
User’s Guide
Contents

Chapter 1 Language Elements

Chapter 2 Program Flow Control

Chapter 3 Mathematics

Chapter 4 Graphics

Chapter 5 General Input and Output

Chapter 6 CRT, Keyboard and Printer

Chapter 7 Files

Chapter 8 IEEE-488 Interface Bus

Chapter 9 Serial (RS-232) I/O

Chapter 10 Other I/O Destinations/Sources

Chapter 11 DLL Toolkit

Chapter 12 International Language Support

Glossary

Other Manuals
Installing and Using Manual

Reference Manual

Basic Plus Manual

 {button www.htbasic.com,Inet(`www.htbasic.com')}

Distributed with release 8.3

Copyright ® 1988-2001 by TransEra Corp.

 Chapter 1
Language Elements

Language Elements

This Manual

Program Lines

Line Numbers

Line Labels

Statements

Comments

Keywords

INTEGER Numbers

LONG Numbers

REAL Numbers

Cautions

REAL Comparisons

FOR Loops

Definition

COMPLEX Numbers

STATIC

Strings

I/O Paths

Constants

Numeric Constants

String Constants

Variables

Variable Names

Variable Types

Variable Scope

Array Variables

Declaration

String Arrays

Examples

Summary

Chapter 2
Program Flow Control

Program Flow Control

Program Execution

The Paused State

The Stopped State

Returning to the Operating System

Branching

Conditional Statements

ON...GOTO Statement

ON...GOSUB Statement

SELECT and CASE Statements

Loops

FOR Loops

Other Loop Types

Subroutines

Program Contexts

Main Context

Subprogram Contexts

Subprogram Pointers

User Defined Function Contexts

CSUB Contexts

Interrupting Program Flow

Priority

Global and Local Aspects

Disabling Events

Error Handling

Defining an Error Handler

The Error Handler Routine

EXECUTE Statement

Summary

Chapter 3
Mathematics

Mathematics

Numeric Expressions

String Expressions

Matrix Expressions

Operands

Operators

Arithmetic

Binary

Conversions

Date/Time

Environment

Error

I/O Functions

Logical

Relational

String Functions

Transcendental and Trigonometric

Other Functions

User Defined Functions

Automatic Conversions

Execution Precedence

Matrix Operators

Matrix Operators with Matrix Result

Matrix Operators with Scalar Result

Matrix Sub-array Assignments

Matrix Searching

Matrix Inversion

Complex Operators

Extended Statements and Operators

Added Statements and Operators

Summary

Chapter 4
Graphics

Graphics

Simple Graphics Statements

GINIT Statement

GCLEAR and CLS Statements

Graphics Coordinate System

MOVE and DRAW Statements

PLOT Statement

PENUP Statement

User Defined Graphic Units

VIEWPORT Statement

CLIP Statement

SHOW Statement

WINDOW Statement

WINDOW and VIEWPORT Effects

Annotating Charts and Graphs

AXES and GRID Statements

FRAME Statement

LABEL Statement

LDIR Statement

LORG Statement

GFONT IS Statement

Graphic Attributes

LINE TYPE Statement

Color Graphics

HSL Color Space

RGB Color Space

Pen Numbers

SET PEN Statement

GESCAPE Statement

Code 1

Code 2

Code 3

Codes 4 & 5

Code 6

Code 7

Code 102

Code 103

Code 104

Code 105

Code 106

Incremental and Relative Graphics

IMOVE Statement

IDRAW Statement

IPLOT Statement

RPLOT Statement

Arcs, Circles and Rectangles

POLYGON and POLYLINE Statements

RECTANGLE Statement

User Defined Symbols

AREA Fill Styles and Colors

AREA Statement

FILL and EDGE Options

Array Specified Pen Control

AREA Color

FILL and EDGE

Graphics Rotation

PDIR Statement

PIVOT Statement

Screen Raster Images

Full Screen

Screen Dumps

DUMP ALPHA Statement

DUMP GRAPHICS Statement

DUMP DEVICE IS Statement

Partial Screen Dumps

Graphics Devices

PLOTTER IS Statement

GSEND Statement

GRAPHICS INPUT IS Statement

READ LOCATOR Statement

SET LOCATOR Statement

WHERE Statement

Tracking Graphics Input

SET ECHO Statement

TRACK and DIGITIZE Statements

Mixing Output and Input Devices

Separate and Merged Alpha

Merged Alpha

Separate Alpha

Porting Issues

Summary

Chapter 5
General Input and Output

General Input and Output

ASSIGN Statement

Syntax

Devices

Files

Pipes

Buffers

Attributes

FORMAT Options

BYTE and WORD

EOL

APPEND

RETURN

Closing an I/O Path

OUTPUT Statement

Numeric Items

String Items

End of Line

END

ENTER Statement

Numeric Items

String Items

Statement Termination

Formatted I/O

IMAGE Interpretation

Syntax

OUTPUT, etc.

ENTER

Creating Format Strings

PRINT Examples

ENTER Example

END

TRANSFER

Examples

Support

Buffers

Transfer Type

Transfer Method

Transfer Termination

ON EOR and ON EOT

Termination

Hanging and Premature Termination

Outbound TRANSFER

Inbound TRANSFER

STATUS, CONTROL, READIO and WRITEIO

CONTROL Statement

STATUS Statement and Function

Device I/O Path Registers

ASCII File I/O Path Registers

BDAT and Ordinary file I/O Path Registers

BUFFER I/O Path Registers

Pipe I/O Path Registers

Interface Hardware Registers

READIO Function

WRITEIO Statement

PEEK/POKE Memory

IN/OUT Operations

Locating a Numeric Variable

Interrupts

ON INTR Statement

OFF INTR Statement

Enabling and Disabling Interrupts

Interrupt Routines

Specialized I/O Statements

READ/DATA Statements

BEEP Statement

Summary

Chapter 6
CRT, Keyboard, and Printer

CRT, Keyboard and Printer

Display (CRT)

Display Organization

OUTPUT CRT

PRINT

DISP Statement

PRINT and DISP Statements

Display Functions

CRT Related Statements

CONTROL/STATUS CRT

ENTER CRT

Keyboard (KBD)

ENTER KBD

INPUT Statement

LINPUT Statement

OUTPUT KBD

Using a Printer

The PRT function

The PRINTER IS device

The PRINTALL IS device

CRT and KBD Registers

CRT CONTROL Registers

CRT STATUS Registers

KBD CONTROL Registers

KBD STATUS Registers

Summary

Chapter 7
Files

Files

File Management Commands

ASSIGN

CAT

CHGRP and CHOWN

COPY

CREATE

INITIALIZE

LINK

LOCK and UNLOCK

MASS STORAGE IS

PERMIT

PRINT LABEL and READ LABEL

PROTECT

PURGE

RENAME

RESET

SYSTEM$("MSI")

WILDCARDS

File Types

BDAT Files

ASCII Files

Ordinary Files

File Organization

Sequential Files

Random Access Files

Converting LIF ASCII files to DOS ASCII

Summary

Chapter 8
IEEE-488 Interface Bus

IEEE-488 Interface Bus

IEEE-488 History

IEEE-488 Overview

Data Lines

Handshake Lines

Interface Management Lines

Device Addresses

IEEE-488 Statement Overview

High Level Transfer Statements

High Level Bus Control Statements

ABORT Statement

CLEAR Statement

LOCAL Statement

LOCAL LOCKOUT Statement

PASS CONTROL Statement

PPOLL Function

PPOLL CONFIGURE Statement

PPOLL RESPONSE Statement

PPOLL UNCONFIGURE Statement

REMOTE Statement

REQUEST Statement

RESET Statement

SPOLL Function

TRIGGER Statement

Byte Level Transfer Statements

SEND Statement

OUTPUT and ENTER Statements

Low Level Bus Control Statements

CONTROL and STATUS Statements

READIO and WRITEIO Statements

IEEE-488 Interrupts

ON INTR Statement

OFF INTR Statement

Enabling and Disabling Interrupts

Interrupt Enable Register Bit Mask

Handling Service Requests

Parallel Polling Devices

IEEE-488 Registers

IEEE-488 CONTROL Registers

CONTROL 0

CONTROL 1

CONTROL 2

CONTROL 3

CONTROL 4

CONTROL 5

IEEE-488 STATUS Registers

STATUS 0

STATUS 1

STATUS 2

STATUS 3

STATUS 4

STATUS 5

STATUS 6

STATUS 7

9914 READIO Registers

9914 READIO 1

9914 READIO 3

9914 READIO 5

9914 READIO 17

9914 READIO 19

9914 READIO 21

9914 READIO 23

9914 READIO 29

9914 READIO 31

9914 WRITEIO Registers

9914 WRITEIO 3

9914 WRITEIO 17

9914 WRITEIO 19

9914 WRITEIO 23

9914 WRITEIO 25

9914 WRITEIO 27

9914 WRITEIO 29

9914 WRITEIO 31

7210 READIO Registers

7210 READIO 1

7210 READIO 3

7210 READIO 5

7210 READIO 18

7210 READIO 20

7210 READIO 22

7210 READIO 24

7210 READIO 26

7210 READIO 28

7210 READIO 30

7210 READIO 32

7210 WRITEIO Registers

7210 WRITEIO 3

7210 WRITEIO 18

7210 WRITEIO 20

7210 WRITEIO 22

7210 WRITEIO 24

7210 WRITEIO 26

7210 WRITEIO 28

7210 WRITEIO 30

7210 WRITEIO 32

Statement Bus Action Summary

Summary

Chapter 9
Serial (RS-232) I/O

Serial (RS-232) I/O

General I/O

Handshaking

ENTER Serial

OUTPUT Serial

Interrupt Support

Connecting Devices to the Serial Interface

"Standard" Cables

Cabling From the Ground Up

Communication Parameters

Data Formats

Interface Status Errors

RS-232: The Standard Non-Standard

The Standard

Pin Assignments for PC 25 and 9 pin connectors

The Non-Standard

Pin Assignments

Serial Registers

Serial CONTROL Registers

CONTROL 0

CONTROL 1

CONTROL 2

CONTROL 3

CONTROL 4

CONTROL 5

CONTROL 6

CONTROL 7

CONTROL 8 to 11

CONTROL 12

CONTROL 13

CONTROL 14

CONTROL 100

Serial STATUS Registers

STATUS 0

STATUS 1

STATUS 2

STATUS 3

STATUS 4

STATUS 5

STATUS 6

STATUS 7

STATUS 8

STATUS 9

STATUS 10

STATUS 11

STATUS 12

STATUS 13

STATUS 14

STATUS 100

STATUS 101

Serial READIO & WRITEIO Registers

WRITEIO 1

WRITEIO 2

WRITEIO 5

WRITEIO 6

WRITEIO 7

WRITEIO 8

WRITEIO 9

WRITEIO 10

WRITEIO 11

WRITEIO 12

WRITEIO 13

WRITEIO 14

Serial32 WRITEIO Only Registers

WRITEIO 20

Serial32 READIO Only Registers

READIO 30

READIO 31

READIO 32

READIO 33

Serial ENABLE INTR Mask

Summary

Chapter 10
Other I/O Destinations/Sources

Other I/O Destinations/Sources

I/O to Strings

OUTPUT to Strings

ENTER from Strings

Buffers

BUFFER STATUS/CONTROL Registers

The Processor Interface (32)

STATUS 0

STATUS 1

STATUS 2

STATUS 3

STATUS 4

Accessing Other Interfaces and Devices

Summary

Chapter 11
DLL Toolkit

DLL Toolkit

DLL GET

DLL LOAD

DLL READ

DLL UNLOAD

DLL WRITE

LIST DLL

Export.h

Gh_BasicWindow

Disp

Signal

CheckInt

PutBuffer

GetBuffer

Interactive

GetBasicEvents

Registerthread

Unregisterthread

Summary

Chapter 12
International Language Support

International Language Support

Character Sets

Latin-1

ISO-932 and Shift-JIS

Variable Names

Attribute Character Conflict

Lexical Order

Upper and Lowercase Conversions

Japanese Character Conversions

LABEL Character Set

Defining Your Own LABEL Characters

Using LABELCHR.BAS

User-Defined Lexical Orders

Order Table

Special Case Table

Ignore Characters

2-to-1 Translation

1-to-2 Translation

Sub-Order Numbers

Putting User-Defined Rules Into Effect

User-Defined UPC$/LWC$ Rules

Example Data Files

Roman-8 Character Set Support

Roman-8 Translation Program

Display Font

Keyboard

LEXICALORDER

LABEL

LEXICAL ORDER Tables

Character Set Tables

Overview of the Shift-JIS Character Set

Chapter 13
Condensed Keyword Reference

Ancillary files

Angle

Array

Array Name

ASCII file type

Attributes

BDAT file type

Boolean Expression

Child widget

Click

COM Block

COM Block Name

Common dialog attribute

Common widget attribute

COMPLEX

Container widget

Context

Context-sensitive Help

Device Selector

Dialog

DOS file type

Event

Event-initiated Branching

File Specifier

Focus

Full Array Specifier

Function Name

Help

HPGL

I/O PATH

Integer

Integer Array

Interface Select Code

Level-0

Level-0 widget

Line Label

Line Number

Local Variable

LONG

Matrix

Menu bar

Notepad

Numeric Array

Numeric Array Element

Numeric Constant

Numeric Expression

Numeric Name

Operator

Ordinary file

Parent widget

Path Specifier

Pen

Pen Number

Pixel

Pointer

Precedence

Primary Address

Priority

PROG file type

Real

Record Number

Resize border

Scientific Notation

Screen Builder

Screen origin

Sibling widgets

Signal Number

Softkey Macro

STATIC

String

String Array

String Array Element

String Expression

String Literal

String Name

Sub-string

Subprogram Name

Subscript

System font

Tab group

Title bar

Transient widget

UNIX file type

Variable Name

Vector

Volume Label

Volume Specifier

Widget

Widget Management Software

Work Area

Language Elements
High Tech Basic (HTBasic) is a highly configurable, technical programming language. Before HTBasic is used, the necessary
drivers must be loaded and some customization may be required. Understanding the basic elements of the language like program
lines, labels, keywords, contexts, I/O paths, constants, variables, arrays and data types is necessary to fully exploit the
functionality of the product.

This Manual
This manual, the User’s Guide, contains in depth information about using the HTBasic language. It is arranged topically. The
following list describes each chapter of the manual.

Chapter 1, “Language Elements,” explains the basic elements of the language like keywords, operators, and variables.

Chapter 2, “Program Flow Control,” explains how the path of program execution can be controlled to perform calls, loops, and
decisions.

Chapter 3, “Mathematics,” describes numeric expressions, string expressions, and array expressions. The various operators and
functions are presented.

Chapter 4, “Graphics,” presents the graphic drawing and presentation capabilities of HTBasic.

Chapter 5, “General Input and Output,” explains Input and Output (I/O) in general. This chapter also explains the TRANSFER
statement. The information in this chapter is necessary to understand chapters 8 to 12 and should be read by all users.

Chapter 6, “CRT, Keyboard, and Printer,” describes I/O to the screen (CRT) and keyboard (KBD). Several statements are also
presented that are designed for I/O with either the screen or a printer.

Chapter 7, “Files,” presents I/O to files and the special file management statements available. These special statements often
make it unnecessary to use operating system commands to move, copy, delete, or otherwise manipulate files.

Chapter 8, “IEEE-488 Interface Bus,” explains use of the IEEE-488 (GPIB or HP-IB) interface.

Chapter 9, “Serial (RS-232) I/O,” describes use of the Serial (RS-232) interface.

Chapter 10, “Other I/O Destinations,” talks about I/O with a variety of I/O targets: Parallel (Centronix Printer) Interfaces, buffers,
Strings and a special interface called the “Processor Interface”. This chapter also describes methods for using interfaces and
devices for which there is no HTBasic device driver.

Chapter 11, “DLL Toolkit,” explains Dynamic Link Library use with HTBasic.

Chapter 12, “International Language Support,” explains the support included in HTBasic for different languages and character
sets.

Glossary, defines terms which may be unfamiliar to the user.

Program Lines
An HTBasic program is a series of instructions. These instructions are in the form of program lines. The general form of a program
line is:

[line_number] [label:] statement [!comment]

Line Numbers
Each HTBasic program line requires a unique line number at the beginning of the line. Line numbers must range from 1 to
4,194,304. Optionally, line numbers may be toggled to display or not. Line numbers are used to:

· Indicate the order of statement execution

· Provide control points for branching

· Help in debugging and updating programs

· Indicate the location of run-time errors

The maximum number of characters allowed in a program line is 255. It may be necessary to scroll to see the end of a line.

Line Labels
Line labels may optionally follow any line number. The use of line labels results in more structured programming. If all line
references use line labels, the line numbers can effectively be ignored. Line references to labels are unaffected by line numbering.
A line label cannot be the only thing on a line; you must include a statement, even if it is just a comment tail “!”.

Statements
A program statement is the smallest complete program unit. It is made up of HTBasic keywords, operators and operands. The on-
line Reference Manual details the syntax for each program statement.

Comments
An optional comment may be added to any program statement by starting the comment with an exclamation mark “!”. The
characters following the exclamation mark will be retained in the program as a comment and are ignored during the execution of
the program. Comments are not moved by the INDENT statement.

Keywords
Certain words have a special meaning in the HTBasic language and are called keywords. For example, PRINT is a BASIC
keyword. Keywords can be used as variable names if they are entered partly in uppercase and partly in lowercase. Every
statement except an assignment (if LET is omitted) or a subprogram CALL (if CALL is omitted) must begin with a keyword. A
keyword cannot have embedded spaces. Keywords are printed in uppercase in program listings.

Keywords must be delimited by a space or some other legal delimiter and cannot be abbreviated. For example, PRINT USING
cannot be entered as PRINTUSING. Neither can PRINT be entered as PRI.

INTEGER Numbers
INTEGER is a numeric data type. INTEGERs are whole numbers (-1, 2, 35) ranging from -32,768 to +32,767. INTEGERs are
stored in two bytes of memory and INTEGER operations are faster than REAL operations.

LONG Numbers
LONG is a second numeric data type. Longs are actually “long integers” and are essentially identical to the integer data type,
except that they have a range of -2,147,483,648 to 2,147,483,647. LONGs are stored in four bytes of memory.

REAL Numbers
REAL is another numeric data type. REAL numbers, also called floating point numbers, are a subset of all rational numbers. The
particular subset depends on your computer. Most computers, including the IBM PC, use IEEE Std 754-1985 for Binary Floating
point numbers. This gives the REAL data type an approximate range of 1E-308 to 1E+308 and 15 decimal digits of precision. Eight
bytes are used to store a REAL number. Both positive and negative numbers are represented. MINREAL and MAXREAL are
functions that return the smallest and largest REAL numbers.

Integral numbers too large to be represented by the INTEGER or LONG type, numbers expressed with a decimal point, and
numbers expressed in scientific notation are stored as REAL numbers. Scientific notation on computers is usually expressed as
x.xxxEyyy, meaning x.xxx is multiplied by 10 raised to the yyy power. For example: 3.141E0, 4E-7, -101.1E+2. REAL operations
are slower than INTEGER operations and REAL numbers take more memory space to store.

Cautions
Some cautions are in order when using REAL numbers. It is possible to have two different REAL numbers whose 15 digit decimal
representations are the same. However, when comparing or subtracting these two numbers that look equal, you will find they are
NOT equal. Also, since REAL numbers are only a subset of the rational numbers, some operations produce a result that is not in
the set of REAL numbers. If the result is too large in magnitude, it produces an overflow error. If the result is too small, it produces
an underflow error. The result may be between two numbers in the REAL set. In this case, an approximation must be used for the
actual value. Most of us have witnessed this happening by dividing one by three on a hand-held calculator. Digits that the
calculator can not store are just discarded.

Each of these pitfalls is demonstrated in the following program:

10 RAD
20 One = COS(3)*COS(3)+SIN(3)*SIN(3)
30 PRINT One,One-1.0

From trigonometry we know that line 20 should assign the value one to the variable One. And indeed, when One is printed, we see
it is “1". However, when the value of One-1.0 is printed, we do not get zero. We get a very small value.

REAL Comparisons
Rather than compare two REAL values for equality, it is often best to compare them for an acceptably small difference. For
example, the rest of the program started above:

40 IF ABS(One-1.0) < 1E-15 THEN PRINT “EQUAL ENOUGH”

Alternately, DROUND or PROUND can be used to round the binary representations to match each other:

50 PRINT One,DROUND(One,1)-DROUND(1.0,1)
60 END

FOR Loops
It is not a good idea to use a REAL variable as the loop counter in a FOR loop. Rounding errors tend to accumulate when a REAL
variable is used as the loop counter in a FOR loop. For example:

10 FOR X=1 TO -1 STEP -.05
20 PRINT X;TAB(20);ACS(X)
30 NEXT X
40 END

It is expected that this loop would include 0 and -1 among the values printed for X. However, when this example is executed, a
small non-zero value is printed in place of 0 and the loop terminates before getting to -1.

INTEGER or LONG variables should be used for the loop counter. The number of iterations can then be exactly specified. The
REAL values needed in the loop can be generated each iteration from the INTEGER or LONG variable. This approach does not
allow rounding errors to accumulate. The previous example should be replaced with:

10 INTEGER I
20 FOR I=0 TO 40
30 X=1-I*.05
40 PRINT X;TAB(20);ACS(X)
50 NEXT I
60 END

Definition
The exact subset of rational numbers that can be represented by REAL numbers (on computers using IEEE-754) is the set of all
numbers expressible in the form:

(-1)s * 2e * mantissa

where:
s = 0 or 1.
e = any integer between -1022 and +1023.
mantissa = b0 * 2-0 + b1 * 2-1 + ... + b52 * 2-52
b0 = 1
bi = 0 or 1 (for i<>0)

COMPLEX Numbers
COMPLEX is yet another numeric data type. The COMPLEX data type defines a number having two components, like a two-
dimensional vector. In a complex number, however, there is a well-defined relationship between the two components of the
number. The first component in a complex number is called the real part and the second component is called the imaginary part. A
complex number is often written in the form

x + iy

where x represents the real part of the number and y the imaginary part. X and y are ordinary REAL numbers and have the same
range as REAL numbers. The i is defined as the square root of -1.

STATIC
STATIC is a data scope, rather than a data type. A static variable is persistent during a single run of an HTBasic program.
Typically, static variables will only be used in SUB programs and/or FN functions because the MAIN context is usually called only
once.

Static variables can effectively take the place of COM variables as they are presently used in many cases. If access to a COM
variable is required in multiple SUBs and/or Functions (DEF FN) and/or the Main context, then a static variable is not appropriate.
The scope of a static variable is limited to the context in which it is declared. In other words, a static variable declared in a SUB
program cannot be accessed anywhere other than within that particular SUB program.

Strings
A string is another data type. A string is a combination of ASCII characters. These are the letters, numbers, and symbols that you
can type on the keyboard. ASCII characters also include control characters such as carriage return, etc. A string also has a current
length. The length can be zero, meaning that there are no characters stored in the string, or any size up to a maximum of 32,767.

I/O Paths
An I/O path is yet another data type. An I/O path consists of all of the routing information necessary for the computer to exchange
data between your HTBasic program and another entity (such as a printer, data acquisition device, string, file, etc.). Data is
assigned to an I/O path variable with the ASSIGN statement. Unlike the other data types, PRINT can not be used to examine the
contents of an I/O path variable. However, the contents are used when an OUTPUT, ENTER, or other statement specifies the I/O
path variable.

Constants
A constant is a quantity with a fixed value. There are five types of constants: REAL, INTEGER, COMPLEX, LONG and STRING.
COMPLEX, REAL, INTEGER and LONG constants are collectively called numeric constants. The following are examples of
numeric constants:

Example                                Type of Constant
1        integer constant
1.0        real constant
2.718281828        real constant
-20000        integer constant
-2121503777        long constant
+1E+0        real constant
40000        long constant (32,767 is max integer size)
CMPLX(0,1)        complex constant
6000000000        real constant (2,147,483,647 is the max long size)

Numeric Constants
Numeric integer constants can also be expressed in octal (base 8) or hexadecimal (base 16). A hexadecimal constant must begin
with the characters “&H”. An octal constant must begin with the characters “&O” or simply “&”. Hexadecimal and octal constants
are an extension in HTBasic and are not supported in HP BASIC. The following are examples of hexadecimal and octal constants:

Example                                Type of Constant
&H10        hexadecimal constant with decimal value of 16
&O10        octal constant with decimal value of 8
&20        octal constant with decimal value of 16

String Constants
A string constant is a sequence of ASCII characters enclosed in quotation marks. They are also called string literals. A quotation
mark may be included in a literal by entering two adjacent quotation mark characters. For example:

100 PRINT "This is a quotation mark >""<"

This will print:

This is a quotation mark >"<

Variables
A variable is an entity with memory and a changeable value. Each variable has a name, a type, a scope, and a value. Array
variables remember multiple values. The rules for naming variables, the variable type, the scope of a variable, and array variables
are explained in the following paragraphs.

A string or numeric variable can be assigned a value that comes from a constant, another variable, an expression, or a DATA,
INPUT, ENTER, or READ statement. An I/O path variable can be assigned using the ASSIGN statement. The type of data must
match the variable type.

Variable Names
A variable name can have up to 15 characters. The characters can be alphabetic, numerals, underlines, and characters ranging
from CHR$(128) to CHR$(254). The first character may not be a numeral or an underline. The last character of a string variable
name must be followed by the dollar sign character, “$”. The first character of an I/O path variable name must be the at-sign
character, “@”.

A variable name can be the same as a keyword if it is entered partly in uppercase and partly in lowercase characters. Variable
names are listed with the first character in uppercase and the remaining characters in lowercase. Here are some examples of legal
and illegal variable names (and why):

Variable  Explanation
Smile      legal
FOR    illegal, FOR is a keyword
For      legal with mixed case
I      legal
X1      legal
X-7      illegal, minus sign is not allowed
Supercalifragalisticexpealadoeshous    illegal, too long

Variable Types
There are six types of variables:

· Real

· Integer

· Long

· Complex

· String

· I/O Path

You must indicate the type of each variable in some way. Use the REAL statement to declare real numeric variables. Use the
INTEGER statement to declare integer variables, the LONG statement to declare LONG integer variables and the COMPLEX
statement to declare complex variables. If a numeric variable is not declared, it is declared REAL automatically. To turn off
automatic declaration of variables, execute CONFIGURE DIM OFF.

HTBasic recognizes a string variable from the dollar sign, “$”, following the last character of the string name. The DIM statement
is used to set the maximum string length. The length of a string stored in a string variable cannot exceed its DIMensioned length.
To dimension a string named S$ with a maximum length of 20, use the following syntax:

DIM S$[20]

If a string is not declared in a DIM statement, it is normally dimensioned automatically to a maximum string length of 18
characters. To turn off automatic declaration of variables, execute CONFIGURE DIM OFF.

An I/O path variable does not have to be declared. HTBasic recognizes it from the at-sign character, “@”, preceding the variable
name. The ASSIGN statement is used to set up the I/O path variable before a data transfer.

Variable Scope
HTBasic supports variables with two different scopes, local and global.

All variables not defined in a COM statement are local in scope. The values of local variables are only accessible within the
context in which they are defined. All local variables are assigned the value zero when the context begins execution. When the
context finishes execution, the values of the local variables are discarded. When a context is called recursively, each invocation of
the context is given its own set of local variables. The COMPLEX, REAL, INTEGER, LONG, STATIC, DIM, and ALLOCATE
statements are used to declare local variables.

No memory is reserved for ALLOCATEd variables until the ALLOCATE statement is executed. The DEALLOCATE statement
releases the memory before the context finishes execution. ALLOCATE is only used for array and string variables.

COM variables are global in scope. The values of COM variables are stored in COM blocks that are global in lifetime. A COM
block is a set of one or more variables that is held in "common" (i.e. may be shared) among one or more contexts. Each COM
block is uniquely identified with a name (although one block is allowed to be nameless). As many COM statements as necessary
may be used in a context to fully describe the COM block variables.

To access COM variables, a context must include a COM statement that identifies the COM block and gives the names by which
the variables will be known in that context. Thus, each context can give a different name to the same COM variable. COM
variables are hidden from all contexts that do not include a COM statement accessing that COM block.

When a new program is brought into memory, the existing COM blocks are compared to the COM blocks defined in the new
program. Any COM blocks that exactly match are retained and their data values are available for use by the new program. Any
COM blocks that do not match are deleted and the memory used by their data values is released and may be reused by the new
program.

Note that STATIC variables are similar to COM variables multiple invocations of a given context will all use the same instance of
the variable.

Array Variables
A simple variable has one data value. An array is a multi-dimensional ordered set of data values. Each member of the set is called
an array element. All the members of the set have the same data type which can be COMPLEX, INTEGER, LONG, REAL, or
string. An array variable can not have the same name as a simple variable.

The number of dimensions of the array is called the RANK. Arrays may have a RANK from one to six. You can specify both the
lower and upper bound of each dimension. If the lower bound is not specified then the current OPTION BASE of the context is
used as the lower bound. The default OPTION BASE is zero.

Declaration
Local array variables are declared using the COMPLEX, INTEGER, LONG, REAL, STATIC and DIM statements. The ALLOCATE
statement is used to dynamically declare a local array. The COM statement is used to declare a global array. Normally, all array
variables that are not declared will be declared automatically with the default lower bound, an upper bound of 10, and a RANK
matching the number of subscripts in the first reference to the array. To disable automatic array declaration, use CONFIGURE DIM
OFF.

String Arrays
A string array may be defined where each element of the array is a separate string of the dimensioned length. To dimension a
string array named S$ with four elements (assuming the default OPTION BASE 0), each of which can have a maximum length of
20 characters, use the following syntax:

DIM S$(3)[20]

Examples
A few examples follow showing array declarations.

DIM X(3) ! declares an array of 4 REALs.

This example defines an array with elements numbered 0,1,2,3. If you have set the context OPTION BASE to 1, then it would
define an array with elements numbered 1,2,3.

INTEGER A(50:100) ! declares an array of 51 integers.

This example defines an integer array with 51 elements numbered 50 through 100.

One-dimensional arrays are always referenced by one subscript in parentheses following the array variable. For example, A(2)
refers to the third element. Two-dimensional arrays are referenced by two subscripts, where the first subscript refers to the row,
and the second subscript refers to the column. For example, A(1,2) refers to the second row, the third column. An element of an
array can be used wherever a simple variable of the same type can be used.

Once an array variable is declared, it can be assigned elements via:

• [LET] statement • MAT statement
• INPUT statement • ENTER statement
• READ statement.

To use the [LET] statement to assign values to array elements, you must first DIMension the array.

100 DIM A(1:2,1:2)

This statement sets the working size of A to two rows and two columns, and enough memory space is reserved to store four
numeric values; one value for each element.

Next, you assign a numeric constant to each element. Each element must be assigned a value using subscripts on the array
variable as follows:

110 A(1,1) = 5
120 A(1,2) = 6
130 A(2,1) = 7
140 A(2,2) = 8

The MAT statement can be used to assign an entire array. For example:

100 MAT A = (1) ! all elements in A are set to 1

Another way to assign values to the elements of an array is to use the INPUT statement:

100 DIM A(1:2,1:2)
110 INPUT A(*)

When these statements are executed, the variable A is dimensioned to a 2 by 2 matrix. The INPUT statement then reads the
keyboard entries into the elements of the array A. The elements are input in row major order. For example, the following input
assigns the same values as the lines 110 to 140 above:

5,6,7,8

Each entry must be separated by a comma or by pressing the RETURN key. The input request prompt is displayed again and
again until an entry is made for each element in the array.

The READ statement can also be used to assign values to the elements in an array. For example:

100 DIM A(1:2,1:2)
110 DATA 5,6,7,8
120 READ A(*)

When these statements are executed, the numeric constants in the DATA statement are assigned to array A in row major order.

You can also use a FOR/NEXT loop to assign values in some other order or starting point. For example:

100 DIM Beta(1:99)
110 FOR J = 40 TO 50
120 ENTER @Path;Beta(J)
130 NEXT J

Summary
This chapter discussed the HTBasic Language Elements. It summarized the concepts of program lines, program statements,
keywords, contexts, COMPLEX, INTEGER, LONG, STATIC and REAL numbers, strings, I/O paths, constants, variable names,
variable types, variable scopes, and array variables. More detailed information about each of the mentioned program statements is
contained in the on-line Reference Manual.

Program Flow Control
This chapter describes the program execution states, conditional branching statements, looping statements, subroutines,
subprogram contexts, user defined functions, event and error handling statements, and the EXECUTE statement.

Program Execution
An HTBasic program is started by clicking the RUN|RUN Menu, the RUN icon on the Control Toolbar, by pressing the RUN key or
entering the RUN statement directly from the keyboard. A prerun pass is made over each context before the program begins
execution. The program then executes normally until it encounters an END, PAUSE, or STOP statement. While running, a
message is displayed on the Status Bar to indicate that a program is running.

The WAIT statement can be used to temporarily suspend the execution of the next program line for a specified number of
seconds.

The Paused State
Program execution can be halted by selecting the RUN|PAUSE menu, the PAUSE icon on the Control Toolbar, by pressing the
PAUSE key, executing a PAUSE statement in the program, or entering the PAUSE statement. While PAUSEd, the values of
variables in the current context can be printed or changed and the program can be examined with the LIST or EDIT statements.
The program can be restarted by clicking the RUN|CONTINUE menu, the CONTINUE icon on the Control Toolbar, by pressing the
CONTINUE key, or entering the CONT statement. A program error will also PAUSE the program as will the CLR I/O key if pressed
during an I/O statement. Changing a program line while PAUSEd, will change the state of the computer to a stopped state.

The Stopped State
The program can be forced to halt at some point other than the END statement by selecting the RUN|STOP menu, the STOP icon
on the Control Toolbar, by pressing the STOP key, executing a STOP statement in the program, or entering the STOP statement.
After the program halts, the values of the variables in the main context can be examined and changed. However, changing any
program line will cause the current values of the local variables to be discarded.

Pressing the RESET key, selecting the RUN|BASIC RESET menu or clicking the BASIC RESET icon on the Control Toolbar will
also stop a running program, but also resets the HTBasic environment. The STOP, PAUSE, and CLR I/O keys are preferred.

Returning to the Operating System
Control is returned to the operating system by executing the QUIT ALL statement from the keyboard or in a program line. HTBasic
performs an orderly shutdown by closing all files and then it returns to Windows.

Branching
Branching allows program execution to jump to a statement other than the next statement. The GOTO statement allows you to
make an unconditional transfer to another program line in the same context, but its use is discouraged in favor of structured flow
control statements. The GOTO can specify a line number or label. For example:

GOTO 120
GOTO Fix_up

Conditional Statements
Conditional statements allow you to make decisions. The most common conditional statement is the IF...THEN statement. It allows
program execution to change depending on the result of the specified expression.

The simple form of the IF...THEN statement allows either program execution to jump to another statement in the same context or a
single program statement to be executed. Here are some simple IF...THEN examples:

IF A$="Q" THEN 700 ! conditional transfer
IF A$="N" THEN PRINT “No !” ! single statement

The block IF...THEN statement allows any number of statements to be conditionally executed. If the expression evaluates true, all
of the statements enclosed by the IF...THEN statement down to the END IF or ELSE statement are executed. The optional ELSE
statement can be used within a block IF...THEN statement to enclose any number of statements. If the condition evaluates false,
all of the statements enclosed by the ELSE statement down to the END IF are executed. A block IF...THEN statement can be
nested inside another block IF...THEN statement.

100 IF Xlimit>Upper THEN
110 PRINT “The current setting is ”;Xlimit
120 READ Xlimit
130 PRINT “The new setting is ”;Xlimit
140 ELSE
150 Xlimit = Xlimit+1
160 END IF

In this example line 100 starts a “block” IF structure. Lines 110, 120, and 130 are all executed if Xlimit>Upper is true; otherwise,
line 150 is executed.

ON...GOTO Statement
The ON...GOTO statement provides a multi-way branch depending on the value of the specified expression. Control is transferred
to one of the program lines, in the same context, selected from the list of line numbers or labels whose position in the list matches
the value of the expression. If the value is 1 then the first line number is used, if the value is 2 then the second line number is
used, etc. If the value is less than one or is larger than the number of line numbers or labels specified, an error is generated.

ON J GOTO 300,400,500,600 ! value of J determines GOTO

ON...GOSUB Statement
The ON...GOSUB statement is like the ON...GOTO statement except that program control is sent to one of the subroutines, in the
same context, specified in the line number or label list. When the subroutine executes the RETURN statement, control returns to
the line following the ON...GOSUB statement. For more information on the GOSUB statement and subroutines, see the subroutine
explanation later in this chapter.

ON X GOSUB 300,400,500,600 ! value of X determines GOSUB

SELECT and CASE Statements
The SELECT statement begins a block which executes alternative statement blocks based on the value of the expression
specified. Just as a block IF...THEN ends with an END IF statement, a SELECT block ends with an END SELECT statement.
Within the SELECT block, CASE statements enclose alternative statement blocks. SELECT statements can be nested. This
means that one SELECT statement can be nested inside another.

When the SELECT statement is executed, the SELECT expression is first evaluated and then the resulting value is tested against
the list of values in each CASE statement until either a CASE statement matches the SELECT value or until an optional CASE
ELSE statement is encountered. The enclosed program statements up to the next CASE or END SELECT statement are then
executed. Control is then transferred to the line following the END SELECT statement. If no CASE statement matches and no
CASE ELSE statement is encountered, control is immediately transferred to the line following the END SELECT statement.

The CASE statement specifies a list of expressions each separated by a comma. The type of the expressions, either numeric or
string, must match the type of the SELECT expression. Each expression may specify either a match value, a relational operator
(<, <=, =, >=, >, or <>) followed by a match value, or a range specified by a lower and an upper match value. Each expression is
evaluated one at a time and the resulting value is tested against the SELECT expression result. If any expression matches, then
the CASE statement matches and the statements up to the next CASE or END SELECT statement are executed.

Because the first matching CASE statement will be executed regardless of the later CASE statements, care must be exercised in
selecting the order of the CASE statements.

The following example illustrates the use of the SELECT and CASE statements:

100 INPUT “What is your age? ”,Age
110 SELECT Age
120 CASE <1,>100
130 PRINT “Do you expect me to believe that?”
140 GOTO 100
150 CASE <12
160 Price = 2
170 CASE 12 TO 59
180 Price = 6
190 CASE 60
200 PRINT “Special Rate Tonight:”
210 Price = 4.5
220 CASE ELSE
230 Price = 5
240 END SELECT
250 PRINT USING “”"Movie price is $"",D.2D “;Price
260 END

Loops
A program loop allows the repeated execution of a set of statements. There are four types of program loops: FOR/NEXT,
LOOP/END LOOP, REPEAT/UNTIL, and WHILE/END WHILE.

FOR Loops
FOR/NEXT loops let you specify how many times to repeat a block of statements. You should use FOR loops when the block will
be executed a fixed number of times. It is legal to use a GOTO statement to jump out of the FOR loop, but this violates the
philosophy that the block is to be executed a fixed number of times. You may specify an optional STEP value by which the variable
is to be incremented or decremented. If no STEP value is specified, it defaults to one. The value of the variable is tested against
the termination value before the loop is executed the first time. If it is beyond the termination value, control transfers to the line
following the NEXT statement.

The NEXT statement adds the STEP value to the value of the variable and then tests it against the termination value. If it is not
beyond the termination value, control transfers to the line following the FOR statement. If it is beyond the termination value, the
loop terminates and the value of the variable is left as it is. An example FOR/NEXT loop follows:

10 FOR J=50 TO 100 STEP 2
20 READ A(J)
30 NEXT J

Other Loop Types
The other types of program loops repeatedly execute their statement block until the exit condition is satisfied. Depending on the
loop statements used, the test for loop termination can be made at the beginning, the end, or at any place inside the loop. A loop
can be nested inside another loop. The following examples illustrate the three types of loop termination:

Start of loop End of loop Middle of loop
100 WHILE X<>4 100 REPEAT 100 LOOP
.
. 150 EXIT IF X=4
.
200 END WHILE 200 UNTIL X=4 200 END LOOP

Subroutines
A subroutine is accessed by a GOSUB statement and consists of one or more HTBasic statements whose last statement is a
RETURN. When the GOSUB statement is encountered, the current line number is saved and control is transferred to the specified
line number or line label in the same context. Execution continues until the RETURN statement is encountered, at that time control
is returned to the line following the GOSUB statement. A subroutine example follows.

100 GOSUB 200
. . .
200 X = Y*45/Z
210 RETURN

This subroutine can be called from many places in the program to save having to duplicate the subroutine statements many times.

Program Contexts
HTBasic programs are made up of a collection of contexts. Contexts are program units that have their own environment, including
local variables. There are four types of contexts: the main context, a subprogram context, a user defined function context, and a
CSUB context.

By default, all context variables are local. A local variable cannot be changed by another context unless it is passed by reference.
It exists temporarily, only while its program context is being executed. If a context is invoked recursively, each invocation of the
context has its own set of local variables.

Global variables defined in a COM statement can be accessed from any program context in the HTBasic program that includes the
proper COM statement. Chapter 1, “Language Elements,” contains more information on variables.

Main Context
The main context includes all of the program lines from the first line up to and including the END statement. This context executes
first and may call other subprogram contexts.

Subprogram Contexts
Subprogram contexts are program units that begin with a SUB statement, optionally define parameters, end with an SUBEND
statement, can be invoked recursively by other contexts, and can be passed arguments. They are similar to procedures and
functions in other structured languages and are sometimes referred to as “true” subroutines. Subprogram contexts allow
arguments to be passed, local variables to be declared, and global variables to be referenced. Subprograms are called with the
CALL statement, or with a FN reference in a numeric expression. Arguments can be passed either by reference or by value.

Note:    The term “parameters” refers to the list of variables in a SUB (or DEF FN) statement. The term “arguments” refers to the
corresponding list    in a CALL statement (or FN function).

Pass by reference means a subprogram is told the location of a variable. Therefore, altering the parameter is the same as
altering the original variable. In effect, the parameter name becomes a synonym for the original variable name. I/O path variables,
numeric and string variables, and array elements are all passed by reference.

Pass by value means a subprogram is told the value of a variable, but not where the original variable is stored. The subprogram
can change the value of the parameter, but since the subprogram doesn’t know where the original variable is stored, it can not
modify it. Expressions, constants, and literals are passed by value. Place parentheses around a variable or array element to pass
it by value instead of by reference.

A subprogram context example follows:

100 CALL Do_it(X,4,(Y))
. . .
199 END
. . .
200 SUB Do_it(D1,D2,D3)
210 D1=D1+1
220 D2=D2+1
230 D3=D3+1
. . .
300 SUBEND

Line 100 will cause X to be incremented because it is passed by reference. The 4 is passed by value and Do_it is not told where
the 4 came from. The same is true for Y; it will not be incremented.

Subprogram Pointers
A subprogram is typically referenced by explicitly naming it. For example, to call a subprogram named Wendell, use the statement

CALL Wendell

In several statements, it is also possible to name the subprogram using a string expression. This allows the name of the
subprogram to change dynamically as the program runs. The subprogram must be specified with the initial character in uppercase,
and subsequent characters in lowercase. For example:

CALL A$

If A$="Wendell", the statement will call the subprogram named Wendell. If A$ has some other value, the statement will call some
other subprogram. The string expression specifying the subprogram name is called a “subprogram pointer” because it “points” to
the subprogram rather than explicitly naming it. As the expression changes, the pointer points to different subprograms.
Subprogram pointers are allowed in CALL, INMEM, LOADSUB, DELSUB, and XREF statements.

This example shows one use for subprogram pointers:

10 IF Case=1 THEN
20 Method$="Real"
30 ELSE
40 Method$="Complex"
50 END IF
60 IF NOT INMEM(Method$) THEN LOADSUB Method$
70 CALL Method$ WITH(X,Y,Z)
80 DELSUB Method$
90 END

User Defined Function Contexts
A User Defined Function context begins with a DEF FN statement, optionally defines parameters, ends with a FNEND statement,
can be invoked from within an expression by referencing its name, and can be passed arguments, either by reference or by value.
When it terminates, it returns a value with a RETURN statement. The expression then continues to evaluate, using the returned
value in place of the function reference.

The defined function can return either a numeric value or a string value. If it returns a string value, the function name must end
with a dollar sign ($) and the RETURN statement must specify a string value. For example:

100 PRINT “Today is: ”;FNToday$
110 END
. . .
120 DEF FNToday$
130 A$=DATE$(TIMEDATE)
140 RETURN A$[1,6]
150 FNEND

CSUB Contexts
A CSUB context is a compiled subprogram created with special tools outside of HTBasic. It is loaded into memory with the
LOADSUB statement and removed from memory with the DELSUB statement. It is invoked with a CALL statement.

Interrupting Program Flow
Normal program flow can be interrupted by any of several events: CYCLE, DELAY, END, ERROR, INTR, KBD, KEY, KNOB,
SIGNAL, TIME, and TIMEOUT.

The ON statement defines the action to take when an event occurs. It defines the event type, the servicing priority, the type of
branch used, and the service routine. Event branching occurs between program lines and can be a GOTO, a GOSUB, a CALL, or
a RECOVER.

The destination of a GOTO or GOSUB must be a program line in the present context. If the event occurs while execution is in a
different context, the event is logged and execution continues. When control returns to the proper context, the branch then takes
place.

The destination of a RECOVER must also be a program line in the present context. However, if the event occurs while execution is
in a different context, then SUBEXITs are automatically performed until control is returned to the proper context.

The destination of a CALL must be a SUB context that defines no parameters. When the event occurs, a CALL is performed to the
SUB context. Upon exit of the SUB context, control is returned to the context that was executing when the event occurred.

Priority
The event priority designates which events can interrupt other event service routines. An event can only interrupt a lower priority
routine. If the present SYSTEM PRIORITY is equal to or larger than the priority of an event handling routine, the event is logged
and serviced later when the SYSTEM PRIORITY allows it. The main context begins running at a priority of 0, allowing any event to
be serviced. The event priority may be specified from 1 to 15 and if it is not specified, defaults to 1.

If the branch type is a CALL or GOSUB, then when the event is serviced the SYSTEM PRIORITY is changed to the specified
event priority. When a SUBEXIT or RETURN is executed, the SYSTEM PRIORITY is restored to its value before the event was
serviced. If the branch type is a GOTO, the system priority is not changed. If the branch type is a RECOVER, the automatic
SUBEXITs restore the SYSTEM PRIORITY to the value it was when the defining context invoked another context.

The ON END, ERROR, and TIMEOUT events form a special class and each indicates an error condition. The priority of the END
and TIMEOUT events is 15 so that no normal event can interrupt their service routines. However, they can interrupt service
routines for any event, including another END or TIMEOUT event. The priority of an ERROR event is 17. It cannot be set or
changed with the SYSTEM PRIORITY statement.

Global and Local Aspects
The ON/OFF state of an event and the key labels are local to each context. The initial state is inherited from the invoking context.
When returning from a context, the state is restored to what it was when the context was invoked. CYCLE interval, DELAY time,
KBD ALL modifier, KNOB interval, TIME value, and TIMEOUT values are global. Changing them in a context overrides their values
specified in previous contexts. Consider this example:

10 ON KEY 1 LABEL “Done” RECOVER 40
20 CALL S
30 Spin: GOTO Spin
40 END
50 SUB S
60 ON KEY 2 LABEL “More” GOSUB More
70 SUBEXIT
80 More: PRINT “More”
90 RETURN
100 SUBEND

When Spin is reached, only KEY 1 will be defined. This is because events are local to the defining context and the contexts called
from that context. When the SUBEXIT statement is executed in line 70, the ON KEY 2 in line 60 is discarded.

Disabling Events
The DISABLE statement disables all defined event branches except END, ERROR, and TIMEOUT. While disabled, the first event
of each type that occurs is logged. When event branching is re-enabled with the ENABLE statement, all logged events are
serviced in the order of their event priorities.

An event branch definition is removed with an OFF statement specifying the matching event type. This may include an I/O path
name, an interface select code, a key number, or a signal number.

10 A$=FNInkey$
20 PRINT LEN(A$),A$
30 END
40 DEF FNInkey$! Input one key without echo,
50 ON KBD GOTO 80 ! and a 10 second timeout
60 ON DELAY 10 GOTO 90
70 GOTO 70
80 RETURN KBD$
90 RETURN “”
100 FNEND

This example illustrates use of two ON event statements to implement an Inkey$ function. The function, as defined in the example,
inputs one keystroke. If no key is pressed within ten seconds then the null string is returned.

Error Handling
HTBasic includes many features for handling execution errors. A user written subroutine or subprogram, called an error handler,
can be executed when an error occurs.

Defining an Error Handler
The ON ERROR statement defines the action to take when an error occurs. It defines the type of branch used and the service
routine. The branch type can be a GOTO, a GOSUB, a CALL, or a RECOVER. If no error handler is defined, the error message is
displayed and the program PAUSEs. For example:

ON ERROR GOSUB 200
ON ERROR GOTO Fix_it
ON ERROR RECOVER 1510
ON ERROR CALL Handler

An ON ERROR statement is canceled by an OFF ERROR statement and is not disabled by the DISABLE statement.

The destination of a GOTO or GOSUB must be a program line in the present context. If the error occurs while execution is in a
different context, the ON ERROR definition is ignored, the error message is displayed, and the program is PAUSEd.

The destination of a RECOVER must also be a program line in the present context. However, if the error occurs while execution is
in a different context, then SUBEXITs are automatically performed until control is returned to the proper context.

The destination of a CALL must be a SUB context that defines no parameters. When the error occurs, a CALL is performed to the
SUB context.

An ON ERROR can interrupt any event service routine since it has a priority of 17 which is higher than any event branch. It cannot
be set or changed with the SYSTEM PRIORITY statement. If another ERROR occurs while the system is at this priority (a “double
fault”), then the program is PAUSEd even though an ON ERROR definition is in effect.

The Error Handler Routine
If the branch type is a CALL or GOSUB, then when the error is serviced the system priority is changed to 17. When a SUBEXIT or
RETURN is executed, the system priority is restored to its value before the error was serviced. If the branch type is a GOTO, the
system priority is not changed. If the branch type is a RECOVER, the automatic SUBEXITs restore the system priority to the value
it was when the defining context invoked another context.

If an error occurs in the service routine of an ON ERROR GOSUB or CALL, it is reported to the user and the program is PAUSEd.
If an error occurs in the service routine of an ON ERROR GOTO or RECOVER, an infinite loop between the error line and the
error routine can result.

If there is not enough memory to run the service routine, the original error is reported to the user and the program is PAUSEd.

There are several error indicator functions that can be used by an error handler routine for decision making. The value of the error
number (ERRN) and the line number where the error occurred (ERRLN) are updated when an error occurs. If no error has
occurred since start-up or SCRATCH A, then a zero is returned. The ERRL function returns a one if ERRLN is equal to the
specified line and a zero otherwise. The specified line must be in the current context. The ERRL function is not keyboard
executable. The ERRN, ERRLN, and ERRL functions may be used in IF statements to direct program flow in error handler
routines.

The ERRM$ function returns the line number (ERRLN), error number (ERRN), and the associated error message string. The null
string is returned if no error has been generated since start-up, LOAD, GET, SCRATCH, or CLEAR ERROR.

Errors that occur in connection with background TRANSFER statements are not reported until the associated I/O path variable is
accessed. In this case ERRLN is the number of the program line referencing the I/O path, not the TRANSFER statement. Also,
ERRN is not updated.

The CLEAR ERROR statement resets ERRL, ERRLN, ERRM$, and ERRN to their default start-up values.

Error handler subroutines ending with RETURN and subprograms ending with SUBEND or SUBEXIT re-execute the line in error. If
the error handler does not correct the cause of the error, the error will occur again, causing an infinite loop until the error is
corrected. Subroutines ending with ERROR RETURN and subprograms ending with ERROR SUBEXIT do not re-execute the line
in error. These statements return to the line following the line that caused the error. For example:

100 ON ERROR GOSUB 500
. . .
. . .
500 INPUT “Value too Large. Try again: ”,N
510 ERROR RETURN

During program debugging it is helpful to be able to generate an error just as if it were generated by a running program. The
CAUSE ERROR statement allows you to do this. When the statement is executed, it is as though the error specified actually
occurred and the normal error functions: ERRL, ERRLN, ERRM$, and ERRN are updated. CAUSE ERROR is also useful in
debugging error handlers.

EXECUTE Statement
The EXECUTE statement executes an operating system command or user program. This powerful command allows you to control
and intermix the execution of other user programs with your HTBasic program.

The default command interpreter for your operating system is invoked and given the command specified for execution.    For
example:

EXECUTE “sol.exe”
EXECUTE “dir”

executes the program or operating system command. When the command has completed, control is returned to HTBasic. If the
command argument is not specified, the default command interpreter is invoked, you are given a prompt, and you may issue one
or more commands. You must terminate the command interpreter to return to HTBasic by typing “EXIT”.

After the command has completed execution, if the WAIT OFF option is not specified, the message “Hit any key to continue” will
be displayed and HTBasic waits until you press any keyboard key. If the WAIT OFF option is specified, control immediately returns
to the next HTBasic statement.

If the RETURN option is specified, the executed program’s termination error value is returned in the numeric variable. This is the
command interpreter’s termination value.

When control is returned to HTBasic, an attempt is made to service any events that occurred while the command interpreter had
control. Some events may be lost or ignored during this time period.

Summary
This chapter described the program execution states, conditional branching statements, looping statements, subroutines,
subprogram contexts, user defined functions, event and error handling statements, and the EXECUTE statement. More detailed
information about these statements is available in the on-line Reference Manual.

Mathematics
This chapter describes the mathematical capabilities of HTBasic. Numeric, string, and matrix expressions are made up of
operands and operators. Operands can be variables, constants, or the results of expressions. Operators can be infix operators like
+ and -, built-in functions like COS and EXP, or user defined functions. This chapter also describes automatic data type
conversions, execution precedence, and the matrix inversion function.

Numeric Expressions
A numeric expression is defined as any legal combination of operands and operators joined together in such a way that the
expression as a whole can be reduced to a numeric value. The following syntax diagram defines the legal combination of
operands and operators. Precedence rules place additional constraints that are explained later in this chapter.

numeric-expression =
        { + | - | NOT } numeric-expression |
        (numeric-expression) |
        numeric-expression operator numeric-expression |
        numeric-constant |
        numeric-name |
        numeric-array-element |
        numeric-function [(param [,param...])] |
        FN function-name [(param [,param...])] |
        string-expression compare-operator string-expression

where:
operator = + | - | * | / | DIV | MOD | MODULO | ^ |
        AND | OR | EXOR | compare-operator
compare-operator = <> | = | < | > | <= | >=
numeric-function = a function, like COS, which returns
        a numeric value.
param = legal parameters for numeric functions and user
        defined functions are explained in the on-line Reference
        Manual.

String Expressions
A string expression is any legal combination of operands and operators joined together in such a way that the expression as a
whole can be reduced to a string value. The following syntax diagram defines the legal combination of operands and operators.
Additionally, precedence rules should be kept in mind.

string-expression =
        (string-expression) |
        string-expression & string-expression |
        “string-literal” |
        string-name |
        string-array-element |
        sub-string |
        string-function [(param [,param...])] |
        FN function-name$ [(param [,param...])]

where:
string-function = CHR$ | COMMAND$ | DATE$ | DVAL$ |
        ENVIRON$ | ERRM$ | IVAL$ | KBD$ | LWC$ | REV$ |
        RPT$ | SYSTEM$ |TIME$ | TRIM$ | UPC$ | VAL$
param = legal parameters for string functions and user
        defined functions are explained in the on-line Reference
        Manual.

Matrix Expressions
A matrix expression is any legal combination of operands and operators joined together in such a way that the expression as a
whole can be reduced to a matrix value. The following syntax diagram defines the legal combination of operands and operators.

MAT string-array$ = string-array$ | (string-expression)
MAT sub-array[$] = sub-array[$]
MAT numeric-array = numeric-array [operator numeric-array]
MAT numeric-array = (numeric-expression) [operator numeric-array]
MAT numeric-array = numeric-array operator (numeric-expression)
MAT matrix = matrix-function [(matrix [,matrix])]

where:
operator = + | - | . | / | < | <= | = | <> | >= | > | *
sub-array = array-name({ * | lower-bound:upper-bound | subscript }...)
matrix-function = RSUM | CSUM | INV | TRN | IDN |
        REAL | IMAG | ARG | ABS | CONJG | CMPLX
param = legal parameters for matrix functions are explained
        in the on-line Reference Manual.

Operands
An operand is defined as that which an operator operates on. For example, in the equation:

A*PI+4/N

the operands are A, PI, 4, and N, while “*”, “+”, and “/” are the operators. Operands can be strings, I/O paths, complex, real, long
or integer numbers, arrays or array elements. They can be in the form of constants, variables, array elements, or in some cases,
entire arrays.

Operators
An explanation of operators that begin with a letter of the alphabet can be found by looking up the name of the operator in the on-
line Reference Manual. The following charts list all of the operators, grouping them by category.

Arithmetic
The arithmetic operators provide the standard arithmetic operations as well as the INTEGER division, remainder, and modulo
operators.

Operator  Meaning  Example  Result
+ Addition (dyadic/binary) 3+4 7
+ Positive (monadic/unary) +4 4
- Subtraction (dyadic/binary) 3-4 -1
- Negation (monadic/unary) -3 -3
* Multiplication 3*4 12
/ Division 3/4 0.75
^ Exponentiation 3^4 81
DIV Integer Division 4 DIV 3 1
MOD Remainder 4 MOD 3 1
MODULO Modulo 4 MODULO 3 1

Several of these operations can generate errors. The following table outlines the possible errors. In general, the error numbers
returned by HTBasic are the same as those returned by HP BASIC. But in some instances the operating system or environment in
which HTBasic runs makes it impossible or impractical to return the same number.

Math  Cause of
Operation                                    Error  Example
Integer +-* DIV Result too big 32760+32760
Long +-* DIV Result too big 2,147,483,647+1
DIV Divide by zero 1 DIV 0
Real +-*/ Result too big 1E200*1E200
Real +-*/ Result too small 1E-200*1E-200
/ Divide by zero 1/0
MOD/MODULO MOD by 0 1 MOD 0
A^B Result too big 1E200^1E200
A^B A<0 and B non-integer (-2)^6.5
A^B A=0 and B<0 0^(-1)

Binary
Binary functions perform bit-wise operations on integer numeric values. They may be used to manipulate bits or to perform
conditional operations based on their logical result.

Operator              Meaning  Example                                      Result
BINAND Bit-wise “AND” BINAND(3,4) 0
BINCMP Bit-wise complement BINCMP(5) -6
BINEOR Bit-wise Exclusive Or BINEOR(3,5) 6
BINEQV Bit-wise Equivalence BINEQV(3,5) -7
BINIMP Bit-wise Implication BINIMP(3,5) -3
BINIOR Bit-wise “OR” BINIOR(3,4) 7
BIT Bit-wise test BIT(4,2) 1
ROTATE Bit-wise rotation ROTATE(3,-4) 48
SHIFT Bit-wise logical shift SHIFT(3,-4) 48

Conversions
Conversion functions change an operand from one data type to another. Numeric/string conversions can operate either on ASCII
character values (i.e. CHR$(65)) or string representations of numbers (i.e. “65").

Operator          Meaning  Example                          Result
CINT Real to integer CINT(16.0) 16
CMPLX Real/integer to complex CMPLX(2,1) 2+i
CHR$ Numeric to ASCII string CHR$(65) “A”
DVAL Base N to base 10 (32 bit) DVAL(“A”,16) 10
DVAL$ Base 10 to base N (32 bit) DVAL$(11,16) “B”
&H Hexadecimal constant &H10 16
IVAL Base N to base 10 (16 bit) IVAL(“A”,16) 10
IVAL$ Base 10 to base N (16 bit) IVAL$(11,16) “B”
NUM ASCII character to numeric NUM(“A”) 65
&O Octal constant &O20 16
REAL Integer/complex to real REAL(16) 16.0
VAL String to numeric VAL(“65") 65
VAL$ Numeric to string VAL$(65) “65”

Date/Time
Date and time functions read the system time and convert time values in seconds to the familiar human readable forms and vice
versa.

Operator                Meaning  Example  Result
DATE String to seconds DATE(“1 JAN 1980") 2.11182336E+11
DATE$ Seconds to string DATE$(2.11182336E+11) “1 JAN 1980”
TIME String to seconds TIME(“01:00:00") 3600
TIME$ Seconds to string TIME$(2.11182336E+11) “00:00:00”
TIMEDATE Present time/date TIMEDATE seconds

Environment
Environment functions return information about the HTBasic environment. The SYSTEM$ function, particularly, provides a wealth
of information and is explained in detail later in this chapter.

Operator                    Meaning  Example  Result
CHRX Character cell width CHRX 8
CHRY Character cell height CHRY 14
COMMAND$ Command line COMMAND$ “-O -Z 2"
CRT Display ISC CRT 1
ENVIRON$ Environment variable ENVIRON$(“PATH”) “C:\;C:\DOS”
FRE Available Memory FRE 300000
KBD Keyboard ISC KBD 2
MAXREAL Largest REAL number MAXREAL 1.798E+308
MINREAL Smallest REAL number MINREAL 2.225E-308
NPAR Number of parameters NPAR 0
PRT Printer device selector PRT 10
RATIO Graphic screen ratio RATIO 1.48
SYSTEM$ System information SYSTEM$(“MSI”) “C:\”

Error
Error functions give information about the latest error that occurred. This information is useful in an error handling routine
established by ON ERROR.

Operator                Meaning  Example                                  Result
ERRL Test for error line ERRL(100) 0
ERRLN Line number ERRLN 10
ERRM$ Error Message ERRM$ “ERROR 31 IN ”...
ERRN Error Number ERRN 31

I/O Functions
I/O functions complement the regular I/O statements by providing additional information about I/O operations, devices, and paths.

Operator                Meaning  Example                                  Result
KBD$ ON KBD, keyboard buffer KBD$ “A”
KNOBX ON KNOB, x movement KNOBX 217
KNOBY ON KNOB, y movement KNOBY -45
PPOLL Parallel poll on IEEE-488 PPOLL(7) 8
READIO Read hardware register READIO(9,0) 7
SC Select Code in I/O path SC(@Io) 10
SPOLL Serial poll on IEEE-488 SPOLL(701) 0
STATUS Read interface register STATUS(CRT,1) 1

Logical
Logical operators can be used on integer or real numbers. The two values are first converted to logical (TRUE=1, FALSE=0)
values, the operation is done, and the result is converted to an integer. When converting numbers to logical values, zero is
converted to FALSE and non-zero is converted to TRUE. When converting the result to an integer, FALSE is converted to a zero,
and TRUE is converted to a one.

Operator              Meaning  Example                                  Result
AND Logical “and” 2 AND 3 1
EXOR Logical “exclusive or” 2 EXOR 3 0
OR Logical “or” 1 OR 0 1
NOT Logical “not” NOT 1 0

Relational
Relational operators can be used on numbers or strings. Relational operators can be used in assignment statements, IF
statements, and any other place a numeric expression is legal. For example:

10 X = 4*(Y>Z)+J*(A=B AND R<T)

Relational operators may be used on strings to compare the LEXICAL ORDER of the two strings. By default, ASCII values are
used to determine relative order. “A” is less than “B”. If two strings of different length are the same up to the end of the shorter
string, then the shorter string is less than the longer string. For example, “ABCDE” < “ABCDEF”. The LEXICAL ORDER IS
statement affects the relational ordering of strings.

Operator              Meaning  Example                                  Result
< Less than 3<4 1
<= Less than or equal 3<=4 1
= Equals “3”=“4” 0
>= Greater than or equal 3>=4 0
> Greater than “3”>“4” 0
<> Not equal 3<>4 1

String Functions
As you have seen, many other operators already described also have string operands or string results. The functions presented
here are especially useful for operations with strings. The examples in the following table assume that A$ has the value
“HOTDOG”.

Operator                    Meaning  Example  Result
& Concatenation “HOT”&"DOG" “HOTDOG”
[s] Sub-string, start A$[4] “DOG”
[s,e] Sub-string, start, end A$[1,3] “HOT”
[s;l] Sub-string, start, length A$[2;4] “OTDO”
COMMAND$ Command line COMMAND$ “-O -Z 2"
CVT$ Converts alphabets CVT$(X$,Y$)
ENVIRON$ Environment variable ENVIRON$(“PATH”) “C:\;C:\WINDOWS”
FBYTE Test for First byte FBYTE(X$) 0 or 1
LEN Present length LEN(“AB”) 2
LWC$ Lowercase LWC$(“AB”) “ab”
MAXLEN Dimensioned length MAXLEN(A$) 18
POS Position of a sub-string POS(“AB”,"B") 2
REV$ Reverse REV$(“AB”) “BA”
RPT$ Repeat RPT$(“AB”,3) “ABABAB”
SBYTE Test for Second byte SBYTE(X$) 0 or 1
TRIM$ Trim lead/trailing space TRIM$(“ A B ”) “A B”
UPC$ Uppercase UPC$(“ab”) “AB”

A substring defines a portion of a string variable or string array element. The capability of specifying a sub-string of a string
variable or string array element is quite powerful. This capability replaces the RIGHT$, LEFT$, MID$, REP$, and SEG$ functions
of other BASICs. A sub-string is selected by specifying a starting position within the string value, and optionally, either the length of
the sub-string or the ending position within the string value. If only the starting position is specified, the rest of the string value from
that point on is used for the sub-string. String positions are one-based, i.e., the first character of a string is in position one.

Transcendental and Trigonometric
The standard transcendental and trigonometric functions are provided along with the ability to specify degree or radian operations.
Many other less common functions are available, contact TransEra for information.

Function                Meaning
ACS Returns the arc cosine of an expression
ASN Returns the arc sine of an expression
ATN Returns the arc tangent of an expression
ATN2 Returns the angle to a point
COS Returns the cosine of an expression
DEG Statement to set degree mode for trig functions
EXP Return the exponential of an expression
LGT Computes common (base 10) logarithms
LOG Computes natural (base e) logarithms
PI Returns the numeric value 3.14159...
RAD Statement to set radian mode for trig functions
SIN Returns the sine of an expression
SQR (SQRT) Returns the square root of an expression
TAN Returns the tangent of an expression

Other Functions
The other functions provide number manipulation for the sign, the fractional or integral parts, rounds to specific decimal places,
finds the largest or the smallest value, and generates pseudo-random numbers.

Operator                Functionality
ABS Absolute value of an expression
CINT Convert to Integer
DROUND The number rounded to specified number of digits
FIX Discard fractional part of a number
FRACT Fractional part of a number
INT Greatest integer part of a real number
MIN Smallest number from list of values and arrays
MAX Largest number from list of values and arrays
PROUND The number rounded to the specified decimal place
RES Result of last live keyboard expression
RND Random number
SGN Arithmetic sign of an expression

Notice the differences among CINT, FIX, and INT. CINT converts a REAL value to an INTEGER by substituting the closest
INTEGER to the value. FIX returns the closest integral value between the REAL value and zero. INT returns the closest integral
value between the REAL value and negative infinity. Also, CINT actually changes the type from REAL to INTEGER while INT and
FIX return integral results, but the type is not changed. The following table helps illustrate the differences:

X                      CINT(x)            FIX(x)            INT(x)
2.6 3 2.0 2.0
2.2 2 2.0 2.0
-2.2 -2 -2.0 -3.0
-2.6 -3 -2.0 -3.0

User Defined Functions
The DEF FN function statement defines a subprogram function context. This function is executed whenever the function name is
referenced in a numeric or string expression. You can define as many functions in this way as you wish. Chapter 2, “Program
Flow,” introduces subprogram contexts and explains how to define and pass arguments to them.

Automatic Conversions
Conversions from REAL to INTEGER or LONG and from INTEGER or LONG to REAL are done automatically in HTBasic. Basic
operations are done in INTEGER math if both operands are INTEGER or LONG. Otherwise, REAL math is used. For example:

INTEGER J ! J is now an integer type variable
X = 1.234 ! X is a real number (by default)
J = X ! The real value of X is converted to

! integer and assigned to J.
X = J ! This conversion is from integer to real
X = 1.0 ! Faster than X=1 (no convert required)
X = 1 ! This requires a convert to real
X = PI DIV 2.0*10 ! X will equal ten.

The last example above is kind of tricky. The first operation to take place will be INTEGER division. The INTEGER division
operation will convert PI to an INTEGER 3 and 2.0 to INTEGER 2. 3 DIV 2 equals INTEGER 1. The multiply will be an INTEGER
multiply because 1 and 10 are both INTEGERs. 1*10 equals INTEGER 10, which is converted to REAL 10.0 to be stored in the
REAL variable, X.

The same concepts are extended in versions of HTBasic with COMPLEX support. If one operand is COMPLEX, the other is
automatically converted to COMPLEX if needed. In cases where a real number is required, a complex number will automatically
be converted to a real number by discarding the imaginary portion. In cases where an integer or long number is required, a
complex number will cause an error. In this situation, use the REAL function to force the real part of the complex number to be
used.

Conversions may take a noticeable amount of time if many iterations occur. They should, therefore, be avoided whenever speed is
a priority.

Execution Precedence
Mathematical precedence describes the order in which operators in an expression are evaluated. For example, the correct answer
to the formula:

1+2*3+4

is 11, not 13.        This is because multiplication (2*3) has a higher precedence than addition (1+2). If the two operators are on the
same row in the precedence chart, the operations occur in left to right order (i.e. 1+2-3+4).

HP BASIC (and HTBasic) has an odd quirk in its definition of precedence that you should be aware of. Most computer languages
place all monadic operators (operators that operate on one operand) at a higher precedence than dyadic operators (operators that
operate on two operands). However, HP BASIC (and HTBasic) place monadic + and - below some of the dyadic operators. The
following is one example of an expression that will evaluate differently because of this:

-4^0.5

With HTBasic, this is equivalent to -(4^0.5) which is equal to -2. With most other computer languages, this is equivalent to (-4)^0.5
which is an illegal operation.

Precedence                    Operators/Functions
1 Parentheses () and sub-strings []
2 Functions: built in and user defined.
3 Exponentiation Operator ^
4 Multiplicative Operators *,/,DIV,MODULO,MOD
5 Monadic + and -
6 Dyadic + and -
7 String Concatenation &
8 Relational Operators =,<>,<,>,<=,>=
9 Monadic Logical Operator NOT
10 Logical Operator AND
11 Logical Operators OR and EXOR

Matrix Operators
One of the powerful features of HTBasic is its ability to do operations on complete arrays without the use of loops. This means that
programs will run much faster. Many operators that can operate on two simple variables can operate on arrays. Array/array
operations or array/scalar (simple variable) operations can be done. Portions or entire arrays can be transferred to another array
or a portion of another array. For example:

100 DIM X(10),Y(10),Z(10)
110 MAT Y=(1) ! defines every element of the array
120 MAT X=Y*(5) ! array/scalar operation
130 MAT Z=X+Y ! array/array operation
140 MAT Z(2:3)=Z(9:10) ! sub-array assignment

The operators + - . / < <= = >= > <> require that the operand arrays have the same RANK and that each dimension has the same
SIZE. The result array will be REDIMed if needed. However, the usual rules for REDIM apply and if the array cannot be
redimensioned, an error is returned. Each of these operators work on the array element by element. The “.” operator does an
element by element multiply.

The "*" operator performs classical matrix multiplication. The definition of matrix multiplication is given in the following BASIC SUB:

10 SUB Matmpy(A(*),B(*),C(*)) ! Equivalent to MAT C=A*B
20 OPTION BASE 1
30 INTEGER I,J,K,M,N,R
40 M=SIZE(A,1)
50 N=SIZE(A,2)
60 K=SIZE(B,2)
70 IF N<>SIZE(B,1) THEN CAUSE ERROR 16
80 REDIM C(M,K)
90 FOR I=1 TO M
100 FOR J=1 TO K
110 Sum=0
120 FOR R=1 TO N
130 Sum=Sum+A(I,R)*B(R,J)
140 NEXT R
150 C(I,J)=Sum
160 NEXT J
170 NEXT I
180 SUBEND

Matrix Operators with Matrix Result
Besides applying these simple operators to arrays, operators especially designed for arrays can be used:

Operator                                Functionality
CSUM Returns the sum of each column of a 2D array in a vector
IDN The identity matrix (1’s along diagonal, 0’s elsewhere)
INV Sets one array to the inverse of another
REORDER Reorders the elements of an array
RSUM Returns the sum up each row of a 2D array in a vector
SEARCH Searches for elements in an array
SORT Sorts arrays in ascending or descending order
TRN Transposes a matrix (rows to columns, columns to rows)

Matrix Operators with Scalar Result
The following operators take a matrix operand and return a scalar result.

Operator                                Functionality
BASE Returns the lowest legal subscript for a dimension
DET Returns the determinant of a matrix
DOT Dot, or inner product of two vectors
MAX Returns largest element of an array and/or scalars
MIN Returns smallest element of an array and/or scalars
RANK Number of dimensions in a matrix
SIZE Upper bound - lower bound + 1 of a dimension
SUM Adds up all the elements in an array

Matrix Sub-array Assignments
Sub-array assignments (sometimes called array slices) require that the number of ranges specified in the source match the
number of ranges specified in the destination. If a complete array is specified, the number of ranges equals the rank of the array.
In corresponding ranges of the source and destination, the number of elements must be the same. The following examples will
help you visualize these rules:

10 DIM X(1:3),Y(1:10)
20 DIM D(3,4,5),S(4,2,5)
30 MAT X=Y(2:4) ! One range, three elements
40 MAT D(3,*,*)=S(*,2,*) ! Range 1 has 5 elements, 2 has 6
50 MAT Y(1:6)=S(0,0,*) ! One range, 6 elements

Matrix Searching
The MAT SEARCH statement searches a numeric or string array for certain conditions. The array can be searched for the
following:

· The location of first element that is less than, greater than, equal to, or not equal to a given value

· A count of the number of locations that are less than, etc. to a given value

· The location of the maximum or minimum value in the array

· The value which is the maximum or minimum value in the array

The syntax for MAT SEARCH is:

MAT SEARCH numeric-array [num-key], rule; return [,start]
MAT SEARCH string-array$ [str-key], rule; return [,start]

where:
num-key = [search-subscripts] [DES]
str-key = [search-subscripts [sub-string]] [DES]
search-subscripts = ({subscript|*} [,...])
        The ‘*’ must appear once.
rule =
        [#]LOC ([relational] value) |
        LOC MAX |
        LOC MIN |
        MIN |
        MAX
relational = < | <= | = | <> | => | >
return = variable-name
start = numeric-expression
value = string-or-numeric-expression

The keyword DES specifies descending search order. The optional start value specifies the starting subscript. If not specified,
searching begins with the first element for ascending searches and the last element for DEScending searches. The meaning of the
search rule is:

Operator                                Functionality
LOC Subscript of first element satisfying operator
#LOC Count the number of elements satisfying operator
LOC MAX Subscript of maximum value
LOC MIN Subscript of minimum value
MAX Find and return the maximum value
MIN Find and return the minimum value

Matrix Inversion
One of the more complex matrix functions is the INV function used to calculate the inverse of a matrix. Several precautions are in
order when using the INV function. The inverse of a matrix A is defined to be that matrix B, such that

AB = BA = I

where I is the identity matrix. For any matrix A, there is no guarantee that a matrix B exists such that the above relationship can be
satisfied. When this is the case, A is called a singular matrix and has a determinant value of zero.

This leads to the first caution to observe when using computer methods for matrix inversion. After using the INV() function to find
the inverse of a matrix, the DET function should be tested to determine whether the matrix was singular or non-singular. The
determinant of a matrix is a by-product of the computer’s inversion algorithm. When the INV function is used, the determinant of
that matrix is assigned to the DET function. In the case of a non-singular matrix, it is therefore faster to do the inversion first and
then check the DET function. The example below shows both methods.

110 ! The fast way
120 MAT B=INV(A)
130 IF NOT DET THEN PRINT “A is singular”
140 !
150 ! The slow way
160 !
170 IF NOT DET(A) THEN PRINT “A is singular”
180 MAT B=INV(A)

No error is generated when a singular matrix is inverted, but the values assigned to the result matrix are meaningless. You should
therefore check the determinant value when doing a matrix inversion.

The second caution is related to the first. When the determinant of a matrix is very near zero, compared to the other elements of
the matrix, then the inexact arithmetic used by a computer causes errors in the calculation of the inverse. The closer to zero, the
more error is introduced into the result. To test for this condition, multiply the original matrix and its inverse together and compare
the result to the identity matrix. If the difference is greater than what is acceptable for your application, then you will not be able to
use BASIC to invert that matrix.

The following example illustrates a matrix whose determinant is small compared to the elements of the matrix.

10 REM SMALLDET.BAS
20 DATA 100,200,100.000000000001,200
30 DIM A(1,1),B(1,1),Ab(1,1)
40 READ A(*)
50 MAT B=INV(A)
60 MAT Ab=A*B
70 D2x2: IMAGE K,/,2(2(SD.15DE,2X),/)
80 PRINT USING D2x2;"A=",A(*)
90 PRINT USING D2x2;"B=",B(*)
100 PRINT USING D2x2;"Ab=",Ab(*)
110 PRINT “DET = ”;DET
120 END

The output from this program is shown below. Although the product AB is not exactly the identity matrix, it is close enough for
many applications.

A=
+1.000000000000000E+02 +2.000000000000000E+02
+1.000000000000010E+02 +2.000000000000000E+02

B=
-1.005267773966630E+12 +1.005267773966630E+12
+5.026338869833190E+11 -5.026338869833140E+11

Ab=
+9.956054687500000E-01 +5.371093750000000E-03
-4.394531250000000E-03 +1.005371093750000E+00

DET = -1.98951966013E-10

Complex Operators
Several operators and statements have been added to work with complex numbers. Automatic conversion rules have also been
extended to handle cases where complex and real arguments are mixed. See “Automatic Conversions” earlier in this chapter.

Extended Statements and Operators
Operator                                Functionality
+ - * / Operate on complex numbers
= <> Operate on complex numbers
ABS Return absolute value (magnitude or modulus)
ATN Return arctangent of complex number
COS Return cosine of complex number
ALLOCATE COMPLEX can be specified
COM COMPLEX can be specified
DATA Use rectangular form separated by comma
DISP Display in rectangular form separated by space
DEF COMPLEX can be specified
ENTER Enter in rectangular form separated by non-numeric
EXP Return “e” raised to complex power
IMAGE Treat complex like two REALs
INPUT Input in rectangular form
LGT Return base 10 log of complex number
LOG Return natural log of complex number
MAT ABS, ARG, CMPLX, CONJG, IMAG, REAL
MAT REORDER Reorder complex arrays
MAT SEARCH Search complex arrays
OUTPUT Output in rectangular form separated by comma
PRINT Print in rectangular form separated by space
READ Read in rectangular form
SIN Return sine of complex number
SQR Return square root of complex number
SUB COMPLEX can be specified
TAN Return tangent of complex number

Notice that only two of the relational operators, <> and =, are extended for complex numbers. The other relational operators
depend on the linear ordering of the data type. In other words, all REAL, LONG or INTEGER numbers could be laid out on a
number line and, of any two different numbers, one would be closer to positive infinity than the other. Since linear ordering is not
defined for the complex data type, the <, >, <=, and >= operators are also not defined.

Added Statements and Operators
Operator                                Functionality
ACSH Hyperbolic arccosine of complex or real
ARG Argument (angle) of complex number in polar form
ASNH Hyperbolic arcsine of complex or real
ATNH Hyperbolic arctangent of complex or real
CMPLX Combine two REALs into a complex
COMPLEX Declare complex variables
CONJG Conjugate of complex
COSH Hyperbolic cosine of complex or real
IMAG Return imaginary part of complex number
REAL Return real part of complex number
SINH Hyperbolic sine of complex or real
TANH Hyperbolic tangent of complex or real

Summary
This chapter has described numeric, string, and matrix expressions; operands, operators, and functions; automatic data type
conversions, execution precedence, and the matrix inversion function. More information about each of these operators and
functions can be found in the on-line Reference Manual.

Graphics
HTBasic contains an extensive assortment of powerful graphic statements. These allow you to use convenient data units, not just
pixels, in defining your graphic display. Your data units are automatically scaled to the correct graphic device units. Also, the same
program can use a variety of graphic devices (screen, plotter, or printer) without having to modify the graphics statements.

This chapter coordinates information and concepts relating to the HTBasic graphics system. The graphics statements are
introduced beginning with the simple statements and progressing to the more complex ones. Several examples are given to help
you see as well as understand the concepts that are presented.

Because of the large number of HTBasic graphic statements, not all of the options and syntax details are explained in this chapter.
For more detailed syntax information or attribute values refer to the statement descriptions in the on-line Reference Manual as you
read through this chapter.

Simple Graphics Statements
The simplest graphics statements initialize the graphics system, clear the GRAPHICS and ALPHA screens, and control the pen
movement to draw graphic lines. The HTBasic statements used to perform these functions as well as the graphic coordinate
system used by HTBasic are described in the following paragraphs.

GINIT Statement
The GINIT statement resets all the graphics parameters to their default values. It terminates any graphics input device or active
plotter. If graphics output is directed to a file, the file is closed. It also causes the graphics screen to be cleared before the next
graphics statement is executed. If you enter GINIT followed by a DRAW 50,50 statement the following occurs: GINIT resets all
graphics parameters to their default values. Before the DRAW command is executed the screen is cleared and then a line is be
drawn from the origin to 50,50.

GCLEAR and CLS Statements
The GCLEAR statement erases both the GRAPHIC and the ALPHA screen, then re-displays the ALPHA screen. To clear the
ALPHA screen, use the CLEAR SCREEN or CLS commands.

Graphics Coordinate System
The HTBasic graphics system is based on the Cartesian coordinate system. This system uses a pair of values to define the
location of each point in a graph relative to the origin at (0,0). The first value specifies how far the point is to the right of the origin
and the second value specifies how far the point is above the origin. Negative values specify locations to the left of or below the
origin. The horizontal line passing through the origin is called the X axis and a vertical line passing through the origin is called the
Y axis.

The default origin, (0,0), is the lower left corner of the display screen. The default top vertical value is 100. The default right
horizontal value depends upon the display aspect ratio and is usually about 148.

Let us now examine the simple graphic statements used to control the pen movement to generate graphic lines. They are the
MOVE, DRAW, PLOT, and PENUP statements.

MOVE and DRAW Statements
The MOVE statement raises the pen and then moves it to the specified position. The DRAW statement draws a line from the
current position to the specified position using the current line type and pen number. MOVE always lifts the pen before moving to
the specified position. DRAW always begins with the pen down, draws to the new position, and ends with the pen down. Let’s now
try an example:

10 GINIT
20 DRAW 100,100
30 MOVE 100,0
40 DRAW 0,100
50 END

This example draws a large X on the graphics screen. If you were not already in GRAPHICS mode the display mode is switched to
GRAPHICS mode and any ALPHA text is repainted on the graphics screen. The first DRAW statement lowers the pen at the
current position (0,0 because of the GINIT statement) and draws a line to position 100,100. The MOVE statement raises the pen
and moves it to position 100,0. The next DRAW statement lowers the pen at the current position 100,0 and draws a line to position
0,100.

PLOT Statement
The PLOT statement, like the MOVE and DRAW statements, moves the pen to the specified location and optionally specifies
when the pen is to be raised or lowered. For example:

PLOT 45,80,-1

first lowers the pen and then moves it to location 45,80. If the optional pen-control value is not specified, the pen is lowered after a
move. The pen-control value is interpreted as follows.

Pen Control  Action
positive even #, & zero pen is raised after a move
positive odd # pen is lowered after a move
negative even # pen is raised before a move
negative odd # pen is lowered before a move

Negative values cause the pen action to occur before the move and positive values cause the pen action to occur after the move.
Even numbers cause the pen to be raised, and odd numbers cause the pen to be lowered.

A two or three column numeric array can be used to supply the coordinate and optional pen-control values. If a three-column array
is specified, the third-column specifies the pen-control value to use for each row. It can also specify many other operations as
covered later in this chapter. The earlier MOVE/DRAW example could have used the PLOT statement as follows:

10 GINIT
20 DATA 100,100,-1, 100,0,-2, 0,100,-1
30 INTEGER A(2,2)
40 READ A(*)
50 PLOT A(*)
60 END

This example draws the same large X on the screen using the PLOT statement and a three-column data array to specify the
coordinates and the pen-control values.

PENUP Statement
The PENUP statement raises the pen without changing its position. This is used with plotters when you don’t want the pen to
“bleed” onto the paper while it is not moving.

User Defined Graphic Units
Up to this point we have been working in the default graphic units. We now turn our attention to specifying the graphic units that
are most convenient for the display of your data values.

The computer screen is, in effect, our viewport into the entire cartesian coordinate system. Only the graphic points that fall within
the viewport will be displayed; all other points are eliminated. Lines that cross through the viewport are clipped at the boundaries.
The portion of the screen that is to be used to display graphics is specified by the VIEWPORT statement. The CLIP statement
allows you to specify clipping boundaries that are different than the VIEWPORT. The SHOW and WINDOW statements specify
which portion of the cartesian coordinate system is mapped into the VIEWPORT for display.

VIEWPORT Statement
The VIEWPORT statement specifies the area of the screen or graphic device to be used for graphics output and it also sets the
soft-clip boundary limits to match the viewport bounds. The VIEWPORT parameters control the proportions, size, and position of
the drawing surface. All graphic output is automatically scaled to fit this drawing surface. The coordinate of the left edge must be
less than that of the right edge and the bottom edge must be less than the top edge. It is specified as follows:

VIEWPORT Left,Right,Bottom,Top

The VIEWPORT boundary parameters are defined in GDUs (Graphic Display Units). GDUs are units that describe the physical
bounds of the display area on the graphic output device. By definition, Graphic Display Units are 1/100 of the shorter axis of a
plotting device. A unit in the X direction and a unit in the Y direction are the same length. The RATIO function returns the ratio of
the X to Y physical bounds for the PLOTTER IS device and can be used to determine the VIEWPORT soft-clip limits.

If the ratio is less than 1, the X axis is 100 GDUs and the Y axis is (100*RATIO) GDUs long; if the ratio is greater than 1, the Y axis
is 100 GDUs and the X axis is (100*RATIO) GDUs long. The VIEWPORT soft-clip limits should not exceed the physical bounds of
the device. By default the left limit is zero, the right limit is the X axis physical bound, the bottom limit is zero, and the top limit is
the Y axis physical bound.

Changing the VIEWPORT does not affect any currently displayed graphics, only graphics that you subsequently generate.

Figure 4-1: Simplified Graphics Mapping

As mentioned any graphic points that fall outside the VIEWPORT are eliminated and any lines that cross through the VIEWPORT
are clipped at the boundaries. These boundaries are called the soft-clip bounds. They must be within the device physical limits or
the hard-clip bounds.

The following program outputs the same graphics information to three different VIEWPORTs.

10 GINIT
20 VIEWPORT 10,50,60,85 !Viewport #1
30 GOSUB 100
40 VIEWPORT 60,100,60,85 !Viewport #2
50 GOSUB 100
60 VIEWPORT 10,100,30,50 !Viewport #3
70 GOSUB 100
80 STOP
90 !
100 FRAME
110 AXES 10,10,20,20,2,3
120 RETURN
130 END

The first and second viewports are exactly the same size, they are just located at different sections of the screen. The third
viewport stretches the X axis and compresses the Y axis, causing the image to be distorted.

CLIP Statement
The CLIP statement allows you to specify new soft-clip limits without changing the current VIEWPORT values and it enables and
disables clipping at the soft-clip boundaries. If no CLIP statement is executed, the soft-clip boundaries are the most recently
defined by either a VIEWPORT (soft-clip) or PLOTTER IS (hard-clip) statement.

Use the CLIP ON statement prior to any graphic statements that might generate points outside the soft-clip area. If CLIP ON is
active, a theoretical move or draw to any point that is outside the defined soft-clip area is executed. If a draw is executed, then
only that portion of the vector which lies inside the soft-clip area is drawn. The portion of the vector that lies outside the soft-clip
area is clipped (chopped off) at the edge of the soft-clip boundary. If both the current logical position and the specified position are
outside the soft-clip area the logical position is updated but no physical pen movement is made.

Execute a CLIP OFF statement to disable clipping so you may add labels, comments, graphics or any other plotting that is to be
done outside the soft-clip area. When clipping is disabled, clipping will only be done on the physical device limits. If the soft-clip
limits are smaller than the physical device boundaries, then CLIP OFF allows you to generate graphic coordinates that fall outside
the soft-clip limits but inside the device physical boundaries. For example:

10 GINIT
20 VIEWPORT 10,100,50,80
30 FRAME
40 AXES 3,3,0,0,2,3
50 CLIP OFF
60 MOVE 15,-25
70 LABEL “LABEL OUTSIDE CLIP AREA”
80 END

The default WINDOW setting (0,RATIO*100,0,100) is mapped into the new VIEWPORT area of (10,100,50,80). We enclose the
VIEWPORT area with the FRAME statement so you can see the area. Clipping is turned off and we move outside the soft-clip
area to (15,-25) and draw a line.

The difference between the CLIP and VIEWPORT statements can be confusing. The following examples should help you see the
different effects these commands have on graphics scaling and clipping.

Example A  Example B
10 GINIT 10 GINIT
20 VIEWPORT 20,60,20,60 20 CLIP 20,60,20,60
25 WINDOW 0,148,0,100 25 WINDOW 0,148,0,100
30 FRAME 30 FRAME
40 MOVE 10,10 40 MOVE 10,10
50 DRAW 80,70 50 DRAW 80,70
60 CLIP OFF 60 CLIP OFF
70 DRAW 90,70 70 DRAW 90,70
80 END 80 END

In example A, the WINDOW values (0,148,0,100) are mapped into the new VIEWPORT area (20,60,20,60). All the MOVE and
DRAW X,Y values are within the window and thus no clipping is done. In example B, the VIEWPORT remains the entire screen
and the WINDOW values are again mapped into the VIEWPORT area, but the CLIP command specifies that any line outside the
range of the clipping area (20,60,20,60) is not displayed. After CLIP OFF, the final DRAW is displayed.

You specify the bounds and the units of your coordinate system with either the SHOW or the WINDOW statement. They both
specify a rectangular area with dimensions as large or as small as you like. The units that you thus define are known as User
Defined Units (UDUs) and are used by all the graphic drawing statements. The meaning of each unit is entirely up to you. They
can be any units of measure you wish to work with (inches, miles, years, etc.). For example, if you are plotting a sine wave that
has a domain of 0 to 2*PI and a range of -1 to +1, you would use these values as the bounds of your coordinate system.

SHOW Statement
The SHOW statement specifies the bounds of the data values to be displayed within the VIEWPORT in isotropic units so that the
X and Y units are of equal length. You specify the left, right, bottom, and top coordinate bounds as follows:

SHOW Left,Right,Bottom,Top

The SHOW values are manipulated internally to give you isotropic units in both the X and Y directions. The SHOW statement finds
the difference between the X and Y ranges and the smaller range is scaled into the larger, causing the specified area to be
centered within the plotting area. For example:

SHOW -100,100,2,10

For a screen with square pixels the calculations would be: an X difference of 200 and Y difference of 8 is found by subtracting the
lower bound from the upper. The smaller Y range is scaled into the larger X range. The difference between the X and Y ranges is
192 (200-8), and half of this, 96, is applied to each Y value. The new minimum Y value is -94 (2-96) and the maximum value is 106
(10+96).

For screens that don’t have square pixels, the values are automatically adjusted to prevent distortion.

WINDOW Statement
The WINDOW statement specifies the bounds of the data values to be displayed within the VIEWPORT in non-isotropic units
where the X and Y units are of different lengths. If not specified, the default WINDOW is equal to the default VIEWPORT setting. It
is specified as follows.

WINDOW Left,Right,Bottom,Top

The SHOW and WINDOW statements only differ in how they map data onto the VIEWPORT.

An image can be “mirrored” about the X or Y axis by reversing the order of the limits for each dimension by specifying the larger
value before the smaller value. This is true for both the SHOW and WINDOW statements. For example:

SHOW 0,RATIO*100,100,0 !Mirror about Y Axis
WINDOW RATIO*100,0,0,100 !Mirror about X Axis

Please note: You do not have to set the WINDOW bounds to whole units. Set them to the units most convenient for your data.
The coordinates are always translated to the units required for the full resolution of your graphic device.

WINDOW and VIEWPORT Effects
We will now use the RECTANGLE statement to see how it is affected by different WINDOW and VIEWPORT values. There are
several forms of the RECTANGLE statement. The simplest form specifies the desired width and height and draws only the border
lines. For example:

10 GINIT
20 MOVE 10,20
30 RECTANGLE 10,10
40 END

draws a small square near the origin. You can change the WINDOW to a smaller range to cause the square to be drawn larger.
Add the following statement.

24 WINDOW 0,30,0,30

The VIEWPORT is still the entire screen, but the range of values mapped into the VIEWPORT is now smaller. The WINDOW
values are (0,30,0,30) instead of the default (0,Ratio*100,0,100). This creates a larger box when the same RECTANGLE
statement is used. Note that the square is now stretched onto the VIEWPORT. This is because the VIEWPORT is not square and
the WINDOW was not adjusted to compensate. To get a square on the screen either the VIEWPORT or the WINDOW must be
changed. The simplest way is to select a square VIEWPORT by adding the following statement.

22 VIEWPORT 0,100,0,100

Note that this displays the square again, but it is shifted to the left, since the right side of the screen is inaccessible with this
VIEWPORT. Try experimenting with different WINDOW and VIEWPORT settings to understand how they interact with each other.

Annotating Charts and Graphs
Now that you know how to specify a convenient coordinate system and its units of measure we turn our attention to the HTBasic
statements used to annotate charts and graphs.

AXES and GRID Statements
By including an axis or grid with appropriate tic marks and labels you can make data plots and graphs more readable and
meaningful. The AXES and GRID statements make this easy. The AXES statement draws a single X-Y axis across the soft-clip
area, while the GRID statement generates grid lines across the entire soft-clip area. They are specified as follows:

AXES [xtic [,ytic [,xorg [,yorg [,xcnt [,ycnt [,size]]]]]]]
GRID [xtic [,ytic [,xorg [,yorg [,xcnt [,ycnt [,size]]]]]]]

where:
x/ytic = tic spacing
x/yorg = origin of axis
x/ycnt = major tic counts
size = major tic size

The default values for the X and Y tic spacing and the axis or grid location are 0,0,0,0. The X and Y major tic counts specify the
number of tic intervals between major tic marks. Their default values are 1 indicating that every tic interval is major. The default
major tic length is two graphic display units. The minor tic marks are half the length of the major tic marks.

The AXES statement produces tic marks that are symmetric about the axis and that extend to the soft-clip boundaries. If the X or Y
axis is outside the soft-clip area, tic marks are drawn in the soft-clip area. The AXES lines and tic marks are drawn in the current
line type and pen number. A major tic is placed at the axis origin.

The GRID statement generates major tic marks lines across the entire soft-clip area. Cross tic marks are generated at the minor
tic mark intersections. The grid is drawn with the current line type and pen number. The pen position after a GRID statement is at
the axis origin. For example:

10 GINIT
20 AXES 5,5,50,50,2,3
30 DRAW 60,60
40 END

produces an axis with the origin at 50,50. A tic mark is placed every 5 units in both the X and Y direction. In the X direction every
second tic mark is twice as big as the others, because it is a major tic. Every third tic mark in the Y direction is a major tic. The
DRAW statement shows you the current X,Y location. Now change line 20 to the GRID statement.

20 GRID 5,5,50,50,2,3

The origin of the GRID is at 50,50 just like the AXES. The major tic marks extend across the entire soft-clip area. Where the minor
tic marks cross, a small tic is placed. The DRAW statement again shows you the current X,Y location.

To create a fully enclosed box with tic marks along the outside use two AXES statements, one with an intercept in the lower left
corner of the screen, and the other in the upper right corner of the screen.

FRAME Statement
The FRAME statement draws a line around the soft-clip area using the current pen and line type. It ends with the pen up and is
positioned in the lower left corner of the FRAME.

LABEL Statement
To annotate a graphics image with text the LABEL statement is used. The CSIZE, LDIR, LORG and GFONT IS statements control
the graphic text size, direction, origin and font, respectively.

The LABEL statement draws graphic text beginning at the current pen position, in the current pen number and line type. Labels
are clipped at the soft-clip boundary just like any other graphics. The scaling of the SHOW and WINDOW statements have no
effect on the LABEL statement. This keeps them from becoming distorted by the scaling of graphic data.

The LABEL statement is similar to the PRINT statement except that the text is drawn on the graphics screen. See the PRINT
statement for an explanation of arrays, numeric and string fields, and numeric and string formats. Also the following control
characters have a special meaning when processed by the LABEL statement:

Keystroke          Character                            Action
CTRL-H CHR$(8) moves pen left one character cell
CTRL-J CHR$(10) moves pen down one character cell
CTRL-M CHR$(13) moves pen left length of completed label

CSIZE Statement

The CSIZE statement sets the character size (height) and optionally the expansion factor (width/ height) for the text generated by
the LABEL statement. For example:

CSIZE 10,.8

Both values are specified in graphic display units. The default character height is five and the default expansion factor is 0.6.
These values are in effect at start-up, or when GINIT, or RESET are executed. A negative height or expansion-factor inverts the
character in relation to that dimension.

LDIR Statement
The LDIR statement specifies the angle of rotation from the X-axis that the LABEL is drawn. A value of zero specifies drawing
along the positive X-axis. Positive values specify a counter-clockwise direction. The current trigonometric mode (RAD or DEG)
determines the units for the angle. The default is radians. For example:

LDIR 0.56

LORG Statement
The LORG statement specifies the relative position of the LABEL with respect to the current pen position. Its argument has a
range of one through nine. The default LORG origin is one. The values are defined as follows:

Left Values                      Middle Values            Right Values
3 - left-top 6 - middle-top 9 - right-top
2 - left-center 5 - middle-center 8 - right-center
1 - left-bottom 4 - middle-bottom 7 - right-bottom

If the LABEL is an odd number of characters, the center of the string is the center of the middle character. The following program
demonstrates all nine LORG values and the effect it has on LABELS.

10 FOR I=1 TO 9
20 GINIT
30 DRAW 50,50
40 LORG I
50 LABEL “LORG ”;VAL$(I)
60 WAIT 1
70 NEXT I
80 END

GFONT IS Statement
The GFONT IS statement specifies the font to use with LABEL statements. This can be set to any valid font in the Windows font
directory. Non-proportional fonts are recommended. Proportionality of proportional fonts is not maintained.

Graphic Attributes
We now cover the concepts relating to, and the statements used to specify the graphic attributes that can be used to modify
displays. These are the graphic line types, colors, and writing modes. They are described in the following paragraphs.

LINE TYPE Statement
The LINE TYPE statement sets the style or dash pattern and optionally the repeat length of drawn graphic lines. The repeat factor
is the GDU line length before the line pattern is repeated.

The default LINE TYPE is number one, a solid line. Dotted and dashed lines of various types may be specified in a manner similar
to this example:

LINE TYPE 5

When the GRAPHIC device is not the screen, the line types are device dependent. The following example demonstrates the
screen line types.

10 GINIT
20 FOR T=1 TO 10
30 LINE TYPE T
40 Y = T*10
50 MOVE 10,Y
60 DRAW 90,Y
70 NEXT T
80 END

Color Graphics
HTBasic provides powerful statements for generating color graphic displays. Both the HSL (Hue, Saturation, Lightness) and the
RGB (Red, Green, Blue) color definitions can be used to specify a color. An alternate drawing mode and many graphics writing
modes allow great flexibility in creating graphic displays. Each of these topics is covered in the following paragraphs.

HSL Color Space
The HSL color space is designed to be intuitive and follows the model of mixing paints. An artist preparing a color for a painting,
first selects a hue (pure color pigment). He may then add black or white paint to arrive at the desired color. Adding white serves to
wash out the color. In technical terms, we say this affects the saturation of the color. The artist may then adjust the brightness by
adding black paint. This affects the amount of light reflected by the pigment. We call this the luminosity.

Saturation ranges from zero (white) to one (pure color - no added white). Luminosity ranges from zero (black) to one (pure color -
no added black). Hue ranges from zero to one. The diagram below gives an indication of where several colors occur in that range:

RGB Color Space
The RGB color space is designed to match the way in which our eyes work, and in turn, the way in which television and computer
displays are designed. The display has three color guns: Red, Green, and Blue. By specifying a number in the range zero
(corresponding to zero intensity) to one (corresponding to maximum intensity) for each of the three guns, you can uniquely define
all the colors that can be produced by that display.

Pen Numbers
The graphics color is specified with the PEN statement as shown by this example:

PEN 4

If the current graphic device is the plotter it selects which pen is used to draw the lines. If the current graphic device is the
computer system display, the pen number selects the color in which all graphics lines are drawn. Some display systems can
operate in more than one graphics mode, and the number of available colors depends on the current graphics mode.

The following table gives the pen number to RGB number assignments. For monochrome displays, only the first two entries apply.

PEN          COLOR            Red                  Green            Blue
0 black 0 0 0
1 white 1 1 1
2        red 1 0 0
3 yellow 1 1 0
4 green 0 1 0
5 cyan 0 1 1
6 blue 0 0 1
7 magenta 1 0 1

COLOR MAP Mode
The Color Map mode is always set and does not need to be specified in the PLOTTER IS statement. A Color Map mode allows
any color to be assigned to any pen. The SET PEN statement is used to assign colors to pens. The following table gives the
default color to pen assignments.

Pen          Color                    Pen                  Color
0 black 8 black
1 white 9 olive green
2 red 10 aqua
3 yellow 11 royal blue
4 green 12 maroon
5 cyan 13 brick red
6 blue 14 orange
7 magenta 15 brown

SET PEN Statement
The SET PEN statement defines part or all of the color map. A color may be specified in either the RGB or the HSL color space by
using the INTENSITY or the COLOR keywords respectively. You may redefine an individual pen by specifying one HSL or RGB
color value or multiple pens by specifying an array. In either case, the pen-number specifies the first entry in the color map to be
defined. For example:

SET PEN pen-number COLOR h, s, l
SET PEN pen-number COLOR numeric-array(*)
SET PEN pen-number INTENSITY r, g, b
SET PEN pen-number INTENSITY numeric-array(*)

The pen-number should be in the range 0 to n-1, where n is the number of colors supported by the map. The closest possible
color will be used if the computer display cannot display the color you select.

Immediate Effect. Any pixels already drawn with the specified pen are changed to the new color. All SET PEN statements take
effect immediately upon execution. The effects of all SET PEN statements last until the next SET PEN statement of the same pen,
or until GINIT, PLOTTER IS, SEPARATE/MERGE ALPHA, or QUIT. In cases where dithering is used, changing the color map
changes the colors available to the dithering process, and changes the colors of areas already drawn with dithering that use that
particular pen as part of the dither pattern.

In addition to the PEN and SET PEN statements the GESCAPE statement can affect the graphics color.

GESCAPE Statement
The GESCAPE statement exchanges device-specific information with a graphic device. It is specified as follows:

GESCAPE device-selector, code [,param(*)][;return(*)]

The device selector specifies the graphic device. The code value specifies the type of operation. The param array sends
information to the device and the return array receives information from the device. The type, size, and shape of the arrays must
be appropriate for the requested operation.

Code                            Description
1 returns number of color map entries
2 returns color map values
3 returns hard-clip values
4 sets normal drawing mode
5 sets alternate drawing mode
6 returns graphic display mask
7 sets graphic display mask
102 returns the current VIEWPORT and WINDOW
103 returns the current PEN and AREA PEN assignments
104 sets PLOTTER device specific variables
105 sets GRAPHICS INPUT device specific variables
106 sets DUMP device specific variables

Code 1
Code 1 returns the number of color map entries. The return array must be a one dimensional INTEGER array and have at least
one element. The first element is assigned the number of color map entries. The following program shows how to return the
number of color map entries.

10 INTEGER A_return(0)
20 GESCAPE CRT,1;A_return(*)
30 PRINT A_return(0)
40 END

Code 2
Code 2 returns color map values. The return array must be a two dimensional REAL array, with at least one row and three
columns. The first row contains color information for pen 0, second row for pen 1, etc. If the array does not have enough rows,
only part of the color map is returned. If the array has too many rows, only part of the array will be used. The first column contains
the information for red, the second for green, and the third for blue. The color information ranges in value from zero to one. Color
values are multiples of 1/N,

where N is the number of non-black shades available for each color.

A_return(0,0) - Pen 0 red color map value
A_return(0,1) - Pen 0 green color map value
A_return(0,2) - Pen 0 blue color map value
.
.
.
A_return(15,0) - Pen 15 red color map value
A_return(15,1) - Pen 15 green color map value
A_return(15,2) - Pen 15 blue color map value

The following program shows how to return the color map values.

10 REAL A_return(15,2)
20 GESCAPE CRT,2;A_return(*)
30 PRINT A_return(*)
40 END

Code 3
Code 3 returns the hard-clip values and GSTORE array size. The values are returned in plotter units or pixels. The return array
must be a one dimensional INTEGER array and must contain at least four elements. The first four elements of the array are
assigned the values, X min, Y min, X max, Y max, respectively. For a CRT, the fifth and sixth elements give the INTEGER array
dimensions needed by the GSTORE command to store the screen image.

A_return(0) - X minimum hard clip value
A_return(1) - Y minimum hard clip value
A_return(2) - X maximum hard clip value
A_return(3) - Y maximum hard clip value
A_return(4) - # of rows that GSTORE requires
A_return(5) - # of columns that GSTORE requires

The following program shows how to return the hard-clip & GSTORE values.

10 INTEGER A_return(5)
20 GESCAPE CRT,3;A_return(*)
30 PRINT A_return(*)
40 END

Codes 4 & 5
Codes 4 and 5 change the graphics writing mode. If the code is 4, the drawing mode is set to normal. If 5 is specified, the drawing
mode is set to alternate. The graphics writing mode provides a great deal of flexibility in the generation of graphic displays. It
defines the method used to modify the pixel color bits. These include clearing, setting, inclusive or, exclusive or, complementing,
and anding the color bits with the complement of the current pixel color bits. It is specified by a combination of the drawing mode
and the sign of the current pen number.

The writing mode of the pen is specified by the current drawing mode and the sign of the pen number. The following table defines
the different writing modes available. P is a positive pen number, X is the present value of a pixel.

GESCAPE CRT,4 GESCAPE CRT,5
Statement                          Normal  Alternate
PEN P P BINIOR(X,P)
AREA PEN P P BINIOR(X,P)
PEN 0 BINCMP(X)* 0
AREA PEN 0 0 0
PEN –P BINAND(X,BINCMP(P)) BINEOR(X,P)
AREA PEN –P BINAND(X,BINCMP(P)) BINAND(X,BINCMP(P))

GESCAPE codes 4 and 5 are not supported on monochrome graphic displays such as CGA and Hercules (HGC). The following
statements show how to change the graphics writing mode.

GESCAPE CRT,4 !Set to Normal Drawing Mode
GESCAPE CRT,5 !Set to Alternate Drawing Mode

Code 6
Code 6 returns the graphics display mask. The return array must be a one dimensional INTEGER array, and must have at least
one element. The first element is assigned the value of the graphics write-enable mask. The second element, if present, is
assigned the value of the graphics display-enable mask. Each bit in the mask corresponds to one of the bit planes. Bit 0
corresponds to the first plane.

A_return(0) - graphics write enable mask
A_return(1) - graphics display enable mask

The following program shows how to return the graphics enable masks.

10 INTEGER A_return(1)
20 GESCAPE CRT,6;A_return(*)
30 PRINT A_return(*)
40 END

Code 7
Code 7 sets the graphics display mask. This operation is not supported by HTBasic. The param array must be a one dimensional
INTEGER array, and must have at least one element. The first element is assigned to the graphics write-enable mask. The second
element, if present, is assigned to the graphics display-enable mask.

A_param(0) - graphics write enable mask
A_param(1) - graphics display enable mask

The following program shows how to set the graphics enable masks.

10 INTEGER A_param(1)
20 A_param(0)=8
30 A_param(1)=15
40 GESCAPE CRT,7,A_param(*)
50 END

Basic Window Manipulation Codes
Several GESCAPE codes allow manipulation of the HTBasic window.

Code            Operation
30 Maximize the window
31 Hide the window
32 Restore the window
33 Set interior client of the app window position and size
34 Get interior client of the app window position and size
35 Bring the window to the top
36 Get the screen size
37 Returns the Title Bar enable flag
38 Hide / restore title bar
39 Set the DUMP size (% of paper width)
41 Minimize the window

The following GESCAPE CRT codes have been added for manipulation of the program window.

Code            Operation
46 Turn the Control Toolbar Off
47 Turn the Control Toolbar On
48 Turn the Status Bar Off
49 Turn the Status Bar On
50 Remove Main Menu
51 Restore Main Menu
52 Disable Borders on Parent Window
53 Enable Borders on Parent Window
54 Disable Minimize button on Parent Window
55 Enable Minimize button on Parent Window
56 Disable Maximize button on the Parent Window
57 Enable Maximize button on the Parent Window
58 Disable Close button on the Parent Window
59 Enable Close button on the Parent Window
60 Turn the Bookmark Toolbar Off
61 Turn the Bookmark Toolbar On
62 Turn the Debug Toolbar Off
63 Turn the Debug Toolbar On
64 Filename in titlebar off
65 Filename in titlebar on

The following GESCAPE CRT codes have been added for manipulation of the program child window.

Code            Operation
130 Maximize the window
131 Hide the window
132 Restore the window
135 Bring the window to the top
137 Returns the Title bar enable flag
138 Hide / Restore the Title bar (Toggle switch)
141 Minimize the window
152 Disable Borders on Child Window
153 Enable Borders on Child Window

The following example shows the syntax for several of the GESCAPES. Note that codes that set information have a comma
before the array name while codes that get information have a semicolon.

10 INTEGER Get4(1:4),Set4(1:4),Get2(1:2),Set1(1:1)
20 DATA 90,100,500,300 ! Position of upper left corner:
30 ! 90,100), Width = 500, Height = 300
40 READ Set4(*)
50 GESCAPE CRT,30 ! Maximize the window
60 GESCAPE CRT,31 ! Hide the window
70 GESCAPE CRT,32 ! Restore the window
80 GESCAPE CRT,33,Set4(*) ! Set position and size: X,Y,W,H

90 GESCAPE CRT,34;Get4(*) ! Get position and size: X,Y,W,H
100 GESCAPE CRT,35 ! Bring the window to the top
110 GESCAPE CRT,36;Get2(*) ! Get the screen size: W,H
120 GESCAPE CRT,37;Get3(*) ! Get the title bar enable flag
130 PRINT Get(2) ! Print the Screen Size
140 PRINT Get(3) ! Print the title bar enable flag
150 Set1(1)=50 ! Set the DUMP size to 50%
160 GESCAPE CRT,38 ! Hide window Title Bar
170 GESCAPE CRT,38 ! Restore window Title Bar
180 GESCAPE CRT,39,Set1(*) ! Set the DUMP size (default is 100%)
190 GESCAPE CRT,41 ! Minimize the window
200 GESCAPE CRT,32 ! Restore the window
210 END

Code 102
Code 102 returns the current VIEWPORT and WINDOW values. The return array should be a two dimensional REAL array with
two rows and four columns. The first row is assigned the values of the current window. The second row is assigned the values of
the current viewport. For each, the X min, X max, Y min, and Y max values are assigned to the first through fourth columns,
respectively. The following program demonstrates this capability:

10 REAL W(1,3)
20 GESCAPE CRT,102;W(*)
30 PRINT “The current window is”;W(0,0),W(0,1),W(0,2),W(0,3)
40 PRINT “The current viewport is”;W(1,0),W(1,1),W(1,2),W(1,3)
50 END

Code 103
Code 103 returns the current PEN and AREA PEN assignments. The return array should be a one dimensional INTEGER array
with two elements. The first element is assigned the current PEN assignment. The second element is assigned the current AREA
PEN assignment. The following program demonstrates this capability:

10 INTEGER P(1)
20 GESCAPE CRT,103;P(*)
30 PRINT “The current PEN is”;P(0)
40 PRINT “The current AREA PEN is”;P(1)
50 END

Code 104
Code 104 sets device-specific information. The param array must be a one dimensional INTEGER array. The number of elements
required depends on the device driver. Conventionally, it contains two elements. The first element is the operation number and the
second element is the value associated with that operation. See the documentation for each driver for information on any
GESCAPE 104 operations supported by that driver.

For the HPGL plotter driver, this code is used to enable HPGL/2 capabilities. When HPGL/2 is used, polygons are sent to the
plotter for rendering. With many plotting devices, this allows the polygons to be filled. When generating an HPGL file for import into
other programs, it is often more desirable for the polygon to import as a single unit, rather than a series of lines. To enable
HPGL/2, use the following code. Substitute the ISC for the HPGL plotter in place of ISC in line 40.

10 INTEGER Param(1)
20 Param(0)=1 ! HPGL Operation Number: 1 = HPGL/2 Flag
30 Param(1)=1 ! Value: 1=enable, 0=disable
40 GESCAPE Isc,104,Param(*)

Code 105
Sets device-specific information in the GRAPHICS INPUT IS device. The param array must be a one dimensional INTEGER array.
The number of elements required depends on the device driver. The first element is the operation number and the subsequent
elements are the values associated with that operation.

Code 106
Sets device-specific information in the DUMP DEVICE IS device. The param array must be a one dimensional INTEGER array.
The number of elements required depends on the device driver. The first element is the operation number and the subsequent
elements are the values associated with that operation.

For the dump drivers, code 106, operation 1 is used to specify a portion of the screen to dump when DUMP GRAPHICS is
executed. The syntax is:

GESCAPE PRT,106,param(*)

The param array must be a one dimensional INTEGER array of five elements. The first element is the operation number. The
remaining elements specify the boundary for the DUMP. The boundary is specified in screen units:

param(1) - 1
param(2) - Beginning row
param(3) - Ending row
param(4) - Must be 0
param(5) - Must be 0

The row parameters will revert back to the default of full screen if any of the following conditions occur:

1. Beginning row greater than ending row
2. A new Plotter, Graphics, or Dump driver is loaded
3. A GINIT, SCRATCH A, PLOTTER IS, GRAPHICS INPUT, or                  CONFIGURE DUMP, commands are executed or a Basic
reset is                  performed.

The CONFIGURE DUMP statement must be executed before the GESCAPE statement. The following program demonstrates this
capability:

10 INTEGER A(1:5)
20 DUMP DEVICE IS PRT
30 CONFIGURE DUMP TO “PCL”
40 A(1)=1 ! operation code, always 1
50 A(2)=100 ! begin row, screen units
60 A(3)=300 ! end row, screen units
70 A(4)=0 ! reserved, must be 0
80 A(5)=0 ! reserved, must be 0
90 GESCAPE PRT,106,A(*)
100 FRAME
110 MOVE 0,0
120 DRAW 100,100
130 DUMP GRAPHICS
140 END

Incremental and Relative Graphics
Incremental and relative graphic construction allows you to describe an object or symbol in incremental or relative coordinates,
and then position it repeatedly in various locations on the screen (or output device) simply by performing an absolute MOVE to the
starting location and then executing the incremental or relative graphics statements. The IMOVE, IDRAW, IPLOT, and RPLOT
statements implement incremental and relative graphics.

IMOVE Statement
The IMOVE statement lifts and moves the pen to the position calculated by adding the specified X and Y displacement to the
current pen position. After the IMOVE statement is executed, the logical pen position is updated and the pen is left in the up
position.

IDRAW Statement
The IDRAW statement lowers the pen and then moves it to the position calculated by adding the specified X and Y displacement
to the current pen position. After the IDRAW statement executes, the logical pen position is updated and the pen is left in the down
position. IDRAW 0,0 draws a point.

IPLOT Statement
The IPLOT statement moves the pen from its current position by the specified X and Y displacements. Like the PLOT statement
discussed previously, you can also specify an optional pen control value or a two- or three-column array.

RPLOT Statement
The RPLOT statement is the same as the IPLOT statement except that it moves the pen relative to the logical pen position. You
specify when the pen is to be raised or lowered with the optional pen-control value.

If the arguments of an IMOVE, IDRAW, IPLOT, or RPLOT statement specify a destination point that is outside the soft-clip area,
the logical position is set to that point but the pen is not moved. Only the portion of the vector that lies inside the clipping area is
plotted. If both the current logical position and the specified position are outside the clip area the logical position is updated but no
physical pen movement is made.

Arcs, Circles and Rectangles
Special purpose graphic statements are used to generate arcs, circles, and rectangles. They are the POLYGON, POLYLINE, and
RECTANGLE statements. Each is discussed in the following paragraphs.

POLYGON and POLYLINE Statements
The POLYGON and POLYLINE statements generate variable sided polygons or circles. The pen starts and ends in the same
position, and after execution the pen is up. The radius is the distance between the logical pen position and the polygon vertices
where the first vertex is in the positive X axis direction. A negative radius will rotate the arc by 180 degrees. The PDIR statement
can be used the specify the starting angle.

You can specify the number of chord segments in a full circle and the number to draw. By default there are 60 segments in a full
circle. Here is an example of an arc and a circle:

POLYGON 10 !Circle with radius 10
POLYLINE 10,20,3 !Arc of 3/20ths circle

For the POLYGON statement, if the number of chords drawn is less than the specified total number of chords, the polygon closure
is affected. If the pen is up when the POLYGON statement is executed, the polygon is closed by drawing the last vertex to the first
vertex. If pen is down, the polygon is closed by drawing the last vertex to the center of the polygon and then drawing from the
center to the first vertex. The following program shows the difference:

10 GINIT
20 MOVE 35,50
30 POLYGON 10,10,8
40 MOVE 65,50
50 DRAW 65,50
60 POLYGON 10,10,8
70 END

For the POLYLINE statement, if the number of chords drawn is less than the specified total number of chords, the polygon is not
closed. If the pen is up when the POLYLINE statement was executed, the first vertex is on the perimeter. If the pen is down when
the POLYLINE statement is executed, the first point (logical pen position) is drawn to the first point on the perimeter. Change the
previous program so that line 30 and 60 use POLYLINE statements. Execute the program again to see the effect of the pen being
up or down.

30 POLYLINE 10,10,8
60 POLYLINE 10,10,8

RECTANGLE Statement
The RECTANGLE statement generates a four sided polygon described by its width and height displacement from the current pen
position. The signs of the width and height determine the pen position after the RECTANGLE execution: If the width is positive, the
pen position is on the left side of the rectangle. If the width is negative, the pen position is on the right side of the rectangle. If the
height is positive, the pen position is in the lower corner of the rectangle and if it is negative, the pen position is in the upper
corner. The following example will help clarify the last pen position.

10 MOVE 50,50
20 RECTANGLE 3,5 !Pen at lower left
30 RECTANGLE 3,-5 !Pen at upper left
40 RECTANGLE -3,5 !Pen at lower right
50 RECTANGLE -3,-5 !Pen at upper right
60 END

.The POLYGON and RECTANGLE statements may specify the FILL and EDGE options described later in this chapter. If neither
are specified, EDGE is assumed. The POLYLINE statement cannot specify these options.

User Defined Symbols
The SYMBOL statement uses a two-dimensional two- or three-column array to plot a user-defined symbol. Symbols are created
with moves and draws in the symbol coordinate system; an area nine units wide and fifteen units high. The symbol may be defined
to extend outside of this 9x15 cell; thus allowing you to create any size symbol you wish. The CSIZE, LDIR, and LORG statements
affect the SYMBOL statement, but the SHOW or WINDOW to VIEWPORT scaling does not. This keeps the labels from becoming
distorted by graphic data scaling.

The symbol data is drawn using the current pen control and line type and is clipped at the clip boundary. A move is always done to
the first point and the current pen position is left at the last X,Y position specified in the array and is not updated to the next symbol
position. This allows a SYMBOL to cover a group of character cells. The following program shows you how to define a SYMBOL to
extend outside the character cell.

10 GINIT
20 DIM A(6,2)
30 READ A(*)
40 DATA 1,7,-2,16,7,-1,15,4,-1,21,8,-1,15,12,-1,16,9,-1,1,9,-1
50 DRAW 50,50
60 RECTANGLE 3,5
70 SYMBOL A(*)
80 END

Notice that the symbol is not closed at one end. Another X,Y data point could be added to the DATA statement to fix this, or the
FILL and EDGE commands would also work. Taking the same data points as defined for the SYMBOL command, change line 70
to either the PLOT or RPLOT statements to see what happens.

70 PLOT A(*) !Absolute Points
 or
70 RPLOT A(*) !Relative Points

The array is now affected by the scaling of the WINDOW values, and the data points are mapped onto the WINDOW. This causes
the arrow to become larger. The PLOT statement is in absolute coordinates, that is why it is close to the origin of 0,0. RPLOT is
defined in relative coordinates, being relative to the current position of 50,50.

AREA Fill Styles and Colors
The area fill styles and colors used by the PLOT, IPLOT, RPLOT, POLYGON, RECTANGLE, and SYMBOL statements are
specified with the AREA statement. Area fills are specified by the FILL and EDGE options. These are described in the following
paragraphs.

AREA Statement
The AREA statement defines the area fill style and color. It is qualified with either the PEN, COLOR, or INTENSITY keywords. The
area color and style remain in effect until another AREA, GINIT, or SCRATCH A is executed. The IPLOT, PLOT, RPLOT, and
SYMBOL statements can also change the area fill color. This is explained under “Array Specified Pen Control,” later in this
chapter.

When you use the AREA PEN statement the fill color is looked up in the color map table, and the fill style is set to non-dither
(solid).

AREA PEN pen

Pen numbers have the same effect as described in the PEN statement except for the following two conditions. In normal drawing
mode, pen 0 erases; it does not complement. In alternate drawing mode, negative pen values erase; they do not complement. The
default area fill color is PEN one.

When you use the AREA COLOR or AREA INTENSITY statements the fill color is created with dithering when needed to better
approximate the color specified. Use AREA COLOR to specify a color in the HSL color space and AREA INTENSITY to specify a
color in the RGB color space. These are explained earlier in this chapter. Because of the calculations needed to set up dithering,
AREA COLOR/INTENSITY executes slower than AREA PEN.

Run this example program to see how dithered colors look, and to see how the HSL color space works. Change line 90 to AREA
INTENSITY to see how the RGB color space works.

10 REM HSL.BAS
20 GINIT
30 GCLEAR
40 KEY LABELS OFF
50 WINDOW 0,1.31,1.31,0
60 FOR L=0 TO 1 STEP .2
70 FOR H=0 TO 1 STEP 1/6
80 FOR S=0 TO 1 STEP .2
90 AREA COLOR H,S,L
100 MOVE H+.11*L,S+.11*L
110 RECTANGLE .09,.1,FILL,EDGE
120 NEXT S
130 NEXT H
140 NEXT L
150 LORG 7
160 MOVE 1.2,1.31
170 LABEL “z = Luminosity”
180 LORG 4
190 MOVE .6,1.31
200 LABEL “x = Hue”
210 LDIR PI/2
220 MOVE 1.31,.6
230 LABEL “y = Saturation”
240 END

When drawing an area in a certain color, it may be possible to produce the color faster and more accurately by specifying SET
PEN followed by AREA PEN, rather than specifying AREA COLOR or AREA INTENSITY.

10 REM AREAPEN.BAS
20 GINIT
30 PLOTTER IS CRT,"INTERNAL";COLOR MAP
40 AREA INTENSITY 1/3,2/3,1
50 MOVE 10,50
60 RECTANGLE 20,20,FILL,EDGE
61 !
70 SET PEN 15 INTENSITY 1/3,2/3,1
80 AREA PEN 15
90 MOVE 40,50
100 RECTANGLE 20,20,FILL,EDGE
110 END

FILL and EDGE Options
The FILL and EDGE options control the filling and edging of an area defined by the following statements: PLOT, IPLOT, RPLOT,
POLYGON, RECTANGLE, or SYMBOL. If the FILL option is specified, the area is filled with the current area fill color and style. If
the EDGE option is specified, the area is edged with the current line type and pen color. When both are specified the area is both
filled and edged. If neither are specified, the area is just edged with the current line type and pen color.

The following program shows the effect that the FILL and EDGE options have on an area. To see their effect change line 50 to
include the EDGE and then both the FILL and EDGE options.

10 GINIT
20 AREA PEN 2
30 LINE TYPE 4
40 MOVE 50,50
50 RECTANGLE 10,10, FILL
60 END

Array Specified Pen Control
When large amounts of data are involved, or if you want to draw the same object at various places on the screen, it is often
convenient to use arrays to describe the graphic coordinate values. In the PLOT, IPLOT, RPLOT, and SYMBOL statements you
can specify a two or three column array. The first and second columns of the array specify the coordinate values. The optional
third-column specifies the operation for each row of the array: pen-control, AREA PEN, AREA INTENSITY, LINE TYPE, PEN, FILL,
and EDGE. If a two-column array is specified, the default pen control used on each row is a one, pen down after move.

This table shows the meaning of each column for each of the operations specified by column 3 of the array.

Column 1                      Column 2                                Column 3                                Meaning
X value Y value < -2 use even/odd pen control
X Y -2 Pen up before moving
X Y -1 Pen down before moving
X Y 0 Pen up after moving
X Y 1 Pen down after moving
X Y 2 Pen up after moving
pen number — 3 PEN
line type repeat value 4 LINE TYPE
color — 5 AREA INTENSITY
— — 6 Start polygon mode w/FILL
— — 7 End polygon mode
— — 8 End of data for array
— — 9 No operation, values ignored
— — 10 Start polygon w/EDGE
— — 11 Start polygon w/FILL & EDGE
— — 12 Draw a FRAME
pen number — 13 AREA PEN
red value green value 14 AREA INTENSITY
blue value — 15 AREA INTENSITY
— — > 15 No operation, values ignored

AREA Color
Operation 5 in column 3 selects the AREA INTENSITY color. The column 1 value is divided into red, green, and blue numbers,
each five bits in length (the sixteenth bit of column one is ignored). Each five-bit number specifies a value in the range zero to
sixteen. This number is subtracted from sixteen to calculate the intensity value for each of the colors: red, green, blue. Intensities
range in value from zero (darkest) to sixteen (most intense).

For example, if column 1 is set to zero, then each of the three groups in column 1 is set to zero. Sixteen minus zero yields sixteen
for all three groups. Sixteen is full intensity, therefore, the area fill color will be white.

The following equation calculates the value for column 1 given R, G, B values in the range zero to one.

Column1 = 16-16*R + SHIFT(16-16*G,-5) + SHIFT(16-16*B,-10)

The AREA INTENSITY red, green, and blue values can also be selected with operations 14 and 15. The range of intensity is zero
(no color) to 32,767 (full intensity). Operation 14 should be done before 15, and the operation takes effect when operation 15 is
done.

FILL and EDGE
A polygon is formed from a line sequence of 2 or more points with the optional FILL or EDGE specifiers. A polygon is drawn by
plotting the first point, each successive point, and closed by drawing the final point back to the first point.

If FILL is specified, the polygon is filled with the current AREA fill color, and if EDGE is specified, the polygon is edged with the
current PEN color. The array pen-control instructions supersede any other instructions on pen movement, LINE TYPE, and FILL
and EDGE specifiers.

Graphics Rotation
The PDIR and PIVOT statements cause rotations to be applied to graphic MOVEs and DRAWs. The angle specifies the direction
and amount of rotation. It is measured in a counter-clockwise direction from the positive X-axis. The current trigonometric mode
(RAD or DEG) determines the units for the angle. The default trigonometric mode is RAD.

PDIR Statement
The PDIR statement specifies the rotation of IPLOT, RPLOT, POLYGON, POLYLINE, and the RECTANGLE statements. The
rotation takes place about the logical position. The AXES, GRID, LABEL and SYMBOL statements are not affected by PDIR.

PIVOT Statement
The PIVOT statement causes the rotation of all lines, except those generated by the AXES, GRID, LABEL and SYMBOL
statements. This includes lines generated by the MOVE, DRAW, IMOVE, IDRAW, PLOT, IPLOT, RPLOT, POLYGON, POLYLINE,
and RECTANGLE statements. This rotation takes place about the logical position. The PIVOT statement effects only the starting
point of the LABEL and SYMBOL statements.

If both the PIVOT and PDIR angles are set, they both have an effect on the lines being generated. The transformation on the
statements affected by the PDIR commands takes place first. Then the transformations on the lines affected by the PIVOT
command are done. A few examples will help demonstrate this.

10 GINIT
20 DEG
30 DRAW 50,50
40 PIVOT 0
50 PDIR 0
60 POLYGON 10,10,8
70 IDRAW 10,10
80 END

No rotations are done since both angles are set to zero. Now change line 50 to have a rotation of 90 degrees.

50 PDIR 90

The rotation of 90 effects the POLYGON statement, but not the IDRAW. This is because PDIR only affects the IPLOT, RPLOT,
POLYGON, POLYLINE, and RECTANGLE statements. Now change line 40 to have a rotation of 45 degrees.

40 PIVOT 45

The POLYGON statement is rotated a total of 135 degrees, by the combination of the PIVOT 45 and the PDIR 90 statements. You
will notice that the IDRAW line has been rotated only 45 degrees by the effect of the PIVOT 45 statement. Now change line 50
back to 0 degrees.

50 PDIR 0

The IDRAW line is still rotated by 45 degrees. The POLYGON statement is rotated by 45 degrees as a result of the PIVOT angle.
Hopefully this example will clear up some of the confusion when applying both the PIVOT and PDIR transforms to graphic lines.

Screen Raster Images
The GSTORE statement allows you to save the current graphics screen raster image into an array and the GLOAD statement
restores the graphics image to the graphics screen. The device-selector specifies the device, which must be a bit-mapped device.
The CRT is assumed if no device selector is specified.

There are many uses for this capability. Images of various graphs and charts can be stored in different arrays, and then easily
redisplayed. Graphs that may be very slow to generate, need only to be generated once and then displayed very fast. The
graphics information in the arrays can also be written to a file for future use.

Two forms of the GLOAD and GSTORE statements are supported. The first form is compatible with the GLOAD/GSTORE
statements in HP BASIC, and displays an image that fills the entire screen. The second form operates on an arbitrary sized
rectangular portion of the screen. For users porting programs from HP BASIC that use the Bstore()/Bload() CSUBs supplied with
HP BASIC, Chapter 10 of the Installing and Using Guide, presents Bstore()/Bload() SUBs that call GSTORE and GLOAD using the
integrated syntax.

Full Screen
The size of the array necessary to store a complete screen image for each display depends on the resolution and on the number
of colors the display supports. GESCAPE CRT,3 can be used in a program to determine the size necessary:

10 INTEGER S(5)
20 GESCAPE CRT,3;S(*)
30 PRINT “Array size is”;S(4);"rows and";S(5);"columns."
40 END

The following table gives the sizes for some PC display adapters. The array may be declared larger or smaller than the size given.
If the array is not large enough to contain a full screen image, GLOAD stops when all the array contents have been transferred. If
the array is too large, only part of the array will be used. If an attempt is made to GLOAD an image to a display that is different
from the GSTORE display, unpredictable results will occur. If the color map has different values than when the image was
GSTOREd, the colors will not match the original image.

Display                                      Array Size
640x480x16 Image(1:160,1:480)
800x600x16 Image(1:200,1:600)
1024x768x16 Image(1:256,1:768)
640x480x256 Image(1:320,1:480)
800x600x256 Image(1:400,1:600)
1024x768x256 Image(1:512,1:768)

Below is an example of the GSTORE and GLOAD statements for a 1024 x 768 x 256 screen. Change line 10 to the appropriate
size for your resolution.

10 INTEGER Image(1:512,1:768)
20 FRAME
30 DRAW 50,50
40 POLYGON 10,10,FILL
50 GSTORE Image(*)
60 END

Now that the image is stored in the array, clear the graphics screen with the GCLEAR statement. To load the image back onto the
screen, use the following statement:

GLOAD Image(*)

Rectangular Blocks

GSTORE Image(*),Width,Height,Rule,Xorigin,Yorigin

When a Width and Height are specified after the image array, only a rectangular block is transferred between the array and the
display. Width and Height are specified in pixels. Optionally, a Rule can be specified that instructs GLOAD/GSTORE how to
combine the contents of the array with the contents of the screen. Presently, only a value of 3 is supported. This causes the
contents of the array (for GLOAD) or screen (for GSTORE) to totally overwrite the target. The block will be located with the upper
left corner at the current graphic position. Alternately, a position can be specified with the Xorigin, Yorigin parameters. These
parameters should be specified in the current WINDOW units, not pixels or VIEWPORT units (GDUs).

For displays with 8 planes or less (256 colors or less), the image is stored with one byte per pixel. This makes images somewhat
transportable among different displays. It also means that the number of elements necessary to store the image is equal to
Width*Height/2. If the width is even, the array could be declared as

INTEGER Image(1:Width/2,1:Height)

If the array is too small, an error is given. If the array is too large, the extra array elements are ignored. If GLOAD is used to
display an image on a display with less colors than the GSTORE display, the results are undefined. If the color map is different
than the color map in effect when the image was GSTOREd, the colors will not match the original image. The format of the data in
the array for full screen images is stored as a bitmap.

Screen Dumps
The DUMP ALPHA and DUMP GRAPHICS statements and function keys copy the contents of either the ALPHA or the GRAPHICS
screen to the DUMP DEVICE IS printing device.

DUMP ALPHA Statement
The DUMP ALPHA statement sends alphanumeric characters compatible with any ASCII printer to the current DUMP DEVICE IS
device. If the graphics are visible when this command is executed, an ALPHA ON is executed before the screen dump occurs.
This eliminates the graphics from the information sent to the printer.

DUMP GRAPHICS Statement
The DUMP GRAPHICS statement sends graphics information to the printer or to a file in the current printer language. The
Installing and Using manual explains how to set the printer language in Chapter 7, “Printer and Pixel Image Device Drivers.”

If the ALPHA and GRAPHICS screens are MERGEd, then the ALPHA text will also be dumped to the printer as part of the
graphics data. If the graphics are not visible when this command is executed, a GRAPHICS ON is executed before the screen
dump occurs. To remove the run indicator character in the bottom-right corner of the screen, use RUNLIGHT OFF before dumping
the screen image.

DUMP DEVICE IS Statement
The DUMP DEVICE IS statement specifies which device, file, or pipe receives the data when a DUMP ALPHA or a DUMP
GRAPHICS statement is executed without a device selector. The GINIT statement causes the default DUMP DEVICE IS to be set
to the value of PRT. If the optional EXPANDED keyword is included, the image is rotated by 90 degrees. For example:

DUMP DEVICE IS PRT,EXPANDED

If APPEND is specified and the DUMP is to a file, the file position is moved to the end-of-file before each DUMP. For some DUMP
types, multiple images in a file are not supported. If APPEND is specified in these cases, the result is undefined. If APPEND is not
specified, the file is overwritten with each DUMP.

The output can be sent to a device (usually a printer) or a file. If the destination is a file, it must be an ordinary file or a BDAT file.

Many computer displays and most printers do not have square pixels. This results in a distortion when the graphics image is
printed. This is normal and can be partially compensated for, if needed, by adjusting the WINDOW to apply an inverse distortion to
the image drawn on the display. HTBasic partially compensates for non-square pixels by printing more than one printer pixel for
each display pixel in some instances.

In some cases the softkey labels and ALPHA text are dumped along with GRAPHICS by the DUMP GRAPHICS statement. This
depends on whether ALPHA and GRAPHICS are MERGEd or SEPARATE. MERGE and SEPARATE ALPHA are explained later in
this chapter.

This problem can be easily solved using the statement SEPARATE ALPHA FROM GRAPHICS before generating the plot. If you
have not used SEPARATE ALPHA, to solve the problem you should clear the ALPHA screen, turn the runlight off, and turn the
softkey labels off before starting the GRAPHICS plot. For example:

KEY LABELS OFF
RUNLIGHT OFF
CLEAR SCREEN

Partial Screen Dumps
GESCAPE code 106 specifies a portion of the display screen to dump. The syntax is:

GESCAPE PRT,106,param(*)

The param array must be a one dimensional INTEGER array of five elements. The first element is the operation number (1 = sets
boundaries for the DUMP commands). The remaining elements specify the boundary for the DUMP. The boundary is specified in
screen units.

param(2) - Beginning row
param(3) - Ending row
param(4) - must be zero
param(5) - must be zero

The CONFIGURE DUMP, PLOTTER IS CRT,"INTERNAL", and GRAPHICS INPUT IS KBD,"KBD" commands reset the row
parameters back to the defaults, full screen. The CONFIGURE DUMP command must be executed before the GESCAPE
command. The following program demonstrates this capability:

10 INTEGER A(1:5)
20 A(1)=1 ! select code-always 1
30 A(2)=100 ! begin row-screen units
40 A(3)=300 ! End_row-screen units
50 A(4)=0 ! reserved
60 A(5)=0 ! reserved
70 DUMP DEVICE IS PRT
80 CONFIGURE DUMP TO “PCL”
90 GESCAPE PRT,106,A(*)
100 FRAME
110 MOVE 0,0
120 DRAW 480,480
130 DUMP GRAPHICS
140 END

Graphics Devices
The default graphics output device is the CRT display attached to your computer. The default graphics input device is the
keyboard. If a mouse is installed and active, it may also be used to specify graphic input. HTBasic allows you to specify alternate
graphic devices for both input and output. The graphic output plotter language may also be specified. You can also send plotter
commands directly to the output graphics device.

PLOTTER IS Statement
The PLOTTER IS statement specifies the graphics output device or file. The default graphics output target is the CRT. Executing a
PLOTTER IS statement directs all subsequent graphics output to the specified device or file. For example:

PLOTTER IS CRT,"INTERNAL";COLOR MAP

The plotter specifier string specifies the graphics device driver. To re-select the internal CRT graphics display specify
“INTERNAL”.

The “HPGL” plotter specifier string specifies the HP graphics language. This specifier can be used in conjunction with a plotter or
disk file. If a file is specified, you must also specify the physical device (hard-clip) limits. If a device is specified, the device must be
able to return the physical device limits when initialized. For example:

PLOTTER IS 705,"HPGL"

specifies an HPGL plotter connected to the IEEE-488 bus on address five. The plotter can be connected to the computer over the
IEEE-488 bus or the serial interface.

The hard-clip limits of the plotter may be specified. If they are not and output is going to a file, they default to ±392.75 mm in the x
axis and ±251.5 mm in the y axis. If hard-clip limits are not specified and output is going to a device, HTBasic asks the device to
return the p-points. The hard-clip units are specified using plotter units equal to 0.025 millimeters. The file is positioned to the
beginning and is closed when another PLOTTER IS, GINIT, or SCRATCH A statement is executed. For example:

PLOTTER IS “Pictfile”,"HPGL",5,250,7,136

The file can be later sent to a plotting device or imported into a word processor or a desktop publishing package that supports the
HP graphics language. To reset your graphic output device to the internal display execute the command:

PLOTTER IS CRT,"INTERNAL"

GSEND Statement
The GSEND statement sends command strings to the PLOTTER IS device. It is used to send commands (such as the pen speed,
pen force, and character set selection commands) that are not generated by the high level graphics statements. For example:

GSEND “LBPlotter font characters.”&CHR$(3)

sends the HPGL command to draw the specified string using the current plotter internal character font. Virtually any HPGL
command string can be sent to the device using this statement.

GRAPHICS INPUT IS Statement
The GRAPHICS INPUT IS statement is used to specify the graphic input device. See the Installing and Using manual, Chapter 8,
“Graphic Input Drivers” for more information. The default graphics input device is the keyboard. The mouse may also be used for
graphic input. An example GRAPHICS INPUT IS statement is:

GRAPHICS INPUT IS 702,"HPGL"

To perform graphic input, the following statements are used:

DIGITIZE X,Y,Status$!Wait for Point
READ LOCATOR X,Y,Status$!Immediate Return Point

Here, X and Y are the target variables for the graphic position, and Status$ is an optional string that receives information about the
state of the GRAPHICS INPUT IS device. The returned coordinates are in the units defined in the current WINDOW or SHOW
statement. The Status$ string contains eight bytes with the following information:

Byte                        Meaning
1 Indicates End of Stream for a device supporting
 continuous point stream digitizing. Byte 1 may be used

as the pen control value in a PLOT. It is “0" if it is the
 last of a continuous point stream. It is ”1" otherwise,
 including points from a device supporting only single
 point digitizing.
2 Comma delimiter character.
3 Clip Indicator - If the character is a “0", then the point
 is outside the hard-clip limits. If a ”1", the point is
 inside the hard-clip limits, but outside the soft-clip limits
 (see CLIP). If a “2" then it is inside the soft-clip limits.
4 Comma delimiter character.
5 Tracking ON/OFF - If the character is a ”0", then

tracking is off; if a “1", then tracking is on.
6 Comma delimiter character.
7-8 Button Positions. If S$ is the status string and B is the
 button number you wish to test, then
 BIT(VAL(S$[7,8]),B-1) returns one if B is down, and zero if B
 is up.

A point is digitized and the coordinates of that point are assigned to the variables when the keyboard ENTER or CONTINUE keys,
a mouse button, or a digitizer button is pressed.

READ LOCATOR Statement
The READ LOCATOR statement immediately reads the graphic position and stores it into the X and Y variables without waiting for
a DIGITIZE operation.

SET LOCATOR Statement
The SET LOCATOR statement establishes a reference point for any subsequent graphics input statements. SET LOCATOR is
only valid for graphics input devices that use relative locators.

WHERE Statement
The WHERE statement returns the current logical pen position in the x and y numeric variables and pen status information in the
optional string variable. For example:

WHERE X,Y,Status$

The Status$ string contains three bytes with the following information:

Byte                        Meaning
1 Pen Status - Up/Down status of the Pen. If the character
 is a “1" then pen is down; if it is a ”0" then the pen is up.
2 Comma delimiter character.
3 Clip Indicator - If the character is a “0", then the
 point is outside the P1, P2 limits. If a ”1", the point
 is inside the P1, P2 limits, but outside the viewport.
 If a “2" then it’s inside the viewport.

Tracking Graphics Input
The SET ECHO and the TRACK statements allow you to follow the movements of the graphics input device on the PLOTTER IS
device.

SET ECHO Statement
The SET ECHO statement displays a tracking cross on the screen or moves the plotter pen to the specified location. If the location
is outside the clipping boundaries no action takes place.

TRACK and DIGITIZE Statements
The TRACK statement controls tracking of the input device. It enables and disables the graphic locator from following the input
device position on the PLOTTER IS device during DIGITIZE statements. Tracking stops when a point is digitized, and the tracking
cross is left at the location of the digitized point. When the display device is a plotter, the pen position tracks the input device.
When it is the CRT, the tracking cross tracks the input device.

Use the arrow keys on the keyboard or the mouse to move the tracking cross around. Run the following two programs to get a feel
for how the DIGITIZE and READ LOCATOR statements differ. Also look at how the TRACK and SET ECHO statements can be
used to follow the input device on the output device. Press the ENTER key or one of the mouse buttons to read the current X,Y
location in program #1. Enter the “STOP” command to terminate program #2.

Program #1  Program #2
10 GINIT 10 GINIT
20 PLOTTER IS CRT,"INTERNAL" 20 PLOTTER IS CRT,"INTERNAL"
30 GRAPHICS INPUT IS KBD,"KBD" 30 GRAPHICS INPUT IS KBD,"KBD"
40 FRAME 40 FRAME
50 TRACK CRT IS ON 50 READ LOCATOR X,Y,S$
60 DIGITIZE X,Y,S$ 60 SET ECHO X,Y
70 PRINT X,Y,S$ 70 GOTO 50
80 END 80 END

Mixing Output and Input Devices
As shown by the following examples you can do some interesting things with the DIGITIZE statement by mixing the possible
PLOTTER IS and GRAPHICS INPUT IS devices. The first example uses the default PLOTTER and GRAPHICS devices. Use the
mouse to move the tracking cross around. Press the ENTER key or one of the mouse buttons to read the current tracking cross
location.

10 GINIT
20 PLOTTER IS CRT,"INTERNAL"
30 GRAPHICS INPUT IS KBD,"KBD"
40 TRACK CRT IS ON
50 FRAME
60 DIGITIZE X,Y,S$
70 PRINT X,Y,S$
80 END

If you have an HPGL plotter hooked up to your computer then you can try the following example. Change line 30 in the above
program to setup the plotter as the input device. Chose one of the following lines for the type of communication that your plotter
uses. If you are using the serial interface, make sure that the baud rate, parity, stop bits, and handshaking are setup correctly. For
an IEEE-488 plotter, the device address needs to be set correctly.

30 GRAPHICS INPUT IS 9,"HPGL" !Serial Interface
30 GRAPHICS INPUT IS 705,"HPGL" !IEEE-488 Address 5

When this program is run, the tracking cross will appear on the CRT display. By moving the pen around on the plotter, you will see
the tracking cross on the screen follow the plotter movement.

You can also experiment with the other alternatives by setting the PLOTTER device to the HPGL plotter, and then varying the
GRAPHICS device between the keyboard and the HPGL plotter.

Separate and Merged Alpha
The SEPARATE ALPHA FROM GRAPHICS and MERGE ALPHA WITH GRAPHICS statements provide control over how ALPHA
text and graphics are displayed and manipulated on the computer screen. Both statements are presented in the following section.

Merged Alpha
The MERGE ALPHA WITH GRAPHICS statement causes all bit-planes to be used by both alpha and graphics. Alpha text is
converted to graphic pixels and written into the graphic planes, overwriting any graphics data that might be present. Also, scrolling
alpha text will scroll graphics, dumping either will dump both and the full range of colors are available for both alpha text and
graphic output.

Separate Alpha
The SEPARATE ALPHA FROM GRAPHICS mode is the opposite of MERGE ALPHA WITH GRAPHICS. When separate, one or
more bit plane is reserved for alpha text and the remaining planes are reserved for graphic output. The alpha and graphic planes
can then be turned on or off or DUMPed independently. However, ALPHA text color and graphic pens are limited as shown in the
following table.

The following table shows the colors available when SEPARATE ALPHA FROM GRAPHICS is used, depending on the total
number of colors available.

Total                    Graph                    Black                    White                    Brown                Cyan
Colors              Pens                      Alpha                    Alpha                    Alpha                    Alpha
16 0-7 0 8 - -
256 0-63 0 64 128 192

Porting Issues
HP BASIC assigns green to the first pen; HTBasic assigns white. If you prefer green or some other color, you must explicitly set a
range of pen values to the color desired. The range starts with the white alpha pen value from the table above and continues to
one less than the value of the brown alpha pen value. For 16 color systems, the last value should be 15.    For example, the
following code changes the alpha pen from white to green on a 16 color display:

10 SEPARATE ALPHA FROM GRAPHICS
20 PLOTTER IS CRT,"INTERNAL";COLOR MAP
30 FOR I=8 TO 15
40 SET PEN I INTENSITY 0,1,0
50 NEXT I
60 END

Summary
HTBasic contains an extensive assortment of powerful graphic statements. You may use convenient data units in defining your
graphic display and you may specify many graphic attributes. A detailed examination of the graphic capabilities requires the user
to try some examples and see how the different graphic statements are used in concert to produce high quality graphics output.

General Input and Output
This chapter discusses the general I/O (input/output) statements of HTBasic. General I/O statements apply equally to screen,
keyboard, printer, files, interfaces, devices, strings, and buffers. The chapters following this one discuss these I/O
destinations/sources in greater detail. You should read the information in this chapter first, and then read any of the following
chapters you need. BEEP, READ, and DATA statements are also presented in this chapter.

There are two pairs of statements that are used in general I/O: ENTER/OUTPUT and STATUS/CONTROL. Some interfaces also
support interrupts, which can be used to force program branching on different interface conditions. Some interfaces also support
background transfers. The TRANSFER statement starts background transfers.

Associated with each I/O operation is an I/O path. An I/O path contains all of the routing information necessary for the computer to
transfer data between your HTBasic program and the target entity (such as a printer, data acquisition device, string, file, etc.). The
ASSIGN statement is used to set up an I/O path for use in later ENTER, OUTPUT, and TRANSFER statements.

ASSIGN Statement
The ASSIGN statement is similar to the OPEN statement of other computer languages. ASSIGN makes a connection to a screen,
keyboard, printer, file, interface, device, or buffer. All the information concerning this connection is saved by the ASSIGN statement
in an I/O path variable. A number of attributes can be specified in the ASSIGN statement that affect how the I/O operation is done.

The I/O path variable is then used in I/O statements to specify the source or destination of the ENTER, OUTPUT, or TRANSFER.
After the initial ASSIGN, subsequent ASSIGN statements can be used to redirect the I/O, change the attributes, or close the file or
connection. Several I/O paths can be set up simultaneously. In fact, any number of I/O path variables may exist in your program,
although some operating systems limit the number of files that can be open at one time.

Syntax
The syntax of the ASSIGN statement is:

ASSIGN @io-path [TO target] [;attrib [,attrib...]]

where:

@io-path = a legal I/O path variable name
target =
 device-selector [, device-selector...] |
 file-specifier | pipe-specifier |
 BUFFER {string-name$ | numeric-array(*) | ‘[‘buf-size’]’}
attrib =
 FORMAT {ON|OFF|MSB FIRST|LSB FIRST} |
 {BYTE|WORD} |
 EOL eol-chars [END] [DELAY seconds] |
 EOL OFF |
 APPEND |
 RETURN numeric-name
buf-size = size of the buffer in bytes
eol-chars = string expression of up to 8 characters
seconds = numeric-expression rounded to the nearest
 0.001 through 32.767 (default is 0)

The following paragraphs give some explanation of how to ASSIGN the different I/O targets: devices, files, and buffers. Then the
different I/O attributes are explained.

Devices
A device can be the screen, the keyboard, a printer, lab instrument, or data acquisition device. The device is specified with an
interface select code (ISC) or device selector. Each interface, (IEEE-488, serial, parallel, etc.) that is connected to your computer
has a unique number assigned to it. When you load a device driver for an interface, a default ISC is assigned, or you can specify
another ISC. The following table gives some default ISCs.

ISC                    Device
1 CRT display
2 Keyboard
3 Graphic display
6 Bit mapped graphic display
7 IEEE-488 Board
8 2nd IEEE-488 Board
9 Serial
10 Windows default printer via Print Manager
11 2nd Serial
12 GPIO Board
17 Various Data Acquisition Boards (no analog capabilities)
18 Various Data Acquisition Boards (with analog capabilities)
26 Parallel port
32 Processor

If multiple devices can be hooked to the interface simultaneously, as they can on the IEEE-488, then the primary address must be
included with the ISC to uniquely identify the device. This is also true of data acquisition boards having one or more subsystem:
A/D, D/A, DIO, etc. Together, the ISC and primary address are called a device selector. Some IEEE-488 devices also require one
or more secondary addresses. Each primary or secondary address should be specified with two digits. Thus 1 should be specified
as 01. The total length of the device selector can be 15 digits. The following examples illustrate these rules. To perform I/O with an
IEEE-488 device (assuming the default ISC) at primary address 2 and secondary address 6, use this ASSIGN statement:

ASSIGN @Dvm TO 70206

To perform I/O with an IEEE-488 device at primary address 3:

ASSIGN @Scope TO 703

To use analog output with a data acquisition board set to ISC 18 and 02 as the primary address for analog output, use this
ASSIGN:

ASSIGN @Daq TO 1802

To performI/O with a device hooked to a serial port at ISC 9, you could use:

ASSIGN @Dvm TO 9

A device can have more than one I/O path name, each with different attributes, associated with it.

An I/O path name can have more than one IEEE-488 device assigned to it. If multiple devices are specified, they must be on the
same interface. When OUTPUT is made to an I/O path assigned to multiple devices, all the devices receive the data. When
ENTER is made from multiple devices, the first device specified sends data to the computer and to all the other devices assigned
to the I/O path name. When CLEAR, LOCAL, PPOLL CONFIGURE, PPOLL UNCONFIGURE, REMOTE, or TRIGGER are made
on multiple devices, all the devices receive the IEEE-488 message.

It is possible to perform I/O with a device without using an I/O path. But, when an I/O statement does not specify an I/O path
variable, a temporary I/O path is created internally, used for the duration of the statement, and then discarded. This is usually
slower than to ASSIGN an I/O path once and use it throughout the program.

OUTPUT @Scope;A(*) ! Usually faster
OUTPUT 703;A(*) ! Usually slower

Files
A file is opened when the ASSIGN statement specifies a file-specifier. The file’s position pointer is set to the beginning if the
APPEND option is not specified and set to the end if it is. The file position is updated to point to the next byte to be written or read
after each ENTER or OUTPUT statement. The ASSIGN statement will not CREATE a file if it does not exist. You should use the
CREATE statement before ASSIGNing the file if the file does not yet exist.

CREATE “Jonatha.n”,1
ASSIGN @File TO “Jonatha.n”

Pipes
Pipes are not supported by HTBasic.

Buffers
Buffers are typically used as the source or destination of a TRANSFER. The statement

ASSIGN @Iopath TO BUFFER [300]

allocates an unnamed buffer and assigns it to an I/O path name. Unnamed buffers can only be accessed through their I/O path.
The

ASSIGN @Another TO BUFFER X(*)

statement assigns an I/O path name to the variable X(*) which must be declared as a buffer in a COM, DIM, INTEGER, LONG or
REAL statement. Numeric data stored in a named buffer should not be accessed through the name of the array if the byte order of
the computer and the byte order of the data is different. In general, STATUS and CONTROL are the preferred method for
accessing the data.

The buffers specified in these ASSIGN statements may now be used in ENTER, OUTPUT, or TRANSFER statements.

Attributes
The attributes of an I/O path allow you to change certain aspects of how data is transferred. The attributes can be specified when
the initial ASSIGN is made, or the attributes of a previously ASSIGNed I/O path may be individually changed by omitting the “TO
target” portion of the statement:

ASSIGN @Jennifer;FORMAT OFF

Additional attributes of a particular device, such as the baud rate of a serial device, are changed using STATUS, CONTROL,
READIO, and WRITEIO statements. These statements are explained later in this chapter.

FORMAT Options
One piece of information stored in the I/O path is whether to transfer information in ASCII or binary (internal) format. ASCII
transfers are called FORMAT-ON-format and binary transfers are called FORMAT-OFF-format. If FORMAT is not explicitly
specified in the ASSIGN statement, a default format is used. For interfaces, buffers, devices, and LIF ASCII files the default is
FORMAT ON; for BDAT and ordinary files, the default is FORMAT OFF.

This example explicitly specifies FORMAT ON:

10 ASSIGN @George TO “TEMP.TXT”;FORMAT ON

When FORMAT ON is specified in the ASSIGN statement, data items are output in a readable ASCII format. Numeric items are
output in the standard ASCII numeric format and the ASCII characters in a string are output. If the default output formats are not
acceptable, the USING and IMAGE statements can be used to format the data as needed.

When FORMAT ON is specified, data items are entered with the data expected to be in readable ASCII format. Reading data with
FORMAT ON works with most devices. For other devices, most formats can be handled using IMAGE and USING statements.
Numeric data must be scanned to find legal combinations of characters that make up a numeric value. String data must be
scanned for end-of-string terminators.

When FORMAT OFF is specified in the ASSIGN statement, data is transferred in internal format. LSB/MSB FIRST can be used in
the ASSIGN statement to specify the order in which the data bytes are sent or received. If LSB/MSB FIRST is not specified, data
sent to devices is sent MSB FIRST for compatibility with HP devices; data sent to files, and operating system devices is stored in
the form most natural to the computer’s processor. Of course, LSB/MSB FIRST can always be used to override these defaults.

20 ASSIGN @Dev1 TO 9;FORMAT LSB FIRST

The internal format for INTEGER numbers is a two byte, two’s complement, binary integer. The internal format for LONG (integer)
numbers is four byte, two’s complement, binary integer. The internal format for REAL numbers is an eight byte, IEEE compatible
floating point number (see IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std. 754-1985). The internal format for
COMPLEX numbers is two real numbers. The first eight bytes contain the real part of the number and the last eight bytes contain
the imaginary part.

The format for strings depends on the source or destination of the I/O statement. For ordinary files the internal format for strings is
a null-terminated string.

The string format for devices and BDAT files consists of a four-byte-integer string length followed by the string contents. An even
number of bytes is always transferred, therefore, if the string is odd in length an extra pad byte is transferred. The LSB/MSB
FIRST option can be used to determine the byte ordering of the four byte string length.

For LIF ASCII files FORMAT OFF has no effect. Data is always transferred as ASCII strings proceeded by a two byte integer
length and padded by a trailing space if necessary to make the string length even. The string length is always transferred with
MSB FIRST.

BYTE and WORD
When BYTE is included in the ASSIGN statement, the data is sent and received as bytes, even if the interface is capable of 16-bit
transfers. The upper 8 bits are zeros. (Note: The “W” IMAGE specifier will send a word on a 16-bit interface, even if BYTE is
specified in the I/O path.) The WORD attribute can only be included in the ASSIGN statement if the interface is capable of 16-bit
transfers. The data is then transferred a word at a time. The WORD attribute is primarily intended for transfer of FORMAT OFF
data and can have unexpected side effects with FORMAT ON.

When neither BYTE nor WORD is included in the ASSIGN statement, the default is BYTE. Syntax examples including the BYTE
and WORD attributes are:

30 ASSIGN @Gpio TO 15;FORMAT OFF,WORD
40 ASSIGN @Meter TO 711,712;BYTE

EOL
The default End-Of-Line for OUTPUT is a carriage return (CR) followed by a line feed (LF) sent with no END indication and
followed by no DELAY. Specifying END causes an interface specific END indication to be sent with the EOL. On the IEEE-488,
END causes EOI to be sent with the final character of the EOL. Specifying DELAY causes the computer to pause for the specified
number of seconds after sending the EOL and before allowing the program to continue. The exact delay time depends on the
timing resolution available on the computer you are using. On the PC, the timing resolution under Windows 95/98/ME is about 55
milliseconds under Windows NT & Windows 2000 it is about milliseconds. The default EOL (CR/LF) can be restored by specifying
EOL OFF.

Examples:

50 ASSIGN @Slow_printer TO 10;EOL CHR$(10) DELAY .1
60 ASSIGN @Jet TO 701;EOL CHR$(13)&CHR$(10) END
70 ASSIGN @Ep TO PRT; EOL OFF ! Restore default

APPEND
If APPEND is specified, the file position is moved to the end-of-file after the ASSIGN. If it is not specified, the file position is moved
to the beginning of the file. APPEND is supported on BDAT and ordinary files, but not LIF ASCII files.

RETURN
RETURN can be used with ASSIGN to test whether the ASSIGN operation was successful. If not successful, the error number is
returned in the variable specified, otherwise a zero is returned. The following example shows one possible use for this feature:
ASSIGNing a file, but creating the file only if it does not exist:

10 INTEGER Result
20 F$="KAREN.TXT"
30 REPEAT
40 ASSIGN @I TO F$;RETURN Error
50 IF Error THEN
60 IF Error=56 THEN
70 PRINT “File not found: creating ”;F$
80 CREATE F$,10
90 ELSE
100 CAUSE ERROR Error ! Let the error occur
110 END IF
120 END IF
130 UNTIL NOT Error
140 END

Closing an I/O Path
Closing an I/O path makes the path invalid. All subsequent ON event statements for the closed I/O path are not acted upon. If an
I/O path name has not been declared in a COM statement it may be closed in the following ways:

1. Explicitly close a path by executing

 ASSIGN @Io-path TO *

2. Re-assigning the I/O path

 ASSIGN @Io-path TO target

3. Exiting the subprogram with SUBEND, SUBEXIT, ON...RECOVER, or RETURN value

4. Stopping the program with END, GET, LOAD, SCRATCH,          SCRATCH A, SCRATCH C, or STOP.

If an I/O path name has been declared in a COM statement it may be closed in the following ways:

1. Explicitly close a path by executing

 ASSIGN @Io-path TO *

2. Re-assigning the I/O path with

 ASSIGN @Io-path TO target

3. Executing SCRATCH A, SCRATCH C, SUBEND, SUBEXIT, ON...RECOVER, or RETURN value.

4. Executing EDIT, GET, or LOAD in a program that has a COM statement that does not match the COM statement that contains
the I/O path name.

OUTPUT Statement
OUTPUT can be used to send numeric data, array elements, character strings, sub-strings, or full arrays. Full arrays are specified
with the full array specifier, “(*)”, and are output in row major order. Row major order means the right-most subscript is
incremented before the subscript to the left of it. If the default output formats are not acceptable, USING/IMAGE can be used to
format the data as needed. If the data is sent with FORMAT OFF, then just the internal representations are sent, with no item
separators. If the data is output with FORMAT ON, then data is sent in ASCII, printable characters. Numeric and string items are
sent as described below.

Numeric Items
Numeric items are converted to standard numeric format: The number is rounded to twelve significant digits. If the absolute value
is outside the range 1E-4 to 1E+6, then the number is output in scientific notation. If the number is negative, a leading minus sign
is sent; if the number is positive, a leading space is sent instead. Trailing zeros or decimal points are not output. If a comma
follows the output item, then a comma is sent as an item separator. If a semicolon follows the output item, then no item separator
is sent. If a full array is sent, a comma will be sent to separate each element unless a semicolon follows the output item (the
array).

Complex items are output in rectangular form, real part first, then a comma, and finally, the imaginary part. Real and imaginary
parts are formatted in standard numeric format as explained in the previous paragraph. If a semicolon follows the complex item
then the comma separating the real and imaginary parts is suppressed.

String Items
String items are sent by sending each character in the string. If a comma follows the output item, then CR/LF are sent as an item
separator. If a semicolon follows the output item, then no item separator is sent. If a full array is sent, an item separator will be sent
to separate each element unless a semicolon follows the output item (the array).

Note: CR/LF is the string item separator and is not affected by the EOL sequence definition in the ASSIGN statement.

End of Line
After all of the OUTPUT items have been sent and if the statement did not end with a semicolon or comma, then an End-of-Line
(EOL) Sequence is sent. The default EOL is CR/LF, but may be redefined in the ASSIGN statement.

The following examples illustrate most of these rules. For the examples, assume that the following lines have first been executed:

10 REM OUTPUTEX.BAS
20 DIM R(1),A$(1)[1]
30 R(0)=-1
40 R(1)=+1
50 MAT A$=(“A”)
60 ASSIGN @I TO some device

In the Characters Output, the EOL (which defaults to CR/LF), is shown as <eol>, the string item separator (which is CR/LF), is
shown as <crlf>. Spaces are shown as underlines, “_”, to make them stand out.

Program lines  Characters output
70 OUTPUT @I;1.E+5,1.E+7 _100000,_1.E+7<eol>
80 OUTPUT @I;1;-1 _1-1<eol>
90 OUTPUT @I;R(*), -1,_1,
100 OUTPUT @I;CMPLX(1,1.23456789012345E+7) _1,_1.23456789012E+7<eol>
110 OUTPUT @I;CMPLX(1,1); _1_1
120 OUTPUT @I;"B";"C","D" BC<crlf>D<eol>
130 OUTPUT @I;A$(*); AA

In line 70, 1.E+7 is listed in scientific notation because it is outside the range 1E-4 to 1E+6. The numbers are both positive so a
leading blank is output before each. The default EOL is output at the end. In line 80, the -1 has no leading space; the space is
replaced with a negative sign. And the semicolon between the two numbers suppresses the comma that would normally be output
between the two.

In line 90, an array is output. Notice the full array specifier. The comma following the array causes an item separator to be output
between each element. The numeric item separator is a comma. Line 120 shows an example of a string item separator, CR/LF.
Line 90 also shows that a trailing comma will suppress the EOL.

Line 100 shows that the real and imaginary parts of a complex number are separated by a comma. This line also shows the
default rounding of numbers to 12 significant digits. Remember that if the default output formats are not suitable for your
application, you may use OUTPUT USING to define your own. Line 110 shows that a semicolon will suppress the comma between
the real and imaginary parts. It also shows that a trailing semicolon will suppress the EOL.

Line 120 demonstrates the effect on string output of commas and semicolons. The semicolon suppresses the item separator that
would normally follow the “B”. The comma causes the normal string item separator, CR/LF, to be output after the “C”. And if no
semicolon or comma is at the end of the statement, an EOL is output after the final string.

END
An optional END may be used after the last data item. If USING is not specified, then END: 1) suppresses the EOL sequence from
being output after the last item, 2) sends an EOI signal with the last character of the last item sent to an IEEE-488 device, and 3)
truncates a file. A comma before the END will output an item terminator (a comma for numeric items or a CR/LF for string items).
For example:

OUTPUT @I;"Time: “;TIME$(TIMEDATE) END

ENTER Statement
The ENTER statement can be used to enter numeric data, array elements, character strings, sub-strings, or full arrays. Full arrays
are specified with the full array specifier, “(*)”, and are entered in row major order. If the default ENTER formats are not
acceptable, USING/IMAGE can be used to format the data to the specifications of the I/O device. If the ENTER is done with
FORMAT OFF, then data is expected in the internal representations given above, with no item or statement terminators. If
FORMAT is ON, then data is expected in ASCII printable characters as explained below.

Numeric Items
The number builder is used with numeric items to change ASCII data to numeric data for assignment to a numeric variable.
Leading non-numeric characters are ignored. Blanks are ignored where ever they occur. The number is expected to be in the form:

[sign] mantissa [E exponent] item-terminator

where:

sign = + | -
mantissa = [digits] [.] [digits]
exponent = [sign] digits

The mantissa must have at least one numeric digit, whether it be before or after a decimal point. Because REAL numbers have
only fifteen digits of precision, any mantissa digits after the 15th digit are considered to be “0". The ”E" before the exponent can be
either upper or lower case. The item-terminator is any non-numeric character. The item-terminator can either be an EOI on the last
character of the number, or any non-numeric character. The entire ENTER statement must also be properly terminated.

10 DIM A$[30]
20 A$="hello + 1 2 3 goodbye"&CHR$(13)&CHR$(10)
30 ENTER A$;X,B$

This example will assign 123 to X and “oodbye” to B$. The “g” was used to terminate X and thus is not present in B$.

A complex item is entered in rectangular form, real part first, followed by the imaginary part. The rules for each part are the same
as the rules for numeric items given above.

String Items
String items are terminated with either a LF, a CR/LF, an EOI signal, or upon filling the dimensioned length of the string. The LF or
CR/LF terminators are not entered into the string.

Statement Termination
For both string and numeric items, if the last item was not terminated with a LF, CR/LF, or an EOI signal, then additional characters
are read (but thrown away) until one of these terminators is received. If no terminator is found within 255 characters, an error is
reported.

10 DIM A$[30],B$[2]
20 A$="hello + 1 2 3 goodbye"&CHR$(13)&CHR$(10)
30 ENTER A$;B$

In this example, because B$ has a dimensioned length of two characters, it is assigned the value “he”. The remaining characters
are thrown away, and the CR/LF terminate the ENTER.

Note: LF or CR/LF are always used for the termination of ENTER, regardless of the setting of EOL in the ASSIGN statement.

Formatted I/O
OUTPUT, ENTER, PRINT, DISP, and LABEL allow you to control the format of both output and input data. The format is specified
as an IMAGE. The IMAGE string can immediately follow the USING keyword as a string (literal or variable) or a line number or
label can follow the USING keyword to reference an IMAGE statement that contains the format data. For example:

10 OUTPUT CRT USING “ZZZ.DDD”;1.2
20 IMAGE ZZZ.DDD
30 OUTPUT CRT USING 20;1.2

An IMAGE string consists of a list of one or more image items. The items specified in the image list are acted upon as they are
encountered. Each image list item should have a matching output (or enter) item. Processing of the image list stops when no
matching output item is found. However, when the last item in the image list is used, the image list is reused starting at the
beginning to provide matches for all remaining output items. FORMAT ON is used in connection with USING, even if FORMAT
OFF has been specified.

If more decimal places to the left of the decimal point are required to output a numeric item than are specified in the image
specifier, an error is generated. If M or S is not specified, then a minus sign will take up one digit place. If the number contains
more decimal places to the right of the decimal point than are specified in the image field, the output is rounded to fit.

If the number of characters specified in an image specifier for a string is less than the number of characters in a string, then the
remaining characters are ignored. If the number of characters specified is greater than the number of characters in a string then
trailing blanks are used to fill out the image field.

IMAGE Interpretation
Each character in the IMAGE string has a special meaning. For example, the letter A means “an alphanumeric character must be
printed here”, the letter D means “a decimal numeric value must be printed here”, and the letter X means “a space character must
be printed here.” The order in which data items are specified in the USING statement must match the IMAGE string. For Example:

100 PRINT USING 110;"Base Price:",6995
110 IMAGE 11A,X,4D

In this example, the print format is specified in the IMAGE statement in line 110. The IMAGE string 11A,X,4D defines two “print
fields” or “print zones” separated by one extra space (X). The first print field (11A) specifies that the first data item in the PRINT
USING statement must be a character string of not more than eleven characters in length. The second print field (4D) means that
the second data item must be a numeric value of not more than four digits to the left of the decimal point. The fractional part of the
number, if any, is rounded off in this case. Here is the resulting output:

Base Price: 6995

When line 100 is executed, the alphanumeric string “Base Price:” and the numeric constant “6995" are sent to the specified
output device. The default print format normally used for FORMAT ON output is suppressed.

Notice that each print field specified in the format string has an accompanying data item specified in the PRINT USING statement.
The data items are also of the correct type, a character string for the A field and a numeric value for the D field. If the data items
were reversed in line 100, a data mismatch would occur, and program execution would halt with an error. If too many data items
were specified in line 100 (three data items, for example instead of two), then the IMAGE string would have been reused and the
third data item would need to be a string or an error would occur, and program execution would again halt. So, it is important that
the type of data items specified in a PRINT USING statement, and the order in which they are specified, match the specifications
of the format string.

Complex values and variables are treated as if they were two real variables. Therefore, no special item specifiers are needed for
complex numbers.

Syntax
Some item specifiers can be preceded by a numeric integer constant from 1 to 32,767 that specifies the size of the field or the
number of repetitions. The exact syntax of the image specifier is:

image-specifier =
        # | % | K | -K | H | -H | B | W | Y | + | - |
        [repeat-factor] A... |
        [repeat-factor] X... |
        [repeat-factor] /... |
        [repeat-factor] L... |
        [repeat-factor] @... |
        numeric-specifier |
        “string-literal”
numeric-specifier =
        [S|M] [left-digits] [.|R] [right-digits] [exp]
left-digits = [repeat-factor] {D|Z|*}...
right-digits = [repeat-factor] D...
exp = E | ESZ | ESZZ | ESZZZ
repeat-factor = integer-constant (1 to 32,767)

OUTPUT, etc.
IMAGE specifiers have the following meanings in DISP, LABEL, OUTPUT, and PRINT statements:

Specifier                Meaning

Suppress automatic output of EOL following the last item.

% Is ignored in OUTPUT images.

K Output a number or string in default format, with a period for the radix.

-K Means the same thing as K.

H Output a number or string, default format, comma radix.

-H Means the same thing as H.

Specifier                Meaning

B Output a byte, like the CHR$ function. If the value is larger than 32767, 255 is sent. If the value is smaller than
-32768, 0 is sent. If the value is in between, it is rounded to an integer and the least significant byte (CINT(value)
MOD 256) is sent.

W Output a word in 2’s complement 16-bit integer form. If the value is larger than 32767, 32767 is sent. If the value is
smaller than -32768, -32768 is sent. If the interface is 16-bit, the word is output in one operation (even if the BYTE
attribute was used in the I/O path). If the interface is 8-bit, the byte ordering depends on the LSB/MSB attribute of
the I/O path. If the destination is a string, native byte ordering is always used (LSB FIRST on a PC, MSB FIRST on
a Sun or HP Workstation). If the WORD attribute was specified in the I/O path, a pad byte will be output before the
word when necessary to achieve word alignment.

Y Means the same as W, except that word alignment is not done, and the BYTE attribute is not ignored.

+ Change the automatic output of EOL to carriage-return after the last item.

- Change the automatic output of EOL to line-feed after the last item.

M Output a minus sign if negative, a blank if positive.

S Output the sign of the number (+ or -).

D Output one numeric digit character. The leading zeros are replaced by blanks; a minus sign is displayed
on negative numbers.

Z Means the same thing as D except leading zeros are displayed.

* Means the same thing as D except leading zeros are replaced with asterisks.

.(period) Output a decimal-point radix indicator.

R Output a comma radix indicator.

E Output an ‘E’, a sign character, and a two-digit exponent.

ESZ Output an ‘E’, a sign character, and a one-digit exponent.

ESZZ Output an ‘E’, a sign character, and a two-digit exponent.

ESZZZ Output an ‘E’, a sign character, and a three-digit exponent.

A Output an alphanumeric string character.

X Output a blank.

/ Output a carriage-return and line-feed.

L Output the current EOL sequence. The default is CR/LF.

@ Output a form-feed character.

“string-literal” Output the characters in the string literal. Remember to double the quote marks when the IMAGE is inside a string
literal.

ENTER
IMAGE specifiers have the following meanings in an ENTER statement:

Specifier                Meaning

Causes the statement to terminate when the last item is terminated. No statement terminator is needed, EOI and
LF are item terminators, and early termination is not allowed.

% Is the same as # except EOI causes early statement termination when it terminates an item.

K Allows free-field entry. For numerics, entered characters are sent to the number builder, leading non-numeric
characters and blanks are ignored, trailing non-numeric characters and characters sent with EOI true are
delimiters. For strings, entered characters are sent to the string. A CR may be sent to the string if it is not followed
by a LF. The string is terminated by CR/LF, LF, character received with EOI true, or the string dimensioned length
being filled.

-K Is like K except LF and CR/LF are not terminators.

H Is the same as K except a comma is the radix indicator and a period is a non-numeric character.

-H Means the same as -K for strings, and H for numbers.

B Demands one Byte, like the NUM function.

W Demands a 16-bit Word (2’s complement integer). If the interface is 16-bit, the word is entered in one operation
(even if the BYTE attribute was used in the I/O path). If the interface is 8-bit, the byte ordering depends on the
LSB/MSB of the I/O path. If the source is a string, native byte ordering is always used (LSB FIRST on a PC, MSB
FIRST on a Sun or HP Workstation). If the WORD attribute was specified in the I/O path, a pad byte will be entered
before the word when necessary to achieve word alignment.

Y Is the same as W, except that word alignment is not done, and the BYTE attribute is not ignored.

+ Indicates an END (EOI) is needed with the last character of the last item to terminate the ENTER statement. LFs
are no longer statement terminators, but are still item terminators.

- Indicates a LF is needed to terminate the ENTER statement. EOI is ignored; other END indicators cause an error.

S Same meaning as D.

M Same meaning as D.

D Demands one character for each D, or repeat count. Non-numerics are consumed while fulfilling the count but also
delimit the number. Blanks embedded in the number are ignored.

Z Same meaning as D.

* Same meaning as D.

.(period) Same meaning as D.

R Has the same meaning as D, plus the number builder is instructed to use a comma as the radix indicator and a
period as a non-numeric character.

E Is treated the same as 4D.

ESZ Same as 3D.

ESZZ Same as 4D.

ESZZZ Same as 5D.

A Demands one alphanumeric string character.

X Enters a character and discards it.

/ Skips all characters to the next LF and EOI is ignored.

L Ignored in ENTER.

@ Ignored in ENTER.

“string-literal” One character is skipped for each character in the string literal. Remember to double the quote marks when the
IMAGE is inside a string literal.

Creating Format Strings
The following examples illustrate how to combine characters into IMAGE strings. These examples use PRINT, but DISP, LABEL,
or OUTPUT could also have been used to direct the output to various destinations.

The A character defines a field for alphanumeric character strings. The operator is specified in the form nA where n is an integer
from 1 through 32767. If n is not specified, then 1 is used.

PRINT Examples
This example shows creation of an alphanumeric field:

110 A$ = “Greg Doe”
120 IMAGE 15A,2X,24A
130 PRINT USING 120;"Student Name:",A$

In line 120 above, the IMAGE item defines an alphanumeric field with 15 alphanumeric positions, 2 extra spaces, and then 24
more character positions. In line 130, the string constant “Student Name:” is printed in the first field, and “Greg Doe” in the last
field.

The following shows how the output is printed relative to the field description. The first line shows the fields specified by the
IMAGE string. The second line shows the PRINT output.

AAAAAAAAAAAAAAAXXAAAAAAAAAAAAAAAAAAAAAAAA
Student Name: Greg Doe

Notice that the character strings are left justified in the fields. This means that the first character in the string is printed in the left-
most position in the field. The character string “Student Name:” only fills 13 character positions, the remaining positions are filled
with space characters. Greg Doe fills 8 positions and the remaining 16 positions in that field are filled with space characters.
Character strings larger than the specified field will be truncated.

The print position is set to a new line after each line is printed unless the IMAGE format ends with “#” to suppress the EOL. You
would want to do this if you needed to continue output on the same line with another output statement.

Here is another PRINT USING example:

10 IMAGE “ERROR: ”,2D,", “,K
20 Esc$=CHR$(27)
30 PRINT USING ”A, “”[H"", A, “”[J"", #";Esc$,Esc$
40 PRINT USING 10;ERRN,"in line “&VAL$(ERRLN)
50 PRINT USING 10;19,”Out of range!"
60 PRINT USING 10;Error_code,"Oops!"
70 PRINT USING “ ”"The value of PI is"",X,1D.10D “;PI

ENTER Example
The following examples demonstrate how the ENTER USING rules are used to input floating point and integer numbers.

10 DIM A$[22]
20 A$="Dollars: $34.56 Total"
30 ENTER A$ USING “K”;X1
40 ENTER A$ USING “14D”;X2

In line 30, the number builder ignores non-numeric characters preceding the number and stops at the first character that is not part
of the number so that X1 equals 34.56. In line 40 the number builder stops after 14 characters (“Dollars: $34.5") are input so that
X2 equals 34.5.

10 A$ = “2XX+3Y”
20 ENTER A$ USING “D,5D”;X,Y

In this example, the variable X is assigned the value 2, and Y is assigned 3.

END
An optional END may be used after the last data item. If USING is specified, then the effect of the END is quite different than if
USING is not specified. An END after the last item in an OUTPUT USING statement will have the following effect:

1) If the last image specifier does not have an output item (X, /, @, L, and “literals”), then EOL is suppressed, including alternate
EOLs specified by + or -, and no EOI is sent. Exception 1: If the IMAGE specifier is L and END is specified in the ASSIGN then
EOI is sent with the EOL whenever the EOL is sent.

2) If the last image specifier does have an output item (K, H, D, Z, *, A, B, W, and Y) then EOL is unaffected and EOI is sent with
the last byte sent. Exception 2.1: If END is also used in the ASSIGN statement then two EOIs are sent, one with the last output
item and one with the EOL. This is the exception that HTBasic does not emulate; the general rule 2 is followed. Exception 2.2: If
the last output item is a string with a length of zero, and the image specifier is K, and # has suppressed the EOL, then no EOI is
sent. As an example, this statement will output one character, “A”, with no EOI:

OUTPUT 717 USING “K,K,#”;"A","" END

3) If the last image specifier changes the default EOL (#, +, and -), then use the next to last specifier to determine whether to use
rule 1 or 2, above.

TRANSFER
The TRANSFER statement sets up unformatted data transfers between memory and a device. The data transfer normally occurs
in the “background.” That is, the BASIC program continues to run in the “foreground” simultaneously with the background
transfer. Optionally, the TRANSFER statement can wait until the transfer is complete before continuing. The syntax is

TRANSFER @source-io-path TO @dest-io-path
        [; [term-list] [,] [EOR(term-list)] [,] [type]   ]

Use the ASSIGN statement to initialize the source and destination I/O paths. The optional commas are only needed when items
occur on both sides of the comma.

Examples
TRANSFER @Device TO @Buffer
TRANSFER @Buff TO @Logger;CONT
TRANSFER @Rs232 TO @Buff;DELIM CHR$(13)
TRANSFER @Path TO @Buff;RECORDS 16,EOR(END)

Support
TRANSFER is currently supported for files, RS-232 and GPIB.

Buffers
The transfer operation must be between a buffer and a device. A buffer must be declared as the source for an outbound transfer,
or as the destination of an inbound transfer. One buffer can simultaneously be used for an outbound transfer and an inbound
transfer. A transfer directly between two devices is not supported.

Buffers may be unnamed or named. An unnamed buffer is created, assigned an I/O path, and given its size by the ASSIGN
statement. A named buffer is a previously declared REAL, INTEGER, LONG or COMPLEX array, or a string scalar (declared in a
COM, STATIC, DIM, INTEGER, LONG, REAL, or COMPLEX statement) that has been ASSIGNed to an I/O path. Unnamed
buffers are usually preferred because the size can be as large as available memory and no side-affects are possible by accessing
the buffer through its variable name.

Buffers are circular; each buffer has a fill and empty pointer as well as a count. The fill pointer is used by an inbound transfer to
identify the next location for data to be stored (inserted). The empty pointer is used by an outbound transfer and points to the next
location for data to be output (removed). A value of one for either pointer means the first byte of the buffer. When the fill and empty
pointers have the same value, the count can be examined to determine whether the buffer is empty or full.

The I/O path assigned to the buffer is called the buffer-I/O path. The I/O path assigned to the device is called the non-buffer-I/O
path. The buffer should be accessed only with the buffer-I/O path. The count, fill, and empty pointers can be examined using
STATUS on the buffer-I/O path. OUTPUT @buf or an inbound transfer are used to place data into a buffer. ENTER @buf or an
outbound transfer are used to read and remove data from a buffer. The variable name of a named buffer should generally not be
used to access the data in the buffer since the data in the buffer is unformatted and may even have the wrong byte order.

Transfer Type
The type of the transfer can be specified as CONT, WAIT, or left unspecified.

If WAIT is specified, the transfer executes in foreground mode. Program execution does not proceed beyond the TRANSFER
statement until the transfer terminates. If an error occurs, it is reported with the line number of the TRANSFER statement. If WAIT
is not specified, execution continues past the TRANSFER statement and the transfer takes place in the background. Then if an
error occurs, the error is not reported until the non-buffer-I/O path is referenced. The error line reported is not that of the
TRANSFER, but of the statement where the non-buffer-I/O path was referenced.

If CONT is specified, TRANSFER executes continuously. For an inbound transfer, execution pauses when the buffer is full and
continues when space is available in the buffer. For an outbound transfer, execution pauses when the buffer is empty and
continues when the buffer has data available. If CONT is not specified, the end-of-transfer occurs when an outbound transfer
empties the buffer or an in-bound transfer fills the buffer. Or if a termination method has been specified as explained below, the
transfer terminates when the condition occurs.

Both WAIT and CONT can be specified together if a transfer is already active for the buffer in the opposite direction. The transfer
will be continuous, but will run in the foreground.

If neither WAIT nor CONT is specified, the transfer occurs in the background. The end-of-transfer occurs when an outbound
transfer empties the buffer or an in-bound transfer fills the buffer. Or if a termination method has been specified as explained
below, the transfer terminates when the condition occurs.

Transfer Method
A couple of methods are available for accomplishing the transfer: DMA (direct memory access) and interrupts. DMA is the fastest
method and will be used automatically if possible. A DMA channel must be available, the interface must have the necessary
hardware, and DELIM can not have been specified. If DMA can not be used, interrupts are used.

Transfer Termination
A term-list can be used to specify a list of conditions that cause the transfer to end. One or more of the following conditions can be
used:

· COUNT Bytes

· DELIM Character

· END

· RECORDS Number

If COUNT is specified, the transfer terminates after the specified number of bytes has been transferred.

If DELIM is specified for an inbound transfer, then the transfer is terminated after the specified character is detected. DELIM is not
allowed with outbound transfers. If the delimiter string is zero length, delimiter checking is disabled. DELIM prevents DMA from
being used; interrupts will be used instead.

If END is specified for an inbound transfer, the transfer terminates when the device dependent signal is received. On the IEEE-488
interface, END is the EOI signal. When an inbound transfer is terminated in this way, bit 3 of register 10 is set. For an outbound
transfer, END does not specify a termination condition, but rather specifies that the device dependent signal (EOI) is sent with the
last byte sent.

If RECORDS is specified, the transfer terminates when the specified number of records has been transferred. An EOR(term-list)
must be specified, defining what will be considered a record for the purpose of this particular transfer. For inbound transfers the
legal end-of-record termination conditions are COUNT, DELIM, and END, or some combination of these three. For outbound
transfers only COUNT can be used to define a record, although END can be used to specify that the device dependent signal
(EOI) is sent with the last byte of each record.

ON EOR and ON EOT
The ON EOR and ON EOT statements can be used to generate an event when an end-of-record or end-of-transfer occurs. The
WAIT FOR EOR and WAIT FOR EOT statements can be used to stop further statement execution until an end-of-record or end-of-
transfer occurs.

Termination
To terminate a CONT, continuous mode, outbound transfer without leaving data in the buffer, use the following sequence of
statements:

CONTROL @Buff,8;0
WAIT FOR EOT @Non_buff

Hanging and Premature Termination
HTBasic will not enter a stopped state until all transfers are completed. Likewise, HTBasic will not exit a program context until
transfers started in that context are finished. The following statements also cause the computer to “hang” until all transfers
complete: GET, LOAD, RETURN, STOP, SUBEND, SUBEXIT, or modifying a program line.

The ABORTIO statement can be used to prematurely terminate a transfer and free the computer. The RESET key will also
terminate any active transfers, but ABORTIO is preferred.

Outbound TRANSFER
An outbound transfer has the form:

TRANSFER @Buff TO @Non_buff

If another outbound TRANSFER statement is executed while an outbound TRANSFER is occurring, HTBasic waits for completion
of the first before starting the second. Any EOT/EOR events caused by the first transfer will then be logged and may be serviced
before the next program line.

Inbound TRANSFER
An inbound transfer has the form:

TRANSFER @Non_buff TO @Buff

If another inbound TRANSFER statement is executed while an inbound TRANSFER is occurring, HTBasic waits for completion of
the first before starting the second. Any EOT/EOR events caused by the first transfer will then be logged and may be serviced
before the next program line.

STATUS, CONTROL, READIO and WRITEIO
I/O paths and many device interfaces have registers that control aspects of their operation and report their status. For example,
screen colors can be controlled by writing to the registers of the CRT interface. The baud rate can be changed by writing to the
registers of the serial interface. The status of an I/O path variable can be read from the I/O path registers. These and many other
attributes can be controlled and read through interface registers.

In general, there are three different kinds of registers: I/O path registers, interface registers, and hardware registers. The following
program shows access to all three types:

10 ASSIGN @Path TO 9
20 PRINT “I/O Path Register 0:”,STATUS(@Path,0)
30 PRINT “Interface Register 0:”,STATUS(9,0)
40 PRINT “Hardware Register 0:”,READIO(9,0)

The CONTROL and STATUS statements are used to access two of the three kinds of registers: I/O path registers and interface
registers. If the statement specifies an I/O path, I/O path registers are accessed. If the statement specifies an interface select
code, interface registers are accessed.

The range of legal register numbers and their definitions differ depending on the I/O path assignment or the type of interface. I/O
path registers are given below. The registers for each interface are given in the chapters that follow this one, or the documentation
that came with the interface.

CONTROL Statement
The CONTROL statement sends control information to an interface or an I/O path control register. Information is sent by specifying
a starting register number, and a value to be sent to that register. If it is not specified, the starting register number is zero. If you
specify more than one data value, the register number is incremented by one after sending each value. For example:

CONTROL 2;Column,Line

sends the value of the variable Column to register zero on interface number two and the value of the variable Line to register one.

STATUS Statement and Function
The STATUS statement and STATUS() function return control information from an interface or an I/O Path status register. Using
the STATUS statement, the values of several status registers are copied into a list of numeric variables, starting at the specified
register number and continuing until the variable list is exhausted. If it is not specified, the starting register number is zero. For
example:

STATUS 2;Column,Line

gets the value of status register zero on interface number two and stores it into the variable Column and then it gets the value of
status register one and stores it into the variable line.

The STATUS() function complements the STATUS statement. It allows immediate access to a single register without need for a
temporary variable or separate STATUS statement. However, the STATUS() function can only return the value of one register at a
time, while the STATUS statement can return the values of multiple registers in a single statement.

The CONTROL and STATUS registers for I/O paths assigned to devices, files and buffers are described in the following
paragraphs.

Device I/O Path Registers
No CONTROL registers exist for I/O paths assigned to devices. The STATUS registers for I/O paths assigned to devices are:

0 - ASSIGN status: 0 - not assigned, 1 - assigned to a device
1 - The interface select code
2 - Number of devices
3 - Device selector of device 1
4 - Device selector of device 2 (if two or more devices are present)
n+2 - Device selector of device n (if n or more devices are present)

ASCII File I/O Path Registers
No CONTROL registers exist for I/O paths assigned to ASCII files. The STATUS registers for I/O paths assigned to ASCII files are:

0 - ASSIGN status: 0 - not assigned, 2 - assigned to a file
1 - File type: 3 - ASCII file
2 - Always 4
3 - Number of records. Windows files are extendable and so the number of records can be more or less than the
 number given in the CREATE statement for the file
4 - Record size: 256 bytes
5 - Current record
6 - Current byte within record

BDAT and Ordinary File I/O Path Registers
For I/O paths assigned to BDAT and ordinary files, all registers can be read with the STATUS command. Only registers greater
than 4 can be set with the CONTROL command. Ordinary files are listed by CAT with a blank file type or the name of the operating
system.

0 - ASSIGN status: 0 - not assigned, 2 - assigned to a file. A DOS device looks like a file to HTBasic when
 assigned using its DOS name
1 - File type: 2 - BDAT file, 4 - ordinary file
2 - Always 4
3 - Current number of records. Windows file lengths are extendible, so the number of records can be more or
 less than the number given in the CREATE. If the last record is only partially filled, it is still counted
4 - Record size. For ordinary files, the record length is always 1
5 - Current record
6 - Current byte within record
7 - EOF record
8 - Byte within EOF record

EOF record and byte define the position of the first byte after the last byte in the file.

BUFFER I/O Path Registers
All registers can be read with the STATUS command. The following registers can be set with the CONTROL command: 3, 4, 5, 8,
and 9.

0 - ASSIGN status: 0 - not assigned, 3 - assigned to a buffer
1 - Buffer named flag: 1 - named, 2 - unnamed
2 - Buffer size in bytes
3 - Current fill pointer
4 - Current number of bytes in buffer
5 - Current empty pointer
6 - Interface select code for in-coming TRANSFER
7 - Interface select code for out-going TRANSFER
8 - Continuous in-coming TRANSFER flag: zero - not continuous, non-zero - continuous
9 - Continuous out-going TRANSFER flag: zero - not continuous, non-zero - continuous
10 - In-coming TRANSFER status

Bit                      Value                    Meaning
7 128 Always 0
6 64 Active
5 32 Aborted
4 16 Error
3 8 Device caused termination
2 4 Byte count caused termination
1 2 Record count caused termination
0 1 Match char caused termination

11 - Out-going TRANSFER termination status. Same meaning as above
12 - Count of bytes transferred by last in-coming TRANSFER
13 - Count of bytes transferred by last out-going TRANSFER

Pipe I/O Path Registers
No CONTROL registers exist for I/O paths assigned to pipes.

Interface Hardware Registers
Accessing hardware registers can cause your system to crash, data to be lost, or damage to your hardware. TransEra cannot be
held responsible for any consequences.

The READIO and WRITEIO statements allow an HTBasic program to directly manipulate the interface hardware and physical
memory locations. The hardware register numbers and their definitions are dependent on the actual hardware. The level of access
to the computer hardware is also dependent on operating system protection methods. Do not mix READIO and WRITEIO
operations with STATUS and CONTROL operations. In general, you are better off using STATUS and CONTROL operations and
avoiding READIO and WRITEIO.

READIO Function
The READIO function returns the contents of a hardware register of an interface. The value of the first argument specifies an
interface select code and a valid interface register number is specified as the second argument. That hardware interface register is
read and its contents are returned. For example:

PRINT “Register=”;READIO(7,1)

prints the contents of interface register number one on interface number seven.

Extensions to READIO and WRITEIO allow PEEK and POKE operations. Other extensions allow the address of a numeric
variable to be read, and assembly language subroutines to be called. All these extensions are explained later in this chapter.

WRITEIO Statement
The WRITEIO statement writes a data value to an interface hardware register. If a valid interface select code and interface register
number are specified, then the data value is written to the hardware interface register. For Example:

WRITEIO 7,3;Regdata

writes the value of the variable Regdata to register number three on interface number seven. Again, extensions to READIO and
WRITEIO are explained below.

PEEK/POKE Memory
The number 9826 is used to specify a peek or poke operation in a READIO or WRITEIO statement. If positive, a byte operation is
done; if negative, a word operation is done. These combinations are shown in the table below. L specifies the address of the byte
or word. If you specify a word operation and L is odd, the even address L-1 is used. V specifies the value to store into memory. L
specifies an address within the HTBasic process.

READIO(9826,L)        PEEK byte
READIO(-9826,L)        PEEK word
WRITEIO 9826,L;V        POKE byte
WRITEIO -9826,L;V        POKE word

WARNING: Use PEEK and POKE only on addresses returned by READIO(9827,I)! Using other locations can cause your system
to crash, data to be lost, or damage to your computer hardware. Use of this function for any other address is unsupported, and
TransEra cannot be held responsible for any consequences.

IN/OUT Operations
At the lowest level, the CPU in your computer must be able to input or output data. Some CPU’s, like the Motorola 680x0
processors in an HP Workstation, use memory space for all CPU I/O, even for devices. Other CPU’s, like the Intel 80x86
processors in a PC, have an I/O space in addition to memory space. PEEK/POKE access memory space; IN/OUT access I/O
space. The following four statements are available in HTBasic to access I/O space.

INP(L)        IN byte
INPW(L)        IN word
OUT L,V        OUT byte
OUTW L,V        OUT word

L specifies the address of the byte or word. V specifies the value to read or write. IN/OUT operations are most typically used to
access a data acquisition board plugged into your computer for which there is no HTBasic driver. Most boards come with example
programs showing how to access them with IN/OUT instructions.

WARNING: Because incorrect use of IN and OUT can cause your system to crash, data to be lost, or damage to your computer
hardware, use this function at your own risk. TransEra cannot be held responsible for any consequences.

Locating a Numeric Variable
READIO(9827, variable-name) is used to locate a numeric variable or an element of an array. This operation is useful in
connection with assembly language subroutines because it allows you to identify the starting address of the subroutine so that the
subroutine may be called with the WRITEIO statement.

10 INTEGER A(0:5)
20 Address = READIO(9827,A(0))
30 PRINT “The address of A(*) is ”;Address

Interrupts
Interrupts allow the computer to perform other tasks while you wait for some condition to occur. This eliminates the need to
continually monitor for some event.

ON INTR Statement
The ON INTR statement defines an event branch to be taken when an interface card generates an interrupt. You specify the
interface select code, an optional priority and the branch type. The branch type may be either a GOTO, GOSUB, CALL, or
RECOVER. For example:

ON INTR 7,4 GOSUB Repair

When an interrupt occurs a DISABLE INTR for the interface is automatically executed. Consequently, an ENABLE INTR statement
must be used to explicitly re-enable interrupts.

The default priority is one. The highest priority that can be specified is fifteen. ON END, ON ERROR, and ON TIMEOUT have a
higher priority than ON INTR. When an INTR initiated branch is taken with a GOTO the system priority is not changed. When an
ON INTR branch specifies a CALL or GOSUB the system priority is changed to the specified priority.

RECOVER causes the program to SUBEXIT from contexts as needed to return to the defining context and resume execution at
the specified program line. ON INTR statements that specify CALL or RECOVER will be serviced even if the program context has
been changed to another subprogram. ON INTR statements that specify GOTO or GOSUB will be logged and then serviced when
control returns to the defining program context.

ON INTR is canceled by OFF INTR, disabled by DISABLE or DISABLE INTR.

OFF INTR Statement
The OFF INTR statement cancels event branches defined by ON INTR. Any INTR events that have been logged but not yet
serviced are canceled. An OFF INTR statement without the optional interface select code disables event-initiated branches on all
devices. If the interface select code is specified only that interface interrupt will be disabled. For example:

OFF INTR 7

cancels event branches for the IEEE-488 interface.

Enabling and Disabling Interrupts
The DISABLE statement disables all defined event branches except END, ERROR, and TIMEOUT. While disabled, the first event
of each type that occurs, is logged. When event branching is re-enabled with the ENABLE statement, all logged events are
serviced in the order of their event priorities.

The DISABLE INTR Statement disables interrupts from just the specified interface. For example:

DISABLE INTR 7

disables interrupts from the IEEE-488 interface.

The ENABLE INTR statement enables interrupts from a specified interface. An optional bit mask is stored in the interface interrupt-
enable register. The default bit mask is the previous bit mask for that interface, or if there is no previous bit mask then a bit mask
of all zeros is used. The meaning of the bit mask depends on the interface; consult the interface documentation. For example:

ENABLE INTR 9;1

enables interrupts on the RS-232 interface and stores one into the interface interrupt-enable register. For the serial interface, one
happens to mean “interrupt when a character is received.”

Interrupt Routines
When an interrupt occurs, the event handler would typically perform the following steps: 1) find out what action needs to be taken,
2) perform the needed action, 3) perform whatever interface specific action is necessary to acknowledge the interrupt, and 4) re-
enable interrupts with the ENABLE INTR command. The following example shows the typical sequence of statements used for
interrupt set up and handling:

10 ON KBD CALL To_modem
20 ON INTR 9 CALL From_modem !Tell BASIC to interrupt
30 ENABLE INTR 9;1 !Tell interface to interrupt
40 LOOP
50 DISP TIME$(TIMEDATE) !Now free to do something
60 END LOOP !while you wait
70 END
80 SUB From_modem
90 WHILE BINAND(STATUS(9,10),1)
100 PRINT CHR$(STATUS(9,6)); !Interface dependent ack.
110 END WHILE
120 ENABLE INTR 9;1 !re-enable the interrupt
130 SUBEND
140 SUB To_modem
150 OUTPUT 9;KBD$;
160 SUBEND

Specialized I/O Statements
In addition to the general I/O statements explained above, several statements are provided for specialized I/O. PRINT, DISP,
INPUT, and LINPUT allow specialized I/O with the CRT or keyboard. They are explained in Chapter 6, “CRT and Keyboard.” The
PRINT statement can also be redirected to a printer. READ and DATA allow data to be stored within the BASIC program itself.
BEEP allows tone generation on computers with the necessary hardware.

READ/DATA Statements
The READ statement is quite similar to the INPUT statement. However, the values are read from DATA statements instead of the
keyboard. DATA statements contain string and/or numeric constants separated by commas. This provides a convenient method of
embedding known data that your program requires, right in the program itself. The first READ statement in a context reads the first
DATA statement in that context. Each READ statement thereafter maintains a DATA pointer that moves to the next item after each
is read from the DATA statement. The DATA pointer can be reset to the beginning of any DATA statement in the context with the
RESTORE statement.

READ statements can be useful for initializing the values of several program variables more compactly than with individual [LET]
assignment statements. It is also handy for table data that you can READ into an array.

The following example shows the use of the DATA, READ and RESTORE statements.

100 DATA 1,2,"STRING CONSTANT",10
110 READ A,B,A$,C ! read data from line 100
120 DATA 13,24,36,42,59
130 DIM D(4),E(4)
140 READ D(*) ! read array data from line 120
150 MAT D=D*(B)
160 RESTORE 120
170 READ E(*) ! read data from line 120 again
180 END

Note that line 160 specifies line 120 as the data statement to be restored since there is a previous data statement in line 100. If
line 120 were the first data statement in the program, line 160 could be simply RESTORE with no line number.

BEEP Statement
BEEP is a statement used to play music or tones by producing notes of a certain frequency and duration. HP BASIC rounds the
frequency value to a multiple of 81.38 Hz and supports a range of 81 Hz to 5.208 KHz.

10 REM — Print table of musical notes.
20 REM — Also play C-major scale.
30 A4=440 ! Frequency of the reference note
40 R=2^(1/12) ! One octave doubles the frequency, 12 half-steps in octave
50 C4=A4/(R^9)! Scale goes from C to B
60 DATA C,C#,D,D#,E,F,F#,G,G#,A,A#,B
70 DIM Name$(11)[2]
80 READ Name$(*)
90 N=C4/8 ! start at C1
100 CLS ! clear the screen
110 FOR Octave=1 TO 7
120 Col=1+(Octave-1)*11
130 PRINT TABXY(Col,1);"Note Freq|";
140 PRINT TABXY(Col,2);"—————+";
150 FOR Note=0 TO 11
160 OUTPUT A$ USING “3A,X,4D.D,#”;
 Name$(Note)&VAL$(Octave),N
170 PRINT TABXY(Col,Note+3);A$;"|"
180 IF Octave>1 AND LEN(Name$(Note))=1 THEN BEEP N,.25
190 N=N*R
200 NEXT Note
210 PRINT TABXY(Col,15);"—————+";
220 NEXT Octave
230 BEEP N,.5 ! complete the last scale
240 END

This example demonstrates the BEEP statement, while also producing a useful table. The program plays C Major scales for
octaves two through seven. At the same time, it prints a table of musical notes and their associated frequencies. The frequencies
printed are for the Equal Tempered Chromatic Scale adopted by the American Standards Association in 1936. The “A” note in the
fourth octave (A4) is the reference note and has a value of 440 Hertz. An increase of one octave, to A5 doubles the frequency,
while moving down one octave halves the frequency. Twelve half-steps compose an octave and are equally spaced geometrically
(rather than arithmetically). That is, the ratio of frequencies between any two adjacent notes is a constant.

Another standard that exists uses A4=435. This was an International standard adopted in 1891. The program is easily modified to
show this scale. Change the value 440 in line 30 to 435. Other modifications could change the base of the scale from “C” to
something else, or change the number of notes in a scale.

On the PC, the period (not the frequency) is rounded to a multiple of 0.838 micro-seconds. The range of frequencies is 40.7 Hz to
32.767 Khz.

Summary
This chapter discussed the general I/O (input/output) facilities of HTBasic for screen, keyboard, devices, strings, buffers and files.
Formatted I/O with IMAGE and USING statements were explained. The special I/O statements BEEP and DATA statements were
presented. Additional details and examples of I/O directed to files and devices are presented in the following chapters.

CRT, Keyboard and Printer
This chapter discusses I/O (input/output) facilities for the screen and keyboard. The general I/O statements presented in Chapter 5
are given, as well as special statements for display, keyboard, and printer support. Controlling various attributes of the screen and
keyboard, including screen colors, is explained. Finally, tables of the CRT and KBD registers are given.

Display (CRT)
The CRT is the display on your computer. CRT stands for Cathode Ray Tube and is often used as a synonym for display, even
when the display is not a tube. When HTBasic starts, it automatically uses the Windows display driver.

The interface select code (ISC) of the CRT is permanently set to 1. This ISC is used so often, a special function, CRT, can be used
to return the value 1, while providing a mnemonic for the ISC.

OUTPUT CRT;"Hello World"
ASSIGN @Output TO CRT

Display Organization
As explained in Chapter 1, “Language Elements,” the computer display is organized in a very particular way by HTBasic. Different
statements affect different parts of the display. To display information in the output area, use the OUTPUT or PRINT statements.
To display information on the Display Line, use the DISP statement. The Input Lines show the information the user types in
response to queries by your programs. Information can be pre-loaded into the Input Lines by using OUTPUT KBD. The message
line shows various system messages as well as live keyboard calculator results. The softkey menus display the current softkey
macros unless an ON KEY is active, in which case the ON KEY LABEL overwrites the softkey macro for that key. Each of these
areas of the screen are discussed in more detail through out this chapter.

OUTPUT CRT
The OUTPUT CRT statement sends information to the output area of the screen. OUTPUT CRT uses rules consistent with
OUTPUT to other devices and is useful for verifying I/O program correctness. However, the PRINT statement is often better suited
for screen output.

PRINT
The PRINT statement is provided to allow easy printing of information on the screen or to a printer. By default, PRINT output goes
to the screen, but the PRINTER IS statement can be used to redirect output from the PRINT statement to a printer, device, or file.
The PRINTER IS statement can also set the width at which output should wrap, and the characters that should be sent at the end
of a line. These features allow easy use of many different printers.

DISP Statement
The DISP statement is very similar to the PRINT statement. However, DISP output goes to a part of the screen known as the
display line. When the semicolon is used to end display output, the display line will scroll to the left if output goes off the right end
of the display line. Most other aspects of the DISP statement match those of the PRINT statement.

PRINT and DISP Statements
With both PRINT and DISP, if you separate arguments in a print list with commas, they will be printed in columns. The columns are
ten characters wide. If you want “compressed” format, substitute a semicolon in place of the comma. In compressed format,
numerics are printed with one additional trailing space and strings are printed with no additional spaces. You may also end a print
list with a semicolon to suppress the usual CR/LF that forces a new line. Then you can continue output on the same line with
another PRINT statement. If the default PRINT/DISP formats are not acceptable, USING can be specified to format the data as
desired.

Numbers are printed with twelve significant digits. If the number is outside the range 1E-4 and 1E+6 then the number is printed in
scientific notation. If the number is positive, it is always preceded by one space, even in the compressed format. If it is negative,
the negative sign is printed in place of the leading space.

Complex numbers are printed in rectangular form, first the real part, then an extra space, and finally the imaginary part. The real
and imaginary parts are printed using the print rules given in the previous paragraph.

You can position text on the screen with TAB(column) and TABXY(column,row). The left-most column is column one, and the top-
most row is row one. TAB can also be used on a printer; TABXY can only be used on the screen. The following example illustrates
use of TABXY.

10 ! Display time in upper-right corner for 30 seconds
20 St=TIMEDATE ! start time
30 REPEAT
40 PRINT TABXY(70,1);TIME$(TIMEDATE)
50 UNTIL TIMEDATE>St+30
60 END

A full array can be printed by using the array name with a full array specifier. The elements are printed in row major order, and in
fields determined by the punctuation following the array.

Display Functions
It is possible to disable the effect of the attribute characters just described, displaying them instead of executing them. This is
useful when debugging OUTPUT. The DISPLAY FUNCTIONS ON statement causes all control characters to be displayed but not
executed. The only exception is carriage return, CHR$(13), which is first displayed and then the print cursor is moved to column
one of the next line. DISPLAY FUNCTIONS OFF returns execution of attribute characters to normal.

This function is the equivalent of    pressing the DISPLAY FCTNS key, or executing the CONTROL CRT,4 statement.

CRT Related Statements
There are several statements that affect the CRT. Consult the on-line Reference Manual or use the HELP statement to obtain
more information on each of these statements.

Statement  What It Does
ALPHA ON/OFF Controls ALPHA screen visibility
ALPHA HEIGHT Sets the number of lines in ALPHA screen
ALPHA PEN Sets the ALPHA display color
CLEAR LINE Clears the keyboard input line
CLEAR SCREEN Clears the ALPHA display
CLS Abbreviation for CLEAR SCREEN
DUMP ALPHA Prints the contents of the ALPHA display
GRAPHICS ON/OFF Controls graphics screen visibility
KBD LINE PEN Sets the color of the input line
MERGE ALPHA Enables all planes for Alpha and Graphics
PRINT PEN Sets the output area and display line color
RUNLIGHT ON/OFF Controls run indicator visibility
SEPARATE ALPHA Simulates independent alpha and graphics

These statements affect the softkey menus:

Statement  What It Does
EDIT KEY Edits a softkey macro
KBD CMODE ON/OFF Changes softkey labels to match HP keyboards
KEY LABELS ON/OFF Controls the display of the softkey labels
KEY LABELS PEN Sets the color for the softkey labels
LOAD KEY Loads softkey macros from a file
ON/OFF KEY Defines an event branch for a softkey
SCRATCH KEY Deletes softkey macros
SET KEY Defines one or more softkey macros
SYSTEM KEY Displays the System Softkeys Menu
USER KEYS Displays the specified User Softkey Menu

CONTROL/STATUS CRT
The CONTROL CRT statement can be used to control various CRT attributes, while the STATUS CRT can be used to read the
status of those attributes. A complete list of the CONTROL and STATUS registers for the CRT is given at the end of this chapter.
The following is an example:

10 ON CYCLE 1,15 CALL Time
20 LOOP
30 PRINT TABXY(RND*68+1,RND*(STATUS(CRT,13)-)+1);CHR$(32+RND*96);
40 END LOOP
50 END
60 SUB Time
70 STATUS CRT,0;Col,Row
80 CONTROL CRT,0;70,1
90 PRINT TIME$(TIMEDATE);
100 CONTROL CRT,0;Col,Row
110 SUBEND

In this example, each time the SUB “Time” is called, the print position is remembered, the time is written in the upper-right-hand
corner of the screen, and then the print position is restored. Line 10 causes the sub to be called once a second. Lines 20 to 40 are
just to keep the program doing something, to demonstrate the updating of the time. These lines could be deleted and replaced
with whatever program you wish. Notice in line 30 the function form of STATUS and in line 70, the statement form.

ENTER CRT
ENTER CRT enters information from the CRT screen just as if it had been sent to the computer from some external device. The
present print position is the source of the data and is updated as data is entered. Trailing spaces on a line are ignored. The last
character on the line is a line-feed (LF) with an EOI signal.

10 PRINT TABXY(1,1);"HELLO!";TABXY(1,1);
20 ENTER CRT;A$

The string variable A$ is assigned “HELLO!”

Keyboard (KBD)
The interface select code (ISC) of the keyboard is permanently set to 2. This ISC is used so often, a special function, KBD, can be
used to return the value 2, while providing a mnemonic for the ISC.

ENTER KBD;A$
ASSIGN @Input TO KBD

ENTER KBD
ENTER KBD reads information from the keyboard. The INPUT and LINPUT statements also read information from the keyboard
but are designed especially for the keyboard and provide some features not supported by ENTER. The number builder rules are
not the same for the two. ENTER KBD uses rules consistent with ENTER from other sources and is useful for verifying I/O
program correctness. Toward this end, an EOI signal can be generated from the keyboard by entering a control-E before the
character to be sent with the EOI signal. This pseudo-EOI must be enabled with CONTROL KBD,12;1. No keystrokes are entered
into ENTER items until either a CONTINUE key or ENTER key is pressed. If CONTINUE is pressed, the present keyboard buffer
is transmitted through the I/O path to the ENTER statement with no appended characters. If ENTER is pressed, the buffer is
transmitted with CR/LF appended to the buffer.

INPUT Statement
The INPUT statement allows the user to assign a value to a variable by typing in the value on the keyboard. A prompt is displayed
on the display line. The INPUT statement can specify the prompt, or a question mark (?) will be used by default. To suppress the
prompt, specify a prompt string of “”.

The input statement can input values for simple variables, full arrays, array elements, or sub-strings. A full array name must be
followed by the full array specifier, “(*)”. Values for the array must be entered in row major order.

Leading and trailing spaces are ignored. Data values may be entered individually or multiple values may be entered at once. If
multiple values are entered, separate each value with a comma. If too many values are entered, the extra values are ignored. Both
quoted and unquoted strings are allowed. Commas are not allowed in unquoted strings, but may appear in quoted strings. To
embed one quotation mark in a quoted string, type in two quotation marks at the place you wish to have one appear.

Two consecutive commas cause the corresponding variable to retain its old value. Terminating an input line with a comma or
pressing CONTINUE or ENTER without entering any data retains the original values for all remaining variables in the list.

Let’s look at a simple program to INPUT a value and assign it to a variable and then examine how to improve it.

10 DISP “Enter a file name”;
20 INPUT F$
30 END

Now let’s see how to do this in just one statement:

10 INPUT “Enter a file name: ”,F$
20 END

To provide a default answer we might do the following:

10 F$ = “STUDENT.DAT”
20 INPUT “Enter a file name <STUDENT.DAT>: ”,F$
30 END

If the default answer is OK with the user, he need only press ENTER to accept the default. If it is not OK, he can enter the proper
value. Of course, this behavior would need to be documented somewhere in the instructions given to the user.

LINPUT Statement
The LINPUT statement differs slightly from the INPUT statement. Only one value can be input with each LINPUT statement, the
variable must be a simple string, string element, or sub-string. All characters typed, including commas and quotation marks, are
stored in the variable. Only the end-of-line character will delimit the data.

OUTPUT KBD
OUTPUT KBD sends keystrokes to the keyboard buffer, just as if someone had typed them. This can be useful in giving the user a
default response for INPUT that she can edit:

10 OUTPUT KBD;"STUDENT.DAT";
20 INPUT “Enter a filename:”,F$
30 END

Function keys can be simulated by sending the two character sequences to the KBD device. The first character is a CHR$(255).
This value is followed by a character that specifies the function key. A table giving the second character codes is found in Chapter
4 of the Installing and Using manual.

10 OUTPUT KBD;"""AUTOST File Complete"""&CHR$(255)&"E";
20 WAIT 1
30 OUTPUT KBD;CHR$(255)&"!"&"SCRATCH"&CHR$(255)&"E";
40 END

The first line in this example shows how to display your own messages on the message line. The ENTER key is output to the
keyboard with the two characters, CHR$(255)&"E". The semicolon at the end of the line prevents carriage-return/line-feed
characters from being sent to the keyboard. Line 30 is a handy line to execute at the end of your AUTOST file. The CHR$(255)&"!"
characters are the STOP key, followed by a SCRATCH statement. This will cause your AUTOST file to be SCRATCHed from
memory after it is executed.

The CHR$(255) character displays as a reverse-video “K” on an HP BASIC Workstation. On other computers, it displays
differently. PCs using standard PC character sets (code pages) display the character as a space. It is possible to load an HP
compatible character set. See Chapter 12, “International Language Support.”

CONTROL/STATUS KBD

The CONTROL KBD statement can be used to control various keyboard attributes, while the STATUS KBD can be used to read
the status of those attributes. A complete list of the CONTROL and STATUS registers for the keyboard is given at the end of this
chapter. The following is an example:

CONTROL KBD,16;1

This register disables all scrolling keys. This is useful if you have displayed a screen image that you wish to prevent the user from
scrolling off the screen.

Using a Printer
A printer can be handled just like any other device. To use the printer, you need to know the device selector for it. The most
common device selectors for printers are 10, 9, 26 and 701. The Windows default printer using the Print Manager is 10. The
default device selector for the first centronix port is 26 (LPT1 on a PC). The default device selector for first serial port is 9 (COM1
on a PC). The default device selector for an IEEE-488 printer with primary address 1 is 701. These values are default values and
may be different on your system if you specified different values when you loaded the interface device drivers.

100 SUB Print4(A$) ! subprogram to support 4 printers at once
110 OUTPUT 9;A$! first the serial printer
111 PRINTER IS 10 ! second the Windows default printer
112 PRINT A$
113 PRINTER IS CRT ! back to the CRT
120 OUTPUT 26;A$! next the parallel printer
130 OUTPUT 701;A$! last the IEEE-488 printer
140 SUBEND

This example is a subprogram for a user who wishes to use four printers simultaneously. One printer is hooked to the RS-232 port,
one to the Centronix port, and one to the IEEE-488 bus. Print4(String-expression) is used to send output to all three printers. The
point is that a printer can be treated just like any other device.

The PRT function
Just as the special functions CRT and KBD exist because the screen and keyboard are accessed so frequently, there exists a
special function, PRT, which can be used to access the printer. One problem exists, however. The ISCs for the screen and
keyboard are permanently set but the printer’s is not. The printer can be hooked to any interface. Or more than one printer may be
hooked up at the same time. What value, then, should PRT return? HP BASIC approaches the dilemma by assigning 701 to PRT,
regardless of where your printer is.

HTBasic solves the dilemma by letting you change the value of PRT. By default, it is 10, but you may execute a CONFIGURE PRT
statement in your AUTOST file to change the value if needed. PRT can only assume a numeric value; it is not possible to assign a
file to PRT. As shown in the Print4 example above, you don’t have to use the PRT function to output to a printer. It is available as a
convenience only.

10 PRINTER IS PRT
20 PRINT “PRT = ”;PRT
30 END

This example prints the value of PRT to the printer. PRT, KBD, and CRT are just ordinary functions, and can be used anywhere a
normal function is used.

The PRINTER IS device
The CAT, LIST, PRINT, and XREF statements send output to the “PRINTER IS” device. By default this is the CRT, but it can be
changed with the PRINTER IS statement to a printer (or any other device) or a file. Thus, screen output produced by these
statements can easily be redirected to your printer.

The PRINTER IS statement has facilities for adapting printer output for various printers. The output can be set to wrap at a
specified WIDTH, or wrap can be disabled altogether. The characters sent at the end of a line (EOL), CR/LF by default, can be
changed to match that expected by your printer. The PRINTER IS statement can even specify that EOI be sent with the EOL for
IEEE-488 printers. Many older printers lose characters sent while the printer is returning the carriage. This character loss can be
prevented by specifying a delay after an EOL sequence.

When PRINTER IS is set to a file, the file is opened and the previous contents of the file are discarded. To append to the file rather
than replace the current contents, use the APPEND option.

The following example program lists itself twice, once to the printer, and once to the CRT.

10 PRINTER IS 9 ! redirect output to the serial printer
20 LIST
30 PRINTER IS CRT ! back to the screen
40 LIST
50 END

The PRINTALL IS device
The PRINTALL IS statement is related to the PRINTER IS statement. The PRINTALL IS statement assigns a logging device for
operator interaction and error messages. It works in conjunction with the print-all mode. When the print-all mode is on, all
messages output to the screen (including output area, DISP line, keyboard line, and message line) are printed on the PRINTALL
device. When print-all mode is off, output appears only in the normal places, and no information is sent to the PRINTALL device.

The print-all mode is toggled between on and off each time the PRT ALL key is pressed. STATUS(KBD,1) returns a 1 if print-all
mode is on, and 0 if it is off. A program can turn print-all mode on with CONTROL KBD,1;1 and off with CONTROL KBD,1;0

Print-all is a powerful debugging tool. Use it in connection with TRACE to print TRACE messages about program execution. Also,
certain error conditions can produce more than one line of output. Only the last message is visible on the message line. With print-
all on, all the messages can be read on the PRINTALL device. The PRINTALL IS command defines where these messages are
printed. Sent to a printer, PRINTALL allows permanent logging of output. The PRINTALL device is set to the default CRT at startup
and after a SCRATCH ALL.

CRT and KBD Registers
The following tables give the CONTROL and STATUS registers for the CRT and KBD. No READIO or WRITEIO registers are
available for these devices.

CRT CONTROL Registers
The following CONTROL registers are supported.

0 - Set the current Print Column. The left most column is one.

1 - Set the current Print Row (line). The output area top line is one.

2 - Set Insert/Replace Mode. 1 - insert mode, 0 - replace mode.

3 - This register is undefined in both HTBasic and HP BASIC.

4 - Set/Reset Display Functions Mode. 1 - Control characters (including attribute characters CHR$(128) to CHR$(158)) are
displayed instead of executed. 0 - control characters execute normally and are not displayed. This command is equivalent to the
DISPLAY FUNCTIONS statement.

5 - Set the default ALPHA screen color (automatically sets registers 15, 16, and 17). This command is equivalent to the ALPHA
PEN statement. For bit-mapped displays (CRTB), specify a pen number, 0 to 15. For alpha displays (CRTA), specify a color
attribute character, 136 to 143:

Value          Color
136 White
137 Red
138 Yellow
139 Green
140 Cyan
141 Blue
142 Magenta
143 Black

6 - This register is undefined in both HTBasic and HP BASIC.

7 - The control register that extends the functionality of the SUSPEND INTERACTIVE

Value            Meaning

0 Enable all keyboard keys.
1 isable all keyboard keys but RESET key.
2 Disable RESET key only.
3 Disable all keyboard keys.

8 - Set the current print column of the display line. The left most column is one.

9 - This register is undefined in both HTBasic and HP BASIC.

10 - Set cursor visibility. 1 - cursor on. 0 - cursor off.

11 - CRT character mapping is not supported by HTBasic.

12 - Turn Softkey Menus (Function key labels) on or off.

Value            Meaning
0 Same as 2, except that when running the menus are displayed only if an ON KEY is active in the current menu.
1 Softkey menus off. Same as KEY LABELS OFF.
2 Softkey menus on. Same as KEY LABELS ON.

13 - Set the CRT Height. Sets the number of rows on the CRT that are actually used. The number includes the softkey menus,
message line, input line, display line, a blank line, and the output area. Thus a value of 9 (the minimum allowed) provides for two
lines in the output area.

14 - The Display Replacement Rule is not supported by HTBasic.

15 - Set the PRINT/DISP Color. Like CONTROL 5, but only affects the output area and the display line. This command is
equivalent to the PRINT PEN statement.

16 - Set the Softkey Menu Color. Like CONTROL 5, but only affects the softkey menu color. This command is equivalent to the
KEY LABELS PEN statement.

17 - Set the Input Line Color. Like CONTROL 5, but only affects the input and message lines. This command is equivalent to the
KBD LINE PEN statement.

18 - The ALPHA Write-enable Mask is not supported by HTBasic. Use SEPARATE or MERGE ALPHA instead.

19 - This register is undefined in both HTBasic and HP BASIC.

20 - The ALPHA Display-enable Mask is not supported by HTBasic. Use SEPARATE or MERGE ALPHA instead.

21 - Select Compatibility Display is not supported by HTBasic. Use PLOTTER IS 3 or 6 instead.

100 - Set alternate Attribute Control range. The characters in the range CHR$(128) to CHR$(143) normally control text attributes
and colors. Unfortunately, some character sets, including PC code pages use this range for international character support. This
register can be used to reassign the attribute and color control characters to the range CHR$(16) to CHR$(31), leaving the
international characters available for display. 1 - Use the alternate range CHR$(16) to CHR$(31) for attribute control. 0 - Use the
normal range CHR$(128) to CHR$(143) for attribute control. This alternate range applies only to values used with the CHR$

function. Values used with CRT registers and the ALPHA PEN, etc. statements are left unchanged.

101 - Set font size. This register is not supported by HTBasic. Use the -FN command line switch instead.

110 - Toggle dithering on or off: 0 = Dither (default), if supported by system or 1 = No dither.

CRT STATUS Registers
The following STATUS registers are supported.

0 - Get the current Print Column. The left most column is one.

1 - Get the current Print Row (line). The output area top line is one.

2 - Get Insert/Replace Mode. 1 - insert mode, 0 - replace mode.

3 - Get the number of lines in the extended output area that are above the top line of the screen.

4 - Get Display Functions Mode. 1 - on, 0 - off.

5 - Get the default ALPHA screen color. The value does not show changes made using registers 15, 16, 17 and CHR$() character
attributes.

6 - Get the ALPHA ON/OFF flag.

7 - Get the GRAPHICS ON/OFF flag.

8 - Get the current print column of the display line. The left most column is one.

9 - Get the Screen Width.

10 - Get the cursor visibility. 1 - cursor on. 0 - cursor off.

11 - Get the CRT character-mapping-disable flag. Always a 0 in HTBasic.

12 - Return the Softkey Menus mode.

13 - Get the CRT Height.

14 - Get the Display Replacement Rule. Not supported by HTBasic.

15 - Get the PRINT/DISP Color.

16 - Get the Softkey Menu Color.

17 - Get the Input Line Color.

18 - Get the alpha write-enable mask. The write-enable mask is set by the MERGE ALPHA and SEPARATE ALPHA statements on
bit-mapped displays.

19 - Get the value of ALPHA MASK. Not supported by HTBasic.

20 - Get the ALPHA display-enable mask. Not supported by HTBasic.

21 - Get the compatibility mode flag. Not supported by HTBasic.

100 - Get alternate Attribute Control range flag. 1 - Alternate range, 0 - normal range.

110 - Get Dithering status: 0 = Dithering possible; 1 = No Dither.

KBD CONTROL Registers
The following CONTROL registers are supported.

0 - Set CAPS LOCK flag. 1 - set CAPS LOCK on, 0 - set CAPS LOCK off.

1 - Turn PRINTALL mode on/off. 1 - on, 0 - off. The PRT ALL key can also be used to toggle the mode on and off. See PRINTALL
IS earlier in this chapter or in the on-line Reference Manual for a detailed explanation of    PRINTALL.

2 - Set Softkey Menu: 0 - SYSTEM Softkeys, 1 - User Softkey menu 1, 2 - User Softkey menu 2, 3 - User Softkey menu 3.

3 - Set keyboard typematic repeat interval. This register is not supported. Use the Windows keyboard control panel to set the
repeat interval.

4 - Set delay before typematic action starts. This register is not supported. Use the Windows keyboard control panel to set the
delay.

5 - This register is undefined in both HTBasic and HP BASIC.

6 - This register is undefined in both HTBasic and HP BASIC.

7 - Disable Keyboard Interrupts:

Value          Meaning
0 Enable all keyboard keys.
1 Disable all keyboard keys but RESET key.
2 Disable RESET key only.
3 Disable all keyboard keys.

8 - This register is undefined in both HTBasic and HP BASIC.

9 - This register is undefined in both HTBasic and HP BASIC.

10 - This register is undefined in both HTBasic and HP BASIC.

11 - Knob Pulse Mode is not supported by HTBasic.

12 - Set EOI flag. 1 - If CTRL-E is entered, then EOI is sent with the next character that is entered. 0 - CTRL-E has no special
meaning.

13 - Katakana mode is not supported by HTBasic.

14 - Set base softkey number. 0 - Lowest softkey will be softkey 1 (default), 1 - Lowest softkey will be softkey 0. This register has
no affect with KBD CMODE ON.

15 - Turn KBD CMODE ON/OFF. A non-zero value turns KBD CMODE ON for Nimitz compatibility. The Nimitz Keyboard is the
98203 keyboard used on the 9836. It has ten function keys, and the lowest function key is 0. A zero value turns KBD CMODE OFF,
ITF compatibility (the default). The ITF Keyboard is the 46020 Keyboard used on Series 300 computers. It connects to the
computer using the HIL interface, has eight function keys, and the lowest function key is 1. This command is equivalent to KBD
CMODE {ON|OFF}.

16 - Disable scrolling keys: UP, DOWN, PREV, NEXT, BEGIN, and END. This allows a program to freeze the screen display, not
allowing the user to scroll it off. A non-zero value disables scrolling and a zero value enables it.

100 - Controls the “Program Modified” dialog received when attempting to LOAD, GET, SCRATCH, or QUIT when the current
program has been modified. The default is 1 or ON (QUIT ALL warning appears).

101 - Controls the auto update to new program dialog warning. Controls the “Overwrite Previous Version” dialog warning for
overwriting a previous version file format with the converted file format. A value of 0 (default) does not bypass this warning
message. A value of 1 bypasses the warning message.

202 - Controls performance tuning under Windows. The tradeoffs of increased HTBasic performance are decreased Windows
response and decreased performance in other simultaneously executing Windows applications. The decreased Windows
response is most noticeable as delayed response to mouse and keyboard input in all applications including HTBasic. Valid input is
in the range of 0 to 32767, the default is 4. The performance gain with increasing value is non-linear, most improvement occurs in
the bottom 10% of the parameter’s range.

203 - Mouse movement interaction with ON KBD$: 0 = Allows interaction; 1 = Disallows interaction.

204 - Mouse click interaction with ON KBD$: 0 = Allows interaction; 1 = Disallows interaction.

206 - Toggle ALT key behavior: 0 = Windows default; 1 = HTBasic settings.

207 - The Graphics Speed tuning register allows dynamic thread priority setting. With the thread priority set to NORMAL, (i.e. 0)
graphics will run quicker. If the user needs the ON KNOB or ON CYCLE to work properly, set KBD 207 to 3. This will give the
mouse better response time, but will compromise graphic speed. To give graphics a higher priority, set KBD 207 to -3.

210 - Toggle QUIT behavior: 0 = QUIT (closes the program child window); 1 = QUIT ALL (closes HTBasic application as does the
QUIT ALL command).

KBD STATUS Registers
The following STATUS registers are supported.

0 - Get CAPS LOCK flag. Under the X Windows System, this register is undefined.

1 - Get Print All mode state.

2 - Get Softkey Menu number.

3 - This register is undefined in both HTBasic and HP BASIC.

4 - This register is undefined in both HTBasic and HP BASIC.

5 - Get the KBD$ Buffer Overflow Flag. A one means an overflow has occurred since the last time the register was read. Reading
the register sets the flag to zero.

6 - Get the softkey macro expansion overflow flag. 1-overflow. Reading this register resets it to 0.

7 - Return Keyboard Interrupt Disable Mask.

8 - Return Keyboard Language. Always 0 - US ASCII.

9 - Return Keyboard Type. Always 0 - “Other Keyboard.”

10 - Return State of Shift keys at the time of the last KNOB event.

Value            Meaning
0 Neither key pressed
1 SHIFT key pressed
2 CTRL key pressed
3 Both keys pressed

11 - Get Horizontal/All Pulse Mode flags. Always 0 - horizontal-pulse mode.

12 - Get EOI flag.

13 - Get Katakana flag.

14 - Get base Softkey number. 1 - base is 0, 0 - base is 1.

15 - Get keyboard compatibility flag. 0 - ITF, 1 - Nimitz.

16 - Get scrolling disable flag. 1 - disabled, 0 - enabled.

100 - Gets the “Program Modified” dialog status.

202 - Returns status of the performance tuning register.

203 - Returns status of mouse movement interaction with ON KBD$.

204 - Returns status of mouse click interaction with ON KBD$.

206 - Returns ALT key status: 0 = Windows default; 1 = HTBasic settings.

207 - Returns status of the Graphics Speed tuning register.

210 - Returns QUIT behavior status.

Summary
This chapter discussed the general I/O statements (ENTER, OUTPUT, STATUS, and CONTROL) as they apply to CRT and KBD.
The special statements for screen and printer were presented:    PRINT, DISP, PRINTER IS, and PRINTALL IS. The mnemonic
functions CRT, KBD, and PRT were explained.    Attribute control characters were given. CONTROL and STATUS registers for
CRT and KBD were listed.

Files
This chapter explains how to perform input and output to files. File management commands are presented. The different file types
are explained, random and sequential file access examples are given, and file formats are discussed. An example program
showing how to convert from one file type to another is shown.

Chapter 5, “General Input and Output,” discussed the general principles used for input/output (I/O). These principles apply to files
as well as other I/O targets. In particular, use of ASSIGN, OUTPUT, ENTER, STATUS, and CONTROL were explained. If you have
not yet read that chapter, you should do so before reading this chapter.

A file is a collection of data that is kept on disk rather than in the computer’s memory. When the computer is turned off, the data in
the computer memory is lost but the data in a file is not.

File Management Commands
Several commands are available for managing files and the file system. It should be remembered that a major difference between
HTBasic and workstation HP BASIC is that HTBasic is the guest of an operating system and HP BASIC is the operating system.
As a guest of an operating system, HTBasic must live by the rules established by that system.

Please see the on-line Reference Manual for a more detailed description of each of these statements:

ASSIGN
ASSIGN is the equivalent to the OPEN command in other computer languages. It was explained in Chapter 5.

10 ASSIGN @Io TO “C:\RMB\HP-UX.BAT”;FORMAT ON,RETURN S
20 IF S THEN
30 PRINT “Oops, Error”;S;"opening the file"
40 PAUSE
50 END IF
60 OUTPUT @Io;"cd \hp-ux"
70 OUTPUT @Io;"kermit take hp320.tak",END
80 ASSIGN @Io TO *
90 EXECUTE “hp-ux”
100 END

This example shows the ASSIGN command being used to access a file called “HP-UX.BAT”. (The file must already exist. Use
CREATE to create a new file.)    If the ASSIGN takes place correctly, then OUTPUT is used to send some data to the file. The END
in the last OUTPUT causes the file to be truncated at that point. This is useful if the old file contents were longer than the new
contents. Finally, “ASSIGN ... *” is used to close the I/O path associated with the @Io variable.

CAT
CAT displays a mass storage device directory (catalog of files), or PROG file subprogram information. Several options are
available. A path-specifier may be included to show which device or part of a file system to catalog. The catalog may be displayed
on the current PRINTER IS device, or sent to another device or a string array. A COUNT of the entries can be returned. Only the
names of the files, or complete information about the files, can be selected. Header information about the file system can be
displayed or suppressed. All or only part of the files can be selected for display.    For example:

CAT “*.BAS”

CHGRP and CHOWN
CHGRP and CHOWN are useful with an operating system like UNIX in which files are owned by individuals and groups. These
commands allow a user with the appropriate privilege to change or assign ownership of files. These commands are not used in
HTBasic.

COPY
COPY is used to make a copy of a file. If a file already exists with the destination name, an error is normally returned. To suppress
the error the “;PURGE” option may be specified at the end of the statement. An    example of the COPY statement is

COPY “DATA.1" TO ”A:DATA.1"

HTBasic does not support the copy of a full disk to another disk. You can use the EXECUTE command and the DOS “DISKCOPY”
or “XCOPY” commands.

CREATE
CREATE is used to create a new file or directory. Although SAVE and STORE will automatically create a new file to store a
program in, data files must be explicitly created before they can be used in ASSIGN, DUMP DEVICE IS, PRINTALL IS, or
PRINTER IS statements.

The four forms of the CREATE statement are CREATE, CREATE ASCII, CREATE BDAT, and CREATE DIR.    The plain CREATE
statement creates an ordinary file (DOS, NT, or UNIX). CREATE ASCII and CREATE BDAT create LIF ASCII or BDAT type files
(more on these later).    CREATE DIR creates directories.

The CREATE command specifies the maximum number of records to allocate for the file. However, Windows allows the maximum
size of a file to be extended anytime the maximum number of records is exceeded. The number of records specified in the
CREATE command is ignored and space for the file is allocated only as needed.

CREATE “TEMP.TXT”,0
CREATE BDAT “DATA.DAT”,12,34

INITIALIZE
INITIALIZE is used to format a new disk. Used on an old disk, it completely erases all previous contents of the disk.    HTBasic
does not support INITIALIZE. To initialize a new LIF disk, use an HP BASIC workstation. To initialize a PC disk, use the File
Manager. Select “Disk” and then “Format Disk...”.

To programmatically FORMAT a disk, use the EXECUTE statement to call the FORMAT command:

EXECUTE “FORMAT A:”

LINK
LINK creates a new directory entry for an existing file. This is called a hard link. After creating the link, both the old name and the
new name refer to the same file. LINK is not supported by HTBasic.

LOCK and UNLOCK
LOCK/UNLOCK are used to secure (or release) a file for exclusive use. These commands are designed for use on multitasking or
network systems to prevent two users or two processes from using the same file at the same time, preventing them from making
conflicting transactions.

10 ASSIGN @Path TO “airline.seats”
20 ASSIGN @Travelagency TO 705
30 ENTER @Travelagency;Requested
40 REPEAT
50 LOCK @Path;CONDITIONAL Notlocked
60 Locked= NOT Notlocked
70 UNTIL Locked
80 ENTER @Path;Available,Booked
90 IF Requested>Available THEN
100 UNLOCK @Path
110 OUTPUT @Travelagency;"Only “;Available;” available"
120 ELSE
130 RESET @Path
140 Available=Available-Requested
150 Booked=Booked+Requested
160 OUTPUT @Path;Available,Booked
170 UNLOCK @Path
180 OUTPUT @Travelagency;"OK"
190 END IF
200 ASSIGN @Path TO *
210 END

MASS STORAGE IS
MASS STORAGE IS and the abbreviation, MSI, allow you to specify the device and path specifier to be used by default when no
explicit device and path specifier are given. For example, a CAT command, without a path specifier will display files from the
default path specifier. As another example, these two programs ASSIGN the same two files:

10 MSI “A:” 10 ASSIGN @File1 TO “A:FILE1"
20 ASSIGN @File1 TO ”FILE1" 20 ASSIGN @File2 TO “B:FILE2"
30 MSI ”B:"
40 ASSIGN @File2 TO “FILE2"

PERMIT
PERMIT is used under UNIX to set the permissions (mode) of a file, directory, or device. To change file attributes with HTBasic,
use the PROTECT statement.

PRINT LABEL and READ LABEL
PRINT LABEL and READ LABEL are used to set and read the volume label of a disk drive. HTBasic does not support PRINT
LABEL; you must use the DOS “LABEL” command or the File Manager. This example shows the use of READ LABEL:

10 MASS STORAGE IS “C:”
20 READ LABEL A$
30 IF A$="No Label" THEN
40 PRINT “The volume in drive C has no label”
50 ELSE
60 PRINT “The volume in drive C is ”;A$
70 END IF
80 END

PROTECT
PROTECT is used to set LIF file passwords under HP BASIC and file attributes under HTBasic.

A special form of PROTECT is used by HTBasic to change file attributes. The syntax is

PROTECT file-specifier, protect-code

where protect-code is a string containing zero or more of the following characters:

Character            Meaning
(none) no protection
R Read-only: File cannot be written or deleted.
S System file: This attribute usually has no meaning.
H Hidden: File will not be listed by CAT.

If a character is not included, that attribute is cleared. If the string is blank, all attributes are cleared. For example:

PROTECT “FILE1",”R"

PURGE
PURGE is used to delete files and directories.

PURGE “FILE1"

RENAME
RENAME is used to change the name of a file, but can also be used to move a file from one directory to another directory or disk.

RENAME “C:\HTB\AUTOST” TO “C:\AUTOST.BAS”

RESET
When RESET is used with a file, the file position is set to the beginning of the file.

10 ASSIGN @I TO “TEMP.TXT”;FORMAT ON
20 OUTPUT @I;"HELLO"
30 RESET @I
40 ENTER @I;A$
50 PRINT A$
60 END

SYSTEM$("MSI")
SYSTEM$(“MSI”) allows you to read the present MASS STORAGE IS path specifier.

PRINT “The present MSI is ”;SYSTEM$(“MSI”)

WILDCARDS
The WILDCARDS statement enables or disables wildcard support. Wildcards are characters that can be used in a filename as a
template to select a group of files to be operated upon. A filename with wildcard characters in it will be compared with existing
filenames using special rules and all filenames that “match” are acted upon. Under HTBasic, wildcards are supported only in the
CAT statement.

If the WILDCARDS statement is executed, it will return an error because wildcarding is always on. The question mark “?” and the
asterisk “*” are the wildcard characters.

File Types
HTBasic supports several file types. Typed files for data are LIF ASCII and BDAT. HTBasic also supports files without a file type.
HTBasic calls such files ordinary files. HP BASIC calls them HP-UX files. Most files are ordinary files. The format of data written to
these files with FORMAT OFF is explained in Chapter 5.

BDAT Files
BDAT files, by default, are FORMAT OFF and are used to hold binary data. They may also be ASSIGNed with FORMAT ON and
used to hold ASCII data. BDAT files may be accessed sequentially or randomly. The record size for random access is established
when the file is CREATEd. If not specified, it defaults to 256 bytes.

ASCII Files
ASCII files are LIF ASCII files and are not compatible with DOS ASCII or UNIX ASCII files. See “Ordinary Files” below to learn
how to create a DOS ASCII or UNIX ASCII file. A LIF ASCII file is compatible with HP BASIC ASCII files and is most useful when
exchanging data using LIF floppies. In a CAT listing, a LIF ASCII file is listed as file type “ASCII”. LIF ASCII files are always written
with FORMAT ON and can only be accessed sequentially.

Ordinary Files
Ordinary files are files that do not have a file type. HP added ordinary files to HP BASIC 5.0 and called them “HP-UX” files. The
name is somewhat misleading since the same file is called a “DOS” file when on a PC.

By default, ordinary files are written with FORMAT OFF, but FORMAT ON may also be used. If you wish to create or access a
DOS ASCII file, use an ordinary file with FORMAT ON. A DOS ASCII file contains characters that are all in the printable ASCII
range, and lines are terminated with a carriage return, line feed (CR/LF) sequence. If you wish to create or access a UNIX ASCII
file, use an ordinary file with FORMAT ON and EOL CHR$(10). Lines are terminated in a UNIX ASCII file with just a line feed.

10 CREATE “TEMP.TXT”,512 ! CREATE Ordinary file
20 ASSIGN @X TO “TEMP.TXT”;FORMAT ON
! for DOS 30 INTEGER I
40 FOR I=1 TO 10
50 OUTPUT @X;"Line #";I
60 NEXT I
70 ASSIGN @X TO *
80 END

File Organization
“Random” and “sequential” are not file types, but are methods of organizing and accessing the information in a file. In fact, a
BDAT or ordinary file can be accessed either way, even in the same program. A file should be organized, sequentially or randomly,
based on how the file will be used.

Sequential Files
In sequential files, each data item is stored immediately following the previous one. The data in the file is stored in the order that it
is produced. The data is read in the same order that it is stored. You read a sequential file from beginning to end. This results in a
compact data storage structure and ease of programming.

The following example uses three files with sequential organization. The first two contain sorted data. They are merged to create
the third file. Merging two files lends itself well to sequential organization.

10 REM Merge two sorted files
20 CREATE ASCII “merged”,10
30 ASSIGN @F1 TO “file1";FORMAT ON
40 ASSIGN @F2 TO ”file2";FORMAT ON
50 ASSIGN @M TO “merged”;FORMAT ON
60 DIM Key1$[80],Key2$[80]
70 ON END @F1 GOTO Endf1
80 ON END @F2 GOTO Endf2
90 ENTER @F1;Key1$
100 ENTER @F2;Key2$
110 LOOP
120 IF Key1$>Key2$ THEN
130 OUTPUT @M;Key2$
140 ENTER @F2;Key2$
150 ELSE
160 OUTPUT @M;Key1$
170 ENTER @F1;Key1$
180 END IF
190 END LOOP
200 Endf1:! only file2 has any more data
210 ON END @F2 GOTO Alldone
220 LOOP
230 OUTPUT @M;Key2$
240 ENTER @F2;Key2$
250 END LOOP
260 Endf2:! only file1 has any more data
270 ON END @F1 GOTO Alldone
280 LOOP
290 OUTPUT @M;Key1$
300 ENTER @F1;Key1$
310 END LOOP
320 Alldone:! both files are out of data
330 ASSIGN @F1 TO *
340 ASSIGN @F2 TO *
350 ASSIGN @M TO *
360 END

Random Access Files
As mentioned previously, “random” is not a file type, but a method of organizing and accessing the information in a file. A file
should be organized based on how the file will be used. Files in which the items are accessed in a random order should be
organized as a random file.

BDAT files contain fixed length records that can be accessed by record number. The record number is specified after the I/O path
variable. The record length is specified when creating the file. The record size must be set to accommodate the largest data item.

10 REM Random file example (BDAT File)
20 DIM C$[56]
30 CREATE BDAT “customer.dat”,100,60
40 ASSIGN @C TO “customer.dat”
50 CLEAR SCREEN
60 LOOP
70 DISP “A(dd, D(elete, S(how, Q(uit and take a vacation”
80 ON KBD GOTO Inkey
90 LOOP !endlessly until a key is pressed
100 OUTPUT CRT;TIME$(TIMEDATE);CHR$(13);
110 END LOOP
120 Inkey: K$=KBD$
130 OFF KBD
140 OUTPUT CRT
150 SELECT UPC$(K$)
160 CASE “A”
170 PRINT “Add:”
180 INPUT “Customer Number? ”,C
190 INPUT “Information? ”,C$
200 OUTPUT @C,C;C$
210 PRINT “Customer number #”;C;"added"
220 CASE “D”
230 PRINT “Delete:”
240 INPUT “Customer Number? ”,C
250 OUTPUT @C,C;"DELETED"
260 PRINT “Customer number #”;C;"deleted"
270 CASE “S”
280 PRINT “Show:”
290 INPUT “Customer Number? ”,C
300 ENTER @C,C;C$
310 PRINT “Customer number #”;C;":",C$
320 CASE “Q”
330 PRINT “Thank you for using HTBasic!”
340 PRINT “Have a nice vacation.”
350 DISP ! clear display line
360 STOP
370 CASE ELSE
380 PRINT CHR$(7);! ring the bell for a bad command
390 END SELECT
400 END LOOP
410 END

This example, of course, is not a complete application. But it does show the important aspects of random file use, as well as some
user interface techniques. Note that the record size was declared to be 60. The length of each record can never exceed this, since
each record consists of C$ (which can never be longer than 56 characters) plus the four byte length of C$ which we know will be
included in the file since we are using a BDAT file with FORMAT OFF (the default).

Ordinary files do not have a physical record length, but you can still use a logical record length. The record number actually
specifies the exact byte position in the file. The first byte is at position 1. To access a logical record, the byte position must be
calculated based on the logical record length. The following example has the same capabilities as the previous program, but uses
an ordinary file.

10 REM Random file example (Ordinary File)
20 DIM C$[58]
30 Length=60 ! 58 Character string + CR/LF
40 CREATE “customer.dat”,100
50 ASSIGN @C TO “customer.dat”;FORMAT ON
60 CLEAR SCREEN
70 LOOP
80 DISP “A(dd, D(elete, S(how, Q(uit and take a vacation”
90 ON KBD GOTO Inkey
100 LOOP !endlessly until a key is pressed
110 OUTPUT CRT;TIME$(TIMEDATE);CHR$(13);
120 END LOOP
130 Inkey: K$=KBD$
140 OFF KBD
150 OUTPUT CRT
160 SELECT UPC$(K$)
170 CASE “A”
180 PRINT “Add:”
190 INPUT “Customer Number? ”,C
200 INPUT “Information? ”,C$
210 OUTPUT @C,(C-1)*Length+1;C$
220 PRINT “Customer number #”;C;"added"
230 CASE “D”
240 PRINT “Delete:”
250 INPUT “Customer Number? ”,C
260 OUTPUT @C,(C-1)*Length+1;"DELETED"
270 PRINT “Customer number #”;C;"deleted"
280 CASE “S”
290 PRINT “Show:”
300 INPUT “Customer Number? ”,C
310 ENTER @C,(C-1)*Length+1;C$
320 PRINT “Customer number #”;C;":",C$
330 CASE “Q”
340 PRINT “Thank you for using HTBasic!”
350 PRINT “Have a nice vacation.”
360 DISP ! clear display line
370 STOP
380 CASE ELSE
390 PRINT CHR$(7);! ring the bell for a bad command
400 END SELECT
410 END LOOP
420 END

BDAT files give an error if a single OUTPUT is too long for the record length (unless the record length is one). However, ordinary
files do not give an error. It is the programmer’s job to make sure that record overflow does not occur.

Converting LIF ASCII files to DOS ASCII
Sometimes it is advantageous to translate from a LIF ASCII file type to an ordinary file so that other programs can make use of the
data.

The following program is an example showing the general principles of converting from one data type to another. It works for LIF
ASCII to ordinary ASCII conversions, but may need to be modified to work in other situations.

10 REM ASCIIDOS.BAS
20 DIM Fi$[30],Fo$[30],L$[256]
30 INPUT “Input file?”,Fi$
40 INPUT “Output file?”,Fo$
50 ASSIGN @I TO Fi$;FORMAT ON
60 CREATE Fo$,1
70 ASSIGN @O TO Fo$;FORMAT ON
80 ON END @I GOTO Done
90 LOOP
100 ENTER @I;L$
110 OUTPUT @O;L$
120 END LOOP
130 Done: END

Knowing several general principles will help you write conversion programs to work in whatever situation you require. Line 50:   
Open the input file using FORMAT ON, OFF, MSB FIRST, or whatever is appropriate. Line 60:    Create an output file of the type
you wish to create. Line 70:    Open the output file using FORMAT ON, OFF, MSB FIRST, or whatever is appropriate. Line 100:   
Enter the data with a statement compatible with how the data was written. For example, if integers were written in binary, then
enter into integers with the file opened for binary access. Line 110:    Output the data in the format you wish it to be in. For
example, if you wish three integers separated by commas, make sure you know how to use the OUTPUT statement to do so.
Finally, use loop constructs (FOR, LOOP, REPEAT, or WHILE) to handle groups of data that are formatted the same.

Summary
This chapter presented statements associated with file system management. The different file types were explained, and random
and sequential file access examples were given.

IEEE-488 Interface Bus
This chapter discusses the IEEE-488 (GPIB or HP-IB) bus and the HTBasic statements used to transfer information between
devices. The history of the bus is presented along with an overview of its signal lines and device addressing. The different levels of
IEEE-488 bus data transfer and control statements are also presented along with the HTBasic statements that enable and control
IEEE-488 interrupts. A list of CONTROL, STATUS, READIO, and WRITEIO registers for the IEEE-488 is given. A summary of the
bus actions that each IEEE-488 statement generates is also included.

This chapter does not explain installation of the IEEE-488 board or device driver. The Installing and Using manual contains the
necessary installation and configuration information for device drivers included with HTBasic. For device drivers sold separately,
the documentation included with the driver explains how to load and configure the driver.

This chapter assumes that you already have some familiarity with the operation of IEEE-488 bus and does not include a detailed
bus operation description. Please consult any one of the many available books about the IEEE-488 bus for more detailed
information about its operation.

IEEE-488 History
The IEEE-488 bus was developed to connect and control programmable instruments and to provide a standard interface for
communication between instruments from different sources. Hewlett-Packard originally developed the interfacing technique and
called it HP-IB. The interface quickly gained popularity in the computer industry. Because the interface was so versatile, the IEEE
committee renamed it GPIB (General Purpose Interface Bus). All references to this interface bus in this chapter will use the name
IEEE-488.

IEEE-488 Overview
Almost any instrument can be used with the IEEE-488 specification, because it says nothing about the function of the instrument
itself, or about the form of the instrument’s data. Instead the specification defines a separate component, the interface, that can be
added to the instrument. The signals passing into the interface from the IEEE-488 bus and from the instrument are defined in the
standard. The instrument does not have complete control over the interface. Often the bus controller tells the interface what to do.
The active controller performs the bus control functions for all the bus instruments.

At power-up time, the IEEE-488 card that is programmed to be the system controller becomes the active controller in charge. The
system controller has several unique capabilities including the ability to send Interface Clear (IFC) and Remote Enable (REN)
commands. IFC clears all device interfaces and returns control to the system controller. REN allows devices to respond to bus
data once they are addressed to listen. The system controller may optionally Pass Control to another controller, which then
becomes active controller.

There are 3 types of devices that can be connected to the IEEE-488 (Listeners, Talkers, and Controllers). Some devices include
more than one of these functions. The standard allows a maximum of 15 devices to be connected on the same bus. A minimum
system consists of one controller and one talker or listener device (i.e., a PC with a TransEra GPIB-900 board and a voltmeter).

It is possible to have several controllers on the bus but only one may be active at any given time. The active controller may pass
control to another controller which in turn can pass it back or on to another controller. A listener is a device that can receive data
from the bus when instructed by the controller and a talker transmits data on to the bus when instructed. The controller can set up
a talker and a group of listeners so that it is possible to send data between groups of devices as well.

The IEEE-488 interface system consists of 16 signal lines and 8 ground lines. The 16 signal lines are divided into 3 groups (8 data
lines, 3 handshake lines, and 5 interface management lines).

Data Lines
The lines DIO1 through DIO8 are used to transfer addresses, control information and data. The formats for addresses and control
bytes are defined by the IEEE-488 standard. Data formats are undefined and may be ASCII (with or without parity) or binary. DIO1
is the Least Significant Bit (note that this will correspond to bit 0 on most computers).

Handshake Lines
The three handshake lines (NRFD, NDAC, DAV) control the transfer of message bytes among the devices and form the method
for acknowledging the transfer of data. This handshaking process guarantees that the bytes on the data lines are sent and
received without any transmission errors and is one of the unique features of the IEEE-488 bus.

The NRFD (Not Ready for Data) handshake line is asserted by a listener to indicate it is not yet ready for the next data or control
byte. Note that the controller will not see NRFD released (i.e., ready for data) until all devices have released it.

The NDAC (Not Data Accepted) handshake line is asserted by a listener to indicate it has not yet accepted the data or control byte
on the data lines. Note that the controller will not see NDAC released (i.e., data accepted) until all devices have released it.

The DAV (Data Valid) handshake line is asserted by the talker to indicate that a data or control byte has been placed on the data
lines and has had the minimum specified stabilizing time. The byte can now be safely accepted by the devices.

The handshaking process is outlined as follows. When the controller or a talker wishes to transmit data on the bus, it sets the DAV
line high (data not valid) and checks to see that the NRFD and NDAC lines are both low, then it puts the data on the data lines.

When all the devices that can receive the data are ready, each releases its NRFD (not ready for data) line. When the last receiver
releases NRFD and it goes high, the controller or talker takes DAV low indicating that valid data is now on the bus.

In response each receiver takes NRFD low again to indicate it is busy and releases NDAC (not data accepted) when it has
received the data. When the last receiver has accepted the data, NDAC will go high and the controller or talker can set DAV high
again to transmit the next byte of data.

Note that if after setting the DAV line high, the controller or talker senses that both NRFD and NDAC are high, an error will occur.
Also, if any device fails to perform its part of the handshake and releases either NDAC or NRFD, data cannot be transmitted over
the bus. Eventually a timeout error will be generated.

The speed of the data transfer is controlled by the response of the slowest device on the bus; for this reason it is difficult to
estimate data transfer rates on the IEEE-488 bus as they are device dependent.

Interface Management Lines
The five interface management lines (ATN, EOI, IFC, REN, SRQ) manage the flow of control and data bytes across the interface.

The ATN (Attention) signal is asserted by the controller to indicate that it is placing an address or control byte on the data bus. ATN
is released to allow the assigned talker to place status or data on the data bus. The controller regains control by reasserting ATN;
this is normally done synchronously with the handshake to avoid confusion between control and data bytes.

The EOI (End or Identify) signal has two uses. A talker may assert EOI simultaneously with the last byte of data to indicate end-of-
data. The controller may assert EOI along with ATN to initiate a parallel poll. Although many devices do not use parallel poll, all
devices should use EOI to end transfers (many currently available devices do not).

The IFC (Interface Clear) signal is asserted only by the system controller in order to initialize all device interfaces to a known state.
After releasing IFC, the system controller becomes the active controller.

The REN (Remote Enable) signal is asserted only by the system controller. Its assertion does not place devices into remote
control mode; REN only enables a device to go into remote mode when addressed to listen. When in remote mode, a device
should ignore its local front panel controls.

The SRQ (Service Request) line is like an interrupt: it may be asserted by any device to request the controller to take some action.
The controller must determine which device is asserting SRQ by conducting a serial poll. The requesting device releases SRQ
when it is polled.

Device Addresses
The IEEE-488 standard allows up to 15 devices to be interconnected on one bus. Each device is assigned a unique primary
address, ranging from 0-30, by setting the address switches on the device. A secondary address may also be specified, ranging
from 0-30. See the device documentation for more information on how to set the device primary and optional secondary address.

In the HTBasic statements that access the bus, a device selector is used to specify the interface select code, the primary device
address, and the optional secondary device address. The default IEEE-488 interface select code is 7. The default primary address
of the system controller is 21. The following examples demonstrate how the interface and device addresses are specified.

Device Selectors            ISC code              Pri. Add                    Sec. Add
705 7 5 none
72501 7 25 1
1207 12 7 none
100412 10 4 12

The primary address of the IEEE-488 board can be read using the STATUS statement and changed with the CONTROL
statement. Bits 0-4 of register three specify the primary address.

STATUS 7,3; Pri_add !Read Primary Address
CONTROL 7,3; Pri_add !Set Primary Address

A discussion of the CONTROL and STATUS statements is given later in this chapter.

IEEE-488 Statement Overview
HTBasic provides five levels of IEEE-488 statements: high level transfer, high level bus control, byte level transfer, low level bus
control, and interface interrupt control.

The high level OUTPUT and ENTER statements allow you to easily send and receive data on the bus. All the necessary bus
addressing commands are automatically generated.

The high level bus control statements allow you to abort transfers, reset the bus interface, clear specific bus devices, lockout local
control of devices, return devices to their local state, pass active control to another, configure the parallel poll response, request
service, perform a group execute trigger, and conduct parallel and serial polls.

The byte level SEND statement allows more detailed control over the bus. Because the user must generate all the proper bus
addressing commands, use of this statement requires a more detailed knowledge about IEEE-488 bus operations.

The low level bus control statements CONTROL, STATUS, READIO, and WRITEIO allow you to directly access the IEEE-488
driver status and control registers and the controller hardware registers.

The interrupt control statements enable, control, and disable interrupts generated by the IEEE-488 interface hardware.

High Level Transfer Statements
The ENTER and OUTPUT statements are used to transfer data between IEEE-488 devices. They automatically generate all the
required bus addressing. For a description of the ENTER and OUTPUT statements, see Chapter 5, “General Input and Output.”   
It explains how to send or suppress CR/LF line terminators and how to set the EOI signal line on the output of the last data byte.
The following example demonstrates communication with an HP-GL plotter at device address five.

OUTPUT 705;"OP;"
ENTER 705;P1x,P1y,P2x,P2y

The OUTPUT statement requests the plotter to send its P points. The ENTER statement reads the P point values sent back by the
plotter.

The powerful USING option gives you a high degree of control over the data format used for the transfer operations. For example:

OUTPUT 705 USING “#,K”;Str$
ENTER 705 USING “#,K”;Str$

Multiple listeners may also be addressed with the same command. As follows:

ASSIGN @Dev to 705,706,707,708
OUTPUT @Dev; “Data”

The OUTPUT statement listen-addresses the devices with primary addresses 5, 6, 7, and 8 and then sends the string “Data” to all
of them. If the same I/O Path is used for the ENTER statement, the first device is addressed as the talker and the remaining
devices, including the active controller, are addressed as listeners.

Some devices allow the selection of a particular mode of operation by the use of the secondary address. Multiple secondary
addresses may be specified. This extended addressing mode is shown below.

ASSIGN @Dev to 7011011 !Secondary Address 10 and 11
OUTPUT @Dev; Str$
OUTPUT 70501; Str$!Secondary Address 01

When the device is not the active controller, it cannot do any bus addressing. If only the interface select code is used for the
ENTER and OUTPUT statements, no bus addressing will be performed. The device must make sure that it has been addressed to
talk or listen before it participates in the transfer of data. If it has not been addressed, then the device will wait until it is addressed
before continuing.

OUTPUT 7; Str$
ENTER 7; Str$

High Level Bus Control Statements
HTBasic provides many high level IEEE-488 bus control statements. The actions taken on the IEEE-488 bus by each control
statement are determined by three things:

 1) whether the device issuing the command is the system controller,
 2) whether the device is the active controller, and
 3) whether the command was issued with only the interface select code or a primary address was specified.

Each statement is discussed in the following paragraphs. Also, a quick bus actions reference is provided at the end of this chapter.

ABORT Statement
The ABORT statement stops IEEE-488 bus activity. You specify either an interface select code or an I/O Path. This statement is
only supported by the IEEE-488 interface. For example:

ABORT 7

If the computer is the system controller but not the active controller, ABORT causes the computer to assume active control.

If a primary address is specified, an error is generated. If the computer is the system controller, the bus action is to issue IFC for
greater than 100 micro-seconds and then to assert REN and de-assert ATN. If the computer is not the system controller but is the
active controller, the bus action is: ATN, MTA, UNL, and de-assert ATN. If it is not the active controller either, no action is taken.

CLEAR Statement
The CLEAR statement causes the active controller to send a Device Clear command to one or more devices. The effect on the
device is device-dependent. You specify either an device selector or an I/O Path. This statement is only supported by the
IEEE-488 interface. For example:

ASSIGN @Counter to 7
CLEAR @Counter

If primary addressing is specified, the bus action is: ATN, MTA, UNL, LAG, SDC. If only an interface select code is specified, the
bus action is: ATN, DCL. If the computer is not the active controller, an error is generated.

LOCAL Statement
The LOCAL statement returns specified IEEE-488 devices to their local (front panel) state. You specify either a device selector or
an I/O Path. This statement is only supported by the IEEE-488 interface. For example:

LOCAL 728

If a primary device address is specified, a Go To Local (GTL) message is sent to all listeners and LOCAL LOCKOUT is not
canceled. If only an interface select code is specified, all devices on the bus are returned to the local state and LOCAL LOCKOUT
is canceled.

If a primary device address is specified and the computer is the active controller, the bus activity is: ATN, MTA, UNL, LAG, GTL.

If the computer is not the active controller but is the system controller and just an interface select code is specified, the REN line is
set false. If it is also the active controller, the ATN and REN lines are both set false.

When the computer is not the system controller but is the active controller, the bus activity for an Interface Select Code is to set
the ATN line and send a GTL message. When it is not the active controller, an error is generated.

LOCAL LOCKOUT Statement
The LOCAL LOCKOUT statement sends the LLO message over the IEEE-488 bus. This prevents front panel control of IEEE-488
devices that are in the remote state. You specify either an interface select code or an I/O Path. This statement is only supported by
the IEEE-488 interface. For example:

LOCAL LOCKOUT 7

If the computer is not the active controller or a primary device address is specified, an error is generated. If only an interface select
code is specified, the bus action is ATN, LLO. If an I/O Path is specified, it must refer to the IEEE-488 interface.

PASS CONTROL Statement
The PASS CONTROL statement passes active controller capability to the specified IEEE-488 device. You specify either a device
selector or an I/O Path. If an I/O Path is specified, it must be assigned to an IEEE-488 device. For example:

ASSIGN @Dev to 705
PASS CONTROL @Dev

If the computer is the active controller and a primary address is specified, control is passed to the addressed device. An error is
generated if the computer is not the active controller or if only an interface select code is specified.

The specified device is talk addressed, a Take-Control-Message TCT is sent, and the Attention line is set false. The computer then
becomes a bus device, as opposed to a bus controller.

PPOLL Function
The PPOLL function conducts a Parallel Poll of the IEEE-488 and the 8-bit status message from the IEEE-488 bus is returned.
Each bit corresponds to the status of a device which is configured to respond to a parallel poll. You specify either an interface
select code or an I/O Path as the function argument. This statement is only supported by the IEEE-488 interface. For example:

ASSIGN @Gpib to 7
Pstatus = PPOLL(@Gpib)

If an interface select code is specified, the bus action is as follows: ATN and EOI are set for greater than or equal to 25 microsec,
one byte of data is read from the bus, EOI is released, and ATN is restored to its previous state. If the computer is not the active
controller or a primary device address is specified, an error is generated.

PPOLL CONFIGURE Statement
The PPOLL CONFIGURE statement configures the parallel poll response for the specified remote IEEE-488 device(s). You specify
either an I/O Path or a device selector that refers to one or more IEEE-488 devices and a parallel poll configuration value from
zero through 15. The three least significant bits of its binary representation select the data bus line and the fourth bit selects the
logical sense of the response. For example:

PPOLL CONFIGURE 702;3

configures device number two on interface number seven to respond on data line DIO4 with a logic sense of zero when its status
bit is set.

If the computer is not the active controller or if only an interface select code is specified, an error is generated. The bus action is as
follows: ATN, MTA, UNL, LAG, PPC, PPE.

PPOLL RESPONSE Statement
The PPOLL RESPONSE statement enables or disables the local IEEE-488 device parallel poll response to an active controller
parallel poll request. You specify either an interface select code or an I/O Path and an enable value. An enable value of one
enables the parallel poll response, whereas a zero value disables it. This statement is only supported by the IEEE-488 interface.
For example:

ASSIGN @Gpib to 7
PPOLL RESPONSE @Gpib;1

The device must have been previously configured for a parallel poll response with the PARALLEL CONFIGURE statement.

PPOLL UNCONFIGURE Statement
The PPOLL UNCONFIGURE statement disables the parallel poll response of the specified IEEE-488 device or devices. You
specify either an I/O Path or a device selector that refers to one or more IEEE-488 devices. If only an interface select code is
specified, all devices are deactivated from the parallel poll response. For example:

ASSIGN @Dev to 7
PPOLL UNCONFIGURE @Dev

If the computer is not the active controller, an error is generated. If a primary device address is specified, the bus action is: ATN,
MTA, UNL, LAG, PPC, PPD; otherwise the bus action is: ATN, PPU.

REMOTE Statement
The REMOTE statement sets the remote state on an IEEE-488 device by asserting the IEEE-488 bus remote line (REN). The
device will switch to a remote state only after it has been addressed to listen, causing the front panel to be disabled. You specify
either an I/O Path or a device selector that refers to one or more IEEE-488 devices. For example:

REMOTE 702

If the computer is the active controller and primary addresses are specified, the computer listen addresses the devices to switch
them to remote mode. The bus action is:    REN, ATN, MTA, UNL, LAG. The remote line is asserted if the computer is the system
controller and ISC select code is specified. If the computer is not the system controller or it is not the active controller, an error is
generated.

REQUEST Statement
The REQUEST statement sends a Service Request (SRQ) on the IEEE-488 bus. You specify either an interface select code or an
I/O Path and a service value. To request service, the response value must have bit six set. The SRQ line will remain set until
polled by the active controller or another REQUEST statement is executed with bit six clear. For example:

REQUEST 7;Bit3+Bit4+Bit6

If the computer is the active controller or if the device-selector or the I/O Path specifies address information, an error is generated.

RESET Statement
The RESET statement resets the IEEE-488 interface. It asserts the IFC line for more than 100 microseconds, clears interrupts,
and if the interface is the system controller, sets it to be the active controller. For example:

RESET 7

SPOLL Function
The SPOLL function performs a serial poll of an IEEE-488 device and returns the serial poll response, specifying whether the
device is requesting service. You specify either an I/O Path or a device selector. The computer must be the active controller and a
primary device address must be specified, otherwise an error is generated. One secondary address may also be specified. For
example:

Stat = SPOLL(712)

The IEEE-488 bus action is: ATN, UNL, MLA, TAG, SPE not-ATN, Read data byte, ATN, SPD, UNT.

TRIGGER Statement
The TRIGGER statement allows the active controller to send a trigger message to a specified IEEE-488 device or to all listen
addressed devices on the IEEE-488 bus. You specify either an I/O Path or a device selector that refers to one or more IEEE-488
devices. For example:

ASSIGN @Gpib to 705
TRIGGER @Gpib

If primary device addresses are specified, the bus action is: ATN, UNL, LAG, GET. If only an interface select code is specified, the
bus action is: ATN, GET. If the computer is not the active controller, an error is generated.

Byte Level Transfer Statements
If you need more control over the bytes transferred over the bus than the high level OUTPUT and ENTER statements allow, you
can use the SEND statement as described in the following paragraphs. The OUTPUT and ENTER statements may also be used
for byte level transfers under certain circumstances.

Before you can communicate with a device on the IEEE-488 bus, the talker device and the listener device(s) need to be
addressed. The high level OUTPUT and ENTER transfer statements generate the necessary device addressing for you. When
using the SEND statement, you must generate all the proper bus addressing commands yourself. This requires a more detailed
knowledge about IEEE-488 bus operations than is presented here. Please consult any one of the many available books about the
IEEE-488 bus or your IEEE-488 bus device manuals.

SEND Statement
The SEND statement sends byte level IEEE-488 bus data and commands. Commands are sent with the ATN line asserted;
whereas data bytes are sent without the ATN line asserted. You specify an I/O Path or an interface select code and a list of
messages. The type of message is specified with the keywords CMD, DATA, TALK, LISTEN, SEC, MTA, MLA, UNT, and UNL. For
example:

SEND @Gpib; UNL MLA TALK Primary CMD 24+128

sends the unlisten command, my listen address, the talk address specified by the value of the variable (Primary), and then the
command byte 152.

The CMD message evaluates the following expression values and sends them as command bytes. If the CMD keyword is given
with no expressions, it asserts the ATN line. For example:

SEND 7; CMD 3*5, P, A$, N

The DATA message evaluates the following expression values and sends them as data bytes. If the optional END keyword is
added, EOI is set on the last data byte. For example:

SEND 7; DATA Value*4, ABS(N), Out$ END

The LISTEN message sends the expression values as listen address commands. The TALK message sends the expression value
as a talk address command. The SEC message sends the expression values as secondary address commands. The MLA
message sends the interface’s listen address command. The MTA message sends the interface’s talk address command. The
UNL message sends the unlisten command and the UNT message sends the untalk command.

The computer must be the active controller to use the CMD, TALK, UNT, LISTEN, UNL, SEC, MTA, or MLA messages. Any talk
addressed device may send DATA.

The following table lists the bus commands that can be sent with the CMD message.

Decimal Value              Description
1 GTL - Go to Local
4 SDC - Selected Device Clear
5 PPC - Parallel Poll Configure
8 GET - Group Execute Trigger
9 TCT - Take Control
17 LLO - Local Lockout
20 DCL - Device Clear
21 PPU - Parallel Poll Unconfigure
24 SPE - Serial Poll Enable
25 SPD - Serial Poll Disable
32-62 LAG - Listen Address Group
63 UNL - Unlisten
64-94 TAG - Talk Address Group
95 UNT - Untalk
96-111 PPE - Parallel Poll Enable
112-126 PPD - Parallel Poll Disable
96-126 SCG - Secondary Command Group

Note that the listen and talk address groups (LAG and TAG) consist of 31 different addresses. Each listen and talk address can be
further broken down into a secondary address group (SCG). To find the appropriate listen, talk, or secondary address to send for a
particular device, use the following equations:

Listen Address = Primary Address + 32
Talk Address = Primary Address + 64
Secondary Address = Primary Address + 96

The examples below show the high level transfer statement OUTPUT followed by four ways to send the exact same information
across the IEEE-488 bus with the SEND statement.

OUTPUT 705 USING “#,K”;"gt;"

SEND 7; CMD “?U%” DATA “gt;” END
SEND 7; CMD 32+31, 64+21, 32+5 DATA “gt;” END
SEND 7; UNL MTA LISTEN 5 DATA “gt;” END
SEND 7; UNL TALK 21 LISTEN 5 DATA “gt;” END

OUTPUT and ENTER Statements
The OUTPUT and ENTER statements can also be used for byte level transfers. If only the interface select code is specified in the
OUTPUT and ENTER statements, no bus addressing is performed.

If the device is the active controller then no addressing needs to be done, as long as the addressing has been done once. The
talker and listener still need to remain addressed for transfers to take place. For example:

10 ENTER 705; Str$
20 FOR I=1 to 10
30 ENTER 7; Str$
40 PRINT Str$
50 NEXT I
60 END

This type of addressing will reduce the bus addressing overhead for each piece of data read. However, we do not recommend this
practice because branching to an interrupt service routine may destroy the current talker or listener setup.

When the device is not the active controller, it cannot do any bus addressing. The device must make sure that it has been
addressed to talk or listen before it participates in the transfer of data. If it has not been addressed, then the device will wait until it
is addressed before continuing. For example:

OUTPUT 7; Str$!Waits Until Talker Addressed
ENTER 7; Str$!Waits Until Listener Addressed

A combination of the SEND and the ENTER statements can emulate any of the high level transfer or bus control statements. As an
example, let’s see how to conduct a serial poll (SPOLL) operation using these statements.

Poll_value = SPOLL(705) !High level command

SEND 7; CMD “?5E” CMD 24 !Output SPE command
ENTER 7 USING “#,B”;Poll_value !Read Poll Value
SEND 7; CMD 25 UNT !Output SPD command

You are limited in your control of the IEEE-488 bus only by your imagination and skill at combining the SEND and ENTER
statements.

Low Level Bus Control Statements
The low level bus control statements allow you to access the status and control registers in both the IEEE-488 driver and in the
IEEE-488 controller hardware. The CONTROL and STATUS statements access the IEEE-488 driver registers while the READIO
and WRITEIO statements access the controller hardware registers. The definitions of these registers are given near the end of this
chapter.

CONTROL and STATUS Statements
The CONTROL and STATUS statements allow you to configure the serial and parallel poll response bytes, change the primary
address, set interrupt mask registers, read the status of the data and bus lines, read the interrupt status, and read the controller
status and address. The following program reads the STATUS registers and prints the values out in both decimal and binary.

10 STATUS 7;X0,X1,X2,X3,X4,X5,X6,X7 !Read all Status Registers
20 PRINT X0,X1,X2,X3,X4,X5,X6,X67
30 PRINT IVAL$(X0,2),IVAL$(X1,2),IVAL$(X2,2),IVAL$(X3,2)
40 PRINT IVAL$(X4,2),IVAL$(X5,2),IVAL$(X6,2),IVAL(X7,2)
50 END

READIO and WRITEIO Statements
The READIO and WRITEIO statements directly access the IEEE-488 controller hardware registers. Do not attempt to use the
READIO and WRITEIO registers unless you are very familiar with the hardware. Use the STATUS and CONTROL registers
instead.

Accessing hardware registers can cause your system to crash, data to be lost, or damage to your computer hardware. TransEra
cannot be held responsible for any consequences.

IEEE-488 Interrupts
Interrupts allow the computer to perform other tasks while you wait for some condition to occur. This eliminates the need to
continually monitor the STATUS register for some event. HTBasic has the capability of monitoring up to 16 different interrupt
conditions at once.

ON INTR Statement
The ON INTR statement defines an event branch to be taken when an interface card generates an interrupt. You specify the
interface select code, an optional priority and the branch type. The branch type may be either a GOTO, GOSUB, CALL, or
RECOVER. For example:

ON INTR 7,4 GOSUB Repair

When an interrupt occurs a DISABLE INTR for the interface is automatically executed. Consequently, an ENABLE INTR statement
must be used to explicitly re-enable interrupts.

The default priority is one. The highest priority that can be specified is 15. ON END, ON ERROR, and ON TIMEOUT have a higher
priority than ON INTR. When an INTR initiated branch is taken with a GOTO, the system priority is not changed. When an ON
INTR branch specifies a CALL or GOSUB, the system priority is changed to the specified priority.

RECOVER causes the program to SUBEXIT from contexts as needed to return to the defining context and resume execution at
the specified program line. ON INTR statements that specify CALL or RECOVER will be serviced even if the program context has
been changed to another subprogram. ON INTR statements that specify GOTO or GOSUB will be logged and then serviced when
control returns to the defining program context.

ON INTR is canceled by OFF INTR, disabled by DISABLE or DISABLE INTR. The following example shows how to detect the
IEEE-488 service request (SRQ).

10 ON INTR 7 GOSUB 80 !Where to Go When Interrupt Occurs
20 ENABLE INTR 7;2 !Enable SRQ Interrupt
30 . . .
40 . . .
50 . . .
60 STOP
70 !
80 Val = SPOLL(701) !Clear SRQ Line
90 ENTER 701;Condition!Read Device Condition
100 PRINT Condition
110 ENABLE INTR 7 !Re-Enable SRQ Interrupt
120 RETURN
130 END

OFF INTR Statement
The OFF INTR statement cancels event branches defined by ON INTR. Any INTR events that have been logged but not yet
serviced are canceled. An OFF INTR statement without the optional interface select code disables event-initiated branches on all
devices. If the interface select code is specified, only that interface interrupt will be disabled. For example,

OFF INTR 7

cancels event branches for the IEEE-488 interface.

Enabling and Disabling Interrupts
The DISABLE statement disables all defined event branches except END, ERROR, and TIMEOUT. While disabled, the first event
of each type that occurs is logged. When event branching is re-enabled with the ENABLE statement, all logged events are
serviced in the order of their event priorities.

The DISABLE INTR statement disables interrupts from just the specified interface. For example,

DISABLE INTR 7

disables interrupts from the IEEE-488 interface.

The ENABLE INTR statement enables interrupts from a specified interface. An optional bit mask is stored in the interface interrupt-
enable register. The default bit mask is the previous bit mask for that interface, or if there is no previous bit mask then a bit mask
of all zeros is used. The meaning of the bit mask depends on the interface; consult the interface documentation. For example,

ENABLE INTR 7;Bitmask

enables interrupts on the IEEE-488 interface and stores the value of the variable Bitmask into the interface interrupt-enable
register. The interrupt enable register bits are defined as follows:

Interrupt Enable Register Bit Mask
Bit                      Value                            Meaning
15 -32768 Active Controller
14 16384 Parallel Poll Config. change
13 8192 My Talk address received
12 4096 My Listen address received
11 2048 EOI received
10 1024 SPAS
9 512 Remote/Local change
8 256 Talker/Listener Address change
7 128 Trigger received
6 64 Handshake Error
5 32 Unrecognized universal command
4 16 Secondary command while addressed
3 8 Clear received
2 4 Unrecognized addressed command
1 2 SRQ received
0 1 IFC received

The interrupt enable register has the same bit values as STATUS registers 4 and 5. STATUS register 4 tells which condition
caused the interrupt. STATUS register 5 tells which interrupts are enabled. To enable more than one interrupt, add up all the event
decimal values and use this value as the ENABLE INTR bit mask.

Handling Service Requests
HTBasic can be programmed to branch to a service routine when a device requests service. The example at the start of this
chapter shows how to set up and enable an interrupt for the SRQ line. When a device sets the SRQ line, your service routine
needs to perform the following steps: 1) find out which device is requesting service, 2) find out what action needs to be taken, 3)
perform the needed action, and 4) re-enable the IEEE-488 interrupts.

Step 1 uses either the PPOLL command or the SPOLL command. With the SPOLL command you have to start with the first
address and step through all the addresses, until you find the device requesting service. If you only have one or two devices on
the IEEE-488 bus, then this method is quite fast and it eliminates step two.

Step 2 uses a serial poll (SPOLL) to read the device response byte and tells the device that it is being serviced. The device then
removes the request by clearing the SRQ line.

Step 3 is dependent on the response byte value. Its interpretation is determined by the device documentation.

Step 4 re-enables the interrupts with the ENABLE INTR command. Interrupts are disabled by the Controller until the current
request has been serviced. Once serviced, the interrupts need to be re-enabled.

Parallel Polling Devices
A parallel poll is the fastest way of determining the requesting device. Each device must first be programmed to respond to a
parallel poll request on a unique data line (DIO1 - DIO8). For example,

PPOLL CONFIGURE 705;11

configures device 5 to respond by placing a 1 on data line DIO4. Bit 3 determines the logic sense of the data line when the device
needs service. The data line to use is determined by bits 0-2, offset by one. A value of 3 means use data line DIO4.

To disable a device from responding to a parallel poll use the following commands.

PPOLL UNCONFIGURE 705 !Disables Device 5
PPOLL UNCONFIGURE 7 !Disables All Devices

To conduct the parallel poll the PPOLL function is used as follows:

Pstatus = PPOLL(7) !Parallel Poll Bus

After the parallel poll the variable Pstatus contains the value of the 8 data lines as set by the devices that have been configured to
respond to the parallel poll.

IEEE-488 Registers
STATUS and CONTROL registers for IEEE-488 interfaces are given below. READIO and WRITEIO registers are presented for
9914 and 7210 based IEEE-488 interfaces.

IEEE-488 hardware is not supplied standard with most computers. For HTBasic, TransEra sells the GPIB-900 IEEE-488
Controller. The board fits in any XT or AT bus slot. The board incorporates the NI TMS9914 integrated circuit, the same controller
used in HP BASIC workstations. This board provides compatibility with HP BASIC at all levels, including the READIO/WRITEIO
level which accesses the 9914 registers directly.

HTBasic also supports most PC IEEE-488 boards from other manufacturers. These boards most often use the NEC PD7210 Chip
and consequently are not completely compatible with HP BASIC. STATUS and CONTROL registers for the 9914 and the 7210 are
the same, although some bits cannot be supported by the 7210. The READIO/WRITEIO registers of the 7210 are completely
different from the 9914 used by HP BASIC. Different tables are given below for the 7210 and the 9914.

READIO/WRITEIO registers allow direct access to the interface hardware. You should not attempt to use these registers unless
you are familiar with how the IEEE-488 chip is programmed.

The ON INTR 7 and ENABLE INTR 7 statements are supported. The values for the enable mask in the ENABLE INTR statement
are the same as those for STATUS register 5, given below. Some interrupts are not supported by the 7210.

IEEE-488 CONTROL Registers
The following CONTROL registers are supported.

CONTROL 0
Reset. The value must be non-zero.

CONTROL 1
Set Serial Poll Response Byte.

Bit              Value                    Meaning
7 128 Device Dependent Status
6 64 SRQ 1 - It’s me, 0 - It’s not me.
5-0 - Device Dependent Status

CONTROL 2
Set Parallel Poll Response Byte.

Bit              Value                    Meaning
7 128 DIO8
6 64 DIO7
5 32 DIO6
4 16 DIO5
3 8 DIO4
2 4 DIO3
1 2 DIO2
0 1 DIO1

CONTROL 3
Set My Bus Address.

Bit            Value                      Meaning
7-5 - Unused
4-0 - Interface Primary Address

CONTROL 4
Release NDAC Holdoff. 0 - No Secondary Address, 1 - Accept Secondary.

CONTROL 5
Set Parallel Poll Response Mask.

Bit            Value                      Meaning
7-5 - Unused
4 16 Unconfigure
3 8 Logic Sense
2-0 - Bits used for response

IEEE-488 STATUS Registers
The following STATUS registers are supported.

STATUS 0
Return Identification. Always 1.

STATUS 1
Return Interrupt and DMA status.

Bit              Value                    Meaning
7 128 Interrupts Enabled
6 64 Interrupt Requested
5-4 - Hardware Interrupt Level Switches
3-2 - Not used
1 2 DMA channel 1 enabled
0 1 DMA channel 0 enabled

STATUS 2
Return Busy Bits.

Bit            Value                      Meaning
7-3 - Unused
2 4 Handshake in progress
1 2 Interrupts Enabled
0 1 TRANSFER in progress

STATUS 3
Return Controller Status and Address.

Bit            Value                      Meaning
7 128 System Controller
6 64 Active Controller
5 32 Unused
4-0 - Interface Primary Address

STATUS 4
Return Interrupt Status. Uses same bit definitions as register 5.

STATUS 5
Return Interrupt Enable Mask. Use these values with ENABLE INTR to enable interrupts.

Bit              Value                    Meaning
15 -32768 Active Controller
14 16384 Parallel Poll Config. change
13 8192 My Talk address received
12 4096 My Listen address received
11 2048 EOI received
10 1024 SPAS
9 512 Remote/Local change
8 256 Talker/Listener Address change
7 28 rigger received
6 64 Handshake Error
5 32 Unrecognized universal command
4 16 Secondary command while addressed
3 8 Clear received
2 4 Unrecognized addressed command
1 2 SRQ received
0 1 IFC received*

*Not supported by the NEC 7210.

STATUS 6
Return Interface Status. The REM & LOC bits are not always accurate on NEC 7210 cards.

Bit            Value                      Meaning
15 -32768 REM
14 16384 LLO
13 8192 ATN True
12 4096 LPAS
11 2048 TPAS
10 1024 LADS
9 512 TADS
8 256 LSB of last address
7 128 System Controller
6 64 Active Controller
5 32 Unused
4-0 - Primary Interface Address

STATUS 7
Return Bus Control and Data Lines.

Bit              Value                    Meaning
15 -32768 ATN True
14 16384 DAV True*
13 8192 NDAC True*
12 4096 NRFD True*
11 2048 EOI True
10 1024 SRQ True
9 512 IFC True*
8 256 REN True
7 128 DIO8
6 64 DIO7
5 32 DIO6
4 16 DIO5
3 8 DIO4
2 4 DIO3
1 2 DIO2
0 1 DIO1

* Not supported by the NEC 7210.

9914 READIO Registers
The following READIO registers are supported.

9914 READIO 1
Return Card Identification. Always 1.

9914 READIO 3
Return Interrupt and DMA status.

Bit              Value                    Meaning
7 128 Interrupts Enabled
6 64 Interrupt Requested
5-4 - Hardware Interrupt Level Switches
3-2 - Not used
1 2 DMA channel 1 enabled
0 1 DMA channel 0 enabled

9914 READIO 5
Return Controller Status and Address.

Bit              Value                    Meaning
7 128 System Controller
6 64 Not Active Controller
5 32 Unused
4-0 - Interface Primary Address

9914 READIO 17

Return Interrupt Status Register 0.

Bit        Value                      Meaning
7        128 Interrupt occurred on ISR 0
6        64    Interrupt occurred on ISR 1
5        32    Byte Received
4        16    Ready for Next Byte
3        8        EOI detected
2        4        SPAS
1        2        Remote/Local Change
0        1        My Address Change

9914 READIO 19

Return Interrupt Status Register 1.

Bit        Value        Meaning
7        128    Trigger Received
6        64        Handshake Error
5        32    Unrecognized Command Group
4        16    Secondary Command While Addressed
3        8        Clear Received
2        4        My Address Received (Listen or Talk)
1        2        SRQ Received
0        1        IFC Received

9914 READIO 21

Return Interface Status.

Bit        Value                      Meaning
7        128 REM - Remote State
6        64    LLO - Local Lockout State
5        32    ATN Line True
4        16    LPAS - Listener Primary Addressed State
3        8        TPAS - Talker Primary Addressed State
2        4        LADS - Listener Addressed State
1        2        TADS - Talker Primary Addressed State
0        1        LSB of Last Address

9914 READIO 23

Return Control-Line Status.

Bit          Value                    Meaning
7        128 ATN True
6        64    DAV True
5        32    NDAC True
4        16    NRFD True
3        8        EOI True
2        4        SRQ True
1        2        IFC True
0        1        REN True

9914 READIO 29

Return Command Pass Through.

Bit        Value                      Meaning
7        128    DIO8
6        64        DIO7
5        32        DIO6
4        16        DIO5
3      8        DIO4
2      4        DIO3
1      2        DIO2
0        1        DIO1

9914 READIO 31

Return Bus Data Line Status.

Bit        Value                      Meaning
7        128 DIO8
6        64    DIO7
5        32    DIO6
4        16    DIO5
3        8        DIO4
2        4        DIO3
1        2        DIO2
0        1        DIO1

9914 WRITEIO Registers
The following WRITEIO registers are supported.

9914 WRITEIO 3
Set Interrupt and DMA Enable.

Bit              Value                    Meaning
7        128        Enable Interrupt
6-2        -        Unused
1        2        Enable DMA Channel 1
0        1        Enable DMA Channel 0

9914 WRITEIO 17
Set Interrupt Mask Register 0.

Bit              Value                    Meaning
7-6                Unused
5        32    Byte Received
4        16    Ready for Next Byte
3        8        EOI detected
2        4        SPAS
1        2        Remote/Local Change
0        1        My Address Change

9914 WRITEIO 19
Set Interrupt Mask Register 1.

Bit            Value                      Meaning
7        128        Trigger Received
6      64    Handshake Error
5        32    Unrecognized Command Group
4        16    Secondary Command While Addressed
3        8        Clear Received
2        4        My Address Received (Listen or Talk)
1        2        SRQ Received
0        1        IFC Received

9914 WRITEIO 23
Set Auxiliary Command Register.

Bit            Value                      Meaning
7        128        1 - Set, 0 - Clear
6-5        -        Unused
4-0        -        Auxiliary Command

Auxiliary Command  CLEAR        SET
Software Reset        0 128
Release DAC Holdoff        1        129
Release RFD Holdoff      2        xx
Holdoff on all Data        3        131
Holdoff on EOI only    4        132
New Byte Available False        5        xx
Force Group Execute Trigger    6        134
Return to Local        7        135
Send EOI with Next Byte        8        xx
Listen Only        9        137
Talk Only        10        138
Goto Standby        11        xx
Take Control Asynchronously    12        xx
Take Control Synchronously    13        xx
Request Parallel Poll        14        142
Send Interface Clear        15        143
Send Remote Enable        16        144
Request Control        17        xx
Release Control        18        xx
Disable all Interrupts        19        147
Pass Through Next Secondary 20        xx
Short T1 Settling Time        21        149
Shadow Handshake        22        150
Very Short T1 Delay        23        151
Request Service Bit 2        24        152

9914 WRITEIO 25
Set Address Register.

Bit              Value                    Meaning
7        128    Enable Dual Addressing
6        64        Disable Listener Function
5        32        Disable Talker Function
4-0 -        Primary Address

9914 WRITEIO 27
Set Serial Poll Response.

Bit              Value                    Meaning
7        128        Device Dependent Status
6        64        1 - Send, 0 - Don’t Send SRQ
5-0        -        Device Dependent Status

9914 WRITEIO 29
Set Parallel Poll Response.

Bit            Value                      Meaning
7        128    DIO8
6        64        DIO7
5        32        DIO6
4        16    DIO5
3        8        DIO4
2        4        DIO3
1        2        DIO2
0        1        DIO1

9914 WRITEIO 31
Set Bus Data Lines Register.

Bit            Value                      Meaning
7        128        DIO8
6        64        DIO7
5        32        DIO6
4        16    DIO5
3        8        DIO4
2        4        DIO3
1        2        DIO2
0        1        DIO1

7210 READIO Registers
The following READIO registers are supported.

7210 READIO 1
Return Card Identification. Always 2.

7210 READIO 3
Return Interrupt and DMA status.

Bit              Value                    Meaning
7        128        Interrupts Enabled
6        64        Interrupt Requested
5-4        -      Hardware Interrupt Level Switches
3-2      -        Not used
1        2        DMA channel 1 enabled
0        1        DMA channel 0 enabled

7210 READIO 5
Return Controller Status and Address.

Bit              Value                    Meaning
7        128        System Controller
6        64        Active Controller
5        32        Unused
4-0        -        Interface Primary Address

7210 READIO 18
Return Bus Data Lines.

Bit              Value                    Meaning
7        128    DIO8
6        64        DIO7
5        32        DIO6
4        16        DIO5
3        8        DIO4
2        4        DIO3
1        2        DIO2
0        1        DIO1

7210 READIO 20
Return Interrupt Status Register 1.

Bit              Value                    Meaning
7        128 Command Pass Through
6        64    Address Pass Through
5        32    Device Execute Trigger
4        16    End Received
3        8        Device Clear
2        4        Handshake Error
1        2        Data Out - Send Byte
0        1        Data In - Read Byte

7210 READIO 22
Return Interrupt Status Register 2.

Bit              Value                    Meaning
7      128        Interrupt Occurred on ISR 1 or 2
6      64    SRQ Received
5      32    Device in Lockout State
4      16    Device in Remote State
3      8        Command Output - Send Byte
2      4        Lockout Change
1      2        Remote Change
0      1        Address Status Change

7210 READIO 24
Return Serial Poll Status.

Bit              Value                    Meaning
7-0 - Echoes Contents of Serial Poll Mode Reg.

7210 READIO 26
Return Address Status.

Bit              Value                    Meaning
7 128 Controller in Charge
6 64 ATN Line is High
5 32 Serial Poll Mode State
4 16 Listener Primary Addressed State
3 8 Talker Primary Addressed State
2 4 Listener Addressed
1 2 Talker Addressed
0 1 Talk or Listen Address Received

7210 READIO 28
Return Command Pass Through.

Bit              Value                    Meaning
7 128 DIO8
6 64 DIO7
5 32 DIO6
4 16 DIO5
3 8 DIO4
2 4 DIO3
1 2 DIO2
0 1 DIO1

7210 READIO 30
Return Address Register 0.

Bit              Value                    Meaning
7        128        Not Used
6      64        Disable Talker 0.
5      32 Disable Listener 0.
4-0        -        Interface Major Address

7210 READIO 32
Return Address Register 1.

Bit              Value                    Meaning
7 128    EOI Sent on Last Data Byte
6        64        Disable Talker 1.
5        32        Disable Listener 1.
4-0        -        Interface Minor Address

7210 WRITEIO Registers
The following WRITEIO registers are supported.

7210 WRITEIO 3
Set Interrupt and DMA Enable.

Bit              Value                    Meaning
7        128        Enable Interrupt
6-2      -      Unused
1        2        Enable DMA Channel 1
0        1        Enable DMA Channel 0

7210 WRITEIO 18
Set Bus Command & Data Lines.

Bit              Value                    Meaning
7 128        DIO8
6 64    DIO7
5 32          DIO6
4 16        DIO5
3 8          DIO4
2 4          DIO3
1 2          DIO2
0 1          DIO1

7210 WRITEIO 20
Set Interrupt Mask Register 1.

Bit              Value                    Meaning
7        128 Command Pass Through
6        64    Address Pass Through
5        32    Device Execute Trigger
4        16    End Received
3        8        Device Clear
2        4        Handshake Error
1        2        Data Out - Send Byte
0        1        Data In - Read Byte

7210 WRITEIO 22
Set Interrupt Mask Register 2.

Bit              Value                    Meaning
7        128    Unused
6        64        SRQ Received
5        32        DMA Output - Transfer Data
4        16    DMA Input - Transfer Data
3        8        Command Output - Send Byte
2        4        Lockout Change
1        2        Remote Change
0        1        Address Status Change

7210 WRITEIO 24
Set Serial Poll Mode Response.

Bit              Value                    Meaning
7        128        Device Dependent Status
6        64        1 - Send, 0 - Don’t Send SRQ
5-0      -        Device Dependent Status

7210 WRITEIO 26
Set Address Mode Register.

Bit              Value                    Meaning
7        128    Talk Only Mode
6        64        Listen Only Mode
5        32        Transmit/Receive Mode 1
4        16        Transmit/Receive Mode 0
3-2        -        Unused
1        2        Address Mode 1
0        1        Address Mode 0

7210 WRITEIO 28
Set Auxiliary Mode Register. Bits 7 to 5 determine which register is set. Bits 4 to 0 specify the value to write into the register.
Tables giving the values for bits 4 to 0 for each auxiliary mode register follow the main table.

Bit              Value                    Meaning
7        128    CNT2 - Control Code 2
6        64        CNT1 - Control Code 1
5        32        CNT0 - Control Code 0
4-0        -        COM4-COM0 - Command Codes 4-0

Auxiliary Command Register. If CNT2-CNT0 are set to 000 (binary), bits 4 to 0 are defined by the following values:

Auxiliary Command                                SET                  CLEAR
Immediate Execute pon        0        xx
Chip Reset        2        xx
Finish Handshake      3      xx
Trigger        4        xx
Return to Local        5        13
Send EOI        6        xx
Non-Valid/Valid 2nd Cmd./Add. 7        15
Parallel Poll Flag        9        1
Goto Standby        16        xx
Take Control Asynchronously 17        xx
Take Control Synchronously 18        xx
Take Control Synch. on End        26        xx
Listen        19        xx
Listen in Continuous Mode        27        xx
Local Unlisten          28        xx
Execute Parallel Poll        29        xx
Send Interface Clear        30        22
Send Remote Enable        31        23
Disable System Controller        20        xx

Internal Counter Register. If CNT2-CNT0 are set to 001 (binary), bits 4 to 0 specify the State Change Prohibit Times.

Parallel Poll Register. If CNT2-CNT0 are set to 011 (binary), bits 4 to 0 have the following meaning:

Bit              Value                    Meaning
4        16        Disables Participation in Parallel Poll
3        8        Logic Sense of Status
2-0        -        Data Line to Assert During Poll

Auxiliary Register A. If CNT2-CNT0 are set to 100 (binary), bits 4 to 0 have the following meaning.

Bit              Value                    Meaning
4        16        Select 8-bit EOS length
3        8        Enable Transmit of EOS
2        4        Enable Receive of EOS
1        2        RFD Hold Off on End
0        1        RFD Hold Off on All Data

Auxiliary Register B. If CNT2-CNT0 are set to 101 (binary), bits 4 to 0 have the following meaning.

Bit              Value                    Meaning
4        16    Indicates the Value of ist
3        8        Active Level of The INT Pin
2        4        Sets high speed as T(1)
1        2        Enable Transmit of END in Serial Poll
0        1        Enable Setting of CPT bit if Undefined Cmd.

Auxiliary Register E. If CNT2-CNT0 are set to 110 (binary), bits 4 to 0 have the following meaning.

Bit              Value                    Meaning
4-2        -        Unused
1        2        Enable DAC Hold-Off by DCAS State
0        1        Enable DAC Hold-Off by DTAS State

7210 WRITEIO 30
Set Address Register.

Bit              Value                    Meaning
7        128        Address Register 0 or 1
6        64        Disable Talk Function
5        32        Disable Listen Function
4-0 -        Primary Address of 0 or 1

7210 WRITEIO 32
Set End of String Register.

Bit            Value                      Meaning
7-0      -        EOS Message Byte to Send

Statement Bus Action Summary
The following tables show the bus actions that take place when the various IEEE-488 control statements are executed. The table
is broken down into System and Non-System Controller, then into Active and Non-Active Controller, and further subdivided into
interface select code only or primary address specified. The mnemonics used in the tables are listed below:

ATN - Attention Line        PPD - Parallel Poll Disable
DCL - Device Clear        PPE - Parallel Poll Enable
EOI - End or Identify      PPU - Parallel Poll Unconfigure
GET - Group Execute Trigger        REN - Remote Enable
GTL - Go to Local        SDC - Selected Device Clear
IFC - Interface Clear        SPD - Serial Poll Disable
LAG - Listen Address Group      SPE - Serial Poll Enable
LLO - Local Lockout        TAG - Talk Address Group
MLA - My Listen Address        TCT - Take Control
MTA - My Talk Address        UNL - Unlisten
PPC - Parallel Poll Configure        UNT - Untalk

ABORT

System Controller Not System Controller

Active Controller Not Active Controller Active Controller Not Active Controller

ISC Only Primary ISC Only Primary ISC Only Primary ISC Only Primary

IFC
REN
~ATN

Error IFC
REN
~ATN

Error ATN
MTA
UNL
~ATN

Error No Action Error

CLEAR

System Controller Not System Controller

Active Controller Not Active Controller Active Controller Not Active Controller

ISC Only Primary ISC Only Primary ISC Only Primary ISC Only Primary

ATN
DCL

ATN
MTA
UNL
LAG
SDC

Error Error ATN
DCL

ATN
MTA
UNL
LAG
SDC

Error Error

LOCAL

System Controller Not System Controller

Active Controller Not Active Controller Active Controller Not Active Controller

ISC Only Primary ISC Only Primary ISC Only Primary ISC Only Primary

~REN
~ATN

ATN
MTA
UNL
LAG
GTL

~REN Error ATN
GTL

ATN
MTA
UNL
LAG
GTL

Error Error

LOCAL LOCKOUT

System Controller Not System Controller

Active Controller Not Active Controller Active Controller Not Active Controller

ISC Only Primary ISC Only Primary ISC Only Primary ISC Only Primary

ATN
LLO

Error Error Error ATN
LLO

Error Error Error

PASS CONTROL

System Controller Not System Controller

Active Controller Not Active Controller Active Controller Not Active Controller

ISC Only Primary ISC Only Primary ISC Only Primary ISC Only Primary

Error ATN
UNL
TAG

Error Error Error ATN
UNL
TAG

Error Error

TCT
~ATN

TCT
~ATN

PPOLL

System Controller Not System Controller

Active Controller Not Active Controller Active Controller Not Active Controller

ISC Only Primary ISC Only Primary ISC Only Primary ISC Only Primary

ATN
EOI
read
~EOI
ATN*

Error Error Error ATN
EOI
read
~EOI
ATN*

Error Error

*Restore ATN to previous state

PPOLL CONFIGURE

System Controller Not System Controller

Active Controller Not Active Controller Active Controller Not Active Controller

ISC Only Primary ISC Only Primary ISC Only Primary ISC Only Primary

Error ATN
MTA
UNL
LAG
PPC
PPE

Error Error Error ATN
MTA
UNL
LAG
PPC
PPE

Error Error

PPOLL UNCONFIGURE

System Controller Not System Controller

Active Controller Not Active Controller Active Controller Not Active Controller

ISC Only Primary ISC Only Primary ISC Only Primary ISC Only Primary

ATN
PPU

ATN
MTA
UNL
LAG
PPC
PPD

Error Error ATN
PPU

ATN
MTA
UNL
LAG
PPC
PPD

Error Error

REMOTE

System Controller Not System Controller

Active Controller Not Active Controller Active Controller Not Active Controller

ISC Only Primary ISC Only Primary ISC Only Primary ISC Only Primary

REN
~ATN

REN
ATN
MTA
UNL
LAG

 REN Error Error Error Error Error

SPOLL

System Controller Not System Controller

Active Controller Not Active Controller Active Controller Not Active Controller

ISC Only Primary ISC Only Primary ISC Only Primary ISC Only Primary

Error ATN
UNL
MLA
TAG
SPE
~ATN
read
ATN
SPD
UNT

Error Error Error ATN
UNL
MLA
TAG
SPE
~ATN
read
ATN
SPD
UNT

Error Error

TRIGGER

System Controller Not System Controller

Active Controller Not Active Controller Active Controller Not Active Controller

ISC Only Primary ISC Only Primary ISC Only Primary ISC Only Primary

ATN
GET

ATN
MTA
UNL
LAG
GET

Error Error ATN
GET

ATN
MTA
UNL
LAG
GET

Error Error

Summary
This chapter discussed the IEEE-488 bus and how it is used to transfer information between devices. It presented the IEEE-488
signal lines and IEEE-488 device addressing. The three levels of IEEE-488 bus data transfer and control statements were also
presented along with the HTBasic statements that enable and control IEEE-488 interrupts. The definitions of the registers and a
summary of the bus actions that each IEEE-488 statement generates were also given.

Serial (RS-232) I/O
This chapter describes the particulars of performing I/O on the serial (RS-232) interface. If you have not read the general
discussion of I/O presented in the “General Input and Output” chapter, you should do so before reading this chapter. HTBasic
requires a driver before the serial interface can be accessed. The Installing and Using manual explains how to load the SERIAL
driver, how to prevent conflicts with a serial mouse, how to use more than two serial ports, and how to set driver switches.

This chapter describes the handshaking used for ENTER and OUTPUT, and shows how to select between hardware and software
handshaking. A long discussion is presented on cabling, communication parameters, and data formats.    An in-depth, technical
discussion of the RS-232 standard and its omissions is given. Pin assignments for standard connectors are listed. The register
definitions for CONTROL, STATUS, READIO, WRITEIO, and the ENABLE INTR are presented.

General I/O
OUTPUT, ENTER, and TRANSFER are explained in the “General Input and Output” chapter. Before data can be exchanged, the
serial driver must be loaded, the computer and device must be cabled together correctly and the RS-232 communications
parameters must be set correctly on both the computer and the device.

The CONTROL and STATUS statements read or set various interface parameters, such as baud rate, character format, etc.
CONTROL and STATUS examples given in this chapter assume that the serial interface has an ISC of 9. This is the default ISC for
the first serial port. If you are using another port, or if you have changed the default ISC, you will use a value other than 9. The
following example reads status register 3 of ISC 9.

PRINT “COM1 baud rate is ”;STATUS(9,3)

The READIO and WRITEIO statements read or set hardware registers. These registers are typically quite different than the
hardware registers on an HP BASIC RS-232 Interface. You should not attempt to use these registers unless you are familiar with
the RS-232C hardware. You should also not mix use of READIO/WRITEIO with STATUS/CONTROL statements.    Using
STATUS/CONTROL statements is preferred.

Handshaking
XON/XOFF handshaking capability, not available in HP BASIC, has been added to HTBasic. This capability is turned on by
CONTROL 9,100;1 and turned off by CONTROL 9,100;0. It is on by default. XON is ^Q (DC1) and XOFF is ^S (DC3).

Hardware handshaking is also supported. It is turned on by

CONTROL 9,5;0 ! use DTR and RTS
CONTROL 9,12;0 ! read DSR, CD, and CTS
CONTROL 9,100;0 ! make sure XON/XOFF is disabled

It is turned off by

CONTROL 9,5;3 ! hold DTR and RTS active
CONTROL 9,12;176 ! ignore DSR, CD, and CTS
CONTROL 9,100;1 ! optionally enable XON/XOFF

By default, hardware handshaking is off.

ENTER Serial
To improve performance in receiving data, a 4096 byte receive buffer is available under NT. The receive buffer provided in other
versions of Windows is a 1024 byte buffer. When a character is received on the serial interface, it is placed in the receive buffer.
This is true regardless of the state of the BASIC program or hardware handshaking signals. The program need not be in an
ENTER statement; nor must DSR or CD be active.

XON/XOFF Handshaking:
1. When the buffer is about full, XOFF is sent.
2. When there is room again in the buffer, XON is sent.

Hardware Handshaking:
1. If the receive buffer is empty, turn on DTR and wait for a character to arrive.
2. Get a character from the receive buffer and turn off DTR.

OUTPUT Serial
The following outlines the steps used to OUTPUT data for software and hardware handshaking.

XON/XOFF Handshaking:
1. If an XOFF has been received from the device,
then the computer waits for an XON to be received.
2. The data is then sent.

Hardware Handshaking:
1. DTR and RTS are turned on.
2. The computer waits for the device to turn on DSR and CTS.
3. The data is then sent.
4. DTR and RTS are turned off.

Interrupt Support
The SERIAL driver supports ON INTR and ENABLE INTR. The definition of bits used in the ENABLE INTR statement is the same
as for STATUS register 8, given at the end of this chapter. An example showing use of interrupts with the SERIAL driver is given in
the “Interrupt” section of Chapter 5, “General Input and Output.”

When an interrupt occurs, the serial interface hardware requires that it be acknowledged. To handle or acknowledge the different
interrupts, you should do the following:

Interrupt                                Acknowledge by...
Error Occurred    STATUS register 10, UART Line Status
Data Available    ENTER or STATUS register 6, Data In
Tx Reg Empty    STATUS register 9, Interrupt ID
Modem Status STATUS register 11, Modem Status

Connecting Devices to the Serial Interface
Interfacing computers, peripherals, and instruments with a serial interface is often difficult. Once connected and configured
properly, things work well, but it is not uncommon to lose a day’s labor getting a new connection to work.

The following paragraphs attempt to explain a practical approach to interfacing with an RS-232 interface. An explanation is not
made in every case as to why we do the things we do. For those interested, a technical discussion is given after the practical
approach has been explained.

In the following discussion, we will use the following communications model:

The Practical Communications Model

"Standard" Cables
One approach to cabling is to have several types of cables around and when an interfacing situation arises, try them all out and
see if one will work. This is not such a bad approach, so we present several common cable diagrams below.

The documentation for the device you wish to communicate with may contain cable diagrams for hooking up the device to
common computers. All but the “Straight Through” cable could be considered “Null Modem” cables because they attempt to make
another non-modem device look like a modem. A phone call to the device manufacturer can also save a lot of time in determining
what cable to use.

Cabling From the Ground Up
If you wish to identify a cable which should work in a particular application, it can be done using the straight forward method
described here. First, examine the connectors on the computer and the device. The most common connector is a 25 pin DB
connector, but you will also commonly see 9 pin DB connectors. Less commonly, you’ll see connectors of all shapes and sizes.
Connectors almost always have identifying numbers near some of the pins/holes which give the pin numbers. The DB connector
pins are arranged in two rows, with the first row having one more pin than the second. The pins are numbered beginning with pin 1
on the wider row. You will need to understand the pin numbering system used in the connectors only if you plan to make your own
cable.

Once you have identified the type of connectors you will need, begin drawing a cable diagram using the steps in the following
paragraphs. When your diagram is complete, match it with descriptions of the cables you have available. Then use, buy, or build
the correct cable.

Pin 7 is usually the ground pin on a DB-25 pin connector (or pin 5 on a DB-9 connector). This can be verified by turning off and
unplugging the computer, disconnecting any cables between it and other devices, and measuring with an ohm meter between the
chasis and pin 7. The resistance should be zero. If pin 7 is not the ground, try pin 1, and then the other pins in turn until a ground
is found. Do the same for the device and then start building your cable diagram by drawing a connection from the ground pin of the
computer to the ground pin of the device.

The computer and the device each talk on one pin of the RS-232 connector and listen on another. Pins 2 and 3 (or pins 3 and 2 on a
DB-9) are usually used for talking and listening, respectively; but this is not always the case. Turn the computer on and with a
voltmeter, measure the voltage between the chasis of the computer and pin 2. Then do the same for pin 3. Ignore the polarity of the
voltage, we are interested in the magnitude only. In the discussion that follows, we will refer to the larger voltage as the “transmitter”

voltage and the smaller voltage as the “receiver” voltage. The computer talks on the pin with the transmitter voltage and listens on
the other. Make the same measurement on the device. Then on your diagram, hook the talk pin of the computer to the listen pin of
the device and vice versa.

You have now defined a “3-wire cable” and in some instances your cabling task is done. It’s probably worth trying, because if you
can use a 3-wire cable, you will save yourself a lot of headaches. If data is lost when using a 3-wire cable, try enabling software
handshaking (XON/XOFF), explained earlier. With software handshaking turned on, transfer data using the FORMAT ON option of
ASSIGN. If software handshaking cannot be used on the device, you will need a hardware handshaking cable.

Let’s continue defining a hardware handshaking cable. The three wires now hooked up are sufficient for transferring data. The
goal now is to inform the computer and the device when each can and cannot send data to the other. Said another way, we wish to
prevent the sending of data while the other is not ready to receive it. We must identify on which pins each presents its “I’m ready”
signal(s) and on which pins each asks “Are you ready?”

Get out your voltmeter again and measure pins 5, 6, and 8 (DB-9 pins 8, 6, and 1) on the computer. Remember that we are only
interested in the magnitude. Some or all of them should have the “receiver” voltage. The ones that do are asking “Are you
ready?” Now measure pins 5, 6, 8, and 20 on the device. One or more of these should have the “transmitter” voltage. If only pin
20 has it, it is the “I’m ready” pin of the device. If more than one of these pins have the “transmitter” voltage, then use 5 if possible
as the “I’m ready” pin and any other if 5 is not possible. Draw a connection between all the “Are you ready?” pins of the computer
to a single “I’m ready” pin of the device.

All of the pins 5, 6, 8, and 20 on the device that have the “receiver” voltage are the device’s “Ready?” pins. Pin 20 (DB-9 pin 4)
on the computer is usually the “Ready!” pin of the computer. On your cable diagram, draw a connection between the “Ready!” pin
of the computer and the “Ready?” pins of the device.

Your cable diagram is now complete. Match it with descriptions of the cables you have available. Then use, buy, or build the
correct cable. If this cable does not work, you should probably call the manufacturer of the device and get their help.

Communication Parameters
Plugging the cable between the computer and the device is not all that is required to make them talk. The devices must speak the
same language in order to understand each other. It doesn’t matter what it is, but it is essential they be the same! The language
consists of the baud rate, data bits, parity, and stop bits. You must determine which of these parameters can be set on the device,
what they can be set to, and how they are set. Typically, you would choose the highest baud rate that both the device and the
computer support, one stop bit, eight data bits, and no parity.

To set these values on the computer running HTBasic, use the serial CONTROL registers 3 and 4, which are listed at the end of
this chapter. For example, if you are using COM1 and the interface select code has not been changed from 9 and you wish to set
9600 baud, 1 stop bit, 8 data bits, and no parity, you would use this statement:

CONTROL 9,3;9600,3

Now plug in the cable, set the values, and give it a try. Remember to set the parameters on both the computer and the device.
Depending on the device, you may have to set some switches, type a command, or do something else.

Data Formats
Once the computer and device are communicating correctly, it is still possible to get incorrect data if the data is formatted by the
device in one way and interpreted by the computer in another or vice versa. The easiest way to get things working is to instruct the
device to send data in ASCII, with CR/LF terminating each data item. However, the fastest way to exchange data is to do so in
binary. Read the “General Input and Output” chapter carefully to determine how data is sent and how it is interpreted when it is
received. As with communications parameters, it is important to set both the computer and the device to the same data format.

Interface Status Errors
An interface status error, Error 167, may occur when the cabling, communication parameters, or data formats are not correct. The
error is not reported when it occurs but when you access the interface with ENTER or OUTPUT. To discover what the error was,
execute the statement:

PRINT IVAL$(STATUS(9,10),2)

This reads the UART line status register. The meaning of the bits is

Bit                      Value            Meaning
7        128    Not used
6        64        Transmit Shift Register Empty
5        32        Transmit Holding Register Empty
4        16    Break Detect
3        8        Framing Error
2        4        Parity Error
1        2        Overrun Error
0        1        Data Ready

Only bits 1 to 4 represent errors and bit 4 is not necessarily an error, if the device intended to get your attention by sending a
BREAK indication. If several of the error bits are set, the meaning of the bits may not reflect the actual problem; you probably have
the baud rate or character format set differently on the device and the computer.

If only a single error bit is set, the chances are good that the meaning of that bit reflects the actual error. A framing error indicates
that the character did not end when it was supposed to. You probably have the number of data or stop bits set differently on the
device and computer. A parity error means that the expected parity bit of the character was different than expected. You probably
have the parity set differently on the device and computer. An overrun error means that a character was sent to the computer
when the computer was not ready to receive it. You may not have handshaking set up correctly. You may not have executed the
proper CONTROL statements, wired the cable correctly, or set up the device to handshake.

Keep in mind that RESET and SCRATCH will reset the communication parameters to the values specified with CONTROL
registers 13 and 14. STATUS(9,3) and STATUS(9,4) may be used at any time to check the values of the baud rate and character
format to see if they are what you expect.

Spurious interface status errors can be caused by turning the power to the computer or device on or off. To prevent an error on the
ENTER or OUTPUT statement, the error can be cleared by STATUS(9,10) or by RESET 9.

RS-232: The Standard Non-Standard
The following is an in-depth technical discussion of the RS-232 standard and its weaknesses. You do not need to read it unless
you wish a greater understanding of the standard and the issues involved, or if you have a particularly difficult cabling problem that
you are attempting to solve.

The Standard
RS-232 (Electronic Industries Association Recommended Standard #232) describes a method of connecting a computer to an
instrument by way of a communication channel, most often a modem attached to a phone line. The RS-232 standard has been
revised four times. The current revision is called RS-232-D and was approved on November 12, 1986. The basic communications
model is shown in this figure:

The Basic Communications Model

Computers, devices, instruments, terminals, or peripherals are called Data Terminal Equipment (DTE) since they terminate each
end of the communications path. Modems are called Data Communications Equipment (DCE) since they facilitate the
communication across the communication channel. (In RS-232-D, the term Data Communications Equipment has been replaced
with the term Data Circuit-terminating Equipment.) The RS-232 standard describes the interface between the DTE and the DCE.
The interface is made using a 25 pin D shell connector. The female connector is associated with the DCE and an interface cable
with a male connector is offered by the DTE. The standard optionally allows this cable to be detachable from the DTE, however, no
connector type is specified. Only the connection at the DCE is specified by the standard!

Pin Assignments for PC 25 and 9 pin connectors
25                      9                            Common
Pin                  Pin                      Mnemonic          Direction                Description

1 -- Shield -- Shield
2      3        Tx        To        Transmit Data
3      2        Rx        From        Received Data
4        7        RTS        To        Request to Send
5        8        CTS        From      Clear to Send
6        6        DSR      From      DCE Ready
7        5        GND        Both        Signal Ground
8        1        CD        From        Carrier Detect
20        4        DTR        To        DTE Ready
22        9        RI        From        Ring Indicator

This table shows the pin assignments for the most often used pins. The direction of the signal is given to or from the DCE. The
following paragraphs both define the commonly used pins and give a detailed chronological example of how they are used:

Shield - The shield of the cable should be connected to pin 1 on the DTE end only. Connecting it to both can create a ground loop
that allows induced noise.

GND - Signal Ground - The signal ground is common to all the other data and control signals, going both to and from the DCE.

RI - Ring Indicator - Regardless of the state of DTR, if a ring is detected on the phone line, this signal should be turned on and off
with each ring. This allows the DTE to count the number of rings and decide when to turn DTR on.

DTR - Data Terminal Ready - When this signal is on, it indicates to the modem that it has permission to answer the phone and
establish a connection, should it ring, and should maintain the connection until DTR is turned off. When turned off, the modem
should hang up and turn DSR off. DTR should not be turned back on until after DSR has been turned off. It is permitted by the
standard that DTR be on any time the DTE is ready to send or receive data.

DSR - DCE (Data Set) Ready - When the DCE is ready to operate, and off hook, and the modem is not in voice mode and the
modem has finished establishing a phone call, the DCE should turn DSR on. At this point data can be transferred over the modem.
If a modem error occurs or a disconnect is detected, DSR should be turned off. The DTE should interpret this as an aborted
connection and the next time DSR is turned on, it is considered a new call.

CD - Carrier Detect - When the modem is receiving the proper signals from the remote modem, it turns CD on. When DTR, DSR,
and CD are all on, the DTE must be capable of receiving data at any time. When CD is off, no data will be received.

Rx - Received Data - The DTE receives data from the modem on this pin.

RTS - Request to Send - While the DTE must be willing to receive data anytime CD is on, it must ask permission to send data by
turning RTS on.

CTS - Clear to Send - When the modem is ready to accept data, with DSR already on, it turns CTS on. If the modem is half-
duplex, it also turns CD off to indicate that no data will be received while transmitting.

Tx - Transmitted Data - With DTR, DSR, RTS, and CTS all on, the DTE can transmit data on this line. When it is done transmitting,
the DTE turns RTS off and then the modem turns CTS off.

The Non-Standard
The RS-232 standard has several major omissions. It does not specify the connector that should be used on the DTE if the
required cable is detachable, and it does not specify how to connect two DTEs directly.

If the cable between the DTE and the DCE is detachable from the DTE, the standard only specifies the connector for the DCE end
of the cable: a male 25 pin D shell connector. The connector for the DTE end of the cable is not specified. The RS-232 port on an
IBM AT has a male 9 pin D shell connector. This is not in violation of the standard, so long as a cable is provided that makes a 25
pin D shell male connector available at the DCE end of the cable. The RS-232 port on a Hewlett-Packard 98626 Serial Interface
has yet another type of connector.

It is however, a de-facto (i.e., “non-standard”) standard to use a 25 pin D shell male connector on the DTE. Thus, the DTE to DCE
cable has a female connector on one end, a male connector on the other, and corresponding pins in the connectors are connected
“straight through:” pin 2 to pin 2, pin 3 to pin 3, etc.

While the RS-232 standard describes a straight forward method for connecting a DTE to a DCE (modem), it does not describe
how to connect one DTE directly to another. Unfortunately, many people would like to connect a computer directly to an instrument
— both DTEs. Individual manufacturers have addressed this problem in different ways, and have inadvertently created a lot of
confusion. The general approach is to make each DTE think it is communicating with a DCE, thus preserving adherence to the
RS-232 standard as much as possible. This can be done in several different ways, none of which are completely compatible with
the standard.

The problem is that the standard assumes the communication channel is always slower than the DTE. Thus handshaking is
present to prevent the DTE from writing too quickly to the DCE, but the standard contains no means for preventing the DCE from
writing too quickly to the DTE. The only signal available for the DTE to use to tell the DCE it is not ready to accept data is DTR.
But the standard specifies that “the OFF condition [of DTR] causes the DCE to be removed from the communication channel.”
Obviously, character handshaking with DTR is going to cause problems if the DCE hangs up between every character. Thus,
although DTR is commonly used for handshaking, that use is not completely compatible with the standard.

A less common approach to hooking two DTEs together is to implement a full DCE interface in the instrument, plotter, or printer
even though it is a data terminating equipment. Again, this is not completely compatible with the standard. The device must always
be connected locally to the controlling computer (the DTE), but a standard DTE to DCE cable can then be used.

Pin Assignments
The following table gives the complete pin assignments for the RS-232 standard. “Cir” is the official RS-232 name for the circuit.
“CCITT” gives the CCITT standard number for the circuit. (“Dir.” is the direction of the circuit relative to the DCE.)

Pin                    Circuit          CCITT        Dir.                    Description
1      —        —        —        Shield
2      BA      103        To        Transmitted Data
3        BB        104        From        Received Data
4        CA        105        To        Request to Send
5        CB        106        From        Clear to Send
6        CC        107        From        DCE (Data Set) Ready
7        AB        102        Both      Signal Ground
8        CF      109        From        Recvd Line Signal (Carrier) Detect
9        —        —      —      Reserved for Testing
10      —      —      —        Reserved for Testing
11      —        —        —        Unassigned
12        SCF*      122        From        2nd Carrier Detect
13        SCB        121        From        2nd Clear to Send
14        SBA        118        To        2nd Transmitted Data
15        DB        114        From        Transmitter Timing (DCE)
16        SBB        119        From        2nd Received Data
17        DD        115        From Receiver Timing (DCE)
18        LL        141        To        Local Loopback Test
19        SCA        120        To        2nd Request to Send
20        CD        108.2 To        DTE Ready
21        RL        140        To        Remote Loopback
22        CE      125        From        Ring Indicator
23        CH*    111        To        Rate Select (DTE Source)
24        DA        113        To        Transmit Timing (DTE)
25        TM        142        From        Test Mode

*CI, Rate Select (DCE Source), is assigned to pin 12 only if SCF is not used. Otherwise it is assigned to pin 23.

Serial Registers
STATUS and CONTROL registers for the serial interface are given below.

READIO and WRITEIO registers for the PC serial interface are also given below. These registers are different than the hardware
registers on an HP BASIC RS-232 Interface. The READIO/WRITEIO registers allow direct access to the interface hardware. You
should not attempt to use these registers unless you are familiar with the PC RS-232C hardware. You should not mix use of
READIO/WRITEIO with STATUS/CONTROL statements. Using STATUS/CONTROL statements is preferred.

The ON INTR and ENABLE INTR statements are supported by this interface. The values for the enable mask in the ENABLE
INTR statement are the same as those for STATUS register 8, given below.

Serial CONTROL Registers
The following CONTROL registers are supported. When a table is given to explain the meaning of each bit, to calculate the value
needed in the CONTROL statement add up the values in the Value column for each of the options needed.

CONTROL 0
Reset. The value must be non-zero.

CONTROL 1
BREAK. The value must be non-zero. A 400-millisecond BREAK signal is sent.

CONTROL 2
This register is undefined in both HTBasic and HP BASIC.

CONTROL 3
Set baud. The baud rate is set to the value you specify. Available baud rates are 110, 300, 600, 1200, 2400, 4800, 9600, 14400,
19200, 38400, 57600, and 115200.

CONTROL 4
Set character format.

Bits                  Value          Meaning
7-6        -        Not used
5,4,3        56        Parity bit is always Zero (111)
        40        Parity bit is always One (101)
        24        Parity is Even (011)
        8        Parity is Odd (001)
        0        No parity is sent (000)
2        4        2 stop bits (1.5 for 5 bit characters)
        0        1 stop bits
1,0        3        8 bit (11)
        2        7 bit (10)
        1        6 bit (01)
        0        5 bit (00)

CONTROL 5
Set hardware handshaking output line state.

Bit                      Value            Meaning
7-5        -        Not used
4        16        Not used
3        8        Not used (2nd-RTS not supported)
2        4        Not used (DRS not supported)
1        2        2=Tie RTS high, 0=Use RTS in handshaking
0        1        1=Tie DTR high, 0=Use DTR in handshaking

CONTROL 6
Data Out. The specified character is loaded into the transmit holding register and then transmitted. Handshaking lines are not
changed or read. Normally, you should use the OUTPUT statement.

CONTROL 7
Optional Receiver/Driver Status. On this interface, this is ignored.

CONTROL 8 to 11
These registers are undefined in both HTBasic and HP BASIC.

CONTROL 12
Set hardware handshaking input line state.

Bit                      Value            Meaning
7          128        Not used
6          64        Not used
5          32      32=Ignore DSR, 0=Use DSR in handshaking
4          16        16=Ignore CTS, 0=Use CTS in handshaking
3-0        -      Not used

CONTROL 13
Set default baud. Each time HTBasic is started, the default is set to 9600. This register cannot be used to change that. This
register can be used to change the default set by SCRATCH or RESET.

CONTROL 14
Set default character format. Each time HTBasic is started, the default is set to Parity disabled, 1 stop bit, 8 data bits. This register
cannot be used to change that. This register can be used to change the default set by SCRATCH or RESET.

CONTROL 100
XON/XOFF Handshaking. A non-zero value enables XON/XOFF. A zero value disables it. By default it is on.

Serial STATUS Registers
The following STATUS registers are supported.

STATUS 0
Card identification. Returns a 66. This is the same value returned by the HP 98644 Serial Interface. It signifies that the following
differences from the HP 98626 Interface are present:

1. The optional receiver/driver lines are not present.
Register 7 does nothing.
2. Configuration switches are not present. Defaults are
9600 baud, 8 bit, no parity on a PC.
3. The physical connector is a RS-232-C 9 or 25 pin connector.

STATUS 1
Interrupt Status. If you will be porting programs to an HP BASIC computer, you should be aware that bits 5 to 0 are defined
differently under HP BASIC. Only bits 5 and 4 give the interrupt number, encoded to specify an interrupt in the range 3 to 6. This
does not occur with HTBasic.

Bit                      Value            Meaning
7        128        Interrupts Enabled
6        64 Interrupt waiting service
5-2        -      Interrupt number, 0-15
1,0        -        Not used

STATUS 2
Interface Activity Status. Bit 2 is always zero in this implementation because HTBasic stops handshaking whenever a function call
may occur.

Bit                      Value            Meaning
7-3        -        Not used
2        4        Handshake in progress (always 0)
1        2        Interrupts Enabled (ENABLE INTR)
0        1        Not used

STATUS 3
Baud rate.

STATUS 4
Character format (See CONTROL above).

STATUS 5
Read hardware handshaking output line state (See CONTROL above).

STATUS 6
Data In. Reads next character from the receive buffer. The character is then removed from the buffer. If no characters are in the
buffer, the character in the UART receive buffer is returned.

STATUS 7
Optional Receiver/Driver Status. On this interface, this is always zero.

STATUS 8
Interrupt Enable Mask. This register is set with the ENABLE INTR statement.

Note: It is recommended that bit 1, Interrupt if Tx Holding Reg. Empty, not be used because any time ENABLE INTR is executed,
this register will be empty and the interrupt will immediately occur. The interrupt-driven receive buffer code will then immediately
acknowledge the interrupt as a side effect of checking for data in the receiver.

Bit                    Value              Meaning
7-4        -        Not used
3        8        Interrupt if Modem Status (register 11) changes
2        4        Interrupt on error (register 10, bits 1 to 4)
1        2        Interrupt if Transmit Holding Reg Empty
0        1        Interrupt if data becomes available

STATUS 9
Current Interrupt ID. If bit 0 is 0, then an interrupt is pending, and bits 2 and 1 indicate the cause. The interrupts are prioritized by
value. Multiple interrupts can be pending. An interrupt handler should read this register repeatedly, handling each interrupt until
this register shows that no interrupt is pending. Also, if a Data Available interrupt is followed by an Error Occurred interrupt before
either is serviced, only the later will be reported. This is different than HP BASIC. If you enable both interrupts, and an Error
interrupt occurs, you should manually check for data available using bit 0 of register 10.

Bit                    Value              Meaning
7-3      -        Not used
2,1        6        Error Occurred (register 10, bits 1 to 4)(11)
        4        Data Available (10)
        2        Transmit Holding Register is empty (01)
        0        Modem Status (register 11) changed (00)
0        1        1=No interrupt, 0=Interrupt pending

To handle, or acknowledge an interrupt, you should do the following:

Interrupt                                Acknowledge by...
Error Occurred        STATUS register 10, UART Line Status
Data Available        ENTER or STATUS register 6, Data In
Tx Reg Empty STATUS register 9, Interrupt ID
Modem Status      STATUS register 11, Modem Status

STATUS 10
UART line status.

Bit                      Value            Meaning
7        128    Not used
6        64        Transmit Shift Register Empty
5        32    Transmit Holding Register Empty
4        16    Break Detect
3        8        Framing Error
2        4        Parity Error
1        2        Overrun Error
0        1        Data Ready

STATUS 11
Modem status.

Bit                      Value            Meaning
7        128        Carrier Detect (CD)
6        64        Ring Indicator (RI)
5        32    Data Set Ready (DSR)
4        16    Clear to Send (CTS)
3        8        Delta Carrier Detect
2        4        Trailing Edge Ring Indicator
1        2        Delta Data Set Ready
0        1      Delta Clear to Send

STATUS 12
Return the hardware handshaking (input lines) state. See CONTROL register 12, above.

STATUS 13
Return the current default baud rate.

STATUS 14
Return the current default character format.

STATUS 100
Return the XON/XOFF enable state. 1 - enabled, 0 - disabled.

STATUS 101
Return the number of characters in the receive buffer.

Serial READIO & WRITEIO Registers
The following READIO & WRITEIO Registers are supported. For more details on any of the following registers, please see the 32-
bit Windows Programmer’s Reference books.

WRITEIO 1
Baud Rate.

WRITEIO 2
Not supported.

WRITEIO 5
Specifies the minimum number of bytes allowed in the input buffer before the XON character is sent.

WRITEIO 6
Specifies the maximum number of bytes allowed in the input buffer before the XOFF character is sent. The maximum number of
bytes allowed is calculated by subtracting this value from the size, in bytes, of the input buffer.

WRITEIO 7
Specifies the number of bits in the bytes transmitted and received.

WRITEIO 8
Parity. Specifies the parity scheme to be used.

Bit                      Value            Meaning
3        8        Space
2        4        Odd
1        2        Even
0        1        Mark
 -      0        No parity

WRITEIO 9
Stop bits. Specifies the number of stop bits to be used.

Bit                      Value            Meaning
1 2 2 Stop Bits
0 1 1.5 Stop Bits
- 0 1 Stop Bit

WRITEIO 10
Specifies the value of the XON character for both transmission and reception.

WRITEIO 11
Specifies the value of the XOFF character for both transmission and reception.

WRITEIO 12
Specifies the value of the character used to replace bytes received with a parity error.

WRITEIO 13
Specifies the value of the character used to signal the end of data.

WRITEIO 14
Specifies the value of the character used to signal an event.

Serial32 WRITEIO Only Registers
The following WRITEIO registers are supported. For more details on any of the following registers, please see the 32-bit Windows
Programmer’s Reference books.

WRITEIO 20
Specifies the code of the extended function to perform.

Value            Meaning
1        Set XOFF
2        Set XON
3        SET RTS
4        CLR RTS
5        SET DTR
6        CLR DTR

Serial32 READIO Only Registers
The following READIO registers are supported. For more details on any of the following registers, please see the 32-bit Windows
Programmer’s Reference books.

READIO 30
Specifies the port status.

Bit                      Value            Meaning
6        64        TX
5        32        EOF
4        16    XOFF Sent
3        8        XOFF Hold
2        4        RLSD Hold
1        2        DSR Hold
0        1        CTS Hold

READIO 31
Specifies the number of bytes received by the serial provider but not yet read by a readfile operation.

READIO 32
Specifies the number of bytes of user data remaining to be transmitted for all write operations.

READIO 33
Errors.

Bit                      Value            Meaning
15        32768        Requested mode not supported
8        256        Output buffer full
4        16    Hardware detected break
3        8        Hardware detected framing error
2        4        Hardware detected parity error
1        2        Character buffer overrun
0        1        Input buffer overflow

Serial ENABLE INTR Mask
ON INTR and ENABLE INTR are supported on this interface. The definition of bits used in the ENABLE INTR statement is given
above under STATUS register 8.

Summary
This chapter discussed use of the serial (RS-232) interface. Software (XON/XOFF) and hardware handshaking sequences were
given. Suggestions for cabling were made as well as instructions for setting communication parameters. An explanation was given
of interface status errors. A technical explanation of the RS-232 standard was given. The registers for CONTROL, STATUS,
READIO, WRITEIO, and ENABLE INTR were presented.

Other I/O Destinations/Sources
This chapter discusses I/O (input/output) facilities for    buffers, strings, and a special interface called the “Processor Interface.”

Chapter 5, “General Input and Output,” discussed the general principles used for input/output. These principles apply to all I/O
targets. In particular, use of ASSIGN, OUTPUT, ENTER, STATUS, CONTROL, and TRANSFER were explained. If you have not
yet read that chapter, you should do so before reading this one. Chapter 6, “CRT, Keyboard, and Printer” contains information on
statements that are especially useful for printer use, and should be read in connection with the Parallel Interface information in this
chapter.

I/O to Strings
The OUTPUT and ENTER statements can be used to write or read data to or from a string. This capability is convenient when you
wish to capture the output for further manipulation, or when converting between different formats.

OUTPUT to Strings
Output to strings starts at the beginning of the string with each OUTPUT statement, outputs the data into the string in FORMAT
ON format, and then sets the string length. A second OUTPUT statement will overwrite the information from the first.

10 OUTPUT A$;"1"
20 OUTPUT A$;"2"
30 PRINT A$="2"&CHR$(13)&CHR$(10)
40 END

This program shows that the second output overwrites the data from the first. It also illustrates that the normal item and line
terminators are output to the string unless suppressed.

OUTPUT to a string with the “W” image specifier writes binary data to a string. The data is always written using the native byte
ordering of the computer system. Intel processors use LSB FIRST ordering. Motorola 68xxx and HP PA-RISC processors use
MSB FIRST ordering.

ENTER from Strings
ENTER from strings starts at the beginning of the string with each ENTER statement, reads the data from the string with FORMAT
ON, and returns an EOI signal with the last character of the string.

10 A$="12"&CHR$(10)&"34"
20 ENTER A$;B$
30 ENTER A$;C$
40 PRINT B$,C$

In this program, both B$ and C$ will have the value “12", even though the first ENTER did not read all the data from the string.
With strings, each ENTER re-starts from the beginning of the string.

ENTER from a string with the “W” image specifier reads binary data from a string. The data is always read using the native byte
ordering of the computer system, as explained previously in the “OUTPUT to Strings” section.

Buffers
I/O to strings, as explained above, has limited application. Buffer I/O is more powerful. HTBasic implements circular buffers. Fill
and empty pointers remember where the last OUTPUT, ENTER, or TRANSFER ended, allowing the next statement to pick up
where the last one left off. The ASSIGN statement sets up a buffer for I/O. While buffers can be created in strings or arrays
(named buffers), unnamed buffers are recommended. The statement

ASSIGN @Iopath TO BUFFER [300]

creates an unnamed buffer and assigns it an I/O path name. The

ASSIGN @Another TO BUFFER X(*)

statement assigns an I/O path name to a variable previously declared as a buffer in a COM, DIM, INTEGER, LONG, STATIC or
REAL statement.

The buffer specified in ASSIGN may now be used in ENTER, OUTPUT, and TRANSFER statements. Information kept about a
BUFFER includes the current number of bytes in the buffer (initially set to 0), the empty and the fill pointers (initially set to 1), the
buffer capacity, and TRANSFER information.

If somehow a BUFFER ceased to exist while the I/O path used to write to it still existed, fatal errors could result. For this reason,
the BUFFER lifetime must equal or exceed the I/O path lifetime. The following table shows the legal and illegal combinations of
BUFFERs and I/O paths. A value of 0 means the combination is legal. A non-zero value gives the error returned if this combination
is used.

Type of  Type of I/O Path
BUFFER                                      Local  COM  Parameter
Local      0      602        602
Same COM        -      0        -
Different COM        -        602        -
Parameter        0        602        0*
Un-named        0        602        602
ALLOCATE        603        603        603
Not a BUFFER        603        603        603

*If the I/O path and BUFFER parameters have been passed through multiple CALL levels, the BUFFER must outlive the I/O path.
Also, if a parameter originated as a COM variable, the rules for COM variables apply.

Unnamed buffers can only be accessed through their I/O path. Named buffers can be directly accessed through their variable’s
name, but this procedure is not recommended since the data in the buffer is unformatted, the data may have the wrong byte order,
and direct access does not automatically update the buffer registers. The data in the buffer and the string’s current length can be
changed, but the buffer registers (empty and fill pointers, current-number-of-bytes register) are not automatically updated. To
automatically update the buffer registers use ENTER, OUTPUT, and TRANSFER statements.

BUFFER STATUS/CONTROL Registers
The STATUS and CONTROL registers of an I/O path assigned to a BUFFER were presented in full in Chapter 5. The following
example shows use of registers 2 through 5. All of these registers can be read, and all but the first can be set.

10 ASSIGN @Io TO BUFFER [1000];FORMAT OFF
20 Info(“Start”,@Io)
30 OUTPUT @Io;PI,1/3
40 Info(“After OUTPUT”,@Io)
50 ENTER @Io;X
60 Info(“After ENTER”,@Io)
70 END
80 SUB Info(When$,@Io)
90 PRINT When$
100 PRINT “ Total buffer size is ”;STATUS(@Io,2)
110 PRINT “ Fill pointer is ”;STATUS(@Io,3)
120 PRINT “ # of bytes in buffer is ”;STATUS(@Io,4)
130 PRINT “ Empty pointer is ”;STATUS(@Io,5)
140 SUBEND

This program produces the following output:

Start
 Total buffer size is 1000
 Fill pointer is 1
 # of bytes in buffer is 0
 Empty pointer is 1
After OUTPUT
 Total buffer size is 1000
 Fill pointer is 17
 # of bytes in buffer is 16
 Empty pointer is 1
After ENTER
 Total buffer size is 1000
 Fill pointer is 17
 # of bytes in buffer is 8
 Empty pointer is 9

The Processor Interface (32)
Interface select code 32 has a special usage and cannot be changed. It allows some system attributes associated with the
computer processor to be set or read. CONTROL and STATUS are the only operations allowed on this interface. To ease porting
of HP BASIC programs, CONTROL operations are supported, but are ignored except as noted. The following STATUS registers
are supported in this version.

STATUS 0
Parity Checking. Always 1 (enabled), regardless of the presence or absence of and state of parity checking.

STATUS 1
External Cache. Always 0 (disabled), regardless of the presence or absence and state of an external cache.

STATUS 2
Floating-Point Math Hardware. If a math coprocessor is present, and enabled, a one is returned. If no math coprocessor is
present, or if one is present and disabled, then zero is returned.

STATUS 3
Internal (Inside the Processor) Cache. Always 0 (disabled).

STATUS 4
Battery-Backed-Up Clock Type. Presently, always 1.

0 = Battery-backed-up clock is NOT present.
1 = Battery-backed-up clock is present.

Accessing Other Interfaces and Devices
If available, an HTBasic device driver is the best way to access a device, interface, or plug-in board. An HTBasic device driver is
loaded only while HTBasic is running and so does not consume any memory when not needed. An HTBasic driver also has
STATUS and CONTROL registers that facilitate the set up and use of the board.

Summary
This chapter discussed I/O to buffers, strings and the processor interface (interface 32).

DLL Toolkit
The Dynamic Link Library (DLL) Toolkit is provided to permit the use of exterior DLLs in    HTBasic programs.

DLL GET
The first command keyword is DLL GET, which sets up a Dynamic Link Library (DLL) function to use in the program. The syntax
for this command is:

DLL GET “returntype dllname:functionname” AS “alias”

where:

returntype is one of the following: VOID, SHORT, LONG, DOUBLE, CHAR, CHARPTR, VARIABLE.

dllname must be the name of a loaded DLL.

functionname is the name of the function in the DLL you wish to call, or a variable exported from the DLL. All Function/Variable
names must use valid HTBasic function name conventions or an alias using HTBasic function name conventions must be
provided. The DLL loader will allow you to load two functions with the same name as long as they are in different DLL’s. However,
without an alias specified, there is no way to differentiate which DLL you are trying to call and the DLL loader will always call the
first function by that name. You cannot have an HTBasic function with the same name as a DLL function.

alias is an optional function/variable name to use within HTBasic.

Examples of this command include:

DLL GET “VOID Pipecalc:Xsection” AS “Cross”
DLL GET “SHORT Pipecalc:Xsection” AS “Cross”
DLL GET “LONG Pipecalc:Xsection” AS “Cross”
DLL GET “DOUBLE Pipecalc:Xsection” AS “Cross”
DLL GET “CHAR Pipecalc:Xsection” AS “Cross”
DLL GET “CHARPTR Pipecalc:Xsection” AS “Cross”
DLL GET “VARIABLE Pipecalc:Xsection” AS “Cross”

DLL LOAD
The DLL LOAD command keyword specifies the Dynamic Link Library (DLL)    to LOAD into the program. The keyword syntax is:

DLL LOAD “dllname”

where:

dllname must be the name of a DLL to load.

A couple of examples of the command keyword in use would be:

DLL LOAD “Pipecalc”
DLL LOAD “Flowtrak”

DLL READ
The DLL READ command retrieves a Dynamic Link Library (DLL) variable value to use in the HTBasic program and reads it into a
BASIC variable. Its syntax is:

DLL READ “varname”;basic variable

where:

varname is any variable name within the DLL.

basic variable is any legal variable name to use within HTBasic.

Samples of this command could include:

DLL READ ”Xsection”;Crosec
DLL READ ”Flowrate”;Torrant

DLL UNLOAD
The DLL UNLOAD command specifies the Dynamic Link Library (DLL)    to UNLOAD from the HTBasic program. You may specify
a specific DLL to remove or simply remove all of them by using the syntax:

DLL UNLOAD “dllname” or ALL

where:

dllname must be the name of a DLL to load.

Samples of this command could include:

DLL UNLOAD ALL !Removes all loaded DLLs
DLL UNLOAD “Flowtrak” !Removes only Flowtrack.dll

DLL WRITE
The DLL WRITE command sets a Dynamic Link Library (DLL)    variable to use in the HTBasic program and writes the value of a
BASIC variable into a DLL variable. Its syntax is:

DLL WRITE “varname”;value

where:

varname is any variable name within the DLL.

value is any numeric value.

Samples of this command in operation could include:

DLL WRITE “Xsection”;3.559
DLL WRITE “Flowrate”;20.9

LIST DLL
The LIST DLL command lists the name of each Dynamic Link Library (DLL) function and variable currently in memory. The syntax
of the LIST DLL command is simply:

LIST DLL

Samples of the LIST DLL command could include:

LIST DLL !lists the DLLs to the CRT
LIST DLL #PRT !lists the DLLs to a printer

Export.h
Export.h is a C++ file header for C++ functions and variables exported from HTBasic. The user can use these functions from a
DLL.

NOTE: This is a C++ file. Knowledge of C++ will be helpful in understanding and making use of these functions.

The exported    C++ variables include:

g_hBasicCursor
This is the handle to an alternate cursor for the Basic Window. To use an alternate cursor, set this handle to the desired cursor or
call the SetBasicCursor function.

g_hBasicWindow
This is the handle to the main HTBasic window.

Exported Functions
The exported C++ functions include:

Disp
Prints String directly on HTBasic’s display line. The C++ function declaration (or prototype) is:

void Disp(char * Msg,BOOL opt=1);

The example of the command in operation is:

Disp("This is the HTBasic DISP line",(1))

Disp("This is the HTBasic message line",(0))

Where a non zero value sends output to the DISP line. A zero value sneds the output to the message line.

Signal
Sets an HTBasic signal (0-15). The C++ function declaration is:

int Signal(int num)

An example of the function is:

int success = Signal(15);

CheckInt
Check to see if a clear I/O or Basic Reset occurred. The C++ function declaration is:

int CheckInt()

The sample of the function is:

if (CheckInt())

{ // an interrupt occurred

}

Note: This does not work reliably on spawned threads.

SetBasicCursor
Sets one of the standard Windows cursors for ht Htbasic Window to use. The C++ function declaration is:

Void SetBasicCursor(char * cursor);

A sample of the command is:

SetBasicCursor(“hourglass”);

Valid parameter strings are: arrow, crosshair, help, hourglass, ibeam, no, sizeall, size nesw, size ns, size nwse, size we, up
arrow, wait arrow. Passing any other sting can and will refresh the cursor.

PutBuffer
Writes string information into an HTBasic Buffer. The C++ function declaration is:

int PutBuffer(void * IOPath,char* data,short option)

You must have a pointer to a buffer that you have already passed into the DLL.    The option parameter if true will cause a CR/LF
to be added to the data. An example of this command would be:

PutBuffer(buffer,”hello”,1)

GetBuffer
Reads string information out of an HTBasic Buffer. The C++ function declaration is:

 int GetBuffer(void * IOPath,char * data, long len)

A sample of the command is:

char data[20];

GetBuffer(buffer,data,15) // read 15 bytes from buffer

Interactive
See HTBasic Suspend Interactive and resume interactive command. The C++ function declaration is:

 void Interactive(short option)

If option is false then interactive is suspended.    If option is true interaction is resumed. A sample of the command is:

Interactive(0);

GetBasicEvents
Requests handles to events that can be monitored for reset and shutdown. The C++ function declaration is:

void GetBasicEvents(LPHANDLE ResetEvent, LPHANDLE ShutdownEvent);

ResetEvent and ShutdownEvent are Event handles that will be signaled if the corresponding event happens on the HTBasic
Thread. A sample of the function is:

HANDLE hResetEvent,hShutdownEvent;

GetBasicEvents(&ResetEvent,&ShutdownEvent);

Registerthread
Hands HTBasic an event handle that it will wait on before shutting down. The C++ function declaration is:

void Registerthread(LPHANDLE phEvent);

where, phEvent is an Event handle that is created in the DLL and handed to HTBasic. A sample of this is:

HANDLE hEvent;

RegisterThread(&hEvent);

Unregisterthread
Tells HTBasic that it no longer needs to wait on the previously registered event. The C++ function declaration is:

void Unregisterthread(LPHANDLE phEvent);

A sample of the command is:

HANDLE hEvent;

Unregistered(&hEvent);

where, phEvent is an Event handle that is created in the DLL and previously used to call RegisterThread.

Summary
The DLL Toolkit commands put powerful tools into the programmer’s hands to better utilize HTBasic in many new applications or
improve its usefulness in existing applications.

International Language Support
This chapter describes HTBasic international language support. HP BASIC is fairly tightly tied to the Roman-8 character set.
HTBasic is not tied to any given character set.    HTBasic depends on the operating system for keyboard, display, and printer
support of different character sets. HTBasic provides support for collation or lexical ordering and upper- and lowercase
conversions. Users are encouraged to use the character sets supported by the operating system. The use of Roman-8 is
discouraged when it is not supported by the operating system.

This chapter describes handling attribute/color character conflicts, LEXICAL ORDER (collating sequence), upper/lowercase
conversions, LABEL characters, and user-defined lexical order rules. Limited Roman-8 character set support is explained. Lexical
order and character set tables are given at the end of the chapter.

Character Sets
Character sets are supported through printer and screen fonts and keyboard input methods. The correct combinations of fonts and
input methods are usually installed as part of the system installation.

ASCII is one of the most widely used character sets, but unfortunately, defines characters only up to CHR$(127) and excludes
many characters necessary in languages throughout the world. Other character sets define characters up to CHR$(255) and
include other necessary characters. The following paragraphs describe several of these character sets. HTBasic has built-in
support for one character set, but the capability is present for users to add support for other character sets.

Japanese-enabled versions of HTBasic, when run in Japanese mode, allow use of two-byte characters using the ISO-932 and
Shift-JIS character sets. These are explained later in this chapter.

Character set tables for code pages 850, 437, Roman-8, Latin-1, ISO-932 and an overview of the Shift-JIS character set are given
at the end of this chapter.

Latin-1
The character set used by Microsoft Windows is called Latin-1 or ISO 8859-1.

HTBasic for Windows expects the Latin-1 character set to be in use. If it is not, the keyboard may not match the display and upper-
and lowercase conversions and collating may not function as expected.

ISO-932 and Shift-JIS
All Japanese-enabled versions of HTBasic use the ISO-932 single-byte and Shift-JIS character double-byte sets for character
representation when run in Japanese mode.    These are the same character sets used by HP BASIC. The ISO-932 character set
is the same as the ASCII set for characters whose values are less than 128.    Characters whose values are between CHR$(129)
and CHR$(159) or between CHR$(224) and CHR$(252) are used as leading bytes for two-byte characters using the Shift-JIS
character mapping.    Characters whose values are between CHR$(161) and CHR$(223) are half-width katakana characters from
the ISO-932 character set. CHR$(160) is a space. CHR$(128) and CHR$(253) - CHR$(255) are undefined.

Non-ASCII characters are entered into HTBasic programs using the operating system’s Input method. ASCII, katakana, and
hiragana characters are entered using the normal keyboard keys together with special shift keys. Kanji are usually entered by
allowing the user to type a phonetic (ASCII, katakana, or hiragana) representation of the desired character on the keyboard and
pressing a convert key, which displays a list of possible characters at the bottom of the screen or in a separate window. The user
then chooses the desired character from the list.

Variable Names
HP BASIC limits the international characters in variable names to CHR$(161) to CHR$(254). In HTBasic, this range is expanded
to CHR$(128) to CHR$(254) since many commonly used characters are in the range excluded by HP BASIC. In Japanese mode,
HTBasic allows characters in the range CHR$(161) - CHR$(223) (single-width katakana characters) in variable names.

Attribute Character Conflict
HP BASIC uses the range CHR$(128) to CHR$(143) for attribute and color control characters. This range is used by some
character sets for various international characters. To allow use of characters in this range, HTBasic will move attribute and color
control characters from this range to CHR$(16) to CHR$(31) with the statement:.

CONTROL CRT,100;1

To restore the normal range, use

CONTROL CRT,100;0

When HTBasic is run in Japanese mode, CONTROL CRT,100;1 is executed automatically.

CONTROL CRT,100 does not affect values used with CONTROL registers, only values PRINTed or OUTPUT to the CRT. This
statement is an enhancement to HTBASIC and will return an error if executed on a Series 200/300 computer.

The following table shows the attribute and color control characters for both the normal and alternate ranges. Remember that not
all attributes are supported on every display.

Attribute  Normal      Alternate
None        128        16
Inverse        129        17
Blinking      130        18
Inverse & Blinking        131        19
Underline        132        20
Underline & Inverse 133        21
Underline & Blinking 134        22
Underline, Inverse, & Blinking        135        23

Attribute  Normal      Alternate
White        136        24
Red        137        25
Yellow        138        26
Green        139        27
Cyan        140        28
Blue        141        29
Magenta        142        30
Black        143        31

Lexical Order
“Lexical order” is another term for “alphabetical order”. A “lexical order” defines an ordering of each character in a character set.
By assigning an order number to each character, strings can be compared in a meaningful way with “<”, “>”, and MAT SORT.
Different languages have different lexical orders.

The statement LEXICAL ORDER IS can be used to specify lexical order rules. The current LEXICAL ORDER is returned by the
SYSTEM$(“LEXICAL ORDER IS”) function.

Rules for five languages are built into HTBasic: ASCII, FRENCH, GERMAN, SPANISH, and SWEDISH. (In HTBasic, LEXICAL
ORDER IS STANDARD is equivalent to LEXICAL ORDER IS ASCII). These languages are inclusive enough to support most
ordering conventions. If the language you are using is not listed, check the LEXICAL ORDER tables near the end of this chapter to
see which most nearly matches your language. You may define your own ordering rules as explained later in this chapter.

In Japanese mode, HTBasic defaults to LEXICAL ORDER IS STANDARD.

You must have the correct character set active for the built-in rules to function correctly. Limited support for Roman-8 on operating
systems that don’t support it is explained later in this chapter.

Execute one of the following statements to specify lexical ordering rules:

LEXICAL ORDER IS ASCII
LEXICAL ORDER IS FRENCH
LEXICAL ORDER IS GERMAN
LEXICAL ORDER IS SPANISH
LEXICAL ORDER IS SWEDISH

Upper and Lowercase Conversions
The LEXICAL ORDER IS statement also determines upper/lowercase conversions in addition to ordering rules. Rules for the built-
in languages are given in the table below. Note that Ÿ (uppercase Y umlaut) does not exist in codepage 437, 850 or the Latin-1
character sets. In these cases, Y is used for UPC$(“ÿ”).

You may define rules for other languages using “LEXICAL ORDER IS Array(*)”, which has been enhanced to allow case
conversion rules to be stored in the array along with order rules. HP BASIC does not support these enhancements but does not
return an error if they are present. These enhancements are explained later under “User-Defined UPC$/LWC$ Rules”.

In Japanese mode, uppercase and lowercase conversion is limited to ASCII characters; Japanese characters are not converted.

Japanese Character Conversions
In Japanese mode, HTBasic supports converting between hirigana and double-width katakana and between single- and double-
width katakana and single- and double-width Roman characters. This support is accessed through the CVT$ command.

LABEL Character Set
One limitation of most operating system character set support is that it does not contain vector definitions of the characters for the
LABEL statement. Also, like HP BASIC, the HTBasic LABEL statement does not support all the international language characters
above CHR$(127). But unlike HP BASIC, HTBasic has been enhanced to allow the user to define his own characters, or delete
existing characters. The characters that are defined by default are:

Char              Latin-1        PC-850        Roman-8
ü        252        129        207
é        233        130        197
â        226        131        192
ä        228        132        204
à        224        133        200
å        229        134        212
ç        231        135        181
ê      234      136      193
ë        235        137        205
è        232        138        201
ï        239        139        221
î        238        140        209
ì        236        141        217
Ä    196        142        216
Å 197        143        208
É 201        144        220
æ 230      145        215
Æ        198        146 211
ô        244        147        194
ö        246        148        206
ò        242        149        202
û        251      150        195
ù        249        151        203
Ö      214        153        218
Ü      220        154        219
ø      248        155        214
£        163        156        187
Ø      216        157        210
á        225        160        196
í        237        161        213
ó      243        162        198
ú      250      163      199
ñ      241        164        183
Ñ    209        165        182
¿        191        168        185
¡        161        173        184
¤        164        207      186
ß        223        225        222
`      175        238        176

¢        180        239        168
§        167        245        189
°        176        248        179
Umlaut    168        249        171

When run in Japanese mode, HTBasic allows the user to load a Japanese character set for use with the LABEL command. This is
not done by default because of its memory requirements; the Japanese character set contains several thousand characters.

Defining Your Own LABEL Characters
To define your own characters, use one of these two syntaxes:

CONFIGURE LABEL First_char TO String$
CONFIGURE LABEL First_char TO Array$(*)

where First_char is a numeric expression, rounded to an integer, which gives the LABEL character to be defined, and String$ is a
string expression that contains the new definition. If a string array is specified, then one definition is stored in each element and
additional characters following First_char are also defined. Characters in the range 33 to 255 may be defined.

HTBasic provides 8 kilobytes of definition space. If you run out of space, you can free up space by deleting unused definitions. To
delete the definition of a character, specify a zero length string for the definition.

The LABEL font is defined in a character cell that is 8 units wide and 16 units high. The x units are numbered 0 to 7; the y units are
numbered 0 to 15. The baseline is y=5. The normal descender, such as that for the lower-case “g”, goes down to y=1. Characters
are left justified in the character cell. The top of an H is at y=14. The right side of the H is at x=6.

Each character in the definition gives an x,y coordinate and a flag indicating whether to move or draw to that coordinate. The flag
is stored in bit 7 of the character. If set, MOVE to x,y; otherwise DRAW to x,y. The x coordinate is stored in bits 6, 5, and 4. The y
coordinate is stored in bits 3, 2, 1, and 0.

The following example shows the definition of the character “H”:
Val = Move+ x*16 + y
133 = 128 + 0*16 + 5
14 = 0*16 + 14
238 = 128 + 6*16 + 14
101 = 6*16 + 5
138 = 128 + 0*16 + 10
106 = 6*16 + 10

CONFIGURE LABEL 72 TO CHR$(133)&CHR$(14)&CHR$(238)&
 CHR$(101)&CHR$(138)&CHR$(106)

Using LABELCHR.BAS
An example program, LABELCHR.BAS, is distributed with HTBasic that can be used to examine the definitions of characters, or
develop new definitions. LABELCHR.BAS will not fully automate the task of adding characters, but is presented as an aid in
developing character definitions.

When you run LABELCHR.BAS the screen will be painted with four grids. Grid #1 will be blank and is the current grid. Grid #2
displays an ASCII table of existing LABEL definitions for characters in the range 128 to 255. (The grid is actually too small to
enclose all the characters. It is normal for the last row and last column to be displayed outside of the grid.) Grid #3 displays the
letter “g”, a good example of where a descender is located in the character cell. Grid #4 displays the letter “H”, a good example of
where an uppercase letter is located in the character cell.

The softkey menu displays the available choices. Softkey 1 is “Digitize Char”, 2 is “Display Char”, 3 is “Which Grid?”, 4 is “Erase
ON/OFF”, 5 is “Show Chars”, and 8 is “EXIT”. Pressing “EXIT” will cause the program to end; control is returned to the BASIC
system. Pressing “Which Grid?” will specify one of the four grids as the current grid. Pressing “Show Chars” will display an ASCII
table in the current grid. The table is just like the one displayed in grid 2 at start up, unless you have changed some character
definitions.

Pressing “Display Char” will display a character in the current grid. You will be asked to input the character you wish to display.
Type the character and hit ENTER, or type the NUM of the character and hit ENTER. Depending on the Erase Flag, the character
will be displayed on a fresh grid, or it will be displayed on top of the old contents of the grid. This capability is useful when building
a new definition based on existing characters.

Pressing softkey 4, the “Erase ON/OFF” flag is toggled between ON and OFF. When ON, the current grid is cleared before each
character is displayed. When OFF, the current grid is overlaid with each displayed character. An asterisk, “*”, is displayed next to
the ON or OFF to show the current state of Erase.

Pressing “Digitize Char” allows you to construct a new character definition. Typically, you would display in one or more of the grids
whatever characters will assist you in creating a new definition, and then you would display in the current grid a character that is
most like the new one you wish to define. Then you would press “Digitize Char” and begin digitizing the new character. You may
use a mouse, or the arrow keys to move the cursor in the grid.

When using a mouse, move the cursor to the desired coordinate and then press the left button to Draw or the right button to Move
there. Click either mouse button with the cursor outside the grid to end the definition. If using the arrow keys, move to the location
you wish to Move/Draw to and press ENTER. The softkey menu will change, displaying “Draw”, “Move”, and “Digitize Done”.
Press “Move” or “Draw”. When you are done, press ENTER and then “Digitize Done”.

As each point is digitized, the correct value to use in CHR$ is printed on the display line. You should write these values down and
use them when constructing your definitions. When you are done digitizing a character you are given the option of immediately
assigning it to a character. If you wish to do so, enter the NUM of the character; if you do not wish to do so, enter -1 for the NUM. If
you immediately define the character, you can then see it using “Display Char” or “Show Chars”. The definition lasts until you
QUIT HTBasic.

User-Defined Lexical Orders
The lexical order rules provided with HTBasic are sufficient for most uses. But if needed, you may define your own rules. The
lexical order of each character may be specified. Also, because the lexical order of some languages treat some letters as if they
were two, treat some two-letter combinations as if they were one, and ignore some letters, you may define certain special cases to
handle these situations. User-defined lexical rules are stored in an array and are activated with the statement:

LEXICAL ORDER IS Array(*)

When user-defined rules are in effect, SYSTEM$(“LEXICAL ORDER IS”) returns “USER DEFINED”.

Order Table
The main part of user-defined lexical order rules is stored in an order table, which is the first 256 elements of the array. These
elements specify the lexical order for each CHR$ from 0 to 255. The order number is stored in the upper byte of each element. For
example, to assign lexical order number 0 to the letter “A”, and lexical order 1 to the letter “B”:

10 INTEGER A(0:256)
20 A(NUM(“A”))=SHIFT(0,-8)
30 A(NUM(“B”))=SHIFT(1,-8)

When “A” is compared to “B”, it will be smaller, since 0 is smaller than 1. “A”<B" returns 1.

Any special cases (2-to-1, 1-to-2, ignore) are noted in the lower byte of each element, and if additional information is needed it is
stored in a “Special Case” table that follows after the first 256 elements of the array.

The lower byte of each element in the order table may have a value from 0 to 255. The meaning of each value is given in the
following table:

Value  Meaning

0 No special case
1 Ignore this character
64+index 2-to-1 translation might be needed on this character
128+index Perform 1-to-2 translation
192-255 Sub-order number exists for this character

In the above table, “index” is a value from 0 to 63 and specifies an index into the special case table.

Special Case Table
The length of the special case table is stored in the 257th element of the array and can be from 0 to 64 elements. The length must
be stated, even if it is zero. Thus, the smallest the array specified in the LEXICAL ORDER IS statement can be is 257 elements.

The special case table starts with the 258th element of the array, which is the element immediately following the length. An index
of 0 specifies the 258th element of the array.

Note: In the example, the BASE of the array was 0, and so the 258th element of the array is A(257). Thus, index 0 in the special
case table is A(257). If the BASE of the array had been another value, the element number for the start of the special case table
would have been different, but still at the 258th element.

Ignore Characters
To expand on our previous example, let’s specify that the letter “C” be ignored:

40 A(NUM(“C”))=1
100 A(256)=0

Now “ABC” will be equal to “AB” and “C” will be equal to “”. You can see from line 100 that we have also specified a zero length
special case table. As we add to our example, we will add to line 100. Because the array A(*) has been declared with a length of
257 characters, the array declaration in line 10 will also have to be changed as we add special cases.

2-to-1 Translation
A 2-to-1 translation takes a two character combination, and translates it to one character.

Note: The strings involved are not actually changed. The change occurs internally for the string comparison and is then discarded.

To define 2-to-1 translations starting with a certain character, the order table entry for the starting character is used to store three
things: 1) the order number is stored in the upper byte for use when the character occurs, but not as part of a two character
combination, 2) the value 64 is stored in the lower byte to indicate that this character is the first character of one or more 2-to-1
translations, 3) an index into the special case table is stored in the lower byte.

The index into the special case table points to a list of two character combinations that all start with the same first character. The
first entry in the list gives the number of two character combinations in the list. The remaining entries give the second character of
each two character combination and the order number to use in place of the combination. The second character is given in the
upper byte and the order number is given in the lower byte.

Note: The first character was given in the order table and need not be repeated in the special case table. Only the second
character of each combination is given in the special case table.

For example, we might want to consider “DX” to be a single character with order number 4 and “DY” to be a single character with
order number 3. For all other occurrences of the letter “D” we want “D” to have order number 2. For our example,

10 INTEGER A(0:259)
50 A(NUM(“D”))=SHIFT(2,-8)+64+0
100 A(256)=0+3
110 A(257)=2
120 A(258)=SHIFT(NUM(“X”),-8) + 4
130 A(259)=SHIFT(NUM(“Y”),-8) + 3

Line 50 is the order table entry for the letter “D”. Order number 2 will be used for “D” unless it is “DX” or “DY”. The value 64
indicates one or more 2-to-1 translations exist that start with the letter “D”. The value 0 is the index into the special case table.

Line 100 is the length of the special case table. Previously in our example, we had set it to zero, but we are now adding three
entries to the special case table.

In line 110, A(257) is at index 0 in the special case table. This is the start of our list of two character combinations beginning with
“D”. Since we have two, “DX” and “DY”, we set A(257) to two.

Lines 120 and 130 define “DX” and “DY” to have order numbers 4 and 3. Now the following will both be true:

“DY” <“DX” - because 3 <4
“DZ” <“DX” - because 2 < 4 (“D” < “DX”).

1-to-2 Translation
A 1-to-2 translation takes a single character and translates it into two characters. This capability also includes intelligent handling
of upper and lowercase. For example, if “E” is to be translated to “FG” then “Exyz” should be translated to “Fgxyz”, while “EXYZ”
should be translated to “FGXYZ”.

Note: The strings involved are not actually changed. The change occurs internally for the string comparison and is then discarded.

To define 1-to-2 translations for a certain character, the order table entry for the character is used to store three things: 1) the first
order number is stored in the upper byte, 2) the value 128 is stored in the lower byte to indicate a 1-to-2 translation, 3) an index
into the special case table is stored in the lower byte.

The special case table entry contains the second order numbers for both upper and lowercase. The lower byte contains the
lowercase order number, while the upper byte contains the uppercase order number. The uppercase order number is used if the
initial character is uppercase and is not followed by a lowercase character.

For our example, if we want to use an order number of 5 for “F”, 6 for “G”, and 37 for “g”, then:

10 INTEGER A(0:260)
60 A(NUM(“E”))=SHIFT(5,-8)+128+3
100 A(256)=0+3+1
140 A(260)=SHIFT(6,-8) + 37

Line 100 is the length of the special case table. Previously in our example, we had set it to three, but we have now added one
more entry to the special case table.

Line 60 is the order table entry for the letter “E” and line 140 is the special case entry for “E”. In place of “E”, two order numbers
will be used, 5 and 37 for “Fg”, or 5 and 6 for “FG”. Now the following will all be true:

“E” > “FD”
“E” = “FG”
“E” < “FH”
“EXYZ” = “FGXYZ”
“Exyz” = “Fgxyz”

Sub-Order Numbers
Sometimes it is useful to assign several characters the same order number, yet still collate them in a specific order. For example, it
might make sense to assign all occurrences of “E”, regardless of the accent, the same order number, but still allow them to be
collated in a specific order. This can be accomplished using sub-order numbers. Sub-order numbers can range from 0 to 63. To
assign a sub-order number to a character, set the lower byte of the order table entry to the sub-order value plus 192.

When strings are compared, if the order numbers of two characters are the same, the sub-order numbers are used to determine
the lexical order. If a sub-order number has not been explicitly assigned to a character, 0 is used. A sub-order number can not be
assigned to characters that are used in Ignore, 2-to-1, or 1-to-2 translations since the lower byte of the order table entry is already
used.

As an example of sub-order number usage, say we wish to give “H” and “I” the same order number, 7, but wish “H” to collate
before “I” using sub-order numbers. We can give “H” a sub-order number of 0 and “I” a sub-order number of 1:

80 A(NUM(“H”))=SHIFT(7,-8)+192+0
90 A(NUM(“I”))=SHIFT(7,-8)+192+1

Putting User-Defined Rules Into Effect
An order number must be assigned to each value, 0 through 255, in the order table. Once this has been done, as well as
assigning all special cases, the array may be specified in a LEXICAL ORDER IS statement to make it take effect. All of the user-
defined order rules explained above are compatible between HTBasic and HP BASIC. HTBasic extensions to LEXICAL ORDER IS
that allow user-defined upper and lowercase conversions are explained in the following paragraphs.

But first, let’s complete our example:

5 REM USERDEF.BAS
10 INTEGER A(0:260)
20 A(65)=0
30 A(66)=256
40 A(67)=1
50 A(68)=576
60 A(69)=1411
65 A(70)=1280
75 A(71)=1536
80 A(72)=1984
90 A(73)=1985
100 A(256)=4
110 A(257)=2
120 A(258)=22532
130 A(259)=22787
140 A(260)=1573
150 FOR I=74 TO 255
160 A(I)=SHIFT(I-66,-8)
170 NEXT I
180 FOR I=0 TO 64
190 A(I)=SHIFT(I+190,-8)
200 NEXT I
210 LEXICAL ORDER IS A(*)
220 END

We have added lines 65, 75, and 150 to 200 to assign the characters that were not yet assigned. We have also sped up the
program by pre-evaluating functions like NUM(“A”) and SHIFT(0,-8) wherever possible. Finally, line 210 causes all the changes to
take effect.

User-Defined UPC$/LWC$ Rules
In addition to specifying order rules, HTBasic has been enhanced to let you specify upper and lowercase conversion rules as well.
This capability is an extension to HTBasic and will not work if used with HP BASIC. However, HP BASIC will not return an error;
the UPC$/LWC$ rules will simply be ignored.

Note: There is some danger in specifying meaningless upper/lowercase rules because HTBasic uses these rules in checking the
syntax of a command or program line. For example, when you type “RUN”, UPC$(“RUN”) is compared against the list of known
statements. As long as you take reasonable care in defining your rules, you shouldn’t have any problems.

Upper/lowercase rules are stored in the LEXICAL ORDER IS array immediately following the special case table. The UPC$/LWC$
table consists of 257 elements. The first element must have the value 21576 to indicate that the UPC$/LWC$ table is present. The
rules themselves are stored in the next 256 elements, one for each possible character. All 256 characters must be defined. In each
element, the upper byte contains the UPC$ value and the lower byte contains the LWC$ value.

For example, in the USERDEF.BAS example above, the special case table ends at element A(260). Element A(261) should be
assigned a value of 21576 if upper/lowercase rules are also being specified. Elements A(262) through A(517) would contain the
rules for CHR$(0) through CHR$(255). To set the UPC$/LWC$ values for “A” and “a”, the following statements would be used:

A(257+A(256))=21576
A(258+A(256)+NUM(“A”))=SHIFT(NUM(“A”),-8)+NUM(“a”)
A(258+A(256)+NUM(“a”))=SHIFT(NUM(“A”),-8)+NUM(“a”)

The subscript calculation in this example deserves some explanation. If the array BASE is zero then A(256) is the length of the
special case table, 257+A(256) is the first element after the special case table, and 258+A(256)+NUM(“x”) is the UPC$/LWC$
definition for “x”.

Of course, it is best to simplify these statements to:

A(261)=21576
A(327)=16737
A(359)=16737

Example Data Files
If you installed the optional LEXICAL ORDER files during installation, in the LEXICAL subdirectory in the HTBasic directory there
are several examples of user-defined LEXICAL ORDER IS tables that change both the order rules and the upper/lowercase rules.
The files that are included depend on the version of HTBasic. Files for code page 850 have filenames of PC*.LEX. Files for
Roman-8 have filenames of R8*.LEX. Files for the out-dated version of Roman-8 used by HP BASIC are stored in files with names
HP*.LEX. Files for Latin-1 have filenames of L1*.LEX.

The file LEXICAL.BAS contains a SUB named “Lexical” that can be used to load the tables stored in these files. (This SUB is
listed earlier in this chapter.) Line 50 specifies PC*.LEX files stored in the C:\HTB directory, but you may change this line to fit your
needs.

Roman-8 Character Set Support
Although Roman-8 is a fairly popular character set, especially among users of the European-language versions of HP BASIC, it is
not available under Windows. Since HTBasic depends upon the operating system for character set support, you should convert
from Roman-8 to the native character set of your computer. A conversion program is presented in the next section.

If you must use the Roman-8 character set, the sections following the translation program section describe solutions that give
most of the capabilities needed. To use a different character set you must 1) change the character set used by the display, 2)
change the character set produced by the keyboard, 3) change the lexical order rules, and 4) change the LABEL character
definitions.

Roman-8 Translation Program
An example program, HP2PC.BAS, is distributed with HTBasic that can be used to translate ASCII files (including program files
saved in ASCII) from the Roman-8 character set to code page 850 or Latin-1. The program only translates characters that appear
literally or in CHR$(xxx) statements, where “xxx” is a constant above 127. If a character is specified in any other way (for
example, “CHR$(X+3)”), it is not translated. You will have to make those translations manually.

If any attribute control characters in the range CHR$(128) to CHR$(143) are seen, they are translated to the alternate range at
CHR$(16) to CHR$(31) and you must add the following statement to make attribute characters be recognized in this new range:

CONTROL CRT,100;1

Several characters that exist in the Roman-8 character set are not found in code page 850 or Latin-1. When translating to code
page 850, the characters in the range CHR$(144) to CHR$(160) are translated to CHR$(219), a rectangular block, to make them
easy to spot and hand translate. When translating to Latin-1, the characters in the range CHR$(144) to CHR$(160) are unchanged
and the Dutch guilder symbol “ƒ”, CHR$(190), is translated to “*”, CHR$(42), to make it easy to spot and hand translate. Other
characters are translated to similar characters:

From...  To...
Character                            Roman-8              Character              PC-850        Latin-1
Grave accent        169        ‘        96        96
Circumflex        170        ^        94        94
Tilde                172        ~          126
Lira                175        £        156        163
Š                235        S      83        83
š                236        s        115        115
Ÿ              238        Y      89        89

To translate to code page 437, specify code page 850. The only difference is the translation for CHR$(191), the “¢” symbol. It is
translated to CHR$(189) which is correct for code page 850, but should be CHR$(155) for code page 437. This minor correction
can then be done by hand.

Display Font
A Windows font containing the Roman-8 character set, HTBGROM8.FON, is supplied with HTBasic for Windows. To install the
Roman-8 font, select Control Panel, Fonts, and Add.... Then change the drive and directory to LEXICAL subdirectory of the
HTBasic directory (HTBWIN, default). Then select Roman8 and OK. Roman8 should then be accessible to any Windows program
that uses fixed width fonts.

To select Roman8 for use with HTBasic, use the -fn command line switch, explained in the Installing and Using manual. Select
Program Manager, TransEra HTBasic, File, Properties, and add “-fn Roman8" to the command line. For example,

C:\HTBWIN\HTBWIN.EXE -fn Roman8

Note: Changing the display font without changing the keyboard font causes a mismatch for characters above CHR$(128).
CONFIGURE KBD, explained below, can correct this situation for the most part.

Keyboard
The statement CONFIGURE KBD has been added to HTBasic to allow simple keyboard character set re-mapping. (This is
different than CONFIGURE KEY, which re-maps function and editor keys.) CONFIGURE KBD is not a complete keyboard driver. It
uses a look-up table to translate characters from one character set to another.

The files PCTOR8.KBD (formerly HP200.KBD) and L1TOR8.KBD contain the necessary keyboard re-mappings from code page
850 and Latin-1 to Roman-8. The following program will set up the re-mapping. Use either PCTOR8 or L1TOR8 in line 60,
depending on the character set in use by the operating system keyboard driver. Where no translation exists for a character,
CHR$(252) is returned.

10 !SETKBD.BAS
20 DIM Pc2hp$[256]
30 CLEAR SCREEN
40 PRINT “Set up translation string to Roman-8"
60 ASSIGN @Io TO ”PCTOR8.KBD" !Use L1TOR8 for Latin-1
70 ENTER @Io;Pc2hp$
80 ASSIGN @Io TO *
90 CONFIGURE KBD 0 TO Pc2hp$
100 END

To enter a character without re-mapping, use the ANY CHAR function.

The syntax of the CONFIGURE KBD statement is:

CONFIGURE KBD First_char TO String$

where First_char is a numeric expression, rounded to an integer, that gives the first keyboard character to be re-mapped, and the
first character in String$ gives the display character that it is re-mapped to. If the length of String$ is longer than one, then
additional characters following First_char are also re-mapped.

LEXICAL ORDER
When using Roman-8 with other versions, you must load LEXICAL ORDER rules from data files. The data files are named:

Language                            File
ASCII        R8ASCII.LEX
FRENCH      R8FRENCH.LEX
GERMAN      R8GERMAN.LEX
SPANISH        R8SPANIS.LEX
SWEDISH      R8SWEDIS.LEX

The SUB “Lexical”, listed previously in this chapter and stored on the distribution disks in the file LEXICAL.BAS, can be used to
set the LEXICAL ORDER using these files. Change line 50 to specify “R8" instead of ”PC" and change the directory as necessary:

50 A$="C:\HTB\R8"&L$[1;6]&".LEX"

LABEL
The CONFIGURE LABEL statement must be used to define characters above 127 so that they match the Roman-8 character set.
CONFIGURE LABEL is explained earlier in this chapter.

LEXICAL ORDER Tables
The following pages contain LEXICAL ORDER tables for FRENCH, GERMAN, SPANISH and SWEDISH. Different tables are
presented for code page 850, Roman-8 and Latin-1 character sets. No tables are given for ASCII because when the LEXICAL
ORDER IS ASCII, regardless of the character set the order number is the same as the NUM of each character.

For code page 850 and the Latin-1 character sets, the order number for each character was chosen according to the following
guidelines: If the character existed in the Roman-8 character set, it is given the same order number it had under HP BASIC. New
alphabetic characters were added in alphabetical order. New symbol characters were added after CHR$(127) and given
sequentially increasing order numbers.

The order numbers for Roman-8 differ slightly than those in HP BASIC. This is because several characters have been added to
Roman-8 since HP BASIC was created. The new characters are 177, 178 and 242 to 245.

Each table contains the Order number, the NUM, and the CHR$ for each character. If the character is ignored during comparisons,
the order will be blank. For two-character combinations that have a single order number, the two characters are given in the Chr$
column, but no Num is listed. For characters that are expanded into two characters, the two characters are listed in the Order
column. If the original character is uppercase, two expansions are listed. Remember that two order numbers are produced, not just
one. If the character has a sub-order number, it is given following a decimal point in the Order column.

Character Set Tables
The following pages contain character set and LEXICAL ORDER tables for code pages 850, 437, Roman-8 and Latin-1 character
sets.

Code Page 437 Character Set

Code Page 850 Character Set

LEXICAL ORDER IS FRENCH        (Code Page 850)

LEXICAL ORDER IS GERMAN      (Code Page 850)

LEXICAL ORDER IS SPANISH      (Code Page 850)

LEXICAL ORDER IS SWEDISH    (Code Page 850)

Roman-8 Character Set

LEXICAL ORDER IS FRENCH (Roman-8)

LEXICAL ORDER IS GERMAN (Roman-8)

LEXICAL ORDER IS SPANISH (Roman-8)

LEXICAL ORDER IS SWEDISH (Roman-8)

Latin-1 Character Set

Note in the table below, CHR$(145) and CHR$(146) are extensions to Latin-1 found in Windows fonts and may not be present in
other implementations of Latin-1.

LEXICAL ORDER IS FRENCH (Latin-1)

LEXICAL ORDER IS GERMAN (Latin-1)

LEXICAL ORDER IS SPANISH (Latin-1)

LEXICAL ORDER IS SWEDISH (Latin-1)

ISO-932 Character Set

Note in the table below, the characters marked with diamonds are taken to be introductory bytes for two-byte Shift-JIS characters.

Overview of the Shift-JIS Character Set
The table below shows the categories of two-byte characters in the Shift-JIS character set. The range values are in hexadecimal.
The second byte in a Shift-JIS character may have values between hexadecimal 40 and FC, excluding 7F.

Range        Type of character
8140-81FC        Symbols

8240-824E        undefined
824F-8258        Digits
8259-825F      undefined
8260-8278      Uppercase Roman letters
8279-8280    undefined
8281-8299 Lowercase Roman letters
829B-829E        undefined
829F-82F1        Hiragana
82F2-82FC      undefined

8300-8396        Katakana
8397-839E      undefined
839F-83B6    Uppercase Greek letters
83B7-83BE        undefined
83BF-83D6        Lowercase Greek letters
83D7-83FC        undefined

8440-8461        Uppercase Russian Cyrillic
8462        undefined
8463-8491        Lowercase Russian Cyrillic
8492-849E      undefined
849F-84BE        Box drawing
84BF-84FC        undefined

85xx-86xx        undefined

8740-879C        symbols
879D-97FC      undefined

8840-889E        undefined
889F-8FFC      Level 1 kanji

89xx-9872        Level 1 kanji
9873-989E        undefined

989F-9FFC        Level 2 kanji

E0xx-EFxx        Level 2 kanji

F0xx-FCxx        Level 3 kanji (undefined in most implementations)

The level 1 kanji are arranged in the order of the hiragana representations of their most common on pronunciation. The level 2 and
level 3 kanji are arranged in order of the stroke count of their principal radical followed by the stroke count of the remaining portion
of the character.

All two-byte characters, including the Roman, Greek, and Russian characters, are twice as wide when displayed as the one-byte
characters. The HTBasic CVT$ function can convert between one- two-byte Roman and katakana characters.

Note that voiced katakana and hiragana characters are represented by a single two-byte character in the shift-JIS character set
while they are represented by a one-byte character plus a separate one-byte voicing mark in the ISO-932 character set.

Ancillary files
The set of files needed for proper operation of HTBasic Plus.

Angle
Angles can be specified in radians or degrees. When specifying angles for graphic statements, the angle is relative to the positive
x axis. Positive angles specify counter-clockwise movement about the origin.

Array
An array is a multi-dimensional ordered set of values. Each member of the set is called an array element. All the members of the
set have the same simple data type which can be integer, long, real, complex or string. The dimension of the set is called the
RANK of the array. Arrays may have a rank from one to six.

Local array variables are declared using INTEGER, LONG, REAL, COMPLEX, DIM and STATIC. ALLOCATE can be used to
dynamically declare an array. COM can be used to declare a global array. Consult these entries in the on-line Reference Manual to
learn how to declare array variables. OPTION BASE is available to change the default lower bound for indices.

Array Name
The rules for naming an array are the same as for a variable (see Variable Name). Array variables and simple variables share the
same name space. Thus, you cannot have a simple variable and an array variable with the same name in the same context.

ASCII file type
In the HTBasic manual set, the term ASCII file refers to a LIF ASCII file, not a DOS ASCII or UNIX ASCII ordinary file. A LIF ASCII
file is a typed file which contains string items preceded by an item length, and followed by a pad byte when the string length is odd.
Do not confuse the terms DOS ASCII, UNIX ASCII and LIF ASCII. A DOS ASCII file is an ordinary file which contains only printable
characters and the end of each line is marked with a carriage return and line feed. A UNIX ASCII file is an ordinary file which
contains only printable characters and the end of each line is marked with a line feed. HTBasic can read and write any of these file
types. See CREATE and CREATE ASCII in the on-line Reference Manual.

Attributes
Qualities of a dialog or a widget. Each attribute has a value or set of values that can be set with CONTROL or read with STATUS.
The values of the attributes determine the function and appearance of the dialogs and/or widgets. Most attributes have default
values.

BDAT file type
BDAT files are used to hold binary data and can be used to exchange data with HP BASIC. See CREATE BDAT in the on-line
Reference Manual. Ordinary (DOS, NT or UNIX) files can also be used to hold binary data.

Boolean Expression
A boolean expression is simply a numeric expression whose result is tested for zero/non-zero. If the result is zero, the expression
is considered FALSE. If the result is non-zero, the expression is considered TRUE.

Child widget
A widget that is one level below its parent in the widget hierarchy. Child widgets are contained by their parent widget. Therefore,
they cannot be level-0 widgets. A widget becomes a child when you assign it to a parent with the PARENT option to the ASSIGN
keyword. A widget can be both a parent and child widget at the same time.

Click
To press and immediately release the mouse button.

COM Block
A COM block is a set of one or more variables that may be shared (in “COMmon”), among one or more contexts. Each COM block
is uniquely identified with a name (although one block is allowed to be nameless). COM block names are explained below.

The value of a COM variable is global in lifetime, however, the name of a COM variable is not global. To access COM variables, a
context must include a COM statement which identifies the COM block and gives the names by which the variables will be known
in that context. Thus, each context can give a different name to the same COM variable. COM variables are hidden from all
contexts which do not include a COM statement accessing that COM block. See COM in the on-line Reference Manual.

COM Block Name
Rules for naming a COM block are the same as for a variable (see Variable Name).

Common dialog attribute
An attribute of all of the dialogs. See the on-line HTBasic Plus Reference Manual for a discussion of common dialog attributes.

Common widget attribute
An attribute of all of the widgets. See the on-line HTBasic Plus Reference Manual for a discussion of common widget attributes.

COMPLEX
“Complex” is a data type. Other data types are integer, long, real, string, and I/O path. A complex number is an ordered pair (x, y)
denoted by mathematicians as:

x + iy

Where:

x        is the real part of the complex number.

y        is the imaginary part of the complex number. The i in front of the y                forms the imaginary number iy and is the same as
multiplying y by                  the square root of -1or -1^(1/2). For example, the square root of -9 or                  -9^(1/2) could be considered
as the -1^(1/2) x 9^(1/2) or 3i.

BASIC complex numbers are stored as two REAL numbers. This means that a complex number requires 16 bytes of memory
(each REAL component takes 8 bytes).

The IBM PC and HP PA workstations use IEEE Std 754-1985 for Binary Floating point numbers. This gives the Complex data type
an approximate range of 2E-308 to 1E+308 and 15 decimal digits of precision. Both positive and negative numbers are
represented. MINREAL and MAXREAL are functions which return the smallest and largest positive real numbers. The range for
negative numbers is -MINREAL to -MAXREAL.

Use the COMPLEX statement to declare local complex variables and the COM statement to declare global complex variables. Use
the ALLOCATE statement to declare a local complex variable which can be DEALLOCATEd dynamically. If a variable is not
declared, it will automatically be declared local and real unless CONFIGURE DIM OFF is used.

Container widget
The container widget is always a parent widget. Most commonly, it is a PANEL widget in which you place a set of child widgets.
That is, the child widgets are contained in the PANEL widget. A container widget can be, but does not have to be, a level-0 widget.

Context
A context is a program unit with its own environment, including local variables, which can be called recursively by other contexts,
and can pass arguments, either by reference or by value. There are four types of contexts: 1) main context, 2) subprogram
context, 3) user defined function context, 4) CSUB context. Context changes occur when subprograms or functions are invoked or
exited.

The main context begins with the first line of the program and ends with the program line containing the “END” statement. The
main context is started by a RUN command.

A subprogram context begins with a SUB statement and ends with a SUBEND statement. It is called with a CALL statement and
terminates with a SUBEND or SUBEXIT statement. Arguments can be passed to a subprogram.

A user defined function begins with a DEF statement and ends with an FNEND statement. It is called from within a numeric or
string expression by referencing its name. It terminates and returns a value with a RETURN statement. The expression then
continues to evaluate, using the value returned in place of the function reference. Arguments can be passed to a function.

A CSUB is a compiled subprogram created with special tools outside of HTBasic. It is loaded into memory with the LOADSUB
statement and removed from memory with the DELSUB statement. It is called with a CALL statement.

Context-sensitive Help
Online information that is relevant to what the user is doing with a widget or a dialog. When enabled via the attributes HELP FILE
and HELP TOPIC, context-sensitive help is activated by the click of the right mouse button.

Device Selector
A device selector is a number which specifies a device. It specifies the interface select code (ISC) to which a device is connected.
If more than one device can be connected to that interface (i.e., the GPIB interface), then the address of the device is appended
after the ISC. It can be just a primary address or a primary address and several secondary addresses. Each address is specified
with two digits; thus 1 is specified as 01. A device selector can be up to 15 digits.

Several examples follow: If a printer has a primary address of 1 and is connected to a GPIB interface with ISC 7, then the device
selector for the printer is 701. If an instrument is connected to the RS-232 interface with ISC 9, then the device selector for the
instrument is 9. If a GPIB plotter has a primary address of 2, a secondary address of 11 and is connected to a GPIB interface with
ISC 14, then the device selector for the plotter is 140211.

Dialog
One of the fundamental HTBasic Plus entities. A dialog is created on the computer screen with the DIALOG statement from an
executing BASIC program or from the command line.

DOS file type
HTBasic supports ordinary files as well as typed files. HTBasic file types are LIF ASCII, BDAT, BIN and PROG. In a CAT listing
ordinary files are listed as “DOS” files by the DOS versions of HTBasic. Other versions leave the file type column blank for
ordinary files. Unlike typed files, no special header or other embedded information is placed in the file. Under DOS, an ordinary file
with FORMAT ON is compatible with all programs that support DOS ASCII files. See CREATE in the on-line Reference Manual.

Event
An event is the occurrence of an action or condition which can be trapped by an ON statement that directs program execution to a
service routine. See ON in the on-line Reference Manual.

Event-initiated Branching
A programming technique that uses interrupts to redirect program flow.

File Specifier
A file specifier identifies a file. A file specifier consists of an optional drive letter, an optional path, a filename and an optional
filename extension combined as follows:

d:\path\filename.ext

The drive letter specifies the disk drive, A, B, C, etc. If it is present, it must be followed by a colon, “:”. The path is a series of one
or more directory names, separated by the backslash character, “\”, leading from the root directory to the file in question. A legal
directory name follows the same rules as a legal filename.

For the FAT 16 file system, the filename consists of 1 to 8 characters. The extension consists of a period, “.” followed by 1 to 3
characters. Case is ignored and when a new filename is specified all lowercase characters are converted to uppercase. Some
characters are not legal in a filename. A period is only legal between the filename and the extension. Characters less than
CHR$(32) are not legal. The characters in the following list are also illegal: “*+,/:;<=>?[\]|.

For the NTFS and FAT 32 file systems, the filename consists of 1 to 256 characters, including one or more extensions. Case is
ignored, although when a new filename is specified, case is preserved for display in a directory listing. Some characters are not
legal in a filename. Characters less than CHR$(31) are not legal. The characters in the following list are also illegal: “*/:<>?\|.
Trailing spaces are ignored; elsewhere spaces are acceptable.

Focus
When you click the pointer on the screen (with the mouse or with the keyboard) within the border of a dialog or widget, the dialog
or widget “gains the focus”. That is, any mouse clicks or keystrokes that you make will be input to the widget that has the focus.
Programmatically, focus can be obtained by using the STACKING ORDER attribute.

Full Array Specifier
A full array specifier is the symbol “(*)” and is used to reference an entire array rather than an individual element.

Function Name
The rules for naming a function are the same as for a variable (see Variable Name). A User Defined Function is one of several
types of contexts (see Context).

Help
The online help system that includes information on all HTBasic for Windows keywords, programming examples, and other online
information. Online help topics are linked to one another through hyperlinks.

HPGL
Hewlett Packard Graphics Language. Used to communicate between HTBasic and plotters.

I/O PATH
“I/O path” is a data type. Other data types are integer, long, real, complex    and string. An I/O path is implicitly declared whenever
you use it in a program. It must be initialized with the ASSIGN statement before it is used. Input and Output statements use an I/O
path to specify the entity (device, file, pipe, buffer, etc.) that the computer communicates with during the I/O operation. When an
input/output statement does not explicitly involve an I/O path, one is created internally, used for the duration of the statement and
then discarded.

Integer
“Integer” is a data type. Other data types are I/O path, long, real, complex, static and string. Integers are whole numbers (-1, 35)
as opposed to real numbers that can have fractional parts (1.7, 2.34). Integers are stored in two bytes and have a range of -32,768
to +32,767. Integer operations are faster and integers take less space to store.

Use the INTEGER statement to declare local integer variables, the COM statement to declare global integer variables and STATIC
to declare local persistent variables. Use the ALLOCATE statement to declare a local integer variable which can be
DEALLOCATEd dynamically. If a variable is not declared, it will automatically be declared local and real unless CONFIGURE DIM
OFF is used.

Integer Array
Each element of an array (see Array) is an integer declared with INTEGER.

Interface Select Code
Interface select codes (ISC) specify hardware interfaces that connect the computer to devices. Some ISCs are fixed:

ISC            Fixed Devices
1        CRT display
2        Keyboard
3        Graphic display
6        Bit mapped graphic
10    Windows Print Manager
26      Parallel Port
32      Processor

Others can be specified when the device is loaded with LOAD BIN. If the ISC is not specified, the following defaults are used:

ISC            Loadable Devices
7        GPIB Board
8        2nd GPIB Board
9        RS-232 Port (COM1)
11    2nd RS-232 Port (COM2)
12    GPIO Board
18        Several data acquisition boards

Level-0
The first level of the widget management software’s hierarchy of widgets. The first level of the hierarchy is the one just below the
screen level.

Level-0 widget
A level-0 widget has a title bar on top of the widget and a resize border around the widget. You can assign most widgets to be
level-0 widgets. (All dialogs are level-0.) You create a level-0 widget by not using the PARENT option to the ASSIGN keyword
when you create the widget.

Line Label
Line labels may optionally follow any line number. The use of line labels results in more structured programming. Line references
to labels are unaffected by line numbering. The rules for naming a line label are the same as for variables (see Variable Names). A
colon follows the name in the line that is labeled, but does not follow the name in lines referencing that line.

Line Number
Each program line requires a unique line number at the beginning of the line. Line numbers must be in the range of 1 to 4,194,304.
HTBasic ignores leading zeros and spaces before line numbers. Optionally, one may elect not to display line numbers. Line
numbers are used to:

•        indicate the order of statement execution
•        provide control points for branching
•        help in debugging and updating programs
•        indicate the location of run-time errors

Local Variable
All variables are local and are accessible only in the current context unless declared as COM variables. When the context begins
execution, storage space is allocated for all local variables and their values are set to zero. When execution of the context is
completed, the local variable storage space is released and their values are lost.

LONG
“Long” is a data type. Other data types are I/O path, integer, real, complex and string. Longs are actually “long integers” and are
in all ways identical to the integer data type, except that they have a range of -2,147,483,648 to 2,147,483,647. LONGs are stored
in four bytes.

Matrix
A matrix is a two dimensional numeric array. The RANK of a matrix is two.

Menu bar
The area just below the title bar in a level-0 widget. The menu bar contains menu widgets.

Notepad
A text editing application, one of the Windows accessories.

Numeric Array
A numeric array is an array (see Array) in which the data type of each element is either integer, long, real or complex.

Numeric Array Element
A numeric array element is a simple value, either an integer, long, real, or complex number and is compatible with any operation
which expects a single value. An element is specified by following the array name with a left parenthesis, “(”, a comma-separated
list of subscripts and a right parenthesis, “)”. The number of subscripts specified must match the RANK of the array. The value of
each subscript must lie in the legal range for that dimension as defined in the declaration statement (ALLOCATE, COM,
COMPLEX, DIM, INTEGER, LONG, REAL, REDIM, STATIC). Some matrix operations redefine the range of a dimension.

Numeric Constant
A constant is an entity with a fixed value. There are three types of numeric constants: integer, long and real. An integer constant is
a whole number not specified with a decimal point, “.”, nor with scientific notation, which falls in the range -32,768 to 32,767.
Integer constants can be expressed in decimal, octal (base 8) or hexadecimal (base 16). An octal constant must begin with the
characters “&O” or simply “&”. A hexadecimal constant must begin with the characters “&H. A long constant is in all ways identical
to an integer constant, except that it can have a range of -2,147,483,648 to 2,147,483,647. A real constant is specified with a
decimal point or scientific notation, or is outside the integer range. Some integer constants are ”1", “-20000", ”&H7FFF" and
“&O377. Some real constants are ”-1.0", “1E+10" and ”6000000000".

Numeric Expression
A numeric expression is any legal combination of operands and operators joined together in such a way that the expression as a
whole can be reduced to a numeric value. The following syntax diagram defines the legal combination of operands and operators.
Precedence rules provide additional constraints on an expression (see Precedence). The syntax is:

numeric-expression =
        { + | - | NOT } numeric-expression |
        (numeric-expression) |
        numeric-expression operator numeric-expression |
        numeric-constant | numeric-name |
        numeric-array-element |
        numeric-function [(param [,param...])] |
        FN function-name [(param [,param...])] |
        string-expression compare-operator string-expression

where:

operator = + | - | * | / | DIV | MOD | MODULO | ^ |
        AND | OR | EXOR | compare-operator
compare-operator =      <> | = | < | > | <= | >=
numeric-function = a function, like COS, which returns a numeric value.
param = legal parameters for numeric functions and user defined
        functions are explained in the on-line Reference Manual.

Numeric Name
The rules for naming a numeric variable are explained under “Variable Name”. A numeric variable is of type integer, long, real or
complex.

Operator
The person who interacts (using the mouse or keyboard) with the widgets and dialogs on the screen as the program is running.

Ordinary file
HTBasic supports ordinary files as well as typed files. HTBasic file types are LIF ASCII, BDAT, BIN and PROG. All other files are
ordinary files. In a CAT listing, the file type column is blank for ordinary files or gives the operating system (i.e., “DOS” or “HP-
UX”). Unlike typed files, no special header or other embedded information is placed in the file. Under DOS or NT, an ordinary file
with FORMAT ON is compatible with all programs that support DOS/NT ASCII files. See CREATE in the on-line Reference
Manual.

Parent widget
A widget that is one level above all of its children in the widget hierarchy. A parent widget contains its child widgets. A parent
widget can be a level-0 widget, but is not necessarily one.

A widget becomes a parent when you assign child widgets to it using the PARENT option in the child widgets’ ASSIGN
statements. A widget can be both a parent and child widget at the same time.

Path Specifier
A path specifier in HTBasic is similar to an MSUS (Mass Storage Unit Specifier) in HP BASIC. It identifies a place where files are
stored. Depending on your operating system, the necessary information to uniquely identify such a place includes: the device,
address, volume, unit, and directory path list. A summary of the rules is given here.

Under Windows, a path specifier consists of an optional disk drive letter and an optional directory path. If the disk drive letter is
omitted, the default disk is used. A directory path is composed of the names of the directories which form the path from the root
directory “\”, to the directory where you wish to access files. Each directory name is separated from the others with the backslash,
“\”, symbol. The rules for each directory name are the same as for a filename (File Specifier). If the directory path is omitted, the
default directory is used.

For example, suppose that you wish to use drive “C:” and a catalog of the root directory “C:\” shows a directory named “HTB”.
Suppose that a catalog of “C:\HTB” shows a directory named “FILES.BIN”. And suppose that it is this directory you wish to
specify with a path specifier. The correct path specifier is “C:\HTB\FILES.BIN”. If drive “C:” is the default drive, then the “C:” could
be omitted. If directory HTB is the default directory, then the “\HTB\” could be omitted. Please read your operating system manual
for a greater understanding of these concepts.

Pen
Is used to specify the colors in widgets, and may be set to any legal HTBasic for Windows pen number. See the PEN keyword for
more information.

Pen Number
The term “pen number” is used in two different ways. The appropriate range is explained in the text describing the statement.

The first way in which the term “pen number” is used is for CRT color attribute values. The legal values are:

Pen                  Color
136 White
137 Red
138 Yellow
139 Green
140 Cyan
141 Blue
142 Magenta
143 Black

The second way in which the term “pen number” is used is in statements affecting graphic colors. In these instances, pen
numbers begin at zero and go to N-1, where N is the number of colors displayable at the same time on the computer display.

Pixel
The image on a computer monitor comprises an array of dots that vary in color and intensity. A single dot is called a pixel.

Pointer
The arrow-shaped cursor that appears within widgets and dialogs. You move the focus from one widget to the next by moving the
pointer from one widget to the next.

Precedence
Mathematical precedence describes the order in which operators in an expression are evaluated. Some cheap calculators execute
each operation as it is entered. If you are used to this type of calculator, you may be confused by the concept of precedence. For
example, the correct answer to the formula:

1+2*3+4

is 11, not 13. This is because multiplication (2*3) has a higher precedence than addition (1+2). If the two operators are on the
same row in the precedence chart, the operations occur in left to right order (i.e. 1+2-3+4).

HP BASIC (and HTBasic) has an odd quirk in its definition of precedence which you should be aware of. Most computer
languages place all monadic operators (operators which operate on one operand) at a higher precedence than dyadic operators
(operators which operate on two operands). However, HTBasic and HP BASIC place monadic + and - below some of the dyadic
operators. The following is one example of an expression that will evaluate differently because of this:

-4^0.5

With HTBasic, this is equivalent to -(4^0.5) which is equal to -2. With most other computer languages, this is equivalent to (-4)^0.5
which is an illegal operation.

Primary Address
A primary address is a numeric expression which can be rounded to an integer in the range 0 to 31. It specifies the address of a
device on the GPIB bus. Usually, GPIB devices have a switch which allows their primary address to be set to any of the values 0
through 31.

Priority
Priority is a measure of the relative importance of the currently executing line and allows higher priority events to interrupt lower
priority events, while preventing lower priority events from interrupting higher priority events. Priority values can range from 0 (least
important) to 15 (most important). The ON statement which defines the service routine for an event also allows the priority for that
service to be defined. The system priority is the priority of the currently executing line and can be changed with the SYSTEM
PRIORITY statement.

PROG file type
PROG files are used to hold binary program images and are the most efficient file type for storing an HTBasic program. See
STORE in the on-line Reference Manual for information about PROG files.

Real
“Real” is a data type. Other data types are integer, long, complex, string and I/O path. The Real data type is a subset of all rational
numbers. The particular subset depends on your computer. Most computers, including the IBM PC and HP PA workstations use
IEEE Std 754-1985 for Binary Floating point numbers. This gives the Real data type an approximate range of 2E-308 to 1E+308
and 15 decimal digits of precision. Both positive and negative numbers are represented. MINREAL and MAXREAL are functions
which return the smallest and largest positive real numbers. The range for negative numbers is -MINREAL to -MAXREAL.

Use the REAL statement to declare local real variables and the COM statement to declare global real variables. Use the
ALLOCATE statement to declare a local real variable which can be DEALLOCATEd dynamically. If a variable is not declared, it will
automatically be declared local and real unless CONFIGURE DIM OFF is used.

Please Note: Internally, real numbers are represented in a binary format. You need not understand this format, but you should
understand its implications. It is possible to have two different numbers in this format whose 15 digit decimal representations are
the same. However, when comparing or subtracting these two "look-equal" numbers, you will find they are not equal. Also, when
the result of an arithmetic operation is a number not representable in the binary format, an approximation must be used instead.
You should take this into account and keep track of the error bounds as approximate numbers are used in further calculations.

Record Number
The record number is a numeric expression which is rounded to an integer to specify a record within a file. The first record is one.
BDAT and ordinary files allow random access by specifying a record number in the I/O statement. The record length for ordinary
files is always one. The record length for BDAT files is defined when the file is created with the CREATE BDAT statement.

Resize border
The border that appears around level-0 widgets and dialogs and is used
to resize them. (You cannot use the resize border from the keyboard.) To use the resize border:

· Use the mouse to move the pointer to the resize border.

· When the pointer changes shape, press-and-hold the left mouse button and drag the border to the new position.

· Release the left mouse button and the widget will redraw at the new size.

Scientific Notation
Scientific notation can be used to represent numbers by using the shorthand notation “n.nnnEmmm” instead of “n.nnn x
10^mmm”.

Screen Builder
An application that allows the user to build a user interface by selecting from a menu of graphic objects (dialogs and widgets) and
editing on the screen.

Screen origin
The upper-left corner of the screen, which has the coordinates (0,0).

NOTE: The screen origin in HTBasic Plus is different than for HTBasic for Windows. In HTBasic for Windows, the screen origin is
in the lower-left corner of the screen.

Sibling widgets
Sibling widgets are child widgets with the same parent, or at the same level in the widget hierarchy, as the widget for which you
are setting the STACKING ORDER attribute value.

Signal Number
A signal number is a numeric expression rounded to an integer in the range 0 to 15. A signal is an event which can be generated
by the SIGNAL statement and can be handled by a routine set up with the ON SIGNAL statement.

Softkey Macro
Also called a typing aid, a softkey macro is a sequence of keys assigned to a softkey. When the softkey is pressed, the sequence
is typed into the keyboard buffer just as if you had typed them yourself. The definition of the softkey macro is user definable.

STATIC
“Static” is a data condition. A static variable is persistent during a single run of an HTBasic program. Typically, static variables will
only be used in SUB programs and/or FN functions because the MAIN context is usually called only once.

Static variables can effectively take the place of COM variables as they are presently used in many cases. If access to a COM
variable is required in multiple SUBs and/or Functions (DEF FN) and/or the Main context, then a static variable is not appropriate.
The scope of a static variable is limited to the context in which it is declared. In other words, a static variable declared in a SUB
program cannot be accessed anywhere other than within that particular SUB program.

Up to 6 array bounds may be specified, the initial values are optional. Specifying an initial value for an array initializes each
individual element in all dimensions of the array to the initial value specified.

String
“String” is a data type. Other data types are integer, long, real, complex and I/O path. A string is a combination of ASCII
characters. These are the letters, numbers and symbols that you can type on the keyboard. ASCII characters also include control
characters such as carriage return, etc. A string can be just one character long or it can be one word, one sentence, one
paragraph long or any combination of letters, numbers, spaces and symbols up to a maximum length of 32,767 characters.

Use the DIM statement to declare a local string variable and define its maximum length. The length of a string variable can never
exceed its declared length. Use the ALLOCATE statement to declare a local string variable which can be DEALLOCATEd
dynamically. Use the COM statement to declare a global string variable. If a string variable is not declared, it will be automatically
declared as an 18 character maximum length local string variable unless CONFIGURE DIM OFF is used.

String Array
A string array is an array (see Array) in which the data type of each element is string.

String Array Element
A string array element is a simple string and is compatible with any function or operation which expects a single string value. An
element is specified by following the array name with a left parenthesis, “(”, a comma-separated list of subscripts and a right
parenthesis, “)”. The number of subscripts specified must match the RANK of the array.

String Expression
A string expression is any legal combination of operands and operators joined together in such a way that the expression as a
whole can be reduced to a string value.

String Literal
A string literal is a string of characters delimited by the quote (”) character. To include a quote character in the string, include two
quote characters in the place of the one you wish to include. For example ”””hello”””.

String Name
The rules for naming a string variable are the same as for a variable (see Variable Name) plus the addition of a trailing dollar sign,
“$”. A string variable is a variable whose data type is “string”.

Sub-string
A substring defines a portion of a string variable or string array element. It is selected by specifying a starting position within the
string value and optionally, either the length of the sub-string, or the ending position within the string value. If only the starting
position is specified, the rest of the string value from that point on is used for the sub-string. String positions are one-based, i.e.,
the first character of a string is in position one.

The beginning position must be at least one and no greater than the current length plus one. When only the beginning position is
specified, the substring includes all characters from that position to the current end of the string.

The ending position must be no less than the beginning position minus one and no greater than the dimensioned length of the
string. When both beginning and ending positions are specified, the substring includes all characters from the beginning position to
the ending position or current end of the string, whichever is less.

The maximum substring length must be at least zero and no greater than one plus the dimensioned length of the string minus the
beginning position. When a beginning position and substring length are specified, the substring starts at the beginning position and
includes the number of characters specified by the substring length. If there are not enough characters available, the substring
includes only the characters from the beginning position to the current end of the string.

Subprogram Name
The rules for naming a subprogram are the same as for a variable (see Variable Name). A subprogram is one type of context (see
Context).

Subscript
A subscript is a numeric expression rounded to an integer to specify an array dimension. The value of each subscript must lie in
the legal range for that dimension as defined in the declaring statement (ALLOCATE, COM, COMPLEX, DIM, INTEGER, LONG,
REAL, REDIM, STATIC). Some matrix operations automatically redefine the range of a dimension.

System font
The default font used in dialogs and widgets. It can be changed in the configuration file. The default depends on the CRT
resolution.

Tab group
A group of like, child widgets that are created within ASSIGN statements, one after the other in the program. You create a tab
group
so that the operator can move the focus from one widget in the group
to the next (and wrap around again), without having to traverse every widget in the PANEL.

Only the widgets that have a TAB STOP attribute can be members of a tab group and can accept the system focus. Level-0
widgets cannot be members of a tab group.

A common example of a tab group is a row of buttons across the bottom of a PANEL. The buttons present the operator with a
group of related choices, such as YES, NO and CANCEL.

Title bar
The area at the top of the application and program windows. Also, the area at the top of a level-0 widget that contains the title text
for the widget as well as the window menu button, minimize button, and maximize button.

Transient widget
A widget that is created from a parent widget as a result of some program or operator action and is used to create a custom dialog.
A transient widget is created using the TRANSIENT option to the ASSIGN keyword.

UNIX file type
HTBasic supports ordinary files as well as typed files. HTBasic file types are LIF ASCII, BDAT, BIN and PROG. In a CAT listing,
the file type column is blank for ordinary files or gives the operating system (i.e., “DOS” or “HP-UX”). Unlike typed files, no special
header or other embedded information is placed in the file. Under UNIX, an ordinary file with FORMAT ON and EOL of CHR$(10)
is compatible with all programs that support UNIX ASCII files. See CREATE in the on-line Reference Manual.

Variable Name
A variable name can have up to fifteen characters. The characters can be alphabetic, numerals, underlines and characters in the
range CHR$(128) to CHR$(254). (HP BASIC and some versions of HTBasic use the range CHR$(161) to CHR$(254).) The first
character may not be a numeral or an underline. A variable name can be the same as a keyword if it is entered partly in upper
case and partly in lower case. Variable names are listed with the first character in upper case and the remaining characters in
lower case.

Vector
A vector is a one dimensional numeric array, i.e., the RANK of the array is one.

Volume Label
A volume label is present in some operating systems to label a mass storage volume (usually a disk).

A legal volume label is 11 characters long. Legal characters are the same as for file specifiers. The volume label, however, does
not divide the 11 characters with a period between the 8th and 9th characters.

Volume Specifier
A volume specifier in HTBasic is similar to an MSUS (Mass Storage Unit Specifier) in HP BASIC. However, for disk volumes with
multiple directories, a volume specifier does not completely identify a place to store files (see Path Specifier).

Two types of volume specifiers are supported by HTBasic. The first is the native type used by your operating system. For DOS,
Windows and NT, a volume specifier is the drive letter followed by a colon. For example, “C:”. If used with a file specifier, it is
appended onto the front of the filename, “C:DATA”. For other operating systems, consult your manuals.

The second type of volume specifier supported by HTBasic is the HP BASIC compatible msus style. For example, “:CS80,700,0".
Support for this type is included for compatibility with old HP programs. To use this type of volume specifier you must use the
CONFIGURE MSI statement to define a translation between this type of volume specifier and the native type used by your system.
For example:

CONFIGURE MSI “:CS80,700,0" TO ”B:"
CONFIGURE MSI “:A” TO “A:”
CONFIGURE MSI “:,1400,1" TO ”C:\HTB\1400\1"

The first example would allow a file specifier such as “DATA:CS80,700,0". The second example would allow a file specifier such
as ”DATA:A". If the CONFIGURE statement is not used, then an HP BASIC style volume specifier will cause an error. The third
example shows an HP style volume specifier being equated with a DOS style path specifier.

Widget
One of the fundamental HTBasic Plus entities. A widget is created on the computer screen with the ASSIGN statement from an
executing BASIC program. See the HTBasic Plus Reference Manual for details on widgets.

Widget Management Software
The software that controls all widget levels and positions on the computer screen. It maintains a hierarchy for widgets and dialogs
and keeps track of all level-0/parent/child widget relationships.

Work Area
The area in which the widget performs its essential function. For example, in the PRINTER widget the area that contains the text is
the work area. In the METER widget, the work area is the area that contains the meter arc, needle, tick marks, limits boxes, and
value box.

A level-0 widget surrounds the work area with a title bar, resize border, and (sometimes) a menu bar.

