
Installing and Using
Contents

Installing and Using the Windows Version

Chapter 1 Installing HTBasic 8.0 for Windows

Chapter 2 Getting Started

Chapter 3 GUI Description

Chapter 4 Using the Keyboard

Chapter 5 CRT and Graphic Drivers

Chapter 6 I/O Device Drivers

Chapter 7 Printer and Pixel Image Device Drivers

Chapter 8 Graphic Input Drivers

Chapter 9 Customizing the Environment

Chapter 10 Transferring Programs and Data from HP BASIC

Chapter 11 Changes From Earlier Releases

Other Manuals
User's Guide
Reference Manual
Basic Plus Manual

{button www.htbasic.com,Inet("www.htbasic.com")}

Distributed with release 8.3

Copyright ® 1988-2001 by TransEra Corp.

Installing HTBasic 8.0 for Windows
HTBasic is a technical programming language with extensive graphics, instrument control capabilities and interactive programming
aids to speed program development. HTBasic is compatible with Hewlett Packard’s “Rocky Mountain” BASIC for HP 9000 Series
200/300 computers.    It is designed to offer powerful features and ease-of-use to engineers, scientists and programmers whose
experience ranges from novice to expert.

Note:    Rocky Mountain BASIC (RMB) is a dialect of BASIC.    HTBasic and HP BASIC are particular implementations of RMB.

The HTBasic manual set consists of the Installing and Using Manual, the User’s Guide, and the HTBasic Plus Programming Guide.
Additional add-on products such as the HTBasic Workshop have their own manuals.

Using This Manual
The Installing and Using Manual provides guidelines to install, start, configure, and run HTBasic for Windows.    This manual
includes:

· Installing HTBasic for Windows
· Getting Started
· GUI DescriptionGetting_Started GUI_Description
· Using the Keyboard
· CRT & Graphic Drivers
· I/O Device Drivers
· Printer & Pixel Image Device Drivers
· Graphic Input Drivers
· Customizing the Environment
· Transfering Programs & Data from HP BASIC
· Changes from Earlier Releases

 Using This Chapter
This chapter explains how to install and run the Windows Version of HTBasic. The distribution media contains a README.TXT file.
The README file contains up-to-date information about HTBasic, manual corrections, and compatibility problems. Please pay close
attention to the README file before proceeding with installation. Chapter one includes:

Installing HTBasic for Windows
Starting HTBasic for Windows
Using Online Help
Exiting HTBasic for Windows

Installing HTBasic for Windows
HTBasic for Windows provides a Setup program on CD-ROM that makes it easy to install the application in Windows 95/98 or
Windows NT 4.0. This section shows how to use the Setup program to install HTBasic for Windows, including:

· Pre-Installation Checks
· Installing on Windows 95/98/NT
· Installing on Multiple Computers
· Installing on a Network

Pre-Installation Checks
Before you install HTBasic for Windows, take a few minutes to do the following pre-installation checks.

Step 1: Check Your HTBasic for Windows Package
To make sure your package contents are complete, check them against the following list. If any of the items are missing or
damaged, contact your reseller or your local distributor. The HTBasic for Windows package should include:
CD-ROM entitled “HTBasic for Windows"
Installing and Using HTBasic Manual (HEA-0080)
User’s Guide    (HEA-0081)
HTBasic Plus Programming Guide (HEA-0082)

Step 2: Learn About Technical Support
When you install HTBasic for Windows, be sure to complete the online Registration Card. A U.S. and an International mail-in
Registration Card with registration number labels and information on obtaining technical support are also included in the packaging.

When you complete the online registration, or return the registration card, we will be able to provide you with technical support, new
product information, and HTBasic for Windows update information.
For North American technical support and product information, call 1-801-224-6550.
For international technical support please contact your local distributor.
Further information on HTBasic for Windows is available from the HTBasic for Windows Home Page on the World Wide Web. To
open the HTBasic for Windows Home Page, use the following URL: http://www.htbasic.com

Step 3: Check System Requirements
The following table shows the minimum system requirements to install HTBasic for Windows. These requirements apply equally to
Windows 95/98, and Windows NT 4.0.

Item Minimum Requirements
Processor Pentium class processor or better.
Memory 32 MB Ram.
Drive Space 30 MB of hard drive space.
Operating System Windows 95/98 or Windows NT.
CD-ROM CD-ROM drive or access to CD-ROM over a computer

network.
Display Driver HTBasic for Windows will run with a monochrome, 16-color, 256-color

or 24-bit display driver.
Printers/Plotters HTBasic for Windows can send screen dumps to any

graphics printer supported by Windows. Plotters must be HPGL or
PostScript compatible.

Installing on Windows 95/98/NT
To install HTBasic for Windows on Windows 95/98/NT, you will need to use the HTBasic for Windows CD.

NOTE: If you need to install the HP I/O Libraries or I/O cards, connect a printer or plotter, or connect an input device, see Chapter 6
- I/O Device Drivers in the Installing and Using Manual.

Insert the HTBasic for Windows CD. This CD has an autoplay feature which automatically launches the HTBasic Setup program. If it
does not start automatically, click Start, Run, and type d:\cdsetup.exe (where “d” is your designated CD drive letter) in the text box
and click OK.

Pay close attention to the License Agreement and the readme file as they appear during Setup. The readme file will give you the
latest information on installation procedures and product developments. This file can also be referenced after Setup.

The initial Setup screen following the License Agreement file is the User Information screen. Please enter your name, company
name (if applicable), and serial number in the corresponding lines. The eleven-digit serial number can be found on the back of the
CD jewel case. Correct input of the serial number is required to complete the installation. Please save the original CD and serial
number for future reference. The serial number will be stored on your system and will be returned by the command:

SYSTEM$ (”SERIAL NUMBER”)

Please follow the instructions in the Setup program until installation is complete.

Installing on Multiple Computers
Since HTBasic for Windows is not copy protected, you may install HTBasic for Windows on more than one computer. However,
HTBasic for Windows is copyrighted, protected by international treaty and provided to you only under license.
You have license to run HTBasic for Windows on only one computer at a time. To install HTBasic for Windows on more than one
computer, repeat the installation instructions in “Installing on Windows 95/98/NT”.

Installing on a Network
HTBasic for Windows can also be installed on a network, but a license must be purchased for each user who will concurrently use it.

Before you can install HTBasic for Windows from or on a network, the system administrator must place the files on the network and
configure them. Contact your system administrator for the network path name for your computer. To install HTBasic for Windows on
the network, follow the installation instructions in “Installing on Windows 95/98/ NT”.

Starting HTBasic for Windows
This section gives guidelines to start HTBasic for Windows, including:

· Creating a Shortcut Icon
· Setting Automatic Startup
· AUTOST Program
· Command line switches
· GESCAPE codes
· Starting the Application

NOTE: Creating a shortcut icon and/or setting automatic startup for HTBasic for Windows are optional steps. If you do not want to
create either item, skip to “Starting the Application”.

Creating a Shortcut Icon
The standard installation creates a shortcut icon on the desktop. You may create additional shortcuts to open HTBasic for Windows.
Figure 1-1 shows a typical shortcut icon for HTBasic for Windows (identified as a shortcut by a jump arrow in the lower left-hand
corner). Double-click the icon to open HTBasic for Windows from the shortcut.    To create a HTBasic for Windows shortcut icon:

1. Right-click an empty area on the desktop to display a menu.
2. Point to New and click Shortcut to display the Create Shortcut dialog box.
3. Use Browse... to find and enter the path name on the Command line. By default HTBasic is installed at c:\program files\htbwin.
4. Click Next and then type a desired name for the shortcut icon. Then, click Finish to display the icon on the desktop.
5. Drag the icon to a desired location on the desktop or right-click the mouse in the desktop and click Arrange Icons or Line up

Icons.

Setting Automatic Startup
You can set up HTBasic for Windows to start automatically when Windows is started. After the startup information is created, the
next time Windows is started, HTBasic for Windows is automatically started. HTBasic for Windows then executes an autostart
(AUTOST) program. To set HTBasic for Windows for automatic startup:

1. Click Start and point to Settings and then click Taskbar... to display the Taskbar Properties dialog box.
2. Select Start Menu Programs, Start Menu Program Tab and click Advanced... to display the Exploring - Startup dialog box.
3. Open the Start Menu Programs folder by double clicking on the Programs folder and then double-click the StartUp folder. If you

have not created a HTBasic for Windows shortcut icon, see “Creating a Shortcut” to create the icon.
4. Copy the shortcut icon to the StartUp folder by holding the Ctrl key down and dragging the icon to the right side of the dialog

box. Then, release the mouse button to copy the icon.
5. Close the StartUp dialog box and restart Windows. After Windows has opened, HTBasic for Windows is automatically started.

AUTOST Program
Each time HTBasic starts, it checks the current directory for an AUTOST program file. If one is found, it is automatically loaded and
executed. This allows you to load any necessary device drivers, customize HTBasic using any of the programmable statements and
start any default application or menu program you desire.

To customize the AUTOST program, simply LOAD the “AUTOST” program, make the desired corrections and RE-STORE the
“AUTOST” program. For example, if you plan on using an IEEE-488 card or a serial (RS-232) interface you should modify your
AUTOST program to load the needed drivers. Chapters 5 to 8 contain instructions for loading and customizing drivers. If no driver is
loaded, a statement such as

OUTPUT 719;A$

will produce error 163, Interface not present.

Also, if you plan on using plotter or printer drivers, the AUTOST file is a good place to put the PLOTTER IS or CONFIGURE DUMP
statements needed to load the drivers.

Command Line Switches
Optionally, one or more command line switches can be specified when starting HTBasic. Command line switches affect the behavior
of HTBasic. Usually, no switches are necessary. Read through the headings to identify any you may need to use.

To set the command line switches and the initial MSI (directory) used by HTBasic, change the Properties associated with the icon
used to start HTBasic.

Click on the HTBasic icon with the right mouse button and select Properties … to open the Properties Dialog Box.

Select the shortcut tab and locate the Target Input Box with the current path and .exe for HTBasic.

Modify the target .exe by adding the desired Command Line Switch to the end of the target statement. For example, the -buf 125
modifies the number of lines in the buffer for the Extended Output Area as shown in Figure 1-2 below.

Separate multiple switches with a space.

HTBasic command line switches can be abbreviated to the shortest unique abbreviation. The following paragraphs document the
individual switches.

Alternate AUTOST Switch
The -ALT switch can be used to run an AUTOST program other than the one named “AUTOST” in the current directory. For
example, the following statement will start HTBasic running and will use a file named STARTUP.BAS in the root directory of drive C,
regardless of what the current directory is:

“C:\..\HTBwin\HTBwin.exe” -ALT c:\startup.bas

To start HTBasic without running any files, direct the -ALT switch to a non-existent file name for example:

“C:\Program Files\HTBWin\HTBwin.exe” -ALT junk

Extended Output Area Buffer Switch
The -buf switch specifies the number of lines to reserve for the Extended Output Area. The visible portion of the screen is called the
Output Area. HTBasic saves lines that scroll off the top of the screen, effectively increasing the number of screen lines. The buffer
containing the on- and off-screen lines of text is called the Extended Output Area buffer. The -buf switch determines the number of
lines in the buffer. The default is 160. For example, if you have 25 lines on-screen but wish to scroll back and look at 100 previous
lines, use this command:

“C:\Program Files\HTBWin\HTBwin.exe” -buf 125

Font Switch
The -fn switch specifies a Windows font to use in place of the default. To specify a point size, give the font name, a comma and the
point size. If the font name contains a space, place quotes around it. If no font switch is used, the Windows Version uses the
FixedSys font. The syntax is:

“C:\Program Files\HTBWin\HTBwin.exe” -fn “Font”,size

Only fixed width fonts should be used. Although most Windows fonts represent the ISO 8859 (Latin 1) character set, not all do. If the
keyboard is set to one character set and the screen font uses a different character set, it is possible for non-ASCII characters to
display incorrectly or not at all.

If size is positive, the spacing is in pixels; if negative, the spacing is in points (1/72 inch increments). Windows 95 can remap
character sets and can use TrueType fonts so any fixed-width font with the required characters may be used as a code page 437
font.    For example:

“C:\...\HTBWin80\HTBwin.exe” -fn “Courier New”,-12,255

selects a code page 437 mapping of the built-in Courier New font at 12-point size.

There are some fonts included with HTBasic, they may be found in the Lexical directory. These fonts are not hinted

This font information is passed to the HTBasic Windows editor. If the Edit Environment Dialog Box is updated this information will be
saved for future instances of HTBasic. If the Edit Environment Dialog Box is not updated, this information will not stay persistent
unless the –fn switch remains on the startup shortcut. This allows for multiple shortcuts to have multiple font information that will be
retained in the Windows Editor.

SYSTEM$(“FONT”) returns the name of the Windows font in use.

Window Geometry Switch
The -geometry switch specifies the size and optionally the position of the HTBasic window. The syntax is:

“C:\Program Files\HTBWin\HTBwin.exe” -geometry WIDTHxHEIGHT[+XOFF+YOFF]

where, WIDTH, HEIGHT, XOFF and YOFF are numbers and only WIDTHxHEIGHT must be specified. WIDTHxHEIGHT
specifies the size of the HTBasic window and can be specified in either pixels or characters, although the same units must be used
for both. If the height is less than 100, the units are interpreted as characters (columns by rows), otherwise the units are interpreted
as pixels. XOFF and YOFF specify the position of the HTBasic window on the display relative to the upper-left corner of the internal
child window’s display. XOFF and YOFF are always specified in pixels. By default, HTBasic creates a window that fills the screen.

The first example below creates a window that is 80 columns by 25 lines and the position is set by the window manager. The second
example creates a window that is 1024 by 768 pixels, positioned 100 pixels from the top of the screen and 200 from the left edge.

“C:\Program Files\HTBWin\HTBwin.exe” -geometry 80x25
“C:\Program Files\HTBWin\HTBwin.exe” -ge 1024x768+200+100

Window Title Switch
The -title switch specifies the title displayed in the title bar of the HTBasic window and the minimized icon. If the title contains spaces
or apostrophes, place quotes around it. The syntax is:
-title NAME
where NAME is the title string.

“C:\Program Files\HTBWin\HTBwin.exe” -title “Test System”

Workspace Memory Switch
The -w (workspace) switch specifies how much memory to set aside for your programs and data. The syntax is:

 -w amount[k|m]

where amount should be replaced with a number specifying the amount of memory. Amount can optionally be followed by a “k” or
an “m”. If no “k” or “m” is given, the number specifies bytes. If “k” is given, the number specifies kilobytes and if “m” is given, the
number specifies megabytes. Amount cannot include a period (i.e. 2.4m).

The default workspace size is 16 megabyte. Note that the amount of free memory reported can be somewhat less than that
requested because device drivers or other memory users may allocate some of the memory during startup. The following example
allocates thirty-two megabytes:

“C:\Program Files\HTBWin\HTBwin.exe” -w 32m

GESCAPE Codes
The GESCAPE statement exchanges device-specific information with a graphic device. It is specified as follows:
GESCAPE device-selector, code [,param(*)][;return(*)]

The device selector specifies the graphic device. The code value specifies the type of operation. The param array sends information
to the device and the return array receives information from the device.

Several GESCAPE codes allow manipulation of the HTBasic window.

Code            Operation
30 Maximize the window
31 Hide the window
32 Restore the window
33 Set interior client of the app window position and size
34 Get interior client of the app window position and size
35 Bring the window to the top
36 Get the screen size
37 Returns the Title Bar enable flag
38 Hide / restore title bar
39 Set the DUMP size (% of paper width)
41 Minimize the window

The following GESCAPE CRT codes have been added for manipulation of the program window.

Code            Operation
46 Turn the Control Toolbar Off
47 Turn the Control Toolbar On
48 Turn the Status Bar Off
49 Turn the Status Bar On
50 Remove Main Menu
51 Restore Main Menu
52 Disable Borders on Parent Window
53 Enable Borders on Parent Window
54 Disable Minimize button on Parent Window
55 Enable Minimize button on Parent Window
56 Disable Maximize button on the Parent Window
57 Enable Maximize button on the Parent Window
58 Disable Close button on the Parent Window
59 Enable Close button on the Parent Window
60 Turn the Bookmark Toolbar Off
61 Turn the Bookmark Toolbar On
62 Turn the Debug Toolbar Off
63 Turn the Debug Toolbar On
64 Filename in titlebar off
65 Filename in titlebar on

The following GESCAPE CRT codes have been added for manipulation of the program child window.

Code            Operation
130 Maximize the window
131 Hide the window
132 Restore the window
135 Bring the window to the top
137 Returns the Title bar enable flag
138 Hide / Restore the Title bar (Toggle switch)
141 Minimize the window
152 Disable Borders on Child Window
153 Enable Borders on Child Window

The following example shows the syntax for several of the GESCAPES. Note that codes that set information have a comma before
the array name while codes that get information have a semicolon.

10 INTEGER Get4(1:4),Set4(1:4),Get2(1:2),Set1(1:1)
20 DATA 90,100,500,300 ! Position of upper left corner:
30 ! 90,100), Width = 500, Height = 300
40 READ Set4(*)
50 GESCAPE CRT,30 ! Maximize the window
60 GESCAPE CRT,31 ! Hide the window

70 GESCAPE CRT,32 ! Restore the window
80 GESCAPE CRT,33,Set4(*) ! Set position and size: X,Y,W,H
90 GESCAPE CRT,34;Get4(*) ! Get position and size: X,Y,W,H
100 GESCAPE CRT,35 ! Bring the window to the top
110 GESCAPE CRT,36;Get2(*) ! Get the screen size: W,H
120 GESCAPE CRT,37;Get3(*) ! Get the title bar enable flag
130 PRINT Get(2) ! Print the Screen Size
140 PRINT Get(3) ! Print the title bar enable flag
150 Set1(1)=50 ! Set the DUMP size to 50%
160 GESCAPE CRT,38 ! Hide window Title Bar
170 GESCAPE CRT,38 ! Restore window Title Bar
180 GESCAPE CRT,39,Set1(*) ! Set the DUMP size (default is 100%)
190 GESCAPE CRT,41 ! Minimize the window
200 GESCAPE CRT,32 ! Restore the window
210 END

Starting the Application
You can start HTBasic for Windows from the program group created by the Setup program or from the shortcut you created. To start
HTBasic for Windows, click Start | Programs | TransEra HTBasic | HTBasic or double-click the shortcut icon. The initial display
should be similar to that shown in Figure 1-3.

Using Online Help
HTBasic for Windows includes a Help menu. The Help dialog box is the primary way to access online help topics. To display the
Help dialog box, select the Help menu from the application window or the program window. Then:

Click Help | Contents & Index to display the online manual
Click Help | About... for information about HTBasic for Windows
Click Help | Using Help for Windows Help

Figure 1-4 shows a typical Help dialog box. In HTBasic for Windows, the Contents Tab, Index Tab, and Search Tab can be used
from the Help dialog box.

This dialog box consists of several books and each book consists of a number of topics. For example, in Figure 1-4 Reference
Manual is an open book with one open and three closed chapters. Note that a book can include other books as well as topics.

To open a closed book, double-click the book title. To close an open book, double-click the book title. To display a specific help topic,
double-click the topic name.

Highlighting a topic name and clicking “Print...” allows you to print the topic. Highlighting a book name and then clicking “Print...”
allows you to print all the topics in the book (whether the book is open or closed). For example, in Figure 1-4 since ARG is
highlighted, clicking “Print...” allows you to print the topic.

To access Help from within the HTBasic Windows Editor, simply place the cursor on the keyword and press the F1 key. The online
Help is instantly accessed for the specified keyword.

HELP Command
The HELP Command may also be used to look up keywords in the online manuals.    To look up a keyword, type “HELP” on the
command line followed by the keyword.    For example, to look up the keyword GOTO, type:

HELP GOTO

and press ENTER. The first page of the keyword will be displayed and the entire manual can be accessed.

Using Windows Help System
Clicking the Using Help menu item displays the Windows Help dialog box (see Figure 1-4) that you can use to learn about the
Windows help system.

Exiting HTBasic for Windows
The HTBasic user’s interface provides several methods (see Figure 1-5) to close the program window, close all open files, shut
down HTBasic for Windows, and return to Windows.

In addition to exiting with the user interface commands, HTBasic can be exited programmatically by using the QUIT and QUIT ALL
statement. Using QUIT will close the program (child) window and return HTBasic to Idle Mode. Using QUIT ALL closes the program
window, closes all open files, shuts down HTBasic for Windows and returns to Windows. These statements can be entered for
immediate execution from the keyboard in a program that is not running or it can be executed from within a running program.

Getting Started
Using This Chapter

This chapter provides guidelines to get started using the Graphical User Interface (GUI) and either the HTBasic Legacy Editor or
HTBasic Windows Editor and Debugger to create, run, and edit HTBasic for Windows programs, including:

· Program Development
· HTBasic Windows Editor
· HTBasic Legacy Editor
· Creating Programs
· Debugging Programs
· Running Programs
· Search and Replace Operations

Program Development
Program development under the HTBasic integrated environment is made easier by program documentation statements and live
keyboard execution.

Program Documentation
Program documentation clarifies and explains the structure and function of a program.    If its structure and function have been well
documented, future program support is simplified.

In HTBasic, there are several ways to document a program: with the REM (remark) statement, comment tails “!”, and with
mnemonic variable names and program line labels.

The REM and “!” statements are used to insert comments into programs. A “!” comment may be appended to the end of any
program statement. They may contain any text you wish and are ignored when the line is executed. When an INDENT command is
given, the position of a REM statement is changed to match the current indentation level but the position of a “!” comment is left
unchanged.

Line labels may be used in program statements in the place of line number references. The label name is independent of the line
number and can be much more meaningful than a line number. It is more convenient to enter “EDIT Open_valve”, for example, than
to look up the currently assigned line number and enter “EDIT nnnn”.

Live Keyboard Execution
At most any time you can enter from the keyboard a command, a list of expressions, or a program line that starts with a line number.
Commands are executed, expressions are evaluated and their results displayed in the message line, and program lines are checked
for correct syntax and stored into program memory. If results displayed on the message line are longer than 63 characters, the
results are truncated to 63 characters. If a syntax error is detected in a program line, an error message is displayed in the system
message line and the cursor is positioned over the error. You can use the HELP command to display the Reference Manual entry for
the statement to determine how to correct the syntax error. For example:

INDENT ! command
PI*2 ! expression
100 FOR J=1 TO 5 ! program line

Any statement you enter without a line number will be executed as an immediate command. Some commands, however, might have
more than one meaning depending on how they are entered. For example, you can enter X<4 from the keyboard and HTBasic will
display a 1 or 0 depending on its logical value. Suppose, however, that you enter X=4. This looks more like an assignment than a
logical comparison, and this is just how HTBasic will treat it. If it was your objective to test whether X was equal to 4, you could do
this by entering it in parenthesis: (X=4). In this case, HTBasic will display a 1 or 0 depending on the value of X.

HTBasic Windows Editor
In addition to the traditional HP BASIC-style editor (Legacy Editor), HTBasic 8.0 also includes a new Windows style editor. The
HTBasic Windows Editor provides commands and user interface more similar in functionality to today’s Windows programming
applications.

By default, the Windows Editor is active. To select the Windows Editor, in the program window while in idle mode, select Options |
HTB Editor and then check Windows. HTBasic remembers which Editor you were in last.

The Edit mode is started by pressing the Edit button in the control toolbar, pressing the EDIT key (or typing EDIT), or selecting the
Edit | Edit Mode menu.    The HTBasic Windows Editor features include:

· Line numbers toggled On and Off
· Cut, copy and paste text
· Undo and Redo
· Bookmarking
· Error Lines
· User-defined color coding of the source code

Line Numbers
A significant change from the Legacy Editor is the ability to toggle line numbers On and Off. When “On”, line number behavior
essentially remains consistent with the Legacy Editor except the Windows editor line numbers can be edited only through the
RENumber, COPYLINES and MOVELINES commands. When in the “Off” position (default), the numbers are not removed, but the
line numbers are no longer displayed. EDIT statements like MOVELINES will still reference the hidden line number for compatibility
purposes.

To turn line numbers On and Off, select the View | menu in the program window. A check will appear by the Line Numbers menu
option when the “On” position is selected. Line numbers can also be toggled On and Off by selecting the Line Number Button on the
Control Toolbar.

Cut, Copy and Paste Text
A primary function of the HTBasic Windows Editor is the implementation of standard Windows mouse functions. Source code is
more easily edited with cut, copy and paste functions.

The new edit functions can be selected in the program window in the    Edit | menu. For example, to copy text, select the Edit | Copy
menu option. You can also use the mouse to highlight (left-click and drag the cursor to the desired ending position) the desired text
selection and either use the Ctrl+C shortcut key or right-click the mouse in the selection area to expose a “pop up” menu with the
cut, copy and paste functions.

Undo and Redo
Another standard windows feature now implemented is the Undo and Redo function. For example, to Undo an immediately previous
action, select the Edit | Undo menu option. Undo can be selected multiple times sequentially to return to a previous state. You can
also use the shortcut keys Ctrl+Z (Undo) and Ctrl+Y (Redo).

Bookmarking
Bookmarking functions have been added to the new editor for improved code navigation. To insert a bookmark, move the cursor to
the desired bookmark location and select the Toggle Bookmark Button on the Search Toolbar.

A rectangular mark will be placed next to the selected line. A bookmark can also be placed by selecting the Search | Bookmarks |
Toggle Bookmark menu option or by selecting the shortcut key Ctrl+F6. Up to ten bookmarks per program are supported.

To move between bookmarks, select either the Previous Bookmark Button or the Next Bookmark Button from the Search Toolbar.
Movement can also be achieved from the Search| Bookmarks | Previous Bookmark or Search | Bookmarks | Next Bookmark menu
options or the Ctrl+F7 (Next) or Ctrl+Shft+F7 (Previous) shortcut keys.

To remove an individual bookmark, move the cursor to the line with the bookmark to be removed and either select the Search |
Toggle Bookmark menu option (the Search | Toggle Bookmark menu option toggles when an active bookmark has been selected) or
type Ctrl+F6 or select the Toggle Bookmark Button on the Search Toolbar. To remove all bookmarks, select the Search | Bookmarks
| Remove All Bookmarks menu option or select the Remove All Bookmarks Button on the Search Toolbar.

ERROR Lines
For flexibility during program development, the new windows editor allows the user to leave errors within the code. These errors are,
by default, color-coded red. To move between errors, select either the “Previous Error” button or the “Next Error” button from the
Search Toolbar.    Movement can also be achieved from the Search | Bookmarks | Previous Error or Search | Bookmarks | Next Error
menu options.

User-defined Color
The HTBasic Windows Editor provides the user the ability to customize the color and font selection in the editor environment. Color
allows individualized adaptation of the source code to fit each user’s requirements. Color changes may be applied to keywords,
comments, strings, errors, text, breakpoints, bookmarks and various backgrounds (See Figure 2-1).

To make changes to the default settings of the editor, select the Options | Editor Environment menu option in the program window.
Select an editor function, color and then select the “OK” button to save your choices. Custom color selections are also available. To
return to the default editor choices, choose the “Default” button and then select the “OK” button. To change the font for all editor
functions, select the “Font” button and a list of available fixed-width fonts will appear.

HTBasic Legacy Editor
The traditional way to develop an HTBasic program is with the built- in, full-screen, syntax-sensitive editor. The HTBasic Legacy
Editor provides the look and functionality of the traditional RMB environment.    Programmers trained in the RMB environment will
face little, if any, training.

By default, the Windows Editor is active. To select the Legacy Editor, from the idle mode in the program window select Options |
HTB Editor and then check Legacy.

While in Edit mode, a full screen of program lines is displayed. The Message Line displays the error messages, live keyboard
calculator results, and status indicators. The softkey menu displays softkey labels corresponding to the function keys, the same as
when the display is in normal mode.

This sections gives guidelines to using the HTBasic Legacy Editor, including the following topics:

· Starting Edit Mode
· Controlling the Cursor
· Syntax Checking
· Inserting and Deleting Lines
· COPYLINES and MOVELINES
· DEL Command
· INDENT Command
· REN Command
· SUB Mode
· Immediate Commands
· Associated Commands
· Terminating Edit Mode

Starting Edit Mode
The Edit mode is started by pressing the Edit button in the control toolbar, pressing the EDIT key (or typing EDIT), Ctrl+E, or
selecting the Edit | Edit Mode menu.

The default increment for new line numbers automatically produced by the Legacy Editor is ten, but may be specified with an
optional increment as follows:
EDIT 100,5

When editing an existing program, the current edit line will be set either to the last line edited, the last line with an error, or the line
specified in the EDIT command. For example:
EDIT 100

starts the editor with line number 100 as the current edit line. You may specify a line number, line label, SUB program name or DEF
FN function name. For example to edit the SUB program TEST enter:
EDIT SUB Test

Program lines up to the Rocky Mountain Basic limit of 255 characters can be edited, regardless of the screen width. Furthermore, if
your screen or window size is wider than 80 characters, the full screen width is utilized. Lines longer than the screen width are
scrolled as necessary to allow editing of any part of the line.

Controlling the Cursor
While in EDIT mode, the UP, DOWN, LEFT, and RIGHT arrow keys, NEXT WORD, LEFT WORD, PREV, NEXT, BOL, EOL, BEGIN,
and END keys are used to move around the program. The mouse can also be used to move the cursor to a selected position or
scroll through the program with the vertical scroll bar on the right side of the program window. If your mouse has a wheel, the wheel
can be used to move the cursor as well. The INS CHR key toggles the overstrike mode to insert mode and back again. The mode
remains in effect until the INS CHR key is pressed again. The DEL CHR key deletes the character under the cursor. The DEL LEFT
key deletes the character left of the cursor.

Syntax Checking
No changes are made to the stored program until you press the ENTER key. The edit line is then checked for correct syntax and if
there are no errors it is stored into memory. If a syntax error is detected, an error message is displayed on the message line and the
cursor is positioned at the error. If you wish to abort the changes, press any key that moves to another program line.

Inserting and Deleting Lines
To insert a new program line between two existing program lines, or before the first line of the program, position the cursor on the
following line and then press INS LN. If necessary, the program will be partially renumbered, and a new line number will be
generated for you. After a line has been entered, a new line number is generated and displayed ready for you to enter the next
program line. To exit insert line mode press the UP, DOWN, PREV, NEXT, BEGIN, END, INS LN, or DEL LN keys.

To delete a program line, position the cursor on the line you wish to delete, and press DEL LN. A line that has been accidentally
deleted can be recovered by pressing the RECALL key followed by the ENTER key.

COPYLINES and MOVELINES
The COPYLINES command copies one or more program lines from one location to another while leaving the original lines in place.
The MOVELINES command moves one or more program lines from one location to another. This differs from the COPYLINES
command that leaves the original lines in place.

Appropriate renumbering occurs to insert the new program lines into the existing program.    Line numbers are renumbered and
updated if needed. Line number references in lines not being copied remain linked to the original lines rather than the newly created
lines.

DEL Command
The DEL command removes program lines from memory. Once a DEL statement has been executed, the specified lines cannot be
retrieved.    SUB and DEF statements cannot be deleted unless the entire subprogram is included in the range.

INDENT Command
The INDENT command inserts spaces after the line numbers and before the leading keywords of all lines in a program to visually
show the structure of the program. It does not move “!” comment statements. This command can only be executed from the
keyboard. It cannot be included in a program.

REN Command
The REN command renumbers program lines, including the line references in all program statements such as GOSUB and GOTO
to match the new line numbers. This command can only be executed from the keyboard. It cannot be included in a program.

SUB Mode
With the EDIT SUB Mode, the HTBasic Legacy Editor allows quick navigation of subprograms (SUB, DEF FN, CSUB). Press the
SUB Mode key once to display and move through the subprogram list; press it again to switch back to regular editing mode.

Immediate Commands
Immediate commands can be entered in EDIT mode by first deleting the automatic line number and then entering the command. To
delete the line number, backspace over it and then type over the top of it, or use CLR LN (not DEL LN) to clear the current line.

Associated Commands
The following program development commands are used in conjunction with the EDIT command.    Please review the on-line
Reference Manual for more complete details.

FIND search for a string of characters
CHANGE finds a string and replaces it with another string
SCRATCH removes all program lines or COM blocks from memory
XREF generates a program cross-reference listing
SECURE makes a program section not listable

Terminating EDIT Mode
The Edit mode is ended by toggling the Edit button in the control toolbar, by unchecking the Edit | Edit Mode menu, or by pressing
the CLR SCR, PAUSE, RUN, or STEP keys. It can also be terminated by entering a CAT or LIST command without a line number.

Creating Programs
This section gives guidelines to create HTBasic for Windows programs, including the following topics.

· Creating a Program
· Saving a Program
· Password Protection
· Opening a Program
· Printing a Program
· Closing a Program

Creating a Program
To create a new program you can enter text directly onto the program window from the keyboard. To create a new program:

If a program window (one with no text) is not displayed, click File | New to create a new untitled program.
Type the program lines from the keyboard to create a source program. Begin typing at the caret (blinking _ or |). Backspace and
retype to correct errors.
Press the Enter key after each line to parse the line and move the cursor to the next line.

Example: Creating a Program

1. Exit and restart HTBasic for Windows to display an application window with an untitled program window.
2. Type EDIT, and the program lines shown in Figure 2-2 from the keyboard. Begin typing at the caret (the blinking _ icon) on the

program window. Press the Enter key after entering each line of code. If you make a typing mistake, backspace and retype.

Saving/Storing Programs
Clicking File | Save As | Store As from the application window menu saves or stores the program under the currently specified file
name with one of the following five extensions, the file type depends upon the menu choice (Save or Store):

PROG (*.prg)[stored]
BASIC Program (*.bas) [stored]
Text with line numbers (*.txt) [saved]
Text without linenumbers (*.txt) [saved]
Text with adjusted line references (*.txt) [saved]
LIF ASCII (*.lif) [saved]
HP LIF ASCII (*.lhp) [saved]

To save or store a program:

Click File | Save | Store or File | Save As | Store As... to display the Save | Store As dialog box. If the file already exists, the file will
be saved or stored to the same name and type as already exists without bringing up the Save | Store dialog box.
Type the file name in the “File name:” box. Select the file type from the “Save as type:” pulldown box. Select the directory to
save/store the file from the “Save in:” box.
Click the “Save” or “Store” button to save/store the file.

Once modified, an asterisk “*”after the title in the program window title bar shows that the program has been modified from the
original source.

Example: Storing a Program

This example shows one way to store the program created in the previous example. See Figure 2-3 for a typical Store As dialog
box.

Click File | Store or File | Store As... to display the Store | Store As dialog box.
Type example in the “File name:” box and select PROG (*.prg) as the file type. Select a directory in which to store the program.
Click “Store” to store the program as a PROG file.

Password
It is possible to protect a stored program with a password by checking the Password check box. This will bring up the Password
Dialog box. It will not be possible to edit or view the program code until the password is resupplied.

Reverting to Last Saved/ Stored Version
Clicking File | Revert to Last... from the application window menu opens the last saved/stored version of the file and cancels all
changes that occurred since the file was last saved/stored.

Saving/Storing Programs As
If you want to save or store the program under a different file name or file type, clicking File | Save As    | Store As... displays a
standard Save / Store As dialog box from which you can rename and/or retype the file to be saved/stored.

Opening a Program
You can use the File menu from the application window to open an existing program by using File | Open... or File | Recent File 1-
10... menu items. Clicking File | Open... displays a standard Open dialog box (see Figure 2-4) from which you can select the file to
open. You can display the files for any of the file types shown in the dropdown box.

When the Change MSI option on the File menu is checked, opening a file from the MRU will change the MSI to the folder where the
file is located. Opening a file without this option checked will keep the MSI at its current setting when opening files from the MRU.

Dragging either an ASCII or PROG file on to either the HTBwin.exe or a shortcut to HTBwin.exe will also open the file. Also,
dropping a file into an open edit window will open the file directly into the editor. Dropping a PROG file onto the output window, will
open and run the prog file.

Opening Existing Programs
After a program has been created and saved, you can open the program.      To open a program:

In the HTBasic application window, click File | Open... or click the control toolbar Open icon to display the Open dialog box.
        or..
If the file to be opened has been recently saved/stored, click File | Recent File1...10 (and click on the appropriate file from the recent
file list) to open the desired program.

Example: Opening a Program

For this example, we will use File | Recent File1...10 to open the example.prg program we stored in the previous example. To do
this:

1. Exit and restart HTBasic for Windows to display an application window and a new program window.
2. Click the x icon in the program window to close the window.
3. Click File | 1 example.prg to open the program.

Printing a Program
For both new and existing programs, you can use File | Print Program to print the program to a file or to a selected printer.

To print a program to a printer:

1. Click File | Print Program to display the Print Program dialog box.
2. Select the Output device and the print range desired.
3. Click OK to print the program.

Device Setup
To load a Window’s print driver, select File | Device Setup.    This will cause the “Device Setup” dialog box to appear. Loading
drivers using LOAD BIN or equivalent statements, will cause them to appear in the list of drivers listed in the “Device Setup” dialog
box.    The “Device Setup” dialog box displays the Name, Version, Description, Status, and the associated ISC (if applicable) of the
driver.    The Status of the drivers will be left blank to indicate that they are loaded. (See Figure 2-5)

Click on the “Add” button of the dialog box.    This will cause the “Device Driver Selection” dialog box to appear with a highlighted
selection of “WIN-PRNT: Windows Print Manager Driver”. Currently, only Window’s print drivers can be added, deleted or modified
through this graphical user interface. Once “Add” has been selected, the “Configure Print Driver Properties” dialog box will appear
(see Figure 2-6).

In this dialog box, you can select the print driver configuration you desire.    For the print driver, you can choose associations for a
printer, a font, a page orientation and an ISC, as well as set properties for the printer.    Once you have made the desired selections,
click on the “OK” button of the dialog to confirm your choices.    The new print driver will now appear among the list of drivers.

To remove a window’s print driver, select File | Device Setup.    This will cause the “Device Setup” dialog box to appear.    Select the
print driver you wish to remove from the list of print drivers and click on the “Remove” button of the dialog box (the default print
driver cannot be removed).    The selected print driver will now be removed from the list of drivers.

To modify the configuration for a windows print driver, select File | Device Setup.    This will cause the “Device Setup” dialog box to

appear.    Select the print driver you wish to modify from the list of print drivers and click on the “Properties” button of the dialog box.
Once “Properties” has been selected, the “Configure Print Driver Properties” dialog box will appear.    In this dialog box, you can
modify the selected print driver.    For the print driver, you can choose to modify any of the settings associated with the print driver,
including the printer, font, page orientation, ISC and the properties associated with the printer itself.    Once you have made the
desired modifications, click on the “OK” button of the dialog to confirm your choices.    The modified print driver will now appear
among the list of drivers.

Closing a Program
Once a program has been saved/stored, you can close the program. If you have not made any changes to the program to be saved,
the file is saved in the same format and with the same file name. If you attempt to close the program or exit the application without
first saving, a File Changed dialog box (see Figure 2-7) is displayed.

When the program has been closed, the application window reverts to the inactive mode (no program window is displayed). To close
a program:

Click File | Close to display a File Changed dialog box (does not appear if no changes have been made to the program).
Click “OK” to discard the changes in the program and to delete the program window or click “Cancel” to return to the program
window.

Debugging Programs
The HTBasic Debugger was designed to promote optimal programming effectiveness and flexibility using HTBasic within the
Windows operating system. The Debugger tools allow the user to view the program in specific detail.    The Debugger can be run by
selecting the Debug | Run Debugger menu option or clicking on the “Run Debug” button on the Debug Toolbar.    The key features of
the HTBasic Debugger are:

· Breakpoints
· Step functions (step in, step over, step out)
· Run to/from cursor
· Independent debug windows

Breakpoints
Breakpoints provide a “pause” in program execution so that variable values and other parameter changes may be observed. The
HTBasic Debugger supports line, conditional, and global breakpoints.    Line breakpoints pause execution in a specified line.   
Conditional breakpoints pause execution at a specific line if a specified condition is met.    Global breakpoints pause program
execution when a specified variable reaches a specific value and condition regardless of where the program is.

To insert a line breakpoint, position the cursor in the editor on the desired line and either select the Debug | Toggle Breakpoint menu
option, click the mouse arrow on the Toggle Breakpoint button in the debug toolbar, or right-click the mouse in either the Edit
Window, Program Window, or the Code Window to reveal a context-sensitive menu and select the Breakpoints | Toggle Breakpoint
option.

To access the Set Conditional Breakpoint Dialog Box for a conditional breakpoint, position the cursor in the editor on the desired line
and either select the Debug | Conditional Breakpoint menu option, click the mouse arrow on the Conditional Breakpoint button in the
debug toolbar, or right-click the mouse in the Edit, Program, or Code Window to reveal a context-sensitive menu and select the
Breakpoints | Conditional Breakpoint option.    In the Set Conditional Breakpoint Dialog box, enter appropriate variable, subprogram,
condition, and value information and select “OK”.

To open the Set Global Breakpoint Dialog Box for a global breakpoint, simply select the Debug | Global Breakpoint menu option,
click the mouse arrow on the Global Breakpoint button in the debug toolbar, or right-click the mouse in the Edit, Program, or Code
Window to reveal a context-sensitive menu and select the Breakpoints | Global Breakpoint option.    In the Set Global Breakpoint
Dialog box, enter appropriate variable, subprogram, condition, and value information and select “OK”.

Step Functions
Three step functions (step in, step over and step out) provide a quick and easy way to methodically debug code.    Step functions
allow the user to move through and observe program execution.    “Step in” steps one line of code at a time, following all program
branches. “Step out” continues to end of context, stopping when entering the calling context. “Step over” runs the entire sub context
and stops at the next executable line of the current context. “Step out” and “Step Over” will stop at all breakpoints in sub contexts.

The step functions can be run by selecting the Debug | Step Over, Step Into or Step Out menu option or clicking on the desired step
function button on the Debug Toolbar or by right clicking in the Program or Code Window for the context-sensitive pop up menu
options.

Similar in functionality to Step in, programmatically the STEP function key (Alt-F1) executes one line of the program, displays the
next program line in the message area, and then pauses. If the program is not currently paused, the first press of this key causes
the program to be prerun. If no prerun errors are detected the first program line is displayed in the message area. The next press of
the STEP key executes the first program line, displays the next program line in the message area, and then pauses. The STEP
function key steps into subprograms one line at a time.

Run to / from Cursor
Running to the cursor and continuing from the cursor provide a fast and flexible way to move through code.    Run to Cursor and
Continue from Cursor are similar in functionality to a breakpoint with the cursor acting as a breakpoint. Run to / from Cursor is
governed by the same rules as the CONTINUE command.

Run to Cursor can be run by selecting the Debug | Run To Cursor menu option clicking on the Run To Cursor button on the Debug
Toolbar or by right clicking the mouse in the Program or Code Window for the context-sensitive menu options. Continue from Cursor
can be run by selecting the Debug | Continue From Cursor menu option, clicking on the Run from Cursor button on the Debug
Toolbar or by right clicking the mouse in the Program or Code Window for the context-sensitive menu options.

Debug Windows
One of the most powerful tools in the Debugger is the new Debug Windows (See Figure 2-8). Six new windows are provided to
assist in debugging programs by permitting the user to monitor variables, subroutines, breakpoints and the BASIC source code as it
executes.

The Debug Windows Dialog Box is activated from the View    | Debug Windows menu option. Once opened, the user may choose
which window or windows to activate by checking the appropriate box.    When first opened, the debug windows are docked at the
bottom of the program window.

All Debug Windows may be moved, resized and rearranged to suit the working style of any programmer. To move, simply double-
click the two vertical bars (horizontal top bars if vertically docked) to create a floating window, then click on the title bar and drag to
desired location.    Please note the change in window outline that signifies a new docking position.    To return to a previous docked
position, double-click on the title bar. To resize, move the mouse cursor to the edge or corner of the window until a double-arrow
cursor appears, then click and drag the cursor to the desired window size. If two or more windows are docked together, a docked
window control button is made available. This enables both expanding and contracting the docked window.

The Watch Window permits the programmer to watch the values change during the program run for the list of user-defined variables
at each step of the program. There are “Variable” (variable name), “Type” and “Value” columns in the Watch Window.    Type can be
Array, Integer, Real, Complex, String, Long or I/O Path. Watch variable names are case sensitive.

To add variables to the Watch Window, select the Debug | Add Watch Variable menu option. Watch variable names can be changed
by double-clicking on the name. Watch variable values may be changed by clicking on the value. To remove a variable, select the
variable in the Watch Window, then select the Debug | Remove Watch Variable menu option or select the Debug | Remove All
Watch Variables menu option to remove all watch variables. Adding variables may also be performed from a pop-up, context-
sensitive menu accessed with the right mouse button in the Edit and Watch Windows. Watch variables may also be removed by
right clicking the mouse in the Watch Window for context-sensitive menu options.

The Line Breakpoints Window allows the user to observe the line breakpoints as the program is run.    Breakpoint parameters
monitored are “Enabled”, “Type”, “Line”, “Subroutine”, “Variable”, “Condition” and “Value”. Line breakpoints may be individually
enabled and disabled from this window by highlighting the breakpoint and right-clicking the mouse to access the context-sensitive
menu.    Now select Enable-Disable Breakpoint.    To remove a breakpoint, highlight the breakpoint to be removed, right-click and
select Remove Breakpoint.    To remove all breakpoints, select Remove All Breakpoints.

The Global Breakpoints Window permits the user to observe the global breakpoints as the program is running. The Global
Breakpoint Window monitors “Enabled”, “Subroutine”, “Variable”, “Condition” and “Value” status. Global breakpoints may be
added from this window.    Simply right click in the window area to access the pop-up menu, select Add Global Breakpoint to open
the Set Global Breakpoint Dialog box, which may also be accessed from the Global Breakpoint button on the toolbar or from the
Debug | Global Breakpoint menu option. Global breakpoints can be individually enabled and disabled from this same context-
sensitive menu.    Highlight a breakpoint, right-click the mouse and select Enable-Disable Breakpoint.    To remove a breakpoint,
highlight the breakpoint to be removed, right-click and select Remove Global Breakpoint.    To remove all breakpoints, select
Remove All Breakpoints.

The Trace Window permits the user to observe which commands are being executed in a running program. There is nothing to “set”
in this window. It automatically monitors and notes each HTBasic command line as it is executed. Only a “Command” column exists
in the Trace Window.

The Trace Window differs fundamentally from HTBasic’s TRACE Statement in that the Trace Window provides a running trail of
commands executed. The TRACE Statement is limited to only what appears on the message line before it scrolls away. Please note
that the TRACE Statement tracks only the commands executed: it tracks neither breakpoints nor subroutines.

To clear the Trace Window, in the window right-click the mouse and select Clear Window. Restarting a program will also clear the
Trace Window.

The CALL Stack Window was designed to open a view into the CALL Stack (the CALL Stack is used by BASIC to track subroutines
accessed by CALL statements) so that one can see it operate at each step of the running program. There is nothing to “set” in this
window. It automatically monitors and notes what is going on in the program defined CALL Stack as the program is running. Only a
“Subroutine” column exists in the CALL Stack Window.

The Code Window displays the program source code as the program is running. There are “Line” (Number) and “BASIC Code
Lines” columns in the Code Window. These columns show the Line Number within the BASIC source code program and the actual
text of the code lines. Breakpoints, Bookmarks and the program pointer (showing exactly from where the computer is executing
code) are seen in this window as well.

The Code Window differs from the Trace Window in that the Trace Window is simply a stepwise display of program lines as they
run, showing only those lines of code, which have already executed.    The Code Window may be used to browse forward or
backward through the source code, including those lines of code, which have not yet executed. The Code Window can also be used
to view and modify breakpoints within the BASIC source code program at the time of the debug run.

TRACE Statement
The TRACE statement controls the display of trace information from a running program and can pause program execution before
executing a specific program line. The trace output is sent to the system message line. The trace output is also sent to the
PRINTALL IS device if PRINTALL is enabled. Tracing slows program execution.

TRACE ALL enables program tracing. Either the entire program or just a range of program lines may be traced. For example:

TRACE ALL 1000,1200

enables tracing during the execution of program lines 1000 through 1200. The trace output displays the program line before it is
executed and any modified simple variables or array elements and their new values. If a full array is modified then only the array
name is displayed. TRACE OFF form turns off all tracing. TRACE PAUSE will pause program execution before the specified
program line is executed. If no line number or label is specified, the program pauses before the next program line is executed and
the current TRACE PAUSE line is deactivated. For example:

TRACE PAUSE 250

will pause the program before line 250 is executed. Used in conjunction with the HTBasic Windows Debugger, these statements will
enable you to find errors in your programs quickly and efficiently, cut debugging time, and increase productivity.

Running Programs
Once a program has been created, you can run the program to produce the program output.    This section gives guidelines to get
started running programs, including these topics.

· Running a Program
· Pausing a Program
· Stopping a Program

Running a Program
When a new program has been created or an existing program has been opened, you can use Run | Run from the program window
menu, use the Run (right-facing green arrow) icon on the control toolbar or right click in the Edit, Program, or Code Window for a
context-sensitive Run menu option.

Example: Running/Pausing a Program

This example shows a way to run and pause the example.prg program.

Open the example.prg program.
Click Run | Run or the Run icon to run the program.
Click Run | Pause or the pause icon (yellow double bar) to pause the program.

Running a Program From a File
From the Applications Window, you can use File | Run Program... to run a program directly from a file without opening the file. You
can run the program before you open any other files, or you run the program when the application is in edit mode. When File | Run
Program... is executed, a standard Open File dialog box appears from which you can select a program to be run directly from the
file, without having to first open the file. Also, dropping a PROG file onto the output window will open and run the prog file.

Pausing Programs
You can pause a running program by using the Run | Pause menu, pushing the pause (yellow double bar) icon, right click in the
Program or Code Window for a context-sensitive menu Pause option, or using the System F4 menu key.

Stopping Programs
You can stop a running program by using the Run | Stop menu, right click in the Program or Code Window for a context-sensitive
menu Stop option, or pushing the stop (red square) icon in the Control Toolbar.

When the program stops (or is paused), you can rerun the program by using the Run | Run menu, or clicking the Start (right-facing
green arrow) icon in the control toolbar or by clicking the Run (F3) softkey from the System Menu softkeys.

Search and Replace Operations
This section gives guidelines to edit HTBasic for Windows programs, including these topics.

· Moving in the Program Window
· Finding Items
· Replacing Items
· Going to Items

Moving in the Program Window
In the previous section we used the program window primarily to display the program code, but did not make any edit changes to
the program.

The GUI uses Windows actions for using the mouse. Clicking the mouse on text that you wish to edit highlights the letter you
selected. The mouse can also be used to move the cursor in the program by dragging the vertical scroll bar on the right side of the
program window. If your mouse has a wheel, the wheel can be used to move the cursor as well.

 Finding Items
When the application is in the program window, you can use Search | Find... menu or press the Find button in the Search Toolbar to
find a specified item in the open program. Clicking this menu item displays a standard Find dialog box (see Figure 2-9).    When a
string is typed into the “Find What” box, the search will look for the next or previous use of the string.

All searches begin at the point where the search is initiated, by default, and search forward through the code. Selecting a search
direction in the Find Dialog box allows the user to search forward (down) or backward (up). To find the first occurrence of an item,
the search must start at the beginning of the program.

To narrow the search, in the Find Dialog box select “Match the whole word only”, or select “Match Case” (case sensitive), or select
“Wrap at beginning/end” to continue your search from the beginning/end of the program back to the start of the search.

To find multiple instances of a specified item, simply push the “F3” key or select the Search | Find Next menu or push the “Shift +
F3” key or select the Search | Find Previous menu after finding the first occurrence of the search. The search function automatically
takes the cursor to the next/previous occurrence of the string.

The FIND command also searches for a specified character sequence (case sensitive) in a program. Consult the on-line Reference
Manual for details regarding the FIND command.

        Replacing Items
Use Search | Replace... to replace one or more occurrences of an item. Selecting the Search | Replace... menu or pressing the
Replace button in the Search Toolbar displays the Replace dialog box as shown in Figure 2-10.

In the Replace Dialog box, clicking either “Find Next” or “Replace” highlights the next instance of the searched text. Pressing the
“Find Next” key again searches for the next instance without making a replacement. Pressing the “Replace” key again makes the
replacement and moves the cursor to the next instance of the searched string.

To replace a selected item in the program using the Replace Dialog box:

Type in the text to be changed in the “Find What:” box and type in the desired text in the “Replace With:” box.
Choose to “Find Next”, to locate the text to replace. Choose “Replace” to have each change confirmed, or “Replace All” to make
the change throughout the program without querying the user.
If desired, click “Cancel” to quit.

If a change is required in a specific range, first highlight the range with the mouse and check the Replace in | Selection option in the
Replace Dialog Box before executing the search and replace operation. Selecting the “Whole File” option (default) performs the
Replace function selected to the entire file.

Editing the line found by the replace operation is not allowed while the Replace Dialog box remains open. However, once closed, the
Replace Dialog box will save and re-open to the previous replace option.
Programmatically, the CHANGE command allows you to search and replace character sequences.    The CHANGE command is
described in detail in the on-line Reference Manual.

Going to Items
In the edit mode, clicking Search | Goto... displays the Goto dialog box (see Figure 2-11). From the Goto dialog box, you can select
a line number (check Line), a line label (check Label), a function (check FN) or a Subprogram (MAIN is considered to be a
subprogram) (check Sub) as the Goto Item.

Example: Going to a Subprogram

For the example program illustrated in Figure 2-11, clicking Search | Goto... or pressing CTRL+G, selecting “Sub” in the Goto Item
box (see Figure 2-11), entering SUB Stress_analysis as the Sub request, and clicking OK moves the cursor to the “Stress_analysis”
Subroutine.

GUI Description
This chapter describes the HTBasic for Windows Display and Graphical User Interface (GUI), including:

· Introducing the GUI
· Application Window Description
· Program Window Description
· GUI Menus
· Control Characters
· Setting the Environment

Introducing the GUI
In addition to the traditional RMB environment, all program development, editing, and debugging in HTBasic for Windows can now
be done via the Graphical User Interface (GUI). The GUI provides an easy, flexible way to develop and edit HTBasic for Windows
programs using standard Windows techniques.

The GUI is fully compatible with previous versions of HTBasic for Windows and with programs developed in earlier versions of the
HP BASIC language.

GUI Windows
There are two windows for HTBasic for Windows, the application window (see Figure 3-1) and the program window (see Figure 3-2).
Depending on the operating mode of the program, some window elements change.

The application window provides the menus, toolbar, and status bar that can be used for program development.    The program
window is enclosed in the application window and provides the environment in which you can create, edit, and run programs.

Application Window Description
When HTBasic for Windows first starts, the application window (and an enclosed Program Window) appears. The application
window provides a framework window from which you can develop HTBasic for Windows programs. This section give guidelines to
use the GUI application window.

Application Window Display
Figure 3-1 shows a typical application window display when no programs are open (inactive state). Figure 3-2 shows a typical
application window display when a program is open (active state).

There are two main differences in application window displays for active state and inactive state. In the inactive state, the menu bar
has only four menus and no program window is displayed. The inactive state occurs when no program is open. In the active state,
the full menu bar of eight menus is displayed and the Program Window is displayed.

Although the application window contains the title bar, menu bar, toolbars, status bar and status indicators, they are more functional
with an active program window. These features are explained in detail in the following section.

Program Window Description
The Program Window provides the area used to develop and edit programs. The Program Window has no associated menus other
than a context menu for the title bar. However, the menus are fully functional with an active program window. This section describes
the program window, including:

· Program Window Elements
· Positioning the Window
· Using the Status Bar
· Using the Toolbars
· Moving the Toolbars

Program Window Elements
The HTBasic display operates in one of two modes, Normal, and Edit.    The Normal display mode is used while HTBasic is idle,
waiting for a command, or while a program is running.    The EDIT display mode is used by the HTBasic Windows Editor, the
HTBasic Legacy Editor, and the Debugger. Figure 3-3 shows the elements of a typical HTBasic Program Window and the following
table contains a description of each of the features.

Program Window Elements

Title Bar The title bar consists of the application icon, the name of the application, the program name, and the
minimize, maximize, and close buttons.    An asterisk (*) is appended to the program title if the source or
program has been modified since the last save. The program window title bar is hidden when the
program window is maximized (default), but the program name and location is shown in the application
window’s title bar.

Menu Bar The menu bar contains the pulldown menus you can use for program development. Some items are not
always available.    See “GUI Menus,” page 3-12, for details on the menus.

Toolbar(s) A toolbar contains images that represent shortcuts for certain menu items. By clicking a toolbar button,
the action performed is the same action as if selected from the menu. A toolbar is shown when the
desired toolbar is checked in the View menu. A toolbar is hidden when it is unchecked in the View menu.
See “Using the Toolbar” for details.

Input Line The input line is used to enter commands, program lines, calculator expressions, and other keyboard
input.    When ENTER is pressed the Input line buffer is sent to either the INPUT, LINPUT, or ENTER KBD
statement or to the command and statement parser.

Vertical
Scrollbar

The vertical scrollbar allows scrolling up or down in a program using standard Windows operation.
Scrolling can also be done automatically when moving through text. When the caret moves beyond the
window boundaries, the window scrolls accordingly.    If the mouse has a wheel, the wheel can also be
used to move the cursor.

Display Line The Display Line is used for displaying prompts for the INPUT and the LINPUT statements and for

displaying text with the DISP statement.    The display line maintains a current print location and may be
set by the CONTROL CRT,8 statement.    The DISPLAY ALL function has no effect on the Display Line
and other control characters are not stored in the display line buffer.    The display line buffer content may
be read by a program using SYSTEM$(”DISP LINE”).

Message Line The message line displays error messages, live keyboard calculator results, and the current program
state. The current state identifies whether the HTBasic program is running, paused, stopped, or waiting
for input.      Messages are limited to 63 characters in length.

Softkey Menu A softkey is a function key (F1 — F 10) with programmable output that displays labels corresponding to
each softkey. The label indicates the action that is performed when the corresponding function key is
pressed. Softkeys can be hidden or displayed.    There are several sets of softkeys that can be displayed
including the system softkeys and three sets of user softkeys.    There are two softkey layouts available
that correspond to either the HP Nimitz or ITF keyboard.

Display Area The display (output) area is always present during the entire operation of the application. The Program
Window created by the application remains within the display area.    This area starts at the top line of the
screen below the title bar (minimized) or at the top line of the screen below the control toolbar when
maximized, and extends down to one line above the message line.

Status Bar The status bar provides keyboard and current program state information.    The status bar is displayed
when the View | Status Bar menu item is checked or is hidden when this menu item is unchecked. See
“Using the Status Bar” for details on using the status bar.

Positioning the Window
When HTBasic for Windows is saved or closed and then restarted, the application window is returned in the size and position it had
when the application closed. Procedures to position and resize the application window are illustrated in Figure 3-4.

Using the Status Bar
The status bar (see Figure 3-5) is located at the bottom of the application window and provides information about the keyboard
status and current state of HTBasic for Windows. You can show the status bar by checking the View | Status Bar menu item in the
application window. You can hide the status bar by unchecking View | Status Bar.

The status bar includes two areas: message area and status indicators.

The message area at the left side of the status bar displays the name of the control toolbar icon when it is highlighted by the mouse
(Run Program icon in Figure 3-5). It also displays the Tooltip when hovering over a toolbar button or a menu item.

The status indicators display the operating state of several keyboard keys including capslock, num lock, insert mode, or scroll lock.
The status indicator also provides the current program state indicating whether the HTBasic program is running, paused, stopped,
idle, or waiting for input.

Using the Toolbars
The toolbar contains images that represent shortcuts for certain menu items. By clicking a toolbar button, the action performed is the
same action as if selected from the menu. When you click a toolbar icon, the icon title (such as New, Open, Find, etc.) appears and
the icon description is displayed in the status bar message area.    There are three toolbars: the Control, the Search, and the Debug
Toolbars. The toolbars can be displayed on the application window. When the application window is in an inactive state, all toolbar
buttons except “New” and “Open” are greyed out.

The Control Toolbar is shown when the View | Control Toolbar menu item is checked or is hidden when View | Control Toolbar is
unchecked.    The Bookmark Toolbar is shown when the View | Search Toolbar menu item is checked or is hidden when View |
Search Toolbar is unchecked.    The Debug Toolbar is shown when the View | Debug Toolbar menu item is checked or is hidden
when View | Debug Toolbar is unchecked.    These toolbars are shown in Figure 3-6.    Please see the tables following figure 3-6 for
complete toolbar functionality.

In addition to the ability to turn the toolbars on or off through the View menu check boxes, this may also be accomplished with the
following GESCAPE codes:

GESCAPE CRT,46 !turns the Control Toolbar off
GESCAPE CRT,47 !turns the Control Toolbar on
GESCAPE CRT,60 !turns the Search Toolbar off
GESCAPE CRT,61 !turns the Search Toolbar on
GESCAPE CRT,62 !turns the Debug Toolbar off
GESCAPE CRT,63 !turns the Debug Toolbar on

Control Toolbar Buttons

Group Button Name Matches Menu / Option
File Handling 1

2
3

New
Open
Save / Store

File / New
File / Open
File / Save or File / Store

Print 4 Print File / Print
Mass Edit 5

6
Toggle Edit Mode
Toggle Line Number

Edit / Edit Mode
View / Line Numbers

Run 7
8
9
10
11

Run Program
Continue Program
Pause Program
Stop Program
BASIC Reset

Run / Run
Run / Continue
Run / Pause
Run / Stop
Run / BASIC Reset

Search Toolbar Buttons

Group Button Name Matches Menu / Option
Search 12

13
14
15
16
17
18
19

Find
Relplace
Toggle Bookmark
Previous Bookmark
Next Bookmark
Remove all Bookmarks
Go to Previous Error
Go to Net Error

Search / Find
Search / Replace
Search / Bookmark /Toggle Bookmark
Search / Bookmark / Previous Bookmark
Search / Bookmark / Next Bookmark
Search / Bookmark / Remove All Bookmarks
Search / Bookmark / Previous Error
Search / Bookmark / Next Error

Debug Toolbar Buttons

Group Button Name Matches Menu / Option
Debug 20

21
Debug Run
Debug Continue

Debug / Run Debugger
Debug / Continue Debugger

Breakpoint 22
23
24
25

Toggle Breakpoint
Remove All Breakpoints
Condition Break
Global Break

Debug / Toggle Breakpoint
Debug / Remove All Breakpoints
Debug / Conditional Breakpoint
Debug / Global Breakpoint

Step 26
27
28
29
30

Step Into (Ctrl+F1)
Step Over (Ctrl+F2)
Step Out (Ctrl+Shft+F1)
Run to Cursor
Continue from Cursor

Debug / Step Into (Ctrl+F1)
Debug / Step Over (Ctrl+F2)
Debug / Step Out (Ctrl+Shft+F1)
Debug / Run To Cursor
Debug / Continue From Cursor

Example: Using the Control Toolbar

Placing the arrow cursor over the Run icon (icon #7) as shown in Figure 3-7 causes the icon title (Run) to appear beneath the icon
and the icon action (Run program) to appear at the left-hand side of the status bar. Clicking the Run icon executes the icon action
(Runs the Program).

Moving the Toolbar
When a Toolbar is displayed, it can be displayed below the menu bar (default), it can be docked to any side of the application
window border, or it can be floating anywhere on the screen, including outside the main application window. The title bar for the
toolbar is present when the toolbar is in a floating state.

To move a toolbar, click anywhere inside the toolbar outline (except on an icon), hold the mouse button down, drag the outline to the
desired location and then release the mouse button. Figure 3-8 shows a floating Control Toolbar in the right margin of the application
window when the application is in the active state. Since the Control Toolbar is floating, the title bar for the Control Toolbar is
displayed.

To dock a toolbar to the left or right side or to the top or bottom of the application window, hold the mouse button down and drag the
outline left or right until the outline changes to a vertical rectangle. Release the mouse button and the toolbar is docked to the side of
the window. When the application is exited and then restarted, the toolbars are displayed in their exit state locations.

GUI Menus
This section describes the menus for HTBasic for Windows, including:

· Menus Overview
· File Menu
· Edit Menu
· Search Menu
· View Menu
· Options Menu
· Run Menu
· Debug Menu
· Tools Menu
· Help Menu

Menus Overview
HTBasic for Windows includes eight pulldown menus you can use to develop HTBasic for Windows programs. Figure 3-9 shows a
typical menu display and an expanded view of the Run menu. The actual display for all the pulldown menus depends on the type of
window displayed. Each pulldown menu uses standard Windows displays, including shortcut keys (Atl+F+O for Open... etc.) and
accelerator keys (Ctrl+O for Open... etc.).

All menu items are displayed for each pulldown menu, but the inactive items for a specific mode of operation are greyed out. For
example, in Figure 3-9 the menu items Continue, Pause, and Stop, are shown as inactive.

For each menu or menu item, the convention used is Menu | Menu Item. For example, File | Open... refers to the Open menu item in
the File menu. A menu item followed by three dots (such as File | Open...) means that a dialog box is opened when the menu item is
selected. The underlined letter is the menu mnemonic key (such as F) or menu item mnemonic key (such as O). Accelerator keys
are things like Ctrl+O.

There are four main ways to access a menu item as described in the following table.

Method Description
Use the Mouse
Cursor

You can use the mouse cursor to open the menu and then highlight the menu item. Click the mouse
button or press Enter to perform the menu item action.

Use the Alt Key to
get the mnemonic

For some menu items, you can use Alt+menu item accelerator key to perform a menu item action. To
do this, first open the menu with Alt+menu accelerator key but do not release the Alt key. Continue to
hold down the Alt key and press the menu item accelerator key. The key sequence shown in the
menu tables is Alt+menu accelerator key+menu item accelerator key.

Use Accelerator Key Accelerator keys are similar to Alt keys except they are not associated to a menu mnemonic. These
keys provide direct access to the operation.

Use Toolbar Button The toolbar contains images that represent shortcuts for certain menu items. By clicking a toolbar
button, the action performed is the same action as if selected from the menu.

Example: Using File | Open Menu

For example, suppose you want to open a file using the File | Open menu item. You can use any of the following four methods, each
of which results in the Open dialog box being displayed.

Use the mouse cursor to open the File menu and to highlight File | Open... Click the mouse button or press Enter to display the
Open dialog box.

Use Alt+F to open the File menu - do not release the Alt key.

Then, press O (or o) to display the Open dialog box.
Press Ctrl-O to display the Open dialog box.
Click on the Toolbar Button to display the Open dialog box.

File Menu
The File menu appears in both the application and program windows.

File Menu (Application Window)

Menu Item Shortcut Description Alt
New
Open...
Run Program...

Ctrl + N
Ctrl + O

Opens a new Program Window
Allows user to open a new file
Allows user to run a program directly from a file

Alt+F+N
Alt+F+O
Alt+F+R

Recent File List
1...10

 Allows opening one of up to ten recently opened files Alt+F+1...10

Change MSI on
open
Reset File List...

 Allows user to change Mass Storage Is location on opening a new file
from the Recent File List. (This is not set by default)
Allows user to clear the recent file list

Alt+F+h

Alt+F+L

Exit Exit the application Alt+F+x

File Menu (Program Window)

Menu Item Shortcut Description Alt
New
Open...
Close

Ctrl + N
Ctrl + O
Ctrl + F4

Greyed out - inactive
Opens the Open File Dialog box
Closes the Program Window

Alt+F+N
Alt+F+O
Alt+F+C

Save...
Save As...
Store...
Store As...
Revert to last

 Saves program to existing file
Saves program to a user-specified file
Stores program to existing file
Stores program to a user-specified file
Reverts program to previously saved version

Alt+F+S
Alt+F+A
Alt+F+t
Alt+F+e
Alt+F+v

Print Program...

 Allows current document to be printed

Alt+F+P
Alt+F+D

Recent File List
1...10

 Allows opening one of up to ten recently opened files Alt+F+1...10

Change MSI on
open
Reset File List

 Allows user to change Mass Storage Is location on opening a file from
the Recent File List. (This is not set by default)
Allows user to clear the recent file list

Alt+F+h

Alt+F+L

Exit Exit the application Alt+F+x

Edit Menu
The Edit menu appears only in the program window.

Edit Menu (Program Window)

Menu Item Shortcut Description Alt
Edit Mode Ctrl+E Allows user to move programs into the Edit Mode or back into normal

mode (check box)
Alt+E+E

Undo
Redo

Ctrl+Z
Ctrl+Y

Allows user to Undo immediately previous action
Allows user to Redo immediately previous Undo action

Alt+E+U
Alt+E+R

Cut
Copy
Paste
Delete

Ctrl+X
Ctrl+C
Ctrl+V
Del

Allows user to Cut selected text from program to clipboard
Allows user to Copy selected text from program to clipboard
Allows user to Paste selected text from clipboard to program
Allows user to Delete selected text from program

Alt+E+t
Alt+E+C
Alt+E+P
Alt+E+D

Set Indent...
Indent All
RENumber
Comment

Ctrl+I
Displays the Set Indent Dialog Box to determine Indent limits
Allows user to Indent all appropriate lines in the program
Displays the RENumber Dialog Box
Adds comments to the beginning of currently highlighted lines

Alt+E+S
Alt+E+I
Alt+E+R
Alt+E+m

Search Menu
The Search menu appears only in the program window.

Search Menu (Program Window)

Menu Item Shortcut Description Alt
Find...
Find Next
Find Previous
Replace…

Ctrl+F
F3
Shft+F3
Ctrl+H

Allows the user to Find a selected string
Find the Next occurrence of a selected string
Find the Previous occurrence of a selected string
Allows user to define search and Replace options

Alt+S+F
Alt+S+N
Alt+S+P
Alt+S+R

Goto... Ctrl+G Allows user to Goto a line, label, function or a subprogram Alt+S+G
Bookmarks Allows users to add, remove, or move to Bookmarks (submenu) Alt+S+B
Next Error Ctrl+K Allows user to find the next error Alt+S+N
Previous Error Ctrl+J Allows user to find the previous error Alt+S+v

View Menu
The View menu appears in both the application and program windows.

View Menu (Application Window)

Menu Item Description Alt
Control Toolbar
Search Toolbar
Debug Toolbar
Status Bar

When checked, displays the control toolbar
When checked, displays the search toolbar
When checked, displays the debug toolbar
When checked, displays the status bar

Alt+V+C
Alt+V+S
Alt+V+D
Alt+V+t

View Menu (Program Window)

Menu Item Description Alt
Control Toolbar
Search Toolbar
Debug Toolbar
Status Bar
Line Numbers

When checked, displays the control toolbar
When checked, displays the search toolbar
When checked, displays the debug toolbar
When checked, displays the status bar
When checked, displays line numbers within the program

Alt+V+C
Alt+V+S
Alt+V+D
Alt+V+t
Alt+V+L

XREF...
File Statistics...

Allows user to set cross-reference list
Displays file statistics for open program including total line #s, memory (used &
free), # of subs, and # functions

Alt+V+X
Alt+V+F

Debug    Windows... Displays the Debug Window Dialog Box so user may select which debug
windows to display

Alt+V+W

Options Menu
The Options menu appears in both the application and program windows.

Options Menu (Application Window)

Menu Item Description Alt
Editor Environment
Color Mode
Startup Memory Size...
Reset to Default Settings

Displays Editor Environment Dialog Box
Allows user to set color mode from 256 colors or 16 colors
Allows user to set Startup memory size from 1 to 256 Mbytes
Allows user to reset all option menu items to default

Alt+O+E
Alt+O+M
Alt+O+a
Alt+O+D

HTB Editor
Edit on Open

Selects Legacy or Windows Editor (default) on startup
When checked, opens new file in Edit Mode

Alt+O+T
Alt+O+O

Options Menu (Program Window)

Menu Item Description Alt
Editor Environment

Run Environment
Change MSI...

Keyboard    Mapping

HTB Editor

Edit on Open

Displays the Edit Environment Dialog Box so user may set the edit
environment
Displays the Configure Dialog Box so user may set the run environment
Allows user to change Mass Storage Is location path + device (This is not
set by default)
Allows user to set key behavior to HTBasic for Windows (default) or
HTBasic Legacy (has a submenu)
Allows user to select Legacy or Windows Editor (default) on startup (has a
submenu)
When checked (by default), opens new program in Edit Mode

Alt+O+EAlt+
O+RAlt+O+h
Alt+O+kAlt+O
+TAlt+O+O

Run Menu
The Run menu appears only in the program window.

Run Menu (Program Window)

Menu Item Shortcut Description Alt
Step
Continue
Run
Pause
Stop

Alt+F1
Alt+F2
Alt+F3
Alt+F9
Alt+F10

Allows user to run program in Step mode
Continues a paused program (pause and stop mode only)
Runs an active program
Pauses a running program (run mode only)
Stops a running program (run mode only)

Alt+R+t
Alt+R+C
Alt+R+R
Alt+R+P
Alt+R+S

Clear I/O
BASIC Reset

Alt+F5
Ctrl+Break

Aborts an I/O operation that is in progress
Performs BASIC reset

Alt+R+L
Alt+R+B

Debug Menu
The Debug menu appears only in the program window.

Debug Menu (Program Window)

Menu Item Shortcut Description Alt
Run Debugger
Continue Debugger

Ctrl+F3
Ctrl+F2

Allows user to run program with debugger active
Allows user user to continue a paused program with the
debugger active

Alt+D+D
Alt+D+C

Add Watch Variable...
Remove Watch
Variable
Remove All Watch
variables

Ctrl + W Allows user to add a variable to the Watch Window
Removes a selected variable from Watch Window

Removes all variables from Watch Window

Alt+D+W
Alt+D+R

Alt+D+h

Toggle Breakpoint
Conditional
Breakpoint...
Global Breakpoint...
Remove All
Breakpoints

Ctrl +F11 Adds a breakpoint at the current line
Allows user to establish a conditional breakpoint

Allows user to establish a global breakpoint
Removes all breakpoints

Alt+D+g
Alt+D+k

Alt+D+o
Alt+D+B

Step Into
Step Over Step Out
Run to Cursor
Continue From Cursor

Ctrl+F7
Ctrl+F8
Ctrl+Shft+F7
Ctrl+F5
Ctrl+Shft+F5

Steps into the next program line to be executed
Steps over the next context call or program line
Steps out of a line in step mode execution
Runs program from beginning to cursor
Allows user to run program from cursor to end

Alt+D+I
Alt+D+S
Alt+D+U
Alt+D+t
Alt+D+e

Refresh Windows
Close All Debug
Windows
Remove All Debug
Info

 Refreshes all displayed windows
Allows user to close all debug windows

Allows user to erase all debug info and remove .dbg file

Alt+D+f
Alt+D+A

Alt+D+L

Tools Menu
The Tools menu appears menu appears only in the program window.

Tools Menu (Program Window)

Menu Item Shortcut Description Alt
Device Setup... Ctrl+Alt+D Allows user to add, remove, or change devices Alt+T+D

Help Menu
The Help menu appears in both the application and program windows.

Help Menu (Both Application and Program Windows)

Menu Item Description Alt
Contents & Index
Using Help

Displays HTBasic for Windows Help Contents & Index
Displays Windows Help Contents

Alt+H+C
Alt+H+U

About HTBasic Displays HTBasic for Windows Information Alt+H+A

Control Characters
Control Characters permit character modification as they are displayed or printed by HTBasic. This section describe in detail these
control characters for HTBasic for Windows, including:

· Output Area Characters
· Display Line Characters
· Display Enhancement    Characters

Output Area Characters
Five character values perform special control actions in the output area.

CHR$(7) Ring the bell
CHR$(8) Move the print location back one space
CHR$(10) Move the print location down one line
CHR$(12) Print two line feeds, scroll the output area so that the next line is at the top of the output area
CHR$(13) Move the print location to column one

Display Line Characters
The same control and enhancement characters are active for the Display Line as for the Output area with the following differences:

CHR$(12) Clears the DISP line
CHR$(13) Moves the DISP line cursor to column one and clears the DISP line when the next character is sent to the DISP line

Display Enhancement Characters
The characters that control display enhancements are:

CHR$(128) All enhancements off
CHR$(129) Inverse video on
CHR$(130) Blinking video on
CHR$(131) Inverse and blinking video on
CHR$(132) Underline mode on
CHR$(133) Underline and Inverse video on
CHR$(134) Underline and Blinking video on
CHR$(135) Underline, Inverse, and Blinking    video on
CHR$(136) White
CHR$(137) Red
CHR$(138) Yellow
CHR$(139) Green
CHR$(140) Cyan
CHR$(141) Blue
CHR$(142) Magenta
CHR$(143) Black

Because some computers use character sets with character values that conflict with these characters, the CONTROL CRT,100
statement allows these display enhancement control characters to be moved to the range CHR$(16) through CHR$(31).

Setting the Environment
This section gives guidelines to set the environment for HTBasic for Windows, including the following topics:

· Changing MSI
· Keyboard Mapping
· Defining Cross-Reference lists (XREF)
· Aborting I/O Operation
· Basic Reset

Changing the MSI
You can use the Options | Change MSI... menu from the program window to change the MASS STORAGE IS (MSI) path and device
specifier. The current MSI includes both the device and the current directory.    This current directory is searched first to find any
specified files.

To change the MSI, Select the Options | Change MSI... menu to display a Change MSI dialog box. Either browse to the desired
folder and select OK or type or paste the desired MSI into the entry box.

To change the MSI when opening a file from the Recent File List select the menu item File | Change MSI On Open from the program
window. A check will appear next to the menu selection.

Keyboard Mapping
You can use the Options | Keyboard Mapping... menu from the program window to assign the behavior of the keyboard to either
HTBasic for Windows Editor or the HTBasic Legacy Editor.

To assign the keyboard behavior, use the Options | Keyboard Mapping menu. A check will appear by either the HTBasic for
“Windows” settings menu option or by the HTBasic “Legacy” Editor menu designating which option has been assigned control.

The keyboard behavior of the HTBasic for Windows Editor include Alt key functions like accessing pull-down menus and windows-
like keyboard editing (please see your Windows documentation for a complete description of Windows key assignments).

The keyboard behavior of HTBasic Legacy Editor include invoking System Softkeys with the Alt key, several other Alt key functions,
and traditional RMB editing keyboard assignments. Please consult Chapter 4, Using the Keyboard, for a complete list of HTBasic
Legacy functions assigned to the keyboard.

Defining Cross- Reference Lists
In addition to setting the program window environment, you can also use the View menu to define Cross-Reference lists.
The XREF (Cross-Reference) statement generates a cross-reference list of line labels, I/O path names, numeric and string
variables, subprograms, functions and COM block names. It also lists the number of unused symbol table entries.

You can select the cross-reference entries for your application. To define (X-REF) Cross-reference statement:

From the program window Click View | XREF... to open the XREF dialog box
Choose a subprogram to define XREF in
Choose an output device or check “Use Default Output” box
Select one of the options pictured in figure 3-10
Select “OK” to define the XREF list, “Cancel” to return to HTBasic, or choose “Default” to reselect XREF options

Aborting an I/O Operation
Run | Clear I/O aborts an I/O operation that is in progress. Unless timeouts have been enabled, the system will wait indefinitely for
an I/O operation to complete. Executing Run | Clear I/O (or using Alt + F5) forces the program to return to a paused condition.
Executing a CONTINUE function (use Alt + F2) causes the I/O statement to be re-executed.

Basic Reset
Run | BASIC Reset resets HTBasic. If a program is running, it is stopped. If a program is in memory, it is not discarded.

Using the Keyboard
This chapter explains how the different keyboard functions available in HTBasic are invoked. The last half of the chapter gives
detailed descriptions of each function.

Keyboard Functions
Each keyboard function has a generic name by which it is referred to in all the manuals. To access the function, you must know
which key to press on your keyboard. The generic names may or may not match the physical labels printed on the keyboard keys.
Use this chapter, the system softkey menu or the “HELP Keyword” command, to look up key assignments.
Each of these methods allows you to quickly find which keys correspond to which functions. The assignments are logical and easy
to remember.

Second Character
Internally, each keyboard function is represented by two characters. The first, CHR$(255), tells HTBasic that a function key is being
pressed. The second character identifies the function. A program can execute any of the function keys by outputting the two
characters to the keyboard (See the User’s Guide, Chapter 6, “CRT, Keyboard and Printer.”). The second character for each
function is listed in the last column of the alphabetical keyboard functions table.

Ctrl Key
If the Ctrl key is pressed while a function key is pressed, the function key is not executed, but is entered into the keyboard buffer.
This is useful when defining keyboard macros that expand into several key presses and when composing OUTPUT KBD statements
to execute function keys from a program.

Softkeys
A softkey is a function key whose function can be changed under software control. Rocky Mountain BASIC defines 24 softkeys.
Softkeys are programmed with the ON KEY statement to provide convenient user/program interaction. When not used by an ON
KEY statement, a softkey can be assigned a keyboard macro (also known as a “Typing Aid”). A macro is a key that is assigned one
or more keystrokes; thus by pressing one key you can mimic pressing several keys. Softkey Macros are explained in Chapter 8,
“Customizing the Environment.”

A softkey menu is displayed at the bottom of the screen. The labels in the menu are numbered to correspond to the numbers printed
on the function keys. The label marked “1" corresponds to the F1 key. The number is not meant to be the softkey number, but is
printed to help the user locate the correct key to press. For example, the first label is marked ”1" and corresponds to the F1 key,
though depending on KBD CMODE (explained below), it might be softkey K0 or softkey K1.

If your HP workstation does not display the softkey menu before a program defines any softkeys, then it does not have any
keyboard macros defined or does not have the KBD binary loaded. To set HTBasic to this condition, execute a SCRATCH KEY
statement in your AUTOST file.

KBD CMODE
Over the years, Rocky Mountain BASIC has supported two major softkey layouts: ITF and Nimitz. HTBasic can run programs written
for either keyboard layout, regardless of the physical keyboard in use. The KBD CMODE statement selects the layout to use. When
developing new programs, either style may be used at your preference.

Use KBD CMODE OFF for programs written for the ITF keyboard (46021A). With KBD CMODE OFF, eight function keys act as
softkeys. The softkey labels are displayed at the bottom of the screen in two groups, four on the left and four on the right. Each label
is eight characters wide and two lines high. With KBD CMODE OFF, the softkeys do quadruple duty.

Each softkey has four meanings, depending on which softkey menu is active when the key is pressed. The four menus are System,
User 1, User 2 and User 3. An indicator is displayed immediately above the softkey menu to show which menu is active. Another
function key is used to cycle through the menus. KBD CMODE OFF is the default softkey mode.
Use KBD CMODE ON for programs written for the Nimitz keyboard (98203). With KBD CMODE ON, ten function keys act as
softkeys. The softkey labels are displayed at the bottom of the screen in two rows. Each row contains five labels and each label is
14 characters wide.

Alphabetical Keyboard Functions List
The following table lists alphabetically all the keyboard functions available in HTBasic, the generic names and the key pressed on a
PC keyboard to invoke that function.

Note: The Alt-F1...F8 keys are present on the System Menu and can be pressed without the Alt key when the System Menu is
visible.
The following paragraphs present the keyboard function assignments by physical grouping. Detailed descriptions of each function
are given at the end of this chapter.

Softkeys
KBD CMODE OFF. With KBD CMODE OFF, Function keys F1 to F8 are used as softkeys. As stated before, each softkey has four
meanings, depending on which softkey menu is active when the key is pressed. The key assignments for each menu are given in
the following table.

Keyboard Function                            Generic Name                              Keyboard
Step program STEP System-F1
Continue program CONTINUE System-F2
Run program RUN System-F3
Pause program PAUSE System-F4
Clear I/O CLR I/O System-F5
Alpha screen ALPHA System-F6
Graph screen GRAPHICS System-F7
Recall older line RECALL System-F8

Keyboard Function                            Generic Name                              Keyboard
Stop program STOP Shift-System-F4
Dump alpha screen DUMP ALPHA Shift-System-F6
Dump graphics screen DUMP GRAPHICS Shift-System-F7
Recall more recent line RECALL NEW Shift-System-F8
Softkeys 1 to 8 K1 to K8 User 1- F1 to F8
Softkeys 9 to 16 K9 to K16 User 2- F1 to F8
Softkeys 17 to 23 K17 to K23 User 3- F1 to F7
Softkey 0 K0 User 3-F8

Pushing INCR LABELS (Shift-F11) will cycle through the four menus. Pushing SYSTEM (F12) will immediately display the System
Menu and USER (Shift-F12) will immediately display the User 1 Menu. Pushing the MENU (F11) key will toggle the menu on and off.
These same operations can be done using the BASIC statements SYSTEM KEYS, USER n KEYS and KEY LABELS ON/OFF. A
short cut exists for the System Menu keys. They can be activated, even if a User Menu is displayed, by holding the Alt key down
while the function key is pressed.

Keyboard  Generic                                    Windows                                Legacy
Function  Name  Keyboard                              Keyboard
Menu labels on/off MENU F11 F9
Increment menu labels INCR LABELS Shift-F11 Shift-F9
System softkeys SYSTEM F12 F10
User softkeys USER Shift-F12 Shift-F10

KBD CMODE ON. With KBD CMODE ON, ten function keys are used as softkeys. PC function keys F1 to F10 correspond to keys
k0 to k9 of the Nimitz keyboard. The labels on the screen are numbered to correspond to the number printed on the function keys.
The number is not meant to be the softkey number, but is printed to help the user locate the correct key to press. For example, the
first label is marked “1" and corresponds to the F1 key, though it is softkey K0.

Pushing the Shift key with a function key activates K10 to K19, though no labels are displayed for these keys. Pushing the Alt key
with a function key activates System functions listed in the following table.

Keyboard Function                            Generic Name                              Keyboard
Softkeys 0 to 9 K0 to K9 F1 to F10
Softkeys 10 to 19 K10 to K19 Shift- F1 to F10
Softkeys 20 to 23 K20 to K23 not assigned

Keyboard  Generic                                    Windows                                Legacy
Function  Name  Keyboard                              Keyboard
Step program STEP Alt-F1        Alt-F1
Continue program        CONTINUE        Alt-F2        Alt-F2
Run program      RUN Alt-F3        Alt-F3
Pause program        PAUSE Alt-F9        Alt-F4
Clear I/O        CLR I/O Alt-F5        Alt-F5
Alpha screen        ALPHA Alt-F11    Alt-F6
Graph screen        GRAPHICS        Alt-F12    Alt-F7
Recall older line        RECALL Alt-F8        Alt-F8
Recall more recent line RECALL NEW        Alt-Shift-F8 Alt-F9
Stop program        STOP Alt-F10        Alt-F10

The Keypad
The PC keyboard has a keypad that has both numbers (for numeric keypad use) and edit functions: arrow keys, Home, PgUp, End,
PgDn, Ins and Del. Some PC keyboards have separate numeric keypads and edit-function keys. The NumLock key is pressed to
switch the keypad between numeric use and edit use. With NumLock off, the keypad is set for edit use. The keys produce a different
function when used with the Shift key. The following table shows what keys are assigned to the keypad.

Functions Invoked by the Alt Key
Besides the System Softkeys, which can be invoked with the Alt key, in the Legacy Editor or Ctrl in the Windows Editor, several
other functions are invoked by holding down the Alt or Ctrl key while pressing one of the regular alphabetic keys on the keyboard.
These are listed below. As you can see, they are mnemonic in nature:

Keyboard  Generic                                    Windows                                Legacy
Function  Name  Keyboard                              Keyboard
Any character input ANY CHAR - Alt-= or Alt-K
Dump alpha screen DUMP ALPHA - Alt-A
Clear tab under cursor CLR TAB - Alt-C
“EDIT” key macro EDIT Ctrl-E Alt-E
Display functions DISPLAY FCTNS - Alt-F
Dump graphics screen DUMP GRAPHICS - Alt-G
Print all output PRT ALL Ctrl-P Alt-P
Set tab under cursor SET TAB - Alt-S
Result of last calculation RESULT Ctrl-R Alt-R
Toggle SUB mode SUB MODE - Alt-T

Other Function Keys
Keyboard  Generic                                    Windows                                Legacy
Function  Name  Keyboard                              Keyboard
CAPS state toggle CAPS LOCK Caps Lock Caps Lock
Delete left of cursor DEL LEFT Backspace Backspace
Enter ENTER Enter Enter
Reset BASIC RESET Ctrl-Break Ctrl-Break
Tab forward TAB Tab Tab
Tab backwards TAB BACK Shift-Tab Shift-Tab

Keyboard Function                            Generic Name                              Keyboard
Backspace BACKSPACE not assigned
Execute EXECUTE not assigned
Home position HOME not assigned
Katakana mode KATAKANA not assigned
Roman mode ROMAN not assigned
Select(bell) SELECT not assigned

Additional Keyboard Features
Windows gives the Keyboard some built-in functionality that is available to almost all programs that run under Windows. The
Windows documentation is the best source of information in this area. The following two features, however, are worth noting here.

The first feature is the Print Screen key. While HTBasic is the active window, pressing Alt-Print Screen places a “snapshot” of the
HTBasic window onto the clipboard. The image can then be pasted into any application that accepts the bitmap format. Pressing
Print Screen (without Alt) places a snapshot of the entire screen onto the clipboard.

The second feature is the generation of any ASCII value using the numeric keypad. If Num Lock is on and you hold the Alt key down
while typing a number on the keypad, the keyboard will automatically generate one keystroke corresponding to that value. For
example, typing 1 3 on the keypad while holding down the Alt key will enter a CHR$(13) character. This feature, when combined
with the HTBasic ANY CHAR (Alt-= or Alt-K) function allows you to generate almost any character to be included in a string literal,
even if the character is not available on the keyboard.

The ASCII value of a character can be entered in either the Windows (ISO 8859, Latin 1) character set or the OEM (code page 437)
character set. To use the Windows character set, type a leading 0. For example, Alt-(0163) enters the character “£” while Alt-(163)
enters “ú”. Character set tables are found in the User’s Guide.

Note: A null character cannot be entered from the keyboard into a string literal. Use CHR$(0) instead.

Detailed Descriptions
The previous sections described the key assignments for each editor function. As stated, each function has a generic name. The
following sections describe, by generic name or Windows name, what each editor function does.

ADD WATCH VARIABLE
Allows the user to add a new variable to the debug watch window. The watch window will display the current value of the variable.

ALPHA
ALPHA makes the Alpha Screen visible. Pushing the key twice makes the Graphics Screen invisible. If ALPHA and GRAPHICS are
merged, this key has no effect.

ANY CHAR
ANY CHAR allows any character to be entered. If the next character pressed is a Function key, then two characters are entered.
The first character has the value CHR$(255). The second character is a code that identifies which editor function was pressed. You
also can enter regular characters or control characters using this function.

BACKSPACE
BACKSPACE moves the cursor one place to the left. This is identical to the LEFT function. While this is the action of the Backspace
key in HP BASIC, the Backspace key in HTBasic does a DEL LEFT.

BEGIN
BEGIN moves to the beginning of the program (if in edit mode) or the top most line in the Extended Output Area.

BOL
BOL moves the cursor to the beginning of the line.

CALL STACK WINDOW
Allows the user to enable or disable the debug call stack window. This window allows you to view the CALL stack.

CAPS LOCK
CAPS LOCK toggles the capital letter state of the keyboard. With CAPS LOCK on, uppercase letters will be produced when typing
on the keyboard. When off, lowercase letters will be produced. On some computers the shift key temporarily inverts the state of the
CAPS LOCK. The state of the CAPS LOCK is displayed on the status bar.

CLOSE CHILD WINDOW
Exits the child (program) window. This function is the same as performing QUIT. To start a new child window, the user needs to
select NEW.

CLR->END
CLR->END clears to the end of the line.

CLR I/O
CLR I/O aborts an I/O operation that is in progress. Unless timeouts have been enabled, the system will wait forever for an I/O
operation to complete. Pressing this key forces the program to return to a paused condition. Pressing CONTINUE will cause the I/O
statement to be reexecuted.

CLR LN
CLR LN clears the input line.

CLR SCR
CLR SCR clears the Alpha Screen. On systems where Alpha and Graph have been merged, this also will clear any graphics that are
present. This key also is used to leave EDIT mode.

CLR TAB
CLR TAB clears a tab stop if one exists at the present cursor location.

CODE WINDOW
Allows the user to enable or disable the debug code window. This window allows you to view each line of code as it is executing in
the debugger.

CONTINUE
CONTINUE resumes program execution if the program is in a paused state.

CONTINUE DEBUGGER
Enables the debugger after it has stopped due to a breakpoint. The debugger will continue until it hits either the end of the program
or another breakpoint.

COPY
Will copy the selected text within the HTBasic Windows editor to the clipboard. The selection can then be pasted to another section
of the program.

CUT
Will cut the selected text within the HTBasic Windows editor. The cut text can then be pasted to another section of code.

DEL CHR
DEL CHR deletes the character where the cursor is.

DEL LEFT
DEL LEFT deletes the character to the left of the cursor. This is the default action of the Backspace key in HTBasic. This function is
not available in HP BASIC.

DEL LN
DEL LN deletes the program line that the cursor is on, if in Edit Mode.

DISPLAY FCTNS
DISPLAY FCTNS displays characters that would normally be interpreted as control codes, including control characters that might
normally be thrown away. This mode is useful for debugging I/O operations.

DOWN
DOWN scrolls the output area down one line. In edit mode, scrolling the program down one line leaves the cursor on the previous
line.

DUMP ALPHA
DUMP ALPHA sends the contents of the Alpha Screen to the printer or file specified by the DUMP DEVICE IS statement.

DUMP GRAPHICS
DUMP GRAPHICS sends the contents of the Graphics Screen to the printer or file specified by the DUMP DEVICE IS statement.
When Alpha and Graphics have been merged, this will also DUMP the contents of the ALPHA screen.

EDIT
EDIT clears the input line and enters “EDIT” for you. You may then hit ENTER to start EDIT mode or you may enter a program line
and hit ENTER to start EDIT mode at a particular line number. To exit EDIT mode, press the CLR SCR key. Likewise, you may press
EDIT and then press a softkey to begin editing that softkey. To finish editing the key, press the ENTER key.

ENABLE/DISABLE BREAKPOINT
Allows the user to enable or disable a breakpoint. If a breakpoint is enabled, the debugger will stop once it hits the breakpoint. If it is
disabled, the debugger will run through the line as if the breakpoint weren’t there.

END
END moves to the end of the program (if in Edit mode) or the last line in the Extended Output Area.

ENTER
ENTER executes a command or enters a line into a program.

EOL
EOL moves the cursor to the end of the line.

EXECUTE
EXECUTE is the same as ENTER. This function exists for compatibility with old HP keyboards that had separate keys for executing
lines and entering information.

EXECUTE SELECTED
Runs the piece of code selected by the user. The selected piece of code must be commands that can be executed from the
command line. If a programmable only command is selected, an error will occur.

FIND
Will search through the code and find a specified string. You can either search up or down through the document.

GLOBAL BREAKPOINT WINDOW
Allows the user to enable or disable the debug global breakpoint window. This window lets you view any global breakpoints you
have set. It will indicate whether they are enabled or disabled and in which line number they occur.

GOTO
Allows you to go directly to a specific line, label, sub or function.

GRAPHICS
GRAPHICS makes the Graphics Screen visible. Pressing the key twice makes the Alpha Screen invisible. If ALPHA and GRAPHICS
are merged, this key has no effect.

HOME
HOME moves the print position to the home position on the screen. This is the upper-left corner of the screen.

s-HOME
Shift+ HOME sets the print position to the first blank line at the end of the Extended Output Area. If this position is not visible, the
screen is scrolled to move it onto the screen.

INCR LABELS
INCR LABELS cycles through the softkey menu labels at the bottom of the screen.

INDENT ALL
Indents your program either to the default settings or those specified directly by the user.

INS CHR
INS CHR toggles Insert/Replace mode. The default is replace mode, where new characters overwrite any existing characters at the
position of the cursor. In insert mode, old characters are shifted to the right to open up a place for each new character typed.

INS LN
INS LN inserts a program line before the current line while in Edit mode. A new line number is generated automatically.

K0 to K23
K0 to K23 are user Softkeys 0 to 23. User softkeys can be used as either keyboard macros (sometimes called “typing aids”) or for
generating events in a running program. By default, a user softkey acts as a keyboard macro. When you push a user softkey, one or
more keystrokes that have been assigned to that key will be entered just as if you had typed them.

See “Softkey Macros” in Chapter 8, “Customizing the Environment.”

If the key is used in an ON KEY statement, then it is no longer active for softkey macros, but instead generates an event that causes
a GOTO, GOSUB, CALL or RECOVER.

LEFT
LEFT moves the cursor one position to the left.

LEGACY KEY MAPPING
Maps your keyboard to the HTBasic Legacy keys. Windows hot keys will not work under this mode.

LINE BREAKPOINT WINDOW
Allows the user to enable or disable the debug line breakpoint window. This window lets you view any line breakpoints you have set.
It also indicates whether they are enabled or disabled as well as their line number.

MENU
MENU alternately turns the softkey menu on or off.

NEW
Creates a new instance of HTBasic if the child window is closed. If the child window is active, it will act as a SCRATCH.

NEXT
NEXT allows viewing of the next part of the Extended Output Area by scrolling the output area up.

NEXT BOOKMARK
Will take you to the next bookmark set within the code.

NEXT ERROR
Will take you to the next error within the code.

NEXT WORD
NEXT WORD moves the cursor right to the first letter of the next word.

OPEN
Will bring up the open dialog box. This enables you to open a new program.

PASTE
Will paste at the current cursor location whatever has been cut or is currently on the clipboard.

PAUSE
PAUSE pauses a running program. The program can be continued by pressing CONTINUE.

PREV
PREV allows viewing of the previous part of the Extended Output Area by scrolling the output area down.

PREVIOUS BOOKMARK
Will take you to a previous bookmark within the code.

PREVIOUS ERROR
Will take you to a previous error within the code.

PREV WORD
PREV WORD moves the cursor left to the first letter of the previous word.

PRT ALL
PRT ALL causes subsequent screen output to the message line, display line, input line and output area also to be sent to the
PRINTALL device.

QUIT ALL
Will completely close the HTBasic window. This includes the parent and child window.

RECALL
RECALL recalls the last line entered. Several lines are saved and repeated pressing of this key recalls progressively older lines.

RECALL NEW
RECALL NEW recalls a more recent line. This is the opposite of the RECALL key. You can use RECALL and RECALL NEW to
search back and forth through the saved lines.

REDO
Will bring back anything that has been removed with an UNDO command.

REPLACE
Will replace a specified word or string with a new word or string.

RESET
RESET resets HTBasic. If a program is running, it is stopped. If a program is in memory, it is not deleted.

RESULT
RESULT recalls the result of the last numeric calculation into the input line.

RIGHT
RIGHT moves the cursor one position to the right.

ROMAN
ROMAN turns on Roman Mode (as opposed to Katakana Mode).

RUN
RUN starts a program running at the first line in the program.

RUN FROM CURSOR
Is a debugger tool. With the debugger running, you can set your cursor at a specific point within the code window and start
execution from the cursor. With this feature, you can avoid running through parts of the code that are unnecessary.

RUN THE DEBUGGER
Starts execution of the debugger. The debugger gives you a variety of tools to help debug code.

RUN TO CURSOR
Is a debugger tool. With the debugger running, you can set your cursor at a specific point within the code window and execution of
the program will run until it encounters the cursor.

SAVE/STORE
Allows you to either save or store your program.

SELECT
SELECT rings the bell.

SELECT ALL
Selects all of the code within the new Windows editor.

SET TAB
SET TAB sets a tab stop at the present cursor position.

STEP
STEP executes one line of the program and then pauses. If a program is not currently running when you press this key, the first
press of the key causes the program to be prerun in preparation for the next press of the STEP key. With each press of the STEP
key, the statement that will execute next is displayed.

STEP INTO
Is a debugger tool, which executes each line of code one at a time.

STEP OUT
Is a debugger tool that continues to the end of context, stopping when entering the calling context.

STEP OVER
Is a debugger tool that runs the entire sub context and stops at the next executable line of the current context.

STOP
STOP stops a running program. If the program is executing in an I/O operation, you may have to press CLR I/O first.

SUB MODE
SUB MODE toggles between regular edit mode and SUB mode. In SUB mode, only the first line of each context is shown. This
allows rapid movement to any of the contexts in the program. Pressing the key again returns to the regular edit mode where all lines
of the program are shown. SUB MODE is only allowed in the Legacy Editor.

SYSTEM
SYSTEM displays the System Softkey Menu.

SYSTEM MENU
Pulls up the system menu at the top of the window. This menu allows you to minimize, maximize or close your application.

TAB
TAB moves the cursor forward to the next tab stop.

TAB BACK
TAB BACK moves the cursor backward to the previous tab stop.

TOGGLE BOOKMARK
Either sets or removes a bookmark on the current cursor line.

TOGGLE BREAKPOINT
Either sets or removes a breakpoint on the current cursor line.

TRACE WINDOW
Enables or disables the debug trace window. This window permits the user to observe which commands are being executed in the
running program. There is nothing to “set” in this window.

UNDO
Will undo the previous edit action.

UP
UP scrolls the output area up one line. In Edit mode, scrolling the program up one line leaves the cursor on the previous line.

USER
USER displays the User 1 Softkey menu.

WATCH WINDOW
Enables or disables the debug watch window. This window permits the programmer to watch the values change during the program
run for the list of user-defined variables at each step of the program.

WINDOWS KEY MAPPING
Changes the keyboard hot keys to those used by a standard windows system. It is best used along with the HTBasic Windows
editor.

CRT and Graphic Drivers
HTBasic supports several graphic drivers. Graphic drivers are classified as CRT or Graphic Output drivers.
The CRT driver provides all the routines necessary for controlling output to the screen. This includes displaying text, writing screen
labels, controlling the cursor, scrolling lines and clearing the screen. All CRT drivers also include a graphic output driver. The graphic
output driver includes routines to move and draw, load and store portions of the screen, fill and edge an area, dither an area and
control the color palette.

The following table lists the drivers available at the time of this manual printing.

Name  Type  Graphic Driver 
INTERNAL CRT Reuse last display driver specified
WIN CRT Microsoft Windows Display Driver
HPGL Graphic Hewlett-Packard Graphic Language
PS Graphic PostScript printers, plotters and files

The PLOTTER IS Statement
The PLOTTER IS statement is used both to load drivers and switch among them. The PLOTTER IS statement directs vector
graphics to a device or file. (Use the DUMP DEVICE IS statement to print bit-mapped graphics from the screen to a device or file.)
The default PLOTTER IS device is the CRT. Executing a PLOTTER IS statement directs all subsequent graphics output to the
specified target.

Loading Drivers
Driver files can be loaded at any point. It is recommended that PLOTTER IS statements be included in your AUTOST file to load any
necessary drivers. Up to ten graphic and dump drivers can be loaded at a time.

To find the driver file, HTBasic takes the language specified in the PLOTTER IS statement and performs several operations upon it
to find the correct driver file. “.DW6" is appended to the name. Then the following locations are searched, in the specified order:

1. The directory containing the HTBasic executable.
2. The current directory.
3. The Windows system directory (such as \WINDOWS\SYSTEM).
4. The Windows directory.
5. The directories listed in the PATH environment variable.

CRT Drivers
The syntax of the PLOTTER IS statement used to load CRT drivers is:

PLOTTER IS destination, language [; COLOR MAP]

where destination specifies the special interface select codes 1, 3 or 6. Also, the predefined constant CRT can be used for the value
1. Language is the driver name or the constant “INTERNAL”. “INTERNAL” is a special language string synonymous with the last
CRT driver specified. Optionally, the language string can include driver options as explained later. For example:

PLOTTER IS CRT,"INTERNAL";COLOR MAP

Default CRT Driver
HTBasic automatically loads the WIN driver when it starts. It is not necessary to use a PLOTTER IS “WIN” statement, nor a -CRT
WIN command line switch.

CRTA and CRTB Modes
The WIN driver only supports CRTB mode. CRTA mode may have been used on the DOS version or a series 200 BASIC
workstation. Briefly, CRTA mode uses a true text mode to display the ALPHA screen. The CRTB mode uses bits written into a
graphics screen to display the ALPHA screen.

The mode is specified using the interface select code in the PLOTTER IS statement. Specifying interface select code 3 selects
CRTA mode and 6 selects CRTB mode. If the specified mode is not supported, the value is ignored. Specifying CRT or 1 in the
PLOTTER IS statement reselects the last mode used.

Graphic Drivers
The syntax of the PLOTTER IS statement for graphic drivers is:

PLOTTER IS destination, language [,hard-clip] [; APPEND]

Language is the driver name, which optionally can be followed by driver options. Options are included by appending a semicolon to
the driver name, followed by the options. Each driver has its own options. Consult the driver documentation, later in this chapter, for
the legal options of each driver.
Hard-clip is composed of four values separated by commas that specify the size of the drawing surface. The four values are xmin,
xmax, ymin and ymax, respectively. For example:

PLOTTER IS 10,"HPGL",2,268,0,190
PLOTTER IS “Pictfile”,"HPGL",5.75,250.50,7.25,136.875

The destination of a graphic driver can be a device or file, although not every driver can send output to all targets. For example, it
doesn’t make sense to send GIF output to anything but a file.

Devices
To send graphic output to a device such as a plotter or a printer capable of vector graphics, use the interface select code of the
interface connecting the device. Use the device-selector if the device is on the IEEE-488 bus. If hard-clip limits are specified, they
are given in the order xmin, xmax, ymin, ymax and are specified in millimeters. If the hard-clip limits are not specified, they are read
from the device when this statement is executed. The specified device must respond to this query or the computer will wait
indefinitely for the response. Use the CLR-I/O key to clear the computer if it gets stuck in this state.

The following example sends HPGL commands to a LaserJet III printer. The first line resets the printer, starts landscape printing and
switches into HPGL mode. The second line directs plotter output to the LaserJet III and sets the hard-clip units for an 8-1/2 x 11
sheet of paper. Both lines assume that the LaserJet III is connected to interface select code 26 at Lpt1.

OUTPUT 26;CHR$(27)&"E"&CHR$(27)&"&l1O"&CHR$(27)&"%1B";
PLOTTER IS 26,"HPGL",2,268,0,190

Files
To send graphics output to a file, destination should be replaced with the file name. The file must be an existing, ordinary or BDAT
file. The hard-clip limits may be specified or defaulted to? ±392.75 mm on the x axis and ±251.5 mm on the y axis. If APPEND is not
specified, the file is positioned to the beginning and truncated. The file is closed when another PLOTTER IS, GINIT or SCRATCH A
statement is executed. For example:

CREATE “DRAW.PLT”,0
PLOTTER IS “DRAW.PLT”,"HPGL"

WIN Driver
The WIN driver is a CRT driver that uses the Microsoft Windows display drivers.

For compatibility with HP BASIC/UX, options for the WIN driver are specified on the command line. Command line switches were
explained in Chapter 1. These command line switches are passed to the WIN driver:

Switch                        Effect
-fn Use named font
-geometry Specify initial size of HTBasic window
-title Specify the window title

Window Resize
Resizing the HTBasic window using the mouse is supported, but has the following effects. If the number of text columns changes,
any text present is discarded. If in edit mode, the screen is redrawn using the new size.

Any graphics present in the window are discarded. The current pen position is left undefined. The VIEWPORT, WINDOW and hard
clip limits are unchanged, although GESCAPE CRT,3 returns the new window size. Use the GINIT statement to set the VIEWPORT,
WINDOW and hard clip limits to the new window size, or use the

PLOTTER IS CRT,"INTERNAL"

statement to activate use of the new hard clip limits without the side effects of GINIT.

HPGL Driver
The HPGL graphic output driver provides support for any output device that accepts Hewlett Packard’s HPGL language. The driver
also can store the HPGL information into a file that can be imported into a number of graphics packages and word processors.

The minimum and maximum hard clip limits can be specified for either a device or file. This allows you to output HPGL information
to a printer that can’t return P points. If no hard clip units are specified for a device, P points are requested from the device. If no
hard clip units are specified for a file, the default hard clip limits are -392.75, 392.75, -251.5, 251.5 (millimeters).

The HPGL plotter driver is loaded with a line like

PLOTTER IS device,"HPGL[;options]",[p1x,p2x,p1y,p2y]

or

PLOTTER IS “file”,"HPGL[;options]",[p1x,p2x,p1y,p2y]

In the above, device refers to an HTBasic device number. File refers to a file in the computer’s file system. The file must already
exist when the PLOTTER IS statement is executed.

Plotting Area
The points (p1x,p1y) and (p2x,p2y) determine the lower left and the upper right corners of a rectangular area the driver will plot to.
These points are specified in mm from the lower left corner of the paper. P2x and p2y must be larger than p1x and p1y, respectively.
All of these coordinates must be positive or zero if the PCL5 option is used (see Options, below). If the plotting area is omitted, the
driver reads the plot area from the plotter, if it is connected to a serial or IEEE-488 port. If output is directed to a file, the driver uses
the default values from the table below.

PCL5
Option                        Orientation                        (P1x,P1y)                              (P2x,P2y)
No Landscape (-393, -252) (393, 252)
No Portrait (-252, -393) (252, 393)
Yes Landscape (0,0) (254, 184)
Yes Portrait (0,0) (184, 254)

Polygons
The HPGL driver, for compatibility with HP BASIC, outputs polygon fills as separate lines. However, the driver can be instructed to
output HPGL/2 polygon fill commands. This is useful if the plotter supports the polygon fill command or if an HPGL file is produced
for import into another program that supports polygons. To enable polygon mode, use GESCAPE code 104, operation number 1:

10 INTEGER Param(1)
20 Param(0)=1 ! HPGL Operation Number 1 is HPGL/2 Flag
30 Param(1)=1 ! Set HPGL/2 Flag to 1=enable, 0=disable
40 GESCAPE Isc,104,Param(*)

If output is to a device, substitute the device ISC for Isc in line 40. If output is to a file, substitute 1 for Isc.

Options
The options are listed after the semicolon in the driver name, within the quotes. If more than one option is specified, the option
names are separated by commas. The options are as follows:

COLOR. This option tells the driver that the device used for plotting is a color printer with plotter functions, such as the Hewlett-
Packard PaintJet XL-300. This option is ignored unless the PCL5 option is also specified.

FILL. This option tells the driver that the plotter being used can do area filling. Area filling produced by the plotter is generally much
faster than that produced by the driver.

GRAY. This option causes the driver to produce grayscale plots when used with a printer. Each color that normally would be plotted
is changed to a brightness, using the method explained in the Pen Colors section, before plotting. Note that the brightness level is
inverted unless the INVERT option is also used. The GRAY option need not be specified; it is the default. This option is ignored
unless the PCL5 option is also used.

HPGL2. By default, the driver produces plots for an HP-GL plotter. This option allows the driver to produce plots for an HP-GL/2
plotter, such as the Hewlett-Packard DraftMaster. Since HP-GL/2 plotters can all do area filling, the HPGL2 option turns on the FILL
option.

INVERT. By default, the driver reverses black and white on color plots and reverses all gray levels on grayscale plots when the plots
are made on a printer. This is suitable for printers that use dark inks on white paper, but is the opposite of the colors normally shown
on the computer screen. The INVERT option causes colors or gray levels to be represented as they are on the computer screen.
This option is ignored unless the PCL5 option is also used.

PCL5. This option tells the driver that the plotter is a laser or electrostatic printer with built-in plotter emulation using the PCL-5
language. This causes the driver to send escape sequences at the beginning and end of plots to enable and disable the plotter
emulation. When this option is used, a PLOTTER IS CRT,"INTERNAL" statement should be executed at the end of plotting to make
the printer eject the page containing the plot. Since all PCL-5 devices use the HP-GL/2 plotter language, this option turns on the
HPGL2 and FILL options.

PORTRAIT. The PORTRAIT option causes the driver to produce plots in portrait orientation, that is, with the long edge of the paper
vertical. Without this option, the driver produces plots in landscape orientation, with the long edge of the paper horizontal.

1600. The 1600 option provides compatibility for most newer HP Deskjet printers. This option is ignored unless the PCL5 and
COLOR options are included.

Choosing Options. The following table may help in choosing from the FILL, HPGL2, PCL5 and COLOR options for many plotter
models.    Model numbers refer to Hewlett-Packard products except where noted.

Plotter Model Options
7470A, 7475A, 7580A, 7585A, older 7580B and 7585B, 7090A, LaserJet II
printer with Pacific Data Plotter-in-a-Cartridge, Sweet-Pea, Houston
Instruments ImageMaker, other plotters that emulate the 7470A or 7475A, plot
files for use in WordPerfect, Ventura Publisher, Microsoft Word, Pagemaker,
Ami Pro, etc.

none

17440A, ColorPro, 7510A, 7550A, 7570A, newer 7580B, 7585B, 7586B,
7595A, 7596B, Houston
Instruments DMP-60, JetPro

FILL

7550 Plus, DraftMaster series, CalComp Classic, JDL Model 4000E, Houston
Instruments DMP-160, DMP-162R

HPGL2

LaserJet III printers, LaserJet IV printers, LaserJet IIP printer with LaserJet III
emulation
cartridge 7600 series electrostatic plotter, DesignJet and DesignJet 600
plotters

PCL5

PaintJet XL-300 printer, PaintJet XL printer with HP-GL/2 cartridge PCL5,COLOR

Pen Colors
When the HPGL driver is used with a pen plotter, the HTBasic PEN command selects the indicated pen on the plotter. However,
when the driver is used with a printer (as indicated by the PCL5 option), the effect of the PEN command is that described in the
following text.

The colors or grayscales produced by each pen depend on the states of the COLOR and INVERT options used in loading the driver,
as well as the state of the COLOR MAP option of the HTBasic CRT driver. If the COLOR MAP option is off, the following gray levels
or colors are used:

  GRAY  COLOR
PEN                                  GRAY  COLOR  INVERT                                      INVERT
0 white white black        black
1        black black white        white
2        30% black        red      70% black    red
3        89% black        yellow 21% black        yellow
4        59% black        green 41% black        green
5        70% black        cyan 30% black        cyan
6        11% black        blue 89% black        blue
7        40% black        violet 60% black        violet
8        black        black white        white
9        30% black        red        70% black        red
10    89% black        yellow    21% black        yellow
11    59% black        green      41% black        green
12    70% black        cyan        30% black        cyan
13    11% black        blue        89% black        blue
14    40% black        violet    60% black        violet
15    black        black white      white

If the COLOR MAP option of the CRT driver is on, the plot is made using the colors in the HTBasic color map if the COLOR option is
used. If the INVERT option is not used, black and white are reversed. If the COLOR option is not used, the colors in the HTBasic
color map are converted to shades of gray using the NTSC equation:
brightness = 11% blue + 59% green + 30% red

If the INVERT option is not used, the brightness is inverted before plotting is done. With both pen plotters and printers, the sign of
the pen is ignored; the absolute value determines the pen used.

Drawing Mode
When the PCL5 option is specified, the HTBasic statement GESCAPE CRT,5 sets alternate drawing mode for the driver. Normally,
the driver replaces anything previously at a location with what is currently drawn. In the alternate drawing mode, the previous black
or colored areas show through the white areas of the new plot. The HTBasic statement GESCAPE CRT,4 returns the driver to
normal drawing mode.

Line Thickness
If the PCL5 option is specified, line thicknesses can be set in the driver. Lines default to 0.35 mm thick. The line thickness for all
pens can be changed by the GESCAPE CRT,104 statement as in either of the examples below:

INTEGER Param(1:2) ! an array for the command
Param(1) = 10 ! line thickness code
Param(2) = thickness ! desired thickness (in 1/100 GDU’s)
GESCAPE CRT,104,Param(*) ! send thickness
INTEGER Param(1:2) ! an array for the command
Param(1) = 11 ! line thickness code
Param(2) = thickness ! desired thickness (in 1/100 mm)
GESCAPE CRT,104,Param(*) ! send thickness

Line Caps and Joins
When the PCL5 option is specified, line cap and join styles can be specified. By default, the device driver uses round caps to end
lines and round joins to connect lines, which simulates the round pens used on pen plotters. This can be changed with the following
statements.

INTEGER Param(1:3) ! an array for the command
Param(1) = 12 ! line thickness code
Param(2) = cap ! desired line cap
Param(3) = join ! desired line join
GESCAPE CRT,104,Param(*) ! set cap and join

The values for cap and join can be selected from the following tables.

cap                    meaning  join                  meaning
1 butt cap 1 mitered join
2 square cap 2 mitered, beveled if too long
3 triangular cap 3 triangular join
4 round cap 4 round join
 5 beveled join
 6 no join

Note that many low-resolution PCL-5 devices use a butt cap and no join with lines less than 0.35 mm thick, regardless of the cap
and join settings.

Crosshatching
The HPGL driver can crosshatch areas meant to be filled. This is its default behavior unless the FILL or PCL5 option is specified, in
which case the default is to use solid fills.

If the FILL or PCL5 options are specified, the driver can be made to crosshatch filled areas with the following statements:

INTEGER Param(1:2) ! an array for the command
Param(1) = 1 ! set fill type
Param(2) = state ! turn solid filling on or off
GESCAPE CRT,104,Param(*) ! send command

State is 0 to use crosshatching and any other value to use solid filling. For compatibility with older drivers, if state is nonzero, this
command turns on the FILL option if neither the FILL nor the PCL5 option was specified when the driver was loaded.

When crosshatching is turned on, the following sets of statements can be used to control the crosshatch parameters. If these
statements are not executed, crosshatching is done with solid horizontal lines spaced 0.01 in. (0.25 mm) apart, which is useful on
most devices for producing a solid fill.

INTEGER Param(1:2) ! an array for the command
Param(1) = 2 ! set crosshatch type
Param(2) = type
GESCAPE CRT,104,Param(*) ! send command

Type is 1 for single hatching, 2 for crosshatching.

INTEGER Param(1:2) ! an array for the command
Param(1) = 3 ! set hatch angle
Param(2) = angle ! desired angle, degrees
GESCAPE CRT,104,Param(*) ! send command

Angle is the angle in degrees (regardless of the HTBasic RAD or DEG setting) for hatching. Angle is rounded to the nearest multiple
of 45 degrees.

INTEGER Param(1:2) ! an array for the command
Param(1) = 4 ! set line spacing
Param(2) = spacing ! desired spacing (in 1/100 GDU’s)
GESCAPE CRT,104,Param(*) ! send command
INTEGER Param(1:2) ! an array for the command
Param(1) = 5 ! set line spacing
Param(2) = spacing ! desired spacing (in 1/100 mm)
GESCAPE CRT,104,Param(*) ! send command

The above commands are equivalent except that in the first command, spacing is expressed in 1/100 GDU and in the second in
1/100 mm.

INTEGER Param(1:3) ! an array for the command
Param(1) = 6 ! set line type for hatching
Param(2) = type ! desired line type for crosshatching
Param(3) = size ! desired pattern repetition size
GESCAPE CRT,104,Param(*) ! send command

Type is the type of line, as listed in the LINE TYPE section of the on-line HTBasic Reference Manual. Size is the pattern repetition
length in 1/100 GDU’s. This would be 100 times the pattern repetition length specified in a LINE TYPE statement.

Pages
The GCLEAR statement causes subsequent plotting to be done on a new page. If the PCL5 option is specified, the GCLEAR
statement causes the printer to eject the old plot. Also, opening a file with

PLOTTER IS “file”,"HPGL";APPEND

causes the driver to append new pages of plot information to the current file if it exists already. Note that most word processor
programs and other programs that can import files will probably superimpose the plots imported from a file containing more than one
plot.

Ending Plots
If the PCL5 option is used, the HPGL driver will not eject a plot until a GCLEAR statement is executed, HTBasic is ended or when
the PLOTTER IS device is set to a different device. It is recommended that a statement like

PLOTTER IS CRT,"INTERNAL"

be placed at the end of each program section that produces a plot using the PCL5 option driver.

PostScript Driver
The PostScript graphics output driver generates PostScript-language files from HTBasic plotting commands. These files are suitable
for printing on PostScript-language printers and photographic equipment and for importing into documents using the PostScript file
format. The PostScript graphics output driver is loaded with the following statement:

PLOTTER IS destination,"PS[;options]",[p1x,p2x,p1y,p2y]

Destination refers to a device or file. If it is a file, the file must already exist when the PLOTTER IS statement is executed and it
should be an ordinary file. Otherwise the HTBasic file header will appear as bad data at the start of the file.

The points (p1x,p1y) and (p2x,p2y) determine the lower left and the upper right corners of a rectangular area the driver will plot to.
These points are specified in mm from the lower left corner of the paper. All of these coordinates must be positive or zero and p2x
and p2y must be larger than p1x and p1y, respectively. If omitted, the driver uses (p1x,p1y) = (25.4 mm, 25.4 mm) and (p2x,p2y) =
(262.7 mm, 190.5 mm) in landscape mode and (p2x,p2y) = (190.5 mm, 262.7 mm) in portrait mode, which produces a plot with
adequate margins on US “A” or European A4 size paper.

Note that most PostScript printers cannot print to the edges of the paper. Because of this, the points specified should include a small
(about 1 cm) margin on each side when the driver is used with a printer.

Options
The options are listed after the semicolon in the driver name, within the quotes. If more than one option is specified, the option
names are separated by commas. The options are as follows:

COLOR. This option causes the driver to produce color plots. Note that black and white are inverted from their values on the screen
unless the INVERT option is also used. Color plots require a PostScript level 2 output device or a PostScript level 1 device with color
language extensions.

GRAY. This option causes the driver to produce grayscale plots. Each color that normally would be plotted is changed to a
brightness using the method explained in the Pen Colors section, below, before plotting. Note that the brightness level is inverted
unless the INVERT option is also used. The GRAY option need not be specified; it is the default.

INVERT. By default, the driver reverses black and white on color plots and reverses all gray levels on grayscale plots. This is
suitable for printers that use dark inks on white paper, but is the opposite of the colors normally shown on the computer screen. The
INVERT option causes colors or gray levels to be represented as they are on the computer screen.

PORTRAIT. The PORTRAIT option causes the driver to produce plots in portrait orientation, that is, with the long edge of the paper
vertical. Without this option, the driver produces plots in landscape orientation, with the long edge of the paper horizontal.

Pen Colors
The colors or grayscales produced by each pen depend on the states of the COLOR and INVERT options used in loading the driver,
as well as the state of the COLOR MAP option of the HTBasic CRT driver. If the COLOR MAP option is off, the following gray levels
or colors are used:

  GRAY  COLOR
PEN                                  GRAY  COLOR  INVERT                                      INVERT
0 white white black black
1        black black        white white
2        30% black        red        70% black        red
3        89% black        yellow 21% black        yellow
4        59% black        green      41% black        green
5        70% black        cyan        30% black        cyan
6        11% black        blue        89% black        blue
7        40% black        violet        60% black        violet
8        black black        white white
9        30% black        red        70% black        red
10    89% black        yellow    21% black        yellow
11    59% black        green      41% black        green
12    70% black        cyan        30% black        cyan
13    11% black        blue        89% black        blue
14    40% black        violet        60% black        violet
15    black black        white white

If the COLOR MAP option of the CRT driver is on, the plot is made using the colors in the HTBasic color map if the COLOR option is
used. If the INVERT option is not used, black and white are reversed. If the COLOR option is not used, the colors in the HTBasic
color map are converted to shades of gray using the HTSC equation:
brightness = 11% blue + 59% green + 30% red

If the INVERT option is not used, the brightness is inverted before plotting is done. GESCAPE codes 4 and 5 are ignored as is the
sign of the PEN. Graphics always overwrite existing graphics.

Line Thickness
Lines default to 0.35 mm thick. The line thickness can be changed by the GESCAPE CRT,104 statement as in either of the
examples below:

INTEGER Param(1:2) ! an array for the command
Param(1) = 10 ! line thickness code
Param(2) = thickness ! desired thickness (in 1/100 GDU’s)
GESCAPE CRT,104,Param(*) ! send thickness
INTEGER Param(1:2) ! an array for the command
Param(1) = 11 ! line thickness code
Param(2) = thickness ! desired thickness (in 1/100 mm)
GESCAPE CRT,104,Param(*) ! send thickness

Line Caps and Joins
By default, the device driver uses round caps to end lines and round joins to end lines, which simulates the round pens used on pen
plotters. This can be changed with the following statements.

INTEGER Param(1:3) ! an array for the command
Param(1) = 12 ! set line cap and join
Param(2) = cap ! desired line cap
Param(3) = join ! desired line join
GESCAPE CRT,104,Param(*) ! set cap and join

The values for cap and join can be selected from the following tables.

cap                    meaning  join                  meaning
1 butt cap 1,2 mitered join, beveled if too long
2 square cap 3,4 round join
3,4 round cap 5,6 beveled join

Crosshatching
By default, the PostScript plotter driver fills areas with shades of gray or color (if the COLOR option has been specified). The driver
can be made to crosshatch filled areas with the following statements.

INTEGER Param(1:2) ! an array for the command
Param(1) = 1 ! set fill type
Param(2) = state ! turn solid filling on or off
GESCAPE CRT,104,Param(*) ! send command

State is 0 to use crosshatching and any other value to use solid filling.
When crosshatching is turned on, the following sets of statements can be used to control the crosshatch parameters. If these
statements are not executed, crosshatching is done with solid horizontal lines spaced 0.01 in. (0.4 mm) apart.

INTEGER Param(1:2) ! an array for the command
Param(1) = 2 ! set crosshatch type
Param(2) = type
GESCAPE CRT,104,Param(*) ! send command

Type is 1 for single hatching, 2 for crosshatching.

INTEGER Param(1:2) ! an array for the command
Param(1) = 3 ! set crosshatch angle
Param(2) = angle ! desired angle, degrees
GESCAPE CRT,104,Param(*) ! send command

Angle is the angle in degrees (regardless of the HTBasic RAD or DEG setting) for hatching. Angle is rounded to the nearest integer.

INTEGER Param(1:2) ! an array for the command
Param(1) = 4 ! set line spacing
Param(2) = spacing ! desired spacing (in 1/100 GDU’s)
GESCAPE CRT,104,Param(*) ! send command
INTEGER Param(1:2) ! an array for the command
Param(1) = 5 ! set line spacing
Param(2) = spacing ! desired spacing (in 1/100 mm)
GESCAPE CRT,104,Param(*) ! send command

The above commands are equivalent except that in the first command, spacing is expressed in 1/100 GDU and in the second in
1/100 mm.

INTEGER Param(1:3) ! an array for the command
Param(1) = 6 ! set line type for hatching
Param(2) = type ! desired line type
Param(3) = size ! desired pattern repetition size
GESCAPE CRT,104,Param(*) ! send command

Type is the type of line, as listed under the LINE TYPE topic in the on-line HTBasic Reference Manual. Size is the pattern repetition
length in 1/100 GDU’s. This would be 100 times the pattern repetition length specified in a LINE TYPE command.

Pages
The GCLEAR statement causes subsequent plotting to be done on a new page. The driver inserts a PostScript “%%Page”
comment at the beginning of each page. The comments are used by some print spooling software. Also, opening a file with

PLOTTER IS “file”,"PS";APPEND

causes the driver to append new pages of plot information to the current file if it exists already. Since the driver doesn’t know how
many pages are already in the file, it begins its “%%Page” comments with page 1. This may cause problems with some print
spooling software.

Ending Plots
The PostScript language requires information at the end of a plot to cause the plot to be printed. This information is output when the
GCLEAR statement is executed, HTBasic is exited or when the PLOTTER IS device is set to a different device. It is recommended
that a statement like

PLOTTER IS CRT,"INTERNAL"

be placed at the end of each program section that produces a plot using the PostScript driver.

I/O Device Drivers
HTBasic provides loadable drivers for support of different interfaces and I/O ports. I/O drivers for the CRT, KBD, processor and
printer are built into HTBasic. Other drivers should be specified in the AUTOST file. An additional 12 I/O drivers can be loaded for a
total of 16 drivers.

This chapter describes how to use the “WIN-PRINT” driver, an interface to the Windows Print Manager, and the parallel driver, an
interface to the parallel ports. This chapter also describes how to load the Serial and IEEE-488 I/O drivers bundled with HTBasic.

Device Setup
Loading drives may be accomplished in two different ways. Traditionally only LOAD BIN from the command line would load the
specified driver. A LIST BIN would display the list of currently loaded drivers. In addition to this functionality, HTBasic now has a
Device Setup Dialog Box. It is accessible via the Tools | Device Setup menu item.

Loading drivers that use an ISC using LOAD BIN or an equivalent statement will cause them to appear in the list of drivers listed in
the “Device Setup” dialog box.    The “Device Setup” dialog box displays the Name, Version, Description, Status, and the associated
ISC of the driver.    (See Figure 6-1)

Clicking on the “Add” button of the dialog box will cause the “Device Driver Selection” dialog box to appear. The list of currently
available devices will be displayed. This is a list of the devices currently available to be loaded. Additionally, clicking on the New
button will allow adding other drivers.

Currently under Windows NT it is possible to load drivers for the Model 600 and 650 GPIO boards. Clicking on the New button, and
selecting either GPIO600.dw6 or GPIO650.dw6 will add these devices to your list of available devices. Once a new device driver
has been loaded to the Device Driver Selection list, it may be added to the Device Setup list. Devices found in the Device Setup list
may be modified by selecting the Properties button. They may be removed, loaded, or unloaded as well. Loading a device is the
equivalent of using LOAD BIN from the command line. Unloading a device is the similar to using UNLOAD BIN (previously only
supported by BASIC on the Workstation). Unloading does not remove the device, or the binary; however, it does allow usage of the
ISC by other devices. It also allows other programs to access the device. When loading devices, it is necessary to ensure no other
programs have the device loaded.

At the time of this release drivers supported by this new Device setup for configuration included: WIN-PRNT, SERIAL, GPIO600 and
GPIO650. The SERIAL device has been added in addtion to the traditional SERIAL32 driver that has been present for 32-bit
Windows systems. It is possible to also load the drivers using the LOAD BIN command from the command line. For some drivers it
is necessary to first have these drivers configured in the Device Setup Dialog box.

WIN-PRINT Driver
The WIN-PRINT device driver is built into HTBasic and allows access to standard windows printer drivers. If a default Windows
Printer is available, a Win-Print driver will be loaded and assigned ISC 10 automatically. This ISC can be changed as explained later.

The OUTPUT, CONTROL and STATUS statements are supported by this driver, ENTER, READIO, WRITEIO, ON INTR and
ENABLE INTR are not.

Printing to the Printer
Use the OUTPUT statement to print to the printer. The ISC can be specified explicitly in the OUTPUT statement. But it is usually
better to ASSIGN an I/O path to the ISC.

20 ASSIGN @Prn TO 10 ! Assign an I/O Path
30 OUTPUT @Prn;"PI = “;PI ! Now use the I/O Path
40 ! Insert other printer statements here
50 ASSIGN @Prn TO * ! End of print job, print it
60 END

Because Windows is a multitasking environment in which several programs may try to print at once, Print Manager collects printer
output into “jobs.” Only when a job is done is it printed. Normally, the WIN-PRINT driver ends the job when the I/O path is closed. If
you specify the ISC explicitly, you must also explicitly end the print job. The following conditions end a print job: changing the
PRINTER IS device, closing the I/O path, executing the RESET statement, resetting the interface through control register 0, or
writing a value to control register 111. For example:

10 OUTPUT 10;"MAXREAL = “;MAXREAL
20 CONTROL 10,111;1
30 END

Printer Control
Regardless of the actual printer type, the WIN-PRINT driver responds to the control characters in the following table. All other
characters will be printed (if possible).

Character              Function
CHR$(10) Move the print location down one line
CHR$(12) Move the print location to the top of the next page
CHR$(13) Move the print location to column one

The default margins are 1.27 cm (1/2 inch). Characters printed past the right margin are discarded. When the line advances past the
bottom margin, the print location moves to the top of the next page.

Change the margins using CONTROL registers 104 to 107 as shown in the example below. Margins are specified in 1/100’s mm. In
other words, a value of 100 specifies 1 mm. To specify values in inches, take the desired value in inches and multiply by 2540.
Some printers have minimum margins. Attempting to set the margins smaller than allowed by the printer results in an error.

10 CONTROL 10,104;1*2540 ! Left margin: 1 inch
20 CONTROL 10,105;2*2540 ! Top margin: 2 inches
30 CONTROL 10,106;1/2*2540 ! Right margin: 1/2 inch
40 CONTROL 10,107;4000 ! Bottom margin: 4 cm

Selecting a Printer
Two options are available for printing in HTBasic for Windows. Either direct printing to the parallel port or routing through the
Windows Print Manager. Direct access to the parallel port is available through ISC 26. This is particularly helpful when sending
escape codes to the printer that the print manager normally removes from the print command.

When you OUTPUT to ISC 10, HTBasic sends the data to the default printer. At least one printer must be installed. To install a
Windows printer driver, please consult your Windows documentation.    Briefly, in Windows 95, double-click on “My Computer,”
double-click on “Printers Folder,” and double-click on “Add Printer.”

Printing in HTBasic is divided into jobs.    A job begins when the print spool file is opened and ends when the file, if not empty, is sent
to the printer. A new print job begins on an ISC when no current print job exists and one of the following occurs:

· An OUTPUT Isc command is executed
· The first point is plotted after PLOTTER IS Isc
· A DUMP GRAPHICS command is executed and the current DUMP DEVICE is Isc
· A CAT, LIST, or PRINT command is executed after PRINTER IS Isc
· If there is a print job associated with Isc, it ends when:
· CONTROL Isc,111;1 (FLUSH) command is executed
· RESET Isc command is executed
· PLOTTER IS Isc command is executed after PLOTTER IS Isc
· PRINTER IS Isc command is executed after PRINTER IS Isc
· DUMP GRAPHICS command finishes when the current DUMP DEVICE is Isc
· CAT or LIST command with PRINTER IS Isc terminates

To send data to a different printer, change the default printer or use CONTROL register 102 to access the Printer Setup dialog. The
user can then select the desired printer. The user can also change the orientation of the print job, portrait or landscape. If the printer
does not support the current margin settings, they are automatically adjusted. The following statement causes a Printer Setup dialog
box to pop-up.

CONTROL 10,102;1 ! Let user choose printer

WIN-PRINT CONTROL Registers
The following CONTROL registers are supported for ISC 10 and the Windows print manager. When using ISC 26 for direct routing to
the parallel port only control registers 0, 101, 102, 111, 112, 113 and status register 0 are available.

0 Reset. Ejects all queued print jobs on the ISC specified. The value must be non-zero.
101 Change interface select code. For example, to change the interface select code from 10 to 12, you

would use:
CONTROL 10,101;12
To later change it back to 10, you would use:
CONTROL 12,101;10

102 Invoke Printer Setup dialog box. The value must be one. The action of other values is undefined.
For 26, this allows changing of the LPT port number - i.e. CONTROL 26,102;4 for LPT 4.
The port must be available in Windows.

103 Invoke Printer Setup dialog box. The value must be one. The action of other values is undefined.
For 26, this allows changing of the LPT port number - i.e. CONTROL 26,102;4 for LPT 4.
The port must be available in Windows.

104 Set left margin. Units are 1/100’s mm. Default is 1270. Sets position to left margin, not top of page,
so may be used as an indent.

105 Set top margin. Units are 1/100’s mm. Default is 1270.
106 Set right margin. Units are 1/100’s mm. Default is 1270. Does not move print position,

so may be used as an outdent.
107 Set bottom margin. Units are 1/100’s mm. Default is 1270. Does not move print position.
108 Set line spacing. Units are 1/100’s mm.
109 Set the current print position. Units are 1/100’s mm. Register 109 sets the X and register 110 sets the Y

values.
110 Set the current print position. Units are 1/100’s mm. Register 109 sets the X and register 110 sets the Y

values.
111 End the current print job and flush spooled output. The value must be 1.
112 PRINTER IS auto eject: 0 = turns auto eject off; 1 = turns auto eject on (this is ON by default).
113 DUMP auto eject: 0 = turns auto eject off for DUMP commands; 1 = turns auto eject on for DUMP

commands
(this is ON by default).

114 Paper orientation: 1 = Set the selected printer’s paper orientation to portrait; 2 = Set the selected printer’s
paper
orientation to landscape.

115 Changes the font associated with the printer to be the name specified in “Fontname”. The font name must
be truetype font name, else the original font will remain. The printer associated with the ISC will have its
font changed:
CONTROL Isc,115;”Fontname”

116 Font style control. Changes the font style associated with the printer to the specified attribute: 0 = Normal;
1 = Italic; 2 = Bold; 3 = Bold Italic.

117 Changes the font point size for the associated printer to the size recorded in Value:
CONTROL Isc,117;Value

WIN-PRINT STATUS Registers
The following STATUS registers are supported.

0 Interface identification. Returns a 302 for ISC 10; 300 for ISC 26.
104 Get left margin. Units are 1/100’s mm. Default is 1270.
105 Get top margin. Units are 1/100’s mm. Default is 1270.
106 Get right margin. Units are 1/100’s mm. Default is 1270.
107 Get bottom margin. Units are 1/100’s mm. Default is 1270.
108 Get line spacing. Units are 1/100’s mm.
109 Get the current print position. Units are 1/100’s mm. Register 109 gets the X and register 110 gets the Y values.
110 Get the current print position. Units are 1/100’s mm. Register 109 sets the X and register 110 sets the Y
values.
111 Retrieve the “page dirty” flag. A value of 0 means no output exists yet on this page. A value of 1 indicates

output has been made to the current page, but the print job is not yet complete.
112 Returns the PRINTER IS auto eject status: 0 = auto eject off; 1 = auto eject on.
113 Returns the DUMP auto eject status: 0 = auto eject off; 1 = auto eject on.
114 Returns the associated printer’s paper orientation: 1 = portrait; 2 = landscape.
116 Returns the font style for the associated printer:

0 = Normal
1 = Italic
2 = Bold
3 = Bold Italic
4 = Underline
5 = Underline Italic
6 = Bold Underline
7 = Bold Italic Underline

117 Returns the font point size for the associated printer.

Serial (RS-232) Driver
Two drivers for the RS-232 interface are now available SERIAL32 and SERIAL. The SERIAL32 driver is the same driver that has
always accompanied HTBasic for Windows for 32-bit Windows operation. The SERIAL driver is new for version 8. It is integrated
with the GUI Device Setup Dialog. It allows for loading up to COM 256 and supports multiple COM ports up to the number of
available ISCs. All configuration options may be performed via Dialog box in the Device Setup or via control registers. It is also
possible to unload this device driver from the Dialog box. For details on the Device setup and loading of drivers please see the
Device Drivers section.

A serial interface driver named “SERIAL32" is included with ”HTBasic". This driver supports Windows compatible serial interfaces.
They should work with third-party Windows communications drivers if they adhere to the Windows interface standard for serial
drivers. Many devices can be connected to the serial ports and controlled with this driver.

If you are using a serial port only for a printer, you should use the “WIN-PRINT” interface rather than the “SERIAL32” interface.
“WIN-PRINT” was described earlier in this section. If a mouse or printer is not using the serial port and if the required Windows
drivers are present for that port, HTBasic can drive that port with its serial port driver, described in this section.

Loading
The SERIAL driver is loaded by the HTBasic command

LOAD BIN “SERIAL32[;options]”

This driver controls up to nine serial ports, named COM1 to COM9. After the serial driver is loaded, HTBasic takes control of the
serial ports assigned to it. Until HTBasic terminates, no other process can use those serial ports.

Options
To specify options for the driver, place a semicolon after “SERIAL32” and place the option names after the semicolon. If more than
one option is specified, separate the names by spaces. The options available with LOAD BIN “SERIAL32” are as follows:

DRIVER n. Since each invocation of the SERIAL32 driver can control four interfaces, the DRIVER option is needed to specify to
which of the two drivers the given options apply. The option is followed by a value of 1 to 4. The option may be
abbreviated, as long as the abbreviation is unique. For example:

LOAD BIN “SERIAL32;DR 1 options DR 2 more options”

Options apply to DRIVER 1 and more options apply to DRIVER 2. Notice that “DRIVER” is abbreviated as “DR”. “D” would be too
short since it would be unclear whether it meant DRIVER or DISABLE. In the above example, “DR 1" could be omitted and options
would apply to DRIVER 1.

DEVICE name. By default, HTBasic uses COM1 and COM2 for the serial ports. This option causes the driver to use the specified
port names instead. For example,

LOAD BIN “SERIAL32;DEVICE COM7 DRIVER 2 DEVICE COM8"

DISABLE. By default, HTBasic takes control of two serial ports, as mentioned above. This option causes HTBasic to not take control
of the specified port.    DISABLE leaves COM1 free for other programs to use. DRIVER 2 DISABLE leaves COM2 free for other
programs to use. Note that any serial port in use by a mouse, printer, or any other program must be DISABLED or the LOAD BIN
“SERIAL32” command will fail.

ISC n. This option assigns the ISC (interface select code) n to the serial port. If this option is omitted, the first serial port is assigned
ISC 9 and the second ISC 11. If the first serial port has been disabled by DRIVER 1 DISABLE, the second serial port has ISC 11
and ISC 9 is undefined. N must be in the range 7 - 31.
If the first port is disabled, the first ISC option assigns the given ISC to the second serial port.

Modes of Operation
Baud rates. When the LOAD BIN “SERIAL32” command is executed, the default baud rate is undefined. The baud rate may be
changed by the CONTROL n,3;rate command, where n is the ISC of the serial port and rate is the baud rate. The possible baud
rates are dependent on the hardware.

Character Framing. When the LOAD BIN “SERIAL32” command is executed, the default character framing is undefined. The
character framing (bits per character and parity) is set using the CONTROL n,4;value command, where n is the ISC of the serial port
and value is one of the values listed in Chapter 9 of the HTBasic User’s Guide for control register 4. The possible character framing
is dependent on the hardware.

Handshaking. When the LOAD BIN “SERIAL32” command is executed, the serial port is set to use XON/XOFF handshaking and to
ignore the CTS and RTS lines.

The use of the RTS and CTS lines can be enabled using the CONTROL n,5;value and CONTROL n,12;value commands.
XON/XOFF software handshaking can be enabled or disabled using the CONTROL n,100;value command. These commands are
explained in the HTBasic User’s Guide, Chapter 9.

Interrupts
Interrupts are fully supported by the SERIAL & SERIAL32 drivers.

READIO/WRITEIO
READIO and WRITEIO are supported and can be referenced in Chapter 9 of the HTBasic User’s Guide.

IEEE-488 "GPIB" Driver
The HTBasic loadable device drivers support many IEEE-488 cards. The “GPIB” driver is one of three drivers distributed with
HTBasic for Windows, the other two drivers are “HPIBS” and “GPIBNI”. The GPIB driver is designed for the TransEra Model 900
and compatible cards including cards from Ziatech.

The “GPIB” driver supports most I/O mapped IEEE-488 boards that use the TI 9914 IEEE-488 controller chip. The TI 9914
controller chip gives register compatibility with the HP 9000 Series 200/300 workstation HP-IB.

Loading
The driver is loaded by including a line like the following in your AUTOST file:

LOAD BIN “driver;options”

Options
The legal options for the IEEE-488 drivers are:

DEVICE Devicename
BOARD board-type
BASE address
DMA n
FAST
INTERRUPT i
ISC n
NOTSYS
SYSTEM
TIMEOUT

One or more options can be specified, each separated by a space. The option may be abbreviated, as long as the abbreviation is
unique.

BOARD Option
The BOARD option tells the driver the type of board you have. Legal types are given in the compatibility table, above. You do not
need to specify the board type if you are using the TransEra Model 900 board:

Driver          Board Type
GPIB TRANSERA
GPIB ZIATECH

BASE Option
The BASE option tells the driver the base address of your board. You must specify the address in hexadecimal, with no leading
“&H”. Consult the manufacturer’s documentation for your board to find the current address setting.

Board Type        Base (hex)
TRANSERA 2B8
ZIATECH 210

For example, if you have a ZIATECH board at address 210(hex), you would include the following line in your AUTOST file:

LOAD BIN “GPIB;BO ZIATECH BA 210"

INTERRUPT Option
The INTERRUPT option tells the driver the interrupt number used by the board. Again, consult the manufacturer’s documentation if
you do not know the interrupt used by your board. If you do not specify an interrupt, then 5 is assumed.
To expand our example, if your ZIATECH board at 210(hex) is set to use interrupt 7, you would use the following LOAD BIN
statement:

LOAD BIN “GPIB;BO Ziatech BA 210 IN 7"

ISC Option
The ISC option is used to specify the interface select code that HTBasic will use when referring to the board. Normally, you do not
specify an ISC and it is automatically set to 7 to match an HP BASIC workstation. But if you are using multiple IEEE-488 boards in
your PC, you must use the ISC option when loading additional drivers so that each has a unique ISC.

For example, suppose in addition to our example Ziatech board at 210(hex) we also have a TransEra board at 2B8(hex) using
interrupt 5. The following two lines would load drivers for the two boards:

LOAD BIN “GPIB;BO Ziatech BA 210 IN 7"
LOAD BIN “GPIB;ISC 8"

The Ziatech would have an ISC of 7 and the TransEra board would have an ISC of 8. Note that since the board type, base address
and interrupt numbers of the TransEra board matched the “GPIB” driver defaults, they didn’t need to be specified.

DMA Option
The DMA option is used to specify the DMA channel to use for TRANSFER. Specify the DMA channel, a number from 1 to 7, in
decimal. A value of 0 causes TRANSFER to use interrupts instead of DMA and is the default. For example:

LOAD BIN “GPIB;DMA 3"

Since no other switches are specified, this example defaults to a TransEra board, base address 2B8, interrupt 5 and ISC 7.

SYSTEM and NOTSYS Options
The NOTSYS option is used if another computer on the bus is system controller. The option stands for “NOT SYStem controller”
and causes the board to act as a Talker/Listener Device that can become active controller if control is passed to it.

The SYSTEM option is used to make the board act as system controller. These options are useful for overriding the hardware
options on the board. HTBasic assigns a primary address of 21 to the board if it is system controller and 20 if not. CONTROL
register 3 can be used to change the primary address. Remember: Only one system controller can be connected to the bus.

TransEra's HM900 Board
This section explains how to set up the I/O address, interrupt number and DMA channel number for the TransEra HM900 Board.
Earlier parts of this chapter explained how to load the GPIB driver required by HTBasic when running on Windows 95/98. To use this
board with Windows NT, use the HPIBS driver.

The TransEra IEEE-488 bus controller board includes the National Instruments 9914 IEEE-488 controller chip to provide complete
hardware compatibility with an HP workstation’s HP-IB hardware.

The board is shipped with the jumpers and options already set for correct operation with HTBasic. If you have another board in your
computer that uses interrupt 5 or I/O addresses in the range &H2A0 to &H2BF, you will need to change either the TransEra board or
the other board so that the two no longer conflict. The following paragraphs explain how to change the default address, interrupt
number or disable the System Controller status of the board.

I/O Address
The default I/O address for the HM900 board is &H02B8. Addresses in the range &H02A0 to &H02BF are used. If these addresses
conflict with other hardware installed in your computer, the address can be changed. It can be set to any address between &H0018 -
&H03F8, in increments of &H20. The board uses 24 I/O addresses below and 8 above the specified address. This range is listed as
the Address Range in the table below:

TransEra IEEE-488 Card I/O Address Table
Chip  Switch Number  Address
Address        7                            6                            5                            4                            3                            2                            1                            Range 
018        on      on      on      on      on      on      on 000-01F
038        on      on      on      on      on      on      on 020-03F
058        on      on      on      on      on      on      on 040-05F
078        on      on      on      on      on      on      on 060-07F
098        on      on      on      on      on      on      on 080-09F
0B8      on      on      on      on      on      on      on 0A0-0BF
0D8      on      on      on      on      on      on      on 0C0-0DF
0F8      on      on      on      on      on      on      on 0E0-0FF
118      on      on      on      on      on      on      on 100-11F
138      on      on      on      on      on      on      on 120-13F
158      on      on      on      on      on      on      on 140-15F
178      on      on      on      on      on      on      on 160-17F
198      on      on      on      on      on      on      on 180-19F
1B8      on      on      on      on      on      on      on 1A0-1BF
1D8      on      on      on      on      on      on      on 1C0-1DF
1F8      on      on      on      on      on      on      on 1E0-1FF
218      on      on      on      on      on      on      on 200-21F
238      on      on      on      on      on      on      on 220-23F
258      on      on      on      on      on      on      on 240-25F
278      on      on      on      on      on      on      on 260-27F
298      on      on      on      on      on      on      on 280-29F
2B8      on      on      on      on      on      on      on 2A0-2BF
2D8      on      on      on      on      on      on      on 2C0-2DF
2F8      on      on      on      on      on      on      on 2E0-2FF
318      on      on      on      on      on      on      on 300-31F
338      on      on      on      on      on      on      on 320-33F
358      on      on      on      on      on      on      on 340-35F
378      on      on      on      on      on      on      on 360-37F
398      on      on      on      on      on      on      on 380-39F
3B8      on      on      on      on      on      on      on 3A0-3BF
3D8      on      on      on      on      on      on      on 3C0-3DF
3F8      on      on      on      on      on      on      on 3E0-3FF

If you change the I/O address, you must inform the software that uses the board. If you are using HTBasic, specify the new address
in the LOAD BIN statement:

LOAD BIN “GPIB;BASE 3B8"

This statement corresponds to an I/O address of &H3B8 and the options should be set as follows:

Chip  Switch Number  Address
Address        7                            6                            5                            4                            3                            2                            1                            Range 
3B8        on        on        off        off        off        on        off        3A0-3BF

Interrupt and DMA Jumpers
The jumpers at J1 specify the I/O interrupt number used by the board, and should be set to 5. You may use another interrupt if it is
not being used by another device. Because interrupt 2 is used as a bridge to the upper range of interrupts, it is not recommended
that this interrupt be used with an IEEE interface. To use interrupt 7 place the jumper on I7 and use the following LOAD BIN
statement in your AUTOST file:

LOAD BIN “GPIB;INT 7"

Note: The TransEra HM900 cards shipped prior to February 1998 were set to interrupt 2 by default.

DMA Channel
The jumpers at J2 specify the DMA request and acknowledge channels used by the board. If DMA is not used by the software driver,
no jumpers should be placed on J2. This is the default. If DMA is used, the same channel should be used for both. Pick a channel
that is not being used by another device. Generally, channels 1 and 3 are the only available channels. Put on the jumpers and
inform the software driver. If you are using HTBasic, specify the DMA channel in the LOAD BIN statement with the DMA option. For
example, to use DMA channel 1, place the jumpers on DR1 and DA1 and include the following option in your LOAD BIN statement:

LOAD BIN “GPIB;DMA 1"

System Controller
Switch 8 is used to enable or disable the System Controller capabilities of the board. If switch 8 is on, the board will act as system
controller. When using the board with HTBasic, the switch setting specifies the default state, which is overridden with either the
SYSTEM or NOTSYS driver options.

Only one system controller can be attached to the bus at a time. If you have another computer on the bus that will be the system
controller, you may disable the system controller capabilities of the HM900 board by setting switch 8 off. The board then defaults to
a Talker/Listener device. If control is passed to the board, it can become the active controller.

IEEE-488 "HPIBS" Driver
The HTBasic loadable device drivers support many IEEE-488 cards. The “HPIBS” driver is one of three drivers distributed with
HTBasic for Windows, the other two drivers are “GPIB” and “GPIBNI”. The HPIBS driver supports Hewlett-Packard IEEE and
compatible interfaces. These interfaces include the TransEra Model 900 Board under NT, and INES boards. Before this driver can
be used, the HP I/O Libraries (SICL) software must be installed, and the interface must be configured correctly for SICL.

The following options are recognized by the HPIBS driver:

DEVICE
ISC
TIMEOUT

DEVICE Option
The general technique of using options with the LOAD BIN command is explained earlier in this chapter. Several GPIB hardware
options, such as INTERRUPT and NOTSYS, are not used with the HPIBS driver.

These characteristics are controlled by the I/O Config utility and cannot be changed by options to LOAD BIN. This option specifies
the SICL symbolic name of the interface to be controlled. The symbolic name of each interface is set by the SICL I/O Config utility. If
you do not specify a DEVICE name, the default name “hpib7" is used. An example of specifying a different symbolic name is:

LOAD BIN “HPIBS;DEV ieee7"

ISC Option
The ISC option is used to specify the interface select code that HTBasic will use when referring to the board. Normally, you do not
specify an ISC and it is automatically set to 7 to match an HP BASIC workstation. But if you are using multiple IEEE-488 boards in
your PC, you must use the ISC option when loading additional drivers so that each has a unique ISC.

TIMEOUT Option
The TIMEOUT option provides a way to recover from “hung” keyboard commands, in addition to the CLR-I/O key. The timeout value
is specified in seconds, and a value of 0 deactivates keyboard timeouts. If you do not specify a TIMEOUT option, the default is 0
(never timeout). The following example sets the timeout for keyboard commands to 12 seconds:

LOAD BIN “HPIBS;TIME 12"

Interface Registers
CONTROL Registers. The IEEE-488 chapter of the User’s Guide documents the STATUS and CONTROL registers normally
available for GPIB interfaces. The HPIBS driver supports all of these registers, with the following exceptions:

STATUS Registers. The HPIBS driver does not support user control of NDAC holdoff. CONTROL register 4 is not implemented and
will give Error 55.

The following ENABLE INTR events are not supported by the HPIBS driver. Status register 5 always reports them as 0:

Bit                      Value            Meaning
6 64 Handshake Error
5 32 Unrecognized universal command
4 16 Secondary command while addressed
2 4 Unrecognized addressed command

All other HP-IB interrupt events are supported and reported properly in STATUS registers 4 and 5.
The “LSB of last address” bit (bit 8) in STATUS register 6 is not implemented by the HPIBS driver and is always reported as 0.

STATUS register 7 has a high byte that reports bus control lines and a low byte that reports bus data lines. The HPIBS driver does
not support the direct reading of bus data lines the upper byte of this register is supported, but the lower byte is always 0.

CONTROL and STATUS Register 255. In addition to the STATUS and CONTROL registers described in the User’s Guide, the
HPIBS driver provides register 255. This register is similar to register 255 of HP BASIC/UX drivers. Unused bits are ignored by the
CONTROL statement and return 0 to the STATUS statement. The register map follows.

Bit                      Value            Meaning
7 128 Not Used
6 64 Not Used
5 32 Reserved for future use
4 16 Reserved for future use
3 8 Reserved for future use
2 4 ENTER buffering
1 2 Not Used
0 1 Interface Lock

Some examples using register 255 follow:

CONTROL 7,255;4 !Enables buffering for ENTER
CONTROL 7,255;0 !Disables buffering for ENTER
CONTROL 7,255;4+1 !Lock GPIB, enable buffering
STATUS7,255;Stat !Get status of register 255

Interface locking can be used to help HTBasic cooperate with other Windows applications that might also access SICL-based
interfaces. Setting bit 0 locks the interface, while clearing bit 0 unlocks the interface.

ENTER buffering can increase the speed of free-field ENTER statements. A free-field ENTER is one without a USING clause, such
as:

ENTER @Dev;A$

Unsupported Keywords
READIO and WRITE/IO of interface registers are not supported by the HPIBS driver. Attempts to use READIO or WRITE/IO cause
Error 170.

PPOLL Note. Parallel Poll configuration is automatic with the HPIBS driver. The Active Controller can configure a non-controller PC
GPIB interface for parallel poll, and the PC interface will respond correctly based upon that configuration.
If bit 14 of the Interrupt Enable register is set, HTBasic for Windows will receive an interrupt indicating that a parallel poll
configuration has occurred. There is no way, however, to know the value of the configuration byte that came from the Active
Controller.

You can set the parallel poll response by using CONTROL register 2 or 5, or you can automatically accept the configuration sent by
an Active Controller.

IEEE-488 "GPIBNI" Driver
The HTBasic loadable device drivers support many IEEE-488 cards. The “GPIB” driver is one of three drivers distributed with
HTBasic for Windows, the other two drvers are “GPIB” and “HPIBS”. This driver supports NI and compatible cards. This Windows
driver calls the National Instruments Software that is shipped with the NI or compatible GPIB card.
Compatible cards include many manufacturers including Capitol Equipment, Computer Boards, IOTech and Keithley. Please contact
you card manufacturer for details. For details on installation of this software, see your Getting Started Guide for your GPIB card. To
use this driver, you must first install the National Instruments software. With this installed, load the driver from inside of BASIC with
the following statement:

LOAD BIN “GPIBNI;DEV device_name”

where device_name is the name of the device assigned to the GPIB card in the NI GPIB control panel.

The following options are recognized by the GPIBNI driver:

DEVICE
ISC
TIMEOUT

DEVICE Option
The general technique of using options with the LOAD BIN command is explained earlier in this chapter. Several GPIB hardware
options, such as INTERRUPT and NOTSYS, are not used with the GPIBNI driver.

These characteristics are controlled by the national Instruments Card Configuration utility and cannot be changed by options to
LOAD BIN.

This option specifies the card name as specified by the National Instruments card Configuration Utility.    If you do not specify a
DEVICE name, the default name “GPIB0" is used. An example of specifying a different card name is:

LOAD BIN “GPIBNI;DEV GPIB7"

ISC Option
The ISC option is used to specify the interface select code that HTBasic will use when referring to the board. Normally, you do not
specify an ISC and it is automatically set to 7 to match an HP BASIC workstation. But if you are using multiple IEEE-488 boards in
your PC, you must use the ISC option when loading additional drivers so that each has a unique ISC.

TIMEOUT Option
The TIMEOUT option provides a way to recover from “hung” keyboard commands, in addition to the CLR-I/O key. The timeout value
is specified in seconds, and a value of 0 deactivates keyboard timeouts. If you do not specify a TIMEOUT option, the default is 0
(never timeout). The following example sets the timeout for keyboard commands to 10 seconds:
LOAD BIN “GPIBNI;TIME 10"

Multiple GPIB Cards
Any combination of up to four GPIB interfaces may be active at one time.    Each GPIB interface is associated with an Interface
Select Code (ISC) by the LOAD BIN command.    To use more than one GPIB interface, each interface must have a unique ISC.   
Therefore, a separate LOAD BIN command is required for each interface.    However, you cannot use the same driver file name in
more than one LOAD BIN command.

To use more than one GPIB interface that use the same driver, you must load copies of the driver with altered names.

Here is an example, which uses one GPIB card with ISC 7 and a second card with ISC 8.    This example uses the GPIB driver.

Go to the HTBasic directory.    For example:
c:> cd \HTBWIN

1. Make a copy of the GPIB driver.    The copy can have any arbitrary base name, but must end with the .DW6 suffix. For
example:
c:>copy GPIB.DW6 GPIB2.DW6

2. Run HTBasic for Windows.
3. Load one driver for ISC 7. For example: LOAD BIN “GPIB;ISC 7"
4. Load the driver for ISC 8. For example: LOAD BIN “GPIB2;ISC 8"

Printer and Pixel Image Device Drivers
HTBasic supports several dump drivers. The CONFIGURE DUMP statement is used both to load drivers and switch among them.
The following table lists all available drivers.

Name  For these printers
WIN-DUMP Send the dump to the default Windows printer
PCL Advanced HP-PCL driver
PS-DUMP PostScript printers, devices and files
GIF Graphic Interchange Format files

The CONFIGURE DUMP Statement
The CONFIGURE DUMP statement specifies what graphic printer language or bitmapped file format to use for the DUMP
statement. When the DUMP GRAPHICS statement is executed or the DUMP GRAPHICS Key is pressed, the contents of the screen
are copied to a printer, device or file. If a file is specified, verify that it is an ordinary file; otherwise the HTBasic file header will
appear as bad data at the start of the file. The syntax is

CONFIGURE DUMP TO language

where language is a string expression naming the printer language and driver options. For example,

CONFIGURE DUMP TO “PCL”

DUMP Device Statement
The DUMP DEVICE statement controls where the output of the DUMP is directed. There are several choices for this. When using
the WIN-DUMP driver, it is necessary to direct the CONFIGURE DUMP to an ISC which is set as a Windows printer. ISC is set by
default as the default Windows printer. When using any other option, is it necessary to use the ISC of the device where the output is
to be directed. For the parallel port, this is ISC 26. For a device on the IEEE-488 bus, this would be the device’s address.    For a
file, this would be the file name.

Loading Drivers
It is recommended that CONFIGURE DUMP statements be included in your AUTOST file to load any necessary drivers. Up to ten
graphic and dump drivers can be loaded.

The first time a driver is specified in a CONFIGURE DUMP statement, the driver is loaded and graphics are directed to it. When the
driver is subsequently specified, it is not loaded again, but graphics are again directed to it.

As an example, if you wish to use an HP LaserJet II for screen dumps, use the following command to change to the HP printer
control language:

CONFIGURE DUMP TO “PCL”

If a DUMP is made before doing a CONFIGURE DUMP, HTBasic automatically loads and uses the WIN-DUMP driver.

Dumping Rows
To specify a portion of the screen to dump when DUMP GRAPHICS is executed, the GESCAPE PRT,106,param(*) statement is
used. The param array must be a one dimensional INTEGER array of five elements. The first element is the operation number. The
remaining elements specify the boundary for the DUMP. The boundary is specified in screen units:

param(1) - 1
param(2) - Beginning Row
param(3) - Ending Row
param(4) - Must be 0
param(5) - Must be 0

The full screen will be dumped if any of the following conditions occur:

1. The beginning row is greater than ending row.
2. A new Plotter, Graphics or Dump driver is loaded.
3. GINIT, SCRATCH A, PLOTTER IS, GRAPHICS INPUT,

CONFIGURE DUMP command or a Basic Reset is executed.

Number of Colors
The number of colors in the DUMP depends on both the dump driver and the CRT driver. All dump drivers support black and white
dumps. Some dump drivers also can handle 16 or 256 colors. The same is true of display drivers. The number of colors in the dump
will be the largest number both drivers support.

Options
It is sometimes necessary to specify options to the drivers. Options are included by appending a semicolon to the driver name,
followed by the options. Since options vary from driver to driver, the following driver sections contain more details on specific
options.

WIN-DUMP Driver
The WIN-DUMP dump driver provides support for any printer supported by Windows that accepts bitmaps. The command to load
the WIN-DUMP dump driver is:

CONFIGURE DUMP TO “WIN-DUMP[;options]”

If a DUMP is made before doing a CONFIGURE DUMP, HTBasic automatically loads and uses the WIN-DUMP driver.

Print Manager
The default interface select code (ISC) for DUMP DEVICE IS is 10, the Windows print manager interface. The WIN-DUMP driver
can send dumps to any ISC that is set to a valid Windows printer using the Device Setup Dialog. To bypass the print manager when
DUMPing, use ISC 26 in the DUMP DEVICE IS statement.

Because Windows is a multitasking environment in which several programs may try to print at once, Print Manager collects printer
output into “jobs.” Only when a job is done is it printed. Normally, the WIN-DUMP driver prints a single dump per print job. To mix
text and screen dumps or multiple screen dumps on a single page, use the following control statement to toggle off this automatic
page eject:

CONTROL 26,113;0 ! toggle auto eject off

For example, to output some text to the page before doing the dump:

10 CONFIGURE DUMP TO “PCL”
20 DUMP DEVICE IS 26
30 CONTROL 26,113;0 ! toggle auto eject off
40 ASSIGN @I TO 26
50 OUTPUT @I;"This is a screen dump:"
60 DUMP GRAPHICS
70 ASSIGN @I TO *
80 CONTROL 26,113;1 ! toggle auto eject on
90 DUMP GRAPHICS
100 END

The various settings, such as margins and line height, made in the WIN-PRINT driver are honored by the WIN-DUMP driver. See
the WIN-PRINT driver documentation in Chapter 4 for more information.

The EXPANDED keyword in the DUMP statement is ignored. The DUMP is made in landscape or portrait mode depending on the
paper orientation specified in the printer settings, or by Control Register 114 as detailed in Chapter 4.

DUMP Size
By default, the screen image is scaled until it fills 100% of the width between the left and right margins. The size can be changed
using GESCAPE code 39. This example sets the scaling to 20% of the width between the margins:

10 INTEGER S(1:1)
20 S(1)=20
30 GESCAPE CRT,39,S(*)
40 DUMP GRAPHICS
50 END

INVERT Option
By default, black and white are exchanged while other colors remain. This is often suitable for output to a black and white printer,
where printing is done with black ink on white paper. The INVERT option causes the colors or gray levels to be dumped exactly as
they are on the screen.

PCL Driver
The PCL dump driver provides support for devices and software that accept the Hewlett-Packard PCL printer language or HP Raster
Interface Standard graphic commands. The driver supports both DUMP ALPHA and DUMP GRAPHICS from bitmapped displays.

The PCL driver is loaded with a line like:

CONFIGURE DUMP TO “PCL[;options]”

Options
The options are listed after the semicolon in the driver name, within the quotes. If more than one option is specified, the option
names are separated by commas. The options are as follows:

ADJUST. The ADJUST option is ignored in the Windows version of HTBasic. All pixels are considered to be square and the dump is
made using the aspect ratio of the window running HTBasic.

BW. This option causes the driver to dump using the paper color for the areas on the screen that were drawn using pen 0 and the
ink color (usually black) for the areas on the screen drawn with any other pen. This is reversed if the INVERT option is also used.
The BW option need not be specified explicitly; it is the default.

COLOR, CCMY, C16 and C256. These options cause the dump to be done in color to a color printer. The COLOR option uses the
printer’s default 8-color solid-color palette (black, white, red, green, blue, cyan, magenta and yellow), mapping each color on the
screen to the closest one from the palette. COLOR uses the default RGB palette to dump the screen; CCMY uses the default CMY
palette. The C16 and C256 options use a 16- or 256-color palette on the printer and only work with printers that have settable color
palettes, such as the PaintJet series and the DeskJet 1200C. With printers that use dithering to print mixed colors, you may have to
specify a coarser resolution than the printer is capable of in order to enable the dithering; for example, on the original PaintJet
printer, C16 and DPI90 together are needed to produce dithering; C16 and DPI180 cause the printer to use only the 8 default colors
when printing.

Printing using the COLOR and CCMY options swaps black and white colors when printing, unless the INVERT option is also used.

When using the solid-color palette with older PaintJet printers, the COLOR option should be used, as these printers do not support
the CMY color model. The DeskJet 500C and 550C models can only generate color screen dumps with the CCMY option.

COMPRESS. The COMPRESS option specifies that the printer being used can do “packbits”-style data compression. If this option
is specified, the screen dump is transmitted to the printer using fewer data bytes. The COMPRESS option can be used with all the
LaserJet IIP and IIP+ printers, all LaserJet III and IV series printers, all DeskJet series printers, the PaintJet XL300 printer (but not
the older PaintJets), and the DesignJet printers, as well as other brands of printers that emulate these. Note, however, that the
printers with slower CPU’s will print 2-4 times slower when printing compressed data, so COMPRESS may not be a good option to
use with these printers.

EXPANDED. When the EXPANDED keyword is used on the DUMP DEVICE IS statement, graphics screen dumps are placed in
landscape. When grayscale dumps are done, the PCL dump driver scales the dump to 10 x 7 inches, if EXPANDED, or 4 x 7 inches,
if not EXPANDED.    With color or black/white dumps, each screen pixel is dumped to a single printer pixel; use DPI150, DPI100, or
DPI75 to increase the dump size in these cases.

DPInnn. This option tells the driver to use nnn dots per inch when dumping graphics. Without this option, the printer’s default
resolution is used. This option is required for the GRAY option, explained below. The resolution specified must be one supported by
the printer. For most newer devices, DPI75, DPI100, DPI150 and DPI300 are the legal values for this option. Some older printers,
like the Hewlett-Packard ThinkJet, don’t support this option.

With the COLOR and BW options, this option controls the size of the dump, by mapping each pixel on the screen to one of the
specified-sized dots on the printer; with the GRAY option, this options controls the size of the sub-pixels used to create the printed
image, as explained in the GRAY option section.

GRAY. The GRAY option causes the driver to consult the screen’s color map and calculate a gray shade for each color using the
NTSC grayscale equation. Screen dumps are produced using the resulting shades of gray. If the INVERT option is not also
specified, white and black are reversed after the gray shade is calculated, so that lighter colors on the screen become darker colors
on the printer.

When dumps are made using this option, the driver calculates the number of printer pixels, as specified in the DPInnn option,
required to print a single screen pixel to make a 9 x 6 3/4 inch (23 x 17 mm) plot, up to 4 x 4 printer pixels per screen pixel. The
driver sets the appropriate number of printer pixels to black to represent the gray shade of the corresponding screen pixel. The
GRAY option is ignored unless the DPInnn option is also specified.
The NTSC grayscale equation is:

brightness = 11% blue + 59% green + 30% red.

INVERT. By default, the driver makes images with black and white exchanged from the values used on the screen. If the GRAY
option is used, the driver by default reverses the gray level of all pixels dumped from that seen on the display. This is often suitable
for output to a printer, where printing is done with colored inks on white paper, but may not be suitable for film output devices, where
an exact image of the screen is wanted. The INVERT option causes the colors or gray levels to be dumped exactly as they are on
the screen.

RELATIVE. Normally, the driver begins each dump at the left margin. The RELATIVE option causes the driver to begin each dump at
the printer’s current print position.

EJECT
Typically, the driver ejects the page after a dump is finished. Control Register 113 toggles the driver to send a Form Feed character
to the printer or file at the end of each dump. To turn off Auto Page Eject, use CONTROL PRT,113;0.

APPEND
If the APPEND keyword is used with the DUMP DEVICE IS command and if the dump device is a file, the driver appends dumps to
the file, separated by form feeds.

ALPHA Dumps
The DUMP ALPHA command has the exact same function as DUMP GRAPHICS if the ALPHA and GRAPHICS planes are
combined.

DUMP ALPHA produces a text dump at the top of a US “A” or European A4- sized sheet of paper if done from a text screen (as
selected by PLOTTER IS 3), if ALPHA and GRAPHICS are separated.

Option Tables
The following tables will help in choosing options to use with specific printer models. Two screen sizes are shown, a 640 x 480 pixel
screen common on PC’s and a 1024 x 768 pixel window size common on UNIX workstations and Windows. The proper DPInnn
option for other screen sizes can be determined by experimentation.

OPTIONS for 640x480 Screen

Printer Type                          Dump Type                      Portrait                                      Landscape
ThinkJet too large none
LaserJet        B/W        DPI100        none
LaserJet        grayscale        GRAY,DPI300        GRAY,DPI300
LaserJet II-IV        B/W        DPI100,        DPI75,
                  COMPRESS        COMPRESS
LaserJet II-IV        grayscale        GRAY,DPI300,        GRAY,DPI300,

COMPRESS COMPRESS
DeskJet        B/W        DPI100        none
DeskJet        grayscale        GRAY,DPI300        GRAY,DPI300
DeskJet 500/550C        color        CCMY,DPI100        CCMY,DPI75
DeskJet          color        C256,DPI100        C256,DPI75
PaintJet & XL      B/W        DPI90        DPI90
PaintJet & XL        grayscale        GRAY,DPI180        GRAY,DPI180
PaintJet & XL        color        C16,DPI90 or        C16,DPI90 or
 COLOR,DPI90        COLOR,DPI90
PaintJet XL300 B/W        DPI100        none
PaintJet XL300 grayscale        GRAY,DPI300        GRAY,DPI300
PaintJet XL300 color        C256,DPI100        C256,DPI75
DesignJet 600 B/W        DPI100        none
DesignJet 600 grayscale        GRAY,DPI300        GRAY,DPI300
DesignJet 600 color        C256,DPI100        C256,DPI75

OPTIONS for 1024x768 Screen

Printer Type                          Dump Type                      Portrait                                      Landscape
ThinkJet                too large        none
LaserJet        B/W        DPI150        DPI100
LaserJet        grayscale        GRAY,DPI300        GRAY,DPI300
LaserJet II-IV        B/W        DPI150,        DPI100,
                COMPRESS        COMPRESS
LaserJet II-IV        grayscale        GRAY,DPI300,        GRAY,DPI300,
              COMPRESS        COMPRESS
DeskJet        B/W        DPI150        DPI100
DeskJet        grayscale        GRAY,DPI300      GRAY,DPI300
DeskJet 500/550C        color        CCMY,DPI150      CCMY,DPI100
DeskJet 560C        color        CCMY,DPI150        CCMY,DPI100
DeskJet 1200C        color        C256,DPI150        C256,DPI100
PaintJet & XL        B/W        DPI180        DPI90
PaintJet & XL        grayscale        GRAY,DPI180        GRAY,DPI180
PaintJet & XL        color        COLOR,DPI180        COLOR,DPI180
PaintJet XL300        B/W        DPI150        DPI100
PaintJet XL300        grayscale        GRAY,DPI300        GRAY,DPI300
PaintJet XL300        color      C256,DPI150 or        C256,DPI100
                COLOR,DPI150
DesignJet 600        B/W        DPI150        DPI100
DesignJet 600        grayscale        GRAY,DPI300        GRAY,DPI300
DesignJet 600        color        C256,DPI150        C256,DPI100

PS-DUMP Driver
The PostScript dump driver provides support for devices and software that accept the PostScript graphics language. It provides
support for both the DUMP ALPHA and DUMP GRAPHICS commands. The DUMP ALPHA and DUMP GRAPHICS commands both
dump any text and graphics visible in the window if ALPHA and GRAPHICS are merged.

The PostScript dump driver produces a screen image intended to be rendered on a US “A” size or European A4 size page. It scales
the image so that its longest dimension fits in the shortest dimension of the paper with an adequate margin. When the EXPANDED
keyword is used on the DUMP DEVICE IS statement, screen dumps change from their normal portrait orientation to landscape
orientation.

The PostScript dump driver is loaded with the following statement:

CONFIGURE DUMP TO “PS-DUMP[;options]”

Options
The options are listed after the semicolon in the driver name, within the quotes. If more than one option is specified, the option
names are separated by commas. The GRAY and COLOR options are ignored in ALPHA dumps. The options are as follows:

BW. This option causes the driver to dump using the paper color for the areas on the screen that were drawn using pen 0 and the
ink color (usually black) for the areas on the screen drawn with any other pen. This is reversed if the INVERT option is also used.
The BW option need not be specified explicitly; it is the default.

GRAY. This option causes the driver to render colors on the computer screen as shades of gray on the printer. Each shade of gray is
calculated using the NTSC grayscale equation:

brightness = 11% blue + 59% green + 30% red.

Unless the INVERT option is used, the resulting brightness is inverted before printing, so that dark colors on the computer screen
print as light colors and vice-versa.

COLOR. The COLOR option causes the driver to output a color image of the screen. The resulting PostScript screen image can only
be rendered on a device that supports Level 2 PostScript or the color extensions of Level 1.

INVERT. By default, the driver makes images with black and white exchanged from the values used on the screen. If the GRAY
option is used, the driver by default reverses the gray level of all pixels dumped from that seen on the display. This is often suitable
for output to a printer, where printing is done with colored inks on white paper, but may not be suitable for film output devices, where
an exact image of the screen is wanted. The INVERT option causes the colors or gray levels to be dumped exactly as they are on
the screen.

ADJUST. The ADJUST option is ignored in the windowed versions of HTBasic. All pixels are considered to be square and the dump
is made using the aspect ratio of the window running HTBasic.

The APPEND Keyword
If the APPEND keyword is used in the DUMP DEVICE IS statement, the dump driver appends all dump images after the first one to
the existing file as new pages. The driver inserts “%%Page” comments, used by some print spooling software, into the file at the
beginning of each page. If the dumps are done in separate HTBasic sessions, the driver doesn’t know which page it is on, so it
starts over with page 1. This may be a problem with some spooling software. Also note that only one page can be present in a file
that will be imported into a word processor document.

ALPHA Dumps
The DUMP ALPHA command produces a black-and-white graphics image of the entire screen if MERGE ALPHA is in effect. DUMP
ALPHA produces a black-and-white image of the text on the screen if SEPARATE ALPHA is in effect. The image is in black and
white even if there are three ALPHA pens (as with 256-color displays).
DUMP ALPHA produces a text dump at the top of a US “A” or European A4- sized sheet of paper if done from a text screen.

GIF Driver
The GIF dump driver provides support for software that accepts CompuServe Graphics Interchange Format (GIF) files.
With this driver, the DUMP ALPHA command produces a black-and-white graphics image of the entire screen if MERGE ALPHA is in
effect. DUMP ALPHA produces a black-and-white image of the text on the screen if SEPARATE ALPHA is in effect. The image is in
black and white even if there are three ALPHA pens (as with 256-color displays).

When the EXPANDED keyword is used on the DUMP DEVICE IS statement, graphics screen dumps are rotated 90 degrees
clockwise from their normal orientation.

The GIF dump driver is loaded with the following statement:

CONFIGURE DUMP TO “GIF[;options]”

Options
The options are listed after the semicolon in the driver name, within the quotes. If more than one option is specified, the option
names are separated by commas. The options are as follows:

BW. The driver normally produces a 16- or 256-color screen dump when used with a color screen. The BW option causes the driver
to produce a black-and-white screen dump with color screens. In this dump, pixels of color zero are dumped as black and pixels of
any other color are dumped as white. (This is reversed if the INVERT option is also specified.)

COLOR. This option causes the driver to produce a color dump. This option is the default; it need not be explicitly specified.

INVERT. The driver normally dumps an image in the colors shown on the screen. The INVERT option causes the driver to reverse
black and white in the dump. All other colors are unchanged.

The APPEND Keyword
If the APPEND keyword is used in the DUMP DEVICE IS statement, the GIF dump driver appends all dump images after the first
one to the existing file. Note, however, that the screen type and colormap are stored when the first image is dumped. If the screen
type or colormap changes, the dump images after the first one will not be correct. Also note that most software that uses the GIF
format cannot process multiple images in one file.

Graphic Input Drivers
HTBasic supports loadable GRAPHIC INPUT drivers. The GRAPHIC INPUT driver is used by the DIGITIZE, READ LOCATOR and
SET LOCATOR statements. The following table lists the drivers available at the time of this manual printing.

Name  For These Devices
KBD Keyboard arrow keys or Mouse
KBDA        Keyboard arrow keys or Mouse (Absolute)
HPGL        HPGL Plotters or Digitizers
TABLET      Most available digitizing tablets

The GRAPHICS INPUT IS Statement
The GRAPHICS INPUT IS statement is used both to load drivers and switch among them. The GRAPHICS INPUT IS statement also
specifies the interface connecting the device to the computer. The syntax for loading the driver is

GRAPHICS INPUT IS device-selector, “driver-name [;options]”

The device-selector specifies the device or interface to use to communicate with the graphic input device. This is usually KBD, an
IEEE-488 device selector or the Serial interface select code. The driver name and options, shown in literal form above, can be
specified with a string expression. driver-name is from the table above and options are described in the following descriptions. Here
are some examples of GRAPHIC INPUT IS statements:

GRAPHICS INPUT IS KBD,"KBD"
GRAPHICS INPUT IS KBD,"KBDA"
GRAPHICS INPUT IS 705,"HPGL"
GRAPHICS INPUT IS 705,"TABLET;BIN-2,0,5000,0,5000"

Loading Drivers
The first time a driver is specified in a GRAPHICS INPUT IS statement, the driver is loaded and used for graphics input. When the
driver is subsequently specified, it is not loaded again, but is again used for graphics input.

It is recommended that GRAPHICS INPUT statements be included in your AUTOST file to load any necessary drivers. Up to ten
graphic and dump drivers can be loaded at a time. HTBasic automatically loads the “KBD” driver when it starts.

To find the driver file HTBasic takes the language specified in the GRAPHICS INPUT IS statement and performs several operations
upon it to find the correct file. “.DW6" is appended to the name. Then the following locations are searched, in the specified order:

1. The directory containing the HTBasic executable.
2. The current directory.
3. The Windows system directory (such as \WINDOWS\SYSTEM).
4. The Windows directory.
5. The directories listed in the PATH environment variable.

KBD Driver
The keyboard (KBD) graphics input driver provides support for input of X and Y coordinates from the mouse. The KBD driver is
loaded at start up. The command to switch back to the KBD graphics input driver from another driver is:

GRAPHICS INPUT IS KBD,"KBD"

The following example program shows how to set up the KBD driver and get coordinate information from the input device.

10 PLOTTER IS CRT,"INTERNAL"
20 GRAPHICS INPUT IS KBD,"KBD"
30 TRACK CRT IS ON
40 FRAME
50 DIGITIZE X,Y,S$
60 PRINT X,Y,S$
70 END

HPGL Driver
The HPGL graphics input driver provides support for any input device that accepts Hewlett Packard’s HPGL language. Some HPGL
compatible devices are the HP 9111A and HPGL plotters. The following example assumes an HPGL capable device is attached to
the IEEE-488 bus at primary address 5:

GRAPHICS INPUT IS 705,"HPGL"

TABLET Driver
The TABLET graphics input driver provides support for most digitizers currently available. It can use either the serial port or the
IEEE-488 (GPIB or HP-IB) bus to communicate with the tablet. The following guidelines will help you in loading the driver and in
selecting the proper tablet configuration and data communication options. The command to load the TABLET graphics input driver is
as follows.

GRAPHICS INPUT IS Isc,"TABLET;[mode[,]][resolution]"

The mode option allows you to specify the method in which the tablet’s data is interpreted by the driver. If both mode and resolution
options are specified, specify the mode option first and separate the two by a comma. The following table gives the legal values for
mode:

Mode                            Meaning
(None) Comma separated ASCII
BIN-1 Summagraphics MM Binary Format
BIN-2 Hitachi Binary Format
BIN-3 UIOF Binary Format.

If no mode is specified, the driver assumes the tablet is using a comma separated, CR/LF terminated, ASCII data format. The ASCII
format and the different binary formats are discussed below.

The resolution option is of the form Xmin,Xmax,Ymin,Ymax. The resolution option is only necessary if the tablets range of X & Y
values are different from the default values of 0-11000 in both the X & Y directions. The resolution option is discussed in greater
detail below.

Examples:

GRAPHICS INPUT IS 9,"TABLET"
GRAPHICS INPUT IS 9,"TABLET;BIN-1"
GRAPHICS INPUT IS 705,"TABLET;0,5000,0,5000"
GRAPHICS INPUT IS 705,"TABLET;BIN-2,0,5000,0,5000"

Communication
The TABLET driver can use either the serial port or the IEEE-488 bus to communicate with the digitize tablet. This is specified by the
interface-select-code in the GRAPHICS INPUT IS statement. For example:

GRAPHICS INPUT IS 702,"TABLET" !IEEE-488 Address 2
GRAPHICS INPUT IS 9,"TABLET" !First Serial Port

Communication with the tablet over the IEEE-488 bus is straightforward. You specify the device-selector (i.e. 702) and the control
and data messages proceed without further setup.

Communication with the tablet over the serial port is more involved because of the many serial configuration options. The SERIAL
driver can change the number of data bits, parity, stop bits and the baud rate. Make sure that the switches on the tablet are set to
match the values used by the SERIAL driver or use CONTROL statements after loading the SERIAL driver to make the SERIAL
driver use the same settings as the tablet.

With the SERIAL driver, the tablet may support either XON/XOFF handshaking or hardware handshaking. Find out which method
your tablet supports and set the SERIAL driver to use the same handshaking. By default the SERIAL driver uses XON/XOFF
handshaking, the following line is all that is needed to set the driver to this method.

10 LOAD BIN “SERIAL32” !Loads SERIAL device driver

If you need to use hardware handshaking, you will have to set a number of other registers within the SERIAL driver. The following
program lines specify hardware handshaking.

10 LOAD BIN “SERIAL32” !Loads SERIAL device driver
20 CONTROL 9,5;0 !Use DTR and RTS
30 CONTROL 9,12;0 !Read DSR, CD and CTS
40 CONTROL 9,100;0 !Disable XON/XOFF handshaking

With some digitizers the RTS line must be held active to make the TABLET driver work correctly, otherwise an error will occur after
several successful reads. To hold the RTS line active change program line 20 to CONTROL 9,5;2.

ASCII Data Format
The ASCII method of data transmission is preferred over binary; it is easier to set up and get working. The ASCII format can be used
with either XON/XOFF handshaking or hardware handshaking. XON/XOFF handshaking is the preferred method. The ASCII data
needs to be comma separated and CR/LF terminated.

The ASCII data format needs to look something like the following line.

Sxxxx,Syyyy,F<CR><LF>

The meaning of these symbols is given in the following table:

Symbol                    Meaning
S sign flag
xxxx X value
yyyy Y value
F button flag
<CR> Carriage Return
<LF> Line Feed

The sign flag doesn’t need to be present and the number of X & Y digits doesn’t matter. The data cannot contain any decimal points
within the string.

Binary Data Formats
Three binary data formats are supported: Summagraphics MM format, Hitachi format, and UIOF format. The type of binary format is
selected by specifying the BIN-1, BIN-2 and BIN-3 strings respectively. When using the binary format, XON/XOFF handshaking
cannot be used, only hardware handshaking is allowed. The meaning of each bit in the binary formats is listed in the tables below:

BIN-1 - MM Binary Data Format
Byte                        7                            6                            5                            4                            3                            2                            1                            0 
1st 1 PX T Sx Sy Fc Fb Fa
2nd 0        x6    x5    x4        x3        x2        x1        x0
3rd        0      x13 x12 x11 x10 x9        x8        x7
4th        0      y6      y5    y4        y3        y2        y1        y0
5th        0        y13 y12 y11 y10 y9        y8        y7

BIN-2 - Hitachi Binary Data Format
Byte                        7                            6                            5                            4                            3                            2                            1                            0 
1st        1        PX    Fd    Fc        Fb        Fa        x15      x14
2nd      0        x13 x12 x11 x10 x9        x8        x7
3rd        0        x6      x5    x4        x3        x2        x1        x0
4th        0        0        0        0        0        0    y15    y14
5th        0        y13 y12 y11 y10 y9        y8        y7
6th        0        y6      y5    y4        y3        y2        y1        y0

BIN-3 - UIOF Binary Data Format
Byte                        7                            6                            5                            4                            3                            2                            1                            0 
1st        P      1      0      0        0        0        T        PX
2nd      P        0      0      Fe        Fd        Fc        Fb        Fa
3rd        P        0      x5 x4        x3        x2        x1        x0
4th        P        0      x11 x10    x9        x8        x7        x6
5th        P        0      0        Sx        x15 x14 x13 x12
6th        P        0      y5    y4        y3        y2        y1        y0
7th        P        0      y11 y10      y9        y8        y7        y6
8th        P        0      0        Sy        y15 y14 y13 y12

The meaning of each of these symbols is given in this table:

Symbol                    Meaning
Sx & Sy        sign flag for X & Y coordinates
x15,...,x0    X coordinate, x0 is least significant bit
y15,...,y0        Y coordinate, y0 is least significant bit
Fe,...,Fa        button flag, Fa is least significant bit
PX        proximity bit
T        tablet identifier

Resolution
The TABLET driver assumes a default maximum resolution of 11000 units in both the X and Y directions. This value is used to scale
the digitizer X & Y coordinates to the display WINDOW coordinates. If this value is not correct for your digitizer or if you want to
adjust for any distortion, you can change the scaling values with the following command:

GRAPHICS INPUT IS 9,"TABLET;Xmin,Xmax,Ymin,Ymax“

Xmin and Xmax are the digitizer’s X values that correspond to the display’s minimum and maximum X values respectively. Ymin
and Ymax are the digitizer’s Y values that correspond to the display’s minimum and maximum Y values respectively.

Please note that these values are specified in device units.

The TABLET driver scales the digitizer X & Y coordinates into the display WINDOW coordinates. For example, suppose the screen’s
WINDOW resolution is 0-133 in the X direction and 0-100 in the Y direction and the digitizer’s X & Y resolution is 0-11000. If the
digitizer returned 11000,11000 as the current X & Y location, the DIGITIZE statement will return a value of 100,133 to the user. If you
want the X & Y values to be the same for equal movements in the X & Y directions, specify a square WINDOW.

For example:

WINDOW 0,100,0,100

Option Configuration
The digitizer has several options that are critical to make it work properly with HTBasic. They are:

· Handshaking Mode
· CTS Handshaking (if hardware handshaking is used)
· Absolute coordinates

If a binary format is specified, make sure that the tablet format and the TABLET driver format match. If the ASCII format is specified,
then the data needs to be comma separated and CR/LF terminated. XON/XOFF handshaking may only be used when the tablet is
set to ASCII format. Hardware handshaking may be used for either format.

Some other tablet settings that are not critical, but recommended are as follows:

· Data transmitted only in proximity
· Disable Increment mode
· Disable leading zeros
· Enable RUN mode
· Enable Maximum report rate

Please consult your digitizer documentation for the correct switch settings for these options.

HP Mode
10 LOAD BIN “SERIAL32”
20 CONTROL 9,5;0
30 CONTROL 9,12;0
40 CONTROL 9,100;0
50 GRAPHICS INPUT IS 9,"TABLET"
60 READ LOCATOR X,Y,S$
70 PRINT X,Y,S$
80 END

Summagraphics MM1103 Emulation
10 LOAD BIN “SERIAL32”
20 CONTROL 9,5;2
30 CONTROL 9,12;0
40 CONTROL 9,100;0
45 CONTROL 9,4;2
50 GRAPHICS INPUT IS 9,"TABLET"
60 READ LOCATOR X,Y,S$
70 PRINT X,Y,S$
80 END

Hitachi HDG-1111B Emulation
10 LOAD BIN “SERIAL32”
20 CONTROL 9,5;2
30 CONTROL 9,12;0
40 CONTROL 9,100;0
50 GRAPHICS INPUT IS 9,"TABLET"
60 READ LOCATOR X,Y,S$
70 PRINT X,Y,S$
80 END

You can bypass the tablet driver and display the byte sequence returned by the tablet by deleting line 10 and substituting the
following program lines for line numbers 50, 60 and 70 in the above program examples.

50 ASSIGN @Dev to 9;FORMAT OFF
60 ENTER @Dev USING “#,B”;A
70 PRINT IVAL$(A,16)

Customizing the Environment
HTBasic provides a keyboard function key macro facility and a powerful CONFIGURE statement that can both be used to customize
HTBasic to more nearly match the configuration of an HP 9000 Series 200/300 computer and to alter the way the HTBasic
environment works. Each of these features will be discussed on the following pages.

Softkey Macros
The softkey macro facility allows you to define a macro sequence and associate it with a function key. When you press that function
key the macro sequence is entered into the input buffer just as if you had typed it in from the keyboard. A softkey definition can be
quite complex and it can even call other softkey definitions. You can assign, edit, read, delete, list, store and load softkey macros.

Assigning Softkeys
The HTBasic softkey keyboard macro facility allows great flexibility in defining special purpose function keys. For Example, to define
a softkey macro to RENumber and INDENT the current program and then put you into Edit mode, you could define function key 9 as
follows:

10 L$ = CHR$(255)&"#" !Clear Line
20 S$ = CHR$(255)&"K" !Clear Screen
30 E$ = CHR$(255)&"E" !Execute Input
40 D$ = CHR$(255)&"D" !EDIT
50 SET KEY 9,"INDENT RENUMBER"&L$&S$&"REN"&E$"INDENT"&E$&D$&E$

You are only limited by your imagination in defining softkey macros.

Editing Softkeys
The EDIT KEY statement allows interactive editing of softkey macros. Enter EDIT KEY n, where n is the softkey number or press
EDIT followed by the softkey function key you wish to edit and then the ENTER key. If the softkey has been defined, the old
definition will be displayed. You can modify the old definition by overstriking the existing characters or inserting new characters.
Pressing ENTER saves the new softkey definition.

Reading Softkeys
READ KEY returns one or more softkey macro definitions. Specify the key number of the softkey macro to read. If a simple string or
array element is specified, then only one key is returned. If a string array is specified, then successive keys, starting with the one
specified, are returned into the elements of the string array. For example

READ KEY 2,Keytwo$! One macro
READ KEY First_key,Keys$(*) ! Several macros

Deleting Softkey Macros
Softkey macro definitions are removed from memory with the SCRATCH KEY statement. For example:

SCRATCH KEY 3

removes the definition for softkey macro number 3. If no key number is specified all softkey macro definitions are removed from
memory.

Listing Softkey Macros
The LIST KEY statement lists the current softkey macro definitions on the PRINTER IS device. For example:

LIST KEY

outputs all the softkey macro definitions. You also may specify an interface select code for the output.

Storing Softkey Macros
The STORE KEY statement saves all the current softkey macro definitions in a new file of type BDAT. HTBasic softkey BDAT files
are compatible with HP BASIC softkey BDAT files when HPCOPY is used to move the files. The definition for each defined softkey is
written to the file by outputting two items using FORMAT OFF. The first item is an integer, specifying the key number. The second
item is a string, giving the key definition. For example:

STORE KEY “Helpers”

saves the current softkey macro definitions into a new BDAT file named Helpers. If the file already exists, an error is reported. Use
RE-STORE KEY to update an existing file.

Loading Softkey Macros
Use the LOAD KEY statement to reenter the softkey macros into the computer from a BDAT file. An HP BASIC softkey BDAT file is
compatible with HTBasic and may be directly loaded. Each softkey macro defined in the file replaces any previous definition. The
following example reloads the softkey macros defined in the file Helpers into the computer:
LOAD KEY “Helpers”

CONFIGURE
CONFIGURE allows you to customize HTBasic to more nearly match the configuration of an HP 9000 Series 200/300 computer and
to alter the way the HTBasic environment works. Using CONFIGURE will allow many existing HP BASIC programs to run without
alteration.

You can use the Options | Run Environment menu from the program window to change the Run Environment. Any changes made to
the Run Environment dialog box will appear in all programs when they are opened.

To set the Run Environment, select the Options | Run Environment menu to display an Run Environment dialog box similar to that
shown in Figure 9-1. To change an item, click the desired item on the configuration tab.

To return all settings to the default state, click the “Default” button at the bottom of the dialog box.

The following items can be configured using either the CONFIGURE dialog box, or they can be set programmatically:

CONFIGURE BDAT HP Compatible BDAT files
CONFIGURE CREATE Controlling File Header Type
CONFIGURE DIM Controlling Implicit Dimensioning
CONFIGURE LONGCATDATES Toggles between two and four digit year display in CATalog
CONFIGURE LONGFILENAMES Enabling use of Long File Names
CONFIGURE MSI HP MSUS Windows disk substitutions
CONFIGURE SAVE ASCII Windows Compatible ASCII files
RUN WITH ERRORS IN CODE Allows or disallows running with sytnax errors

The following CONFIGURE statements can only be configured programmatically. These statements should be placed in your
AUTOST file so that they are executed each time you use HTBasic:

CONFIGURE DUMP DUMP GRAPHICS Printer Type
CONFIGURE KBD Non-Latin-1 Character Set Keyboard Remapping
CONFIGURE KEY Redefining Function Keys
CONFIGURE LABEL Defining New LABEL Characters
CONFIGURE PRT Changing the value of PRT

Figure 9-1. Configure Dialog Box

HP Compatible BDAT Files
CONFIGURE BDAT {MSB|LSB} FIRST specifies the byte ordering to use with each BDAT file created after this statement is
executed. By default, BDAT files are created with the native byte order of the computer. HTBasic for Windows uses LSB first. This
statement was previously used to create BDAT files that could be copied (using HPCOPY) to an HP BASIC workstation.
CONFIGURE CREATE is now the recommended method for creating files for interchange with HP BASIC. CONFIGURE BDAT only
affects files created with HTBasic headers; files with HP LIF headers are not affected.

Controlling File Header Type
CONFIGURE CREATE specifies the kind of file header (”HP” or “HTB”) to use when creating a typed file (LIF ASCII or BDAT).
HTBasic can always use files with either header, regardless of the setting of CONFIGURE CREATE. The setting affects file creation
only. A CAT listing in SRM format shows the kind of file header of each file in the System Type column.

Use HP LIF headers if you wish to create data files that are simultaneously accessed over a network by HTBasic and HP BASIC.
Files with HP LIF headers can also be “binary” copied among DOS or UNIX media for access by the HP Language Coprocessor
(Viper card), HP BASIC and HP BASIC/UX. To specify HP LIF headers, use:

CONFIGURE CREATE “HP”

By default, HTBasic creates HTBasic file headers, since they are two or three times smaller than HP LIF headers. BDAT files with
HTB headers can also be created with data in either LSB or MSB byte ordering (see CONFIGURE BDAT). File operations are much
faster when the byte ordering of the file matches the byte ordering of the computer. Files with HTB file headers, when copied with
HPCOPY, are completely compatible with HP BASIC. Example:

CONFIGURE CREATE “HTB”

Controlling Implicit Dimensioning
CONFIGURE DIM turns implicit variable and string dimensioning on or off. By default it is on and if a variable is never declared, it is
assumed to be of type REAL. If a string is never declared, it is assumed to have a maximum length of 18. If an array is never
declared, it is implicitly declared having the number of subscripts found in its first occurrence, with each dimension having the
default OPTION BASE lower bound and an upper bound of ten. Example:

CONFIGURE DIM ON

When CONFIGURE DIM is OFF, then each variable, string and array must be explicitly declared using a REAL, INTEGER,
COMPLEX or DIM statement. During prerun, any undeclared variables generate an error message that is written to the message
line. Turning off implicit variable and string dimensioning can greatly simplify finding misspelled variable names. If a program has
already been prerun, CONFIGURE DIM OFF will not report any undeclared variables until another prerun occurs. To force a prerun
to occur, change a program line and press the STEP key.

Controlling Date Display
CONFIGURE LONGCATDATES determines the length of the year displayed in CATalogs. With LONGCATDATES on, four digit
years are displayed. With LONGCATDATES off, only two digit years are displayed. When using four digit years, and CATaloging to
an array, it is necessary to dimension the array an additional two characters. Typically this means a change from 60 to 62
characters.

Enabling Use of Long File Names
Long filenames are allowed in addition to the standard 8.3 names. The filenames can be up to 256 characters long and can have
embedded spaces. However, by default HTBasic removes spaces from file specifiers and CAT listings don’t have enough room for
long filenames. To enable display and use of long filenames, use the statement

CONFIGURE LONGFILENAMES ON

With LONGFILENAMES ON, spaces are not deleted from directory and file specifiers since they may be significant. Also, the listing
format for CAT is changed to accommodate varying length filenames. It is roughly modeled after the Windows NT DIR command-
listing format.

HP MSUS to Windows Disk Substitutions
CONFIGURE MSI defines a table of MSUS substitutions. Whenever an HP MSUS is used as part of a file-specifier, the table is
checked for an exact match, including case. It is not sufficient for the MSUS to be equivalent, i.e. “:CS80,700,0" does not match
”:CS80,700". If an exact match is found, the Windows path-specifier is used in its place. If no match is found, an error will be
reported. The syntax is:

CONFIGURE MSI hp-msus TO path-specifier

In the DOS path-specifier, directory names must end with a directory separator character “\”. To replace an existing entry in the
table, specify a new DOS path-specifier. To delete an existing entry in the table, specify a zero length DOS path-specifier. To turn
CONFIGURE MSI off or on, use

CONFIGURE MSI {ON|OFF}

As an example, let’s assume that you have lots of programs written that use two HP disk drives on your HP BASIC workstation.
They are “:INTERNAL,4", a floppy and ”:,700,0", a hard disk. You wish to use Drive A on your PC whenever the programs would
have used the internal drive on your workstation. And you wish to use the subdirectory “\HARDDISK” of Drive C on your PC
whenever the programs would have used the hard disk on your workstation. This is done by putting the following two lines in your
AUTOST file:

CONFIGURE MSI “:INTERNAL,4" TO ”A:\"
CONFIGURE MSI “:,700,0" TO ”C:\HARDDISK\"

Windows Compatible ASCII Files
CONFIGURE SAVE ASCII sets the file type SAVE uses when saving a file to disk. CONFIGURE SAVE ASCII ON, the default,
produces a LIF compatible ASCII file. This type of file is useful for exchanging programs with older HP workstations that cannot use
Ordinary files. See Chapter 10, “Transferring Programs and Data from HP BASIC.”

CONFIGURE SAVE ASCII OFF produces Windows ASCII ordinary files. Such files are compatible with all popular program editors,
most word processors and recent revisions of HP BASIC. RE-SAVE produces the same file type as an existing file or the file type
specified by CONFIGURE SAVE ASCII if no file exists. GET can read either file type, as well as Viper-I ASCII and Viper-II ASCII.

Note: If you use CONFIGURE SAVE ASCII OFF you should not embed carriage-returns or line-feeds in string literals since GET will
interpret them as end-of-line indicators.

RUN WITH ERRORS IN CODE
By default syntax errors left in code will be marked as syntax errors, and will cause the program to not run. However, if programs
should be allowed run when syntax errors exist, change this option to YES.

DUMP GRAPHICS Printer Type
The CONFIGURE DUMP statement specifies what graphic printer language or image file format the DUMP GRAPHICS statement
uses. Chapter 7, “Printer and Pixel Image Device Drivers,” explains how to use CONFIGURE DUMP so that DUMP GRAPHICS
works with many different printer types and file formats. For example, most HP printers support PCL or the HP Raster Interface
Standard. If you wish to use an HP LaserJet for screen dumps, use the following statement to change to the HP printer control
language:

CONFIGURE DUMP TO “PCL”

Non-Latin-1 Character Set Keyboard Remapping
CONFIGURE KBD defines keyboard mappings for character sets other than Latin-1. When in effect, CONFIGURE KBD substitutes
characters from the specified string for characters that come from the keyboard. This remapping is good for ASCII characters in the
range 0 to 255, but does not apply to function keys. CONFIGURE KBD is not intended to be a complete keyboard driver; it merely
substitutes one ASCII value for another. The syntax is:

CONFIGURE KBD first-char TO string-name$

The range of ASCII values that are remapped starts at the character number specified by first-char. The string specifies the ASCII
values that should be substituted for values in that range. For example, to remap four keys starting with character number 65 use
the following:

CONFIGURE KBD 65 TO “DCBA”

Redefining Function Keys
The CONFIGURE KEY statement can be used to redefine key assignments. A single key can have more than one definition, if the
definitions apply to different shift states or conditions. For example, a key can be defined to have one function when the shift key is
pressed, and another definition when the shift is not pressed. A key definition consists of these four parts:

1. The key number,
2. The shift conditions to be examined (masked) when the key is pressed,
3. The value those shift conditions must have,
4. The RMB function to execute when the proper key is pressed with the proper shift conditions.

The CONFIGURE KEY statement has four forms that are used for the different aspects of defining a key. The first form,

CONFIGURE KEY key-number TO 256

removes all prior definitions a key may have. It is usually a good idea to remove prior definitions of a key to avoid unwanted side
effects. Key-number specifies what key the action applies to. A utility, keynum, is included with HTBasic to determine the key-
number for a key.

In the HTBWin program group or program folder, double-click on the KeyNum or KEYNUM.EXE icon. Press the key of interest. The
key-number for that key is printed in the window. Press Alt-F4 to quit.

A key definition is made using the final three forms of the CONFIGURE KEY statement:

CONFIGURE KEY shift-mask TO 257 !Set shift-mask for define
CONFIGURE KEY shift-value TO 258 !Set shift-value for define
CONFIGURE KEY key-number TO function ! Create a definition

Shift-mask and shift-value specify what shift conditions must be in effect when the key is pressed and what conditions will be
ignored. In the table below, find the conditions you wish to have an affect and write down the associated Shift-mask and Shift-value.
Leave out the values for the conditions to be ignored. Then add together all the shift-mask values and all the shift-value values.

Table for Shift-mask and Shift-value Calculation
Shift Conditions  Shift-mask                        Shift-value
Ignore all shift conditions 0 0
Shift key not pressed 1 0
Shift key pressed 1 1
Control key not pressed        2 0
Control key pressed      2 2
Alt key not pressed        8 0
Alt key pressed        8 8
Caps Lock off        64 0
Caps Lock on        64 64
System Menu        1792 0
User 1 Menu        1792 256
User 2 Menu        1792 512
User 3 Menu        1792 768
KBD CMODE OFF        2048 0
KBD CMODE ON        2048 2048

Only one menu may be specified: system, user 1, user 2 or user 3. The Alt key is an alternate shift key and may have different
names on different keyboards. It is not a good idea to use the control key, because that prevents its conventional use. (The control
key is usually used to insert a function key’s two characters into a string literal rather than execute it.)

Function specifies the Keyboard Function to assign to the key. The function is specified using the second character produced when
the function key is pressed. Check the “Alphabetical Keyboard Functions List” in Chapter 4 for the second characters used by each
HTBasic function. The numeric value of the character is used in the CONFIGURE KEY statement. For example, the table in Chapter
4 lists “V” as the 2nd character for the Previous Line (DOWN) keyboard function. If you wish to define a key to do the DOWN
function, substitute NUM(“V”) for function.

A key redefinition is usually done in groups of three CONFIGURE KEY statements. And it is always a good idea to delete any
previous definitions made to a key before making any new definitions. The reason is that if a previous definition specified Shift-mask
and Shift-values that are less restrictive (more inclusive) than the new definition, then the previous definition will be used; the new
definition will never be used.

CONFIGURE KEY Example. Suppose you wish to swap the actions of the    and ??keys. By default, two functions are assigned to
each of these keys:

Lines 20 and 100 delete any previous definitions. Then the four definitions are made using groups of three: 30-50, 60-80, 110-130
and 140-160.

If the Shift-mask is not specified, the last Shift-mask specified will be used. If no Shift-mask has ever been specified, a value of 0 is
used. The same is true for the Shift-value. Thus, lines 60, 110 and 140 in the previous example are redundant. If line 100 is moved
to 21, 130 to 51 and 160 to 81, then lines 120 and 150 can also be eliminated.

CONFIGURE KEY Example. CONFIGURE KEY is sometimes useful for eliminating an HTBasic key definition so the key reverts to
its default use. For example, HTBasic defines Alt-F4 as Pause Program. If you wish to use it to Quit HTBasic, you must eliminate the
HTBasic definition. Assuming F4 is key number 115, the following example eliminates all definitions for F4, including Alt-F4, then
redefines all definitions except Alt-F4:

10 CONFIGURE KEY 115 TO 256 ! Delete all F4 definitions
30 CONFIGURE KEY 3849 TO 257 ! Mask: KBD CMODE, Menu, Alt, Shift
50 CONFIGURE KEY 0 TO 258 ! Value: KBD CMODE OFF, System
60 CONFIGURE KEY 115 TO 80 ! Def: KBD CMODE OFF, System, F4
70 CONFIGURE KEY 1 TO 258 ! Value: KBD CMODE OFF, System, Shift
80 CONFIGURE KEY 115 TO 33 ! Def: KBD CMODE OFF, System, Shift-F4
90 CONFIGURE KEY 256 TO 258 ! Value: KBD CMODE OFF, User 1
100 CONFIGURE KEY 115 TO 52 ! Def: KBD CMODE OFF, User 1, F4
110 CONFIGURE KEY 512 TO 258 ! Value: KBD CMODE OFF, User 2
120 CONFIGURE KEY 115 TO 99 ! Def: KBD CMODE OFF, User 2, F4
130 CONFIGURE KEY 768 TO 258 ! Value: KBD CMODE OFF, User 3
140 CONFIGURE KEY 115 TO 107 ! Def: KBD CMODE OFF, User 3, F4
160 CONFIGURE KEY 2057 TO 257 ! Mask: KBD CMODE, Alt, Shift
180 CONFIGURE KEY 1 TO 258 ! Value: KBD CMODE OFF, Shift
190 CONFIGURE KEY 115 TO 118 ! Def: KBD CMODE OFF, User n, Shift-F4
200 CONFIGURE KEY 2048 TO 258 ! Value: KBD CMODE ON
210 CONFIGURE KEY 115 TO 51 ! Def: KBD CMODE ON, F4
220 CONFIGURE KEY 2049 TO 258 ! Value: KBD CMODE ON, Shift
230 CONFIGURE KEY 115 TO 100 ! Def: KBD CMODE ON, Shift-F4
240 END

Defining New LABEL Characters
CONFIGURE LABEL defines additional characters for use with the LABEL statement. Characters in the range 33 to 255 may be
defined. You may define one character by giving the character number and a simple string or several characters by giving the
starting character number and a string array. To delete a definition, use a zero length string for the definition. Each character in the
definition strings has the form CHR$(Move + x*16+ y), where Move is 0 or 128, x ranges from 0 (far left) to 7 and y ranges from 0
(bottom) to 15. The baseline is y=5.

The following example defines the character “H”:

A$=CHR$(133)&CHR$(14)&CHR$(238)&CHR$(101)&CHR$(138)&CHR$(106)
CONFIGURE LABEL 72 TO A$

More information is presented in Chapter 12, “International Language Support” in the User’s Guide.

Changing the Value of PRT
On most HP BASIC workstations a printer is hooked to the IEEE-488 interface and is set to primary address 1. Thus, the device
selector is 701. This convention is followed so closely that a special function, PRT, was created with the value 701. Many programs
use this fact to switch output to the printer with the statement.

PRINTER IS PRT

Under Windows, printers are accessed through the printer driver, which is accessed in HTBasic through device selector 10. Many
existing programs use PRT as the device selector for the printer. So that these programs continue to work, PRT has been changed
to 10. If you are using an IEEE-488 printer with ISC 1, you may wish that PRT had the value 701 as it did under HP BASIC. To allow
you to change PRT, the CONFIGURE PRT statement has been added. CONFIGURE PRT need only be used if you are porting
existing programs that reference PRT and you do not wish to use the Windows printer driver.

CONFIGURE PRT specifies the device-selector that the PRT function returns. If you are using an IEEE-488 bus printer at address
one, you will probably want to change PRT back to 701 to match the HP BASIC definition of PRT:

CONFIGURE PRT TO 701

Transferring Programs and Data from HP BASIC
This chapter presents transferring programs and data files between HP BASIC and HTBasic and details the differences between HP
BASIC and HTBasic. It discusses HTBasic file types, remote access across networks or serial link, files created by other computers,
hardware and keyword differences, and the LIF diskette file transfer utilities.

If you are transferring programs from HP 9000 Series 200/300 computers to HTBasic, you should read this entire chapter.
Differences in hardware, file system and keywords are discussed.

Compatibility
HTBasic is compatible with Hewlett-Packard’s 9000 Series 200/300 “Rocky Mountain” BASIC, and runs on a variety of hardware
platforms - without the need for a coprocessor board. It includes most of the language features defined in the HP 6.2 LOADable BIN
files.

HTBasic is not compatible with Series 80 or 9835/9845 BASIC. But there are translator programs available from third parties to
translate from other BASICs to Rocky Mountain BASIC and to transfer files among different systems.
To transfer BASIC programs between HTBasic and RMB use SAVE/GET. Prog files cannot be directly shared between HTBasic &
RMB.

Operations which cause an error may not produce exactly the same error number as RMB.    For example, if an out-of-range value is
passed to an INTEGER parameter, one platform might report error 19 (value out of range) and the other platform might report error
20 (integer overflow).

The destination of an ON...CALL statement can be deleted in HTBasic.    In RMB, attempts to delete such SUBs cause an error.

When doing a CAT TO S$(*), the first array element has the text “DIRECTORY:” before the actual directory name.

I/O Differences
Some error handling and EOF handling in the ENTER statement is different in HTBasic and HP BASIC/WS.
The GPIB interface drivers in HTBasic do not use DMA mode.

Mass Storage Differences
Filename wildcards are only available through the CAT statement.

INITIALIZE is not supported, and therefore, HTBasic cannot create RAM volumes. For RAM volumes, use a DOS RAM disk
program instead (e.g., VDISK.SYS, RAMDISK.SYS).

There can be differences in file formats and byte ordering within files. See the ASSIGN statement in the online “Reference Manual”
for more information.

MSUS Format
RMB format: [directory path][filename][:msus]
HTBasic format: [drive:][directory path][filename]

You can map the RMB format to the HTBasic model using the CONFIGURE MSI statement.

RMB CSUB
The following RMB CSUB utilities are not provided:

PHYREC: no substitute.

GDUMPC: automatically provided by DUMP GRAPHICS if current Windows printer supports color.

BPLOT: Bload() and Bstore() functionality now provided through extensions to the GLOAD and GSTORE statements.

File Types
HTBasic can work with both typed files (such as BDAT, ASCII and PROG) and files without a type or “ordinary” files. Both kinds of
files are discussed in the following paragraphs.

Typed Files
Most HTBasic or HP BASIC files have a file type, such as BDAT, ASCII or PROG. The typed file information is stored in a file header
at the beginning of the file. Two types of headers are in common use: HP LIF and HTBasic.

HTBasic can identify and use HP BASIC typed files with HP LIF headers. Data can be in BDAT or ASCII files. HP BASIC PROG files
must be saved in ASCII or HP-UX format; use the SAVE statement, not the STORE statement to save programs for exchange. HP
LIF file headers are either 512 or 768 bytes in length.

HTBasic file headers are 256 bytes in length.

The LIF diskette utilities, described later in this chapter, supports typed files with either type of file header.

Ordinary Files
Recent releases of HP BASIC support files without a type. HP BASIC calls these files “HP-UX” files when present on a LIF or UNIX
volume and “DOS” files when present on a DOS volume. HTBasic calls these files “ordinary” files. An ordinary file is created with
the CREATE statement (as opposed to CREATE ASCII or CREATE BDAT). In a CATalog of a LIF diskette, an ordinary file is listed
as “HP-UX”. When an ordinary file is copied to a Windows disk, it remains an ordinary file, but is listed without a type by the
HTBasic CAT statement. Files created on the PC by other programs are ordinary files.

Remote Access
HTBasic can access files on other computers over a network by accessing a remote mounted volume or by using file transfer
utilities across the network or across a serial link.

Mounted Network Volumes
HTBasic can access files on remote computers directly if the disks containing the files on the remote computer(s) are mounted as
network volumes on the computer running HTBasic. To access the remote files, simply include the local name of the remote
directory when specifying file names.

Network File Transfer
If there are files on a computer connected to your network but not mounted in your computer’s file system, if that computer has an
ftp server and if you have TCP/IP utilities for your PC, you can use the ftp and rcp file transfer utilities to copy the files to your
computer’s disk and then use them. Note that typed files are considered to be binary files by ftp, so you must use the binary
command with ftp when copying these file types.

Other File Transfer Utilities
Two computers connected through a network or with a serial link can transfer files using a file transfer utility, for example, the Kermit
program. As with other types of connections, BDAT and LIF ASCII files are considered to be binary files, so you must use the binary
mode on both the sending and receiving sides of the file transfer when copying these file types. In Kermit, this is done with the “set
file type binary” command.

In some instances, data can be transferred between two computers by hooking them together with a serial or IEEE-488 interface
and writing a small program on each computer to transfer programs and data between the two. Transfer programs as if they were
ASCII data.

Converting Old HTBasic Program Files
To convert an old PROG format program run the old version of HTBasic and execute the following statements:

LOAD “prog_name”
SAVE “temp_name”
QUIT

Then run the new release of HTBasic and execute the following statements:

GET “temp_name“
 Now press the STEP key (Alt-F1)
RE-STORE “prog_name“
PURGE “temp_name“

If the file is not in the current directory, remember to include the full pathname.

Files Created by Other Computers
HTBasic can use LIF ASCII, BDAT and ordinary files created by other computers. PROG files created by other computers generally
cannot.

LIF ASCII Files
LIF ASCII files created by HTBasic or by HP BASIC can be directly read and written by HTBasic. If the files are transferred using a
file transfer utility, binary mode should be used.

BDAT Files
BDAT files created by HTBasic or by HP BASIC can be read and written by HTBasic. This is true even if the two computers use
different byte ordering. If the files are transferred using a file transfer utility, binary mode should be used.

PROG Files
PROG files created by different versions of HTBasic can be exchanged only if the two computers use the same byte ordering.
PROG files created by HP BASIC cannot be read or written by HTBasic. LOADing an incompatible PROG file results in error 58,
“Improper File Type.” ASCII and ordinary format programs can be used to exchange programs between versions with incompatible
PROG files. Use GET to load an ASCII or ordinary format program file.

HTBasic PROG files with the wrong byte order are listed by the CAT statement with a file type of “PROGL” or “PROGM”, where the
trailing L or M indicates the file has LSB or MSB byte ordering. PROG files created by HP BASIC are listed with the file type
“HPPRG”. Compatible PROG files are listed with a file type of “PROG”.

Ordinary Files
Ordinary files (DOS, UNIX or HP-UX ASCII files) can be both read and written by HTBasic. If ordinary files written with FORMAT
OFF are transferred using a file transfer utility, binary mode should be used. If ordinary files written with FORMAT ON are
transferred using a file transfer utility, use its ASCII mode (“ascii” in ftp and “set file type ascii” in Kermit).

HTBasic is able to work with ordinary, FORMAT ON files regardless of whether the file was written with a line termination of CR/LF
(carriage-return/line-feed) or just LF. Other programs, such as text editors, may not be as flexible. CR/LF is considered the standard
for DOS and Windows. LF is considered the standard for UNIX.

Hardware Differences
HTBasic compensates automatically for many of the hardware differences that exist between an HP 9000 Series 200/300
workstation and other hardware platforms. The following sections outline many of the differences and explain what limitations still
apply.

Disk Drives
HP-IB disk drives are not supported. No mass storage device is supported across the HP-IB. HP LIF disks are not compatible with
DOS, NT and UNIX disk formats and cannot be read or written directly by HTBasic. On the PC, HPCOPY is used to transfer data
and programs back and forth.

Softkey Layout
Different keyboard layouts are used by PCs and HP Workstations. Some keyboards have the softkeys down the left side of the
keyboard, and some have them across the top of the keyboard. To make up for these differences and the lack of spatial coherence
between the physical keys and the softkey menu, HTBasic menu labels have been numbered. This provides numerical coherence.
The label numbered “1" always corresponds to the softkey with the ”1" printed on it. The number is not meant to be the softkey
number.

Note: to provide compatibility with programs written for the 9836 Nimitz keyboard (which starts with softkey K0), the command KBD
CMODE can be used to turn on or off compatibility mode.

A New Backspace
Under HP BASIC, the Backspace key was assigned to CHR$(255)&"B". This function does the same thing that the Left Arrow key
does. HP BASIC is unique in this treatment of the Backspace key. For compatibility with the remainder of the computing community,
HTBasic assigns a new function to the Backspace key. Pushing Backspace deletes the character to the left of the cursor. This
function is named DEL LEFT and is equivalent to the function LEFT followed by DEL CHR. If you do not like this definition, you may
redefine the key using the CONFIGURE KEY statement.

Series 300 Bit-Mapped (CRTB) Displays
If you are using an HP 9816, 9836, or other HP computer with separate alpha and graphics hardware, some of the differences you
find in HTBasic will be the same differences you would find moving to an HP 310 or another HP computer with a fully bit-mapped
alpha/graphics display. Bit-mapped displays are driven by the CRTB Mode Driver. A CRTB display has only bit-mapped images. The
ALPHA image is written into one or more of the graphic planes. One plane can be separated from the others for use solely for the
ALPHA image. Or, all the planes can be merged for shared use between ALPHA and GRAPHICS. See SEPARATE and MERGE
ALPHA in the Reference Manual.

When ALPHA and GRAPHICS are merged, ALPHA text is converted to graphic bits and written into the graphic planes, overwriting
any graphics data that might be present. Therefore, ALPHA and GRAPHICS cannot be dumped separately. And when the ALPHA
text is scrolled, any graphic data present will be scrolled also. This is the default mode for a CRTB display.

The SEPARATE ALPHA statement can be used to simulate 9836C displays with independent ALPHA and GRAPHICS screens.
Either image can be turned on or off or DUMPed independently of the other.

9836C (CRTA) Displays
The HP 9836C display is driven by CRTA Mode drivers. A CRTA display has distinct ALPHA and GRAPHICS images. Either the
ALPHA or GRAPHICS images can be displayed, or both can be displayed at once, overlapping each other. The hardware for the
two images is independent. HTBasic does not directly emulate CRTA Mode. HTBasic does not support CRTA mode. Use the
SEPARATE ALPHA command for the best 9836C emulation.

Other Video Circuitry Differences
A list of minor differences in video circuitry that you should be aware of follows:

Underline is not supported by PC color display adapters in text modes.
Blinking is not supported by PC color display adapters in graphics modes.

Processor
The instruction sets for the Intel x86 family of processors, Motorola 680x0 processors and HP Precision Architecture processors are
all different. Since a CSUB contains processor code, a CSUB cannot be moved from HP BASIC or HTBasic on one processor and
executed under another. The same holds true for assembly routines called with WRITEIO 9827.

Clock
Timing resolution varies from version to version of HTBasic. Millisecond timing resolution is not available on the IBM PC. HTBasic is
dependant upon the Operating System’s timing resolution, all timing functions within HTBasic have a best resolution of about 55
milliseconds while running under Windows 95/98/ME and 10 milliseconds wile running under Windows NT & 2000.

HP-IB/IEEE-488
The HP-IB bus is more commonly known by the name IEEE-488 or GPIB bus. Most computers are not sold with an integral
IEEE-488 interface. An HP compatible IEEE-488 interface card for the PC can be purchased from TransEra, either bundled with
HTBasic or as a later upgrade. Various third-party IEEE-488 interfaces are also supported.

The TransEra Model 900 IEEE-488 card gives full IEEE-488 compatibility. Other interfaces usually lack minor functionality. For
example, PC IEEE-488 interface cards that use the NEC 7210 IEEE-488 controller chip are incompatible in the following areas: All
READIO and WRITEIO registers are different. Bit 0, IFC, is not supported in STATUS register 5 or the ENABLE INTR mask. The
REM and LOC bits of STATUS register 6 are not supported as well as the DAV, NDAC, NRFD, and IFC bits of STATUS register 7.

Character Set
The default character set used by the IBM PC is different than the HP Roman-8 character set used by HP BASIC. The differences
exist in characters CHR$(128) and above. In HTBasic, all characters from CHR$(128) through CHR$(254) are allowed in variable
names. If you will be running a program with HP BASIC and HTBasic, you should restrict variable names to characters from
CHR$(161) to CHR$(254) and the legal characters less than CHR$(128). Chapter 12 of the User’s Guide, “International Language
Support,” contains information on converting from the HP character set, or setting up the PC to use the HP character set.

Shared Resource Manager (SRM)
Shared Resource Manager users should consider upgrading to Hewlett-Packard’s SRM/UX. By replacing SRM servers with
SRM/UX servers, Windows can access the files on the server using NFS. HTBasic is also compatible with most industry standard
networks, such as Microsoft NT, NetWare and LAN Manager.

Miscellaneous Differences
On the PC, support for the Centronix/Parallel Printer Interface and the Windows Print Manager has been added. The interface select
code for LPT1 is 26, for the Print Manager it is 10. These can be changed if needed (see Chapter 10 of the User’s Guide, “Other I/O
Destinations” and Chapters 5-9 in this manual).

The serial interface has been enhanced with XON/XOFF flow control. It is enabled by default. If you are porting existing programs
that transfer binary data or ^S and ^Q characters as part of the data, you should turn off XON/XOFF flow control and turn on
hardware handshaking with the statements:

CONTROL 9,100;0
CONTROL 9,5;0
CONTROL 9,12;0

The maximum line number in HTBasic has been increased from the HP limit of 32,766 up to 4,194,304. If you plan on also running a
program on an HP computer, you should not use line numbers over 32,766.

HP ASCII File Problem
The Hewlett-Packard BASIC Language Reference manual entry for “ENTER” states that “data should be entered into variables of
the same type as those used to output it.” This general rule applies to HTBasic as well, and if violated can produce unexpected
results. Consider the following program:

10 CREATE “TEMP”,1
20 ASSIGN @I TO “TEMP”;FORMAT ON
30 OUTPUT @I;"1,2"
40 OUTPUT @I;"3,4"
50 RESET @I
60 ENTER @I;A,B
70 PRINT A,B
80 ASSIGN @I TO *
90 PURGE “TEMP”
100 END

This program violates the matching-type rule by outputting strings and then entering numerics. Intuitively, you expect line 70 to print
1 and 2, which it does. When line 10 is changed to “CREATE BDAT”, the same result is produced. But if line 10 is changed to
“CREATE ASCII”, then HP BASIC prints 1 and 3. Whether or not you consider this a bug in HP BASIC, it is a discrepancy that has
been corrected in HTBasic. If you have written programs that use ASCII files and violate the matching-type rule, you should correct
them before running them with HTBasic. If your program must run with both HP BASIC and HTBasic, you must either adhere to the
matching-type rule, or use another file type.

File Systems
HTBasic uses the native file system of whatever operating system it is running under. HTBasic does not support the LIF file system.

A primary difference between HP BASIC and HTBasic is that HP BASIC/WS does its own file I/O, while HTBasic has the operating
system do all file I/O. This has advantages. Any disk, diskette, network, or device accessible through the file system is accessible
from HTBasic.

A couple of warnings are in order about the way most operating systems work. If a file is currently ASSIGNed, the operating system
buffers some data in memory to make I/O faster. This buffering can produce unexpected results if the same file has multiple I/O
paths ASSIGNed to it concurrently. Also, you should not remove a diskette, or turn the power off while a file is ASSIGNed.

HTBasic maintains compatibility with LIF file types by keeping a special file header for typed files (BDAT, LIF ASCII, and PROG
files). The extra information that must be stored for these file types is kept in the header. The header is kept totally hidden from
BASIC programs. However, to programs outside HTBasic, the header will be accessible as the first bytes of the file. Any files without
the special header are known as “ordinary files”. In a CAT listing, the file type is blank for ordinary files.

In addition to HTBasic file headers, HTBasic can recognize and use HP LIF headers. This allows networked computers to directly
interchange data between Series 200/300 systems running HP BASIC and systems running HTBasic. The new CONFIGURE
CREATE {“HP” | “HTB”} statement allows the program to specify the type of file header to use when creating a new BDAT or LIF
ASCII file.

LIF ASCII vs. Ordinary ASCII
Early versions of HP BASIC did not have a file type that matched DOS ASCII or UNIX ASCII files. Starting with BASIC 5.0, it does
have an ordinary, “vanilla” file type that can hold DOS ASCII or UNIX ASCII data. With HP BASIC/WS or HP BASIC/UX, ordinary
files are called “HP-UX” files. With the Viper Card, ordinary files are called “DOS” files. No special header or other embedded
information is placed in ordinary files. An ordinary file written with FORMAT ON is a DOS ASCII file. An ordinary file written with
FORMAT ON, EOL CHR$(10) is a UNIX ASCII file. Use the CREATE statement to create an ordinary file. In a CAT listing, an
ordinary file is listed with the file type blank.

PC FAT or NTFS File Systems
The following sections describe some of the differences between the FAT or NTFS file systems and the HP 9000 Series 200/300
BASIC Logical Interchange Format (LIF) file system. The following discussion is not meant to be a substitute for your PC manual.
You should read it for complete information on the topics presented here.

The FAT/NTFS file systems, like the HP-UX or Shared Resource Manager (SRM) file system, is a Hierarchical File System (HFS).
An understanding of HFS, UNIX, or SRM file systems may aid you in understanding the PC file systems.

File Specifier
On the PC, a file specifier has the form:

[d:] [directory path] filename[.ext]

where: d: is the drive letter. Usually this is A: and B: for the two diskette drives, and C: for the hard disk. Higher drive letters, D:, E:,
etc., usually refer to multiple partitions and RAM (MEMORY) disks, CD-ROMs, or network drives. This part of the file specifier
corresponds to the MSUS of the HP file system, but is included on the front, not the end of the file specifier. It is optional, and if
omitted, the current (or default) drive is used.

directory path is optional. It is explained below.

filename is the main part of the file specifier. The following characters are not allowed to be in a filename: ."/\[]:|<>+=;, and control
characters whose ASCII value is less than the space character. All other characters are legal. If lowercase letters are used in a
filename they are converted to uppercase. Thus, you cannot have a file named “AbC” and another file named “aBC”. HTBasic will
consider both names to be “ABC”. Be aware that a PC file specifier is often referred to simply as a filename.

ext is the filename extension. The same characters that may be used in a filename may also be used in an extension. Certain
conventions are used for filename extensions. Most of them are arbitrary, with a few exceptions noted below.

Some conventional extensions are:

Extension            Conventional Use
.PRG        BASIC Prog-type Program
.BAS        BASIC program
.BDT        BDAT file
.ASC        ASCII file
.DAT        BDAT, or DOS data files
.TXT        text files
.LIS        text files, or compiler listings
.LST        another common listing file extension
.DOC        A DOS ASCII file containing documentation
.BAT        DOS batch files MUST have this extension
.COM        An executable command or program
.EXE        An executable command or program. Commands and programs MUST
 have one of these two extensions

Note that compared to an HP file specifier, the MSUS is replaced by a drive letter and moved from the back to the front. Also, an
extension has been added, and no password is used or available. While PC does not have passwords, it does have some access
capabilities (similar to SRM access capabilities). These are discussed below. If passwords are present, they will be ignored.

If an HP-style MSUS is present, it can be translated to a PC path if specified by the CONFIGURE MSI statement. If no matching
translation can be found, an error is returned. The CONFIGURE MSI statement has been added to HTBasic to allow HP style file
specifiers to be used with a PC file system. If PC style file specifiers are used, then the CONFIGURE MSI statement is not needed.

Directory Path
The PC file system is "tree" structured, almost exactly like the HFS and SRM file systems. If you are familiar with the HFS file
system, the following differences may be instructional. The “/” character of the HFS file system is replaced with “\” in the PC file
system. Passwords do not exist in the PC file system and will cause an error if included in a directory name.
The file system is organized as a tree. Actually, it is usually thought of as an upside-down tree. The top of the tree is, thus, the root.
(Not roots. Directory trees are considered to have only one root, and the term trunk is usually not used.) The tree is composed of
directories and files. Each directory may contain files and additional directories, which act like branches down the tree. Directory
names follow the same rules as filenames with extensions.

A directory path is the path you climb through in the tree to get from the root of the tree to a certain directory. It consists of the
names of each directory that must be climbed through in order to get to that certain directory, separating the directory names with
the backslash “\” character. If you have not already, you will find it helpful to read the material in your PC manual concerning
directories.

PC File Types and Access Capabilities
The PC file systems store certain information about a file in addition to storing information in the file. This information consists of:

· file name
· number of bytes in the file
· modification date and time
· access capabilities: hidden, read-only, system
· location on the disk of the file contents

The PC does not store a record length or a file type. It does have access capabilities, although they are different from the SRM
access capabilities. The access capabilities are called "attributes" by the PC and may be changed by the PC ATTRIB command.
They may also be changed by the HTBasic PROTECT command. The meanings of the attributes are:

Attribute                Meaning
hidden        the filename is not shown in a disk catalog, although the file is there
read-only        the file may be read, but not written or deleted
system        the file is a system file

Devices
HP BASIC accesses devices through interface and device select codes. The same is true of HTBasic. However, Windows also
allows access to devices as if they were files. Windows gives special names to devices, and when used in the place of a filename,
access a device instead of a file. These names are called DOS Device Names and are typically: CON, AUX, COM1, COM2, PRN,
LPT1, LPT2, and NUL. Often, data acquisition hardware for the PC comes with a device driver. To access such a data acquisition
board, treat it as you would a file and use ASSIGN, OUTPUT, and ENTER.

Wildcards
The question mark “?” and the asterisk “*” have special meaning to Windows. They are called wildcards and are used in commands
like DIR and the HTBasic CAT command in order to select more than one file. A filename with wildcard characters in it will be
compared with existing filenames using special rules and all filenames that “match” will be selected.

These are the rules used to match an actual filename with wildcards:

The “?” character will match any one character in the same position of an actual filename. For example, the string “?AT” will match
the strings “CAT”, “BAT”, “MAT”, or any other string three letters long that has an “A” as the second letter, and “T” as the third
letter.
The “*” character will match zero or more characters starting at that position. For example, “*” will match all filenames. “*.BAS” will
match all filenames that have the “.BAS” extension.

Keyword Differences
The following sections present, by keyword, various implementation differences between HTBasic and HP BASIC. Most differences
are the result of hardware differences, file system differences, or extensions in HTBasic. The Reference Manual can be consulted
for the full explanation of keywords mentioned here. In some cases, Windows commands that relate to BASIC commands are given.
This may help you learn Windows faster by associating functionality with commands you already know.

Some differences exist because of enhancements TransEra has made. Many enhancements can be included in programs that run
under both HP BASIC and HTBasic, if you are careful. One approach is to hide statements that will not parse under HP BASIC in
OUTPUT KBD statements:

OUTPUT KBD;"CONFIGURE PRT TO 701"&CHR$(255)&"E";

Another approach is to set up a section of code that is executed only by HTBasic. When you GET the program under HP BASIC, the
lines with HTBasic syntax enhancements will be commented out and ignored by HP BASIC:

10 INTEGER Htbasic
20 Htbasic=SYSTEM$(“VERSION:HTB”)<>"0"
30 IF Htbasic THEN
40 CONFIGURE DUMP TO “PCL”
50 CONFIGURE PRT TO 701
60 END IF
70 END

When porting programs between HP BASIC and HTBasic, note the differences for the following keywords.

ALLOCATE
Under HTBasic, GOSUB and ALLOCATE use the same stack. Intermixing these statements can cause changes in available
memory that are different from HP BASIC.

ASSIGN
When an ASSIGN fails, the previous state of the I/O path is not preserved. Also, the CONVERT and PARITY options are not
implemented. With HTBasic, if changes are made to an ASSIGNed file, the directory entry is not updated until the file is closed.
Windows buffers read and write to disk. You should not remove a diskette or turn the power off while a file is ASSIGNed. Exchanging
diskettes while a file is ASSIGNed on the first diskette can destroy the next diskette. Two I/O paths ASSIGNed simultaneously to the
same file can produce slightly different results than HP BASIC, depending on the buffering Windows does.

The HTBasic ASSIGN includes two new options, FORMAT LSB FIRST and FORMAT MSB FIRST, to specify byte ordering of binary
numeric data transfers. This provides the ability to do binary transfers with any device or computer, regardless of the byte ordering
that device uses.

ATN2
ATN2 is a new HTBasic function.

BEEP
Sound generation capabilities vary from version to version. On computers that do not provide control for variable frequency sound
generation, BEEP generates a beep or bell sound. The range of the duration and frequency are subject to the limits of the computer
hardware. Contrast the following capabilities with HP BASIC. HP BASIC rounds the frequency value to a multiple of 81.38 Hz and
supports a range of 81 Hz to 5.208 KHz.

On the IBM PC, the period (not the frequency) is rounded to a multiple of 0.838 microseconds. The range of frequencies is 40.7 Hz
to 32.767 KHz.

BINEQV/BINIMP
These are new HTBasic functions.

BLOAD/BSTORE
The functionality of the HP BLOAD, BSTORE compiled subroutines are an integral part of the HTBasic language and do not require
CSUBs. See the GLOAD/GSTORE section in this chapter for more information.

BUFFER
In HTBasic, it is usually incorrect to access numeric data in a buffer through the array name. ENTER and OUTPUT should be used
instead.

CAT
The format of CAT output varies according to operating system. This behavior is compatible with HP BASIC. The CAT statement
supports the use of wildcards. Again, wildcard interpretation varies by operating system. See CAT and WILDCARDS in the
Reference Manual for more information.

Under DOS, HTBasic does not allow wildcards to be turned off as HP BASIC allows. Under UNIX, WILDCARDS are ON by default
and the escape character is “\”. HP BASIC uses wildcards as a primary filter and the SELECT option as a secondary filter in
choosing filenames to display. HTBasic is designed to be used with one or the other. Use wildcards or the SELECT option, but not
both.

CDIAL
CDIAL is not supported.

CHECKREAD
This command is equivalent to the DOS VERIFY command and is not supported by HTBasic.

CHGRP and CHOWN
CHGRP and CHOWN are useful with an operating system like UNIX in which files are owned by individuals and groups. These
commands allow a user with the appropriate privilege to change or assign ownership of files. These commands are not used for
Windows, and are not supported. The HTBasic editor will allow these statements to be entered and the syntax checker will check
them for correctness.

CINT
CINT is a new HTBasic function.

COMMAND$
COMMAND$ is a new HTBasic function.

CONFIGURE
The CONFIGURE statement is an enhancement to HTBasic that allows the environment to be customized to a user’s preference, or
to match HP hardware. The CONFIGURE statement is explained in the Installing and Using Manual.

CONVERT
This is an unsupported ASSIGN option.

CONTROL/STATUS
Depending on the hardware interface, some CONTROL and STATUS registers may be different. The PC serial hardware and
TransEra’s GPIB-900 board have registers that are compatible with the HP registers. For other interfaces, consult the interface
register documentation.

TransEra has added capabilities to several of the standard interfaces. The additional registers resulting from these enhancements
are always numbered 100 and above. In some instances HTBasic can pass arrays to and from a single register. This capability is
used for things like gain control lists in data acquisition drivers.

COPY
HTBasic does not support the copy of a full disk to another disk. Use the operating system for full disk copies.

CREATE
Because Windows supports extendible files, the number of records specified in the CREATE statement is ignored. An invalid
number does not generate an error, as it will under HP BASIC. Programs that depend on errors occurring by writing past the last
specified record will not function correctly, as HTBasic will simply extend the file as needed. Programs that depend on the pre-
allocation of the requested records should write dummy data at the time the file is CREATEd. Under HTBasic, it is sufficient to write
data in the last record.

Don’t confuse a LIF ASCII file, created with CREATE ASCII, with a DOS ASCII or UNIX ASCII file, created with CREATE. See
CREATE in the Reference Manual for more information.

Use the CONFIGURE BDAT MSB FIRST statement before creating BDAT files that will be moved back to HP BASIC.

CREATE DIR
This command is exactly like the HP BASIC command of the same name. It is the equivalent of the DOS MD or MKDIR commands,
or the Windows new folder function.

DEF FN
Nested I/O is not allowed under HP BASIC.

Nested I/O does not return an error under HTBasic but should not be used because future improvements may make it illegal.

HTBasic limits the depth that recursion can occur. The depth is limited by the size of the processor stack, not the BASIC workspace
size.

DELSUB
HTBasic allows a string variable to specify the name of the subprogram or function to delete.

DUMP
HP BASIC supports only Hewlett-Packard printers, but HTBasic supports many types of printers. For this reason, you may need to
tell HTBasic what language to use before doing the DUMP. On a PC, the default language is “WIN-DUMP”, which supports both
IBM and Epson graphic printers. If you are going to make screen dumps to another type of printer, you must first use the
CONFIGURE DUMP statement. You may find it convenient to include this statement in your AUTOST file. Chapter 7, “Printer and
Pixel Image Device Drivers,” of the Installing and Using manual explains what languages are supported and how to select them.

EDIT
EDIT SUB and EDIT FN are extensions in HTBasic. Several new edit functions are also included. See “OUTPUT KBD” later in this
chapter.

ENABLE INTR
Depending on the hardware interface, some ENABLE INTR mask values may be different. On the PC, interfaces supported by the
“SERIAL” and TransEra “GPIB” board drivers have interrupt masks that are compatible with the HP masks. For other interfaces,
consult the interface register documentation.

ENVIRON$
ENVIRON$ is a new HTBasic function.

ERRDS
ERRDS is not supported.

ERRM$
HTBasic error messages are usually similar to those in HP BASIC. Programs that depend on ERRM$ returning the exact same
message as HP BASIC should be modified accordingly. In particular, where an HP BASIC error message has seemed less
descriptive than it should be, HTBasic returns a more descriptive message.

ERRN
Any error number of 2000 or greater is an HTBasic extension to HP BASIC. Not all errors that can occur under HP BASIC can occur
under HTBasic. The Reference Manual contains a list of errors that can occur.

In general, the error numbers returned for errors are the same as those returned by HP BASIC. But in some instances the operating
system or environment in which HTBasic runs makes it impossible or impractical to return the same number.

EXECUTE
The EXECUTE statement has been added to run operating system commands or other programs while HTBasic is running.

FBYTE
FBYTE is not supported.

FIX
FIX is a new HTBasic function.

FRACT
HTBasic allows the FRACT of a complex value, returning the fractional part of the real part of the complex value. HP BASIC gives
error 620.

FRE
FRE is a new HTBasic function.

GESCAPE
Only HP BASIC operation selectors 1 to 6 are supported by GESCAPE. Often, where operation selector 7 is used, MERGE or
SEPARATE ALPHA can be used instead. Operation selectors greater than 99 are enhancements to HTBasic.

GET
HTBasic turns lines with syntax errors into comments by inserting “!*” instead of just “!” after the line number. This allows FIND “!*”
to quickly identify lines needing corrections.

GLOAD/GSTORE
The HP rule that images be GLOADed on the same display and with the same write-enable mask that was used when the image
was GSTOREd applies to HTBasic as well. In particular, don’t think that you can GSTORE on an HP BASIC display and GLOAD on
an HTBasic display.

HTBasic GLOAD and GSTORE have been enhanced with the capabilities of HP BASIC’s BLOAD and BSTORE subprograms.
These capabilities allow rectangular blocks of the screen to be stored or loaded. The following subprograms can be used in place of
the BLOAD and BSTORE subprograms for users that want to continue calling BLOAD/BSTORE instead of switching to the new
GLOAD/GSTORE syntax:

10 SUB Bstore(INTEGER Array(*),W,H,OPTIONAL Rule,REAL X,Y)
20 SELECT NPAR
30 CASE 3
40 GSTORE CRT,Array(*),W,H
50 CASE 4
60 GSTORE CRT,Array(*),W,H,Rule
70 CASE 5
80 WHERE X0,Y0
90 GSTORE CRT,Array(*),W,H,Rule,X,Y0
100 CASE 6
110 GSTORE CRT,Array(*),W,H,Rule,X,Y
120 END SELECT
130 SUBEND
140 SUB Bload(INTEGER Array(*),W,H,OPTIONAL Rule,REAL X,Y)
150 SELECT NPAR
160 CASE 3
170 GLOAD CRT,Array(*),W,H
180 CASE 4
190 GLOAD CRT,Array(*),W,H,Rule
200 CASE 5
210 WHERE X0,Y0
220 GLOAD CRT,Array(*),W,H,Rule,X,Y0
230 CASE 6
240 GLOAD CRT,Array(*),W,H,Rule,X,Y
250 END SELECT
260 SUBEND

Note that only rule 3, replace, is currently supported.

GRAPHICS INPUT IS
Both HP BASIC and HTBasic do an implicit GRAPHICS INPUT IS assignment for you if you attempt to use graphic input statements
before an explicit GRAPHICS INPUT IS. The difference is that HTBasic does the implicit GRAPHICS INPUT IS as soon as HTBasic
is started, and HP BASIC waits until the first graphic input statement is executed. The only known effect of the different approaches
is that under HP BASIC, a SYSTEM$(“GRAPHICS INPUT IS”) returns “0" until the first graphic statement is executed and HTBasic
returns the correct value anytime.

HELP
The HELP statement is a new HTBasic statement. It provides on-line help for all language statements. The Reference Manual has
been compressed and is stored in a file. Just enter HELP followed by the keyword of interest and HTBasic brings up the Reference
Manual page for the requested keyword. You no longer have to run and get the Reference Manual when you have a question on
statement syntax or functionality.

HIL
HIL related statements are not supported.

IMAGE
Entering data from a string using

ENTER L$ USING “Y”

will always use the internal byte ordering of the computer. For PCs and compatibles, the byte ordering is LSB FIRST. For HP
Workstations, the byte ordering is MSB FIRST. This limitation applies to ENTER/OUTPUT with strings only. With devices, the byte
ordering can be selected in the ASSIGN statement.

INITIALIZE
HTBasic does not support INITIALIZE. To initialize a new LIF disk, use “INITIALIZE” on an HP BASIC workstation.
RAM disks are not supported with the INITIALIZE “:MEMORY,0" command. Many excellent RAM disk programs are available for the
PC that makes the RAM disk available to all Windows programs, including HTBasic. These programs can usually make RAM disks
in conventional, expanded, or extended memory.

INP/INPW
INP and INPW are new HTBasic functions for communicating with devices having no HTBasic device driver. They are not supported
under protected mode operating systems like NT.

KBD CMODE
HP BASIC and HTBasic both use KBD CMODE ON for Nimitz keyboard softkey compatibility. The Nimitz keyboard is used on the
9836 and has ten softkeys, the lowest of which is labeled k0. The softkey labels are displayed at the bottom of the screen in two
rows, each row containing five labels and each label 14 characters wide.

The difference between HP BASIC and HTBasic’s implementation of KBD CMODE ON is that HTBasic exactly emulates the screen
format for the labels, while HP BASIC uses an emulation that gives physical correspondence with the ITF 4-2-4 softkey layout.

LEXICAL ORDER
Several extensions are present in the LEXICAL ORDER statement of HTBasic to allow user definition of upper/lowercase rules for
languages that are not built-in. The rules can also be loaded from a file.

LINE TYPE
In the LINE TYPE statement, the repeat length is ignored by most graphic drivers.

LINK
LINK is not supported.

LIST BIN
LIST BIN is programmable in HTBasic, but not in HP BASIC.

LOAD
HP BASIC PROG files and HTBasic PROG files are not compatible. To move programs between the two environments, use ASCII
program files.

LOAD BIN
The LOAD BIN statement has been enhanced to allow software switches to be passed to device drivers. HP BASIC BIN files are not
compatible with HTBasic.

LOADSUB
HTBasic allows a string variable to specify the name of the subprogram or function to load.

MASS STORAGE IS
The current “MASS STORAGE IS” file system includes not only the device, but also the current directory. In other words, it specifies
not only which tree (device) you are in, but where in the tree (current directory) you are.

OUT/OUTW
OUT and OUTW are new HTBasic statements for communicating with devices having no HTBasic device driver. They are not
supported under protected mode operating systems like NT.

OUTPUT KBD
Three editor functions have been added to HTBasic and should not be used in programs that will be executed with HP BASIC: DEL
LEFT, NEXT WORD, and PREV WORD. Otherwise, all the two-character function key sequences (CHR$(255)&CHR$(X)) used by
HP BASIC are compatible with HTBasic. If multiple statements are output in a single OUTPUT KBD statement, they are all executed
before the next BASIC line. HP BASIC sometimes intermixes the execution with multiple BASIC lines, based on the presence or
absence of “closure keys.”

PARITY
PARITY is an unsupported ASSIGN option.

PERMIT
PERMIT was used under UNIX to set the permissions (mode) of a file, directory, or device. Permissions specify who can read, write,
or execute a file, and who can search a directory. To change file attributes under Windows, use the file properties dialog.

PHYREC, Phyread, Phywrite
The PHYREC utilities under HP BASIC allow physical disk sectors to be read or written. Such access usually provides
enhancements or file utilities for LIF formatted disks. DOS and UNIX provide methods of accessing physical disk sectors, but no
PHYREC utilities are supplied with HTBasic.

PLOTTER IS
Under HP BASIC, PLOTTER IS 3,"INTERNAL" is equivalent to PLOTTER IS 6,"INTERNAL" unless the HP 98546 Display
compatibility Interface is installed. Under HTBasic, 3 selects CRTA mode and 6 selects CRTB mode. If this is not your intention, you
need to do what HP recommends for users of the 98546: use PLOTTER IS CRT,"INTERNAL" instead of 3 or 6. Note: CTRA mode is
not supported under HTBasic.

Both HP BASIC and HTBasic do an implicit PLOTTER IS assignment for you if you attempt to use graphic statements before an
explicit PLOTTER IS. The difference is that HTBasic does the implicit PLOTTER IS as soon as HTBasic is started, and HP BASIC
waits until the first graphic statement is executed. The only known effect of the different approaches is that under HP BASIC, a
SYSTEM$(“PLOTTER IS”) returns “0" until the first graphic statement is executed and HTBasic returns the correct value anytime.

HP BASIC supports only “INTERNAL” and “HPGL” graphic languages. HTBasic supports loadable graphic device drivers so it is
not limited to these two choices. HTBasic also allows clip-limits to be specified when output is directed to a device, allowing use of
plotters or printers that are incapable of returning p-points.

PRINT
HTBasic has been extended to allow the displacement of the attribute and color control characters that normally have the values
CHR$(128) to CHR$(143). Since the PC has characters in this range that sometimes need to be displayed, HTBasic has the
capability of moving the range with the statement CONTROL CRT,100;1.

PRINT LABEL and READ LABEL
PRINT LABEL and READ LABEL are used to set and read the volume label of a disk drive. HTBasic does not support PRINT
LABEL. To change the label of a disk from an HTBasic program, use the EXECUTE “LABEL x:” command.

PROTECT
PROTECT is used to set LIF file passwords under HP BASIC and file attributes under HTBasic. A special form of PROTECT is used
by HTBasic to change file attributes. The syntax is:

PROTECT file-specifier, protect-code

where protect-code is a string containing zero or more of the following characters:

Character            Meaning
(none)        no protection
R        read-only: File cannot be written or deleted.
S        system file: For the most part, this attribute has no meaning.
H        hidden: File will not be listed by a CAT command.

If a character is not included, that attribute is cleared. If the string is blank, all attributes are cleared.

PRT
Most PC printers are connected to the parallel printer interface. For this reason, PRT returns the value 10 instead of 701. Programs
with statements that use PRT explicitly, such as “PRINTER IS PRT” need not be changed if a parallel printer is used on the PC. To
change PRT back to 701, for IEEE-488 printers at primary address 1, use the statement “CONFIGURE PRT TO 701". You may find
it convenient to include this statement in your AUTOST file. This statement is not necessary if you use the value 701 (or any other
value) explicitly.

PURGE
PURGE is similar to a combination of the DELETE and RD or RMDIR commands. Unlike DELETE, PURGE will only delete one file
at a time, and will also delete directories. PURGE will not delete a directory unless there are no files in that directory. Also, HTBasic
will allow you to PURGE an ASSIGNed file. The actual PURGE takes place after the file is closed.

QUIT
QUIT closes the HTBasic child window. Any program or data in memory is lost. You should store any program changes before
quitting.

QUIT ALL
QUIT ALL exits HTBasic and returns to the operating system. Any program or data in memory is lost. You should store any program
changes before quitting.

READIO/WRITEIO
READIO/WRITEIO access hardware registers directly, and therefore, if the interface hardware is different than the hardware on an
HP BASIC Workstation, the READIO/WRITEIO registers will not be compatible. TransEra supplies a PC IEEE-488 bus controller
card that duplicates the Series 200/300 HP-IB READIO and WRITEIO registers. Other IEEE-488 bus controller cards are not usually
completely compatible. For other interfaces consult the interface register documentation.

RENAME
RENAME is used to change the name of a file, but can also move a file from one directory to another directory on the same disk.
RENAME is similar to the DOS RENAME command.

SAVE
The SAVE statement in HTBasic can be set to save programs in either ordinary ASCII or LIF ASCII. This is done with the
CONFIGURE SAVE ASCII statement. (DOS ASCII and UNIX ASCII are ordinary ASCII files.)

SCRATCH BIN
SCRATCH BIN is not supported for HTBasic binaries. You must QUIT ALL and re-start HTBasic to scratch all binaries.

SEPARATE ALPHA
HP BASIC assigns green to the alpha plane by assigning green to pens 8 through 15. HTBasic assigns white. If you prefer green, or
some other color, you may explicitly set pen values 8 to 15 to the color desired.

SET ALPHA DISPLAY MASK
SET MASK is not supported. Currently, MERGE/SEPARATE ALPHA are the supported methods of changing the masks.

SET CHR
SET CHR is not supported.

SET TIME/TIMEDATE
HP BASIC/UX keeps a BASIC time that is separate from the actual system time. SET TIME and SET TIMEDATE, specified without
any time value, resynchronized the two. HTBasic uses SET TIME to set and SET TIMEDATE to read the system clock.

SOUND
SOUND is not supported.

STATUS
STATUS @Iopath,2 always returns a 4.

STATUS @File,3 returns the current length, not the CREATE length. Under HTBasic, files are extendible.

The STATUS() function (as opposed to the STATUS statement) is an addition to HTBasic. Any STATUS or CONTROL registers
greater than 99 are also additions.

As in HP BASIC, STATUS register 0 of interface cards contains the card ID. Interface cards that are available on a PC, but not on an
HP BASIC Workstation are identified with ID numbers greater than or equal to 300.

STORE
HP BASIC PROG files and HTBasic PROG files are not compatible. To move programs between the two environments, use ASCII
program files.

STORE SYSTEM
In HP BASIC this statement stores a copy of the operating system with all loaded BINs already linked in. Under HTBasic this is not
possible. Use AUTOST to load HTBasic device drivers.

SYMBOL
LORG 5 moves the symbol origin from (0,0) to (5,8). In HP BASIC it moves the origin to (4.5,7.5).

SYSBOOT
HTBasic does not support SYSBOOT, which under HP BASIC reboots the computer. Since HTBasic runs as a guest of the
operating system, it is considered inappropriate to reboot the computer.

SYSTEM$
Minor differences in some SYSTEM$ responses exist where appropriate to reflect the hardware differences between the Windows
and HP/UX operating systems. See SYSTEM$ in the on-line Reference Manual for more details.

The SYSTEM$(“DISP LINE”) function is an HTBasic extension that returns the present contents of the display line.
The SYSTEM$(“VERSION:HTB”) function returns the HTBasic version description, for example, “Windows Release 8.0". This
function can be useful for programs that run on both HP BASIC and HTBasic systems, enabling them to determine which system
they are currently running on. The following example sets a variable according to the system running the program:

10 SUB Which_system
20 COM /Which_system/Htbasic,Hpbasic
30 IF SYSTEM$(“VERSION:HTB”)="0" THEN
40 Hpbasic=1
50 ELSE
60 Htbasic=1
70 END IF
80 SUBEND

TIMEZONE
HTBasic does not require this statement and will return an error if an attempt is made to execute it. The editor will allow it to be
entered, and the syntax checker will check it for correctness to allow you to develop programs and run them under HP BASIC. HP
BASIC requires this statement for two reasons: 1) HP BASIC/UX keeps a time clock independent of the UNIX time, and 2) it is
possible to boot HP BASIC/WS on a computer whose real-time clock is set to Greenwich Mean Time (GMT).

TRANSFER
HTBasic currently supports TRANSFER for files, RS-232 and GPIB.

WRITEIO
See the explanation under READIO for some differences. Other processors cannot execute the Motorola code accessed by
WRITEIO 9827. The code must be rewritten.

XREF
HTBasic allows a string variable to specify the name of the subprogram or function.

ZERO
ZERO is an unsupported ASSIGN option.

LIF Diskette Utilities
The LIF diskette utilities are used to copy program and data files between LIF diskettes and PC disks. Where necessary, the file
header is converted and then the data is copied to the new file. These utilities work with single or double-sided diskettes, formatted
with 256 or 1024 byte sectors.

NOTE: These utilities do not work on protected mode systems such as Windows NT.

HPCAT prints a CATalog of files on an HP LIF diskette. HPCOPY copies files between LIF diskettes and PC disks. HPPURGE
deletes files on LIF diskettes. These commands are used at the DOS prompt. To use them while running HTBasic, use the
EXECUTE command, i.e. EXECUTE “hpcat 0:”. You may use these commands if they are in the current directory or if a PATH has
been set up to the directory in which they are stored (see your DOS manuals).

Problems
It is fairly common to find a LIF floppy that cannot be read by one or more PC floppy disk drives. If you have problems, try several
computers from different manufacturers and you can usually find one that works. If you have problems, read the “Common
Problems” section later of this manual.

HPCAT
Display a CATalog of files on an HP LIF diskette.

Syntax:

HPCAT drive:

where:
drive = 0, 1, ...

Sample:

HPCAT 0: ! drive A
HPCAT 1: ! drive B

This command allows you to display a catalogue (directory) of the files on an HP LIF diskette. An HP LIF diskette is one that was
initialized with the HP BASIC INITIALIZE command on an HP 9000 Series 200/300 workstation. The diskette must be inserted into a
PC diskette drive. Both 5-1/4 and 3-1/2 inch diskette drives are supported. Disk drives connected to the HP-IB are not supported.

The first drive, “A”, is number 0, the second drive is number 1. It is recommended that you only use diskette drives “A” and “B”. In
limited circumstances, other drives will work, but some experimentation is needed to use them. For other drives, you must discover
the diskette drive number. Try values from 0 to 9. If none work, your drive or system may not support the 256 or 1024 byte sectors
required by HP diskettes.

HPCOPY
Copies files between an HP LIF diskette and a DOS disk.

Syntax:

HPCOPY [drive:]lif-filename [disk:]dos-filename [-LIF]
HPCOPY [disk:]dos-filename [drive:]lif-filename

where:
drive = 0, 1, 2,...
disk = A, B, C,...
lif-filename = a legal LIF filename, may include wildcards
dos-filename = a legal DOS filename, may include wildcards

Sample:

HPCOPY 0:hpfile C:DOSFILE
HPCOPY C:GOOD.BYE 3:Hello
HPCOPY A:DOSFILE 1:HPbdat
HPCOPY 0:lifASCII C:\DIR2\DOSFILE
HPCOPY 0:* C:
HPCOPY C:\HTB\DATA\D?T* 0:

This command allows you to copy ASCII, BDAT and ordinary files from HP LIF diskettes to DOS disks or vice-versa. An HP LIF
diskette is one that was initialized with the HP BASIC INITIALIZE command on an HP 9000 Series 200/300 workstation. The
diskette must be inserted into a PC diskette drive. Both 5-1/4 and 3-1/2 inch diskette drives are supported. Disk drives connected to
the HP-IB are not supported.

Programs must be in ASCII format. PROG files are not supported. BDAT files can be transferred with the limitations noted below.

When files are copied no translation is done on the file contents; a LIF ASCII file remains a LIF ASCII file. However, you may write
simple HTB programs that do the translation if you need to use the data files with other DOS programs. This conversion is not
required if the data files will be used only by HTBasic, because HTBasic knows how to use HP BASIC files.

Filenames
The lif-filename should be the legal name (including correct capitalization) of a LIF file. If the LIF diskette is in drive A or B, prefix the
name with “0:” or “1:”. If the LIF diskette is in another drive, specify the drive number (as explained above under “HPCAT”).

The dos-filename should be the legal name of a file. This name optionally can include a drive letter and a full path. If no drive is
specified, the default drive is used. This drive must be different from the drive containing the LIF diskette. If no path is given, the
present directory is used.

If the destination file already exists on the PC, it is overwritten. If the destination file already exists on a LIF diskette, an error is
reported and the file is left unchanged.

Copying Files to HP BASIC
HTBasic can create typed files that are compatible with Series 200/300 computers, but that is not the default. If you plan on
transferring files back to HP BASIC systems or sharing the files with HP BASIC systems on a network, you should execute the
CONFIGURE CREATE “HP” statement before creating any files. Any BDAT or ASCII files created after this statement is executed
are completely compatible with Series 200/300 computers.

If you do not plan on transferring files back to HP systems, it is best to use CONFIGURE CREATE “HTB” (the default), since the file
header is smaller and the fastest byte ordering will be used.

Using Wildcards
Wildcards can be used to transfer more than one file at a time. If a wildcard is used, it should only be used in the source filename,
not the destination filename. The destination should specify only the drive (and directory if the destination is a PC disk). Legal
wildcards are “*” and “?”. An asterisk will match any one or more characters starting at that location. A question mark will match any
one character at that location. These conventions are also explained in your Windows manual.

Because of the differences in legal LIF and PC filenames, filenames may be translated. A LIF filename is limited to at most ten
characters and all ASCII characters except “space,:,<,|” are legal LIF filename characters. A DOS filename is limited to 8 characters,
a period and 3 characters and all characters except “\/:|<>+=;,” and control characters whose ASCII value is less than the space
character are legal DOS filename characters. Also, lowercase letters are converted to uppercase by DOS.

When transferring a file from a DOS to a LIF disk the first ten characters of the filename, including the period, are used for the LIF
name. Any illegal LIF characters in the DOS filename are translated to an underscore character.

When transferring a file from a LIF disk to a DOS disk the filename is converted to uppercase and if necessary, a period is inserted
after the eighth character. Because DOS converts lowercase letters to uppercase, two LIF files named “Aa” and “aa” will be
transferred into the DOS filename “AA”. The second file transferred will overwrite the first file transferred.

Note: Wildcards are not supported by the HPCOPY that is supplied with the Demonstration Version of HTBasic.

-LIF Option
With the -LIF header option, when copying files from a LIF diskette to DOS, if the file type is ASCII or BDAT, the file is created on the
DOS disk with an HP LIF file header rather than an HTBasic file header. When copying files from a LIF diskette to DOS, all other file
types besides HP-UX are automatically created on the DOS disk with an HP LIF file header. When copying files from a DOS disk to
LIF, this option is ignored; files with HP LIF file headers are handled automatically.

HPPURGE
Deletes files from an HP LIF diskette.

Syntax:

HPPURGE [drive:]lif-filename

where:
drive = 0, 1, ...
lif-filename = a legal LIF filename

Sample:

HPPURGE 0:LIFFILE
HPPURGE 1:Hello

This command allows you to delete ASCII, BDAT and ordinary files from HP LIF diskettes. An HP LIF diskette is one that was
initialized with the HP BASIC INITIALIZE command on an HP 9000 Series 200/300 workstation. The diskette must be inserted into a
PC diskette drive. Both 5-1/4 and 3-1/2 inch drives are supported. Diskette drives connected to the HP-IB are not supported.

The lif-filename should be the legal name (including correct capitalization!) of a LIF file. The first drive, “A”, is number 0, the second
drive is number 1. It is recommended that you only use diskette drives “A” and “B”. In limited circumstances, other drives will work,
but some experimentation is needed to use them. For other drives, you must discover the diskette drive number. Try values from 0
to 9. If none works, your drive or system may not support the 256 or 1024 byte sectors required by HP LIF diskettes.

Common Problems
The following paragraphs document some common problems you may experience trying to use HPCAT, HPCOPY and HPPURGE.
If you experience a problem, glance through the headings to find the answer to your question.

HPCOPY Says the File is Not Present, But It Is. Use HPCAT to find the exact spelling, including upper and lower case. Remember
that LIF filenames are case-sensitive and DOS filenames are not. “HELLO” and “hello” refer to different LIF files, but the same DOS
file.

HPCOPY Gives An Error Part Way Through the File and Then Stops. This error is common on double-sided 3-1/2 inch diskettes. It
usually means your computer ROM BIOS is incapable of reading some LIF diskettes. Try another PC or another LIF diskette. Often
a single sided LIF diskette will work where a double sided will not. A 9122 drive can be instructed to initialize a double-sided (or
single sided) diskette as if it were single sided by using INITIALIZE option 4. If the diskette has previously been initialized, you need
first to remove the HP format information from the second side by formatting on your PC (or by using INITIALIZE option 2) before
initializing as single sided.

The Error “Bad command or filename” Is Reported. HPCAT or HPCOPY is not in the current directory and no PATH is set up to
point to them.

Error 910 Is Reported. You are currently running HTBasic, not a DOS Window. HPCAT, HPCOPY and HPPURGE are DOS
command line commands, not BASIC commands. Issue the commands in a MS-DOS window. Or use the QUIT ALL command to
exit to Windows and start a DOS window before proceeding. Or use the HTBasic EXECUTE statement:
EXECUTE “HPCAT 0:”

The Error “Sector not found..., Abort, Retry, Ignore?” Is Reported. This or similar errors usually mean that you have inserted a LIF
diskette in the current DOS drive. While your DOS prompt is “A” you cannot put a LIF diskette in drive A.

The Light on the Drive Does Not Turn On. If your diskette drive has a letter other than “A” or “B”, you may not be able to use it. In
limited circumstances, other drives will work, but some experimentation is needed to use them. For other drives, you must discover
the diskette drive number. Try HPCAT with values from 0 to 9 until the light comes on the drive you are trying to use.

Changes From Earlier Releases
The following sections document the differences between the current release and earlier releases.    “Changes From 7.0 to 8.0,”
“Changes From 6.0 to 7.0,” “Changes From 5.0 to 6.0,” “Changes From 4.0 to 5.0,” “Changes From 3.0 to 4.0” and “Changes
From 1.x/2.x to 3.0” are the main sections.    If you are upgrading from more than one release, you may need to read more than one
section to see what changes affect you.

Changes From 7.0 to 8.0
If you are upgrading from 7.x to this release, read the following material to see what changes may affect you.

· New Windows style editor
· New HTBasic Debugger
· DLL Toolkit to allow users to call Dynamic Link Libraries from HTBasic
· TRANSFER function for GPIB, Serial, and File is fully supported
· New LONG integers variable type with a range of -2,147,483,648 to 2,149,483,647 (See the on-line Reference Manual for

more information)
· STATIC variables added as another variable type    (See the on-line Reference Manual for more information)
· Enhanced printer support for multiple types of drivers (See Chapter 6 of this manual)

New Editor
In addition to the traditional HP BASIC-style editor (Legacy Editor), HTBasic 8.0 also includes a new Windows style editor. The new
editor has the ability to toggle line number On and Off.    When “On”, line number behavior essentially remains consistent with the
Legacy Editor except the HTBasic for Windows editor line numbers can be edited only through the RENumber, COPYLINES, and
MOVELINES commands.    When in the “Off” position, the numbers are not removed, but the line numbers are no longer displayed.

A primary addition to the new editor is the implementation of standard Windows mouse functions.    Source code is more easily
edited with cut, copy, and paste functions.    Another standard Windows feature now implemented is the Undo and Redo function.

Bookmarking functions have been added to the new editor for improved code navigation.    The Windows editor also provides the
user the ability to customize the color and font selection in the editor environment.    Color allows individualized adaptation of the
source code to fit each user’s requirements.

Debugger
The new HTBasic Debugger was designed to promote optimal programming effectiveness and flexibility using HTBasic within the
Windows operating system.    The Debugger tools allow the user to view the program in specific detail.

A key feature of the Debugger is Breakpoints, which provide a “pause” in program execution so that variable values and other
parameter changes may be observed.    The HTBasic debugger supports line, conditional, and global breakpoints. Line breakpoints
pause execution in a specified line.    Conditional breakpoints pause execution at a specific line if a specified condition is met.   
Global breakpoints pause program execution when a specified variable reaches a specific value and condition regardless of where
the program is.

Another feature of the debugger is Step functions, which allow the user to move through and observe program execution. There are
three step functions: step in, step over, and step out.    “Step in” steps one line of code at a time, following all program branches.   
“Step out” continues to end of context, stopping when entering the calling context.    “Step over” runs the entire sub context and
stops at the next executable line of the current context.    “Step out” and “Step over” will stop at all breakpoints in sub contexts.

Running to the cursor and running from the cursor provide a fast and flexible way to move through code.    Run to Cursor and
Continuing from the Cursor are similar in functionality to a breakpoint with the cursor acting as a breakpoint.    Run to / from Cursor is
governed by the same rules as the CONTINUE command.

One of the most powerful tools in the Debugger is the new Debug Window.    Six new windows are provided to assist in debugging
programs by permitting the user to monitor variables, subroutines, breakpoints, and the BASIC source code as it executes.    All
Debug Windows may be moved and rearranged to suit the working style of any programmer.

The Watch Window allows the user to observe a list of user-defined variables and their values during each step of program
execution.    There are “Variable” (variable name), “Type” and “Value” columns in the Watch Window.    Type can be Array, Integer,
Real, Complex, String, Long, Static, or I/O Path.

The Line Breakpoints Window allows the user to observe the line breakpoints as the program is run.    Breakpoint parameters
monitored are “Enabled,” “Type,” “Line,” “Subroutine,” “Variable,” “Condition,” and “Value.”

The Global Breakpoints Window permits the user to observe the global breakpoints as the program is running.    The Global
Breakpoint Window monitors “Enabled,” “Subroutine,” “Variable,” “Condition,” and “Value” status.

The Trace Window permits the user to observe which commands are being executed in a running program.    There is nothing to
“set” in this window.    It automatically monitors and notes each HTBasic command line as it is executed.    Only a “Command”
column exists in the Trace Window.    The Trace Window differs fundamentally from HTBasic’s well-known TRACE Statement in that
the Trace Window provides a running trail of commands executed.    The TRACE Statement is limited to only what appears on the
message line before it scrolls away.

The CALL Stack Window was designed to open a view into the CALL Stack (the CALL Stack is used by BASIC to track subroutines
accessed by CALL statements) so that one can see it operate at each step of the running program.    There is nothing to “set” in this
window.    It automatically monitors and notes what is going on in the program defined CALL Stack as the program is running.    Only
a “Subroutine” column exists in the CALL Stack Window.

The Code Window displays the program source code as the program is running.      There are “Line” (Number) and “BASIC Code
Lines” columns in the Code Window.    These columns show the line number within the BASIC source code program and the actual
text of the code lines.    Breakpoints, Bookmarks, and the program pointer are seen in this window as well.

DLL Toolkit
The new DLL Toolkit allows users to call Dynamic Link Libraries (DLLs) from HTBasic.    The DLL Loader calls precompiled functions
created in other programming languages, most notably C/C++, using the _cdecl calling convention.    This will allow the user to have
the object-oriented flexibility of C and C++ while retaining the simplicity of HTBasic.

TRANSFER
The TRANSFER function for GPIB, Serial, and File is fully supported in the HTBasic 8.0 release. The TRANSFER statement sets up
a data transfer between memory and a device.    This transfer typically occurs in the background while HTBasic continues to run in
the foreground.    The GPIB TRANSFER is supported under all of the current GPIB drivers including GPIB, GPIBNI, and HPIBS
(SICL) drivers.

Changes From 6.0 to 7.0
If you are upgrading from 6.x to this release, many new features have been added.    The most significant are listed here.

· Added Display Functions, which control the display for control characters on the CRT.    See on-line Reference Manual
· Support for SEPARATE ALPHA FROM GRAPHICS.    See on-line Reference Manual.
· New drivers for National Instruments’ line of Data Acquisition (DAQ) cards including their AT, PCI, PXI, and PCMCIA platforms
· New GESCAPE CRT CODES were added for manipulation of the HTBasic program window. See on-line Reference Manual
· KBD Control Registers were added for directory CAT and mouse control.    See Chapter 4.
· Version 7.0 has added improved functionality to the SERIAL32 driver, which include inbound TRANSFER, clearing of the

receive buffer using RESET, and BREAK detection.
· The HP SICL driver for GPIB (HPIBS) now supports the TransEra’s Model 900 GPIB card under Windows NT.

Changes From 5.0 to 6.0
If you are upgrading from 5.x to this release, read the following material to see what changes may affect you.

· HTBasic for Windows no longer requires the use of a hardware key; it now uses a software solution for protection against
unauthorized reproduction.    There is a serial number provided in the packaging that is required to be input during installation.
Proper installation requires the correct serial number.

· Other changes to Version 6.0 include enhancements to the SERIAL32 device driver, including:
· Support for STATUS register 5, which is the Read hardware handshaking, output line
· Support for STATUS register 11, which is the Modem Status line
· Increased Baud rates up to 115200 bps

