
Advanced Math Library
Contents
Introduction
Higher mathematical functions
Statistics and data reduction
Signal processing
Numerical analysis
System Requirements
Installing the HTBasic Math Library
Loading the Subroutines
Function Reference

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Copyright © 2003 TransEra

Introduction

The HTBasic Math Library is a collection of subroutines that give users of the HTBasic programming
language access to fast versions of higher mathematical and signal processing functions. Most of these
routines are compiled, so they run at a much higher speed than equivalent BASIC subroutines.

The routines are meant to be incorporated into user BASIC programs to enhance their speed, and to save
the user's writing the subroutines himself.

The subroutines included in the HTBasic Math Library include:

Higher mathematical functions

· Cylindrical and spherical Bessel and Hankel functions of real arguments of integer and half-integer
order.

· Airy and Kelvin functions of real arguments.

· Error function and complementary error function of real and complex arguments, and Dawson's
integral.

· Elliptical integrals of real arguments.

· Fresnel integrals.

· Exponential, log, sine, and cosine integrals of real arguments.

· Gamma and beta functions of real and complex arguments.

· Incomplete gamma and beta functions of real arguments.

· LeGendre, Hermite, and Chebyshev polynomials of real arguments and integer orders.

Statistics and data reduction

· Probability density functions and probability integrals for many probability distributions.

· Mean, median, standard deviation, and variance of sets of data.

· Curve fitting using both linear regression and higher-order polynomial functions.

· Polar/rectangular conversion of sequences of complex numbers.

Signal processing

· Fourier transforms and inverse Fourier transforms of both real and complex sequences.

· Digital filtering, correlation, convolution, autocorrelation, and power spectral density of sequences of
data.

· Windowing using cosine, triangular, and Bessel windows.

· Built-in waveforms.

Numerical analysis

· Solutions to linear systems of equations having both real and complex coefficients.

· Polynomial evaluation.

· Numerical integration.

· Roots of equations of the form f(x) = 0.

· Derivatives and antiderivatives of polynomials.

System Requirements

The HTBasic Math Library requires HTBasic 386 release 3.2 or above, a computer having a 386
processor with an 387 numeric coprocessor (or compatible) or a 486 processor and at least 1.5 Mbytes of
memory.

Installing the HTBasic Math Library

To install the Math Library Component of the HTBasic Legacy Workshop, first place the distribution CD-
ROM into the CD drive. If you are in a Windows environment, the CD will autoplay and will give you a
graphical setup menu to guide you through the installation. If you are in a DOS environment, at the root of
the CD type SETUP.

Follow the instructions in the installation program to install the Math Library Component of HTBasic
Legacy Workshop to your hard drive. You will be given an opportunity to choose which components to
install.

During installation you will be asked to input your unique serial number. This eleven digit number can be
found on your CD jewel case. Correct input of this number is required to complete installation. This
number will be stored on your system.

If you are installing from windows, the install program will create a program group and icons for running
the Workshop components.

HTBasic Legacy Workshop is distributed on CD-ROM. If you need to install to a machine with out a CD-
ROM, a make disk utility is provided on the CD-ROM. From the root of the CD type DISKETTE, and follow
the instructions in the make disk program.Before installing the HTBasic Math Library, be sure that
HTBasic is properly installed on your computer, as described in its instruction manual.

Loading the Subroutines

The subroutines in this library are grouped into modules. A module is a group of subroutines that share
some common program sections. When a program loads a routine from a module, HTBasic loads the
entire module. For example, the FNAi Airy function is in the module AIRY. When this module is loaded, all
the other functions in the module, FNAie, FNBi, and FNBie, become available to the program also.

As shipped, the diskette containing the Math Library contains two copies of each module. One copy is in
a file having the same name as the module, with the ".HTS" extension, and one is in the large file
MATHLIB.HTS, which contains all the modules. This is done for convenience only; only one copy of each
module needs to reside on a computer for the library to be usable. The Loading topic in each manual
entry in the following section gives two or more ways to load the module containing each routine, one
from the file having just the module containing the routine and one or more from the MATHLIB.HTS file.

The ordinary way to load a subroutine into an HTBasic program is to first enter the program into the
computer from the keyboard or load it from a file. After this is done, type the appropriate form of the
HTBasic LOADSUB command on the computer, as explained later in this section. The module containing
the subroutine then becomes a part of the program in the computer. If the subroutine is a compiled
subroutine (as are most of those in the math library), it will be displayed in program listings as a single
CSUB line listing its name and arguments. After the subroutine is loaded, the program may be run or
modified as needed. After the subroutine is loaded, the program should be saved to disk using the
HTBasic RE-STORE command. After this is done, the subroutine is part of the program and will be loaded
together with the program when the file is loaded into HTBasic. Using the HTBasic SAVE command to
save the program in an ASCII file will remove any compiled subroutines from the program.

One or more modules may be loaded under program control as well, by placing the appropriate
LOADSUB line in the program. When this is done, the program makes provisions for not Loading the
modules a second time if it is run more than once.

If a module is loaded more than once into a program, it will still function, but the memory used by the
additional copies of the module is wasted until HTBasic terminates.

There are two sets of the math library subroutines on the distribution diskette. One set of routines is in
files having the same names as the modules they contain, with the ".HTS" extension. For example, the
Airy module is contained in the file AIRY.HTS. Another set of the math library functions is in the file
MATHLIB.HTS. This file contains all the functions in a single file. The Loading topic in each manual entry
in the following section gives two or more ways to load the module containing each routine, one from the
file having just the module containing the routine and one or more from the MATHLIB.HTS file. Loading
the subroutines from the MATHLIB.HTS file is more automatic; the HTBasic interpreter will search the
program for unloaded subroutines and functions and try to find them in MATHLIB.HTS. It will then search
the functions and subroutines it loaded from MATHLIB.HTS to see if they in turn call other functions and
subroutines, and, if so, will search MATHLIB.HTS for those also. This procedure can be quite slow, as
MATHLIB.HTS contains many subroutines. Loading from the separate files is faster, but requires that the
user know which files contain the modules it needs.

Although there are many ways to organize files on a hard disk drive, there are two methods widely used
with HTBasic installations. The first of these is to place all the HTBasic program files and user program
files in a single directory, usually named C:\HTB386. HTBasic is then always run from that directory. The
documentation in this manual assumes this organization of the disk. In particular, the Loading topic in
each entry in the manual contains a file name without any directory name, implying that the file containing
the subroutine is in the current directory.

Another way to organize the hard disk is to put all the HTBasic files in a single directory but to put the
user programs in one or more other directories. If this is done, add the appropriate directory name to the

file name given in the Loading topic in the manual entry. For example, to load the module containing the
Airy function Ai, the manual says to use the statement

LOADSUB ALL FROM "AIRY.HTS"

or

LOADSUB FROM "MATHLIB.HTS"

to load the module containing the FNAi function. If the directory containing the file AIRY.HTS or
MATHLIB.HTS is C:\HTB386 and this is not the current directory when a program needing the AIRY
module is run, use the statement

LOADSUB ALL FROM "C:\HTB386\MATHLIB\AIRY.HTS"

or

LOADSUB FROM "C:\HTB386\MATHLIB\MATHLIB.HTS"

instead of that listed in the Loading topic.

In those situations where the program is saved as an ASCII file, for example, when using a PC text editor
to develop an HTBasic program, the appropriate LOADSUB command may be enclosed in an IF block to
ensure that the math subroutines are loaded only once, as shown in following program section:

10 COM /Math/ INTEGER Loaded
20 IF Loaded=0 THEN
30 LOADSUB FROM "MATHLIB.HTS"
40 Loaded=1
50 END IF

This program section works because COM variables such as Loaded are initialized to zero when created
and after that time they retain their former values.

Many of the functions in the Math Library use helper routines. The names of these routines begin with
"F_". A program incorporating functions from the Math Library should avoid definining subroutines with
names that begin with "F_". This restriction may be eliminated in future versions of the Math Library.

Function Reference

In this portion of the manual, each function or subroutine is listed in alphabetical order. In the case of
functions, the "FN" at the beginning of the function name is not used in the alphabetization. Following the
name and a one-line Description of the routine is a Loading topic that tells the program statements to use
in order to load the subroutine for use in a program, as discussed earlier. Only one of these statements
should be used. The next topic, Usage, describes the types of variables used to CALL, or run, the
subroutine. Arrays are shown with "(*)" in place of their actual dimensions. An actual program declaring an
array would contain a number in parenthesis instead of the asterisk shown in the Usage topic. Also, the
variable type declarations, such as INTEGER, REAL, or COMPLEX, generally appear at the beginning of
the program, while the CALL statement appears later in the program, even though they are shown
together in the manual entries.

The main portion of each manual entry is the Description topic, which describes what each subroutine
does. This is followed by an Errors topic, which explains any HTBasic Errors that the subroutine can
cause and why they happen. There may also be a See Also topic listing related subroutines, a Notes topic
giving additional details about the subroutine, and a graph of some of the values returned by the
subroutine.

Many function descriptions mention the value MAXREAL. As explained in the HTBasic manual, this is the
largest value that can be represented in the computer's real number notation. In computers that use the
IEEE double precision floating point standard, this value is about 1.7 × 10309.

Ai
Airy function of the first kind.

Loading LOADSUB ALL FROM "AIRY.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNAi(X)

Description
FNAi returns the value of the Airy function of the first kind of x. Note that sometimes Airy
functions are written with an order, as in Ai3(x). In this notation, the function FNAi returns
the value of Ai0(x). Ai(x) is defined for any real value x.

Errors
FNAi causes a BASIC error if its argument is not of type REAL.

See Also
Aie, Ai_Bi, Bi

Ai(x)

Aie
Scaled Airy function of the first kind.

Loading LOADSUB ALL FROM "AIRY.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNAie(X)

Description
FNAie returns the value of e2xx/3Ai(x). X must be positive or zero. Ai is the Airy function
of the first kind. This subroutine is useful for determining the value of Ai(x) for large
positive values of x, where the related FNAi function returns values near zero.

Errors
FNAie causes a BASIC error if its argument is not of type REAL or if x is negative.

See Also
Ai

e2xx/3Ai(x)

Ai_bi
Airy functions of the first and second kinds.

Loading LOADSUB ALL FROM "AIRY.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X
COMPLEX C
C=FNAi_bi(X)

Description
FNAi_bi returns the values of the Airy functions of the first and second kinds of the real
value x. The real part of the return value C is the value of Ai(x) and the imaginary part of
C is the value of Bi(x). Although it is defined for all real values of x, this function is usually
used with negative values of x, since the Airy functions of the first and second kinds
behave somewhat like damped cosine and sine functions in this region.

Errors
FNAi_bi causes a BASIC error if its first argument is not of type COMPLEX or its second
argument is not of type REAL. It also causes a BASIC error if the value of the imaginary
component of the value returned (Bi) would be larger than MAXREAL, the largest number
representable.

See Also
Ai, Bi

Ai(x) + iBi(x)

Arg[Ai(x) + iBi(x)], degrees

Autocorrelate
Autocorrelation of a sequence.

Loading LOADSUB ALL FROM "FFT.HTS"
or LOADSUB Autocorrelate FROM "MATHLIB.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER Logn
REAL A(*),C(*)
CALL Autocorrelate(Logn,A(*),C(*))

Description
Autocorrelate calculates the autocorrelation of the sequence in the array A and returns
the result in the array C. Logn is the base-2 logarithm of the number of points in the
sequence to be correlated. The array A must have at least 2Logn elements and the array
C must have at least 2Logn+1 elements; if they have more than the required number of
elements, the extra elements are ignored and unmodified. The number of elements in A
denoted by each permitted value of Logn is shown in the table below:

Logn No. Elements (2Logn)
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384

The number of elements required in C for each value of Logn is twice the value given in
the table above.

The autocorrelation is a measure of a function's similarity to itself as the abscissa is
shifted. If a(x) is the function being tested and the interval of interest is x (0,T), and if a is
zero outside this interval, then the autocorrelation, c(x), is defined by the relation

Note that, while a(x) is nonzero on the interval x (0,T), c(x) is nonzero on the interval x (-
T,T).

If the function a is only defined at regularly-spaced discrete points x = (k+½)T/N, k =
{0,1,2,...,N-1}, the integration can be approximated by assuming that a(x) is constant and
equal to a([k+½]T/N) between x = kT/N and x = (k+1)T/N. The expression above can then
be replaced by

In this case, c([k+½]T/N) is defined for k = {-N,-(N-1),...,0,...,N-1}.

Autocorrelate returns the values of c([k+½]T/N) in the array C. The first N elements of C
represent k = {0,1,...,N-1} and the last N elements in C represent
k = {-N,-(N-1),...,-1}.

Errors
Autocorrelate causes a BASIC error if its arguments are not of the types shown in the
USAGEsection, above, if Logn is not between 2 and 15, inclusive, or if the size of A or C
is smaller than the values described above.

See Also
Correlate, Convolve, Fft, Power_spectrum, Fft

Be
Complex Kelvin function of the first kind of a real argument.

Loading LOADSUB ALL FROM "KELVIN.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X
COMPLEX C
C=FNBe(X)

Description
FNBe returns the values of the real and imaginary Kelvin functions of the first kind of the
value x. The real part of the value returned is the value of ber(x) and the imaginary part is
the value of bei(x). Although ber(x) and bei(x) are defined for all real values of x, large
positive values of x may produce results greater than MAXREAL, the largest value
representable.

Errors
FNBe causes a BASIC error if it argument is not of type REAL. It also causes a BASIC
error if the value of either component of the value returned would be larger than
MAXREAL.

See Also
Ber, Bei, Ke

ber(x) + ibei(x)

Arg[ber(x) + ibei(x)], degrees

Bei
Imaginary Kelvin function of the first kind of a real argument.

Loading LOADSUB ALL FROM "KELVIN.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNBei(X)

Description
FNBei returns the value of the imaginary Kelvin function of the first kind of the value x.
Although bei(x) is defined for all real values of x, large positive or negative values of x
may produce results greater in magnitude than MAXREAL, the largest value
representable. Note that sometimes Kelvin functions are written with an order, as in
bei3(x). In this notation, the function FNBei returns the value of bei0(x).

Errors
FNBei causes a BASIC error if its argument is not of type REAL or if the value returned
would be larger in magnitude than MAXREAL.

See Also
Be, Ber

bei(x)

Ber
Real Kelvin function of the first kind of a real argument.

Loading LOADSUB ALL FROM "KELVIN.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNBer(X)

Description
FNBer returns the value of the real Kelvin function of the first kind of the value x. Although
ber(x) is defined for all real values of x, large positive or negative values of x may
produce results greater in magnitude than MAXREAL, the largest value representable.
Note that sometimes Kelvin functions are written with an order, as in ber3(x). In this
notation, the function FNBer returns the value of ber0(x).

Errors
FNBer causes a BASIC error if its argument is not of type REAL or if the value returned
would be larger in magnitude than MAXREAL.

See Also
Be, Bei

ber(x)

Beta
Beta function.

Loading LOADSUB ALL FROM "GAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL A,B,Y
Y=FNBeta(A,B)

Description
FNBeta returns the value of B(a,b), where B represents the beta function. B(a,b) is
defined as (a)(b)/(a+b) (see Gamma). B(a,b) is only defined for a > 0 and b > 0.

Errors
FNBeta causes a BASIC error if its arguments are not all of type REAL or if either a or b
is negative or zero.

See Also
Cbeta, Gamma, Logbeta

B(a,b)

Bi
Airy function of the second kind.

Loading LOADSUB ALL FROM "AIRY.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNBi(X)

Description
FNBi returns the value of the Airy function of the second kind of x. Note that sometimes
Airy functions are written with an order, as in Bi3(x). In this notation, the function FNBi
returns the value of Bi0(x). Although Bi(x) is defined for all real values of x, large positive
values of x may produce results greater than MAXREAL, the largest value representable.

Errors
FNBi causes a BASIC error if its argument is not of type REAL or if its result would be
larger than MAXREAL.

See Also
Ai, Ai_Bi, Bie

Bi(x)

Bie
Scaled Airy function of the second kind.

Loading LOADSUB ALL FROM "AIRY.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNBie(X)

Description
FNBie returns the value of e-2xx/3Bi(x). X must be positive or zero. Bi is the Airy function
of the second kind. This subroutine is useful for determining the value of Bi(x) for large
positive values of x, where the related Bi function returns large values or produces BASIC
Errors for values too large to represent.

Errors
FNBie causes a BASIC error if its argument is not of type REAL or if x is negative.

See Also
Bi

e-2xx/3Bi(x)

Binom
Binomial coefficients.

Loading LOADSUB ALL FROM "FACT.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER M,N
REAL Y
Y=FNBinom(N,M)

Description
FNBinom returns the binomial coefficient

In terms of factorials,

Errors
FNBinom causes a BASIC error if its arguments are not of type INTEGER or if the value
returned would have a magnitude larger than MAXREAL, the largest value representable.

See Also
Fact

C
Fresnel cosine integral of a real argument.

Loading LOADSUB ALL FROM "FRESNEL.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNC(X)

Description
FNC returns the value of the Fresnel cosine integral of x, C(x). C(x) is defined by the
relation

Errors
FNC causes a BASIC error if its argument is not of type REAL.

See Also
S

C(x)

Cbeta
Complex beta function of a complex argument.

Loading LOADSUB ALL FROM "CGAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage COMPLEX A,B,C
C=FNCbeta(A,B)

Description
FNCbeta returns the value of the beta function of the complex values a and b, B(a,b).
B(a,b) is defined as (a)(b)/(a+b) (see Gamma). B(a,b) is only defined for e(a) > 0 and e(b)
> 0.

Errors
FNCbeta causes a BASIC error if its arguments are not all of type COMPLEX, or if the
real part of either a or b is negative or zero.

See Also
Beta, Cgamma, Clogbeta

Cdigamma
Complex digamma function of a complex argument.

Loading LOADSUB ALL FROM "CDIGAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage COMPLEX Z,C
C=Cdigamma(Z)

Description
FNCdigamma returns the value of the digamma function (sometimes called the psi
function) of the complex value z, Y(z). The value of Y(z) approaches ± as z approaches
a real negative integer value or zero.

Errors
FNCdigamma causes a BASIC error if its argument is not of type COMPLEX or if the
magnitude of either the real or imaginary component of Y(z) exceeds MAXREAL, the
largest number representable.

See Also
Cgamma, Digamma

Cerf
Complex error function of a complex argument.

Loading LOADSUB ALL FROM "CERF.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage COMPLEX Z,C
C=FNCerf(Z)

Description
FNCerf returns the value of the error function of the complex value z, erf(z). The
imaginary part of the value of erf(z) approaches ± if the real part of z is zero and the
magnitude of the imaginary part of z becomes large.

Errors
FNCerf causes a BASIC error if its argument is not of type COMPLEX or if the magnitude
of either the real or imaginary component of erf(z) exceeds MAXREAL, the largest
number representable.

See Also
Cerfc, Erf

Cerfc
Complex complementary error function of a complex argument.

Loading LOADSUB ALL FROM "CERF.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage COMPLEX Z,C
C=FNCerfc(Z)

Description
FNCerfc returns the value of the complementary error function of the complex value z,
erfc(z). The imaginary part of the value of erfc(z) approaches if the real part of z is zero
and the magnitude of the imaginary part of z becomes large.

Erfc(z) is related to the error function returned by the FNCerf function, erf(z), by the
expression

Errors
FNCerfc causes a BASIC error if its argument is not of type COMPLEX or if the
magnitude of erfc(z) exceeds MAXREAL, the largest number representable.

See Also
Cerf, Erf

Cfft
Complex discrete Fourier transform.

Loading LOADSUB ALL FROM "FFT.HTS"
or LOADSUB Cfft FROM "MATHLIB.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER Logn
COMPLEX A(*),C(*)
CALL Cfft(Logn,A(*),C(*))

Description
Cfft calculates the discrete Fourier transform of the sequence in the array A and stores
the result in the array C. Logn is the base-2 log of the number of points in the sequences.
The arrays A and C must contain at least 2Logn elements; if they have more than this
number of elements, the extra elements are ignored and unmodified. The number of
elements denoted by each permitted value of Logn is shown in the table below:

Logn No. Elements (2Logn)
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384

If the values in A are taken to be values of a continuous complex signal, a(t), sampled at
constant intervals of T (time, distance, or whatever units apply), and if the signal sampled
contained no terms at or above the frequency 1/2T, then the coefficients in the array C
are the coefficients of the complex Fourier series that describes a(t). A(t) can be
reconstructed from the elements of C through the following formula:

where

The first N/2 elements in the array C represent k = {0,1,...,N/2-1} and the last N/2
elements in C represent k = {-N/2,-(N/2-1),...,-1}.

If the signal a(t) contains components at or above the frequency 1/2T, the situation is
complicated by aliasing, which is explained in most signal processing textbooks.

Some of the more common operations done using discrete Fourier transforms, such as
convolution, correlation, and filtering, are available as separate CSUBs; see the entries
for Autocorrelate, Convolve, Correlate, Filter, Rfilter, and Power_Spectrum for details on
their use. The inverse of Cfft is computed by the Icfft subroutine. A discrete Fourier
transform for real sequences is done by the Fft subroutine. Fft is approximately twice as
fast as Cfft for a given real sequence and uses half the storage.

Errors
Cfft causes a BASIC error if its arguments are not of the types shown in the USAGE
section, above, if Logn is not between 2 and 15, inclusive, or if the size of A or C is
smaller than 2Logn.

Examples
The manual entry for the Fft routine contains two examples that explain some of the uses
and limitations of the discrete Fourier transform. Although the programs in the examples
use the real discrete Fourier transform calculated by the Fft subroutine, the principles
explained there are valid for the complex discrete Fourier transform also.

See Also
Convolve, Correlate, Fft, Filter, Icfft, Power_spectrum, Rfilter

Note
Some discrete Fourier transforms view the input array as a series of multipliers of Dirac
delta operators. The values output from such transforms are the same as those output by
Cfft except that each value is multiplied by N.

Cgamma
Complex gamma function of a complex argument.

Loading LOADSUB ALL FROM "CGAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage COMPLEX Z,C
C=FNCgamma(Z)

Description
FNCgamma returns the value of the gamma function of the complex value z, G(z). The
value of G(z) approaches ± as z approaches a real negative integer or zero. The gamma
function is related to the factorial of a nonnegative integer n, by the relation

This relation is often used to define a factorial function for all complex numbers except
negative real integers and zero, by replacing n in the above expression with a complex
variable.

Errors
FNCgamma causes a BASIC error if its argument is not of type COMPLEX or if the
magnitude of either the real or the imaginary component of G(z) exceeds MAXREAL, the
largest number representable.

See Also
Cloggamma, Gamma

Chi
Hyperbolic cosine integral.

Loading LOADSUB ALL FROM "EI.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNChi(X)

Description
FNChi returns the value of the hyperbolic cosine integral of x, Chi(x). Chi(x) is defined by
the relation

where g is Euler's number; g = 0.57721566490153...

The real version of Chi(x) is only defined for positive values of x. Large positive values of
x may produce results greater than MAXREAL, the largest value representable.

Chi(x)

Errors
FNChi causes a BASIC error if its argument is not of type REAL. It also causes a BASIC
error if the value of x is negative or zero or if Chi(x) would be greater than MAXREAL.

See Also
Ei, Ci, Shi, Si

Ci
Cosine integral.

Loading LOADSUB ALL FROM "EI.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNCi(X)

Description
FNCi returns the value of the cosine integral of x, Ci(x). Ci(x) is defined by the relation

where g is Euler's number; g = 0.57721566490153...

The real version of Ci(x) is only defined for positive values of x. Large positive values of x
may produce results greater than MAXREAL, the largest value representable.

Ci(x)

Errors
FNCi causes a BASIC error if its argument is not of type REAL. It also causes a BASIC
error if the value of x is negative or zero or if Ci(x) would be greater than MAXREAL.

See Also
Ei, Ci, Shi, Si

Clogbeta
Complex logarithm of the beta function of a complex argument.

Loading LOADSUB ALL FROM "CGAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage COMPLEX A,B,C
C=FNClogbeta(A,B)

Description
FNClogbeta returns the value of the logarithm of the beta function of the complex values
a and b, log[B(a,b)]. B(a,b) is defined as G(a)G(b)/G(a+b) (see Gamma). B(a,b) is only
defined for Â(a) > 0 and Â(b) > 0.

Errors
FNClogbeta causes a BASIC error if its arguments are not both of type COMPLEX or if
the real part of either a or b is negative or zero.

See Also
Beta, Cbeta, Cgamma, Logbeta

Cloggamma
Complex logarithm of the gamma function of a complex argument.

Loading LOADSUB ALL FROM "CGAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage COMPLEX Z,C
C=FNCloggamma(Z)

Description
FNCloggamma returns the value of the logarithm of the gamma function of the complex
value z, log[G(z)]. The value of log[G(z)] approaches ± as z approaches a negative real
integer or zero.

Errors
FNCloggamma causes a BASIC error if its argument is not of type COMPLEX or if the
magnitude of either the real or imaginary component of log[G(z)] exceeds MAXREAL, the
largest number representable.

See Also
Cgamma, Gamma, Loggamma

Cmul2
Multiply outputs of Fft function.

Loading LOADSUB ALL FROM "FFT.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB Cmul2 FROM "MATHLIB.HTS"

Usage COMPLEX A(*),B(*),C(*)
CALL Cmul2(A(*),B(*),C(*))

Description
Cmul2 multiplies each element in A by the corresponding element in B and stores the
result in the corresponding element of C. The elements are in the form of the Fourier
series coefficients output by the Fft subroutine. A special routine for multiplying these
coefficients is necessary because the basis functions of the Fourier sine series are not
normal, since

and

for k a positive integer. When the coefficients of two such series are multiplied, the result
for each term having k > 0 needs to be scaled by dividing by 2 to make the resultant
series have the same basis functions as the original series.

Two series output by the related Cfft subroutine can be multiplied using the HTBasic
matrix dot (".") operator, since the basis function for Cfft, e2Pikt (i =Ö -1), is normal.

Errors
Cmul2 causes a BASIC error if its arguments are not of the types shown in the USAGE
section, above, or if the size of A, B, or C is smaller than 2Logn.

See Also
Fft

Convolve
Convolution of two sequences.

Loading LOADSUB ALL FROM "FFT.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB Convolve FROM "MATHLIB.HTS"

Usage INTEGER Logn
REAL A(*),B(*),C(*),S(*)
CALL Convolve(Logn,A(*),B(*),C(*),S(*))

Description
Convolve calculates the convolution of the sequences in the arrays A and B and places
the result in the array C. Logn is the base-2 log of the number of points in the sequences
to be convolved. The arrays A and B must have at least 2Logn elements and the arrays C
and S must have at least 2Logn+1 elements; if they have more than the required number
of elements, the extra elements are ignored and unmodified. S is a scratch array of at
least the size C. It contains nothing useful after the function has run, but is needed to
store intermediate results within the function. The number of elements in A and B
denoted by each permitted value of Logn is shown in the table below:

Logn No. Elements (2Logn)
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384

The number of elements required in C and S for each value of Logn is twice the value
given in the table above. S is used internally by Convolve and contains no usefule data
after Convolve has run.

If a(x) and b(x) are the functions being tested, if the interval of interest is x (0,T), and if a
and b are zero outside this interval, the convolution of a and b, c(x), is defined by the
relation

Note that, while f(x) and b(x) are nonzero on the interval x (0,T), c(x) is nonzero on the
interval x (0,2T).

If the functions a and b are only defined at regularly-spaced discrete points x = [k+½]T/N,
k = {0,1,2,...,N-1}, the integration can be approximated by assuming that a(x) and b(x) are
constant and equal to a([k+½]T/N) and b([k+½]T/N) between x = kT/N and x = (k+1)T/N.

The expression above can then be replaced by

In this case, c([k+½]T/N) is defined for k = {0,...,2N-1}.

Convolve returns the values of c([k+½]T/N) in the array C.

Errors
Convolve causes a BASIC error if its arguments are not of the types shown in the
USAGEsection, above, if Logn is not between 2 and 15, inclusive, or if the size of A, B, or
C is smaller than the values described above.

See Also
Conv, Correlate, Filter, Fft, Power_spectrum

Correlate
Correlation of two sequences.

Loading LOADSUB ALL FROM "FFT.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB Correlate FROM "MATHLIB.HTS"

Usage INTEGER Logn
REAL A(*),B(*),C(*),S(*)
CALL Correlate(Logn,A(*),B(*),C(*),S(*))

Description
Correlate calculates the correlation of the sequences in the arrays A and B and places
the result in the array C. Logn is the base-2 log of the number of points in the sequences
to be correlated. The arrays A and B must have at least 2Logn elements and the array C
must have at least 2Logn+1 elements; if they have more than the required number of
elements, the extra elements are ignored and unmodified. S is a scratch array of at least
the size of C. It contains nothing useful after the function has run, but is needed to store
intermediate results within the function. The number of elements in A and B denoted by
each permitted value of Logn is shown in the table below:

Logn No. Elements (2Logn)
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384

The number of elements required in C and S for each value of Logn is twice the value
given in the table above. S is used internally by Correlate and contains no usefule data
after Correlate has run.

Correlation is a measure of two functions' similarities to each other as the abscissa is
shifted. If a(x) and b(x) are the functions being tested, if the interval of interest is x (0,T),
and if a and b are zero outside this interval, the correlation, c(x) of f and g is defined by
the relation

Note that, while a(x) and b(x) are nonzero on the interval x (0,T), c(x) is nonzero on the
interval x (-T,T).

If the functions a and b are only defined at regularly-spaced discrete points x = [k+½]T/N,
k = {0,1,2,...,N-1}, the integration can be approximated by assuming that a(x) and b(x) are

constant and equal to a([k+½]T/N) and b([k+½]T/N) between x = kT/N and x = (k+1)T/N.
The expression above can then be replaced by

In this case, c([k+½]T/N) is defined for k = {-(N-1),...,0,...,N-1}.

Correlate returns the values of c([k+½]T/N) in the array C. The first N elements in C
represent k = {0,1,...,N-1} and the last N elements in C represent k = {-N,-(N-1),..,-1}.

Errors
Correlate causes a BASIC error if its arguments are not of the types shown in the
USAGE section, above, if Logn is not between 2 and 15, inclusive, or if the size of A, B,
or C is smaller than the values described above.

See Also
Autocorrelate, Convolve, Corr, Fft, Power_spectrum

Cpoly
Evaluate a polynomial.

Loading LOADSUB ALL FROM "CPOLY.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
COMPLEX Z,Y,C(*)
Y=FNCPoly(N,C(*),Z)

Description
FNCpoly evaluates a polynomial of degree n whose coefficients are given in the elements
of C at argument z. The first element in C is the constant term in the polynomial, the
second element is the first-degree term (the multiplier of z^2), the third element is the
second-degree term (the multiplier of z^2), etc. C must contain at least n+1 elements; if it
contains more than n+1 elements, the extra elements are ignored.

Errors
FNCpoly causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, or if the array C has fewer than n+1 elements.

See Also
Poly

Crossing
Find the point in an array that crosses a threshold.

Loading LOADSUB ALL FROM "CROSS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER K,N,S
REAL A(*),T
K=FNCrossing(A(*),T,S,N)

Description
FNCrossing finds the nth time that the values in the array A, beginning with element s,
cross the threshold value t and returns the index of the crossing. If n is negative, the
search is done backwards from the sth element for the nth crossing; otherwise, the
search is done forward from the sth element.

The values in A are considered to cross t when an element of A is equal to t and the
previous element was not equal to t, when the first element in A equals t, when an
element in A is greater than t and the previous element was less than t, or when an
element in A is less than t and the previous element was greater than t. In the latter two
cases, the crossing occurs between two elements in A; the value returned is the index of
the element after the crossing.

The value of s and the value returned are with reference to the lower bound specified
when A was dimensioned or the value specified in the OPTION BASE in effect when A
was dimensioned, if no lower bound was specified.

If the portion of A from s to the end of A (n > 0) or the portion of A from s to the beginning
of A (n < 0) contains fewer than n crossings of the value of t, -1 is returned.

Errors
FNCrossing causes a BASIC error if its arguments are not of the types shown in the
USAGE section, above, or if s is not in the range of the subscripts of A.

Csolve
Solve a system of linear equations with complex coefficients.

Loading LOADSUB ALL FROM "CSOLVE.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB Csolve FROM "MATHLIB.HTS"

Usage COMPLEX A(*),B(*)
CALL Csolve(A(*),B(*))

Description
Csolve finds the solution to the system of linear equations represented by A and B and
returns the solution in B. A must be square, that is, it must have the same number of
rows as columns. B must have the same number of rows as A and usually is a one-
dimensional array (a vector). If A represents the matrix whose entries are stored in A and
b represents the vector whose entries are stored in B, Csolve finds the solution vector, z,
for the matrix equation

Az = b

and returns the solution in B, replacing the former contents of B. The contents of the
array A are also destroyed by Csolve.

The array B may be two-dimensional. In this case, after Csolve executes, each column in
B contains the solution vector for the case when the input values in that column were
used as b in the above equation.

Csolve is equivalent to the BASIC lines

MAT Temp=INV(A)
MAT Z=Temp*B
MAT B=Z

except that the arrays Temp and Z are not needed; the intermediate results overwrite
some of the elements of A. Csolve is faster than the above BASIC fragment, because the
matrix inversion is not needed.

Errors
Csolve causes a BASIC error if its arguments are not both of type COMPLEX, if A is not
square or B doesn't have the same number of rows as A, or if A is singular.

See Also
Solve

Cw
Complex alternate error function of a complex argument.

Loading LOADSUB ALL FROM "CERF.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage COMPLEX Z,C
C=FNCw(Z)

Description
FNCw returns the value of the alternate error function of the complex value z, w(z). W(z)
is defined by the relation

The value of w(z) approaches + if the real part of z is zero and the magnitude of the
imaginary part of z becomes large in the negative direction.

The alternate error function is related to the complementary error function evaluated by
the FNCerfc function by the expression

where i = -1.

Errors
FNCw causes a BASIC error if its argument is not of type COMPLEX or if the magnitude
of w(z) exceeds MAXREAL, the largest number representable.

See Also
Cerf, Dawson, Erf

Dawson
Dawson's integral.

Loading LOADSUB ALL FROM "DAWSON.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNDawson(X)

Description
FNDawson returns the value of Dawson's integral of x, Daws(x). Dawson's integral is
defined by the formula

Dawson's integral is related to the alternate error function computed by the FNCw
function, w(x), by the formula

where i = -1.

Dawson's integral is defined for all values of x.

Daws(x)

Errors
FNDawson causes a BASIC error if its argument is not of type REAL.

See Also
Cw, Erf

Digamma
Digamma function of a real argument.

Loading LOADSUB ALL FROM "DIGAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL Y,X
Y=FNDigamma(X)

Description
FNDigamma returns the value of the digamma function (sometimes called the psi
function) of x, y(x). The value of y(x) approaches ± as x approaches a negative integer
value or zero.

Errors
FNDigamma causes a BASIC error if its argument is not of type REAL or if the magnitude
of y(x) exceeds MAXREAL, the largest number representable.

See Also
Cdigamma, Gamma

(x)

E1
Exponential integral.

Loading LOADSUB ALL FROM "EI.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNE1(X)

Description
FNE1 returns the value of the first-order exponential integral of x, E1(x). E1(x) is defined
by the relation

The integration represents the value obtained by integrating in the complex plane along a
path that excludes the origin and that does not cross the negative part of the real axis.
The value of E1(x) is infinite at x = 0.

E1(x) is related to the exponential integral computed by the FNEi function, Ei(x), by the
expression

E1(x)

Errors
FNE1 causes a BASIC error if its argument is not of type REAL or if the magnitude of
E1(x) would be greater than MAXREAL, the largest value that can be represented.

See Also
Ei

Ei
Exponential integral.

Loading LOADSUB ALL FROM "EI.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNEi(X)

Description
FNEi returns the value of the exponential integral of x, Ei(x). Ei(x) is defined by the
relation

The integration represents the value obtained by integrating in the complex plane along a
path that excludes the origin and that does not cross the negative part of the real axis.
The value of Ei(x) is - at x = 0 and becomes large for large positive values of x.

Ei(x)

Errors
FNEi causes a BASIC error if its argument is not of type REAL or if the magnitude of Ei(x)
would be greater than MAXREAL.

See Also
Ci, E1, Li, Si

Erf
Error function of a real argument.

Loading LOADSUB ALL FROM "ERF.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNErf(X)

Description
FNErf returns the value of the error function of x, erf(x). Erf(x) is defined for all real values
of x and has values between -1 and +1. Erf(x) is defined by the formula

erf(x)

Errors
FNErf causes a BASIC error if its argument is not of type REAL.

See Also
Cerf, Erfc

Erfc
Complementary error function of a real argument.

Loading LOADSUB ALL FROM "ERF.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNErfc(X)

Description
FNErfc returns the value of the complementary error function of x, erfc(x). Erfc(x) is
defined and has values between -1 and +1 for all real values of x. Erfc(x) is defined by
the formula

Erfc(x) is related to the error function returned by the FNErf function, erf(x), by the
expression

erfc(x)

Errors
FNErfc causes a BASIC error if its argument is not of type REAL.

See Also
Cerf, Erfc

Fact
Factorial.

Loading LOADSUB ALL FROM "FACT.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL Y
Y=FNFact(N)

Description
FNFact returns the value of the factorial of n, n!. N must be a positive integer or zero.

Errors
FNFact causes a BASIC error if its argument is not of types INTEGER or if the value of n!
is greater than MAXREAL, the largest number representable.

See Also
Binom, Gamma

Ffit
Fit a curve to a function.

Loading LOADSUB ALL FROM "FFIT.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X(*),Y(*),Tol,P(*),Yt(*)
INTEGER M,N,Status
Status=FNFfit(M,N,F$,X(*),Y(*),Tol,P(*),Yt(*))

Description
FNFfit attempts to find the values of the parameters to the subroutine named in F$ that
cause the function computed by the subroutine to best fit the data contained in X and Y.
X contains the abscissas of the data points and Y contains the ordinates. M is the
number of points in X and Y and N is the number of parameters in P to adjust. Before
calling FNFFit, set P to the initial estimates for the parameters and Tol to the tolerance to
use in determining when the parameters fit the data. After Ffit runs, Yt contains the
values of the function being fit at each of the points in X using the final set of parameters.
P contains the set of parameters.

The return value of FNFfit indicates why FNFfit finished searching for a solution. These
reasons are summarized below:

Return Value Reason

1 The average square (the L-2 norm) of the differ ences between the values in Yt
and those in Y is less than Tol.

2 The average absolute value (the L-1 norm) of the differences between the
values in Yt and those in Y is less than Tol.

3 Both the averages mentioned above are less than Tol.

4 The algorithm in FNFfit found values in Yt that caused the solution to stop
growing closer to the values in Y.

5 The number of iterations in the algorithm used by FNFfit exceeded 200(N + 1)
before the solution was found.

6 or 7 The solution in Yt converged to a value that had both norms described
under values 1 and 2, above, greater than Tol. Probably Tol is too small for the
data and function used.

Usually, if FNFfit returns a value of 1, 2, or 3, the solution returned in P is considered to
be correct and if it returns a value of 4, 5, 6, or 7, the solution is considered to be
incorrect.

F$ should contain the name of an HTBasic subroutine. The subroutine should take three
REAL parameters. The second parameter is an array and the others are scalars. The
subroutine should evaluate the function to be fit using the parameters described in the
array at the argument in the third parameter and return its value in the first parameter. For
example, if F$ = "Test", then the subroutine Test should begin with the definition line

SUB Test(REAL Y,P(*),X)

where X, P, and Y may be replaced by the names of any REAL variables. The subroutine
Test should evaluate the desired function of parameters P at the value X and return the
value in Y. When the subroutine is called, P will be the array P mentioned in the
description of the FNFfit function, above.

The recommended minimum value for Tol is about 1.5 × 10-8.

FNFfit uses the Levenberg-Marquardt method as modified by Moré to fit the data to the
function. FNFfit requires n integers and (m + 5)n + m real values of temporary storage.
FNFfit causes a BASIC error if it cannot allocate this much storage.

Errors
FNFfit causes BASIC Errors if the dimension of X, Y, or Yt is less than m, if the dimension
of P is less than n, if Tol < 0, or if it cannot allocate enough memory to run. The
subroutine named in F$ may also cause BASIC Errors when called.

Example

An electronic filter circuit is built with an inductor (represented by the symbol L in the
drawing), a capacitor (represented by C), and a 15W resistor (represented by Rt) in
series. The series resistance in the inductor (represented by RL) is measured to be 3W .
A sinusoidal voltage, Vin with amplitude 10 V (peak-to-peak) is applied to the circuit and
the peak-to-peak voltage across Rt, Vout is measured at several frequencies, yielding the
data shown in the table below.

Frequency, kHz Vout, V
10 1.48591
20 2.67114
30 4.46957
40 6.79728
50 8.06452
60 5.86735
70 4.49784
80 3.55642
90 2.99302
100 2.60036
110 2.29451
120 2.05200
130 1.87589

The values of L and C are related to the ratio Vout/Vin by the expression

where R is the sum of RL and Rt.

The following program uses FNFfit to estimate the values of L and C from the data in the
table. It uses the FNNorm function (described under the Norm topic in this manual) to
calculate the average error in the fit. The data in lines 150 - 170 is the ratio Vout/Vin. The
initial values for L and C (represented in the program by P(1) and P(2)) are the values
marked on the components.

10 LOADSUB ALL FROM "FFIT.HTS"
20 LOADSUB ALL FROM "NORM.HTS"
30 REAL P(1:2),Fvec(1:13)
40 REAL Freq(1:13),Vratio(1:13)
50 INTEGER I,Info
60 FOR I=1 TO 13
70 READ Freq(I)
80 NEXT I
90 FOR I=1 TO 13
100 READ Vratio(I)
110 NEXT I
120 DATA 10000.0,20000.0,30000.0,40000.0,50000.0
130 DATA 60000.0,70000.0,80000.0,90000.0,100000.0
140 DATA 110000.0,120000.0,130000.0
150 DATA 0.148591,0.267114,0.446957,0.679728,0.806452
160 DATA 0.586735,0.449784,0.355642,0.299302,0.260036
170 DATA 0.229451,0.205200,0.187589
180 P(1)=1.0E-4 ! initial value for L
190 P(2)=1.0E-7 ! initial value for C
200 Info=FNFfit(13,2,"Rlc",Freq(*),Vratio(*),1.5E-8, P(*),Fvec(*))
210 PRINT "Final average error "; FNNorm(Fvec(*))/SQR(13.0)
220 PRINT "Exit parameter ";Info
230 PRINT "L =";PROUND(P(1)*1.0E+6,0);CHR$(230);"Hy"
240 PRINT "C =";PROUND(P(2)*1.0E+6,-3);CHR$(230);"Fd"
250 END
260 SUB Rlc(REAL Y,P(*),X)
270 REAL Omega
280 INTEGER I
290 Omega=6.28318530717959*X
300 Y=(15.0/18.0)/ABS(CMPLX(1.0,Omega*P(1)/18.0
1.0/(Omega*18.0*P(2))))
310 SUBEND

When run, the program produces the output

Final average error .0226436510548
Exit parameter 1
L = 112 µHy
C = .105 µFd.

The value of Vout is plotted below over a range of frequencies for the calculated values L
and C. The symbols on the plot are the measured values.

Vout

Frequency, kHz

Fft
Discrete Fourier transform of a real sequence.

Loading LOADSUB ALL FROM "FFT.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB Fft FROM "MATHLIB.HTS"

Usage INTEGER Logn
REAL A(*)
COMPLEX F(*)
CALL Fft(Logn,A(*),F(*))

Description
Fft calculates the discrete Fourier transform of the sequence in the array A and stores the
result in the array F. Logn is the base-2 log of the number of points in the sequence. The
array A must contain at least 2Logn elements and the array F must contain at least
2Logn-1 elements. If they have more than the required number of elements, the extra
elements are ignored and unmodified. The number of elements in A denoted by each
permitted value of Logn is shown in the table below:

Logn No. Elements (2Logn)
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384

If the values in A are taken to be values of a continuous signal, a(t), sampled at constant
intervals of T (time, distance, or whatever units apply), and if the signal sampled
contained no terms at or above the frequency 1/2T, then the coefficients in the array C
are the coefficients of the Fourier sine series that describes a(t). A(t) can be
reconstructed from the elements of F through the following formula:

where

If the signal a(t) contains components at or above the frequency 1/2T, the situation is
complicated by aliasing, which is explained in most signal processing textbooks.

Some of the more common operations done using discrete Fourier transforms, such as
convolution, correlation, filtering, and finding power spectral densities are available as
separate CSUBs; see the entries for Autocorrelation, Convolve, Correlate, Filter, Rfilter,
and Power_Spectrum for details on their use. The inverse of Fft is performed by the Ifft

subroutine. A discrete Fourier transform for complex sequences is computed by the Cfft
routine.

Errors
Fft causes a BASIC error if its arguments are not of the types shown in the USAGE
section, above, if Logn is not between 2 and 15, inclusive, if the size of A is smaller than
2Logn, or if the size of F is smaller than 2Logn-1.

Examples
Often, the discrete Fourier transform calculated by the Fft and Cft Math Library
subroutines are used to obtain frequency information about continuous signals that have
been sampled at discrete points. Such is the case with signal brought into the computer
by an A/D converter or by an image scanner. The examples in this section use HTBasic
Math Library subroutines to explain some of the pitfalls that arise when a continuous
signal is represented by discrete samples and how they are commonly avoided. These
pitfalls happen because the samples presented to the computer contain no information
about the continuous signal's behavior between the sample points or outside the interval
covered by the array of samples.

The frequency spectrum of a continuous, periodic signal, a(t), of period P can be
represented by a set of coefficients, ck, such that

The coefficients ck are called the complex Fourier series.

The Nyquist criterion. Consider a periodic sawtooth wave. One period of the wave is
shown in the figure 1. If the sampling interval is one period of the waveform, the
waveform can be represented in a computer by the 16 samples shown as diamonds in
the figure. Note that the samples contain no information about what happens to the wave
between samples, so the same samples could represent an infinite number of other
waveforms.

The complex Fourier sine/cosine transform of the sawtooth can be calculated or found in
a math table. The coefficients, ck, of the sine/cosine transform are

where i is the square root of -1.

The following BASIC program calculates the discrete Fourier transform of the sampled
waveform.

10 LOADSUB ALL FROM "FFT.CSB"
20 LOADSUB ALL FROM "WAVEFORM.CSB"
30 INTEGER I
40 REAL A(0:15),Anew
50 COMPLEX B(0:7)
60 CALL Waveform(16.0,1.0,0.,0.,3,A(*))
70 CALL Fft(4,A(*),B(*))
80 FOR I=0 TO 7
90 PRINT I,B(I)
100 NEXT I
110 END

The values produced by the discrete Fourier transform are plotted in figure 2 as
diamonds. The first four nonzero values of the complex Fourier sine/cosine transform are
plotted in the same figure as squares. Note that the plot is on a logarithmic scale.

The coefficients fk of the discrete Fourier transform are related to those of the complex
sine/cosine transform by the following formula:

where "*" represents the complex conjugate operation and N represents the number of samples in the
sampling interval (16 in the above example). Therefore, the spectrum calculated by the discrete Fourier
transform represents the ordinary Fourier spectrum only when the signal in question has nonzero spectral
components for one value of m or n. This is called the Nyquist criterion. Application of this criterion
resolves the ambiguity mentioned earlier of which of the infinite number of possible waveforms the
samples represent.

Usually, this criterion is satisfied by allowing nonzero spectral components only for m = 0.
The Nyquist criterion can then be stated as requiring samples to be taken at twice the
highest frequency present in the signal being sampled. Note that the sawtooth waveform

used in this example does not obey the Nyquist criterion, since is has spectral
components for an infinite number of frequencies.

The following BASIC program produces two continuous waveforms that have the same
16 samples as the sawtooth waveform shown at the beginning of this example. The first
waveform has nonzero spectral components for m = 0 and the second for n = 0. The
waveforms are plotted after the program listing.

10 LOADSUB ALL FROM "FFT.HTS"
20 LOADSUB ALL FROM "WAVEFORM.HTS"
30 INTEGER I,J
40 REAL A(0:15),Anew1,Anew2,Theta1,Theta2
50 COMPLEX B(0:7)
60 RAD
70 CALL Waveform(16.0,1.0,0.,0.,3,A(*))
80 CALL Fft(4,A(*),B(*))
90 FOR I=0 TO 1024
100 Anew1=0.
120 Anew2=0.
120 FOR J=0 TO 7
130 Theta1=2.0*PI*I*J/1024.0
140 Theta2=2.0*PI*I*(16-J)/1024.0
150 Anew1=Anew1+REAL(B(J))*COS(Theta1)+ IMAG(B(J))*SIN(Theta1)
160 Anew2=Anew2+REAL(B(J))*COS(Theta2)- IMAG(B(J))*SIN(Theta2)
170 NEXT J
180 PRINT I/1024.0*16.0,Anew1,Anew2
190 NEXT I
200 END

Windowing. Consider the function

Obviously, this function contains no frequency components above 14/T, in radians per
unit time, distance, or whatever. If the waveform described by this function is sampled
every 5T/4096 units, the sample frequency is 24096/5T or 8192/5T radians per unit,
which is well above twice the highest frequency component in the waveform, so the
Nyquist criterion is satisfied with this sample spacing. A sampling interval of 1024
samples of this waveform is shown in figure 5.

When this waveform is sampled for use in the computer, no information is provided on
the behavior before or after the sample interval. When a discrete Fourier transform is
done on the test waveform, the discrete Fourier transform algorithm assumes that the
data set presented to it represents one period of a periodic waveform. Because the set of
samples did not cover exactly one period of the waveform, the discrete Fourier transform
connects the last sample in the data set with the first; that is, it computes the transform of
a function like that shown by the solid line in figure 6. This introduces high-frequency
components in the frequency spectrum. The discrete Fourier transform for this waveform
is calculated by the BASIC program below and is plotted in figure 8 on the next page.
Figure 7 shows the Fourier sine/cosine transform of the original, continuous waveform for
comparison purposes.

10 LOADSUB ALL FROM "FFT.CSB"
20 LOADSUB ALL FROM "POLAR.CSB"
30 INTEGER I,J
40 REAL A(0:1023),Amp(0:511),Phase(0:511),Anew,Theta
50 COMPLEX B(0:511)
60 RAD
70 FOR I=0 TO 1023
80 Theta=2.0*PI*I*1.25/1024.0
90 A(I)=(SIN(Theta)-SIN(3.0*Theta)/9+
SIN(5.0*Theta)/25-SIN(7.0*Theta)/49)*8.0/(PI*PI)
100 NEXT I
110 CALL Fft(10,A(*),B(*))
120 CALL Polar(B(*),"D",Amp(*),Phase(*))
130 FOR I=0 TO 511
140 PRINT I,Amp(I),Phase(I)
150 NEXT I
160 END

One way to reduce the high-frequency components in the spectrum of the sampled signal
is to multiply the signal by a window function, such as one of the several provided in the
math library. The following BASIC program windows the test function using the Kaiser-
Bessel window with parameter 4.0 and calculates the discrete Fourier transform of the
windowed waveform. The dashed line in figure 6 shows the windowed function and figure
9 shows the discrete transform of the windowed function.

10 LOADSUB ALL FROM "FFT.HTS"
20 LOADSUB ALL FROM "BESMC.HTS"
30 LOADSUB ALL FROM "POLAR.HTS"
40 INTEGER I
50 REAL A(0:1023),Amp(0:511),Phase(0:511)
60 COMPLEX F(0:511)
70 FOR I=0 TO 1023
80 Theta=2.0*PI*I*1.25/1024.0
90 A(I)=(SIN(Theta)-SIN(3.0*Theta)/9+
SIN(5.0*Theta)/25-SIN(7.0*Theta)/49)*8.0/(PI*PI)
100 NEXT I
110 CALL W_kaiser(A(*),4.0,A(*))
120 FOR I=0 TO 1023
130 PRINT I,A(I)
140 NEXT I
150 CALL Fft(10,A(*),F(*))
160 CALL Polar(F(*),"D",Amp(*),Phase(*))
170 FOR I=0 TO 511
180 PRINT I,Amp(I),Phase(I)
190 NEXT I
200 END

Fig 7. The Fourier sine/cosine transform of the test waveform.

Fig 8. The discrete Fourier transform of the test waveform shown in figure 5.

Fig. 9. The discrete Fourier transform of the windowed function.

Note that the magnitudes of the high-frequency components of the spectrum shown in
figure 9 are greatly reduced. Note also the wildly-varying phases of the values shown in
figure 9. Windowing functions usually reduce the spurious high-frequency components in
a sample at the expense of inaccuracies in the phase.

See Also
Cfft, Convolve, Correlate, Filter, Ifft, Power_spectrum, Rfilter

Notes
If the related Cfft subroutine is applied to a sequence of real values, it outputs twice as
many coefficients as the Fft routine. For a real input sequence, the real parts of these
coefficients are symmetric about the N/2-1st and N/2th coefficients (beginning subscripts
with the 0th coefficient) and the imaginary parts are antisymmetric around these same
coefficients. The coefficients output by Fft for the same input sequence are double the
first N/2 coefficients output by Cfft except for the 0th or d. c. coefficient, which have the
same value.

Fftz
Dransform of a real sequence lengthened with zeros.

Loading LOADSUB ALL FROM "FFT.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB Fftz FROM "MATHLIB.HTS"

Usage INTEGER Logn
REAL A(*)
COMPLEX F(*)
CALL Fftz(Logn,A(*),F(*))

Description
Fftz calculates the discrete Fourier transform of the sequence in the array A lengthened
with 2Logn zeros and stores the result in the array F. Logn is the base-2 log of the
number of points in the sequence in A. The arrays A and F must contain at least 2Logn
elements. If they have more than the required number of elements, the extra elements
are ignored and unmodified. The number of elements denoted by each permitted value of
Logn is shown in the table below:

Logn No. Elements (2Logn)
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384

Except for the lengthening of the input sequence, the values returned by Fftz have the
same meaning as those returned by Fft; see the entry for Fft for an explanation of the
meaning of the values returned.

Fftz has been provided as a separate CSUB because lengthened sequences are often
used when implementing convolutions and correlations and when implementing multiple-
window operations on long streams of data. Such operations often have results that are
twice as long in the time or space domain as either of their inputs. This results in their
Fourier transforms having twice as many frequency components as the transforms of
their inputs, with the extra components halfway between the components in the
transforms in the input sequences.

Errors
Fftz causes a BASIC error if its arguments are not of the types shown in the USAGE
section, above, if Logn is not between 2 and 15, inclusive, or if the size of A or F is
smaller than the values described above.

See Also
Convolve, Correlate, Fft, Filter, Rfilter

Filter
Filter a sequence.

Loading LOADSUB ALL FROM "FFT.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB Filter FROM "MATHLIB.HTS"

Usage INTEGER Logn
REAL A(*),C(*)
COMPLEX F(*)
CALL Filter(Logn,A(*),F(*),C(*))

Description
Filter calculates the sequence produced by filtering the time-domain (or space-domain)
sequence in A by the filter whose frequency-domain coefficients are in F. It returns the
resulting sequence in the array C. Logn is the base-2 log of the number of points in the
sequences in A and F. The arrays A and F must contain at least 2Logn elements. The
array C must contain at least 2Logn+1 elements. If the arrays have extra elements, the
extra elements are ignored and unmodified.

The values in F are the amounts by which to scale the corresponding frequency
components of A to produce the resultant sequence. These values are stored in
(real,imaginary) [rectangular] form. If filter coefficients are to be used that are specified in
the more usual (magnitude,angle) [polar] form, they must be converted to rectangular
form when stored in the elements of F (the Polar routine can do this conversion). If filter
coefficients are to be used that have all zero phase, the related Rfilter function can be
used to save converting the phase data to complex form.

The first element in F represents the amount by which the zero-frequency (d. c.) term in A
is to be scaled, the second the amount by which the 1/N frequency component is scaled,
the third the amount by which the 2/N frequency component is scaled, etc. The meaning
of each frequency component is the same for Filter as for Fft and is explained in the entry
for the Fft routine.

If the sequence to be used as a filter is specified as an impulse response, the Convolve
function may be used instead of Filter to filter using the impulse response as input.

Errors
Filter causes a BASIC error if its arguments are not of the types shown in the USAGE
section, above, if Logn is not between 2 and 15, inclusive, if the size of A or C is smaller
than 2Logn, or if the size of F is smaller than 2Logn-1.

See Also
Cfft, Convolve, Rfilter, Fft

Fit
Fit a polynomial curve to a series of data points.

Loading LOADSUB ALL FROM "FIT.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB Fit FROM "MATHLIB.HTS"

Usage INTEGER M,N
REAL X(*),Y(*),C(*)
CALL Fit(M,X(*),Y(*),N,C(*))

Description
Fit calculates the coefficients of the polynomial of degree n that gives the closest fit to the
points whose coordinates are (xk,yk), where k is an index into the m values in the arrays
X and Y. The "closest fit" is that which gives the smallest sum of squares of the
differences between each point yk and the corresponding p(xk), where p is the
polynomial generated from the coefficients returned in C. The first element in C contains
the constant or zero-order coefficient, the second element the first-order coefficient, etc.
The polynomial described by the coefficients of C can be evaluated by Poly, described in
its own entry.

N must be between zero and 10, inclusive. M may be any positive integer. The
dimensions of X and Y must be at least m. If either X or Y has more than m data points,
the extra points are neither used nor modified by Fit. Similarly, C must contain at least
n+1 data points; if C has more than n+1 data points, the extra points are not modified by
Fit.

If n is zero, Fit returns the average value of the elements in Y, which is the zero-order
polynomial that most closely approximates the points in X and Y. If N is 1, Fit returns the
coefficients of the linear polynomial that most closely approximates the points in x and y,
and so on for higher values of n.

Note that polynomials higher than degree 2 or 3 tend to have extreme values outside the
region defined by the smallest and largest xk, although they give more accurate
approximations of the values of yk inside this region. In addition, higher-order
polynomials may oscillate between adjacent values of xk. If such oscillations occur, a
smaller-degree polynomial would probably give a better approximation than a larger-
degree one. Because of this, checking higher-order fitting functions with a graph is
advisable.

Errors
Fit causes a BASIC error if its arguments are not of the types shown in the USAGE
section, above, if n is not between 0 and 10, inclusive, if the size of X or Y is smaller than
M, or if the size of C is smaller than N+1.

Example
The percentage of automobiles in the United States with at least one passenger suffering
extreme injury or death in collisions was tabulated in 1970 and categorized by weight of
the automobiles involved. The data was distributed as shown in the table below.

Weight of Automobile Percent Injury or Death
1900 lb. 9.6%
2800 6.4

3400 5.2
3700 4.0
4800 3.1

If w is the weight of the automobile and p is the percent of injury or death, the following
BASIC program finds the coefficients that relate p to w assuming the relation has the form

p = c1w + c0

or

p = c1/w + c0.

10 LOADSUB ALL FROM "FIT.CSB"
20 REAL Weight(1:5),Pct(1:5),C(0:1)
30 READ Weight(*),Pct(*)
40 DATA 1900,2800,3400,3700,4800
50 DATA 9.6,6.4,5.2,4.0,3.1
60 CALL Fit(5,Weight(*),Pct(*),1,C(*)) ! linear fit
70 PRINT USING """1. Rate = "",2D.1D,""% -"",1D.6D,

""%/pound x Weight""";C(0),-C(1)
80 MAT Weight=(1)/Weight
90 CALL Fit(5,Weight(*),Pct(*),1,C(*)) ! inverse fit
100 PRINT USING """2. Rate = "",6D,

""% pound / Weight -"",2D.1D,""%""";C(1),-C(0)
110 END

The figure below shows the data from the table and curves drawn from the parameters c1
and c0 computed by the program.

Percent Injury or Death

Weight of Automobile, lb.

See Also
Ffit, Poly

Froot
Find a root of an equation of the form f(x) = 0.

Loading LOADSUB ALL FROM "FROOT.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB FNFroot FROM "MATHLIB.HTS"

Usage REAL A,B,Eps,X
INTEGER N
X=FNFroot(F$,A,B,N,Eps)

Description
FNFroot attempts to find a value of x that satisfies the relation f(x) = 0, where f is the
HTBasic function named in F$. A and b contain two distinct initial estimates for x as near
to the root as possible. N and Eps contain stopping criteria. If the number of iterations
within FNFroot exceeds n, FNFroot stops and returns MAXREAL (approximately
1.7×10308) to indicate failure. If f(x) Eps for a value of x, FNFroot considers the value to
be a solution and returns that value of x.

F$ should contain the name of an HTBasic subroutine. The subroutine should take two
REAL parameters. It should evaluate the function to be integrated at the second
parameter and return its value in the first parameter. For example, if F$ = "Test", then the
subroutine Test should begin with the definition line

SUB Test(REAL Y,X)

where X and Y may be replaced by the names of any REAL parameters. The subroutine
Test would evaluate the desired function at the value X and return the value in Y.

FNFroot uses the secant method to find the root. If it finds a situation where f(a) and f(b)
have opposite signs, it uses the bisection method to find the value of x between a and b
that makes f(x) be 0. These methods are described in most texts on numerical
mathematical methods.

Errors
FNFroot causes HTBasic Errors if a = b, if N < 2, or if Eps < 0. It also causes an error if
the subroutine named in F$ is undefined. The subroutine named in F$ may also cause
HTBasic Errors when it is evaluated.

Example
The following program finds the roots of the equation x - ¼e-x = 0.

10 LOADSUB ALL FROM "FROOT.HTS"
20 X=FNFroot("Func",0,1,100,1.0E-100)
30 CALL Func(Y,X)
40 PRINT "Root 1: (";X;",";Y;")"
50 X=FNFroot("Func",2,3,100,1.0E-100)
60 CALL Func(Y,X)
70 PRINT "Root 2: (";X;",";Y;")"
80 END
90 SUB Func(REAL Y,X)
100 Y=X-EXP(X)*.25

110 SUBEND

It produces the output

Root 1: (.357401956181 , 0)
Root 2: (2.15329236411 , 4.4408920985E-16).

The function x - ¼e-x is plotted below.

x - ¼e-x

F_beta
Probability density for beta distribution.

Loading LOADSUB ALL FROM "IGAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,A,B,Y
Y=FNF_beta(A,B,X)

Description
FNF_beta returns the value of the univariate beta probability density function with
parameters a and b, f(x;a,b). F(x;a,b) is defined only for a 0 and b 0.

F(x;a,b) is defined by the expression

f(x;a,b)

Errors
FNF_beta causes a BASIC error if its arguments are not all of type REAL or if a or b is
negative.

See Also
P_beta, Q_beta

F_cauchy
Probability density for Cauchy distribution.

Loading LOADSUB ALL FROM "CAUCHY.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,A,B,Y
Y=FNF_cauchy(A,B,X)

Description
FNF_cauchy returns the value of the probability density function of the Cauchy
distribution with parameters a and b at x. This density, f(x;a,b), is defined by the
expression

B must be greater than zero.

f(x;a,b)

Errors
FNF_cauchy causes a BASIC error if its arguments are not all of type REAL or if b is
negative or zero.

See Also
P_cauchy, Q_cauchy

F_chi2
Probability density for chi-squared distribution.

Loading LOADSUB ALL FROM "IGAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNF_chi2(N,X)

Description
FNF_chi2 returns the value of the probability density function of the univariate chi-
squared (c²) distribution with parameter n at x. This density, f(x;n), is defined by the
expression

X is often written as X²; among other uses, this notation emphasizes the fact that this
distribution is only nonzero for values of x 0. Although f is sometimes defined for n < 0,
most implementations, including this one, restrict f to being defined for n 0.

f(x;n)

Errors
FNF_chi2 causes a BASIC error if its arguments are not of the types listed in the usage
section, above, or if n is negative.

See Also
P_chi2, Q_chi2

F_exp
Probability density for exponential distribution.

Loading LOADSUB ALL FROM "EXP.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,A,Y
Y=FNF_exp(A,X)

Description
FNF_exp returns the value of the probability density function of the exponential
probability distribution with parameter a at x, f(x;a). F(x;a) is defined by the expression

F(x;a) is defined for positive values of a.

Errors
FNF_exp causes a BASIC error if its arguments are not all of type REAL or if a is
negative or zero.

f(x;a)

See Also
P_exp, Q_exp

F_f
Probability density for F distribution.

Loading LOADSUB ALL FROM "IGAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER M,N
REAL X,Y
Y=FNF_f(M,N,X)

Description
FNF_f returns the value of the probability density function of the univariate F probability
distribution with parameters m and n at x, f(x;m,n). This function is defined for m and n
positive or zero.

f(x;1,2)

Errors
FNF_f causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, or if either m or n is negative.

See Also
P_f, Q_f

F_gauss
Probability density for Gaussian distribution.

Loading LOADSUB ALL FROM "ERF.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,M,S,Y
Y=FNF_gauss(M,S,X)

Description
FNF_gauss returns the value of the probability density function of the Gaussian, or
normal, probability distribution of mean m and standard deviation s (represented below
by) at x, f(x;m,s). F(x;m,s) is defined by the expression

F is defined for all values of x and m and for positive values of .

            f(x;0,s)

Errors
FNF_gauss causes a BASIC error if its arguments are not all of type REAL or if the value
of S is negative or zero.

See Also
P_gauss, Q_gauss

F_laplace
Probability density for LaPlace distribution.

Loading LOADSUB ALL FROM "LAPLACE.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,A,B,Y
Y=FNF_laplace(A,B,X)

Description
FNF_laplace returns the value of the probability density function of the Laplace
distribution of parameters a and b at x, f(x;a,b). F(x;a,b) is defined by the expression

F is defined for all positive values of b.

Errors
FNF_laplace causes a BASIC error if its arguments are not all of type REAL or if the
value of b is negative or zero.

f(x;0,b)

See Also

P_laplace, Q_laplace

F_pareto
Probability density for Pareto distribution.

Loading LOADSUB ALL FROM "PARETO.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,X0,T,Y
Y=FNF_pareto(X0,T,X)

Description
FNF_pareto returns the value of the probability density function of the Pareto distribution
of parameters X0 (here written as x0) and t at x, f(x;x0,t). F(x;x0,t) is defined by the
expression

F is defined for positive values of x0 and t.

f(x;1,t)

Errors
FNF_pareto causes a BASIC error if its arguments are not all of type REAL or if
the value of x0 or t is negative or zero.

See Also
P_pareto, Q_pareto

F_rayleigh
Probability density for Rayleigh distribution.

Loading LOADSUB ALL FROM "RAYLEIGH.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL Beta,X,Y
Y=FNF_rayleigh(Beta,X)

Description
FNF_rayleigh returns the value of the probability density function of the Rayleigh
distribution of parameter Beta (here written as) at x, f(x;). F(x;) is defined by the
expression

F is defined for all positive values of .

f(x;b)

Errors
FNF_rayleigh causes a BASIC error if its arguments are not all of type REAL or if the
value of is negative or zero.

See Also
P_rayleigh, Q_rayleigh

F_student
Probability density function for Student's t distribution.

Loading LOADSUB ALL FROM "IGAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNF_student(N,X)

Description
FNF_student returns the value of the probability density of the Student's t distribution of
parameter at x, f(x;n). F is defined for all positive values of n.

f(x;n)

Errors
FNF_student causes a BASIC error if its arguments are not of the types listed in the
USAGE section, above, or if the value of n is negative or zero.

See Also
P_student, Q_student

F_variance
Variance of an array.

Loading LOADSUB ALL FROM "MEAN.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL A(*),Y
CALL F_Variance(Y,A(*))

Description
FNVariance returns the variance of the elements in the array A. The variance is the
average value of the square of the differences between the elements in the array and the
mean value of the elements. This version of the variance uses the number of points in the
array A, n, as the divisor in the averaging calculation, instead of the value n - 1 used in
some formulas for variance.

Errors
FNVariance causes a BASIC error if its argument is not a REAL array.

See Also
Mean, Std

Gamic
Complementary incomplete gamma function.

Loading LOADSUB ALL FROM "IGAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL A,X,Y
Y=FNGamic(A,X)

Description
FNGamic returns the value of the complementary incomplete gamma function of a and x,
(a,x). Although the complementary incomplete gamma function is defined for all values of
x, this subroutine only works with values of x > 0 or x = 0 and a > 0.

(a,x) is defined by the expression

(a,x)

Errors
FNGamic causes a BASIC error if its arguments are not all of type REAL, if x < 0, or if x =
0 and a 0.

See Also
Gamit, Gamma, Igamma

Note
The notation (a,x) causes this function to be confused with the gamma function, (x).

Gamit
Tricomi's form of the incomplete gamma function.

Loading LOADSUB ALL FROM "IGAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL A,X,Y
Y=FNGamit(A,X)

Description
FNGamit returns the value of Tricomi's form of the incomplete gamma function of a and x,
*(a,x).

*(a,x) is defined by the expression

This function is defined for all values of a and x.

*(a,x)

Errors
FNGamit causes a BASIC error if its arguments are not all of type REAL.

See Also
Gamic, Gamma, Igamma

Gamma
Gamma function of a real argument.

Loading LOADSUB ALL FROM "GAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNGamma(X)

Description
FNGamma returns the value of the gamma function at x, (x). This function is defined for
all real values of x except for x zero or a negative integer, at which points (x) becomes
infinite.

If x is equal to a positive integer, n, the gamma function is related to the factorial by the
relation

This relationship is often used to define a factorial for any real number, by using the
definition

(x)

Errors
FNGamma causes a BASIC error if its argument is not of type REAL or if x 0 and x is an
integer.

See Also
Fact, Cgamma

H10
Hankel function of the first kind, order zero.

Loading LOADSUB ALL FROM "BESRC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X
COMPLEX C
C=FNH10(X)

Description
FNH10 returns the value of the Hankel function of the first kind and order zero of x, H0(1)
(x). For positive values of x, the real component of the value returned contains J0(x) and
the imaginary component contains Y0(x). For negative values of x, the real component
contains -J0(x) and the imaginary component contains Y0(x).

H0(1)(x)

Arg[H0(1)(x)], degrees

Errors
FNH10 causes a BASIC error if its argument is not of type REAL. It also causes a BASIC
error if the value of x is zero, since the imaginary component of H0(1)(0) is -.

See Also
H11, H20, J0, Y0

H11
Hankel function of the first kind, order one.

Loading LOADSUB ALL FROM "BESRC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X
COMPLEX C
C=FNH11(X)

Description
H11 returns the value of the Hankel function of the first kind and order one of x, H1(1)(x).
For positive values of x, the real component of the value returned contains J1(x) and the
imaginary component contains Y1(x). For negative values of x, the real component
contains J1(x) and the imaginary component contains -Y1(x).

Errors
H11 causes a BASIC error if its argument is not of type REAL. It also causes a BASIC
error if the value of x is near zero, since the imaginary component of H1(1)(0) is -.

See Also
H10, H21, J1, Y1

H1(1)(x)

Arg[H1(1)(x)], degrees

H1n
Hankel function of the first kind, order n.

Loading LOADSUB ALL FROM "BESRC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X
COMPLEX C
C=FNH1n(N,X)

Description
FNH1n returns the value of the Hankel function of the first kind and order n of x, Hn(1)(x).
For positive values of x, the real component of the value returned contains Jn(x) and the
imaginary component contains Yn(x). For negative values of x, the real component
contains (-1)n+1Jn(x) and the imaginary component contains (-1)nYn(x).

Errors
FNH1n causes a BASIC error if its arguments are not of the types shown in the USAGE
section, above. It also causes a BASIC error if the value of x is near zero, since the
imaginary component of Hn(1)(0) is -.

See Also
H10, H11, H2n, J0, J1, Y0, Y1

Note
The algorithm used computes the value of Hn(1) using a recursion from the values of
H0(1) and H1(1). The computation time increases with n and the computation accuracy
decreases with n.

Hn(1)(x)

Arg[Hn(1)(x)], degrees

H20
Hankel function of the second kind, order zero.

Loading LOADSUB ALL FROM "BESRC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X
COMPLEX C
C=FNH20(X)

Description
FNH20 returns the value of the Hankel function of the second kind and order zero of x,
H0(2)(x). For positive values of x, the real component of the value returned contains J0(x)
and the imaginary component contains Y0(x). For negative values of x, the real
component contains 3J0(x) and the imaginary component contains -Y0(x).

H0(2)(x)

Arg[H0(2)(x)], degrees

Errors
FNH20 causes a BASIC error if its argument is not of type REAL. It also causes a BASIC
error if the value of x is near zero, since the imaginary component of H0(2)(0) is -.

See Also
H10, H21, J0, Y0

H21
Hankel function of the second kind, order one.

Loading LOADSUB ALL FROM "BESRC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X
COMPLEX C
C=FNH21(X)

Description
FNH21 returns the value of the Hankel function of the second kind and order one of x,
H1(2)(x). For positive values of x, the real component of the value returned contains J1(x)
and the imaginary component contains Y1(x). For negative values of x, the real
component contains -3J1(x) and the imaginary component contains Y1(x).

H1(2)(x)

Arg[H1(2)(x)], degrees

Errors
FNH21 causes a BASIC error if its argument is not of type REAL. It also causes a BASIC

error if the value of x is near zero, since the imaginary component of H1(2)(0) is -.

See Also
H11, H20, J1, Y1

H2n
Hankel function of the second kind, order n.

Loading LOADSUB ALL FROM "BESRC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X
COMPLEX C
C=FNH2n(N,X)

Description
FNH2n returns the value of the Hankel function of the second kind and order n of x, Hn(2)
(x). For positive values of x, the real component of the value returned contains Jn(x) and
the imaginary component contains Yn(x). For negative values of x, the real component
contains (-1)n+13Jn(x) and the imaginary component of C contains (-1)n+1Yn(x).

Errors
FNH2n causes a BASIC error if its arguments are not of the types shown in the USAGE
section, above. It also causes a BASIC error if the value of x is near zero, since the
imaginary component of Hn(2)(0) is infinite.

See Also
H1n, H20, H21, J0, J1, Y0, Y1

Note
The algorithm used computes the value of Hn(2) using a recursion from the values of
H0(2) and H1(2). The computation time increases with n and the computation accuracy
decreases with n.

Hn(2)(x)

Arg[Hn(2)(x)], degrees

Hh1n
Hankel function of the first kind, order n+½.

Loading LOADSUB ALL FROM "BESRS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X
COMPLEX C
C=FNHh1n(N,X)

Description
FNHh1n returns the value of the cylindrical Hankel function of the first kind and order
n+½ of x, Hn+½(1)(x). Hn+½(1)(x) is defined for all values of n and for all positive values
of x.

Hn+½(1)(x) is sometimes also called the cylindrical Bessel function of the third kind, order
n+½.

Errors
FNHh1n causes a BASIC error if its arguments are not of the types shown in the USAGE
section, above, or if x is negative or zero.

See Also
Hh2n

Note
The algorithm used computes the value of Hn+½(1) using a recursion from the values of
H½(1) and H1½(1). The computation time increases with n and the computation accuracy
decreases with n.

Hn+½(1)(x)

Arg[Hn+½(1)(x)], degrees

Hh2n
Hankel function of the second kind, order n+½.

Loading LOADSUB ALL FROM "BESRS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X
COMPLEX C
C=FNHh2n(N,X)

Description
Hh2n returns the value of the cylindrical Hankel function of the second kind and order
n+½ of x, Hn+½(2)(x). Hn+½(2)(x) is defined for all values of n and for all positive values
of x.

Errors
Hh2n causes a BASIC error if its arguments are not of the types shown in the USAGE
section, above, or if x is negative or zero.

See Also
Hh1n

Note
The algorithm used computes the value of Hn+½(2) using a recursion from the values of
H½(2) and H1½(2). The computation time increases with n and the computation accuracy
decreases with n.

Hn+½(2)(x)

Arg[Hn+½(2)(x)], degrees

Histogram
Histogram of a real array.

Loading LOADSUB ALL FROM "HIST.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB Histogram FROM "MATHLIB.HTS"

Usage INTEGER N,Hist(*)
REAL Xmin,Xmax,A(*)
CALL Histogram(A(*),Xmin,Xmax,N,Hist(*))

Description
Histogram divides the region of values between xmin and xmax into n equal intervals and
counts the number of elements in the array A whose values lie in each interval. If a value
in A lies below xmin or at or above xmax, it is not counted. If a value is exactly the value
that separates two intervals, it is counted in the higher of the two intervals.

Histogram counts in the following manner: Let s be the width of an interval in which
values are counted. S is defined by the expression

If a value in A falls between xmin, inclusive, and xmin+s, exclusive, the count in the first
element of Hist is increased. If the value falls between xmin+s, inclusive, and xmin+2s,
exclusive, the count in the second element of Hist is increased, etc.

Hist must contain at least n elements.

Errors
Histogram causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, if xmin xmax, if n is negative or zero, or if Hist contains fewer than n
elements.

Hn
Hermite polynomial.

Loading LOADSUB ALL FROM "HERMITE.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNHn(N,X)

Description
FNHn returns the value of the Hermite polynomial of order n of x, Hn(x). N must be
positive or zero.

Errors
FNHn causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, if n is negative, or if the polynomial's absolute value would be larger than
MAXREAL, the largest value representable.

Note
For n > 12, the algorithm used computes the value of Hn using a recursion from the
values of H11 and H12. The computation time increases with n-11 and the computation
accuracy decreases with n-11.

Hn(x)

I0
Modified Bessel function of the first kind, order zero.

Loading LOADSUB ALL FROM "BESMC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNI0(X)

Description
FNI0 returns the value of the modified cylindrical Bessel function of the first kind and
order zero of x, I0(x). I0(x) is defined for all values of x, but large absolute values of x
may cause the result to be larger than MAXREAL, the largest value representable.

Errors
FNI0 causes a BASIC error if its argument is not of type REAL or if the result would be
larger than MAXREAL.

See Also
I1, In, K0

I0(x)

I0e
Scaled modified Bessel function of the first kind, order zero.

Loading LOADSUB ALL FROM "BESMC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNI0e(X)

Description
FNI0e returns the value of the modified cylindrical Bessel function of the first kind and
order zero of x scaled by e-½xô, e-ôxôI0(x). The scaling is done so that the value of I0(x)
can be evaluated for arguments of large absolute value, where the value of I0(x) may be
larger than MAXREAL, the largest value representable. The value of e-ôxôI0(x) is
moderate for arguments of large absolute value.

Errors
FNI0e causes a BASIC error if its argument is not of type REAL.

See Also
I0, I1e, In

e-ôxôI0(x)

I1
Modified Bessel function of the first kind, order one.

Loading LOADSUB ALL FROM "BESMC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNI1(X)

Description
FNI1 returns the value of the modified cylindrical Bessel function of the first kind and
order one of x, I1(x). I1(x) is defined for all values of x, but large absolute values of x may
cause the magnitude of the result to be larger than MAXREAL, the largest value
representable.

Errors
FNI1 causes a BASIC error if its argument is not of type REAL or if the magnitude of the
result would be larger than MAXREAL.

See Also
I0, I1e, In, K0

I1(x)

I1e
Scaled modified Bessel function of the first kind, order one.

Loading LOADSUB ALL FROM "BESMC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNI1e(X)

Description
FNI1e returns the value of the modified cylindrical Bessel function of the first kind and
order one of x scaled by e-ôxô, e-ôxôI1(x). The scaling is done so that the value of I1(x)
can be evaluated for arguments of large absolute value, where the absolute value of I1(x)
may be larger than MAXREAL, the largest value representable. The absolute value of e-
ôxôI1(x) is moderate for arguments of large absolute value.

Errors
FNI1e causes a BASIC error if its argument is not of type REAL.

See Also
I0e, I1, In

e-ôxôI1(x)

Ibeta
Incomplete beta function.

Loading LOADSUB ALL FROM "IGAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL A,B,X,Y
Y=FNIbeta(A,B,X)

Description
Ibeta returns the value of the incomplete beta function of a, b, and x, Bx(a,b). This
function is only defined for values of a 0, b 0, and 0 x 1.

Bx(a,b) is defined by the expression

Another form of the incomplete beta function, Ix(a,b), is defined by the expression

This function is evaluated by the routine P_beta.

Errors
Ibeta causes a BASIC error if its arguments are not all of type REAL, if x < 0, x > 1, a 0,
or b 0.

See Also
P_beta

Bx(a,2.5)

Icfft
Complex discrete inverse Fourier transform.

Loading LOADSUB ALL FROM "FFT.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB Icfft FROM "MATHLIB.HTS"

Usage INTEGER Logn
COMPLEX A(*),F(*)
CALL Icfft(Logn,F(*),A(*))

Description
Icfft calculates the discrete inverse Fourier transform of the sequence in the array F and
stores the result in the array A. Logn is the base-2 log of the number of points in the
sequences. The arrays A and F must contain at least 2Logn elements; if they have more
than this number of elements, the extra elements are ignored and unmodified. The
number of elements denoted by each permitted value of Logn is shown in the table
below:

Logn No. Elements (2Logn)
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384

The meaning of the values input to Icfft is the same as that for the values output by the
Cfft routine; see the entry for the Cfft routine for a detailed explanation of the meaning of
the values input to Icfft.

Errors
Icfft causes a BASIC error if its arguments are not of the types shown in the USAGE
section, above, if Logn is not between 2 and 15, inclusive, or if the size of A or C is
smaller than 2Logn.

See Also
Cfft, Ifft

Ifft
Discrete inverse Fourier transform.

Loading LOADSUB ALL FROM "FFT.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB Ifft FROM "MATHLIB.HTS"

Usage INTEGER Logn
REAL A(*)
COMPLEX F(*)
CALL Ifft(Logn,F(*),A(*))

Description
Ifft calculates the discrete inverse Fourier transform of the sequence in the array F and
stores the result in the array A. Logn is the base-2 log of the number of points in the
sequences. The array F must contain at least 2Logn-1 elements; the array A must
contain at least 2Logn elements. If the arrays have more than the required number of
elements, the extra elements are ignored and unmodified. The number of elements in A
denoted by each permitted value of Logn is shown in the table below:

Logn No. Elements (2Logn)
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384

The values input to Ifft are in the same format as those output by the Fft routine. See the
entry for Fft for a detailed explanation of the meaning of the values returned by Ifft.

Errors
Ifft causes a BASIC error if its arguments are not of the types shown in the USAGE
section, above, if Logn is not between 2 and 15, inclusive, or if the size of A or F is
smaller than the values explained above.

See Also
Fft, Icfft

Igamma
Incomplete gamma function.

Loading LOADSUB ALL FROM "IGAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL A,X,Y
Y=FNIgamma(A,X)

Description
FNIgamma returns the value of the incomplete gamma function of a and x, g(a,x).
Although the incomplete gamma function is defined for all values of x, this subroutine
only works with values of x > 0 or x = 0 and a > 0.

g(a,x) is defined by the expression

In the above expression, x must be positive or zero and a must be positive.

When x    ³ 0 and a > 0, the other forms of the incomplete gamma function present in this
subroutine library, the complementary form, G(a,x) and Tricomi's form, g*(a,x), are related
to the incomplete gamma function by the following expressions:

Errors
FNIgamma causes a BASIC error if its arguments are not both of type REAL, if x < 0, or if
x = 0 and a £ 0.

See Also
Gamma, Gamic, Gamit

(a,x)

Ihn
Modified Bessel function of the first kind, order n+½.

Loading LOADSUB ALL FROM "BESMS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNIhn(N,X)

Description
FNIhn returns the value of the modified cylindrical Bessel function of the first kind and
order n+½ of x, In+½(x). In+½(x) is defined for all values of n and all positive values of x.
If n is positive or zero, In+½(x) is also defined for x = 0.

Errors
FNIhn causes a BASIC error if its arguments are not of the types shown in the USAGE
section, above, or if x is out of the range of definition explained above.

See Also
In, Khn

In+½(x)

Note The algorithm used computes the value of In+½ using a recursion from the values of I½
and I1½. The computation time increases with n and the computation accuracy
decreases with n.

In
Modified Bessel function of the first kind, order n.

Loading LOADSUB ALL FROM "BESMC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNIn(N,X)

Description
FNIn returns the value of the modified cylindrical Bessel function of the first kind and
order n of x, In(x). In(x) is defined for all values of n and all values of x, but large absolute
values of x may cause the absolute value of the result to be larger than MAXREAL, the
largest value representable.

Errors
FNIn causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, or if the result would be larger than MAXREAL.

In(x)

See Also I0, I1e, In, K0

Note
The algorithm used computes the value of In using a recursion from the values of I0 and
I1. The computation time increases with n and the computation accuracy decreases with
n.

Ine
Scaled modified Bessel function of the first kind, order one.

Loading LOADSUB ALL FROM "BESMC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNIne(N,X)

Description
FNIne returns the value of the modified cylindrical Bessel function of the first kind and
order n of x scaled by e÷xç, e-÷xçIn(x). The scaling is done so that the value of In(x) can
be evaluated for arguments of large absolute value, where the absolute value of In(x)
may be larger than MAXREAL, the largest value representable. The absolute value of e-
÷xçIn(x) is moderate for arguments of large absolute value.

Errors
FNIne causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above.

e-úxçIn(x)

See Also I0, I0e, In, K0

Note The algorithm used computes the value of In using a recursion from the values of I0 and
I1. The computation time increases with n and the computation accuracy decreases with
n.

Invgamma
Inverse of the gamma function.

Loading LOADSUB ALL FROM "GAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNInvgamma(X)

Description
FNInvgamma returns the value of 1/(x). Unlike (x), 1/(x) is defined at negative integral
values of x and at x = 0. This function is provided for use in expressions that involve
dividing by (x), where the regular gamma function, FNGamma, would cause Errors when
evaluated at values of x equal to negative integers or zero.

Errors
FNInvgamma causes a BASIC error if its argument is not of type REAL.

See Also
Gamma

1/(x)

J0
Bessel function of the first kind, order zero.

Loading LOADSUB ALL FROM "BESRC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNJ0(X)

Description
FNJ0 returns the value of the cylindrical Bessel function of the first kind and order zero of
x, J0(x). J0(x) is defined for all values of x.

Errors
FNJ0 causes a BASIC error if its argument is not of type REAL.

See Also
J1, Jn, Y0

J0(x)

J1
Bessel function of the first kind, order one.

Loading LOADSUB ALL FROM "BESRC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNJ1(X)

Description
FNJ1 returns the value of the cylindrical Bessel function of the first kind and order one of
x, J1(x). J1(x) is defined for all values of x.

Errors
FNJ1 causes a BASIC error if its argument is not of type REAL.

See Also
J0, Jn, Y0

J1(x)

Jhn
Bessel function of the first kind, order n+½.

Loading LOADSUB ALL FROM "BESRS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNJhn(N,X)

Description
FNJhn returns the value of the cylindrical Bessel function of the first kind and order n+½
of x, Jn+½(x). Jn+½(x) is defined for all values of n and for all positive values of x. If n is
positive or zero, Jn+½(x) is also defined for x = 0.

Errors
FNJhn causes a BASIC error if its arguments are not of the types shown in the USAGE
section, above, or if x is out of the range of definition explained above.

See Also
Hh1n, Hh2n, Jn, Yhn

Jn+½(x)

The algorithm used computes the value of Jn+½ using a recursion from the values of J½
and J1½. The computation time increases with n and the computation accuracy
decreases with n.

Jn
Bessel function of the first kind, order n.

Loading LOADSUB ALL FROM "BESRC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNJn(N,X)

Description
FNJn returns the value of the cylindrical Bessel function of the first kind and order n of x,
Jn(x). Jn(x) is defined for all values of n and x.

Errors
FNJn causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above.

Note
The algorithm used computes the value of Jn using a recursion from the values of J0 and
J1. The computation time increases with n and the computation accuracy decreases with
n.

Jn(x)

K0
Modified Bessel function of the second kind, order zero.

Loading LOADSUB ALL FROM "BESMC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNK0(X)

Description
FNK0 returns the value of the modified cylindrical Bessel function of the second kind and
order zero of x, K0(x). K0(x) is defined for all positive values of x, but values of x near
zero may cause the absolute value of the result to be larger than MAXREAL, the largest
value representable.

Errors
FNK0 causes a BASIC error if its arguments is not of type REAL, if x is not positive, or if
the result would be larger than MAXREAL.

See Also
I0, K0e, K1, Kn

K0(x)

K0e
Scaled modified Bessel function of the second kind, order zero.

Loading LOADSUB ALL FROM "BESMC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNK0e(X)

Description
FNK0e returns the value of the modified cylindrical Bessel function of the second kind
and order zero of x scaled by ex, exK0(x). Although exK0(x) is defined for all positive
values of x, values of x near zero may cause the absolute value of the result to be larger
than MAXREAL, the largest value representable. The scaling is done so that the value of
K0(x) can be evaluated for large arguments, where the value of K0(x) may be near zero.

Errors
FNK0e causes a BASIC error if its argument is not of type REAL, if x is not positive, or if
the result would be larger than MAXREAL.

exK0(x)

See Also K0, K1e, Kn

K1
Modified Bessel function of the second kind, order one.

Loading LOADSUB ALL FROM "BESMC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNK1(X)

Description
FNK1 returns the value of the modified cylindrical Bessel function of the second kind and
order one of x, K1(x). K1(x) is defined for all positive values of x, but values of x near zero
may cause the absolute value of the result to be larger than MAXREAL, the largest value
representable.

Errors
FNK1 causes a BASIC error if its argument is not of type REAL, if x is not positive, or if
the result would be larger than MAXREAL.

See Also
I1, K0, K1e, Kn

K1(x)

K1e
Scaled modified Bessel function of the second kind, order one.

Loading LOADSUB ALL FROM "BESMC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNK1e(X)

Description
K1e returns the value of the modified cylindrical Bessel function of the second kind and
order one of x scaled by ex, exK1(x). Although exK1(x) is defined for all positive values of
x, values of x near zero may cause the absolute value of the result to be larger than
MAXREAL, the largest value representable. The scaling is done so that the value of K1(x)
can be evaluated for large arguments, where the absolute value of K1(x) may be near
zero.

Errors
K1e causes a BASIC error if its argument is not of type REAL, if x is not positive, or if the
result would be larger than MAXREAL.

exK1(x)

See Also K0e, K1, Kn

Ke
Complex Kelvin function of the second kind of a real argument.

Loading LOADSUB ALL FROM "KELVIN.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X
COMPLEX C
C=FNKe(X)

Description
FNKe returns the values of the real and imaginary Kelvin functions of the second kind of
the value x. The real part of the value returned is the value of ker(x) and the imaginary
part is the value of kei(x). Although ker(x) and kei(x) are defined for all values of x except
zero, values of x near zero may produce results greater than MAXREAL, the largest
value representable.

Errors
FNKe causes a BASIC error if its argument is not of type REAL. It also causes a BASIC
error if x is zero or the value of either the real or imaginary component of the value
returned would be larger than MAXREAL.

See Also
Ker, Kei, Be

ker(x) + ikei(x)

Arg[ker(x) + ikei(x)], degrees

Kei
Imaginary Kelvin function of the second kind of a real argument.

Loading LOADSUB ALL FROM "KELVIN.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNKei(X)

Description
FNKei returns the value of the imaginary Kelvin function of the second kind of the value x.
Although kei(x) is defined for all values of x except zero, values of x near zero may
produce results greater than MAXREAL, the largest value representable. Note that
sometimes Kelvin functions are written with an order, as in kei3(x). In this notation, the
function FNKei returns the value of kei0(x).

Errors
FNKei causes a BASIC error if its argument is not of type REAL, if x is negative or zero,
or if the value returned would be larger than MAXREAL.

See Also
Ke, Ker

kei(x)

Ker
Real Kelvin function of the second kind.

Loading LOADSUB ALL FROM "KELVIN.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNKer(X)

Description
FNKer returns the value of the real Kelvin function of the second kind of the value x.
Although ker(x) is defined for all values of x except zero, values of x near zero may
produce results greater than MAXREAL, the largest value representable. Note that
sometimes Kelvin functions are written with an order, as in ker3(x). In this notation, the
function FNKer returns the value of ker0(x).

Errors
FNKer causes a BASIC error if its argument is not of type REAL, if x is negative or zero,
or if the value returned would be larger than MAXREAL.

See Also
Ke, Ker

ker(x)

Khn
Modified Bessel function of the second kind, order n+½.

Loading LOADSUB ALL FROM "BESMS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNKhn(N,X)

Description
FNKhn returns the value of the modified cylindrical Bessel function of the second kind
and order n+½ of x, Kn+½(x). Kn+½(x) is defined for all values of n and for all positive
values of x.

Errors
FNKhn causes a BASIC error if its arguments are not of the types shown in the USAGE
section, above, or if x is negative or zero.

See Also
Ihn, Kn

Kn+½(x)

Note The algorithm used computes the value of Kn+½ using a recursion from the values of K½
and K1½. The computation time increases with n and the computation accuracy
decreases with n.

Kn
Modified Bessel function of the second kind, order n.

Loading LOADSUB ALL FROM "BESMC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNKn(N,X)

Description
FNKn returns the value of the modified cylindrical Bessel function of the second kind and
order n of x, Kn(x). Kn(x) is defined for all values of n and all positive values of x, but
values of x close to zero may cause the absolute value of the result to be larger than
MAXREAL, the largest value representable.

Errors
FNKn causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, if x is not positive, or if the result would be larger than MAXREAL.

Kn(x)

See Also In, K0, K1, Kn, Kne

Note
The algorithm used computes the value of Kn using a recursion from the values of K0
and K1. The computation time increases with n and the computation accuracy decreases
with n.

Kne
Scaled modified Bessel function of the second kind, order n.

Loading LOADSUB ALL FROM "BESMC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNKne(N,X)

Description
FNKne returns the value of the modified cylindrical Bessel function of the second kind
and order n of x scaled by ex, exKn(x). Although exKn(x) is defined for all positive values
of x, values of x near zero may cause the absolute value of the result to be larger than
MAXREAL, the largest value representable. The scaling is done so that the value of Kn(x)
can be evaluated for arguments of large absolute value, where the value of Kn(x) may be
near zero.

Errors
FNKne causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, if x is not positive, or if the result would be larger than MAXREAL.

exKn(x)

See Also I0e, In, K0e, K1e, Kn

Note
The algorithm used computes the value of Kn using a recursion from the values of K0
and K1. The computation time increases with n and the computation accuracy decreases
with n.

Li
Log integral.

Loading LOADSUB ALL FROM "LI.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNLi(X)

Description
FNLi returns the value of the log integral of x, Li(x). Li(x) is defined by the relation

The path of integration must not include the points x = 0 and x = 1 and must not cross the
real axis.

The real version of Li(x) is only defined for x positive or zero.

Errors
FNLi causes a BASIC error if its argument is not of type REAL or if it is negative.

Li(x)

See Also Ci, Ei, Si

Logbeta
Logarithm of the beta function of a real argument.

Loading LOADSUB ALL FROM "GAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL A,B,Y
Y=FNLogbeta(A,B)

Description
FNLogbeta returns the value of the logarithm of the beta function of a and b, log[B(a,b)].
B(a,b) is defined as (a)(b)/(a+b) (see Gamma). B(a,b) is only defined for a > 0 and b > 0.

Errors
FNLogbeta causes a BASIC error if its arguments are not both of type REAL or if either a
or b is negative or zero.

See Also
Beta, Clogbeta, Gamma

log[B(a,b)]

Loggamma
Logarithm of the gamma function of a real argument.

Loading LOADSUB ALL FROM "GAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNLoggamma(X)

Description
FNLoggamma returns the value of the logarithm of the gamma function of x, log[G(x)].
The value of log[G(x)] approaches ± as x approaches a negative integer or zero.

Errors
FNLoggamma causes a BASIC error if its argument is not of type REAL or if the
magnitude of log[G(x)] exceeds MAXREAL, the largest number representable.

See Also
Cgamma, Gamma, Loggamma

log[G(x)]

Mean
Mean of values in an array.

Loading LOADSUB ALL FROM "MEAN.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL A(*),Y
Y=FNMean(A(*))

Description
FNMean returns the mean value of the elements in the array A. The mean is the average
value of the elements in the array, which is computed by adding the values of the
elements in the array and dividing the sum by the number of elements.

Errors
FNMean causes a BASIC error if its argument is not a REAL array.

See Also
Median, Std, F_variance

Median
Median of values in an array.

Loading LOADSUB ALL FROM "MEAN.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB FNMedian FROM "MATHLIB.HTS"

Usage REAL A(*),X
X=FNMedian(A(*))

Description
FNMedian returns the median value or values of the elements in the array A. The median
is the value which half the points in A are less than and half the points in A are greater
than.

FNMedian computes the median by sorting the elements in the array A. If A has an even
number of points, there are two central values in the return value in A. In this case,
FNMedian returns the average of the two central values.

When it executes, FNMedian creates a temporary integer array to hold values used in
sorting. This requires 2 bytes of memory per point in the array A. FNMedian causes an
error if this amount is memory is not available.

Errors
FNMedian causes a BASIC error if its arguments is not a REAL array.

See Also
Mean, MAT SORT (in the HTBasic Reference Manual)

Norm
Euclidean or F-norm of a vector.

Loading LOADSUB ALL FROM "NORM.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL Y,A(*)
Y=FNNorm(A(*))

Description
FNNorm returns the value of the Euclidean norm of the vector represented in A. This
norm is computed by summing the squares of the elements and taking the square root of
the sum. This norm is also called the L-2 norm or the F-norm.

Errors
FNNorm causes an HTBasic error if its argument is not a REAL array.

See Also
Norm1, Norminf

Norm1
L-1 norm of a vector.

Loading LOADSUB ALL FROM "NORM.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL Y,A(*)
Y=FNNorm1(A(*))

Description
FNNorm1 returns the value of the L-1 norm of the vector represented in A. This norm is
computed by summing the absolute values of the elements in A.

Errors
FNNorm1 causes an HTBasic error if its argument is not a REAL array.

See Also
Norm, Norminf

Norminf
L- norm of a vector.

Loading LOADSUB ALL FROM "NORM.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL Y,A(*)
Y=FNNorminf(A(*))

Description
FNNorminf returns the value of the L- (L-infinity) norm of the vector represented in A. This
norm is computed by finding the absolute value of the element of A with the largest
absolute value.

Errors
FNNorminf causes an HTBasic error if its argument is not a REAL array.

See Also
Norm, Norm1

P1n
LeGendre function of the first kind, degree one.

Loading LOADSUB ALL FROM "LEGENDRE.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNP1n(N,X)

Description
FNP1n returns the value of the Legendre function of the first kind, degree one, and order
n of x, Pn1(x), into the real variable Y. N must be positive or zero.

Errors
FNP1n causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, if n < 0, or if the polynomial's absolute value would be larger than
MAXREAL, the largest value representable.

See Also
Pn, Q1n

Pn1(x)

Note For n > 12, the algorithm used computes the value of Pn1 using a recursion from the
values of P11 and P21. The computation time increases with n - 1 and the computation
accuracy decreases with n - 1.

Paderiv
Antiderivative of a polynomial.

Loading LOADSUB ALL FROM "PADERIV.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB Paderiv FROM "MATHLIB.HTS"

Usage INTEGER N
REAL P(*),A(*)
CALL Paderiv(N,P(*),A(*))

Description
Paderiv calculates the polynomial that is the antiderivative of that described in n and P. It
returns the coefficients of the antiderivative in A.

The first element in the arrays P and A represents the constant term in the polynomial. In
the case of A, this element is set to zero, as the constant term in an antiderivative may
take any value. The second element in P and A represents the linear term; the third the
quadratic term, etc. The interpretation of the elements in P and A is without regard to the
OPTION BASE in effect or any lower bound specified when P and A were declared. N is
the degree of the polynomial whose coefficients are in P.

Errors
Paderiv causes an HTBasic error if n > 10, if P contains fewer than n + 1 elements, or if A
contains fewer than n + 2 elements.

See Also
Pderiv, Pinteg

Pderiv
Derivative of a polynomial.

Loading LOADSUB ALL FROM "PDERIV.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB Pderiv FROM "MATHLIB.HTS"

Usage INTEGER N
REAL P(*),D(*)
CALL Pderiv(N,P(*),D(*))

Description
Pderiv calculates the polynomial that is the derivative of that described in P. It returns the
coefficients of the derivative in D.

The first element in the arrays P and D represents the constant term in the polynomial.
The second element in P and D represents the linear term; the third the quadratic term,
etc. The interpretation of the elements in P and D is without regard to the OPTION BASE
in effect or any lower bound specified when P and D were declared. N is the degree of
the polynomial whose coefficients are in P.

Errors
Pderiv causes an HTBasic error if n > 10, if P contains fewer than n + 1 elements, or if D
contains fewer than n elements.

See Also
Paderiv

Pinteg
Integral of a polynomial.

Loading LOADSUB ALL FROM "PDERIV.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL A,B,P(*),Y
Y=FNPinteg(N,P(*),A,B)

Description
FNPinteg calculates the definite integral of the real polynomial function p(x) over the
interval x (a,b). It does this by using the polynomial antiderivative function used by the
Paderiv subroutine and returning the difference of the antiderivatives at the points b and
a.

The first element in the array P represents the constant term in the polynomial; the
second element represents the linear term; the third the quadratic term, etc. The
interpretation of the elements in P is without regard to the OPTION BASE in effect or any
lower bound specified when P was declared.

Errors
Pinteg causes an HTBasic error if n > 10 or if P contains fewer than n + 1 elements.

See Also
Paderiv

Pn
LeGendre function of the first kind.

Loading LOADSUB ALL FROM "LEGENDRE.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNPn(N,X)

Description
FNPn returns the value of the Legendre function of the first kind, degree zero, and order
n of x, Pn(x), into the real variable Y. N must be positive or zero.

Errors
FNPn causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, if n < 0, or if the polynomial's absolute value would be larger than
MAXREAL, the largest value representable.

See Also
P1n, Qn

Pn(x)

Note For n > 12, the algorithm used computes the value of Pn using a recursion from the
values of P1 and P2. The computation time increases with n - 11 and the computation
accuracy decreases with n - 11.

Polar
Polar form of a complex array.

Loading LOADSUB ALL FROM "POLAR.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB Polar FROM "MATHLIB.HTS"

Usage COMPLEX C(*)
REAL A(*),P(*)
CALL Polar(C(*),T$,A(*),P(*))

Description
Polar changes the elements of the array C into polar form. The magnitude of each
element in C is placed into the corresponding element of array A and the phase of each
element is placed into the corresponding element of array P. The elements of C remain
unchanged. If the first character in T$ is "D" or "d", the angles in P are output in degrees;
if T$ is null or begins with any character other than "d" or "D", the angles in P are output
in radians. A and P must contain at least as many elements as C. If A or P contains more
elements than C, the extra elements are unchanged or ignored.

Errors
Polar causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, or if A or P contain fewer elements than C.

See Also
Rect

Poly
Evaluate a polynomial.

Loading LOADSUB ALL FROM "POLY.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y,C(*)
Y=FNPoly(N,C(*),X)

Description
FNPoly evaluates a polynomial of degree n whose coefficients are given in the elements
of C at argument x. The first element in C is the constant term in the polynomial, the
second element is the first-degree term (the multiplier of x), the third element is the
second-degree term (the multiplier of x2), etc. C must contain at least n+1 elements; if it
contains more than n+1 elements, the extra elements are ignored.

Errors
FNPoly causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, or if the array C has fewer than n+1 elements.

See Also
Cpoly, Paderiv, Pderiv, Pinteg, Proots

Power_spectrum
Calculate power spectral density.

Loading LOADSUB ALL FROM "FFT.HTS"
or LOADSUB Power_spectrum FROM "MATHLIB.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER Logn
REAL A(*),B(*)
CALL Power_spectrum(Logn,A(*),B(*))

Description
Power_spectrum calculates the power spectral density of the data in the array A and
returns the information in the array B. Logn is the base-2 logarithm of the number of
points in the sequence to be correlated. The array A must have at least 2Logn elements;
if it has more than this number of elements, the extra elements are ignored. The array B
must have at least 2Logn+1 elements; if it has more than this number of elements, the
extra elements are unmodified. The number of elements in A denoted by each permitted
value of Logn is shown in the table below:

Logn No. Elements (2Logn)
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384

If N = 2Logn, after Power_spectrum has run, the first N/2 elements in the array B contain
the power spectral density of A. The second N/2 elements in B contain zeros.

If the values in A are taken to be values of a continuous complex signal, a(t), sampled at
constant intervals of T (time, distance, or whatever units apply), and if the signal sampled
contained no terms at or above the frequency 1/2T, then the first N/2 elements in the
array B are proportional to the power at the frequencies k/2NT, where k is the position in
B, beginning with k = 0.

The power spectral density of a set of data is the Fourier transform of the autocorrelation
of that set of data.

Errors
Power_spectrum causes a BASIC error if its arguments are not of the types shown in the
USAGE section, above, if Logn is not between 2 and 15, inclusive, or if the size of A or B
is smaller than the values described above.

See Also
Autocorrelate, Power_spectrum

Proots
Find the roots of a polynomial.

Loading LOADSUB ALL FROM "PROOTS.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB Proots FROM "MATHLIB.HTS"

Usage INTEGER M,N
REAL P(*)
COMPLEX Z(*)
CALL Proots(N,P(*),M,Z(*))

Description
Proots attempts to finds all values of z that satisfy the relation p(z) = 0, where p is a
polynomial of degree n, which must be 10 or less. The roots will usually be returned in Z
in order of increasing modulus. Since the coefficients of p are real, complex roots
returned in Z will occur in conjugate pairs.

If a root is not found after m iterations of the algorithm, that root is set to
CMPLX(MAXREAL,0.0) to indicate an error and Proot returns without attempting to find
more roots.

The first element in the array P represents the constant term in the polynomial; the
second element, the linear term; the third the quadratic term, etc. The interpretation of the
elements in P is without regard to the OPTION BASE in effect or any lower bound
specified when P was declared.

The array Z must contain enough elements to hold all the solutions to the expression p(z)
= 0, that is, Z should contain at least n elements.

Proots uses LaGuerre's method to find a real root or a conjugate pair of roots to the
equation p(z) = 0. It then reduces the equation by dividing p(z) by the term z - zn for a
real root zn or z – 2Â(zn) + úznç2 for a complex root and repeats the procedure for the
reduced polynomial. This stops when all the roots are found or when the algorithm fails to
find a new root after m iterations.

Typical values for m might be 50, 100, or 200.

Errors
Proots causes an HTBasic error if n < 2, n > 10, if P contains fewer than n + 1 elements,
if Z contains fewer than n elements, or if an evaluation of the polynomial being used
results in a value greater in magnitude than MAXREAL.

Example
The following BASIC program calculates the roots of the function

x3 - 3x2 + 3x - 2 = 0.

10 LOADSUB ALL FROM "PROOTS.HTS"
20 INTEGER I

30 REAL C(0:3)
40 COMPLEX Z(1:3)
50 READ C(*)
60 DATA -2.0,3.0,-3.0,1.0
70 CALL Proots(3,C(*),100,Z(*))
80 FOR I=1 TO 3
90 PRINT USING """("",MZ.6D,"","",MZ.6D,"")""";Z(I)
100 NEXT I
110 END

When run, it prints

(0.500000,-0.866025)
(0.500000, 0.866025)
(2.000000, 0.000000).

The roots of the equation can be found by hand. They are

See Also
Froot, Paderiv, Pderiv, Pinteg, Poly

Pulse
Generate a pulse waveform.

Loading LOADSUB ALL FROM "PULSE.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB Pulse FROM "MATHLIB.HTS"

Usage REAL P,A,B,S,C,Y(*)
CALL Pulse(P,A,B,S,C,Y(*))

Description
Pulse fills the elements of the array Y with a pulse of duty cycle c, period p, start point s,
and high and low values a and b, respectively. P and S are expressed in units of the
number of array elements, although they need not be integers. P must be positive and c
must be between 0 and 1, inclusive.

If Yk refers to an element Yk for a=+1, b=-1, c=0.25, and p=100

of array Y, beginning with k = 0, the expression for Yk is:

In the above expressions, fract(x) is the fractional part of x, calculated by finding the
difference between x and the next lower integer from x. Fract(x) is between 0, inclusive,
and 1, exclusive.

If p or s is contained in a variable of type INTEGER, be sure to use the BASIC REAL
command to change the variable to a REAL value when passing it to the Pulse routine.

Errors
Pulse causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, if p is negative or zero, or if c is not between 0 and 1, inclusive.

See Also
Waveform

P_beta
Probability integral for beta distribution.

Loading LOADSUB ALL FROM "IGAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,A,B,Y
Y=FNP_beta(A,B,X)

Description
FNP_beta returns the value of the probability integral of the univariate beta probability
density function with parameters a and b at x, P(x;a,b). P(x;a,b) is defined only for a 0
and b 0.

P(x;a,b) is defined by the expression

When 0 x 1, P(x;a,b) is related to the incomplete beta function returned by FNIbeta,
Bx(a,b), by the expression

P(x;a,b)

The function P(x;a,b) is sometimes written Ix(a,b).

Errors
FNP_beta causes a BASIC error if its arguments are not all of type REAL or if a or b is
negative.

See Also
Beta, Ibeta, F_beta, Q_beta

P_cauchy
Probability integral for Cauchy distribution.

Loading LOADSUB ALL FROM "CAUCHY.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,A,B,Y
Y=FNP_cauchy(A,B,X)

Description
FNP_cauchy returns the value of the integral of the Cauchy probability density function
with parameters a and b at x. This integral, P(x;a,b), is defined by the expression

which reduces to

B must be greater than zero.

P(x;0,b)

Errors FNP_cauchy causes a BASIC error if its arguments are not all of type REAL or if b is
negative or zero.

See Also
F_cauchy, Q_cauchy

P_chi2
Probability integral for Chi-squared distribution.

Loading LOADSUB ALL FROM "IGAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNP_chi2(N,X)

Description
FNP_chi2 returns the value of the probability integral of the univariate chi-squared (c²)
probability density function with parameter n. This integral, P(x;n), is defined by the
expression

X is often written as ²; among other uses, this notation emphasizes the fact that this
integral is only nonzero for values of x 0. Although P is sometimes defined for n < 0, most
implementations, including this one, restrict P to being defined for n 0.

P(x;n)

Errors FNP_chi2 causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, or if n is negative.

See Also
F_chi2, Q_chi2

P_exp
Probability integral for exponential distribution.

Loading LOADSUB ALL FROM "EXP.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,A,Y
Y=FNP_exp(A,X)

Description
FNP_exp returns the value of the integral of the exponential probability density function
with parameter a at x, P(x;a). P(x;a) is defined by the expression

P(x;a) is defined for positive values of a.

P(x;a)

Errors FNP_exp causes a BASIC error if its arguments are not all of type REAL or if a is zero or
negative.

See Also
F_exp, Q_exp

P_f
Probability integral for F distribution.

Loading LOADSUB ALL FROM "IGAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER M,N
REAL X,Y
Y=FNP_f(M,N,X)

Description
FNP_f returns the value of the probability integral of the univariate F probability density
function with parameters m and n at x, P(x;m,n). This integral is defined for m and n
positive or zero.

Errors
FNP_f causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, or if either m or n is negative.

See Also
F_f, Q_f

P(x;1,2)

P_gauss
Probability integral for Gaussian distribution.

Loading LOADSUB ALL FROM "ERF.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,M,S,Y
Y=FNP_gauss(M,S,X)

Description
FNP_gauss returns the value of the integral of the Gaussian, or normal, probability
density function of mean m and standard deviation s (represented below by s) at x. The
integral, P(x;m,s), is defined by the expression

P is defined for all values of x and m and for positive values of s.

P(x;0,s)

Errors FNP_gauss causes a BASIC error if its arguments are not all of type REAL or if the value
of S is negative or zero.

See Also
F_gauss, Q_gauss

P_laplace
Probability integral for LaPlace distribution.

Loading LOADSUB ALL FROM "LAPLACE.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,A,B,Y
Y=FNP_laplace(A,B,X)

Description
FNP_laplace returns the value of the integral of the LaPlace probability density function
of parameters a and b at x, P(x;a,b). P(x;a,b) is defined by the expression

P is defined for all positive values of b.

P(x;0,b)

Errors FNP_laplace causes a BASIC error if its arguments are not all of type REAL or if the
value of b is negative or zero.

See Also
F_laplace, Q_laplace

P_pareto
Probability integral for Pareto distribution.

Loading LOADSUB ALL FROM "PARETO.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,X0,T,Y
Y=FNP_pareto(X0,T,X)

Description
FNP_pareto returns the value of the integral of the Pareto probability density function of
parameters X0 (here written as x0) and t at x, P(x;x0,t). P(x;x0,t) is defined by the
expression

P is defined for positive values of x0 and t.

P(x;1,t)

Errors FNP_pareto causes a BASIC error if its arguments are not all of type REAL or if the value
of x0 or t is negative or zero.

See Also
F_pareto, Q_pareto

P_rayleigh
Probability integral for Rayleigh distribution.

Loading LOADSUB ALL FROM "RAYLEIGH.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL Beta,X,Y
Y=FNP_rayleigh(Beta,X)

Description
FNP_rayleigh returns the value of the integral of the Rayleigh probability density function
of parameter Beta (here written as b), at x, P(x;). P is defined by the expression

which reduces to

P is defined for all positive values of .

P(x;)

Errors FNP_rayleigh causes a BASIC error if its arguments are not all of type REAL or if the
value of is negative or zero.

See Also
F_rayleigh, Q_rayleigh

P_student
Probability integral for Student's t distribution.

Loading LOADSUB ALL FROM "IGAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNP_student(N,X)

Description
FNP_student returns the value of the integral of the Student's t probability density
function of parameter n at x, P(x;n). P is defined for all positive or zero values of x and all
positive values of n.

Errors
FNP_student causes a BASIC error if its arguments are not of the types listed in the
USAGE section, above, or if the value of n is negative or zero.

See Also
F_student, Q_student

P(x;n)

Q1n
LeGendre function of the second kind, degree one.

Loading LOADSUB ALL FROM "LEGENDRE.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNQ1n(N,X)

Description
FNQ1n returns the value of the Legendre function of the second kind, degree one, and
order n of x, Qn1(x). N must be positive or zero.

Errors
FNQ1n causes a BASIC error if its arguments are not of the types listed in the usage
section, above, or if the polynomial's absolute value would be larger than MAXREAL, the
largest value representable.

See Also
P1n, Qn

Qn1(x)

Note For n > 2, the algorithm used computes the value of Qn1 using a recursion from the
values of Q11 and Q21. The computation time increases with n-1 and the computation
accuracy decreases with n-1.

Qn
LeGendre function of the second kind.

Loading LOADSUB ALL FROM "LEGENDRE.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNQn(N,X)

Description
FNQn returns the value of the Legendre function of the second kind, degree zero, and
order n of x, Qn(x). N must be positive or zero.

Errors
FNQn causes a BASIC error if its arguments are not of the types listed in the usage
section, above, if n is negative, or if the polynomial's absolute value would be larger than
MAXREAL, the largest value representable.

See Also
Pn, Q1n

Qn(x)

Note For n > 2, the algorithm used computes the value of Qn using a recursion from the values
of Q1 and Q2. The computation time increases with n-1 and the computation accuracy
decreases with n-1.

Q_beta
Complementary probability integral for beta distribution.

Loading LOADSUB ALL FROM "IGAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,A,B,Y
Y=FNQ_beta(A,B,X)

Description
FNQ_beta returns the value of the complementary probability integral of the univariate
beta probability density function with parameters a and b, Q(x;a,b). Q(x;a,b) is defined
only for a 0 and b 0.

Q(x;a,b) is defined by the expression

When 0 £ x £ 1, Q(x;a,b) is related to the incomplete beta function returned by FNIbeta,
Bx(a,b) by the expression

Q(x;a,b)

Errors FNQ_beta causes a BASIC error if its arguments are not all of type REAL or if a or b is
negative.

See Also
Beta, Ibeta, F_beta, P_beta

Q_cauchy
Complementary probability integral for Cauchy distribution.

Loading LOADSUB ALL FROM "CAUCHY.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,A,B,Y
Y=FNQ_cauchy(A,B,X)

Description
FNQ_cauchy returns the value of the complementary integral of the Cauchy probability
density function with parameters a and b. This integral, Q(x;a,b), is defined by the
expression

which reduces to

B must be greater than zero.

Q(x;0,b)

Errors FNQ_cauchy causes a BASIC error if its arguments are not all of type REAL or if b is
negative or zero.

See Also
F_cauchy, P_cauchy

Q_chi2
Complementary probability integral for Chi-squared distribution.

Loading LOADSUB ALL FROM "IGAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNQ_chi2(N,X)

Description
FNQ_chi2 returns the value of the complementary probability integral of the univariate
chi-squared (c²) probability density function with parameter n. This integral, Q(x;n), is
defined by the expression

X is often written as c²; among other uses, this notation emphasizes the fact that this
integral is only less than one for values of x    ³ 0. Although Q is sometimes defined for n
< 0, most implementations, including this one, restrict Q to being defined for n ³ 0.

Q(x;n)

Errors FNQ_chi2 causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, or if n is negative.

See Also
F_chi2, P_chi2

Q_exp
Complementary probability integral for exponential distribution.

Loading LOADSUB ALL FROM "EXP.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,A,Y
Y=FNQ_exp(A,X)

Description
FNQ_exp returns the value of the complementary integral of the exponential probability
density function with parameter a at x, Q(x;a). Q(x;a) is defined by the expression

Q(x;a) is defined for positive values of a.

Q(x;a)

Errors FNQ_exp causes a BASIC error if its arguments are not all of type REAL or if a is
negative or zero.

See Also
F_exp, P_exp

Q_f
Complementary probability integral for F distribution.

Loading LOADSUB ALL FROM "IGAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER M,N
REAL X,Y
Y=FNQ_f(M,N,X)

Description
FNQ_f returns the value of the complementary probability integral of the univariate F
probability density function with parameters m and n at x, Q(x;m,n). This integral is
defined for m and n positive or zero.

Errors
FNQ_f causes a BASIC error if its arguments are not of the types listed in the usage
section, above, or if either m or n is negative.

See Also
F_f, P_f

Q(x;1,2)

Q_gauss
Complementary probability integral for Gaussian distribution.

Loading LOADSUB ALL FROM "ERF.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,M,S,Y
Y=FNQ_gauss(M,S,X)

Description
FNQ_gauss returns the value of the complementary integral of the Gaussian, or normal,
probability density function of mean m and standard deviation s (represented below by s)
at x. The integral, Q(x;m,s), is defined by the expression

Q is defined for all values of x and m and for positive values of .

Q(x;0,s)

Errors FNQ_gauss causes a BASIC error if its arguments are not all of type REAL or if the value
of S is negative or zero.

See Also
F_gauss, P_gauss

Q_laplace
Complementary probability integral for LaPlace distribution.

Loading LOADSUB ALL FROM "LAPLACE.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,A,B,Y
Y=FNQ_laplace(A,B,X)

Description
FNQ_laplace returns the value of the complementary integral of the LaPlace probability
density function of parameters a and b at x, Q(x;a,b). Q(x;a,b) is defined by the
expression

Q is defined for all positive values of b.

Q(x;0,b)

Errors FNQ_laplace causes a BASIC error if its arguments are not all of type REAL or if the
value of b is negative or zero.

See Also
F_laplace, P_laplace

Q_pareto
Complementary probability integral for Pareto distribution.

Loading LOADSUB ALL FROM "PARETO.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,X0,T,Y
Y=FNQ_pareto(X0,T,X)

Description
FNQ_pareto returns the value of the complementary integral of the Pareto probability
density function of parameters X0 (here written as x0) and t at x, Q(x;x0,t). Q(x;x0,t) is
defined by the expression

Q is defined for positive values of x0 and t.

Q(x;1,t)

Errors FNQ_pareto causes a BASIC error if its arguments are not all of type REAL or if the value
of x0 or t is negative or zero.

See Also
F_pareto, P_pareto

Q_rayleigh
Complementary probability integral for Rayleigh distribution.

Loading LOADSUB ALL FROM "RAYLEIGH.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL Beta,X,Y
Y=FNQ_rayleigh(Beta,X)

Description
FNQ_rayleigh returns the value of the integral of the Rayleigh probability density function
of parameter Beta (here written as b), at x, Q(x;b). Q is defined by the expression

which reduces to

Q is defined for all positive values of b.

Errors Q(x;b)

FNQ_rayleigh causes a BASIC error if its arguments are not all of type REAL or if the
value of is negative or zero.

See Also
F_rayleigh, P_rayleigh

Q_student
Complementary probability integral for Student's t distribution.

Loading LOADSUB ALL FROM "IGAMMA.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNQ_student(N,X)

Description
FNQ_student returns the value of the complementary integral of the Student's t
probability density function of parameter n, Q(x;n). Q is defined for all positive values of n.

Errors
FNQ_student causes a BASIC error if its arguments are not of the types listed in the
USAGE section, above, or if the value of n is negative or zero.

See Also
F_student, P_student

Q(x;n)

Rect
Rectangular form of a complex array.

Loading LOADSUB ALL FROM "RECT.HTS"
or LOADSUB Rect FROM "MATHLIB.HTS"

Usage REAL A(*),P(*)
COMPLEX C(*)
CALL Rect(A(*),P(*),T$,C(*))

Description
Rect changes the elements of the arrays A and P into rectangular form. The magnitude of
each element is in A and the phase of each element is in the corresponding position in P.
The rectangular form of the data in A and P is placed into the corresponding element of
array C. The elements of A and P remain unchanged. If the first character in T$ is "D" or
"d", the angles in P are taken to be in degrees; if T$ is null or begins with any character
other than "d" or "D", the angles in P are taken to be in radians. A and P must contain the
same number of elements; C must contain at least as many element as A and P. If C
contains more than this number of elements, the extra elements are unchanged or
ignored.

Errors
Rect causes a BASIC error if its arguments are not of the types listed in the USAGE
section, if A and P contain different numbers of elements or if C contains fewer elements
than A and P.

See Also
Polar

Rfilter
Filter a real sequence.

Loading LOADSUB ALL FROM "FFT.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB Rfilter FROM "MATHLIB.HTS"

Usage INTEGER Logn
REAL A(*),B(*),F(*)
CALL Rfilter(Logn,A(*),F(*),B(*))

Description
Rfilter calculates the sequence produced by filtering the time-domain (or space-domain)
sequence in A by the filter whose frequency-domain coefficients are in F. It returns the
resulting sequence in the array B. Logn is the base-2 log of the number of points in the
sequences in A and B. The arrays A and B must contain at least 2Logn elements. The
array F must contain at least 2Logn-1 elements. If the arrays have extra elements, the
extra elements are ignored and unmodified.

The values in F are the amounts by which to scale the corresponding frequency
components in A to produce the resultant sequence. These values are magnitudes;
Rfilter assumes that all filter coefficients have zero phase; use Filter to use a filter
function having both magnitude and phase.

The first element in F represents the amount by which the d. c. term in A is to be scaled,
the second the amount by which the 1/N frequency component is scaled, the third the
amount by which the 2/N frequency component is scaled, etc. The meaning of each
frequency component is the same for Rfilter as for Fft and is explained in the entry for Fft.

If the sequence to be used as a filter is specified as an impulse response, the Convolve
function may be used to filter using the impulse response as input.

Errors
Rfilter causes a BASIC error if its arguments are not of the types shown in the USAGE
section, above, if Logn is not between 2 and 15, inclusive, or if the size of A or B is
smaller than 2Logn, or if F is smaller than 2Logn-1.

See Also
Cfft, Convolve, Filter, Fft

Romberg
Integrate a function using Romberg's method.

Loading LOADSUB ALL FROM "ROMBERG.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB FNRomberg FROM "MATHLIB.HTS"

Usage REAL A,B,X,Eps
INTEGER Nmin,Nmax
X=FNRomberg(F$,A,B,Eps,Nmin,Nmax)

Description
FNRomberg estimates the integral of the function named in F$ between the points a and
b. Eps, Nmin, and Nmax control when the estimating process stops. FNRomberg
evaluates the integral using successively more points in the function, doing at least Nmin
evaluations of the integral. When the difference between successive values of the integral
is less than Eps, integration stops. If FNRomberg does more than Nmax evaluations of
the integral without successive evaluations differing by less that Eps, FNRomberg stops
evaluating the integral and returns MAXREAL to indicate failure to evaluate the integral.

F$ should contain the name of an HTBasic subroutine. The subroutine should take two
REAL parameters. It should evaluate the function to be integrated at the second
parameter and return its value in the first parameter. For example, if F$ = "Test", then the
subroutine Test should begin with the definition line

SUB Test(REAL Y,X)

where X and Y may be replaced by the names of any REAL parameters. The subroutine
Test would evaluate the desired function at the value X and return the value in Y.

Errors
FNRomberg causes an HTBasic error if the subroutine named in F$ is undefined. The
subroutine named in F$ may also cause HTBasic Errors when it is evaluated.

S
Fresnel sine integral of a real argument.

Loading LOADSUB ALL FROM "FRESNEL.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNS(X)

Description
FNS returns the value of the Fresnel sine integral of x. S(x) is defined by the relation

Errors
FNS causes a BASIC error if its argument is not of type REAL.

See Also
C

S(x)

Shi
Hyperbolic sine integral.

Loading LOADSUB ALL FROM "EI.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNShi(X)

Description
FNShi returns the value of the hyperbolic sine integral of x, Shi(x). Shi(x) is defined by the
relation

Large absolute values of x may produce results greater in magnitude than MAXREAL.

Shi(x)

Errors FNShi causes a BASIC error if its argument is not of type REAL. It also causes a BASIC
error if Shi(x) would be greater than MAXREAL.

See Also
Chi, Ei, Si

Si
Sine integral.

Loading LOADSUB ALL FROM "EI.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNSi(X)

Description
FNSi returns the value of the sine integral of x, Si(x). Si(x) is defined by the relation

Si(x) is defined for all values of x.

Si(x)

Errors Si causes a BASIC error if its argument is not of type REAL.

See Also
Ei, Ci, Shi

Simpson
Integrate a function using Simpson's rule.

Loading LOADSUB ALL FROM "SIMPSON.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB FNSimpson FROM "MATHLIB.HTS"

Usage REAL A,B,X
INTEGER N
X=FNSimpson(F$,A,B,N)

Description
FNSimpson estimates the integral of the function named in F$ between the points a and
b where N is the number of divisions between a and b. The estimate is exact for functions
that can be represented as polynomials of degree 2 or less.

F$ should contain the name of an HTBasic subroutine. The subroutine should take two
REAL parameters. It should evaluate the function to be integrated at the second
parameter and return its value in the first parameter. For example, if F$ = "Test", then the
subroutine Test should begin with the definition line

SUB Test(REAL Y,X)

where X and Y may be replaced by the names of any REAL parameters. The subroutine
Test would evaluate the desired function at the value X and return the value in Y.

Errors
FNSimpson causes an HTBasic error if the subroutine named in F$ is undefined. The
subroutine named in F$ may also cause HTBasic Errors when it is evaluated.

Solve
Solve a system of linear equations.

Loading LOADSUB ALL FROM "SOLVE.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB Solve FROM "MATHLIB.HTS"

Usage REAL A(*),B(*)
CALL Solve(A(*),B(*))

Description
Solve finds the solution to the system of linear equations represented by A and B and
returns the solution in B. A must be square, that is, it must have the same number of
rows as columns. B must have the same number of rows as A and usually is a one-
dimensional array (a vector). If A represents the matrix whose entries are stored in A and
b represents the vector whose entries are stored in B, Solve finds the solution vector, x,
for the matrix equation

Ax = b

and returns the solution in B, replacing the former contents of B. The contents of the
array A are also destroyed by Solve.

The array B may be two-dimensional. In this case, after solve is called, each column in B
contains the solution vector for the case when the input values in that column were used
as b in the above equation.

Solve is equivalent to the BASIC lines

MAT Temp=INV(A)
MAT X=Temp*B
MAT B=X

except that the arrays Temp and X are not needed; the intermediate results overwrite
some of the elements of A. Solve is faster than the above BASIC fragment, because the
matrix inversion is not needed.

Errors
Solve causes a BASIC error if its arguments are both REAL arrays, if A is not square, if B
doesn't have the same number of rows as A, or if A is singular.

See Also
Csolve

Std
Standard deviation of an array.

Loading LOADSUB ALL FROM "MEAN.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL A(*),Y
Y=FNStd(A(*))

Description
FNStd returns the standard deviation of the elements in the array A. The standard
deviation is the square root of the average value of the squares of the differences
between the elements in the array and the mean value of the elements. This version of
the standard deviation uses the number of points in the array A, n, as the divisor in the
averaging calculation, instead of the value n - 1 used in some formulas for standard
deviation.

The F_variance subroutine returns the square of the standard deviation.

Errors
FNStd causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above.

See Also
Mean, F_variance

S_h10
Spherical Hankel function of the first kind, order zero.

Loading LOADSUB ALL FROM "BESRS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X
COMPLEX C
C=FNS_h10(X)

Description
FNS_h10 returns the value of the spherical Hankel function of the first kind and order
zero of x, h0(1)(x). The real component returned contains j0(x) and the imaginary
component returned contains y0(x).

H0(1)(x) is sometime also called the spherical Bessel function of the third kind, order 0.

Errors
FNS_h10 causes a BASIC error if its argument is not of type REAL. It also causes a
BASIC error if the value of x is zero, since the imaginary component of h0(1)(0) is infinite.

See Also
S_h11, S_h20, S_j0, S_y0

h0(1)(x)

Arg[h0(1)(x)], degrees

S_h11
Spherical Hankel function of the first kind, order one.

Loading LOADSUB ALL FROM "BESRS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X
COMPLEX C
C=FNS_h11(X)

Description
FNS_h11 returns the value of the spherical Hankel function of the first kind and order one
of x, h1(1)(x). The real component returned contains j1(x) and the imaginary component
returned contains y1(x).

H1(1)(x) is sometimes also called the spherical Bessel function of the third kind, order 1.

Errors
FNS_h11 causes a BASIC error if its argument is not of type REAL. It also causes a
BASIC error if the value of x is near zero, since the imaginary component of h1(1)(0) is -.

See Also
S_h10, S_h21, S_j1, S_y1

h1(1)(x)

Arg[h1(1)(x)], degrees

S_h1n
Spherical Hankel function of the first kind, order n.

Loading LOADSUB ALL FROM "BESRS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X
COMPLEX C
C=FNS_h1n(N,X)

Description
FNS_h1n returns the value of the spherical Hankel function of the first kind and order n of
x, hn(1)(x). The real component returned contains jn(x) and the imaginary component
returned contains yn(x).

Hn(1)(x) is sometime also called the spherical Bessel function of the third kind, order n.

Errors
FNS_h1n causes a BASIC error if its arguments are not of the types shown in the
USAGE section, above. It also causes a BASIC error if the value of x is near zero, since
the imaginary component of hn(1)(0) is infinite.

See Also
S_h10, S_h11, S_h2n, S_j0, S_j1, S_y0, S_y1

Note
The algorithm used computes the value of hn(1) using a recursion from the values of
h0(1) and h1(1). The computation time increases with n and the computation accuracy
decreases with n.

hn(1)(x)

Arg[hn(1)(x)], degrees

S_h20
Spherical Hankel function of the second kind, order zero.

Loading LOADSUB ALL FROM "BESRS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X
COMPLEX C
C=FNS_h20(X)

Description
FNS_h20 returns the value of the spherical Hankel function of the second kind and order
zero of x, h0(2)(x). The real component returned contains j0(x) and the imaginary
component returned contains -y0(x).

Errors
FNS_h20 causes a BASIC error if its argument is not of type REAL. It also causes a
BASIC error if the value of x is near zero, since the imaginary component of h0(2)(0) is -.

See Also
S_h10, S_h21, S_j0, S_y0

h0(2)(x)

Arg[h0(2)(x)], degrees

S_h21
Spherical Hankel function of the second kind, order one.

Loading LOADSUB ALL FROM "BESRS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X
COMPLEX C
C=FNS_h21(X)

Description
FNS_h21 returns the value of the Hankel function of the second kind and order one of x,
h1(2)(x). The real component returned contains j1(x) and the imaginary component
returned contains -y1(x).

Errors
FNS_h21 causes a BASIC error if its argument is not of type REAL. It also causes a
BASIC error if the value of x is near zero, since the imaginary component of h1(2)(0) is
infinite.

See Also
S_h11, S_h20, S_j1, S_y1

h1(2)(x)

Arg[h1(2)(x)], degrees

S_h2n
Spherical Hankel function of the second kind, order n.

Loading LOADSUB ALL FROM "BESRS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X
COMPLEX C
C=FNS_h2n(N,X)

Description
FNS_h2n returns the value of the spherical Hankel function of the second kind and order
n of x, hn(2)(x). The real component returned contains jn(x) and the imaginary component
returned contains -yn(x).

Errors
FNS_h2n causes a BASIC error if its arguments are not of the types shown in the
USAGE section, above. It also causes a BASIC error if the value of x is near zero, since
the imaginary component of hn(2)(0) is infinite.

See Also
S_h1n, S_h20, S_h21, S_j0, S_j1, S_y0, S_y1

Note
The algorithm used computes the value of hn(2) using a recursion from the values of
h0(2) and h1(2). The computation time increases with n and the computation accuracy
decreases with n.

hn(2)(x)

Arg[hn(2)(x)], degrees

S_hh1n
Spherical Hankel function of the first kind, order n+½.

Loading LOADSUB ALL FROM "BESRC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X
COMPLEX C
C=FNS_hh1n(N,X)

Description
FNS_hh1n returns the value of the spherical Hankel function of the first kind and order
n+½ of x, hn+½(1)(x). Hn+½(1)(x) is defined for all values of n and for all positive values
of x.

Hn+½(1)(x) is sometimes also called the spherical Bessel function of the third kind, order
n+½.

Errors
FNS_hh1n causes a BASIC error if its arguments are not of the types shown in the
USAGE section, above, or if x is negative or zero.

See Also
S_hh2n

Note
The algorithm used computes the value of hn+½(1) using a recursion from the values of
h½(1) and h1½(1). The computation time increases with n and the computation accuracy
decreases with n.

hn+½(1)(x)

Arg[hn+½(1)(x)], degrees

S_hh2n
Spherical Hankel function of the second kind, order n+½.

Loading LOADSUB ALL FROM "BESRC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X
COMPLEX C
C=FNS_hh2n(N,X)

Description
FNS_hh2n returns the value of the spherical Hankel function of the second kind and
order n+½ of x, hn+½(2)(x). Hn+½(2)(x) is defined for all values of n and for all positive
values of x.

Errors
FNS_hh2n causes a BASIC error if its arguments are not of the types shown in the
USAGE section, above, or if x is negative or zero.

See Also
S_hh1n

Note
The algorithm used computes the value of hn+½(2) using a recursion from the values of
h½(2) and h1½(2). The computation time increases with n and the computation accuracy
decreases with n.

hn+½(2)(x)

Arg[hn+½(2)(x)], degrees

S_i0
Modified spherical Bessel function of the first kind and order zero.

Loading LOADSUB ALL FROM "BESMS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNS_i0(X)

Description
FNS_i0 returns the value of the modified spherical Bessel function of the first kind and
order zero of x, i0(x). I0(x) is defined for all values of x, but large positive values of x may
cause the result to be larger in magnitude than MAXREAL, the largest value
representable.

Errors
FNS_i0 causes a BASIC error if its argument is not of type REAL or if the result would be
larger than MAXREAL.

i0(x)

See Also S_i1, S_im0, S_in, S_k0

S_i1
Modified spherical Bessel function of the first kind and order one.

Loading LOADSUB ALL FROM "BESMS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNS_i1(X)

Description
FNS_i1 returns the value of the modified spherical Bessel function of the first kind and
order one of x, i1(x). I1(x) is defined for all values of x, but large absolute values of x may
cause the result to be larger in magnitude than MAXREAL, the largest value
representable.

Errors
FNS_i1 causes a BASIC error if its argument is not of type REAL or if the result would be
larger than MAXREAL.

i1(x)

See Also S_i0, S_im1, S_in, S_k1

S_ihn
Modified spherical Bessel function of the first and second kinds, order n+½.

Loading LOADSUB ALL FROM "BESMC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNS_ihn(N,X)

Description
FNS_ihn returns the value of the modified spherical Bessel function of the first or second
kind and order n+½ of x, in+½(x). The function is called a function of the first kind if n is
positive and a function of the second kind if n is negative. In+½(x) is defined for all values
of n and for all positive values of x. If n is positive or zero, in+½(x) is also defined for x =
0.

Errors
FNS_ihn causes a BASIC error if its arguments are not of the types shown in the USAGE
section, above, or if x is out of the range of definition explained above.

in+½(x)

See Also S_in, S_khn

Note
The algorithm used computes the value of in+½ using a recursion from the values of i½
and i1½. The computation time increases with n and the computation accuracy
decreases with n.

S_in
Modified spherical Bessel function of the first and second kinds and order n.

Loading LOADSUB ALL FROM "BESMS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNS_in(N,X)

Description
FNS_in returns the value of the modified spherical Bessel function of order n of x, in(x).
The function is called a function of the first kind if n is positive and a function of the
second kind if n is negative. In(x) is defined for all values of n and for all values of x, but
large absolute values of x may cause the result to be larger in magnitude than
MAXREAL, the largest value representable.

Errors
FNS_in causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, or if the result would be larger than MAXREAL.

in(x)

See Also S_i0, S_i1, S_ihn, S_kn

Note
The algorithm used computes the value of in using a recursion from the values of i0 and
i1. The computation time increases with n and the computation accuracy decreases with
n.

S_j0
Spherical Bessel function of the first kind, order zero.

Loading LOADSUB ALL FROM "BESMS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNS_j0(X)

Description
FNS_j0 returns the value of the spherical Bessel function of the first kind and order zero
of x, j0(x). J0(x) is defined for all values of x.

J0(x) is defined by the expression

This function is also often called the sinc function.

Errors
FNS_j0 causes a BASIC error if its argument is not of type REAL.

See Also j0(x)

See Also S_j1, S_jn, S_y0

S_j1
Spherical Bessel function of the first kind, order one.

Loading LOADSUB ALL FROM "BESMS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNS_j1(X)

Description
FNS_j1 returns the value of the spherical Bessel function of the first kind and order one of
x, j1(x). J1(x) is defined for all values of x.

Errors
FNS_j1 causes a BASIC error if its argument is not of type REAL.

See Also
S_j0, S_jn, S_y1

j1(x)

S_jhn
Spherical Bessel function of the first kind, order n+½.

Loading LOADSUB ALL FROM "BESRC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNS_jhn(N,X)

Description
FNS_jhn returns the value of the spherical Bessel function of the first kind and order n+½
of x, jn+½(x). Jn+½(x) is defined for all values of n and for all positive values of x. If n is
positive or zero, jn+½(x) is also defined for x = 0.

Errors
FNS_jhn causes a BASIC error if its arguments are not of the types shown in the USAGE
section, above, or if x is out of the range of definition explained above.

See Also
S_jn, S_yh1n, S_hh1n, S_hh2n, S_yhn

jn+½(x)

Note The algorithm used computes the value of jn+½ using a recursion from the values of j½
and j1½. The computation time increases with n and the computation accuracy
decreases with n.

S_jn
Spherical Bessel function of the first kind, order n.

Loading LOADSUB ALL FROM "BESMS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNS_jn(N,X)

Description
FNS_jn returns the value of the spherical Bessel function of the first kind and order n of x,
jn(x). Jn(x) is defined for all values of x. For n < 0, large negative values of x or values of
x near zero may cause jn(x) to be larger in magnitude than MAXREAL, the largest value
representable.

Errors
FNS_jn causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, or if the result would be larger than MAXREAL.

jn(x)

See Also S_j0, S_j1, S_yn

Note The algorithm used computes the value of jn using a recursion from the values of j0 and
j1. The computation time increases with n and the computation accuracy decreases with
n.

S_k0
Modified spherical Bessel function of the third kind and order zero.

Loading LOADSUB ALL FROM "BESMS.HTS"
or LOADSUB S_k0 FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNS_k0(X)

Description
FNS_k0 returns the value of the modified spherical Bessel function of the third kind and
order zero of x, k0(x). K0(x) is defined for all values of x except zero, but large negative
values of x or values of x near zero may cause the result to be larger in magnitude than
MAXREAL, the largest value representable.

Errors
FNS_k0 causes a BASIC error if its argument is not of type REAL, if x is zero, or if the
result would be larger than MAXREAL.

k0(x)

See Also S_i0, S_im0, S_k1, S_kn

S_k1
Modified spherical Bessel function of the third kind and order one.

Loading LOADSUB ALL FROM "BESMS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNS_k1(X)

Description
FNS_k1 returns the value of the modified spherical Bessel function of the third kind and
order one of x, k1(x). K1(x) is defined for all values of x except zero, but large negative
values of x or values of x near zero may cause the result to be larger in magnitude than
MAXREAL, the largest value representable.

Errors
FNS_k1 causes a BASIC error if its argument is not of type REAL, if x is zero, or if the
result would be larger than MAXREAL.

k1(x)

See Also S_i0, S_im0, S_k0, S_kn

S_khn
Modified spherical Bessel function of the third kind, order n+½.

Loading LOADSUB ALL FROM "BESMC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNS_khn(N,X)

Description
FNS_khn returns the value of the modified spherical Bessel function of the third kind and
order n+½ of x, kn+½(x). Kn+½(x) is defined for all values of n and for all positive values
of x.

Errors
FNS_khn causes a BASIC error if its arguments are not of the types shown in the
USAGE section, above, or if x is negative or zero.

See Also
S_ihn, S_kn

kn+½(x)

Note The algorithm used computes the value of kn+½ using a recursion from the values of k½
and k1½. The computation time increases with n and the computation accuracy
decreases with n.

S_kn
Modified spherical Bessel function of the third kind, order n.

Loading LOADSUB ALL FROM "BESMS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNS_kn(N,X)

Description
FNS_kn returns the value of the modified spherical Bessel function of the third kind and
order n of x, kn(x). Kn(x) is defined for all values of x and n except x = 0, but large
negative values of x or values of x near zero may cause the result to be larger in
magnitude than MAXREAL, the largest value representable.

Errors
FNS_kn causes a BASIC error if its arguments are not of the types listed in the usage
section, above, if x is zero, or if the result would be larger than MAXREAL.

kn(x)

See Also S_in, S_imn, S_k0, S_k1

Note
The algorithm used computes the value of kn using a recursion from the values of k0 and
k1. The computation time increases with n and the computation accuracy decreases with
n.

S_y0
Spherical Bessel function of the second kind, order zero.

Loading LOADSUB ALL FROM "BESMS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNS_y0(X)

Description
FNS_y0 returns the value of the spherical Bessel function of the second kind and order
zero of x, y0(x). Y0(x) is defined for all values of x except zero, but values of x near zero
may cause the result to be larger in magnitude than MAXREAL, the largest value
representable.

Errors
FNS_y0 causes a BASIC error if its argument is not of type REAL, if x is zero, or if the
result would be larger in magnitude than MAXREAL.

See Also
S_y1, S_yn

y0(x)

S_y1
Spherical Bessel function of the second kind, order one.

Loading LOADSUB ALL FROM "BESMS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNS_y1(X)

Description
FNS_y1 returns the value of the spherical Bessel function of the second kind and order
one of x, y1(x). Y1(x) is defined for all values of x except zero, but values of x near zero
may cause the result to be larger in magnitude than MAXREAL, the largest value
representable.

Errors
FNS_y1 causes a BASIC error if its argument is not of type REAL, if x is zero, or if the
result would be larger in magnitude than MAXREAL.

See Also
S_y0, S_yn

y1(x)

S_yhn
Spherical Bessel function of the second kind, order n+½.

Loading LOADSUB ALL FROM "BESRC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNS_yh1(N,X)

Description
FNS_yhn returns the value of the spherical Bessel function of the second kind and order
n+½ of x, yn+½(x). Yn+½(x) is defined for all values of n and for all positive values of x.

Errors
FNS_yhn causes a BASIC error if its arguments are not of the types shown in the
USAGE section, above, or if x is negative or zero.

See Also
S_jhn, S_yh1n, S_hh1n, S_hh2n, S_yhn, S_yn

yn+½(x)

Note
The algorithm used computes the value of yn+½ using a recursion from the values of y½
and y1½. The computation time increases with n and the computation accuracy
decreases with n.

S_yn
Spherical Bessel function of the second kind and order n.

Loading LOADSUB ALL FROM "BESRS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNS_yn(N,X)

Description
FNS_yn returns the value of the spherical Bessel function of the second kind and order n
of x, yn(x). For n < 0, yn(x) is defined for all values of x. For n 0, yn(x) is defined for all
values of x except zero, but large negative values of x or values n of x near zero may
cause the result to be larger in magnitude than MAXREAL, the largest value
representable.

Errors
FNS_yn causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, if x is zero, if n is not in the range described above, or if the result would
be larger than MAXREAL.

yn(x)

See Also S_jn, S_y0, S_y1

Note
The algorithm used computes the value of yn using a recursion from the values of y0 and
y1. The computation time increases with n and the computation accuracy decreases with
n.

Tolinear
Conversion from log to linear representation.

Loading LOADSUB ALL FROM "TOLINEAR.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB Tolinear FROM "MATHLIB.HTS"

Usage REAL A(*),B(*),X
CALL Tolinear(A(*),X,B(*))

Description
Tolinear converts the data in the array A into linear representation and returns the results
in the array B. The factor x is used to scale the data in the array A before it is converted;
each point in A is divided by x before conversion is done. Tolinear is usually used to
convert data in decibel representation into linear form. Tolinear is equivalent to the
following BASIC lines

INTEGER I
FOR I=1 TO size(A)
B(I)=10^(A(I)/X)
NEXT I

where size(A) is the number of elements in the array A. In most cases, x is either 10 or
20.

Errors
Tolinear causes a BASIC error if its arguments are not all of type REAL, if x is zero, or if A
and B do not have the same number of elements.

Tolog
Conversion from linear to logarithmic representation.

Loading LOADSUB ALL FROM "TOLOG.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB Tolog FROM "MATHLIB.HTS"

Usage REAL A(*),B(*),X
CALL Tolog(A(*),X,B(*))

Description
Tolog converts the data in the array A into logarithmic representation and returns the
results in the array B. The factor x is used to scale the data in the array A after it is
converted; each point in A is multiplied by x after conversion is done. Tolog is usually
used to convert data to decibel representation. Tolog is equivalent to the following BASIC
lines

INTEGER I
FOR I=1 TO size(A)
B(I)=LOG(A(I))*X
NEXT I

where size(A) is the number of elements in the array A. In most cases, x is either 10 or
20.

Errors
Tolog causes a BASIC error if its arguments are not all of type REAL or if A and B do not
have the same number of elements.

Tn
Chebyshev polynomial of the first kind.

Loading LOADSUB ALL FROM "CHEBY.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNTn(N,X)

Description
FNTn returns the value of the Chebyshev polynomial of the first kind and order n of x,
Tn(x). N must be positive or zero. Tn(x) is defined for all values of x, although it is most
commonly used only with values of x between -1 and +1.

There are other, less used, types of Chebyshev polynomials defined that are not included
in the Math Library. These can easily calculated from Tn(x) and Un(x) by using the
following formulas:

Tn(x)

Errors FNTn causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, or if the polynomial's absolute value would be larger than MAXREAL, the
largest value representable.

See Also
Un

Note
For n > 12, the algorithm used computes the value of Tn using a recursion from the
values of T11 and T12. The computation time increases with n-11 and the computation

accuracy decreases with n-11.

Trapezoid
Integration using the Trapezoid Rule.

Loading LOADSUB ALL FROM "TRAPEZOID.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL A(*),S,Y
Y=FNTrapezoid(A(*),S)

Description
FNTrapezoid approximates the integral of the function whose samples are in the array A.
The elements of A are assumed to be equally-spaced. The parameter s contains the
value of the distance between adjacent elements of A.

The integral is calculated by summing half the value of the first and last points in A and
the values of the interior points in A. This sum is multiplied by s. This method is often
called the trapezoid rule, and is described in most texts on numerical mathematical
methods.

Errors
FNTrapezoid causes an HTBasic error if the array A contains fewer than 2 points.

See Also
Simpson

Un
Chebyshev polynomial of the second kind.

Loading LOADSUB ALL FROM "CHEBY.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNUn(N,X)

Description
FNUn returns the value of the Chebyshev polynomial of the second kind and order n of x,
Un(x). N must be positive or zero. Un(x) is defined for all values of x, although it is most
commonly used only with values of x between -1 and +1.

Errors
FNUn causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, or if the polynomial's absolute value would be larger than MAXREAL, the
largest value representable.

Un(x)

See Also Tn

Note
For n > 12, the algorithm used computes the value of Un using a recursion from the
values of U11 and U12. The computation time increases with n-11 and the computation
accuracy decreases with n-11.

V_cdot
Scalar, or dot, product of two complex vectors.

Loading LOADSUB ALL FROM "VDOT.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage COMPLEX A(*),B(*),Z
Z=FNV_cdot(A(*),B(*))

Description
FNV_cdot computes the scalar, or dot, product of the vectors a and b. This is done by
multiplying each element of a by the complex conjugate of the corresponding element b
and summing the products.

Errors
FNV_cdot causes a BASIC error if A and B are not both of type COMPLEX or if they do
not have the same number of elements.

See Also
V_dot

V_cosine
Cosine of angle between two vectors.

Loading LOADSUB ALL FROM "VCOSINE.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL A(*),B(*),Y
Y=FNV_cosine(A(*),B(*))

Description
FNV_cosine computes the cosine of the angle between the vectors a and b. This is done
by evaluating

where "" denotes the dot, or scalar, product and a and b denote the L-2 norm of the
vectors a and b.

Errors
V_cosine causes a BASIC error if A and B are not both of type REAL, if they do not have
the same number of elements, or either A or B contain all zeros.

See Also
Norm, V_dot, V_proj

V_dot
Scalar, or dot, product of two real vectors.

Loading LOADSUB ALL FROM "VDOT.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL A(*),B(*),Y
Y=FNV_dot(A(*),B(*))

Description
FNV_dot computes the scalar, or dot, product of the vectors a and b. This is done by
multiplying each element of a by the corresponding element b and summing the products.

Errors
FNV_dot causes a BASIC error if A and B are not both of type REAL or if they do not
have the same number of elements.

See Also
V_cosine, V_cdot, V_prod

V_prod
Vector or cross product.

Loading LOADSUB ALL FROM "VPROD.HTS"
or LOADSUB V_prod FROM "MATHLIB.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL A(*),B(*),P(*)
CALL V_prod(A(*),B(*),P(*))

Description
V_prod computes the vector, or cross, product of the real vectors a and b and returns the
result in c. A, b, and c must have exactly three elements each.

Errors
V_prod causes a BASIC error if A, B, or C are not all of type REAL or do not all have
exactly three elements.

See Also
V_dot, V_proj

V_proj
Projection of one vector on another.

Loading LOADSUB ALL FROM "VPROJ.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL A(*),B(*),Y
Y=FNV_proj(A(*),B(*))

Description
FNV_proj computes the length of the projection of vector a onto the direction of vector b.
This is done by evaluating

where "·" denotes the dot, or scalar, product and b denotes the L-2 norm of the vector b.

Errors
V_proj causes a BASIC error if A and B are not both of type REAL, if they do not have
the same number of elements, or if B contains all zeros.

See Also
V_cosine, V_dot, V_prod

Waveform
Fill an array with a periodic waveform.

Loading LOADSUB ALL FROM "WAVEFORM.HTS"
or LOADSUB Waveform FROM "MATHLIB.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL P,A,B,S,Y(*)
CALL Waveform(P,A,B,S,N,Y(*))

Description
Waveform fills the array Y with a periodic waveform of type n having the period p,
amplitude a, bias b, and starting point s. If Yk refers to an element of array Y, beginning
with k = 0, the table below shows the expression for Yk for each value of n.

n Type Expression
1 sine

2 square

3 triangle

4 sawtooth

In the above expressions, fract(x) is the fractional part of x, calculated by finding the
difference between x and the next lower integer from x. Fract(x) is between 0, inclusive,
and 1, exclusive.

All the parameters may take any value except the period, p, which must be positive. P
refers to the number of elements in the array Y between repetitions of the waveform. P
and s do not need to be integers. The type, n, must be between 1 and 4, inclusive.

If p or s is contained in a variable of type INTEGER, be sure to use the BASIC REAL
command to change the variable to a REAL value when passing it to the Pulse routine.

Other periodic waveforms can be produced using these four types. For example, a cosine
wave can be produced from the sine waveform by setting s to -p/4. A falling sawtooth

wave can be produced from the sawtooth waveform by using a negative value for a.

The four types of waveform are plotted on the following pages for a = 1, b = 0, s = 0, and
p = 100.

Errors
Waveform causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, or if p is not positive, or if n is not between 1 and 4, inclusive.

See Also
Pulse

n = 1

n = 2

n = 3

n = 4

W_bartlett
Bartlett window.

Loading LOADSUB ALL FROM "W_TRAPEZ.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB W_bartlett FROM "MATHLIB.HTS"

Usage REAL A(*),B(*)
CALL W_bartlett(A(*),B(*))

Description
W_bartlett multiplies the sequence in array A by a Bartlett window function and returns
the product in array B. Array A is unmodified. If N is the number of elements in the array
A and k is the position in the array B, the formula for the window function, wk, is

In the above formula, k ranges in value from 0 to N - 1.

If the array B contains more elements than A, the extra elements in B are unmodified.

The Bartlett window is a special case of the window generated by the W_trapezoid
routine.

Bartlett window for N=128

Errors W_bartlett causes a BASIC error if its arguments are not both REAL arrays or if B
contains fewer elements than A.

See Also
Waveform, W_blackman, W_cosine, W_hamming, W_hanning, W_trapezoid

W_blackman
Blackman window.

Loading LOADSUB ALL FROM "BLACKMAN.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB W_blackman FROM "MATHLIB.HTS"

Usage REAL A(*),B(*)
CALL W_blackman(A(*),B(*))

Description
W_blackman multiplies the sequence in array A by a Blackman window function and
returns the product in array B. Array A is unmodified. If N is the number of elements in the
array A and k is the position in the array B, the formula for the window function, wk, is

In the above formula, k ranges in value from 0 to N - 1.

If the array B contains more elements than A, the extra elements in B are unmodified.

Blackman window for N=128

Errors W_blackman causes a BASIC error if its arguments are both REAL arrays or if B contains
fewer elements than A.

See Also
Waveform, W_bartlett, W_cosine, W_hamming, W_hanning

W_cosine
Cosine window.

Loading LOADSUB ALL FROM "W_COSINE.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB W_cosine FROM "MATHLIB.HTS"

Usage REAL A(*),B(*)
REAL R
CALL W_cosine(A(*),R,B(*))

Description
W_cosine multiplies the sequence in array A by a cosine window function of parameter r
and returns the product in array B. Array A is unmodified. R is the peak-to-peak amplitude
of the cosine portion of the window; it must be between 0 and 1, inclusive. If N is the
number of elements in the array A and k is the position in the array B, the formula for the
window function, wk, is

In the above formula, k ranges in value from 0 to N - 1.

If the array B contains more elements than A, the extra elements in B are unmodified.

Cosine windows for N=128

Special cases of the cosine window are the Hamming and Hanning windows; these are
available as separate subroutines.

Errors
W_cosine causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, if r is not between 0 and 1, inclusive, or if B contains fewer elements than
A.

See Also
Waveform, W_bartlett, W_blackman, W_hamming, W_hanning

W_hamming
Hamming window.

Loading LOADSUB ALL FROM "W_COSINE.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB W_hamming FROM "MATHLIB.HTS"

Usage REAL A(*),B(*)
CALL W_hamming(A(*),B(*))

Description
W_hamming multiplies the sequence in array A by the Hamming window function and
returns the product in array B. Array A is unmodified. If N is the number of elements in the
array A and k is the position in the array B, the formula for the window function, wk, is

In the above formula, k ranges in value from 0 to N - 1.

The Hamming window is the same as the cosine window with the parameter r set to 0.46.

Hamming window for N=128

Errors W_hamming causes a BASIC error if its arguments are not both REAL arrays or if B
contains fewer elements than A.

See Also
Waveform, W_bartlett, W_blackman, W_cosine, W_hanning

W_hanning
Hanning window.

Loading LOADSUB ALL FROM "W_COSINE.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB W_hanning FROM "MATHLIB.HTS"

Usage REAL A(*),B(*)
CALL W_hanning(A(*),B(*))

Description
W_hanning multiplies the sequence in array A by the Hanning window function and
returns the product in array B. Array A is unmodified. If N is the number of elements in the
array A and k is the position in the array B, the formula for the window function, wk, is

In the above formula, k ranges in value from 0 to N - 1.

The Hanning window is the same as the cosine window with the parameter r set to 0.5.

Hanning window for N=128

Errors
W_hanning causes a BASIC error if its arguments are not of the types listed in the
USAGE section, above, or if B contains fewer elements than A.

See Also
Waveform, W_bartlett, W_blackman, W_cosine, W_hamming

W_kaiser
Kaiser-Bessel window.

Loading LOADSUB ALL FROM "BESMC.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB W_kaiser FROM "MATHLIB.HTS"

Usage REAL A(*),B(*)
REAL P
CALL W_kaiser(A(*),P,B(*))

Description
W_kaiser multiplies the sequence in array A by a Kaiser-Bessel window function of
parameter p and returns the product in array B. Array A is unmodified. P controls the
width of the central portion of the window; it must be positive, and is usually between 4
and 9. If N is the number of elements in the array A and k is the position in the array B,
the formula for the window function, wk, is

In the above formula, k ranges in value from 0 to N - 1. I0 is the modified cylindrical
Bessel function of the first kind (see I0).

P is often expressed in Kaiser-Bessel window for N=128

terms of a radian frequency parameter, a, using the expression

Errors
W_kaiser causes a BASIC error if its arguments are not of the types listed in the USAGE
section, above, if p is negative or zero, or if B contains fewer elements than A.

Example

The section on the Fft subroutine contains an example of windowing using the W_kaiser
routine.

See Also
I0, W_cosine, W_trapezoid

W_trapezoid
Trapezoid window.

Loading LOADSUB ALL FROM "W_TRAPEZ.HTS"
or LOADSUB FROM "MATHLIB.HTS"
or LOADSUB W_trapezoid FROM "MATHLIB.HTS"

Usage REAL A(*),B(*)
REAL H,P
CALL W_trapezoid(A(*),H,P,B(*))

Description
W_trapezoid multiplies the sequence in array A by a trapezoid window function of
parameters p and h and returns the product in array B. Array A is unmodified. H is the
peak-to-peak amplitude of the untruncated trapezoid portion of the window. P is the value
of the pedestal portion of the window. H and p must be between 0 and 1, inclusive.

The window generated by the W_bartlett routine is a special case of the trapezoid
window, with p = 0 and h = 1.

Errors Trapezoid window for h=0.875 and N=128

W_trapezoid causes a BASIC error if its arguments are not of the types listed in the
USAGE section, above, or if h and p are not in the ranges discussed above.

See Also
Waveform, W_bartlett

Y0
Bessel function of the second kind, order zero.

Loading LOADSUB ALL FROM "BESRC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNY0(X)

Description
FNY0 returns the value of the cylindrical Bessel function of the second kind and order
zero of x, Y0(x). Y0(x) is defined for all positive values of x.

Errors
FNY0 causes a BASIC error if its argument is not of type REAL or if x is negative or zero.

See Also
J1, Jn, Y0

Y0(x)

Y1
Bessel function of the second kind, order one.

Loading LOADSUB ALL FROM "BESRC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage REAL X,Y
Y=FNY1(X)

Description
FNY1 returns the value of the cylindrical Bessel function of the second kind and order
one of x, Y1(x). Y1(x) is defined for all positive values of x.

Errors
FNY1 causes a BASIC error if its argument is not of type REAL or if x is negative or zero.

See Also
J0, Jn, Y0

Y1(x)

Yhn
Bessel function of the second kind, order n+½.

Loading LOADSUB ALL FROM "BESRS.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNYhn(N,X)

Description
FNYhn returns the value of the cylindrical Bessel function of the second kind and order
n+½ of x, Yn+½(x). Yn+½(x) is defined for all values of n and for all positive values of x.

Errors
FNYhn causes a BASIC error if its arguments are not of the types shown in the USAGE
section, above, or if x is negative or zero.

See Also
Hh1n, Hh2n, Jhn, Yn

Yn+½(x)

Note
The algorithm used computes the value of Yn+½ using a recursion from the values of Y½
and Y1½. The computation time increases with n and the computation accuracy
decreases with n.

Yn
Bessel function of the second kind, order n.

Loading LOADSUB ALL FROM "BESRC.HTS"
or LOADSUB FROM "MATHLIB.HTS"

Usage INTEGER N
REAL X,Y
Y=FNYn(N,X)

Description
FNYn returns the value of the cylindrical Bessel function of the second kind and order n
of x, Yn(x). Yn(x) is defined for all positive values of x.

Errors
FNYn causes a BASIC error if its argument is not of type REAL or if x is negative or zero.

See Also
Y0, Y1

Yn(x)

Note The algorithm used computes the value of Yn using a recursion from the values of Y0
and Y1. The computation time increases with n and the computation accuracy decreases
with n - 1.

 {ewl RoboEx32.dll, WinHelp2000, }

