string data */

/Test/ data area def */

B */
*/

current length */

) /* ACCESS FULL COM DATA AREA */

/* number of parameters */

/* working variable */
/* COM data area pointer */

t = com var ("Test", 0, 0); /*
1if( 't ) /* area
return( 47 ); /* no,

c = t->1[2]; /* yes,
t->i[0] = c * 56; /*
return( 0 ); /*

}

get COM /Test/ data ptr */
found? */

area not found */

get 3rd INTEGER element */

set value of first element */
no error */

The next example shows how to access individual COM variables and their array descriptions from within
a C subprogram.

BASIC Program

10 COM /Test/ B, INTEGER I(9), AS$[100]
20 MAT I=(1)

30 CALL TCOM2

40 PRINT I(0),I(1),I(2),AS

50 END



60 SUB TCOM2

70 COM /Test/ B, INTEGER I(*), AS
80 I(0)=RANK(I)
90 I(1)=BASE(I,1)

100 I(2)=SIZE(I,1)
110 AS="This is a test of strings"
120 SUBEND

Prototype

1 COM /Test/ B, INTEGER I(9), AS$S[100]
2 END

10 SUB Tcom2

20 COM /Test/ B, INTEGER I(*), AS
30 SUBEND

C Program

#include "csub.h"
#include <string.h>

tcom2 ( npar ) /* ACCESS SPECIFIC COM VARIABLES */

int npar; /* number of parameters */

{

intptr ip; /* integer pointer */

realptr dp; /* real pointer */

DIM *ep; /* dimension pointer */

T STR *sp; /* string pointer */

dp = com var ("Test", 1, 0); /* get B data pointer */

ip = com_var ("Test", 2, 0); /* get I data pointer */

ep = com var ("Test", 2, 1); /* get I dim entry ptr */
if( !dp || l'ip || 'ep) /* variables found? */

return( 47 ); /* no, variable not found */

ip[0] = NOD (ep); /* return number of subscripts */
ip[1l] = ep->sbs[0].base; /* subscript base */

ip[2] = ep->sbs[0].size; /* and size values */

sp = com _var ("Test", 3, 0); /* get AS$ data pointer */

ep = com var ("Test", 3, 1); /* get A$ dim entry ptr */
if( !sp || lep ) /* variables found? */

return( 47 ); /* no, variable not found */

memcpy ( sp->str, "This is a test of strings", 25);
sp->clen = 25; /* set the length */

return( 0 ); /* no error */

}

This chapter described the com_var function, used to locate COM memory variables, the movable nature
of COM data, and the use of COM statements in CSUB prototype definitions. Two example C programs
were presented that demonstrate how to access COM variables.



Display and Keyboard Routines

This chapter describes the internal HTBasic routines available to a CSUB to control the Display and
Keyboard. The following table lists the display and keyboard support routines.

Routines

Routine Name Description

CSB_VER Version number of Table
kbdcrt_check Check required Version
kbdcrt_clear_screen CLEAR SCREEN
kbdcrt_controlcrt CONTROL CRT
kbdcrt_controlkbd CONTROL KBD
kbdcrt_crtreadstr Read Output Area
kbdcrt_crtscroll Scroll Display
kbdcrt_cursor Control Cursor
kbdcrt_dispstr Write to Display
kbdcrt_printstr Print to Output Area
kbdcrt_readkbd Read the KBD$ buffer
kbdcrt_scrolldn Scroll Output Area Down
kbdcrt_scrollup Scroll Output Area Up
kbdcrt_statuscrt STATUS CRT
kbdcrt_statuskbd STATUS KBD
kbdcrt_systemd SYSTEMS Function

These routines are called using the C language calling conventions. Most routines return either an
HTBasic error code or a value of zero for no error. A description of each of the routines and a C language
calling example are presented on the following pages.



Version
CSB_VER
Description

This macro returns the version number of the keyboard and display routine jump table. It can be used by
the CSUB to determine if it is running on a version of HTBasic that includes the required defined entries.

Example

1if( CSUB_VER < REQUIRED )
return( 2009 ); /* report the error */



Check Version
void kbdcrt check( );
Description

This routine checks the version number of the keyboard and display routine jump table. If the running
HTBasic does not have the required version of the jump table it returns an error number 2009 to HTBasic.

Example
kbdcrt_check( );



Clear Screen

void kbdcrt clear screen( );

Description

This routine performs the same action as the CLR SCR key and the CLEAR SCREEN statement. The
return value is either an HTBasic error code or a zero indicating no error.

Example

kbdcrt_clear_screen( );



CRT Control

int kbdcrt controlcrt( int reg, int value );

Where:
reg - register number
value - value to write to control register

Description

This routine performs the same action as the CONTROL CRT statement. The return value is either an
HTBasic error code or a zero indicating no error.

Example

int error;
error = kbdcrt_controlcrt( 13, 15);

See Also
kbdcrt_statuscrt, kbdcrt_statuskbd



KBD Control

int kbdcrt controlkbd( int reg, int value );

Where:
reg - register number
value - value to write to control register

Description

This routine performs the same action as the CONTROL KBD statement. The return value is either a zero
indicating no errors or the HTBasic error code.

Example

int error;
error = kbdcrt_controlkbd( 3, 50 );

See Also
kbdcrt_statuskbd, kbdcrt_statuscrt



Read Output Area

int kbdcrt crtreadstr( char *buf, int max, int *len );

Where:
buf - string buffer pointer
max - length of string buffer
0x10000000 - return characters and attributes flag
len - number of bytes written to buf

Description
This routine performs the same action as ENTER CRT;A$. The non-blank 1, 12,0 );

See Also
kbdcrt_scrolldn, kbdcrt_scrollup



Cursor

int kbdcrt cursor( int col, int line, int type );

Where:
col - alpha character column number
line - alpha character row number
type - cursor type 0=Normal, 1=Insert, 2=0ff

Description

This routine erases the current cursor and places a new cursor at the specified character location. The
values of col and line are the same as specified by PRINT TABXY(col,line). The return value is either a
zero for no errors or an HTBasic error code.

Any action generated by HTBasic which affects the cursor will move the cursor back to its normal
location. You may wish to trap all keyboard input with ON KBD while using this routine.

Example

int error;
error = kbdcrt_cursor( 1, 10,0 );



Write to Display

int kbdcrt dispstr( int col, int line, char *buf, int len, int clr );

Where:
col - alpha character column number
line - alpha character row number
buf - string pointer
len - string length
clr - color value or enhancement attributes buffer flag
0-255 = text color value (See description)

-1 = buf is a two byte string, first byte character,
second byte color and enhancement attributes
0x00FF - color value (See description)
0x0100 - inverse video attribute bit
0x0200 - blink attribute bit
0x0400 - underline attribute bit

Description

This routine writes a string directly to the display at the specified text location in either the requested color
or the specified attributes. Because this routine bypasses the normal Output Area buffer routines,
characters cannot be read back with the kbdcrt_crtreadstr routine and can not be scrolled back onto the
screen with the kbdcrt_scrolldn and kbdcrt_scrollup routines. Use the kbdcrt_printstr routine to enter
characters into the extended Output Area buffer.

The values of col and line are the same as specified by PRINT TABXY/(col,line). If the color value is -1
then the string contains the character to display in the first byte and the enhancement and color attributes
in the second byte.

The return value is either a zero for no errors or an HTBasic error code.
Example

int error;
error = kbdcrt_dispstr( 10, 10, "This is a test", 14, 1);

See Also
kbdcrt_printstr



Print String

void kbdcrt printstr( char *buf, int len );

Where:
buf - string pointer
len - string length
0x1000000 - Raw character and color/attribute flag

Description

This routine writes a string to the scrollable Output Area buffer just like a PRINT statement. The
characters are displayed at the current PRINT position using the current color and enhancement
attributes. Control characters and enhancement and color characters (128-143) are handled just like
during a PRINT.

If the Raw flag is set in the string length then the string contains two bytes for each display character. The
character is in the first byte and the color and enhancement attributes are in the second byte. This format
is the same as used by the kbdcrt_dispstr routine. The string is copied directly into the Output Area
buffer and the characters are displayed with the specified color and enhancement attributes.

Example

kbdcrt_printstr( "This is a test", 14 );
See Also

kbdcrt_dispstr



Read KBD$ Buffer

int kbdcrt readkbd( char *buf, int max, int *len );

Where:
buf - buffer pointer
max - length of buf
len - number of bytes read

Description

This routine returns the contents and then clears the KBD$ buffer. The characters are returned in the
buffer pointed to by buf. It is not null terminated. The number of characters written is returned in /len. The
return value is either a zero indicating no errors or an HTBasic error code.

Specify the ON KBD statement before entering the CSUB. If you do not wish closure keys to block the
keyboard input specify the ON KBD ALL option.

int error;

int len;

char buf[160];

error = readkbd( buf, 160, &len );

See Also

crtread



Scroll Output Down
void kbdcrt scrolldn( );
Description

This routine scrolls the Output Area down one line. This also scrolls text from and to the extended Output
Area.

Example
kbdcrt_scrolldn( );
See Also

kbdcrt_scrollup



Scroll Output Up

void kbdcrt scrollup( );
Description

This routine scrolls the Output Area up one line. This also scrolls text from and to the extended Output
Area.

Example
kbdcrt_scrollup( );
See Also
kbdcrt_scrolldn



CRT Status

int kbdcrt_statuscrt( int reg, int *value);

Where:
reg -register number
value - pointer to location for status register value

Description

This routine performs the same action as the STATUS CRT statement. The current value of the specified
register is returned. The return value is either a zero indicating no errors or an HTBasic error code.

Example

int error;
int value;
error = kbdcrt statuscrt( 13, &value );

See Also
kbdcrt_controlcrt, kbdcrt_statuskbd



KBD Status

int kbdcrt_statuskbd( int reg, int *value );

Where:
reg - register number to read
value - pointer to location for status register value

Description

This routine performs the same action as the STATUS KBD statement. The current value of the specified
register is returned. The return value is either a zero indicating no errors or an HTBasic error code.

Example

int error;
int value;
error = kbdcrt statuskbd( 3, &value );

See Also
kbdcrt_controlkbd, kbdcrt_statuscrt



SYSTEM$ Function

int systemd( char *arg, char *buf, int max, int *len );

Where:
arg - pointer to null terminated request string
buf - string buffer pointer
max - maximum buffer length
len - returned string length

Description

This routine performs a SYSTEM$( ) function and returns a null terminated response in the string buffer
and sets len to the length of the response. The return value is either a zero, indicating no errors, or an
HTBasic error code.

Example

int error;

char buf[160];

int len;

error = systemd( "VERSION:HTB", buf, 160, &len );



C Language Examples

This chapter provides C language CSUB examples for argument types, INTEGER, REAL, Arrays, Strings,
and COM data, and an example that defines several CSUBs combined into one CSUB context. These
examples are installed into CSUB Toolkit directory HTBWIN\CSUB\EXAMPLE

C Overview

C language CSUBs provide few, if any restrictions or requirements on the writer. The compiler takes care
of most of the implementation details. The CSUB routine must return an error value. A value of zero is
used for no error, non-zero values are interpreted as standard BASIC error values as given in Appendix A
of the HTBasic Reference Manual.

By examining the following programs you can learn the required details to implement most CSUBs. If you
have a large number of routines, make sure you examine the last example that demonstrates how to
package several routines into one CSUB context.



INTEGER Variables

An INTEGER variable is defined as a short int in C. You are passed a pointer to the data location. This
example shows how to access an INTEGER from a C routine.

BASIC Program

10 INTEGER I

20 I=256

30 CALL Imp3( I )

40 PRINT I

50 END

60 SUB Imp3( INTEGER A )
70 A=A*3

80 SUBEND

Prototype

1 END
10 SUB Imp3( INTEGER A )
20 SUBEND

C Program

#include "csub.h"
imp3 ( npar, a )

int npar; /* number of parameters */
intptr a; /* integer data pointer */
{

*a = *a * 3; /* return a new value */
return( 0 ); /* no errors */

}



REAL Variables

A REAL variable is defined as a double in C. You are passed a pointer to the data location. This example
shows how to access a REAL variable from a C routine.

BASIC Program

10 REAL R

20 R=512

30 CALL Rdv4 ( R )
40 PRINT R

50 END

60 SUB Rdv4 ( A
70 A=A/ 4
80 SUBEND

)
.0

Prototype

1 END
10 SUB Rdv4( A )
20 SUBEND

C Program

#include "csub.h"
rdv4 ( npar, a )

int npar; /* number of parameters */
realptr a; /* real data pointer */

{

*a = *a / 4.0; /* return a new value */
return( 0 ); /* no errors */



Numeric Arrays

A numeric array variable generates two pointers. The first points to the first element of the data array and
the second points to the array dimension table. The array elements are stored in row-major order.

This example shows how to access an INTEGER array from a C routine.

BASIC Program

10 INTEGER I(20),S

20 MAT I=(2)

30 CALL Isum( I(*),S )
40 PRINT S

50 END

60 SUB Isum( INTEGER A(*), S )

70 S=0

80 FOR I=0 to 20

90 S=S+A (1)

100 NEXT I

110 SUBEND

Prototype

1 END

10 SUB Isum( INTEGER A(*), S )

20 SUBEND
C Program

#include "csub.h"

isum( npar, a, d, s ) /* sum integer array */
int npar; /* number of parameters */

intptr a; /* array data pointer */
dimptr d; /* array dim entry pointer */
intptr s; /* integer sum pointer */
{

int 1i; /* element counter */

int max = d->cae; /* get number of elements */
int sum = 0L; /* clear the sum */

for(i = 0; 1 < max; ++1i) /* scan all elements */

sum += ali];
*s = (T_INT)sum; /* return the sum value */

return( 0 ); /* no error */

}



String Variables

A string variable generates two pointers. The first points to the string data structure and the second points
to the dimension table. For simple strings only the element length is defined in the dimension structure. It
specifies the maximum dimensioned length of the string data.

This example sets a simple string variable from a C routine.
BASIC Program

10 DIM S$[40]

20 CALL Strint( S$ )

30 PRINT LEN(SS),S$

40 END

50 SUB Strint ( AS )

60 AS = "This is a test of strings"
70 SUBEND

Prototype

1 END
10 SUB Strint( AS )
20 SUBEND

C Program

#include "csub.h"
#include <string.h>

strint ( npar, a, d )

int npar; /* number of parameters */

strptr a; /* string data pointer */

dimptr d; /* string dimension pointer */

{

if( d->elen < 25 ) /* check variable length */
return( 18 ); /* too small, return error */

memcpy ( a->str, "This is a test of strings", 25);

a->clen = 25; /* set the length */

return( 0 ); /* no error */

}
Note: if the strcpy( ) function is used, remember that it will append a NULL.



String Arrays

A string array generates two pointers. The first points to the string data area and the second points to the
array dimension table. The string data area contains the string elements in row-major order.

A string element is made up of a short int current string length followed by the string data. Each string
element is allocated with enough string data space to contain the maximum dimensioned string length
rounded up to an even length.

This example demonstrates setting a string array element from a C routine.
BASIC Program

10 DIM S$(10) [40]

20 CALL Streint( SS$(*), 4)
30 PRINT LEN(SS$(4)),SS$(4)
40 END

50 SUB Streint( SS$(*), INTEGER E )

60 S$(E) = "This is a test of strings"
70 SUBEND

Prototype

1 END
10 SUB Streint( AS$(*), INTEGER E )
20 SUBEND

C Program

#include "csub.h"
#include <string.h>

streint ( npar, a, d, e )

int npar; /* number of parameters */

strptr a; /* string data pointer */

dimptr d; /* dimension pointer */

intptr e; /* element number to set */

{

strptr t; /* string element pointer */

int maxsize = d->elen;/* get element size */

if( *e > d->cae ) /* check element number */
return( 18 ); /* too large, return error */

if ( maxsize < 25 ) /* check variable length */
return( 18 ); /* too small, return error */

/* Notice the string element address calculation */

if( maxsize & 1) /* 1f odd length */
++maxsize; /* round up to even length */
t = (strptr) ((U CHAR *)a + ((maxsize + sizeof (T _SUBS)) * *e));

memcpy ( t->str, "This is a test of strings", 25);
t->clen = 25; /* set the length */
return( 0 ); /* no error */

}
Note: Don’t use the strcpy( ) function because it will append an un-wanted NULL.



Several Routines in one CSUB Context

This example shows how to combine several routines into one CSUB context. It shows five C routines
and five HTBasic SUB routines all defined in one CSUB context. The entire CSUB context can be loaded
by one LOADSUB and deleted by one DELSUB statement that mentions the first CSUB’s name.

Prototype SUB program lines:
BASIC Program
10 ! prototype SUB program lines:

20 END

30 SUB Integ (INTEGER A)

40 SUBEND

50 SUB Real (A)

60 SUBEND

70 SUB Isum (INTEGER A(*),S)
80 SUBEND

90 SUB Strint (AS)

100 SUBEND
110 SUB Streint (AS$(*), INTEGER E)
120 SUBEND

C Programs

#include "csub.h"
#include <string.h>

integ( npar, a ) /* INTEGER C SUB routine */
int npar; /* number of parameters */
intptr a; /* integer data pointer */
{
*a *= 3; /* return the new value */
return( 0 ); /* no errors */
}
real ( npar, a ) /* REAL C SUB routine */
int npar; /* number of parameters */
realptr a; /* real data pointer */
{
*a /= 4.0; /* return a new value */
return( 0 ); /* no errors */
}
isum( npar, a, d, s ) /* Integer Array C SUB routine */
int npar; /* number of parameters */
intptr a; /* array data pointer */
dimptr d; /* array dim pointer */
intptr s; /* sum data pointer */
{
int 1i; /* element counter */
int max = d->cae; /* get number of elements */
int sum = 0L; /* clear the sum */
for(i = 0; i < max; ++1i) /* scan all elements of array */
sum += al[i];
*s = (T_INT)sum; /* return the sum value */

return( 0 ); /* no error */



}
strint ( npar, a, d ) /* String C SUB routine */

int npar; /* number of parameters */

strptr a; /* string data pointer */

dimptr d; /* string dimension pointer */

{

if( d->elen < 25 ) /* check variable length */
return( 18 ); /* too small, return error */

memcpy ( a->str, "This is a test of strings", 25);

a->clen = 25; /* set the length */

return( 0 ); /* no error */

}

streint ( npar, a, d, e ) /* String Array C SUB routine */

int npar; /* number of parameters */

strptr a; /* string data pointer */

dimptr d; /* dimension pointer */

intptr e; /* element number to set */

{

strptr t; /* string element pointer */

int maxsize = d->elen; /* get element size */

int zbe; /* zero base element number */

zbe = *e - d->sbs[0] .base; /* zero based element number */

if( zbe > d-cae ) /* check element number */
return( 18 ); /* too large, return error */

if( maxsize > 25 ) /* check variable length */
return( 18 ); /* too small, return error */

/* Notice the string element address calculation */

if( maxsize & 1) /* if odd length */
++maxsize; /* round up to next even length */
t = (strptr) ((U CHAR *)a + ((maxsize + sizeof (T SUBS)) * zbe));

memcpy ( t->str, "This is a test of strings", 25);
t->clen = 25; /* set the length */
return( 0 ); /* no error */

}

All the preceding C language examples are on the distribution media. The files used to create and test the
CSUB are included for each example. You may use these routines as a model to implement CSUB
routines.



Include File Listings

This chapter lists the include files provided with the CSUB Toolkit. They define the various HTBasic data
types, structures, keyboard and display routines. Include the csubw.h file. For example:

#include "csub.h"

For C language programs that require floating point math include the math.h file if creating a CSUB in the
C program file. For example:

#include "cmath.h"



Windows C Include File
/* CSUBW.H — HTBasic Windows CSUB C Language Include File, 6.0 */
/* (c) Copyright 1989-2002 TransEra Corp. All Rights Reserved */

#define MX STLEN 32767 /* maximum string length */
#define MX SUBS 6 /* maximum number of subscripts */

typedef unsigned char U CHAR;
typedef unsigned short int U_SHORT;
typedef unsigned long U _LONG;

typedef short int T SUBS;/* subscript value */

typedef struct subs /* SUBSCRIPT BOUNDS DATA */

{

T SUBS Dbase; /* subscript lower bound value */

T SUBS size; /* number of elements */

} SUBS;

typedef struct dim /* DIMENSION TABLE ENTRY */

{

U LONG elen; /* Element LENgth (string max len) (bytes) */
U LONG tae; /* Total Allocated Elements (upper byte nod) */
U LONG cae; /* Current Allocated Elements */

SUBS sbs[MX SUBS]; /* Subscript Bounds */

} DIM;

/* The upper byte of dim.tae is used to store the number of dimensions */

#define NOD(d) ( ((d)->tae > 24) &0xFF) ) /* number of dimensions */
#define TAE(d) ( (d)->tae & O0xOOFFFFFF ) /* total array elements */
typedef short int T INT; /* BASIC INTEGER value */

typedef double T FLT; /* BASIC REAL value */

typedef struct t cpx /* BASIC COMPLEX value */

{

T FLT r; /* real part */

T FLT i; /*imaginary part */

} T _CPX;

typedef struct t str /* BASIC STRING Data */

{

T SUBS clen; /* current string length */

U CHAR str[MX STLEN]; /* string data */

} T _STR;

typedef DIM *dimptr; /* pointer to Dimension Structure */
typedef T INT *intptr; /* pointer to INTEGER Value */
typedef T FLT *realptr; /* pointer to REAL Value */

typedef T CPX *cpxptr; /* pointer to COMPLEX Value */
typedef T STR *strptr; /* pointer to String Structure */
declspec (dllexport) void *(* fnd var) (); /* COM memory finder */

#define com var (n,v,p) (* fnd var) ( (char *) (n), (int) (v), (int) (p) )



/* CSUB Jump Table Definition */
_declspec(dllexport) int

(** _cimptbl) () :

#define CSB _VER ((long) csbjtbl[ 0])

#define kbdcrt check

if ( CSB_VER < 16 )

return( 2009 )

/* Keyboard and Display Routines */

#define
#define
#define
#define

kbdcrt clear screen
kbdcrt controlcrt (r,v)
kbdcrt controlkbd(r,v)
kbdcrt crtreadstr (b, m, 1)

#define kbdcrt crtscroll(f,1,d)

#define kbdcrt cursor(c,1,t)

#define kbdcrt dispstr(c,1l,b,s,a)

#define kbdcrt printstr(b,1)

#define kbdcrt readkbd(b,m, 1)
#define
#define
#define
#define
#define

kbdcrt scrolldn

kbdcrt scrollup

kbdcrt statuscrt(r,v)
kbdcrt statuskbd(r,v)
kbdcrt systemd(a,b,m, 1)

/* end of CSUBW.H */

(* csbjtbl[ 2
(* csbjtbl[ 3
(* csbjtbl[ 4
(* csbjtbl[ 5
((char*) (b), (
(* csbjtbl[ 6]
((int) (£), (in
(* csbjtbl]
((int) (c), (
(* csbjtbl]
((int) (c), (
(int) (s), (
(* csbjtbl(
((char*) (b
(* csbjtbl]
((char*) (b
(* csbjtbl]
(* csbjtbl[
(* csbjtbl]
(* csbjtbl]|
(* csbjtbl]
((char™*) (a),

/* ptr to csub jump table */



{ewl RoboEx32.dIl, WinHelp2000, }






