Contents
User's Guide

Chapter 1 Getting Started

Chapter 2 Porting HP BASIC Programs to HTBasic
Chapter 3 Language Elements

Chapter 4 Program Flow Control

Chapter 5 Mathematics

Chapter 6 Graphics

Chapter 7 General Input and Output

Chapter 8 CRT, Keyboard and Printer

Chapter 9 Files

Chapter 10 IEEE-488 Interface Bus

Chapter 11 Serial (RS-232) 1/0

Chapter 12 Other 1/0 Destinations/Sources

Chapter 13 International Language Support

Other Manuals Reference Manual Installing and Using Manual

Copyright ® 1988-1998 by TransEra Corp.

Contents
Chapter 1, Getting Started

Chapter 1 Getting Started

High Tech Basic
Installation Manual

Reference Manual
This Manual

Language Definition

Input and Output

Advanced Topics
Using the Integrated Environment
Display Screen

Output Area

Control Characters

Display Enhancements Characters

Display Line

Input Line

Message Line

Softkey Menu

Customizing the Environment
Program Development

Program Documentation

Live Keyboard Execution
HELP Command

EDIT Mode
SUB Mode

Save Changes
Starting Edit Mode
Terminating Edit Mode
Controlling the Cursor
Syntax Checking
Inserting Lines

Deleting Lines
Immediate Commands

Associated Commands
FIND Command
CHANGE Command
COPYLINES Command
MOVELINES Command
INDENT Command
REN Command

DEL Command
SCRATCH Command
XREF Command
SECURE Command

Alternate Editing Technigues
Using an Editor

Running and Stopping Programs
STOP

QUIT

Debugging Programs

Pausing the Program
Continue

STEP
TRACE Statement
Saving Programs
STORE Statement
SAVE Statement
Loading Programs
GET Statement
LOAD Statement
Subprograms
LOADSUB Statement
DELSUB Statement

Contents
Chapter 2, Porting HP BASIC Programs to HTBasic

Chapter 2 Porting HP BASIC Programs to HTBasic
Compatibility
Hardware Differences
Disk Drives

Softkey Layout
A New Backspace
Series 300 Bit-Mapped (CRTB) Displays
9836C (CRTA) Displays
Other Video Circuitry Differences
Expanded Memory
Processor
Speed
Clock
HP-IB/IEEE-488
Character Set
Shared Resource Manager (SRM)
Miscellaneous Differences
HP ASCII File Problem
File Systems
LIF ASCII vs. Ordinary ASCII
DOS (FAT) File System
DOS (FAT) File Specifier
DOS Directory Path

DOS File Types and Access Capabilities
DOS Devices

DOS Wildcards

Keyword Differences
ALLOCATE
ASSIGN

BINEQV/BINIMP
BLOAD/BSTORE

CHECKREAD
CHGRP and CHOWN
CINT

COMMANDS$
CONFIGURE
CONTROL/STATUS

COPY

m

DI
ENABLE INTR
ENVIRON
ERRDS

RRM

ERRN
EXECUTE

.]

MASS STORAGE IS
OUT/OUTW

OUTPUT KBD

PERMIT

PHYREC, Phyread, Phywrite
PLOTTER IS

PRINT

PRINT LABEL and READ LABEL
PROTECT

PRT

PURGE

QUIT

READIO/WRITEIO
RENAME

SAVE

SCRATCH BIN

SEPARATE ALPHA

SET ALPHA/DISPLAY MASK
SET CHR

SET TIME/TIMEDATE
SOUND

STATUS

STORE

STORE SYSTEM

SYMBOL

SYSBOOT

SYSTEM$
TIMEZONE
TRANSFER
WRITEIO
XREF

Contents
Chapter 3, Language Elements

Chapter 3 Language Elements

Program lines
Line Numbers

Line Labels
Statements
Comments

Keywords
Program Contexts
Main Context
Subprogram Contexts
User Defined Function Contexts
CSUB Contexts
Integer Numbers
Real Numbers
Cautions

REAL Comparisons
FOR Loops
Definition

Complex Numbers

Strings
1/0O Paths

Constants
Numeric Constants
String Constants
Variables
Variable Names
Variable Types
Variable Scope
Array Variables
Declaration
String Arrays
Examples

Contents
Chapter 4, Program Flow Control

Chapter 4 Program Flow Control
Program Execution
The Paused State
The Stopped State
Returning to the Operating System

Branching
Conditional Statements

ON...GOTO Statement
ON...GOSUB Statement
SELECT and CASE Statements
Loops
FOR Loops
Other Loop Types
Subroutines

Program Contexts
Main Context
Subprogram Contexts

Subprogram Pointers
User Defined Function Contexts

CSUB Contexts
Interrupting Program Flow
Priority
Global and Local Aspects
Disabling Events
Error Handling

Defining an Error Handler
The Error Handler Routine

EXECUTE Statement
DOS Version Usage Notes
Windows Version Usage Notes
UNIX Usage Notes

Contents
Chapter 5, Mathematics

Chapter 5 Mathematics
Numeric Expressions
String Expressions
Matrix Expressions
Operands
Operators

Arithmetic
Binary
Conversions
Date/Time
Environment
Error

1/O Functions
Logical
Relational
String Functions

Transcendental and Trigonometric
Other Functions

User Defined Functions
Automatic Conversions
Execution Precedence

Matrix Operators
Matrix Operators with Matrix Result
Matrix Operators with Scalar Result
Matrix Sub-array Assignments
Matrix Searching
Matrix Inversion
Complex Operators
Extended Statements and Operators
Added Statements and Operators
SYSTEM$
AVAILABLE MEMORY
CRTID
DISP LINE
DUMP DEVICE IS
GRAPHICS INPUT IS
KBD LINE
KEYBOARD LANGUAGE
LEXICAL ORDER IS
MASS MEMORY
MASS STORAGE IS or MSI
PLOTTER IS
PRINTALL IS
PROCESS ID
PRINTER IS
SERIAL NUMBER
SYSTEM ID
SYSTEM PRIORITY

TIMEZONE IS
TRIG MODE
VERSION:BASIC
VERSION:HTB
VERSION:OS
VERSION:bin-name
WILDCARDS
WINDOW SYSTEM

Contents
Chapter 6, Graphics

Chapter 6 Graphics

Simple Graphics Statements
GINIT Statement
GCLEAR and CLS Statements
Graphics Coordinate System
MOVE and DRAW Statements
PLOT Statement
PENUP _Statement

User Defined Graphic Units
VIEWPORT Statement
CLIP Statement
SHOW Statement
WINDOW Statement
WINDOW and VIEWPORT Effects

Annotating Charts and Graphs
AXES and GRID Statements
FRAME Statement
LABEL Statement
CSIZE Statement
LDIR Statement
LORG Statement

Graphic Attributes
LINE TYPE Statement
Color Graphics
HSL Color Space

RGB Color Space
Pen Numbers

COLOR MAP Mode

SET PEN Statement
GESCAPE Statement

Code 1

Code 2

Code 3

Codes4 &5

Code 6

Code 7

Codes 100 & 101

Incremental and Relative Graphics
IMOVE Statement

IDRAW Statement
IPLOT Statement
RPLOT Statement

Arcs, Circles, and Rectangles

POLYGON and POLYLINE Statements
RECTANGLE Statement
User Defined Symbols
AREA Fill Styles and Colors
AREA Statement
FILL and EDGE Options

Array Specified Pen Control
AREA Color

FILL and EDGE
Graphics Rotation
PDIR Statement
PIVOT Statement
Screen Raster Images
Full Screen
Rectangular Blocks
Screen Storage Formats
CGA & Hercules Graphics Cards
EGA, VGA & SuperVGA 16 Color Graphics Cards
Super VGA 256 Color Graphics Cards
S3 & ATI Graphics Cards16 Color Modes
S3 & ATI Graphics Cards256 Color Modes

Screen Dumps
DUMP ALPHA Statement

DUMP GRAPHICS Statement
DUMP DEVICE IS Statement
Partial Screen Dumps

Graphics Devices
PLOTTER IS Statement

GSEND Statement
GRAPHICS INPUT IS Statement
READ LOCATOR Statement
SET LOCATOR Statement
WHERE Statement
Tracking Graphics Input
SET ECHO Statement
TRACK and DIGITIZE Statements
Mixing Output and Input Devices
Separate and Merged Alpha
Merged Alpha
Separate Alpha
Porting Issues

Contents
Chapter 7, General Input and Output

Chapter 7 General Input and Output
ASSIGN Statement

Syntax
Devices
Files
Pipes
Buffers
Attributes
FORMAT Options
BYTE and WORD
EOL
APPEND
RETURN
Closing an 1/0O Path
OUTPUT Statement
Numeric ltems
String ltems
End of Line
END
ENTER Statement
Numeric ltems
String Items
Statement Termination
Formatted I/O
IMAGE Interpretation
Syntax
OUTPUT, etc.
ENTER

Creating Format Strings
PRINT Examples

ENTER Example
END
TRANSFER
Examples
Support
Buffers
Transfer Type
Transfer Method
Transfer Termination
ON EOR and ON EOT
Termination
Hanging and Premature Termination
Outbound TRANSFER
Inbound TRANSFER
STATUS, CONTROL, READIO, and WRITEIO
CONTROL Statement
STATUS Statement and Function

Device 1/0O Path Registers

T

ASCII File 1/0O Path Registers

BDAT and Ordinary file 1/0O Path Registers
BUFFER 1/O Path Reqisters

Pipe 1/0 Path Registers

Interface Hardware Registers
READIO Function

WRITEIO Statement

PEEK/POKE Memory

IN/OUT Operations

Locating a Numeric Variable

Calling Assembly Language Subroutines

Interrupts
ON INTR Statement

OFF INTR Statement
Enabling and Disabling Interrupts
Interrupt Routines

Specialized /O Statements
READ/DATA Statements

BEEP Statement
PC Usage Notes
UNIX Usage Notes

Contents
Chapter 8, CRT, Keyboard, and Printer

Chapter 8 CRT, Keyboard, and Printer
Display (CRT)

Display Organization
OUTPUT CRT

PRINT
DISP Statement
PRINT and DISP Statements
Attributes and Colors
Display Functions
CRT Related Statements
CONTROL/STATUS CRT
ENTER CRT
Keyboard (KBD)
ENTER KBD
INPUT Statement
LINPUT Statement
OUTPUT KBD
CONTROL/STATUS KBD
Using a Printer
Accessed Directly

Using the Print Daemon
The PRT function

The PRINTER IS device
The PRINTALL IS device
CRT and KBD Registers
CRT CONTROL Reqisters
CRT STATUS Reugisters
KBD CONTROL Reqisters
KBD STATUS Registers

Contents
Chapter 9,Files

Chapter 9 Files

File Management Commands
ASSIGN
CAT
CHGRP and CHOWN
COPY
CREATE
INITIALIZE
LINK
LOCK and UNLOCK
MASS STORAGE IS
PERMIT
PRINT LABEL and READ LABEL
PROTECT
PURGE
RENAME
RESET
SYSTEMS$("MSI")
WILDCARDS

File Types
BDAT Files
ASCII Files
Ordinary Files

File Organization
Sequential Files
Random Access Files

Converting LIF ASCII files to DOS ASCII

Contents
Chapter 10, IEEE-488 Interface Bus

Chapter 10 IEEE-488 Interface Bus

IEEE-488 History

IEEE-488 Overview
Data Lines
Handshake Lines
Interface Management Lines
Device Addresses

IEEE-488 Statement Overview

High Level Transfer Statements

High Level Bus Control Statements
ABORT Statement

CLEAR Statement
LOCAL Statement
LOCAL LOCKOUT Statement
PASS CONTROL Statement
PPOLL Function
PPOLL CONFIGURE Statement
PPOLL RESPONSE Statement
PPOLL UNCONFIGURE Statement
REMOTE Statement
REQUEST Statement
RESET Statement
SPOLL Function
TRIGGER Statement
Byte Level Transfer Statements
SEND Statement
OUTPUT and ENTER Statements
Low Level Bus Control Statements
CONTROL and STATUS Statements
READIO and WRITEIO Statements
IEEE-488 Interrupts
ON INTR Statement
OFF INTR Statement

Enabling and Disabling Interrupts
Interrupt Enable Register Bit Mask.
Handling Service Requests
Parallel Polling Devices

IEEE-488 Registers

IEEE-488 CONTROL Registers
CONTROL 0O

CONTROL 1
CONTROL 2
CONTROL 3
CONTROL 4
CONTROL 5
IEEE-488 STATUS Registers

STATUS 0

STATUS 1

STATUS 2
STATUS 3
STATUS 4
STATUS 5
STATUS 6
STATUS 7
9914 READIO Registers
9914 READIO 1
9914 READIO 3
9914 READIO 5
9914 READIO 17
9914 READIO 19
9914 READIO 21
9914 READIO 23
9914 READIO 29
9914 READIO 31
9914 WRITEIO Reqgisters
9914 WRITEIO 3
9914 WRITEIO 17
9914 WRITEIO 19
9914 WRITEIO 23
9914 WRITEIO 25
9914 WRITEIO 27
9914 WRITEIO 29
9914 WRITEIO 31
7210 READIO Reqgisters
7210 READIO 1
7210 READIO 3
7210 READIO 5
7210 READIO 18
7210 READIO 20
7210 READIO 22
7210 READIO 24
7210 READIO 26
7210 READIO 28
7210 READIO 30
7210 READIO 32
7210 WRITEIO Registers
7210 WRITEIO 3
7210 WRITEIO 18
7210 WRITEIO 20
7210 WRITEIO 22
7210 WRITEIO 24
7210 WRITEIO 26
7210 WRITEIO 28
7210 WRITEIO 30
7210 WRITEIO 32

Statement Bus Action Summary

PASS CONTROL
PPOLL

PPOLL CONFIGURE
PPOLL UNCONFIGURE
REMOTE

Contents
Chapter 11, Serial (RS-232) 1/0

Chapter 11 Serial (RS-232) 1/0
General 1/10

Handshaking
ENTER Serial
OUTPUT Serial
Interrupt Support
Connecting Devices to the Serial Interface
"Standard" Cables
Cabling From the Ground Up
Communication Parameters
Data Formats
Interface Status Errors
RS-232: The Standard Non-Standard
The Standard
Pin Assignments for PC 25 and 9 pin connectors
The Non-Standard
Pin Assignments
Serial Registers

Serial CONTROL Registers
CONTROL O

CONTROL 1
CONTROL 2
CONTROL 3
CONTROL 4
CONTROL 5
CONTROL 6
CONTROL 7
CONTROL 8to0 11
CONTROL 12
CONTROL 13
CONTROL 14
CONTROL 100
Serial STATUS Registers
STATUS 0
STATUS 1
STATUS 2
STATUS 3
STATUS 4
STATUS 5
STATUS 6
STATUS 7
STATUS 8
STATUS 9
STATUS 10
STATUS 11
STATUS 12
STATUS 13
STATUS 14

STATUS 100
STATUS 101
Serial READIO Registers
READIO 0O
READIO 1
READIO 2
READIO 3
READIO 4
READIO 5
READIO 6

Serial WRITEIO Registers
Serial ENABLE INTR Mask

Contents
Chapter 12, Other 1/O Destinations/Sources

Chapter 12 Other 1/O Destinations/Sources

I/O to Strings
OUTPUT to Strings

ENTER from Strings
Buffers
BUFFER STATUS/CONTROL Registers
Pipes
The Processor Interface (32)
STATUS 0
STATUS 1
STATUS 2
STATUS 3
STATUS 4
Accessing Other Interfaces and Devices
Under DOS
DOS IN, OUT, PEEK, and POKE operations

DOS OBJ or Library Calls
DOS Device Driver

Under UNIX
Use Pipes

Contents
Chapter 13, International Language Support

Chapter 13 International Language Support

DOS Code Pages
Windows and Unix Character Sets

Character Sets
Code Pages 437 and 850
Roman-8
Latin-1
1ISO-932 and Shift-JIS
Variable Names
Attribute Character Conflict
Lexical Order

Upper and Lowercase Conversions
Japanese Character Conversions
LABEL Character Set
Defining Your Own LABEL Characters
Using LABELCHR.BAS

Installing DOS Code Page Support
COUNTRY

DEVICE
GRAFTABL
NLSFUNC
MODE
KEYB
CHCP
Examples
User-Defined Lexical Orders
Order Table
Special Case Table

Ignore Characters
2-to-1 Translation

1-to-2 Translation
Sub-Order Numbers
Putting User-Defined Rules Into Effect
User-Defined UPC$/LWCS$ Rules
Example Data Files
Roman-8 Character Set Support
Roman-8 Translation Program
DOS Display Font
Windows Display Font

Keyboard
LEXICAL ORDER

LABEL
LEXICAL ORDER Tables
Character Set Tables

Code Page 437 Character Set
Code Page 850 Character Set
LEXICAL ORDER IS FRENCH (Code Page 850)
LEXICAL ORDER IS GERMAN (Code Page 850)

LEXICAL ORDER IS SPANISH (Code Page 850)
LEXICAL ORDER IS SWEDISH (Code Page 850)
Roman-8 Character Set

LEXICAL ORDER IS FRENCH (Roman-8)
LEXICAL ORDER IS GERMAN (Roman-8)
LEXICAL ORDER IS SPANISH (Roman-8)
LEXICAL ORDER IS SWEDISH (Roman-8)

Latin-1 Character Set

LEXICAL ORDER IS FRENCH (Latin-1)

LEXICAL ORDER IS GERMAN (Latin-1)

LEXICAL ORDER IS SPANISH (Latin-1)

LEXICAL ORDER IS SWEDISH (Latin-1)
1ISO-932 Character Set

Overview of the Shift-JIS Character Set

Chapter 1
Getting Started

This chapter convers two areas. First is a brief introduction to the manual layout. Then the integrated
environment and common commands and statements used to develope programs using HTBasic are
covered. After installing HTBasic read the chapters of the manual that are pertinent to your situation. Not
every chapter is applicable to every version of HTBasic. Features that are specific to certain versions are
noted.

High Tech Basic

High Tech Basic (HTBasic) is a technical programming language compatible with
Hewlett Packard's "Rocky Mountain" BASIC for HP 9000 Series 200/300 computers. It
has extensive graphics, instrument control capabilities, and interactive programming aids
to speed program development. It is designed to offer powerful features and ease of use
to engineers, scientists, and other professionals having a range of programming
experience from novice to expert.

Note: The following terms are used in the following way in the HTBasic manuals: Rocky
Mountain BASIC (RMB) is a dialect of BASIC. HTBasic and HP BASIC are particular
implementations of RMB.

The HTBasic manual set consists of the Installing and Using manual, the User's Guide,
the Reference Manual. Besides these three manuals, other manuals are available that
describe special options to HTBasic, such as data acquisition, compiler, and math library.

Installation Manual

The Installing and Using manual should be read first. It explains how to install HTBasic
and get it up and running. It presents the following topics:

Installing HTBasic

Keyboard Key Assignments

CRT and Graphic (Plotter) Drivers

Printer and Image File Drivers

Graphic Input Drivers

Serial and IEEE-488 (GPIB or HP-IB) drivers

« Transferring Programs and Data From HP BASIC
» Customizing the Environment

» Solutions to Common Problems

* Changes From Earlier Releases

HTBasic is highly configurable. Before it can be used, the necessary drivers must be
loaded. A chapter also talks about softkey macros and creating HP workstation
compatible BDAT files. It explains controlling implicit variable and string dimensioning and
customizing keyboard key assignments. Defining additional LABEL characters is
explained as well as specifying a path specifier to use for an HP disk drive. The chapter
describes changing the value of PRT and creating program files that are compatible with
standard program editors.

A different Installing and Using manual is provided for different versions of HTBasic. For
example, Installing and Using HTBasic on the DOS Version covers installation for the
DOS Version.

Reference Manual

The Reference Manual consists mainly of a dictionary style presentation of HTBasic
keywords. The Reference Manual also is available from within HTBasic through the
HELP statement. The manual includes a chapter of definitions, a statement summary
table, a list of error messages, and an ASCII code chart. The ASCII code chart contains
ASCII, decimal, and hexadecimal values and IEEE-488 commands and addresses.

This Manual

This manual, the User's Guide, contains in depth information about using the HTBasic
language. It is arranged topically. The following list explains what each chapter of the
manual describes and who should read it. After installing HTBasic read the chapters of
the manual that are pertinent to your situation. Not every chapter is applicable to every
version of HTBasic. Features that are specific to certain versions are noted.

Chapter 1, "Getting Started," covers two areas. The first area is a brief introduction to the
manual layout. The second area describes the integrated environment and common
commands and statements used to develop programs using HTBasic. RMB is more than
a language, it is an entire environment. The display organization of RMB is different than
other languages and dozens of special function keys are defined. It is important that all
users read this chapter.

Chapter 2, "Porting HP BASIC Programs to HTBasic," is a porting guide for users with
HP BASIC programs. It presents, statement by statement, differences between HTBasic
and HP BASIC/WS. Users porting programs should read this chapter.

Language Definition
Chapters 3 to 6 explain the Rocky Mountain BASIC language. These chapters should be
read by new users, or old users who need a review of RMB.

Chapter 3, "Language Elements," explains the basic elements of the language like
keywords, operators, and variables.

Chapter 4, "Program Flow Control," explains how the path of program execution can be
controlled to perform calls, loops, and decisions.

Chapter 5, "Mathematics," describes numeric expressions, string expressions, and array
expressions. The various operators and functions are presented.

Chapter 6, "Graphics," presents the graphic drawing and presentation capabilities of
HTBasic.

Input and Output

Chapter 7, "General Input and Output," explains Input and Output (1/O) in general. This
chapter also explains the TRANSFER statement. The information in this chapter is
necessary to understand chapters 8 to 12 and should be read by all users. Chapters 8 to
12 describe particular interfaces. You only need to read the chapters that describe
interfaces that you will be using.

Chapter 8, "CRT, Keyboard, and Printer," describes I/O to the screen (CRT) and
keyboard (KBD). In addition to the general I/O statements presented in chapter 7, RMB
contains several statements specially designed for I/O to the screen or keyboard. Several
statements are also presented that are designed for I/O with either the screen or a
printer. All users should read this chapter. If you are using a printer, you should also read
one of the following chapters that explains how to use the interface that your printer is
connected to.

Chapter 9, "Files," presents I/O to files and the special file management statements
available. These special statements often make it unnecessary to use operating system
commands to move, copy, delete, or otherwise manipulate files.

Chapter 10, "IEEE-488 Interface Bus," explains use of the IEEE-488 (GPIB or HP-IB)
interface.

Chapter 11, "Serial (RS-232) I/0," describes use of the Serial (RS-232) interface.

Chapter 12, "Other I/O Destinations," talks about 1/0 with a variety of I/O targets: Parallel
(Centronix Printer) Interfaces, buffers, Strings, a special interface called the "Processor
Interface," and pipes. This chapter also describes methods for using interfaces and
devices for which there is no HTBasic device driver.

Advanced Topics

Chapter 13, "International Language Support," explains the support included in HTBasic
for different languages and character sets. Users outside the United States and Canada
should read this chapter. If you wish to use the HP Roman-8 character set used by HP
BASIC rather than your computer's character set, you should read this chapter.

Chapter 14, "Mixed Language Programming," describes how to call subroutines written
in other languages. This material is specific to the DOS Version of HTBasic.

Using the Integrated Environment

The HTBasic integrated programming environment is made up of the display, keyboard,
function keys, mouse, program development commands, program file management
commands, softkey macros, and the CONFIGURE statement. Each of these elements
work together to produce a powerful program development and execution environment
that includes live keyboard command and statement execution, a full screen syntax
sensitive editor, and an on-line HELP system.

Display Screen

The HTBasic display operates in one of three modes, Normal, Edit, and Help. The
Normal display mode is used while HTBasic is idle, waiting for a command, or while a
program is running. The EDIT display mode is used by the full screen editor to display
and modify programs. The Help display mode is used by the on-line Help system. The
following diagram shows the organization of the HTBasic display in normal mode.

~

Output Area

Blank Line
Dizplay Line
Input Lines (2)

lessage Line Indicators
softkey Menu

Output Area

The Output Area is where program output is displayed (by default) from a variety of
statements, including PRINT, OUTPUT CRT, LIST, CAT, etc. This area starts at the top
line of the screen and extends down to one line above the DISP line. The Output Area is
the visible part of an Extended Output Area. This Extended Output Area allows lines of
the Output Area to be saved as they are scrolled off the top or bottom of the visible
screen area. The UP, DOWN, NEXT, and PREYV, function keys scroll the Extended Output
Area up and down, allowing all parts of it to be viewed. The CLR SCR function key clears
the entire Extended Output Area.

Note: HTBasic function keys have generic names that generally match the key names on
an HP BASIC Workstation. The actual key assignments for your keyboard are given in
the Installing and Using manual.

The Output Area displays characters at the current print location. If the print location has
been scrolled out of the visible screen area, the Output Area is first scrolled so that the
print location is visible and then the new characters are displayed and the print location is
updated. The print location may be set by the CONTROL CRT,0;c,r statement. Five
character values perform special control actions in the Output Area. They are:

Control Characters

Character Function

CHR$(7) Ring the Bell.

CHR$(8) Move the print location back one space.

CHR$(10) Move the print location down one line.

CHR$(12) Print two line feeds, scroll the Output Area so
that the next line is at the top of the Output Area.

CHR$(13) Move the print location to column one.

The actions of these control characters can be disabled and all character values between
CHR$(0) and CHR$(255) displayed with the DISPLAY ALL function. This can be toggled
on and off by the DISPLAY FCTNS key or controlled by the CONTROL CRT,4 statement.

Display Enhancements Characters

Additional character values control display enhancements. These characters are:

Character Function

CHR$(128) All enhancements off.
CHR$(129) Inverse video on.

CHR$(130) Blinking video on.

CHR$(131) Inverse and Blinking video on.
CHR$(132) Underline mode on.

CHR$(133) Underline and Inverse video on.
CHR$(134) Underline and Blinking video on.
CHR$(135) Underline, Inverse, and Blinking video on.
Character Function

CHR$(136) White

CHR$(137) Red

CHR$(138) Yellow

CHR$(139) Green

CHR$(140) Cyan

CHR$(141) Blue

CHR$(142) Magenta

CHR$(143) Black

Because some computers, including the IBM PC, use character sets with character
values that conflict with these characters, the CONTROL CRT,100 statement allows
these display enhancement control characters to be moved to the range CHR$(16)
through CHR$(31).

Display Line
The Display Line is used for displaying prompts for the INPUT and the LINPUT
statements and for displaying text with the DISP statement. The Display line maintains a
current print location and if it moves past the right-most column, the display line scrolls to
the left so that the last character is displayed. The print location may be set by the
CONTROL CRT,8 statement. The same control and enhancement characters are active
for the Display Line as for the Output Area with the following differences:

Character Function

CHR$(12) Clears the DISP line.

CHR$(13) Moves the DISP line cursor to column one, and clears
the DISP line when the next character is sent to the
DISP line.

The DISPLAY ALL function has no effect on the Display Line and other control characters
are not stored in the Display Line buffer. The Display Line buffer content may be read by
a program using SYSTEMS$("DISP LINE").

Input Line

The Input Line is used to enter commands, program lines, calculator expressions, and
other keyboard input. Any of the line editing keys, discussed later in this chapter, may be
used to modify this area. When ENTER is pressed the Input Line buffer is sent to either
the INPUT, LINPUT, ENTER KBD statement or to the command and statement parser. At
any time while either a program is running or HTBasic is idle, you may enter commands
or expressions for immediate execution. This Live Keyboard execution feature is
described in detail later in this chapter.

Message Line

The Message Line displays error messages, live keyboard calculator results, and status
indicators. The status indicators display the current softkey menu and the current state of
HTBasic. The current state indicates whether the user program is running, paused,
stopped, or waiting for input. It also indicates when you are in the HELP or EDIT modes.
Messages longer than 63 characters are truncated to 63 characters.

Softkey Menu

The softkey menu displays labels corresponding to each softkey. The label indicates the
action that is performed when the corresponding function key is pressed. There are
several sets of softkeys that can be displayed including the system softkeys and three
sets of user softkeys. There are two softkey layouts available that correspond to either

the HP Nimitz or ITF keyboards. These were explained in the Installing and Using
manual.

Customizing the Environment

HTBasic provides a keyboard function key macro facility and a CONFIGURE statement
that can both be used to customize the programming and execution environment. Each of
these features is discussed in the Installing and Using manual.

Program Development

Program development under the HTBasic integrated environment is made easy by
program documentation statements, live keyboard execution, and Edit mode with its
related commands. After each of these elements of program development is discussed,
alternate editing techniques and the statements and commands used to run, debug,
save, load, and manage program files are presented.

Program Documentation

Program documentation is important because it clarifies and explains the structure and
function of a program. Almost everyone that has ever written a program has wished to
change or modify that program or a program written by someone else at a later date. If its
structure and function have been well documented, that task is relatively simple and
straight forward. If not, it can be a long and difficult task.

In HTBasic, there are several ways to document a program: with the REM (remark)
statement, comment tails "!", and with mnemonic variable names and program line labels.

The REM and "!" statements are used to insert comments into programs. A"!" comment
may be appended to the end of any program statement. They may contain any text you
wish, are useful in explaining what the program is doing, and are ignored when the line is
executed. When an INDENT command is given, the position of a REM statement is
changed to match the current indentation level but the position of a "I" comment is left
unchanged.

Line labels may be used in program statements in the place of line number references.
The label name is independent of the line number and can be much more meaningful
than a line number. It is more convenient to enter "EDIT Open_valve", for example, than
to look up the currently assigned line number and enter "EDIT nnnn".

Live Keyboard Execution

At most any time you can enter from the keyboard a command, a list of expressions, or a
program line that starts with a line number. Commands are executed, expressions are
evaluated and their results displayed in the message line, and program lines are checked
for correct syntax and stored into program memory. If results displayed on the message
line are longer than 63 characters, the results are truncated to 63 characters. If a syntax
error is detected in a program line, an error message is displayed in the system message
line and the cursor is positioned over the error. You can use the HELP command to
display the Reference Manual entry for the statement to determine how to correct the
syntax error. For example:

INDENT ! command
PI*2 ! expression
100 FOR J=1 TO 5 ! program line

Any statement you enter without a line number will be executed as an immediate
command. Some commands, however, might have more than one meaning depending
on how they are entered. For example, you can enter X<4 from the keyboard and
HTBasic will display a 1 or 0 depending on its logical value. Suppose, however, that you
enter X=4. This looks more like an assignment than a logical comparison, and this is just
how HTBasic will treat it. If it was your objective to test whether X was equal to 4, you
could do this by entering it in parenthesis: (X=4). In this case, HTBasic will display a 1 or
0 depending on the value of X.

HELP Command

The HELP command is used to look up material in a disk-based Reference Manual. This
disk-based manual is virtually the same as the printed Reference Manual. The manual is
arranged alphabetically. To look up a keyword in the manual, when not in the HELP
mode, type "HELP" followed by the keyword. For example, to look up the keyword GOTO
you would type:

HELP GOTO

and press ENTER. The first page about that keyword will be displayed. You may then
read forward in the manual. If you are already in HELP mode, don't type the leading
"HELP."

Standard Windows HELP file commands work for the Windows Version. For DOS and
UNIX versions, to switch to a different keyword while in the HELP mode, type the new
keyword and press ENTER. To get another page of information, press ENTER. To exit the
HELP mode, press CLR SCR. To read something that has recently scrolled off the top of
the screen, scroll the screen back using PREV and NEXT or the UP and DOWN arrow
keys.

Some statements include a secondary keyword. For example, the keyword ON can be
followed by secondary keywords such as CYCLE, DELAY, etc. To go directly to this kind
of manual entry, include both keywords. For example:

HELP ON DELAY

To read the introduction at the start of the disk-based Reference Manual, give the
command "HELP" with no keyword. The introduction contains a Syntax Definition
Conventions chapter where conventions used throughout the manuals are explained and
a Definitions chapter where general HTBasic terms and syntactical units are defined.

EDIT Mode

The easiest way to develop an HTBasic program is with the built in full screen syntax-
sensitive editor. The EDIT command puts you into Edit mode and gives you full screen
program editing capability. Line numbers are generated and maintained automatically.
Program lines can be changed, inserted, deleted, indented, and automatically or
manually renumbered. You can do global FIND and CHANGE operations. You can
MOVELINES or COPYLINES with automatic program line reference renumbering. This
diagram shows the organization of the display in EDIT mode.

4 ™

Full Screen of Program Lines

Iilessage Line Indicators
Softkey Ienu

While in Edit mode, a full screen of program lines is displayed. The Message Line
displays the error messages, live keyboard calculator results, and status indicators. The
softkey menu displays softkey labels corresponding to the function keys, the same as
when the display is in normal mode.

Program lines up to the Rocky Mountain Basic limit of 255 characters can be edited,
regardless of the screen width. Furthermore, if your screen or window size is wider than
80 characters, the full screen width is utilized. Lines longer than the screen width are
scrolled as necessary to allow editing of any part of the line.

You may move the cursor up and down through the displayed program lines with the UP
and DOWN keys and you may scroll through the program with the UP, DOWN, PREYV,
NEXT, BEGIN, and END keys. You may change any displayed program line with any of
the line editing function keys previously discussed. Upon entry, each program line is
syntax checked and immediate error feedback is provided.

SUB Mode

With the EDIT SUB Mode, the HTBasic editor allows quick navigation of subprograms
(SUB, DEF FN, CSUB). Press the SUB Mode key once to display and move through the
subprogram list; press it again to switch back to regular editing mode.

Save Changes

The editor keeps track of program changes and asks for confirmation before discarding
them. For example, if you make some changes to your program, then get distracted, and
then attempt to QUIT HTBasic, you will be alerted to the fact that the changes have not
been saved yet. You then have an opportunity to save the changes or discard them.

Starting Edit Mode

Edit mode is started by pressing the EDIT key (or typing EDIT), optionally giving a line
number and subprogram name, and then pressing ENTER. When editing an existing
program, the current edit line will be set either to the last line edited, the last line with an
error, or the line specified in the EDIT command. For example:

EDIT 100

starts the editor with line number 100 as the current edit line. You may specify either a
line number, line label, SUB program name or DEF FN function name. For example to
edit the SUB program TEST enter:

EDIT SUB Test
To edit the function Pete enter:
EDIT FNPete

The default increment for new line numbers automatically produced by the editor is ten,
but may be specified with an optional increment as follows:

EDIT 100,5

Terminating Edit Mode

EDIT mode is ended by pressing the CLR SCR, PAUSE, RUN, or STEP keys. It can also
be terminated by entering a CAT or LIST command without a line number.

Controlling the Cursor

While in EDIT mode, the UP, DOWN, LEFT, and RIGHT arrow keys, NEXT WORD, LEFT
WORD, PREV, NEXT, BOL, EOL, BEGIN, and END keys are used to move around the
program. The INS CHR key toggles the overstrike mode to insert mode and back again.
The mode remains in effect until the INS CHR key is pressed again. The DEL CHR key
deletes the character under the cursor. The DEL LEFT key deletes the character left of
the cursor.

Syntax Checking
No changes are made to the stored program until you press the ENTER key. The edit line
is then checked for correct syntax and if there are no errors it is stored into memory. If a
syntax error is detected, an error message is displayed on the message line and the
cursor is positioned at the error. If you wish to abort the changes, press any key that
moves to another program line.

Inserting Lines

To insert a new program line between two existing program lines, or before the first line of
the program, position the cursor on the following line and then press INS LN. If
necessary, the program will be partially renumbered, and a new line number will be
generated for you. After a line has been entered, a new line number is generated and
displayed ready for you to enter the next program line. To exit insert line mode press the
UP, DOWN, PREV, NEXT, BEGIN, END, INS LN, or DEL LN keys.

Deleting Lines

To delete a program line, position the cursor on the line you wish to delete, and press
DEL LN. A line that has been accidentally deleted can be recovered by pressing the
RECALL key followed by the ENTER key.

Immediate Commands

Immediate commands can be entered in EDIT mode by first deleting the automatic line
number and then entering the command. To delete the line number, backspace over it,
and then type over the top of it, or use CLR LN (not DEL LN) to clear the current line.

Associated Commands

The following program development commands are used in conjunction with the EDIT
command.

FIND - search for a string of characters

CHANGE - finds a string and replaces it with another string

INDENT - indents structured program constructs

REN - renumbers program sections

DEL - removes program lines

SCRATCH - removes all program lines or COM blocks from memory
« XREF - generates a program cross-reference listing

e COPYLINES - copies a program section to another place

« MOVELINES - moves a program section to another place

« SECURE - makes a program section not listable

Each of these commands is discussed on the following pages.

FIND Command

The FIND command searches for a specified character sequence in a program. The
program string must exactly match the string specified in the FIND command. The case
of the characters in the search string is significant.

Once found, the program line may be modified or deleted. The search continues after
pressing the ENTER or DEL LN keys. If no modification or deletion is needed, pressing
CONTINUE searches for the next occurrence. You exit FIND mode by pressing any other
function key. For example:

FIND "Xx="

will search for the first program line that contains an upper case X followed by a lower
case x and an equals sign. If a line is found that contains this string it is made the current
edit line. If not already in EDIT mode, edit mode is entered and the edit screen is
displayed.

If an optional starting line is specified, the search begins with that line. If that line doesn't
exist, the line immediately after that line number is used. If a non-existent line label is

specified, an error is reported. If the start line is not specified, the search begins with the
current line if you are already in EDIT mode or the first program line if not in EDIT mode.

If an optional end line is specified, the search ends with that line. If that line doesn't exist,
the line immediately before that line number is used. If a non-existent line label is
specified, an error is reported. If the end line is not specified, the search ends with the
last program line. For example:

FIND "Xx=" IN 1500,2500

will start the search with line number 1500 and end the search with line number 2500.
The first line found that includes the string "Xx=" becomes the current edit line.

FIND is not allowed while a program is running, but may be used when the program is
paused. FIND is aborted if a line number is altered.

CHANGE Command

The CHANGE command allows you to search and replace character sequences. The old
and new strings are used exactly as given with the case being significant. For example:

CHANGE "quoted" TO "QUOTED"

will change the lowercase string "quoted" to the uppercase string "QUOTED". The
computer searches for each occurrence, displays the line with the change, and then asks
you if you want this replacement. If you do, press the ENTER key; if you don't, press the
CONTINUE key. If you wish to abort the CHANGE command, press any other function
key. When no further occurrences of the search string can be found, the "<old-string> not
found" message is displayed.

If the optional ALL keyword is included, all of the changes are made automatically without
any user interaction. For example:

CHANGE "old" TO "new";ALL

replaces all occurrences of "old" in the program with "new". If not already in EDIT mode,
edit mode is entered and the edit screen is displayed. Optional starting and ending line
numbers or line labels may be specified as described for the FIND statement. For
Example:

CHANGE "Apples" TO "Oranges" IN 1200,1500
limits the search range to the lines numbered 1200 through 1500.

The CHANGE command is not allowed while a program is running, but may be used
while a program is paused. An error message will be displayed if a syntax error occurs
during any CHANGE operation. After the line is corrected the CHANGE command
continues. The CHANGE operation is aborted if a change exceeds the maximum
allowable length of a program line, or if a line number is altered.

COPYLINES Command

The COPYLINES command copies one or more program lines from one location to
another while leaving the original lines in place. This differs from the MOVELINES
command that deletes the original program lines. For example:

COPYLINES 10,100 TO 500

copies the program lines between line number 10 and 100 to the new starting line
number 500. Appropriate renumbering occurs to insert the new program lines into the
existing program. If no ending line is specified, only one line is copied. For example:

COPYLINES 1500 TO 2220

The target line cannot be in the range specified by the start and the end line numbers or
labels. If the start line doesn't exist, the line immediately after that line number is used. If
the end line doesn't exist, the line immediately before that line number is used. If a non-
existent line label is specified, an error is reported. If the arguments specify a destination
line number or program section that already exists, the old section is renumbered to
make room for the new program lines.

Line numbers are renumbered and updated if needed. Line number references in lines
not being copied remain linked to the original lines rather than the newly created lines. If
an error occurs during a COPYLINES, the copy is terminated and the program is left
partially changed.

COPYLINES may not copy lines containing a SUB or DEF FN statement unless the new
line number is larger than any existing line number.

MOVELINES Command

The MOVELINES command moves one or more program lines from one location to
another. This differs from the COPYLINES command that leaves the original lines in
place. For example:

MOVELINES 500,1200 TO 4100

moves the program lines with line numbers 500 through 1200 to the new starting line
number 4100. Appropriate renumbering occurs to insert the new program lines into the
existing program. If no ending line is specified, only one line is moved. For example:

MOVELINES 600 TO 1500

The target line cannot be in the range specified by the start and the end line numbers. If
the start line does not exist, the line immediately after that line number is used. If the end
line does not exist, the line immediately before that line number is used. If a non-existent
line label is specified, an error is reported. If the arguments specify a destination line
number or program section that already exists, the old section is renumbered to make
room for the new program lines.

Line numbers are renumbered and updated if needed. If an error occurs during a
MOVELINES, the move is terminated and the program is left partially changed.

MOVELINES may not move lines containing a SUB or DEF FN statement unless the new
line number is larger than any existing line number.

INDENT Command

The INDENT command inserts spaces after the line numbers and before the leading
keywords of all lines in a program to visually show the structure of the program. It does
not move "!" comment statements. This command can only be executed from the
keyboard. It cannot be included in a program.

The following statements add a level of indentation: DEF FN, FOR, IF...THEN, LOOP,
REPEAT, SELECT, SUB, and WHILE. The following statements are printed one
indentation level to the left, but leave the indentation level unchanged: CASE, CASE
ELSE, ELSE, EXIT IF, FNEND, and SUBEND. The following statements subtract one
level of indentation: END IF, END LOOP, END SELECT, END WHILE, NEXT, and UNTIL.

The optional increment value specifies how many spaces to indent each successive
structure level. The default increment value is two. The optional start-column specifies the
column in which to start non-indented program lines. The default start-column is six. For
example:

INDENT 10,5

indents all program statements to column ten and each structure level an additional five
spaces.

REN Command

The REN command renumbers program lines, including the line references in all
program statements such as GOSUB and GOTO to match the new line numbers. This
command can only be executed from the keyboard. It cannot be included in a program.

You can optionally specify the new starting line number, the increment between lines, and
a range of lines to renumber. If you renumber a paused program, it changes to the
stopped state. For example:

REN 1000,5 IN 100,800

renumbers the program lines between 100 and 800 to start at line number 1000 with an
increment of five. If not specified, the default value for both the new starting line number
and the increment is ten.

You cannot specify a new starting line number that would cause the lines to change
position in the program with respect to other existing program lines. Use the COPYLINES
or the MOVELINES commands, described earlier in this chapter, to do this.

DEL Command

The DEL command removes program lines from memory. A range of program lines can
be deleted by separating the starting and ending line numbers or line labels with a
comma. For example:

DEL Start, 1500

removes all the program lines between the line labeled "Start" and the line numbered
1500 from memory. If only one line is specified, only that line is deleted. Once a DEL
statement has been executed, the specified lines cannot be retrieved.

DEL cannot be executed from a running program, but can be executed while the program
is paused. After the DEL command is executed the program is changed to the stopped
state. SUB and DEF statements can not be deleted unless the entire subprogram is
included in the range.

SCRATCH Command

The SCRATCH command allows you to clear the BASIC program, variables, and COM
variables from memory.

SCRATCH

deletes the current BASIC program, and any variables not in COM statements.

SCRATCH ALL

(or SCRATCH A) clears the BASIC program, all variables, including those in COM, and all
softkey macro definitions. Internal parameters are set to their default, start-up values.

SCRATCH COM

(or SCRATCH C) clears all variables including those in COM, but leaves the BASIC
program and the softkey macro definitions intact.

XREF Command

The XREF command generates a cross-reference listing of line numbers and labels, I/O-
path variables, numeric and string variables, subprograms, functions, and COM blocks. It
also lists the number of unused symbol table entries currently in each context. The listing
is sent to the PRINTER IS device unless a device selector is specified.

If you specify no options, all contexts and all data types will be cross-referenced. For
example:

XREF #10

will cross-reference all program contexts and send the listing to interface select code ten.
You may specify that only the "Main" context or a specific subprogram context be cross-
referenced. You may further specify that only one of the data type options be cross-
referenced. For example:

XREF Trigger:NV

will cross-reference the subprogram context "Trigger" and generate a cross-reference
listing of just the Numeric Variables (NV). Whereas:

XREF Main

will cross-reference the Main program context and generate a cross-reference listing of
all the data types. The data type specifier options follow a colon and are:

Option Meaning

CM Common Block Names

[@] I/O Path Variables

LL Line Labels

LN Line Numbers

NF Numeric Function Subprograms
NV Numeric Variables

SB SUB Subprograms

SF String Function Subprograms
SYY String Variables

UN Unused Entries

Each data type in the context will be cross-referenced and output as a group. If no
references of that type appear in the context the data type heading will not be generated.
Areference to a SUB parameter, a variable declared in a COM, DIM, REAL, COMPLEX,
or INTEGER statement, or a line label, is marked with "<-DEF" in the cross-reference
listing.

SECURE Command

The SECURE command protects programs lines so they cannot be listed. Secured lines
are listed as a line number followed by an asterisk "*" character. Once a program line has
been secured it can never again be listed. To secure all program lines, use the following:

SECURE
An optional line range may be specified. For Example:
SECURE Payrolla,Payrollb

secures all the program lines between line label "Payrolla" and "Payrollb". If no end-line is
specified, only the start-line is secured.

Note: Please be sure that you have a backup copy of your program before using the
SECURE command. Do not inadvertently overwrite your original non-secured program
with the RE-STORE command!

Alternate Editing Techniques

There are several other ways to develop an HTBasic program. You can enter each
program line one at a time into the input line and display your program with the LIST
statement. With this method, you must maintain a picture of the program in your mind as
you make changes and completely re-enter each line that you wish to modify.

The LIST statement outputs the program in memory to the PRINTER IS device, normally
the CRT. After the program is listed, the available memory size in bytes is displayed on
the system message line. For example:

LIST 1500,1725

outputs the program lines numbered from 1500 through 1725 to the PRINTER IS device.
If a device selector is given the output is directed to that device. For example:

LIST #702

lists all contexts and directs the output to an IEEE-488 printer at address 2.

Using an Editor

Another way to develop HTBasic programs is to use your favorite editor. A word
processor can also be used if it has a method of reading in and saving out ASCI| files.
Execute the HTBasic statement CONFIGURE SAVE ASCII OFF to instruct HTBasic not
to use LIF ASCII format for the SAVE statement. SAVE will then produce ordinary ASCII
files. It may be convenient to place this statement in your AUTOST file.

If using a word processor, save the program in ASCII format rather than the word
processor's usual format. Enter it into HTBasic with the GET command. The syntax of
each program line is checked as the program is loaded. If a syntax error is found, the line
is listed to the current PRINTER IS device, turned into a comment by adding "!* " after the
line number, and saved in memory with the other program lines for later correction. If you
make changes to the program with the HTBasic editor, remember to RE-SAVE it or re-
make the changes using your editor.

Running and Stopping Programs

The RUN command or the RUN function key starts program execution. It is executed in
two parts, prerun initialization and program execution.

Prerun initialization reserves memory space for variables declared in DIM, COMPLEX,
REAL, INTEGER, COM statements, and variables implied in the program. Numeric
variables are set to zero and string variables are set to zero length. Prerun also checks
for multi-line errors such as illegal program structure, array references, and mismatched
COM blocks. Each COM block in the program is compared to the old COM blocks in
memory. Any mismatched COM blocks are deleted.

Prerun errors are reported to the user and the program halts. Some types of prerun
errors generate several error message lines, although only the last remains visible on the
message line. To see all the error message lines, turn PRINTALL on. If prerun detects no
errors, the main program is started at the beginning, or at an optional program line or
label, if specified. The program runs normally until it encounters a PAUSE, STOP, or END
statement, a TRACE PAUSE line, or an error.

STOP

The STOP statement or function key terminates program execution. When the program
stops execution, I/0 paths not in COM are closed, and all variables are discarded. The

CONT command cannot be used after a STOP. To restart program execution you must
use the RUN statement.

QUIT

The QUIT statement stops HTBasic and returns control to the operating system. It is used
to leave the HTBasic programming environment. If used from the keyboard and the
program is in a paused state or it is included in a program, a STOP is first executed to
close any open files. It may be used in connection with operating system batch files to
provide an enormous amount of flexibility in running combinations of HTBasic and other
operating system programs. Please read your operating system manual for an
explanation of batch or command files.

Debugging Programs
HTBasic includes many features for program debugging. The RESET, CLR 1/O, PAUSE,
CONT, STEP, and TRACE statements and function keys are discussed in the following
sections.

You can stop a running program at any time by pressing the RESET key but this is rather
drastic. It exits any subprogram contexts that may have been executing and returns you
to the main context where you may examine any variables defined there. Pressing the
CLR I/O key while in an 1/0 statement will also halt program execution.

Pausing the Program

A less drastic method of halting program execution is the PAUSE statement or the
PAUSE key. When the PAUSE statement is executed or the PAUSE key is pressed the
next program line is displayed in the system message area and the program is
temporarily halted before the next line is executed. While the program is paused, you can
examine and change the values of any variables in the current context and use any
commands that do not change the program.

Continue

The CONT command or function key resumes program execution if the program is
currently paused. If you specify an optional line number or line label, it must be in either
the current context or the main context and execution continues at the specified line. If no
line is specified, execution resumes at the next line that would have been executed had
the program not been halted. If a change has been made to any program statement, the
program is stopped and you cannot continue execution. RUN must then be used to
restart program execution.

STEP

The STEP function key executes one line of the program, displays the next program line
in the message area, and then pauses. If the program is not currently paused, the first
press of this key causes the program to be prerun. If no prerun errors are detected the
first program line is displayed in the message area. The next press of the STEP key
executes the first program line, displays the next program line in the message area, and
then pauses. The STEP function key steps into subprograms one line at a time.

TRACE Statement

The TRACE statement controls the display of trace information from a running program
and can pause program execution before executing a specific program line. The trace
output is sent to the system message line. The trace output is also sent to the PRINTALL
IS device if PRINTALL is enabled. Tracing slows program execution.

TRACE ALL enables program tracing. Either the entire program or just a range of
program lines may be traced. For example:

TRACE ALL 1000,1200

enables tracing during the execution of program lines 1000 through 1200. The trace
output displays the program line before it is executed and any modified simple variables
or array elements and their new values. If a full array is modified then only the array
name is displayed. The TRACE OFF form turns off all tracing. For example:

TRACE OFF

disables all tracing. TRACE PAUSE will pause program execution before the specified
program line is executed. If no line number or label is specified, the program pauses
before the next program line is executed and the current TRACE PAUSE line is
deactivated. For example:

TRACE PAUSE 250

will pause the program before line 250 is executed. By using these debugging aids you
will be able to find errors in your programs quickly and efficiently, cut debugging time, and
increase productivity.

Saving Programs

HTBasic has two statements for saving programs, SAVE and STORE. If the program has
been saved before, RE-SAVE and RE-STORE are used to save the current version in
place of the previous version in the same file.

STORE Statement

The STORE statement saves a program to a file in PROG format. PROG format is the
incrementally compiled, internal binary format used by HTBasic to represent the program.
PROG files load very quickly, and if stored after the prerun has been done on a program,
start executing more quickly than ASCII files.

The STORE statement saves the entire program in memory including any subprograms
to a new PROG file. The program is written to the specified file using the internal binary
format. For example:

STORE "TEST"

creates a new PROG file named "TEST" and outputs the entire program in memory. If the
specified file already exists, an error is reported. Use the RE-STORE statement to update
an existing PROG file. For example:

RE-STORE "TEST"

uses the existing PROG file named "TEST" and outputs the entire program in memory.
You can STORE a program after it has been prerun by first pressing the STEP key and
then entering the STORE command. This stores the program in the prerun state and it
will not have to be prerun when it is reloaded and executed. This is especially helpful for
SUB subprograms that will be loaded and used from a running program.

Note: Because PROG files reflect the internal binary format of HTBasic, PROG files are
not always transportable among versions of HTBasic. For example, the architecture of an
IBM PC is sufficiently different from an HP 700 that PROG files are not compatible
between the two. ASCII files remain the preferred file type for program exchange.

SAVE Statement

The SAVE statement saves a program to a file, either in LIF ASCII or ordinary ASCII
format, depending on the setting of CONFIGURE SAVE ASCII. LIF ASCII is the default. If
CONFIGURE SAVE ASCII OFF has been executed, the file type will be Ordinary ASCII.

If the specified file already exists, SAVE generates an error message; whereas RE-SAVE
will reuse an existing file. RE-SAVE produces the same file type as an existing file, or the
file type specified by CONFIGURE SAVE ASCII if no file exists.

SAVE "MYPROG"

creates a new ASCII file named "MYPROG" and outputs the entire program in memory.
You may specify an optional program line range with two line numbers or line labels. This
will output just the program lines within the specified range. For example:

SAVE "PENNIES",1000,3500

creates a new file named "PENNIES" and outputs only the program lines between line
numbers 1000 and 3500.

ASCII programs load more slowly than PROG files and must be prerun before they are
executed. Generally, PROG files are a better way to store programs, but ASCII files are
useful in particular circumstances.

If you always store a program in PROG format, and if you periodically make changes to
it, the symbol tables associated with the program's contexts may contain entries for
variables that are no longer referenced. Using SAVE and then GET compresses the
symbol table associated with the program's contexts. RE-STORE then stores the
program in PROG format with the compressed symbol table.

ASCII files can also be used as an intermediate format when upgrading PROG files from
a previous version of HTBasic or moving programs between versions of HTBasic with
incompatible PROG formats.

LIF ASCII files can be exchanged with HP Workstations. Ordinary ASCII files can be
edited with program editors and most word processors. Ordinary ASCII files can be
exchanged with the HP BASIC Language processor card (Viper card) and recent
releases of HP BASIC/WS.

Loading Programs

After you save a program, you can later re-load it into memory. This is done with the GET
or LOAD statements. The GET statement is used to load programs stored in ASCII files
with the SAVE statement. The LOAD statement is used to load programs stored in PROG
files with the STORE statement.

GET Statement

The GET statement loads an ASCII program file into memory. You may specify an
optional append line number or label and an optional starting line number.

GET "A:CODEFILE", 2500 ! append line number
GET "GMAT",10,10 ! append & start line number

If the optional append line number or label is not specified the entire program and
variables (except for COM variables) are first deleted and the new program lines are read
into memory at their specified line numbers. If the optional append line number is
specified, the program lines in memory from that line number to the end of the program
are deleted before any new lines are added to the program. Each new program line is
renumbered to fit at the specified append location.

The first program line is read from the file and checked for a valid line number. If none is
found, an error is reported. If a valid line number is found, the current program and
variables are first deleted. Then each new program line is read and syntax checked. If a
syntax error is found, the line is listed to the current PRINTER IS device, turned into a
comment by adding "!* " after the line number, and saved in memory with the other
program lines for later correction.

If GET specifies a run line (which must be in the main context), execution resumes
automatically at the run line after a prerun. Each COM block in the new program is
compared to the old COM blocks in memory. Any mismatched COM blocks are deleted. If
GET, executed from a program, does not specify a run line, execution resumes at the
beginning of the program. If GET, executed from the keyboard, does not specify a run
line, a RUN command must be given to start execution. If a syntax error occurred during
the GET, the error is reported and the program is not run.

The GET statement can read Ordinary ASCII (DOS ASCII or UNIX ASCII), LIF ASCII,
Viper-1 ASCII, and Viper-11 ASCII files.

LOAD Statement

The LOAD statement loads a program from a PROG file into memory. The current
program and all variables (except those in COM) are deleted. All contexts defined in the
PROG file, including any subprograms, are loaded into memory. You may specify an
optional starting line number in the main context. For example:

LOAD "Utility", 200

If a run line is specified, execution resumes automatically at that line after a prerun. Each
COM block in the new program is compared to the old COM blocks in memory. Any
mismatched COM blocks are deleted. If LOAD, executed from a program, does not
specify a run line, execution resumes at the beginning of the program after a prerun. If
LOAD, executed from the keyboard, does not specify a run line, a RUN command must
be given to start execution.

Subprograms

HTBasic implements true subprogram capability. Each subprogram makes up a context,
is assigned its own local data allocated at each invocation, and may reference COM
variables. If you have less memory space available than you need to implement a large
program, you can often get around this problem by segmenting your program into several
subprograms.

Subprograms are of two types: SUB and DEF FN. SUB subprograms are invoked with
the CALL statement. DEF FN subprograms (user defined functions) are invoked by
referencing their name in an expression. They return either a numeric or a string result
upon completion.

When you store the current program in memory to a PROG file, all the subprograms are
stored along with the main context, if any. Subprograms may be manipulated individually
with the LOADSUB and DELSUB statements.

LOADSUB Statement

The LOADSUB statement loads a subprogram from a PROG format file into memory at
the end of the current program and renumbers the incoming subprogram lines. It also
preruns the loaded subprograms to check the COM blocks. No new COM blocks may be
specified in the subprogram.

There are three forms of the LOADSUB statement. The first two forms specify either a
specific subprogram name or the ALL keyword and are programmable. If a subprogram
name is specified, only that subprogram is loaded into memory. For example:

LOADSUB Peek FROM "TOOLS"

loads the subprogram named Peek from the PROG file named TOOLS. If the ALL
keyword is specified, all subprograms defined in the file are loaded into memory. For
example:

LOADSUB ALL FROM "UNITS"
loads all of the subprograms defined in the PROG file named "UNITS".

The LOADSUB FROM form loads all referenced subprograms not yet in memory from a
specified file. The newly loaded subprograms are also examined and any additional
subprogram references not yet in memory are also loaded. If any referenced
subprograms were not found in the file, an error is generated along with a listing of the
subprogram names. This form of LOADSUB is not programmable. For example:

LOADSUB FROM "UNITS"

DELSUB Statement

The DELSUB statement removes one or more subprograms from memory. For example:

DELSUB Unitl, FNOutput$,Stop it

removes the three subprograms Unitl, FNOutput$, and Stop_it. If two subprograms have
the same name, only the first one is deleted. You cannot delete a subprogram if it is
currently active or if it is referenced by an active ON-event statement.

If the TO END maodifier is included, the subprogram plus all the following subprograms
are deleted up to the end of the program. For example:

DELSUB Transform TO END

deletes the subprogram Transform and all subprograms through the end of the program.

Chapter 2
Porting HP BASIC Programs to HTBasic

This chapter describes differences between HP BASIC and HTBasic. If you are
transferring programs from HP 9000 Series 200/300 computers to HTBasic, you should
read this entire chapter. Differences in hardware, file system, and keywords are
discussed.

The CONFIGURE command allows you customize HTBasic to more nearly match the
configuration of an HP Series 200/300 computer and is explained in Chapter 8 of the
Installing and Using manual. Chapter 7 of the Installing and Using manual also explains
methods for transferring programs and data from an existing HP BASIC Workstation.

Compatibility
HTBasic is compatible with Hewlett-Packard's 9000 Series 200/300 "Rocky Mountain”
BASIC, and runs on a variety of hardware platforms — without the need for a
coprocessor board. It includes most of the language features defined in the HP 6.2
LOADable BIN files.

HTBasic is not compatible with Series 80 or 9835/9845 BASIC. But there are translator
programs available from third parties to translate from other BASICs to Rocky Mountain
BASIC, and to transfer files among different systems.

Hardware Differences

HTBasic compensates automatically for many of the hardware differences that exist
between an HP 9000 Series 200/300 workstation and other hardware platforms. The
following sections outline many of the differences and explain what limitations still apply.

Disk Drives

HP-IB disk drives are not supported. No mass storage device is supported across the
HP-IB. HP LIF disks are not compatible with DOS, NT and UNIX disk formats and cannot
be read or written directly by DOS, NT, UNIX, or HTBasic. Check Chapter 7 of the
Installing and Using manual for methods of transferring data and programs. On the PC,
HPCOPY is used to transfer data and programs back and forth. Meadow Soft Works,
mentioned earlier in this chapter, offers a DOS utility to transfer files from LIF hard disks
hooked to the HP-IB.

Softkey Layout

Different keyboard layouts are used by PCs, Sun Workstations, and HP Workstations.
Some keyboards have the softkeys down the left side of the keyboard, and some have
them across the top of the keyboard. To make up for these differences and the lack of
spatial coherence between the physical keys and the softkey menu, HTBasic menu
labels have been numbered. This provides numerical coherence. The label numbered "1"
always corresponds to the softkey with the "1" printed on it. The number is not meant to
be the softkey number.

Note: to provide compatibility with programs written for the 9836 Nimitz keyboard (which
starts with softkey K0), the command KBD CMODE can be used to turn on or off
compatibility mode. ITF and Nimitz compatible softkeys are discussed in Chapter 2 of the
Installing and Using manual.

A New Backspace

Under HP BASIC, the Backspace key was assigned to CHR$(255)&"B". This function
does the same thing that the Left Arrow key does. HP BASIC is unique in this treatment
of the Backspace key. For compatibility with the remainder of the computing community,
HTBasic assigns a hew function to the Backspace key. Pushing Backspace deletes the
character to the left of the cursor. This function is named DEL LEFT and is equivalent to
the function LEFT followed by DEL CHR. If you do not like this definition, you may be
able to redefine the key using the CONFIGURE KEY statement. See Chapter 8 of the
Installing and Using manual for more details. Under the DOS Version of HTBasic, the
following statement will change the Backspace key to match HP BASIC:

CONFIGURE KEY 1 TO NUM("B")

Series 300 Bit-Mapped (CRTB) Displays
If you are using an HP 9816, 9836, or other HP computer with separate alpha and
graphics hardware, some of the differences you find in HTBasic will be the same
differences you would find moving to an HP 310 or another HP computer with a fully bit-
mapped alpha/graphics display. Bit-mapped displays are driven by the CRTB Mode
Driver. A CRTB display has only bit-mapped images. The ALPHA image is written into
one or more of the graphic planes. One plane can be separated from the others for use
solely for the ALPHA image. Or, all the planes can be merged for shared use between
ALPHA and GRAPHICS. See SEPARATE and MERGE ALPHA in the Reference Manual.

When ALPHA and GRAPHICS are merged, ALPHA text is converted to graphic bits and
written into the graphic planes, overwriting any graphics data that might be present.
Therefore, ALPHA and GRAPHICS cannot be dumped separately. And when the ALPHA
text is scrolled, any graphic data present will be scrolled also. This is the default mode for
a CRTB display.

The SEPARATE ALPHA statement can be used to simulate 9836C displays with
independent ALPHA and GRAPHICS screens. Either image can be turned on or off or
DUMPed independently of the other. However, the number of colors available for
graphics is cut in half.

CRTB Mode is the default for EGA, VGA, Super-VGA, and X Window System drivers.
This mode gives the best HP 9000 emulation. Check Chapter 3, "CRT and Graphic
Drivers," of the Installing and Using manual for more information. CRTB Mode is not
supported on a CGA or Hercules display.

9836C (CRTA) Displays
The HP 9836C display is driven by CRTA Mode drivers. A CRTA display has distinct
ALPHA and GRAPHICS images. Either the ALPHA or GRAPHICS images can be
displayed, or both can be displayed at once, overlapping each other. The hardware for
the two images is independent.

HTBasic uses CRTA mode on a CGA or Hercules display adapter. However, the
hardware on these adapters does not support complete 9836 emulation. Unlike the 9836,
which has fully independent ALPHA and GRAPHICS display capabilities, these display
adapters use the same display memory for both text and graphics modes. When in a text
mode, the display hardware maps the display memory as characters. When in a graphics
mode, the display hardware re-maps the same display memory as pixels. This means
that whenever a switch is made between modes, the contents of the other screen are
lost.

The CRTA Mode Driver tries to overcome these hardware deficiencies in the following
manner: in the graphics mode both GRAPHICS and ALPHA text are written into the
graphics bitmap. The graphics image is lost when switching from graphics mode to text
mode and back again. The ALPHA text is not lost, but is re-written into display memory
after each mode switch. Because of these deficiencies, the CRTB driver is used by
default if you have an EGA or VGA display adapter. Use the SEPARATE ALPHA
command with CRTB mode to give the best 9836C emulation.

Other Video Circuitry Differences

A list of minor differences in video circuitry that you should be aware of follows:

Hercules and CGA adapters do not have COLOR MAP hardware.

The cursor does not blink in PC graphic modes or under X windows.
Underline is not supported by PC color display adapters in text modes.
Blinking is not supported in graphics modes.

Expanded Memory

Expanded memory, LIM, EMS, or bank-switched memory is not supported. Extended
memory, the memory above 1 Megabyte, is supported in the DOS Version.

Processor

The instruction sets for the Intel x86 family of processors, Motorola 680x0 processors,
Sun SPARCstation processors, HP Precision Architecture processors are all different.
Since a CSUB contains processor code, a CSUB can not be moved from HP BASIC or
HTBasic on one processor and executed under another. The same holds true for
assembly routines called with WRITEIO 9827.

Speed

If you are a PC user and speed is critical to your application, the following suggestions
may be helpful. PC users of HTBasic are encouraged to buy a processor with math
instructions built-in (such as the 486 or 486DX), or to add a math coprocessor. The DOS
Version of HTBasic runs in protected mode with a linear address space, and uses in-line
math coprocessor instructions. Ask your local computer dealer if you can try HTBasic on
the fastest 486 or Pentium computer he can lay his hands on to evaluate the
performance possible with HTBasic. Such a system can meet the performance needs of
most applications.

Clock

Timing resolution varies from version to version of HTBasic. Millisecond timing resolution
is not available on the IBM PC. The PC clock runs at about 18.2 ticks a second, Thus, all
timing functions within HTBasic have a best resolution of about 55 milliseconds. Under
UNIX, HTBasic attempts millisecond resolution, but resolution is affected by the number
of processes running.

HP-IB/IEEE-488

Outside the HP world, the HP-IB bus is known by the name IEEE-488 or GPIB bus. Most
computers are not sold with an integral IEEE-488 interface. An HP compatible IEEE-488
interface card for the PC can be purchased from TransEra, either bundled with HTBasic
or as a later upgrade. Various third-party IEEE-488 interfaces are supported. Contact
TransEra for information on supported interfaces for the PC and other platforms running
HTBasic.

The TransEra model HM900 IEEE-488 card gives full IEEE-488 compatibility. Other
interfaces usually lack minor functionality. For example, PC IEEE-488 interface cards that
use the NEC 7210 IEEE-488 controller chip are incompatible in the following areas: All
READIO and WRITEIO registers are different. Bit 0, IFC, is not supported in STATUS
register 5 or the ENABLE INTR mask. The REM and LOC bits of STATUS register 6 are
not supported as well as the DAV, NDAC, NRFD, and IFC bits of STATUS register 7.

Character Set

The default character set used by the IBM PC and the Sun SPARCstation is different than
the HP Roman-8 character set used by HP BASIC. The differences exist in characters
CHR$(128) and above. In HTBasic, all characters from CHR$(128) through CHR$(254)
are allowed in variable names. If you will be running a program with HP BASIC and
HTBasic, you should restrict variable names to characters from CHR$(161) to
CHR$(254) and the legal characters less than CHR$(128). Chapter 13, "International
Language Support,” contains information on converting from the HP character set, or
setting up the PC to use the HP character set.

Shared Resource Manager (SRM)

Shared Resource Manager users should consider upgrading to Hewlett-Packard's
SRM/UX. By replacing SRM servers with SRM/UX servers, DOS and UNIX computers
can access the files on the server using NFS. PC-NFS is available from Sun. NFS for
UNIX platforms is available from the workstation vendor. HTBasic is also compatible with
most industry standard networks, such as NetWare and LAN Manager.

Miscellaneous Differences

On the PC, support for the Centronix/Parallel Printer Interface has been added. The
interface select code for LPT1 is 10, for LPT2 is 12. These can be changed if needed
(see Chapter 12, "Other I/O Destinations").

The serial interface has been enhanced with XON/XOFF flow control. It is enabled by
default. If you are porting existing programs that transfer binary data or ~S and *Q
characters as part of the data, you should turn off XON/XOFF flow control and turn on
hardware handshaking with the statements:

CONTROL 9,100;0
CONTROL 9,5;0
CONTROL 9,12;0

The maximum line number in HTBasic has been increased from the HP limit of 32766 up
to 65534. If you plan on also running a program on an HP computer, you should not use
line numbers over 32766.

The maximum length of a line, in general, is the same as HP BASIC. However, in rare
instances (such as a program with hundreds of variable names and a program line with
little used operands and thirty or more variable references), it is possible that a line of
legal length in HP BASIC will be considered too long in HTBasic. Such a line will
generate an error when entered. The error is extremely rare; to correct the error, divide
the statement into two statements.

HP ASCII File Problem

The Hewlett-Packard BASIC Language Reference manual entry for "ENTER" states that
"data should be entered into variables of the same type as those used to output it." This
general rule applies to HTBasic as well, and if violated can produce unexpected results.
Consider the following program:

10 CREATE "TEMP",1

20 ASSIGN @I TO "TEMP";FORMAT ON
30 OUTPUT @I;"1,2"

40 OUTPUT QI;"3,4"

50 RESET QI

60 ENTER @I;A,B

70 PRINT A,B

80 ASSIGN @I TO *

90 PURGE "TEMP"

100 END

This program violates the matching-type rule by outputting strings and then entering
numerics. Intuitively, you expect line 70 to print 1 and 2, which it does. When line 10 is
changed to "CREATE BDAT", the same result is produced. But if line 10 is changed to
"CREATE ASCII", then HP BASIC prints 1 and 3. Whether or not you consider this a bug
in HP BASIC, it is a discrepancy that has been corrected in HTBasic. If you have written
programs that use ASCII files and violate the matching-type rule, you should correct them
before running them with HTBasic. If your program must run with both HP BASIC and
HTBasic, you must either adhere to the matching-type rule, or use another file type.

File Systems

HTBasic uses the native file system of whatever operating system it is running under. The
DOS versions of HTBasic (and the Windows version when running under DOS) use the
DOS FAT file system. Under UNIX, HTBasic uses the UNIX file system. Under NT,
HTBasic can use FAT, NTFS, or HPFS file systems. HTBasic does not support the LIF file
system.

A primary difference between HP BASIC and HTBasic is that HP BASIC/WS does its own
file 110, while HTBasic has the operating system do all file /0. This has advantages and
disadvantages. Any disk, diskette, network, or device accessible through the file system
is accessible from HTBasic. However, since HP has not added HP LIF capabilities to its
version of MS-DOS, you can't use HP LIF diskettes, HP-IB disks, tape drives, or SRM
from HTBasic. Maybe HP will correct this situation in the future.

A couple of warnings are in order about the way most operating systems work. If a file is
currently ASSIGNed, the operating system buffers some data in memory to make 1/0
faster. This buffering can produce unexpected results if the same file has multiple 1/0
paths ASSIGNed to it concurrently. Also, you should not remove a diskette, or turn the
power off while a file is ASSIGNed.

Under DOS, NT and UNIX, HP BASIC and HTBasic maintain compatibility with LIF file
types by keeping a special file header for typed files (BDAT, LIF ASCII, and PROG files).
The extra information that must be stored for these file types is kept in the header. The
header is kept totally hidden from BASIC programs. However, to programs outside
HTBasic, the header will be accessible as the first bytes of the file. Any files without the
special header are known as "ordinary files". In a CAT listing, the file type is blank for
ordinary files or gives the operating system (i.e., "DOS" or "HP-UX").

In addition to HTBasic file headers, HTBasic can recognize and use HP LIF headers. This
allows networked computers to directly interchange data between Series 200/300
systems running HP BASIC and systems running HTBasic. The new CONFIGURE
CREATE {"HP" | "HTB"} statement allows the program to specify the type of file header to
use when creating a new BDAT or LIF ASCII file.

LIF ASCII vs. Ordinary ASCII

Early versions of HP BASIC did not have a file type that matched DOS ASCII or UNIX
ASCII files. Starting with BASIC 5.0, it does have an ordinary, "vanilla" file type that can
hold DOS ASCII or UNIX ASCII data. With HP BASIC/WS or HP BASIC/UX, ordinary files
are called "HP-UX" files. With the Viper Card, ordinary files are called "DOS" files. No
special header or other embedded information is placed in ordinary files. An ordinary file
written with FORMAT ON is a DOS ASCII file. An ordinary file written with FORMAT ON,
EOL CHR$(10) is a UNIX ASCI! file. Use the CREATE statement to create an ordinary
file. In a CAT listing, an ordinary file is listed with the file type blank, or gives the name of
the operating system ("DOS" or "HP-UX").

DOS (FAT) File System

The following sections describe some of the differences between the DOS (FAT) file
system and the HP 9000 Series 200/300 BASIC Logical Interchange Format (LIF) file
system. The following discussion is not meant to be a substitute for your DOS manual.
You should read it for complete information on the topics presented here.

The FAT file system, like the HP-UX or Shared Resource Manager (SRM) file system, is a
Hierarchical File System (HFS). An understanding of HFS, UNIX, or SRM file systems
may aid you in understanding the FAT file system.

DOS (FAT) File Specifier

Under DOS, a file specifier has the form:
[d:] [directory path] filename[.ext]
where:

d: is the drive letter. Usually this is A: and B: for the two diskette drives, and C: for the
hard disk. Higher drive letters, D:, E:, etc., usually refer to RAM (MEMORY) disks, CD-
ROMs, or network drives. This part of the file specifier corresponds to the msus of the HP
file system, but is included on the front, not the end of the file specifier. It is optional, and
if omitted, the current (or default) drive is used.

directory path is optional. It is explained below.

filename is the the main part of the file specifier. It may be one to eight characters long.
The following characters are not allowed to be in a filename: ."\[J:|<>+=;, and control
characters whose ASCII value is less than the space character. All other characters are
legal. If lowercase letters are used in a filename they are converted to uppercase by
DOS. Thus, you cannot have a file named "AbC" and another file named "aBC". DOS will
consider both names to be "ABC". Be aware that a DOS file specifier is often referred to
simply as a filename.

ext is the filename extension. The same characters that may be used in a filename may
also be used in an extension. Certain conventions are used for filename extensions. Most
of them are arbitrary, with a few exceptions noted below. Some conventional extensions

are:

Extension Conventional Use

.BAS BASIC program

.BDT BDAT file

ASC ASCII file

.DAT BDAT, or DOS data files

TXT text files

LIS text files, or compiler listings

.LST another common listing file extension
.DOC A DOS ASCII file containing documentation
.BAT DOS batch files MUST have this extension
.COM An executable DOS command or program
.EXE An executable DOS command or program. DOS commands

and programs MUST have one of these two extensions

Note that compared to an HP file specifier, the msus is replaced by a drive letter and
moved from the back to the front. Also, an extension has been added, and no password
is used or available. While DOS does not have passwords, it does have some access
capabilities (similar to SRM access capabilities). These are discussed below. If
passwords are present, they will be ignored.

If an HP-style msus is present, it can be translated to a DOS path if specified by the
CONFIGURE MSI statement. If no matching translation can be found, an error is
returned. The CONFIGURE MSI statement has been added to HTBasic to allow HP style
file specifiers to be used with a DOS file system. If DOS style file specifiers are used,
then the CONFIGURE MSI statement is not needed.

DOS Directory Path

The DOS file system is "tree" structured, almost exactly like the HFS and SRM file
systems. If you are familiar with the HFS file system, the following differences may be
instructional. The "/" character of the HFS file system is replaced with "\" in the DOS file
system. Passwords do not exist in the DOS file system and will cause an error if included
in a directory name.

The file system is organized as a tree. Actually, it is usually thought of as an upside-down
tree. The top of the tree is, thus, the root. (Not roots. Directory trees are considered to
have only one root, and the term trunk is usually not used.) The tree is composed of
directories and files. Each directory may contain files and additional directories, which act
like branches down the tree. Directory names follow the same rules as filenames with
extensions.

A directory path is the path you climb through in the tree to get from the root of the tree to
a certain directory. It consists of the names of each directory that must be climbed
through in order to get to that certain directory, separating the directory names with the
backslash "\" character. If you have not already, you will find it helpful to read the material
in your DOS manual concerning directories.

DOS File Types and Access Capabilities

The DOS file system stores certain information about a file in addition to storing
information in the file. This information consists of:

file name

number of bytes in the file

modification date and time

access capabilities: hidden, read-only, system
location on the disk of the file contents

DOS does not store a record length or a file type. It does have access capabilities,
although they are different from the SRM access capabilities. The access capabilities are
called "attributes" by DOS and may be changed by the DOS ATTRIB command. They
may also be changed by the HTBasic PROTECT command. The meanings of the
attributes are:

Attribute Meaning

hidden the filename is not shown in a disk catalog,
although the file is there

read-only the file may be read, but not written or deleted

system the file is a system file

DOS Devices

HP BASIC accesses devices through interface and device select codes. The same is true
of HTBasic. However, DOS also allows access to devices as if they were files. Special
names are given to devices by DOS, and when used in the place of a filename, access a
device instead of a file. These names are called DOS Device Names and are typically:
CON, AUX, COM1, COM2, PRN, LPT1, LPT2, and NUL. Often, data acquisition
hardware for the PC comes with a DOS device driver. To access such a data acquisition
board, treat it as you would a file and use ASSIGN, OUTPUT, and ENTER.

DOS Wildcards

The question mark "?" and the asterisk "*" have special meaning to DOS. They are called
wildcards and are used in DOS commands like DIR and the HTBasic CAT command in
order to select more than one file. A filename with wildcard characters in it will be
compared with existing filenames using special rules and all filenames that "match” will
be selected. These are the rules used to match an actual filename with wildcards:

1. The "?" character will match any one character in the same position of an actual
filename. For example, the string "?AT" will match the strings "CAT", "BAT", "MAT", or any
other string three letters long that has an "A" as the second letter, and "T" as the third
letter.

2. The "*" character will match zero or more characters starting at that position. For
example, "*" will match all flenames. "*.BAS" will match all filenames that have the
".BAS" extension.

Keyword Differences

The following sections present, by keyword, various implementation differences between
HTBasic and HP BASIC. Most differences are the result of hardware differences, file
system differences, or extensions in HTBasic. The Reference Manual can be consulted
for the full explanation of keywords mentioned here. In some cases, DOS or UNIX
commands that relate to BASIC commands are given. This may help you learn DOS or
UNIX faster by associating functionality with commands you already know.

Some differences exist because of enhancements TransEra has made. Many
enhancements can be included in programs that run under both HP BASIC and HTBasic,
if you are careful. One approach is to hide statements that won't parse under HP BASIC
in OUTPUT KBD statements:

OUTPUT KBD;"CONFIGURE PRT TO 701"&CHRS$ (255)&"E";

Another approach is to set up a section of code that is executed only by HTBasic. When
you GET the program under HP BASIC, the lines with HTBasic syntax enhancements will
be commented out and ignored by HP BASIC:

10 INTEGER Htbasic
20 Htbasic=SYSTEMS ("VERSION:HTB")<>"Q"
30 IF Htbasic THEN

40 CONFIGURE DUMP TO "HP-PCL"
50 CONFIGURE PRT TO 701

60 END IF

70 END

When porting programs between HP BASIC and HTBasic, note the differences for the
following keywords.

ALLOCATE

Under HTBasic, GOSUB and ALLOCATE use the same stack. Intermixing these
statements can cause changes in available memory that are different from HP BASIC.

ASSIGN

When an ASSIGN fails, the previous state of the I/O path is not preserved. Also, the
CONVERT and PARITY options are not implemented.

Under DOS, if changes are made to an ASSIGNed file, the directory entry is not updated
until the file is closed. DOS buffers reads and writes to disk. You should not remove a
diskette or turn the power off while a file is ASSIGNed. Exchanging diskettes while a file
is ASSIGNed on the first can destroy the next diskette. Two 1/O paths ASSIGNed
simultaneously to the same file can produce slightly different results than HP BASIC,
depending on the buffering DOS does.

The HTBasic ASSIGN includes two new options, FORMAT LSB FIRST and FORMAT
MSB FIRST, to specify byte ordering of binary numeric data transfers. This provides the
ability to do binary transfers with any device or computer, regardless of the byte ordering
that device uses.

ATN2

ATN2 is a new HTBasic function.

BEEP

Sound generation capabilities vary from version to version. On computers that do not
provide control for variable frequency sound generation, BEEP generates a beep or bell
sound. The range of the duration and frequency are subject to the limits of the computer
hardware. Contrast the following capabilities with HP BASIC. HP BASIC rounds the
frequency value to a multiple of 81.38 Hz and supports a range of 81 Hz to 5.208 KHz.

On the IBM PC, the period (not the frequency) is rounded to a multiple of 0.838 micro-
seconds. The range of frequencies is 40.7 Hz to 32.767 KHz.

Under UNIX, the -beep command line switch determines whether the BEEP statement
uses the console to produce the tone, or whether it uses the CRT driver to produce the
tone (in some driver-specific manner). By default, the console is used to produce the
tone. This is not always the appropriate behavior, as would be the case when running
remotely.

Under the Sun Version, the console uses the /dev/audio device to produce the tone. The
period is rounded to a multiple of 125 micro-seconds. Consequently, the number of
frequencies is very limited. For example, above 1000 Hz the only frequencies available
are 1143, 1333, 1600, 2000, 2667, and 4000.

If the X Windows CRT driver is producing the tone, then the results vary according to the
X Server. OpenWindows 2.0 always produces a tone of 2400 Hz, although the duration of
the BEEP statement matches the duration specified. HP-VUE produces the requested
frequency, but allows the program to continue immediately while the tone is sounding.

BINEQV/BINIMP

These are new HTBasic functions.

BLOAD/BSTORE

The functionality of the HP BLOAD, BSTORE compiled subroutines is an integral part of
the HTBasic language and does not require CSUBs. See the GLOAD/GSTORE section in
this chapter for more information.

BUFFER

In HTBasic, it is usually incorrect to access numeric data in a buffer through the array
name. ENTER and OUTPUT should be used instead.

CAT

The format of CAT output varies according to operating system. This behavior is
compatible with HP BASIC. The CAT statement supports the use of wildcards. Again,
wildcard interpretation varies by operating system. See CAT and WILDCARDS in the
Reference Manual for more information.

Under DOS, HTBasic does not allow wildcards to be turned off as HP BASIC allows.
Under UNIX, WILDCARDS are ON by default and the escape character is "\". HP BASIC
uses wildcards as a primary filter and the SELECT option as a secondary filter in
choosing filenames to display. HTBasic is designed to be used with one or the other. Use
wildcards or the SELECT option, but not both.

CDIAL

At the time of this manual printing, CDIAL was not supported. However, user demand is
monitored and it will be implemented if demand warrants it.

CHECKREAD

Under DOS, this command is equivalent to the DOS VERIFY command. Under UNIX, this
command is ignored.

CHGRP and CHOWN

CHGRP and CHOWN are useful with an operating system like UNIX in which files are
owned by individuals and groups. These commands allow a user with the appropriate
privilege to change or assign ownership of files. These commands are not used for DOS.
Under any version of HTBasic, the editor will allow these statements to be entered, and
the syntax checker will check them for correctness.

CINT

CINT is a new HTBasic function.

COMMANDS

COMMANDS$ is a new HTBasic function.

CONFIGURE

The CONFIGURE statement is an enhancement to HTBasic that allows the environment
to be customized to a user's preference, or to match his HP hardware. The CONFIGURE
statement is explained in the Installing and Using Manual.

CONTROLI/STATUS

Depending on the hardware interface, some CONTROL and STATUS registers may be
different. The PC serial hardware and TransEra's GPIB-900 board have registers that are
compatible with the HP registers. For other interfaces, consult the interface register
documentation.

TransEra has added capabilities to several of the standard interfaces. The additional
registers resulting from these enhancements are always numbered 100 and above. In
some instances HTBasic can pass arrays to and from a single register. This capability is
used for things like gain control lists in data acquisition drivers.

COPY

HTBasic does not support the copy of a full disk to another disk. Use the operating
system for full disk copies. Under DOS you can use the DOS "DISKCOPY" or "XCOPY"
commands. The DOS XCOPY command (DOS 3.2 and later) is an extended COPY
command that, among other things, allows you to copy entire disks when the disk sizes
are not the same. Under UNIX, commands like "tar" and "cpio" might be used. The DOS
COPY command and the UNIX mv command are used to copy individual files. If
wildcards are included in the command, then several files can be copied with a single

command.

CREATE

Because DOS and UNIX support extendible files, the number of records specified in the
CREATE statement is ignored. An invalid number does not generate an error as it will
under HP BASIC. Programs that depend on errors occurring by writing past the last
specified record will not function correctly, as HTBasic will simply extend the file as
needed. Programs that depend on the pre-allocation of the requested records should
write dummy data at the time the file is CREATEd. Under DOS, it is sufficient to write data
in the last record; under UNIX, the entire file must be written.

Don't confuse a LIF ASCII file, created with CREATE ASCII, with a DOS ASCII or UNIX
ASCII file, created with CREATE. See CREATE in the Reference Manual for more
information.

Use the CONFIGURE BDAT MSB FIRST statement before creating BDAT files that will
be moved back to HP BASIC.

CREATE DIR

This command is exactly like the HP BASIC command of the same name. It is the
equivalent of the DOS MD or MKDIR commands or the UNIX mkdir command.

DEF FN

Nested I/O is not allowed under HP BASIC. For example,

10 PRINT FNX

20 END

30 DEF FNX

40 PRINT "DEBUG:START"
50 RETURN 0

60 FNEND

will produce an error under HP BASIC. At the time of this manual printing, nested 1/0
does not return an error under HTBasic but should not be used because future
improvements may make it illegal.

HTBasic limits the depth that recursion can occur. The depth is limited by the size of the
processor stack, not the BASIC workspace size. At the time of this manual printing, the
recursion limit is for the DOS Version. Under UNIX, the limit is some large number, limited
by the size of the swap file or other operating system quotas. Under NT, the limit is about
1800.

DELSUB

HTBasic allows a string variable to specify the name of the subprogram or function to
delete.

DUMP

HP BASIC supports only Hewlett-Packard printers, but HTBasic supports several types of
printers. For this reason, you may need to tell HTBasic what language to use before
doing the DUMP. On a PC, the default language is "EPSON", which supports both IBM
and Epson graphic printers. Under UNIX, the default language is PostScript. If you are
going to make screen dumps to another type of printer, you must first use the
CONFIGURE DUMP statement. You may find it convenient to include this statement in
your AUTOST file. Chapter 4, "Printer and Image File Drivers," of the Installing and Using
manual explains what languages are supported and how to select them.

When DUMPIng to a printer, the ratio of the image size on the printer may not match that
on the screen. This is caused by non-square pixels on the display or on the printer. CGA,
EGA, and Hercules display adapters, and Epson and IBM printers are common devices
with non-square pixels. The VGA display adapter and HP-PCL printers have square
pixels and, used together, will not produce distortion.

EDIT

EDIT SUB and EDIT FN are extensions in HTBasic. Several new edit functions are also
included. See "OUTPUT KBD", later in this chapter.

ENABLE INTR

Depending on the hardware interface, some ENABLE INTR mask values may be
different. On the PC, interfaces supported by the "SERIAL" and TransEra "GPIB" board
drivers have interrupt masks that are compatible with the HP masks. For other interfaces,
consult the interface register documentation.

ENVIRONS

ENVIRONS is a new HTBasic function.

ERRDS

At the time of this manual printing, ERRDS was not supported. However, user demand is
monitored and it will be implemented if demand warrants it.

ERRM$

HTBasic error messages are usually similar to those in HP BASIC. Programs that depend
on ERRMS$ returning the exact same message as HP BASIC should be modified
accordingly. In particular, where an HP BASIC error message has seemed less
descriptive than it should be, HTBasic returns a more descriptive message.

ERRN

Any error number of 2000 or greater is an HTBasic extensions to HP BASIC. Not all
errors that can occur under HP BASIC can occur under HTBasic. The Reference Manual
contains a list of errors that can occur.

In general, and whenever possible, the error numbers returned for errors are the same as
those returned by HP BASIC. But in some instances the operating system or environment
in which HTBasic runs makes it impossible or impractical to return the same number.

EXECUTE

The EXECUTE statement has been added to run operating system commands or other
programs while HTBasic is running. See Chapter 4, "Program Flow Control". The DOS
Version requires that memory be reserved for EXECUTEd commands. Use CFIG386,
described in the Installing and Using HTBasic on the DOS Version manual, to reserve
memory for the program or DOS command.

FIX

FIX is a new HTBasic function.

FRACT

HTBasic allows the FRACT of a complex value, returning the fractional part of the real
part of the complex value. HP BASIC gives error 620.

FRE

FRE is a new HTBasic function.

GESCAPE

Only HP BASIC operation selectors 1 to 6 are supported by GESCAPE. Often, where
operation selector 7 is used, MERGE or SEPARATE ALPHA can be used instead.
Operation selectors greater than 99 are enhancements to HTBasic.

GET

HTBasic turns lines with syntax errors into comments by inserting "I*" instead of just "!"
after the line number. This allows FIND "!*" to quickly identify lines needing corrections.

GLOADI/GSTORE

The HP rule that images be GLOADed on the same display and with the same write-
enable mask that was used when the image was GSTOREd applies to HTBasic as well.
In particular, don't think that you can GSTORE on an HP BASIC display and GLOAD on
an HTBasic display.

HTBasic GLOAD and GSTORE have been enhanced with the capabilities of HP BASIC's
BLOAD and BSTORE subprograms. These capabilities allow rectangular blocks of the
screen to be stored or loaded. The following subprograms can be used in place of the
BLOAD and BSTORE subprograms for users that want to continue calling
BLOAD/BSTORE instead of switching to the new GLOAD/GSTORE syntax:

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

SUB Bstore (INTEGER Int array(*),W,H,OPTIONAL Rule,REAL X,Y)
SELECT NPAR
CASE 3
GSTORE CRT, Int array(*),W,H
CASE 4
GSTORE CRT, Int array(*),W,H,Rule
CASE 5
WHERE X0, YO0
GSTORE CRT, Int array(*),W,H,Rule, X, Y0
CASE 6
GSTORE CRT, Int array(*),W,H,Rule,X,Y
END SELECT
SUBEND
SUB Bload (INTEGER Int array(*),W,H,OPTIONAL Rule,REAL X,Y)
SELECT NPAR
CASE 3
GLOAD CRT, Int array(*),W,H
CASE 4
GLOAD CRT, Int array(*),W,H,Rule
CASE 5
WHERE XO0,YO0
GLOAD CRT, Int array(*),W,H,Rule, X, Y0
CASE 6
GLOAD CRT, Int array(*),W,H,Rule,X,Y
END SELECT
SUBEND

Note that only rule 3, replace, is currently supported.

GRAPHICS INPUT IS

Both HP BASIC and HTBasic do an implicit GRAPHICS INPUT IS assignment for you if
you attempt to use graphic input statements before an explicit GRAPHICS INPUT IS. The
difference is that HTBasic does the implicit GRAPHICS INPUT IS as soon as HTBasic is
started, and HP BASIC waits until the first graphic input statement is executed. The only
known effect of the different approaches is that under HP BASIC, a SYSTEM$
("GRAPHICS INPUT IS") returns "0" until the first graphic statement is executed and
HTBasic returns the correct value anytime.

HELP

The HELP statement is a new HTBasic statement. It provides on-line help for all
language statements. The Reference Manual has been compressed and is stored in a
file. Just enter HELP followed by the keyword of interest and HTBasic brings up the
Reference Manual page for the requested keyword. You no longer have to run and get
the Reference Manual when you have a question on statement syntax or functionality.

HIL

At the time of this manual printing, HIL related statements were not supported. However,
user demand is monitored and they will be implemented if demand warrants it.

IMAGE

Entering data from a string using
ENTER LS$ USING "Yy"

will always use the internal byte ordering of the computer. For PCs and compatibles, the
byte ordering is LSB FIRST. For Sun SPARCstations and HP Workstations, the byte
ordering is MSB FIRST. This limitation applies to ENTER/OUTPUT with strings only. With
devices, the byte ordering can be selected in the ASSIGN statement.

INITIALIZE

HTBasic does not support INITIALIZE. To initialize a new LIF disk, use "INITIALIZE" on
an HP BASIC workstation. To initialize a new DOS disk, use the "FORMAT" command
under DOS. To initialize a new Sun floppy disk use the "fdformat" command under
SunOS 4.x. To initialize a new HP-UX floppy disk, use the "mediainit" and "newfs"
commands under HP-UX.

RAM disks are not supported with the INITIALIZE ":MEMORY,0" command. Many
excellent RAM disk programs are available for the PC that make the RAM disk available
to all DOS programs, including HTBasic. These programs can usually make RAM disks in
conventional, expanded, or extended memory. A simple one is provided with DOS and is
called VDISK.SYS or RAMDISK.SYS.

INP/INPW

INP and INPW are new HTBasic functions for communicating with devices having no
HTBasic device driver. They are not supported under protected mode operating systems
like UNIX.

KBD CMODE

HP BASIC and HTBasic both use KBD CMODE ON for Nimitz keyboard softkey
compatibility. The Nimitz keyboard is used on the 9836 and has ten softkeys, the lowest
of which is labeled k0. The softkey labels are displayed at the bottom of the screen in two
rows, each row containing five labels and each label 14 characters wide.

The difference between HP BASIC and HTBasic's implementation of KBD CMODE ON is
that HTBasic exactly emulates the screen format for the labels, while HP BASIC uses an
emulation that gives physical correspondence with the ITF 4-2-4 softkey layout.

LEXICAL ORDER

Several extensions are present in the LEXICAL ORDER statement of HTBasic to allow
user definition of upper/lowercase rules for languages that are not built-in. The rules can
also be loaded from a file.

LINE TYPE

In the LINE TYPE statement, the repeat length is ignored by most graphic drivers.

LIST BIN

LIST BIN is programmable in HTBasic, but not in HP BASIC.

LOAD

HP BASIC PROG files and HTBasic PROG files are not compatible. To move programs
between the two environments, use ASCII program files.

LOAD BIN

The LOAD BIN statement has been enhanced to allow software switches to be passed to
device drivers. HP BASIC BIN files are not compatible with HTBasic.

LOADSUB

HTBasic allows a string variable to specify the name of the subprogram or function to
load.

MASS STORAGE IS

The current "MASS STORAGE IS" on a DOS or UNIX file system includes not only the
device, but also the current directory. In other words, it specifies not only which tree
(device) you are in, but where in the tree (current directory) you are. The DOS command
CD and the UNIX command cd change the current directory when not running HTBasic.

OUT/OUTW

OUT and OUTW are new HTBasic statements for communicating with devices having no
HTBasic device driver. They are not supported under protected mode operating systems
like UNIX.

OUTPUT KBD

Three editor functions have been added to HTBasic and should not be used in programs
that will be executed with HP BASIC: DEL LEFT, NEXT WORD, and PREV WORD.
Otherwise, all the two-character function key sequences (CHR$(255)&CHR$(X)) used
by HP BASIC are compatible with HTBasic. If multiple statements are output in a single
OUTPUT KBD statement, they are all executed before the next BASIC line. HP BASIC
sometimes intermixes the execution with multiple BASIC lines, based on the presence or
absence of "closure keys."

PERMIT

PERMIT is used under UNIX to set the permissions (mode) of a file, directory, or device.
Permissions specify who can read, write, or execute a file, and who can search a
directory. To change file attributes under DOS, use the PROTECT statement.

PHYREC, Phyread, Phywrite

The PHYREC utilities under HP BASIC allow physical disk sectors to be read or written.
Such access usually provides enhancements or file utilities for LIF formatted disks.
Programs using Phyread and Phywrite most likely will not work under DOS or UNIX, and
in fact will probably destroy the files on the disk involved. DOS and UNIX provide
methods of accessing physical disk sectors, but no PHYREC utilities are supplied with
HTBasic because of the complexity and danger involved.

PLOTTER IS

Under HP BASIC, PLOTTER IS 3,"INTERNAL" is equivalent to PLOTTER IS
6,"INTERNAL" unless the HP 98546 Display compatibility Interface is installed. Under
HTBasic, 3 selects CRTA mode and 6 selects CRTB mode (see the Installing and Using
manual). If this is not your intention, you need to do what HP recommends for users of
the 98546: use PLOTTER IS CRT,"INTERNAL" instead of 3 or 6.

Both HP BASIC and HTBasic do an implicit PLOTTER IS assignment for you if you
attempt to use graphic statements before an explicit PLOTTER IS. The difference is that
HTBasic does the implicit PLOTTER IS as soon as HTBasic is started, and HP BASIC
waits until the first graphic statement is executed. The only known effect of the different
approaches is that under HP BASIC, a SYSTEMS$("PLOTTER IS") returns "0" until the
first graphic statement is executed and HTBasic returns the correct value anytime.

HP BASIC supports only "INTERNAL" and "HPGL" graphic languages. HTBasic supports
loadable graphic device drivers so it is not limited to these two choices. HTBasic also
allows clip-limits to be specified when output is directed to a device, allowing use of
plotters or printers that are incapable of returning p-points.

PRINT
HTBasic has been extended to allow the displacement of the attribute and color control
characters that normally have the values CHR$(128) to CHR$(143). Since the PC has
characters in this range that sometimes need to be displayed, HTBasic has the capability
of moving the range with the statement CONTROL CRT,100;1.

PRINT LABEL and READ LABEL

PRINT LABEL and READ LABEL are used to set and read the volume label of a disk
drive. Under UNIX, labels are not supported. Under DOS, HTBasic does not support
PRINT LABEL; you must use the DOS "LABEL" command. To change the label of a disk
from an HTBasic program, use the EXECUTE "LABEL x:" command.

PROTECT

PROTECT is used to set LIF file passwords under HP BASIC and DOS file attributes
under HTBasic. It is not used by UNIX versions. To change file permissions under UNIX,
use the PERMIT statement. A special form of PROTECT is used by DOS Versions of
HTBasic to change file attributes. The syntax is

PROTECT file-specifier, protect-code

where protect-code is a string containing zero or more of the following characters:

Character Meaning

(none) no protection

R read-only: File cannot be written or deleted.

S system file: For the most part, this attribute has
no meaning.

H hidden: File will not be listed by a CAT command.

If a character is not included, that attribute is cleared. If the string is blank, all attributes
are cleared.

PRT

Most PC printers are connected to the parallel printer interface. For this reason, under
DOS, PRT returns the value 10 instead of 701. Programs with statements that use PRT
explicitly, such as "PRINTER IS PRT" need not be changed if a parallel printer is used on
the PC. To change PRT back to 701, for IEEE-488 printers at primary address 1, use the
statement "CONFIGURE PRT TO 701". You may find it convenient to include this
statement in your AUTOST file. This statement is not necessary if you use the value 701
(or any other value) explicitly.

PURGE

PURGE is similar to a combination of the DOS DELETE and RD or RMDIR commands
and the UNIX rm and rmdir commands. Unlike DELETE, PURGE will only delete one file
at a time, and will also delete directories. PURGE will not delete a directory unless there
are no files in that directory. Also, DOS will allow you to PURGE an ASSIGNed file. The
actual PURGE takes place after the file is closed.

QUIT

The QUIT command exits HTBasic and returns you to the operating system command
processor or shell. Any program or data in memory is lost. You should store any program
changes before quitting.

READIO/WRITEIO

READIO/WRITEIO access hardware registers directly, and therefore, if the interface
hardware is different than the hardware on an HP BASIC Workstation, the
READIO/WRITEIO registers will not be compatible. TransEra supplies a PC IEEE-488
bus controller card that duplicates the Series 200/300 HP-IB READIO and WRITEIO
registers. Other IEEE-488 bus controller cards are not usually completely compatible. For
other interfaces consult the interface register documentation.

Several special un-documented READIO/WRITEIO select codes have existed in HP
BASIC for many years. These select codes are now documented and allow peeking and
poking memory locations, and executing machine language subroutines.

RENAME

RENAME is used to change the name of a file, but can also be used on some systems,
including DOS and UNIX, to move a file from one directory to another directory on the
same disk. RENAME is similar to the DOS RENAME command and the UNIX mv

command.

SAVE

The SAVE statement in HTBasic can be set to save programs in either ordinary ASCII or
LIF ASCII. This is done with the CONFIGURE SAVE ASCII statement. (DOS ASCII and
UNIX ASCII are ordinary ASCII files.)

SCRATCH BIN

SCRATCH BIN is not supported for HTBasic binaries. You may QUIT and re-start
HTBasic to scratch all binaries.

SEPARATE ALPHA

HP BASIC assigns green to the alpha plane by assigning green to pens 8 through 15.
HTBasic assigns white. If you prefer green, or some other color, you may explicitly set
pen values 8 to 15 to the color desired.

SET ALPHAIDISPLAY MASK

At the time of this manual printing, SET MASK was not supported. However, user
demand is monitored and it will be implemented if demand warrants it. Currently,
MERGE/SEPARATE ALPHA are the supported methods of changing the masks.

SET CHR

At the time of this manual printing, SET CHR was not supported. However, user demand
is monitored and it will be implemented if demand warrants it.

SET TIME/TIMEDATE

HP BASIC/UX keeps a BASIC time that is separate from the actual system time. SET
TIME and SET TIMEDATE, specified without any time value, resynchronizes the two.
Since HTBasic avoids this problem under UNIX, SET TIME and SET TIMEDATE change
the actual UNIX system time. SET TIME and SET TIMEDATE, with no time value, is
ignored. Remember that you must be the super user (root) in order to successfully
change the UNIX system time.

SOUND

At the time of this manual printing, SOUND was not supported. However, user demand is
monitored and it will be implemented if demand warrants it.

STATUS

STATUS @lopath,2 always returns a 4.

STATUS @File,3 returns the current length, not the CREATE length. This is because files
are extendible under DOS and UNIX.

The STATUS() function (as opposed to the STATUS statement) is an addition to HTBasic.
Any STATUS or CONTROL registers greater than 99 are also additions.

As in HP BASIC, STATUS register 0 of interface cards contains the card ID. Interface
cards that are available on a PC, but not on an HP BASIC Workstation are identified with
ID numbers greater than or equal to 300.

STORE

HP BASIC PROG files and HTBasic PROG files are not compatible. To move programs
between the two environments, use ASCII program files.

STORE SYSTEM

In HP BASIC this statement stores a copy of the operating system with all loaded BINs
already linked in. Under HTBasic this is not possible. Use AUTOST to load HTBasic
device drivers.

SYMBOL

LORG 5 moves the symbol origin from (0,0) to (5,8). In HP BASIC it moves the origin to
(4.5,7.5).

SYSBOOT

HTBasic does not support SYSBOOT, which under HP BASIC reboots the computer.
Since HTBasic runs as a guest of the operating system, it is considered inappropriate to
reboot the computer. Under some operating systems, rebooting the computer
inappropriately can cause loss of data.

SYSTEMS$

Minor differences in some SYSTEMS$ responses exist where appropriate to reflect the
hardware differences and the DOS or UNIX operating system. See SYSTEM$ in the
Reference Manual for more detalils.

The SYSTEM$("DISP LINE") function is an HTBasic extension that returns the present
contents of the display line.

The SYSTEM$("VERSION:HTB") function returns the HTBasic version description, for
example, "DOS Version Release 5.0". This function can be useful for programs that run
on both HP BASIC and HTBasic systems, enabling them to determine which system they
are currently running on. The following example sets a variable according to the system
running the program:

10 SUB Which system

20 COM /Which system/Htbasic,Hpbasic
30 IF SYSTEMS ("VERSION:HTB")="0" THEN
40 Hpbasic=1

50 ELSE

60 Htbasic=1

70 END IF

80 SUBEND

TIMEZONE

HTBasic does not require this statement and will return an error if an attempt is made to
execute it. The editor will allow it to be entered, and the syntax checker will check it for
correctness to allow you to develop programs and run them under HP BASIC. HP BASIC
requires this statement for two reasons: 1) HP BASIC/UX keeps a time clock independent
of the UNIX time, and 2) it is possible to boot HP BASIC/WS on a computer whose real-
time clock is set to Greenwich Mean Time (GMT).

TRANSFER

Not all devices or versions of HTBasic support TRANSFER.

WRITEIO

See the explanation under READIO for some differences. Other processors can not
execute the Motorola code accessed by WRITEIO 9827. The code must be rewritten.

XREF

HTBasic allows a string variable to specify the name of the subprogram or function.

Chapter 3
Language Elements

This chapter contains conceptual information that you need to understand before
attempting to write programs using HTBasic. The basic elements of the language are

explained: program lines, labels, keywords, contexts, I/0O paths, constants, variables,
arrays, and data types.

Program lines

An HTBasic program is a series of instructions. These instructions are in the form of
program lines. The general form of a program line is:

line_number [label:] statement [lcomment]

Line Numbers

Each HTBasic program line requires a unique line number at the beginning of the line.
Line numbers must range from 1 to 65534. HTBasic ignores leading zeros, spaces, and
tabs before line numbers. Line numbers are used to:

indicate the order of statement execution
provide control points for branching

help in debugging and updating programs
indicate the location of run-time errors

Line Labels
Line labels may optionally follow any line number. The use of line labels results in more
structured programming. If all line references use line labels, the line numbers can
effectively be ignored. Line references to labels are unaffected by line numbering. A line
label can not be the only thing on a line; you must include a statement, even if it is just a

comment tail "!1".

Statements

A program statement is the smallest complete program unit. It is made up of HTBasic
keywords, operators and operands. The Reference Manual details the syntax for each
program statement.

The maximum number of characters allowed in a program line is 255. A program line
longer than 80 characters (or the screen width) will wrap to the next line. No continuation
character is necessary. In EDIT mode, only the first 160 characters (or twice the screen
width) of a line are displayed. If a line contains more than 160 characters, an asterisk, "*",
will follow indicating that there are more characters that are not displayed.

Comments

An optional comment may be added to any program statement by starting the comment
with an exclamation mark "!". The characters following the exclamation mark will be
retained in the program as a comment and are ignored during the execution of the
program. Comments are not moved by the INDENT statement.

Keywords

Certain words have a special meaning in the HTBasic language and are called keywords.
For example, PRINT is a BASIC keyword. Keywords can be used as variable names, if
they are entered partly in uppercase and partly in lowercase. Every statement except an
assignment (if LET is omitted) or a subprogram CALL (if CALL is omitted) must begin with
a keyword. A keyword cannot have embedded spaces. Keywords are printed in
uppercase in program listings.

Keywords must be delimited by a space or some other legal delimiter and cannot be
abbreviated. For example, PRINT USING cannot be entered as PRINTUSING. Neither
can PRINT be entered as PRI.

Program Contexts

HTBasic programs can be made up of a collection of program contexts. Contexts are
program units that have their own environment, including local variables. There are four
types of contexts: the main context, a subprogram context, a user defined function
context, and a CSUB context.

By default, all context variables are local in scope. A local variable cannot be changed by
another context unless it is passed by reference. It exists temporarily, only while its
program context is being executed. If a context is invoked recursively, each invocation of
the context has its own set of local variables.

Global variables defined in a COM statement can be accessed from any program context
in the HTBasic program that includes the proper COM statement. More information on
variables and their scope is presented later in this chapter.

Main Context

The main context includes all of the program lines from the first line up to and including
the END statement. This context executes first and may call other subprogram contexts.

Subprogram Contexts

Subprogram contexts are program units that begin with a SUB statement, optionally
define parameters, end with a SUBEND statement, can be invoked recursively by other
contexts, and can be passed arguments, either by reference or by value. They are similar
to procedures and functions in other structured languages and are sometimes referred to
as "true" subroutines. Subprogram contexts allow arguments to be passed, local
variables to be declared, and global variables to be referenced.

User Defined Function Contexts

A User Defined Function context begins with a DEF statement, optionally defines
parameters, ends with a FNEND statement, can be invoked from within an expression by
referencing its name, and can be passed arguments, either by reference or by value.
When it terminates, it returns a value with a RETURN statement. The expression then
continues to evaluate, using the returned value in place of the function reference.

CSUB Contexts

A CSUB is a compiled subprogram created with special tools outside of HTBasic. It is
loaded into memory with the LOADSUB statement and removed from memory with the
DELSUB statement. It is invoked with a CALL statement. A simple alternative to CSUBs
are assembly language routines accessed with special READIO/WRITEIO statements.

Integer Numbers

INTEGER is a numeric data type. INTEGERs are whole numbers (-1, 2, 35) ranging from
-32768 to +32767. INTEGERS are stored in two bytes of memory and INTEGER
operations are faster than REAL operations.

Real Numbers

REAL is another numeric data type. REAL numbers, also called floating point numbers,
are a subset of all rational numbers. The particular subset depends on your computer.
Most computers, including the IBM PC, use IEEE Std 754-1985 for Binary Floating point
numbers. This gives the REAL data type an approximate range of 1E-308 to 1E+308 and
15 decimal digits of precision. Eight bytes are used to store a REAL number. Both
positive and negative numbers are represented. MINREAL and MAXREAL are functions
that return the smallest and largest REAL numbers.

Integral numbers too large to be represented by the INTEGER type, numbers expressed
with a decimal point, and numbers expressed in scientific notation are stored as REAL
numbers. Scientific notation on computers is usually expressed as x.xxxEyyy, meaning
X.xxX is multiplied by 10 raised to the yyy power. For example: 3.141EOQ, 4E-7, -101.1E+2.
REAL operations are slower than INTEGER operations and REAL numbers take more
memory space to store.

Cautions

Some cautions are in order when using REAL numbers. It is possible to have two
different REAL numbers whose 15 digit decimal representations are the same. However,
when comparing or subtracting these two numbers that look equal, you will find they are
NOT equal. Also, since REAL numbers are only a subset of the rational numbers, some
operations produce a result that is not in the set of REAL numbers. If the result is too
large in magnitude, it produces an overflow error. If the result is too small, it produces an
underflow error. The result may be between two numbers in the REAL set. In this case,
an approximation must be used for the actual value. Most of us have witnessed this
happening by dividing one by three on a hand-held calculator. Digits that the calculator
can not store are just discarded.

Each of these pitfalls is demonstrated in the following program:

10 RAD
20 One = COS(3)*COS(3)+SIN(3)*SIN(3)
30 PRINT One,One-1.0

From trigonometry we know that line 20 should assign the value one to the variable One.
And indeed, when One is printed, we see it is "1". However, when the value of One-1.0 is
printed, we do not get zero. We get a very small value.

REAL Comparisons

Rather than compare two REAL values for equality, it is often best to compare them for
an acceptably small difference. For example, the rest of the program started above:

40 IF ABS(One-1.0) < 1E-15 THEN PRINT "EQUAL ENOUGH"

Alternately, DROUND or PROUND can be used to round the binary representations to
match each other:

50 PRINT One, DROUND (One, 1) -DROUND(1.0,1)
60 END

FOR Loops

It is not a good idea to use a REAL variable as the loop counter in a FOR loop. Rounding
errors tend to accumulate when a REAL variable is used as the loop counter in a FOR
loop. For example:

10 FOR X=1 TO -1 STEP -.05
20 PRINT X;TAB (20) ;ACS (X)
30 NEXT X

40 END

It is expected that this loop would include 0 and -1 among the values printed for X.
However, when this example is executed, a small non-zero value is printed in place of 0
and the loop terminates before getting to -1.

INTEGER variables should be used for the loop counter. The number of iterations can

then be exactly specified. The REAL values needed in the loop can be generated each
iteration from the INTEGER variable. This approach does not allow rounding errors to

accumulate. The previous example should be replaced with:

10 INTEGER I

20 FOR I=0 TO 40

30 X=1-I*.05

40 PRINT X;TAB(20) ;ACS (X)
50 NEXT I

60 END

Definition
The exact subset of rational numbers that can be represented by REAL numbers (on
computers using IEEE-754) is the set of all numbers expressible in the form:

(-1)s * 2e * mantissa

where:

s=0orl.

e = any integer between -1022 and +1023.
mantissa = b0 * 2-0 + b1 * 2-1 + ... + b52 * 2-52
bo=1

bi = 0 or 1 (for i<>0)

Complex Numbers

COMPLEX is yet another numeric data type. The COMPLEX data type defines a number
having two components, like a two-dimensional vector. In a complex number, however,
there is a well-defined relationship between the two components of the number. The first
component in a complex number is called the real part and the second component is
called the imaginary part. A complex number is often written in the form

X +1y,

where x represents the real part of the number and y the imaginary part. X and y are
ordinary REAL numbers and have the same range as REAL numbers. The j is defined as
the square root of -1.

Strings
A string is another data type. A string is a combination of ASCII characters. These are the
letters, numbers, and symbols that you can type on the keyboard. ASCII characters also
include control characters such as carriage return, etc. A string also has a current length.

The length can be zero, meaning that there are no characters stored in the string, or any
size up to a maximum of 32767.

110 Paths

An I/O path is yet another data type. From mathematics we are familiar with numeric data
types. The string type is somewhat harder to understand, but the 1/O path type is the
most abstract and by far the hardest to understand. An I/O path consists of all of the
routing information necessary for the computer to exchange data between your HTBasic
program and another entity (such as a printer, data acquisition device, string, file, etc.).
Data is assigned to an 1/O path variable with the ASSIGN statement. Unlike the other
data types, PRINT can not be used to examine the contents of an I/O path variable.

However, the contents are used when an OUTPUT, ENTER, or other statement specifies
the 1/O path variable.

Constants

A constant is a quantity with a fixed value. There are four types of constants: string,
COMPLEX, REAL, and INTEGER. COMPLEX, REAL and INTEGER constants are
collectively called numeric constants. The following are examples of numeric constants:

Example Type of Constant

1 - integer constant

1.0 - real constant

2.718281828 - real constant

-20000 - integer constant

+1E+0 - real constant

40000 - real constant (32767 is max integer size)

CMPLX(0,1) - complex constant

Numeric Constants

Numeric integer constants can also be expressed in octal (base 8) or hexadecimal (base
16). A hexadecimal constant must begin with the characters "&H". An octal constant must
begin with the characters "&0" or simply "&". Hexadecimal and octal constants are an
extension in HTBasic and are not supported in HP BASIC. The following are examples of
hexadecimal and octal constants:

Example Type of Constant
&H10 hexadecimal constant with decimal value of 16
&010 octal constant with decimal value of 8

&20 octal constant with decimal value of 16

String Constants

A string constant is a sequence of ASCII characters enclosed in quotation marks. They
are also called string literals. A quotation mark may be included in a literal by entering two
adjacent quotation mark characters. For example:

100 PRINT "This is a quotation mark >""<"
This will print:

This is a quotation mark >"<

Variables

A variable is an entity with memory and a changeable value. Each variable has a name, a
type, a scope, and a value. Array variables remember multiple values. The rules for
naming variables, the variable type, the scope of a variable, and array variables are
explained in the following paragraphs.

A string or numeric variable can be assigned a value that comes from a constant, another
variable, an expression, or a DATA, INPUT, ENTER, or READ statement. An I/O path
variable can be assigned using the ASSIGN statement. The type of data must match the
variable type.

Variable Names

A variable name can have up to 15 characters. The characters can be alphabetic,
numerals, underlines, and characters ranging from CHR$(128) to CHR$(254). The first
character may not be a numeral or an underline. The last character of a string variable
name must be followed by the dollar sign character, "$". The first character of an I/O path
variable name must be the at-sign character, "@".

A variable name can be the same as a keyword if it is entered partly in uppercase and
partly in lowercase characters. Variable names are listed with the first character in
uppercase and the remaining characters in lowercase. Here are some examples of legal
and illegal variable names (and why):

Variable Explanation

Smile legal

FOR illegal, FOR is a keyword

For legal with mixed case

I legal

X1 legal

X-7 illegal, minus sign is not allowed

Supercalifragalisticexpealadoeshous illegal, too long

Variable Types

There are five types of variables:

* Real
Integer
Complex
String
I/O Path

You must indicate the type of each variable in some way. Use the REAL statement to
declare real numeric variables. Use the INTEGER statement to declare integer variables
and the COMPLEX statement to declare complex variables. If a numeric variable is not
declared, it is declared REAL automatically. To turn off automatic declaration of variables,
execute CONFIGURE DIM OFF.

HTBasic recognizes a string variable from the dollar sign, "$", following the last character
of the string name. The DIM statement is used to set the maximum string length. The
length of a string stored in a string variable cannot exceed its DIMensioned length. To
dimension a string named S$ with a maximum length of 20, use the following syntax:

DIM S$[20]

If a string is not declared in a DIM statement, it is normally dimensioned automatically to
a maximum string length of 18 characters. To turn off automatic declaration of variables,
execute CONFIGURE DIM OFF.

An I/O path variable does not have to be declared. HTBasic recognizes it from the at-sign
character, "@", preceding the variable name. The ASSIGN statement is used to set up
the 1/O path variable before a data transfer.

Variable Scope

HTBasic supports variables with two different scopes, local and global.

All variables not defined in a COM statement are local in scope. The values of local
variables are only accessible within the context in which they are defined. All local
variables are assigned the value zero when the context begins execution. When the
context finishes execution, the values of the local variables are discarded. When a
context is called recursively, each invocation of the context is given its own set of local
variables. The COMPLEX, REAL, INTEGER, DIM, and ALLOCATE statements are used
to declare local variables.

No memory is reserved for ALLOCATEd variables until the ALLOCATE statement is
executed. The DEALLOCATE statement releases the memory before the context finishes
execution. ALLOCATE is only used for array and string variables

COM variables are global in scope. The values of COM variables are stored in COM
blocks that are global in lifetime. A COM block is a set of one or more variables that is
held in "common" (i.e. may be shared) among one or more contexts. Each COM block is
uniquely identified with a name (although one block is allowed to be nameless). As many
COM statements as necessary may be used in a context to fully describe the COM block
variables.

To access COM variables, a context must include a COM statement that identifies the
COM block and gives the names by which the variables will be known in that context.
Thus, each context can give a different name to the same COM variable. COM variables
are hidden from all contexts that do not include a COM statement accessing that COM
block.

When a new program is brought into memory, the existing COM blocks are compared to
the COM blocks defined in the new program. Any COM blocks that exactly match are
retained and their data values are available for use by the new program. Any COM blocks
that do not match are deleted and the memory used by their data values is released and
may be reused by the new program.

Array Variables

A simple variable has one data value. An array is a multi-dimensional ordered set of data
values. Each member of the set is called an array element. All the members of the set
have the same data type which can be COMPLEX, INTEGER, REAL, or string. An array
variable can not have the same name as a simple variable.

The number of dimensions of the array is called the RANK. Arrays may have a RANK
from one to six. You can specify both the lower and upper bound of each dimension. If
the lower bound is not specified then the current OPTION BASE of the context is used as
the lower bound. The default OPTION BASE is zero.

Declaration
Local array variables are declared using the COMPLEX, INTEGER, REAL, and DIM
statements. The ALLOCATE statement is used to dynamically declare a local array. The
COM statement is used to declare a global array. Normally, all array variables that are not
declared will be declared automatically with the default lower bound, an upper bound of
10, and a RANK matching the number of subscripts in the first reference to the array. To
disable automatic array declaration, use CONFIGURE DIM OFF.

String Arrays
A string array may be defined where each element of the array is a separate string of the
dimensioned length. To dimension a string array named S$ with four elements (assuming
the default OPTION BASE 0), each of which can have a maximum length of 20
characters, use the following syntax:

DIM SS$(3) [20]

Examples

A few examples follow showing array declarations.

DIM X (3) ! declares an array of 4 REALs.

This example defines an array with elements numbered 0,1,2,3. If you have set the
context OPTION BASE to 1, then it would define an array with elements numbered 1,2,3.

INTEGER A (50:100) ! declares an array of 51 integers.
This example defines an integer array with 51 elements numbered 50 through 100.

One-dimensional arrays are always referenced by one subscript in parentheses following
the array variable. For example, A(2) refers to the third element. Two-dimensional arrays
are referenced by two subscripts, where the first subscript refers to the row, and the
second subscript refers to the column. For example, A(1,2) refers to the second row, the
third column. An element of an array can be used wherever a simple variable of the same
type can be used.

Once an array variable is declared, it can be assigned elements via:

e [LET] statement e MAT statement
¢ INPUT statement e ENTER statement
« READ statement.

To use the [LET] statement to assign values to array elements, you must first DIMension
the array.

100 DIM A(l1:2,1:2)

This statement sets the working size of A to two rows and two columns, and enough
memory space is reserved to store four numeric values; one value for each element.

Next, you assign a numeric constant to each element. Each element must be assigned a
value using subscripts on the array variable as follows:

110 A(1,1) = 5
120 A(1,2) = 6
130 A(2,1) = 7
140 A(2,2) = 8

The MAT statement can be used to assign an entire array. For example:

100 MAT A = (1) ! all elements in A are set to 1

Another way to assign values to the elements of an array is to use the INPUT statement:

100 DIM A(1l:2,1:2)
110 INPUT A(*)

When these statements are executed, the variable A is dimensioned to a 2 by 2 matrix.
The INPUT statement then reads the keyboard entries into the elements of the array A.
The elements are input in row major order. For example, the following input assigns the
same values as the lines 110 to 140 above:

5,6,7,8

Each entry must be separated by a comma or by pressing the RETURN key. The input

request prompt is displayed again and again until an entry is made for each element in
the array.

The READ statement can also be used to assign values to the elements in an array. For
example:

100 DIM A(1:2,1:2)
110 DATA 5,6,7,8
120 READ A (*)

When these statements are executed, the numeric constants in the DATA statement are
assigned to array A in row major order.

You can also use a FOR/NEXT loop to assign values in some other order or starting
point. For example:

100 DIM Beta(1:99)

110 FOR J = 40 TO 50

120 ENTER @Path;Beta (J)
130 NEXT J

Chapter 4
Program Flow Control

This chapter describes the program execution states, conditional branching statements,
looping statements, subroutines, subprogram contexts, user defined functions, event and
error handling statements, and the EXECUTE statement.

Program Execution

An HTBasic program is started by pressing the RUN key or entering the RUN statement
directly from the keyboard. A prerun pass is made over each context before the program
begins execution. The program then executes normally until it encounters an END,
PAUSE, or STOP statement. While running, a message is displayed near the bottom right
of the screen to indicate that a program is running.

The WAIT statement can be used to temporarily suspend the execution of the next
program line for a specified number of seconds.

The Paused State

Program execution can be halted by pressing the PAUSE key, executing a PAUSE
statement in the program, or entering the PAUSE statement. While PAUSEd, the values
of variables in the current context can be printed or changed and the program can be
examined with the LIST or EDIT statements. The program can be restarted by pressing
the CONTINUE key, or entering the CONT statement. A program error will also PAUSE
the program, as will the CLR I/O key if pressed during an 1/O statement. Changing a
program line while PAUSEd, will change the state of the computer to a stopped state.

The Stopped State

The program can be forced to halt at some point other than the END statement by
pressing the STOP key, executing a STOP statement in the program, or entering the
STOP statement. After the program halts, the values of the variables in the main context
can be examined and changed. However, changing any program line will cause the
current values of the local variables to be discarded.

Pressing the RESET key will also stop a running program, but also resets the HTBasic
environment. The STOP, PAUSE, and CLR /O keys are preferred.

Returning to the Operating System

Control is returned to the operating system by executing the QUIT statement from the
keyboard or in a program line. HTBasic performs an orderly shutdown by closing all files
and then it returns to the operating system command processor.

Branching

Branching allows program execution to jump to a statement other than the next
statement. The GOTO statement allows you to make an unconditional transfer to another
program line in the same context, but its use is discouraged in favor of structured flow
control statements. The GOTO can specify a line number or label. For example:

GOTO 120
GOTO Fix up

Conditional Statements

Conditional statements allow you to make decisions. The most common conditional
statement is the IF...THEN statement. It allows program execution to change depending
on the result of the specified expression.

The simple form of the IF...THEN statement allows either program execution to jump to
another statement in the same context or a single program statement to be executed.
Here are some simple IF...THEN examples:

IF AS="Q" THEN 700 ! conditional transfer
IF AS$="N" THEN PRINT "No !" ! single statement

The block IF...THEN statement allows any number of statements to be conditionally
executed. If the expression evaluates true, all of the statements enclosed by the
IF...THEN statement down to the END IF or ELSE statement are executed. The optional
ELSE statement can be used within a block IF...THEN statement to enclose any number
of statements. If the condition evaluates false, all of the statements enclosed by the
ELSE statement down to the END IF are executed. A block IF...THEN statement can be
nested inside another block IF...THEN statement.

100 IF Xlimit>Upper THEN

110 PRINT "The current setting is ";Xlimit
120 READ Xlimit

130 PRINT "The new setting is ";Xlimit

140 ELSE

150 Xlimit = Xlimit+1

160 END IF

In this example line 100 starts a "block" IF structure. Lines 110, 120, and 130 are all
executed if Xlimit>Upper is true; otherwise, line 150 is executed.

ON...GOTO Statement

The ON...GOTO statement provides a multi-way branch depending on the value of the
specified expression. Control is transferred to one of the program lines, in the same
context, selected from the list of line numbers or labels whose position in the list matches
the value of the expression. If the value is 1 then the first line number is used, if the value
is 2 then the second line number is used, etc. If the value is less than one or is larger
than the number of line numbers or labels specified, an error is generated.

ON J GOTO 300,400,500,600 ! value of J determines GOTO

ON...GOSUB Statement

The ON...GOSUB statement is like the ON...GOTO statement except that program
control is sent to one of the subroutines, in the same context, specified in the line number
or label list. When the subroutine executes the RETURN statement, control returns to the
line following the ON...GOSUB statement. For more information on the GOSUB
statement and subroutines, see the subroutine explanation later in this chapter.

ON X GOSUB 300,400,500,600 ! value of X determines GOSUB

SELECT and CASE Statements

The SELECT statement begins a block which executes alternative statement blocks
based on the value of the expression specified. Just as a block IF...THEN ends with an
END IF statement, a SELECT block ends with an END SELECT statement. Within the
SELECT block, CASE statements enclose alternative statement blocks. SELECT
statements can be nested. This means that one SELECT statement can be nested inside
another.

When the SELECT statement is executed, the SELECT expression is first evaluated and
then the resulting value is tested against the list of values in each CASE statement until
either a CASE statement matches the SELECT value or until an optional CASE ELSE
statement is encountered. The enclosed program statements up to the next CASE or
END SELECT statement are then executed. Control is then transferred to the line
following the END SELECT statement. If no CASE statement matches and no CASE
ELSE statement is encountered, control is immediately transferred to the line following
the END SELECT statement.

The CASE statement specifies a list of expressions each separated by a comma. The
type of the expressions, either numeric or string, must match the type of the SELECT
expression. Each expression may specify either a match value, a relational operator (<,
<=, =, >=, >, or <>) followed by a match value, or a range specified by a lower and an
upper match value. Each expression is evaluated one at a time and the resulting value is
tested against the SELECT expression result. If any expression matches, then the CASE
statement matches and the statements up to the next CASE or END SELECT statement
are executed.

Because the first matching CASE statement will be executed regardless of the later
CASE statements, care must be exercised in selecting the order of the CASE statements.

The following example illustrates the use of the SELECT and CASE statements:

100 INPUT "What is your age? ",Age
110 SELECT Age
120 CASE <1,>100

130 PRINT "Do you expect me to believe that?"
140 GOTO 100

150 CASE <12

160 Price = 2

170 CASE 12 TO 59

180 Price = 6

190 CASE 60

200 PRINT "Special Rate Tonight:"

210 Price = 4.5

220 CASE ELSE

230 Price = 5

240 END SELECT

250 PRINT USING """Movie price is $"",D.2D ";Price

260 END

Loops
A program loop allows the repeated execution of a set of statements. There are four

types of program loops: FOR/NEXT, LOOP/END LOOP, REPEAT/UNTIL, and
WHILE/END WHILE.

FOR Loops

FOR/NEXT loops let you specify how many times to repeat a block of statements. You
should use FOR loops when the block will be executed a fixed number of times. It is legal
to use a GOTO statement to jump out of the FOR loop, but this violates the philosophy
that the block is to be executed a fixed number of times. You may specify an optional
STEP value by which the variable is to be incremented or decremented. If no STEP value
is specified, it defaults to one. The value of the variable is tested against the termination
value before the loop is executed the first time. If it is beyond the termination value,
control transfers to the line following the NEXT statement.

The NEXT statement adds the STEP value to the value of the variable and then tests it
against the termination value. If it is not beyond the termination value, control transfers to
the line following the FOR statement. If it is beyond the termination value, the loop
terminates and the value of the variable is left as it is. An example FOR/NEXT loop
follows:

10 FOR J=50 TO 100 STEP 2
20 READ A (J)
30 NEXT J

Other Loop Types

The other types of program loops repeatedly execute their statement block until the exit
condition is satisfied. Depending on the loop statements used, the test for loop
termination can be made at the beginning, the end, or at any place inside the loop. A loop
can be nested inside another loop. The following examples illustrate the three types of
loop termination:

Start of loop End of loop Middle of loop
100 WHILE X<>4 100 REPEAT 100 LOOP

150 EXIT IF X=4

200 END WHILE 200 UNTIL X=4 200 END LOOP

Subroutines

A subroutine is accessed by a GOSUB statement and consists of one or more HTBasic
statements whose last statement is a RETURN. When the GOSUB statement is
encountered, the current line number is saved and control is transferred to the specified
line number or line label in the same context. Execution continues until the RETURN
statement is encountered, at that time control is returned to the line following the GOSUB
statement. A subroutine example follows.

100 GOSUB 200

200 X = Y*45/7
210 RETURN

This subroutine can be called from many places in the program to save having to
duplicate the subroutine statements many times.

Program Contexts

HTBasic programs are made up of a collection of contexts. Contexts are program units
that have their own environment, including local variables. There are four types of
contexts: the main context, a subprogram context, a user defined function context, and a
CSUB context.

By default, all context variables are local. A local variable cannot be changed by another
context unless it is passed by reference. It exists temporarily, only while its program
context is being executed. If a context is invoked recursively, each invocation of the
context has its own set of local variables.

Global variables defined in a COM statement can be accessed from any program context
in the HTBasic program that includes the proper COM statement. Chapter 3, "Language
Elements," contains more information on variables.

Main Context

The main context includes all of the program lines from the first line up to and including
the END statement. This context executes first and may call other subprogram contexts.

Subprogram Contexts

Subprogram contexts are program units that begin with a SUB statement, optionally
define parameters, end with an SUBEND statement, can be invoked recursively by other
contexts, and can be passed arguments. They are similar to procedures and functions in
other structured languages and are sometimes referred to as "true" subroutines.
Subprogram contexts allow arguments to be passed, local variables to be declared, and
global variables to be referenced. Subprograms are called with the CALL statement, or
with a FN reference in a numeric expression. Arguments can be passed either by
reference or by value.

Note: The term "parameters" refers to the list of variables in a SUB (or DEF FN)
statement. The term "arguments" refers to the corresponding list in a CALL statement
(or FN function).

Pass by reference means a subprogram is told the location of a variable. Therefore,
altering the parameter is the same as altering the original variable. In effect, the
parameter name becomes a synonym for the original variable name. I/O path variables,
numeric and string variables, and array elements are all passed by reference.

Pass by value means a subprogram is told the value of a variable, but not where the
original variable is stored. The subprogram can change the value of the parameter, but
since the subprogram doesn't know where the original variable is stored, it can not modify
it. Expressions, constants, and literals are passed by value. Place parentheses around a
variable or array element to pass it by value instead of by reference.

A subprogram context example follows:
100 CALL Do it(X,4, (Y))

i9§ .END

éoé 'SUB Do it (D1,D2,D3)

210 D1=D1+1

220 D2=D2+1
230 D3=D3+1

300 SUBEND
Line 100 will cause X to be incremented because it is passed by reference. The 4 is

passed by value and Do _it is not told where the 4 came from. The same is true for Y; it
will not be incremented.

Subprogram Pointers

A subprogram is typically referenced by explicitly naming it. For example, to call a
subprogram named Robert, use the statement

CALL Robert

In several statements, it is also possible to hame the subprogram using a string
expression. This allows the name of the subprogram to change dynamically as the
program runs. The subprogram must be specified with the initial character in uppercase,
and subsequent characters in lowercase. For example:

CALL AS

If A$="Robert", the statement will call the subprogram named Robert. If A$ has some
other value, the statement will call some other subprogram. The string expression
specifying the subprogram name is called a "subprogram pointer" because it "points" to
the subprogram rather than explicitly naming it. As the expression changes, the pointer
points to different subprograms. Subprogram pointers are allowed in CALL, INMEM,
LOADSUB, DELSUB, and XREF statements.

This example shows one use for subprogram pointers:

10 IF Case=1 THEN
20 Method$="Real"

30 ELSE
40 Method$="Complex"
50 END IF

60 IF NOT INMEM (Method$) THEN LOADSUB Method$
70 CALL Method$ WITH(X,Y,Z)

80 DELSUB Method$

90 END

User Defined Function Contexts

A User Defined Function context begins with a DEF FN statement, optionally defines
parameters, ends with a FNEND statement, can be invoked from within an expression by
referencing its name, and can be passed arguments, either by reference or by value.
When it terminates, it returns a value with a RETURN statement. The expression then
continues to evaluate, using the returned value in place of the function reference.

The defined function can return either a numeric value or a string value. If it returns a
string value, the function name must end with a dollar sign ($) and the RETURN
statement must specify a string value. For example:

100 PRINT "Today is: ";FNToday$
110 END

120 DEF FNToday$

130 A$=DATES (TIMEDATE)
140 RETURN AS[1,6]

150 FNEND

CSUB Contexts

A CSUB context is a compiled subprogram created with special tools outside of HTBasic.
It is loaded into memory with the LOADSUB statement and removed from memory with
the DELSUB statement. It is invoked with a CALL statement. A simple alternative to
CSUBs are assembly language routines accessed with the special READIO/WRITEIO
statements.

Interrupting Program Flow

Normal program flow can be interrupted by any of several events: CYCLE, DELAY, END,
ERROR, INTR, KBD, KEY, KNOB, SIGNAL, TIME, and TIMEOUT.

The ON statement defines the action to take when an event occurs. It defines the event
type, the servicing priority, the type of branch used, and the service routine. Event
branching occurs between program lines and can be a GOTO, a GOSUB, a CALL, or a
RECOVER.

The destination of a GOTO or GOSUB must be a program line in the present context. If
the event occurs while execution is in a different context, the event is logged and
execution continues. When control returns to the proper context, the branch then takes
place.

The destination of a RECOVER must also be a program line in the present context.
However, if the event occurs while execution is in a different context, then SUBEXITs are
automatically performed until control is returned to the proper context.

The destination of a CALL must be a SUB context that defines no parameters. When the
event occurs, a CALL is performed to the SUB context. Upon exit of the SUB context,
control is returned to the context that was executing when the event occurred.

Priority

The event priority designates which events can interrupt other event service routines. An
event can only interrupt a lower priority routine. If the present SYSTEM PRIORITY is
equal to or larger than the priority of an event handling routine, the event is logged and
serviced later when the SYSTEM PRIORITY allows it. The main context begins running
at a priority of 0, allowing any event to be serviced. The event priority may be specified
from 1 to 15 and if it is not specified, defaults to 1.

If the branch type is a CALL or GOSUB, then when the event is serviced the SYSTEM
PRIORITY is changed to the specified event priority. When a SUBEXIT or RETURN is
executed, the SYSTEM PRIORITY is restored to its value before the event was serviced.
If the branch type is a GOTO, the system priority is not changed. If the branch type is a
RECOVER, the automatic SUBEXITs restore the SYSTEM PRIORITY to the value it was
when the defining context invoked another context.

The ON END, ERROR, and TIMEOUT events form a special class and each indicates an
error condition. The priority of the END and TIMEOUT events is 15 so that no normal
event can interrupt their service routines. However, they can interrupt service routines for
any event, including another END or TIMEOUT event. The priority of an ERROR event is
17. It cannot be set or changed with the SYSTEM PRIORITY statement.

Global and Local Aspects

The ON/OFF state of an event and the key labels are local to each context. The initial
state is inherited from the invoking context. When returning from a context, the state is
restored to what it was when the context was invoked. CYCLE interval, DELAY time, KBD
ALL modifier, KNOB interval, TIME value, and TIMEOUT values are global. Changing
them in a context overrides their values specified in previous contexts. Consider this

example:

10 ON KEY 1 LABEL "Done" RECOVER 40
20 CALL S

30 Spin: GOTO Spin

40 END

50 SUB S

60 ON KEY 2 LABEL "More" GOSUB More
70 SUBEXIT

80 More: PRINT "More"

90 RETURN

100 SUBEND

When Spin is reached, only KEY 1 will be defined. This is because events are local to the
defining context and the contexts called from that context. When the SUBEXIT statement
is executed in line 70, the ON KEY 2 in line 60 is discarded.

Disabling Events

The DISABLE statement disables all defined event branches except END, ERROR, and
TIMEOUT. While disabled, the first event of each type that occurs is logged. When event
branching is re-enabled with the ENABLE statement, all logged events are serviced in the
order of their event priorities.

An event branch definition is removed with an OFF statement specifying the matching
event type. This may include an I/O path name, an interface select code, a key number,
or a signal number.

10 AS=FNInkey$
20 PRINT LEN (AS),AS

30 END

40 DEF FNInkey$! Input one key without echo,

50 ON KBD GOTO 80 ' and a 10 second timeout
60 ON DELAY 10 GOTO 90

70 GOTO 70

80 RETURN KBDS

90 RETURN ""

100 FNEND

This example illustrates use of two ON event statements to implement an Inkey$
function. The function, as defined in the example, inputs one keystroke. If no key is
pressed within ten seconds then the null string is returned.

Error Handling

HTBasic includes many features for handling execution errors. A user written subroutine
or subprogram, called an error handler, can be executed when an error occurs.

Defining an Error Handler

The ON ERROR statement defines the action to take when an error occurs. It defines the
type of branch used and the service routine. The branch type can be a GOTO, a GOSUB,
a CALL, or a RECOVER. If no error handler is defined, the error message is displayed
and the program PAUSESs. For example:

ON ERROR GOSUB 200

ON ERROR GOTO Fix it
ON ERROR RECOVER 1510
ON ERROR CALL Handler

An ON ERROR statement is canceled by an OFF ERROR statement and is not disabled
by the DISABLE statement.

The destination of a GOTO or GOSUB must be a program line in the present context. If
the error occurs while execution is in a different context, the ON ERROR definition is
ignored, the error message is displayed, and the program is PAUSEd.

The destination of a RECOVER must also be a program line in the present context.
However, if the error occurs while execution is in a different context, then SUBEXITs are
automatically performed until control is returned to the proper context.

The destination of a CALL must be a SUB context that defines no parameters. When the
error occurs, a CALL is performed to the SUB context.

An ON ERROR can interrupt any event service routine since it has a priority of 17 which
is higher than any event branch. It cannot be set or changed with the SYSTEM
PRIORITY statement. If another ERROR occurs while the system is at this priority (a
"double fault"), then the program is PAUSEd even though an ON ERROR definition is in
effect.

The Error Handler Routine

If the branch type is a CALL or GOSUB, then when the error is serviced the system
priority is changed to 17. When a SUBEXIT or RETURN is executed, the system priority
is restored to its value before the error was serviced. If the branch type is a GOTO, the
system priority is not changed. If the branch type is a RECOVER, the automatic
SUBEXITs restore the system priority to the value it was when the defining context
invoked another context.

If an error occurs in the service routine of an ON ERROR GOSUB or CALL, it is reported

to the user and the program is PAUSEGJ. If an error occurs in the service routine of an ON
ERROR GOTO or RECOVER, an infinite loop between the error line and the error routine
can result.

If there is not enough memory to run the service routine, the original error is reported to
the user and the program is PAUSEd.

There are several error indicator functions that can be used by an error handler routine
for decision making. The value of the error number (ERRN) and the line number where
the error occurred (ERRLN) are updated when an error occurs. If no error has occurred
since start-up or SCRATCH A, then a zero is returned. The ERRL function returns a one if
ERRLN is equal to the specified line and a zero otherwise. The specified line must be in
the current context. The ERRL function is not keyboard executable. The ERRN, ERRLN,
and ERRL functions may be used in IF statements to direct program flow in error handler
routines.

The ERRMS$ function returns the line number (ERRLN), error number (ERRN), and the
associated error message string. The null string is returned if no error has been
generated since start-up, LOAD, GET, SCRATCH, or CLEAR ERROR.

Errors that occur in connection with background TRANSFER statements are not reported
until the associated 1/O path variable is accessed. In this case ERRLN is the number of
the program line referencing the 1/0O path, not the TRANSFER statement. Also, ERRN is
not updated.

The CLEAR ERROR statement resets ERRL, ERRLN, ERRM$, and ERRN to their
default start-up values.

Error handler subroutines ending with RETURN and subprograms ending with SUBEND
or SUBEXIT re-execute the line in error. If the error handler does not correct the cause of
the error, the error will occur again, causing an infinite loop until the error is corrected.
Subroutines ending with ERROR RETURN and subprograms ending with ERROR
SUBEXIT do not re-execute the line in error. These statements return to the line following
the line that caused the error. For example:

100 ON ERROR GOSUB 500

500 INPUT "Value too Large. Try again: ",N
510 ERROR RETURN

During program debugging it is helpful to be able to generate an error just as if it were
generated by a running program. The CAUSE ERROR statement allows you to do this.
When the statement is executed, it is as though the error specified actually occurred and
the normal error functions: ERRL, ERRLN, ERRM$, and ERRN are updated. CAUSE
ERROR is also useful in debugging error handlers.

EXECUTE Statement

The EXECUTE statement executes an operating system command or user program. This
powerful command allows you to control and intermix the execution of other user
programs with your HTBasic program.

The default command interpreter for your operating system is invoked and given the
command specified for execution. For example:

EXECUTE "foobar"

executes the "foobar" operating system command or program. When the command has
completed, control is returned to HTBasic. If the command argument is not specified, the
default command interpreter is invoked, you are given a prompt, and you may issue one
or more commands. You must terminate the command interpreter to return to HTBasic.
From DOS, Windows, or NT, type "EXIT". From most UNIX shells, type "exit".

After the command has completed execution, if the WAIT OFF option is not specified, the
message "Hit any key to continue" will be displayed and HTBasic waits until you press
any keyboard key. If the WAIT OFF option is specified, control immediately returns to the
next HTBasic statement.

If the SAVE ALPHA OFF option is not specified, the screen is cleared before the
command is executed and the screen is restored after the command has finished. If the
SAVE ALPHA OFF option is specified, the screen is not cleared or restored. Messages
written to the screen will write over the current screen. You can, however, redirect the
output messages to a file and use the WAIT OFF option to prevent writing over the
screen. Changes made to the display hardware can leave HTBasic confused. For
example, if the EXECUTEd program changes the color map, HTBasic does not know the
change has occurred and will continue using the new color map, assuming the HTBasic
map is in place.

If the RETURN option is specified, the executed program's termination error value is
returned in the numeric variable. Under DOS, NT, or UNIX this is the command
interpreter's termination value.

When control is returned to HTBasic, an attempt is made to service any events that
occurred while the command interpreter had control. Depending on your operating
system, some events may be lost or ignored during this time period.

When operating under a window system, the WAIT OFF and SAVE ALPHA OFF options
are ignored. Some examples of statements with options are:

EXECUTE "DIR"; WAIT OFF
EXECUTE "draw"; WAIT OFF, SAVE ALPHA OFF

DOS Version Usage Notes

The COMSPEC environment variable must be set correctly to use EXECUTE. It is used
to locate the command interpreter.

You should use the -MINREAL and -MAXREAL switches on CFIG386 (which are
explained in the Installing and Using manual) to set aside real memory for the EXECUTE
statement. As shipped, the -MINREAL switch is set to 4096 16-byte paragraphs (64
kilobytes). This is enough for COMMAND.COM or small programs, but must be increased
for larger programs. There is no easy way to determine the value to use, however there is
a straight-forward way: Try larger and larger values until you find one that will work. The
size of the .EXE file is a rough indicator of the minimum amount of memory required by a
program.

Windows Version Usage Notes

Under NT, CMD is the command interpreter used if no command is specified. To execute
a built-in command like "DIR", use "cmd /c DIR". An extension of .EXE is assumed for the
command; to execute a .BAT, .CMD or .COM file, include the extension. Under Windows,
no command interpreter is available and only other Windows programs can be executed.

UNIX Usage Notes

The shell specified in the SHELL environment variable is used to spawn the command. If
no SHELL variable exists, "/bin/sh" is used.

Chapter 5
Mathematics

This chapter describes the mathematical capabilities of HTBasic. Numeric, string, and
matrix expressions are made up of operands and operators. Operands can be variables,
constants, or the results of expressions. Operators can be infix operators like + and -,
built-in functions like COS and EXP, or user defined functions. This chapter also
describes automatic data type conversions, execution precedence, and the matrix
inversion function.

Numeric Expressions

A numeric expression is defined as any legal combination of operands and operators
joined together in such a way that the expression as a whole can be reduced to a
numeric value. The following syntax diagram defines the legal combination of operands
and operators. Precedence rules place additional constraints that are explained later in
this chapter.

numeric-expression =

{+|]-| NOT } numeric-expression |

(numeric-expression) |

numeric-expression operator numeric-expression |
numeric-constant |

numeric-name |

numeric-array-element |

numeric-function [(param [,param...])] |

FN function-name [(param [,param...])]|
string-expression compare-operator string-expression

where:

operator=+|-|*|/| DIV| MOD | MODULO | " |

AND | OR | EXOR | compare-operator
compare-operator = <> | = | <|>|<=|>=
numeric-function = a function, like COS, which returns

a numeric value.

param = legal parameters for numeric functions and user
defined functions are explained in the Reference
Manual.

String Expressions

A string expression is any legal combination of operands and operators joined together in
such a way that the expression as a whole can be reduced to a string value. The
following syntax diagram defines the legal combination of operands and operators.
Additionally, precedence rules should be kept in mind.

string-expression =

(' string-expression) |

string-expression & string-expression |
"string-literal" |

string-name |

string-array-element |

sub-string |

string-function [(param [,param...])]|

FN function-name$ [(param [,param...])]

where:

string-function = CHR$ | COMMANDS$ | DATE$ | DVALS$ |
ENVIRONS | ERRM$ | IVALS | KBD$ | LWCS | REVS |
RPT$ | SYSTEMS$ |TIMES$ | TRIM$ | UPC$ | VALS
param = legal parameters for string functions and user
defined functions are explained in the Reference
Manual.

Matrix Expressions

A matrix expression is any legal combination of operands and operators joined together
in such a way that the expression as a whole can be reduced to a matrix value. The
following syntax diagram defines the legal combination of operands and operators.

MAT string-array$ = string-array$ | (string-expression)

MAT sub-array[$] = sub-array[$]

MAT numeric-array = numeric-array [operator numeric-array]

MAT numeric-array = (numeric-expression) [operator numeric-array]
MAT numeric-array = numeric-array operator (numeric-expression)
MAT matrix = matrix-function [(matrix [,matrix])]

where:

operator=+|-|.|/]|<|<=|=|<>|>=]|>|*

sub-array = array-name({ * | lower-bound:upper-bound | subscript }...)
matrix-function = RSUM | CSUM | INV | TRN | IDN |

REAL | IMAG | ARG | ABS | CONJG | CMPLX

param = legal parameters for matrix functions are explained

in the Reference Manual.

Operands

An operand is defined as that which an operator operates on. For example, in the
equation:

A*PI+4/N

the operands are A, PI, 4, and N, while "*", "+", and "/" are the operators. Operands can
be strings, 1/0 paths, complex, real or integer numbers, arrays or array elements. They
can be in the form of constants, variables, array elements, or in some cases, entire
arrays.

Operators

An explanation of operators that begin with a letter of the alphabet can be found by
looking up the name of the operator in the Reference Manual. The following charts list all
of the operators, grouping them by category.

Arithmetic

The arithmetic operators provide the standard arithmetic operations as well as the
INTEGER division, remainder, and modulo operators.

Operator Meaning Example Result
+ Addition (dyadic) 3+4 7

+ Positive (monadic) +4 4

- Subtraction (dyadic) 3-4 -1

- Negation (monadic) -3 -3

* Multiplication 3*4 12

/ Division 3/4 0.75
n Exponentiation 3" 81
DIV Integer Division 4 DIV 3 1
MOD Remainder 4 MOD 3 1
MODULO Modulo 4 MODULO 3 1

Several of these operations can generate errors. The following table outlines the possible
errors. In general, and whenever possible, the error numbers returned by HTBasic are

the same as those returned by HP BASIC. But in some instances the operating system or
environment in which HTBasic runs makes it impossible or impractical to return the same

number.

Math Cause of

Operation Error Example
Integer +-* DIV Result too big 32760+32760
DIV Divide by zero 1DIVO

Real +-*/ Result too big 1E200*1E200
Real +-*/ Result too small 1E-200*1E-200
/ Divide by zero 1/0
MOD/MODULO MOD by 0 1 MODO

A"B Result too big 1E200"1E200
A"B A<0 and B non-integer (-2)6.5

A"B A=0 and B<0 0"(-1)

Binary
Binary functions perform bit-wise operations on integer numeric values. They may be
used to manipulate bits or to perform conditional operations based on their logical result.

Operator Meaning Example Result
BINAND Bit-wise "AND" BINAND(3,4) 0
BINCMP Bit-wise complement BINCMP(5) -6
BINEOR Bit-wise Exclusive Or BINEOR(3,5) 6
BINEQV Bit-wise Equivalence BINEQV(3,5) -7
BINIMP Bit-wise Implication BINIMP(3,5) -3
BINIOR Bit-wise "OR" BINIOR(3,4) 7

BIT Bit-wise test BIT(4,2) 1
ROTATE Bit-wise rotation ROTATE(3,-4) 48

SHIFT Bit-wise logical shift SHIFT(3,-4) 48

Conversions

Conversion functions change an operand from one data type to another. Numeric/string
conversions can operate either on ASCII character values (i.e. CHR$(65)) or string
representations of numbers (i.e. "65").

Operator Meaning Example Result
CINT Real to integer CINT(16.0) 16
CMPLX Real/integer to complex CMPLX(2,1) 2+i
CHR$ Numeric to ASCII string CHR$(65) "A"
DVAL Base N to base 10 (32 bit) DVAL("A",16) 10
DVAL$ Base 10 to base N (32 bit) DVAL$(11,16) "B"
&H Hexadecimal constant &H10 16
IVAL Base N to base 10 (16 bit) IVAL("A",16) 10
IVAL$ Base 10 to base N (16 bit) IVAL$(11,16) "B"
NUM ASCII character to numeric NUM("A") 65
&0 Octal constant &020 16
REAL Integer/complex to real REAL(16) 16.0
VAL String to numeric VAL("65") 65

VAL$ Numeric to string VAL$(65) "65"

Date/Time

Date and time functions read the system time and convert time values in seconds to the
familiar human readable forms and vice versa.

Operator
DATE

DATE$

TIME
TIME$

TIMEDATE

Meaning
String to seconds

Seconds to string

String to seconds
Seconds to string

Present time/date

Example

DATE

("1 JAN 1980")
DATE$
(2.11182336E+11)
TIME("01:00:00")
TIME$
(2.11182336E+11)
TIMEDATE

Result
2.11182336E+11

"1 JAN 1980"
3600

"00:00:00"
seconds

Environment

Environment functions return information about the HTBasic environment. The SYSTEM$
function, particularly, provides a wealth of information and is explained in detail later in

this chapter.

Operator
CHRX
CHRY
COMMANDS$
CRT
ENVIRON$

FRE

KBD
MAXREAL
MINREAL
NPAR
PRT
RATIO
SYSTEM$

Meaning

Character cell width
Character cell height
Command line
Display ISC
Environment variable

Available Memory
Keyboard ISC

Largest REAL number
Smallest REAL number
Number of parameters
Printer device selector
Graphic screen ratio
System information

Example
CHRX
CHRY
COMMANDS$
CRT
ENVIRONS
("PATH")
FRE

KBD
MAXREAL
MINREAL
NPAR

PRT

RATIO
SYSTEM$
("MsI")

Result

8

14
"Q-Zz2"
1

"C:\;C:\DOs"
300000

2
1.798E+308
2.225E-308
0

10

1.48

"ci

Error

Error functions give information about the latest error that occurred. This information is
useful in an error handling routine established by ON ERROR.

Operator Meaning Example Result

ERRL Test for error line ERRL(100) 0

ERRLN Line number ERRN 10

ERRM$ Error Message ERRM$ "ERROR 31 IN "...

ERRN Error Number ERRN 31

1/0O Functions

I/0O functions complement the regular 1/0 statements by providing additional information
about I/O operations, devices, and paths.

Operator Meaning Example Result
KBD$ ON KBD, keyboard buffer KBD$ "A"
KNOBX ON KNOB, x movement KNOBX 217
KNOBY ON KNOB, y movement KNOBY -45
PPOLL Parallel poll on IEEE-488 PPOLL(7) 8
READIO Read hardware register READIO(9,0) 7

SC Select Code in I/O path SC(@lo) 10
SPOLL Serial poll on IEEE-488 SPOLL(701) 0

STATUS Read interface register STATUS(CRT,1) 1

Logical

Logical operators can be used on integer or real numbers. The two values are first
converted to logical (TRUE=1, FALSE=0) values, the operation is done, and the result is
converted to an integer. When converting numbers to logical values, zero is converted to
FALSE and non-zero is converted to TRUE. When converting the result to an integer,
FALSE is converted to a zero, and TRUE is converted to a one.

Operator Meaning Example Result
AND Logical "and" 2AND 3 1
EXOR Logical "exclusive or" 2 EXOR 3 0
OR Logical "or" 10RO 1
NOT Logical "not" NOT 1 0

Relational

Relational operators can be used on numbers or strings. Relational operators can be
used in assignment statements, IF statements, and any other place a numeric expression
is legal. For example:

10 X = 4*(Y>Z)+J* (A=B AND R<T)

Relational operators may be used on strings to compare the LEXICAL ORDER of the two
strings. By default, ASCII values are used to determine relative order. "A" is less than
"B". If two strings of different length are the same up to the end of the shorter string, then
the shorter string is less than the longer string. For example, "ABCDE" < "ABCDEF". The
LEXICAL ORDER IS statement affects the relational ordering of strings.

Operator Meaning Example Result
< Less than 3<4 1
<= Less than or equal 3<=4 1
= Equals "3"="4" 0
>= Greater than or equal 3>=4 0
> Greater than "3">"4" 0
< Not equal 3<>4 1

String Functions

As you have seen, many other operators already described also have string operands or
string results. The functions presented here are especially useful for operations with
strings. The examples in the following table assume that A$ has the value "HOTDOG".

Operator Meaning Example Result
& Concatenation "HOT"&"DOG" "HOTDOG"
[s] Sub-string, start AS$[4] "DOG"
[s,e] Sub-string, start, end A$[1,3] "HOT"
[s;1] Sub-string, start, length A$[2;4] "OTDO"
COMMANDS$ Command line COMMANDS$ "-0-Z 2"
CVT$ Converts alphabets CVTH(X3$,Y$)
ENVIRONS$ Environment variable ENVIRON$

("PATH") "C:\;C:\DOS"
FBYTE Test for First byte FBYTE(X$) Oorl
LEN Present length LEN("AB") 2
LWC$ Lowercase LWCS("AB") "ab"
MAXLEN Dimensioned length MAXLEN(A$) 18
POS Position of a sub-string POS("AB","B") 2
REV$ Reverse REV$("AB") "BA"
RPT$ Repeat RPTS$("AB",3) "ABABAB"
SBYTE Test for Second byte SBYTE(X$) Oorl
TRIM$ Trim lead/trailing space TRIM$("AB") "AB"
UPC$ Uppercase UPC$("ab") "AB"

A substring defines a portion of a string variable or string array element. The capability of
specifying a sub-string of a string variable or string array element is quite powerful. This
capability replaces the RIGHTS$, LEFT$, MID$, REP$, and SEGS$ functions of other
BASICs. A sub-string is selected by specifying a starting position within the string value,
and optionally, either the length of the sub-string or the ending position within the string
value. If only the starting position is specified, the rest of the string value from that point
on is used for the sub-string. String positions are one-based, i.e., the first character of a
string is in position one.

Transcendental and Trigonometric

The standard transcendental and trigonometric functions are provided along with the
ability to specify degree or radian operations. Many other less common functions are
available at extra cost. Contact TransEra for information.

Function Meaning

ACS Returns the arc cosine of an expression

ASN Returns the arc sine of an expression

ATN Returns the arc tangent of an expression

ATN2 Returns the angle to a point

COoSs Returns the cosine of an expression

DEG Statement to set degree mode for trig functions
EXP Return the exponential of an expression

LGT Computes common (base 10) logarithms

LOG Computes natural (base e) logarithms

Pl Returns the numeric value 3.14159...

RAD Statement to set radian mode for trig functions
SIN Returns the sine of an expression

SQR (SQRT) Returns the square root of an expression

TAN Returns the tangent of an expression

Other Functions

The other functions provide number manipulation for the sign, the fractional or integral
parts, rounds to specific decimal places, finds the largest or the smallest value, and
generates pseudo-random numbers.

Operator Functionality

ABS Absolute value of an expression

CINT Convert to Integer

DROUND The number rounded to specified number of digits
FIX Discard fractional part of a number

FRACT Fractional part of a number

INT Greatest integer part of a real number

MIN Smallest number from list of values and arrays
MAX Largest number from list of values and arrays
PROUND The number rounded to the specified decimal place
RES Result of last live keyboard expression

RND Random number

SGN Arithmetic sign of an expression

Notice the differences among CINT, FIX, and INT. CINT converts a REAL value to an
INTEGER by substituting the closest INTEGER to the value. FIX returns the closest
integral value between the REAL value and zero. INT returns the closest integral value
between the REAL value and negative infinity. Also, CINT actually changes the type from
REAL to INTEGER while INT and FIX return integral results, but the type is not changed.
The following table helps illustrate the differences:

X CINT(x) FIX(x) INT(x)
2.6 3 2.0 2.0
2.2 2 2.0 2.0
2.2 -2 -2.0 -3.0

-2.6 -3 -2.0 -3.0

User Defined Functions

The DEF FNfunction statement defines a subprogram function context. This function is
executed whenever the function name is referenced in a numeric or string expression.
You can define as many functions in this way as you wish. Chapter 4, "Program Flow,"
introduces subprogram contexts and explains how to define and pass arguments to them.

Automatic Conversions

Conversions from REAL to INTEGER and from INTEGER to REAL are done
automatically in HTBasic. Basic operations are done in INTEGER math if both operands
are INTEGER. Otherwise, REAL math is used. For example:

INTEGER J ! J is now an integer type variable
X =1.234 ! X is a real number (by default)
J =X ! The real value of X is converted to
! integer and assigned to J.
X =4 ! This time conversion is from integer to real
X =1.0 ! This is faster than X=1 (no convert required)
X =1 ! This requires a convert to real
X = PI DIV 2.0*10 ! X will equal ten.

The last example above is kind of tricky. The first operation to take place will be
INTEGER division. The INTEGER division operation will convert Pl to an INTEGER 3 and
2.0to INTEGER 2. 3 DIV 2 equals INTEGER 1. The multiply will be an INTEGER multiply
because 1 and 10 are both INTEGERSs. 1*10 equals INTEGER 10, which is converted to
REAL 10.0 to be stored in the REAL variable, X.

The same concepts are extended in versions of HTBasic with COMPLEX support. If one
operand is COMPLEX, the other is automatically converted to COMPLEX if needed. In
cases where a real number is required, a complex number will automatically be
converted to a real number by discarding the imaginary portion. In cases where an
integer number is required, a complex number will cause an error. In this situation, use
the REAL function to force the real part of the complex number to be used.

Conversions may take a noticeable amount of time if many iterations occur. They should,
therefore, be avoided whenever speed is a priority.

Execution Precedence

Mathematical precedence describes the order in which operators in an expression are
evaluated. Some inexpensive calculators execute each operation as it is entered. If you
are familiar with this type of calculator, you may be confused by the concept of
precedence. For example, the correct answer to the formula:

1+2*3+4

is 11, not 13. This is because multiplication (2*3) has a higher precedence than
addition (1+2). If the two operators are on the same row in the precedence chart, the
operations occur in left to right order (i.e. 1+2-3+4).

HP BASIC (and HTBasic) has an odd quirk in its definition of precedence that you should
be aware of. Most computer languages place all monadic operators (operators that
operate on one operand) at a higher precedence than dyadic operators (operators that
operate on two operands). However, HP BASIC (and HTBasic) place monadic + and -
below some of the dyadic operators. The following is one example of an expression that
will evaluate differently because of this:

-470.5

With HTBasic, this is equivalent to -(4°0.5) which is equal to -2. With most other
computer languages, this is equivalent to (-4)*0.5 which is an illegal operation.

Precedence Operators/Functions

1 Parentheses () and sub-strings |]
Functions: built in and user defined.
Exponentiation Operator »
Multiplicative Operators *,/,DIV,MODULO,MOD
Monadic + and -

Dyadic + and -

String Concatenation &

Relational Operators =,<>,<,>,<=>=
Monadic Logical Operator NOT
Logical Operator AND

Logical Operators OR and EXOR

PPRPOO~NOUORWN

= o

Matrix Operators

One of the powerful features of HTBasic is its ability to do operations on complete arrays
without the use of loops. This means that programs will run much faster. Many operators
that can operate on two simple variables can operate on arrays. Array/array operations or
array/scalar (simple variable) operations can be done. Portions or entire arrays can be
transferred to another array or a portion of another array. For example:

110 MAT Y=(1)

120 MAT X=Y* (5)

130 MAT Z=X+Y

140 MAT Z(2:3)=Z(9:10)

100 DIM X (10),Y(10),Z(10)

! defines every element of the array

! array/scalar operation

! array/array operation

! sub-array assignment
The operators + - . / < <= = >= > <> require that the operand arrays have the same
RANK and that each dimension has the same SIZE. The result array will be REDIMed if
needed. However, the usual rules for REDIM apply and if the array cannot be
redimensioned, an error is returned. Each of these operators work on the array element

by element. The "." operator does an element by element multiply.

The "*" operator performs classical matrix multiplication. The definition of matrix
multiplication is given in the following BASIC SUB:

10 SUB Matmpy (A(*),B(*),C(*)) ! Egquivalent to MAT C=A*B
20 OPTION BASE 1

30 INTEGER I,J,K,M,N,R

40 M=SIZE (A, 1)

50 N=SIZE (A, 2)

60 K=SIZE (B, 2)

70 IF N<>SIZE (B,1) THEN CAUSE ERROR 16
80 REDIM C (M, K)

90 FOR I=1 TO M

100 FOR J=1 TO K

110 Sum=0

120 FOR R=1 TO N

130 Sum=Sum+A (I,R) *B(R, J)

140 NEXT R

150 C(I,J)=Sum

160 NEXT J

170 NEXT T

180 SUBEND

Matrix Operators with Matrix Result

Besides applying these simple operators to arrays, operators specially designed for
arrays can be used:

Operator Functionality

CSUM Returns the sum of each column of a 2D array in a vector.
IDN The identity matrix (1's along diagonal, O's elsewhere).
INV Sets one array to the inverse of another.

REORDER Reorders the elements of an array.

RSUM Returns the sum up each row of a 2D array in a vector.
SEARCH Searches for elements in an array.

SORT Sorts arrays in ascending or descending order.

TRN Transposes a matrix (rows to columns, columns to rows).

Matrix Operators with Scalar Result

The following operators take a matrix operand and return a scalar result.

Operator Functionality

BASE Returns the lowest legal subscript for a dimension.
DET Returns the determinant of a matrix.

DOT Dot, or inner product of two vectors.

MAX Returns largest element of an array and/or scalars.
MIN Returns smallest element of an array and/or scalars.
RANK Number of dimensions in a matrix.

SIZE Upper bound - lower bound + 1 of a dimension.

SUM Adds up all the elements in an array.

Matrix Sub-array Assignments

Sub-array assignments (sometimes called array slices) require that the number of ranges
specified in the source match the number of ranges specified in the destination. If a
complete array is specified, the number of ranges equals the rank of the array. In
corresponding ranges of the source and destination, the number of elements must be the
same. The following examples will help you visualize these rules:

10
20
30
40
50

DIM
DIM
MAT
MAT
MAT

X(1:) Y(1:10)

D(3,4,5),5(4,2,5)

X=Y(2 4) ! One range, three elements
D(3,*,*)=S(*,2,%*) ! Range 1 has 5 elements, 2 has 6
Y(1:6)=S(0,0,%*) ! One range, 6 elements

Matrix Searching

The MAT SEARCH statement searches a numeric or string array for certain conditions.
The array can be searched for the following:

» The location of first element that is less than, greater than, equal to, or not equal to a
given value

» A count of the number of locations that are less than, etc. a given value

« The location of the maximum or minimum value in the array

e The value which is the maximum or minimum value in the array

The syntax for MAT SEARCH is:

MAT SEARCH numeric-array [num-key], rule; return [,start]
MAT SEARCH string-array$ [str-key], rule; return [,start]

where:

num-key = [search-subscripts] [DES]
str-key = [search-subscripts [sub-string]] [DES]
search-subscripts = ({subscript|*} [,...])
The *' must appear once.

rule =

[#]LOC ([relational] value) |

LOC MAX |

LOC MIN |

MIN |

MAX

relational =< |<=|=|<>|=>|>

return = variable-name

start = numeric-expression

value = string-or-numeric-expression

The keyword DES specifies descending search order. The optional start value specifies
the starting subscript. If not specified, searching begins with the first element for
ascending searches and the last element for DEScending searches. The meaning of the
search rule is:

Operator Functionality

LOC Subscript of first element satisfying operator
#LOC Count the number of elements satisfying operator
LOC MAX Subscript of maximum value

LOC MIN Subscript of minimum value

MAX Find and return the maximum value

MIN Find and return the minimum value

Matrix Inversion

One of the more complex matrix functions is the INV function used to calculate the
inverse of a matrix. Several precautions are in order when using the INV function. The
inverse of a matrix A is defined to be that matrix B, such that

AB=BA=1

where | is the identity matrix. For any matrix A, there is no guarantee that a matrix B
exists such that the above relationship can be satisfied. When this is the case, A is called
a singular matrix and has a determinant value of zero.

This leads to the first caution to observe when using computer methods for matrix
inversion. After using the INV() function to find the inverse of a matrix, the DET function
should be tested to determine whether the matrix was singular or non-singular. The
determinant of a matrix is a by-product of the computer's inversion algorithm. When the
INV function is used, the determinant of that matrix is assigned to the DET function. In the
case of a non-singular matrix, it is therefore faster to do the inversion first and then check
the DET function. The example below shows both methods.

110 ! The fast way

120 MAT B=INV (A)

130 IF NOT DET THEN PRINT "A is singular"
140 !

150 ! The slow way

160 !

170 IF NOT DET (A) THEN PRINT "A is singular"
180 MAT B=INV (A)

No error is generated when a singular matrix is inverted, but the values assigned to the
result matrix are meaningless. You should therefore check the determinant value when
doing a matrix inversion.

The second caution is related to the first. When the determinant of a matrix is very near
zero, compared to the other elements of the matrix, then the inexact arithmetic used by a
computer causes errors in the calculation of the inverse. The closer to zero, the more
error is introduced into the result. To test for this condition, multiply the original matrix and
its inverse together and compare the result to the identity matrix. If the difference is
greater than what is acceptable for your application, then you will not be able to use
BASIC to invert that matrix.

The following example illustrates a matrix whose determinant is small compared to the
elements of the matrix.

10 REM SMALLDET.BAS

20 DATA 100,200,100.000000000001,200
30 DIM A(1,1),B(1,1),Ab(1,1)

40 READ A (*)

50 MAT B=INV (A)

60 MAT Ab=A*B

70 D2x2: IMAGE K,/,2(2(SD.15DE,2X),/)
80 PRINT USING D2x2;"A=",A(*)

90 PRINT USING D2x2;"B=",B(*)

100 PRINT USING D2x2;"Ab=",Ab (*)

110 PRINT "DET = ";DET

120 END

The output from this program is shown below. Although the product AB is not exactly the

identity matrix, it is close enough for many applications.

A=
+1.000000000000000E+02
+1.000000000000010E+02

B=
-1.005267773966630E+12
+5.026338869833190E+11

Ab=
+9.956054687500000E-01
-4.394531250000000E-03

DET = -1.98951966013E-10

+2
+2

+1
-5

+5
+1

.000000000000000E+02
.000000000000000E+02

.005267773966630E+12
.026338869833140E+11

.371093750000000E-03
.005371093750000E+00

Complex Operators

Several operators and statements have been extended to work with complex numbers in
addition to real and integer numbers. Also, several operators and statements have been
added to work with complex numbers. Automatic conversion rules have also been
extended to handle cases where complex and real arguments are mixed. See "Automatic
Conversions" earlier in this chapter.

Extended Statements and Operators

Operator Functionality

+-*/ Operate on complex numbers

=<> Operate on complex numbers

ABS Return absolute value (magnitude or modulus)
ATN Return arctangent of complex number

CcOos Return cosine of complex number

ALLOCATE COMPLEX can be specified

COM COMPLEX can be specified

DATA Use rectangular form separated by comma
DISP Display in rectangular form separated by space
DEF COMPLEX can be specified

ENTER Enter in rectangular form separated by non-numeric
EXP Return "e" raised to complex power

IMAGE Treat complex like two REALs

INPUT Input in rectangular form

LGT Return base 10 log of complex number

LOG Return natural log of complex number

MAT ABS, ARG, CMPLX, CONJG, IMAG, REAL
MAT REORDER Reorder complex arrays

MAT SEARCH Search complex arrays

OUTPUT Output in rectangular form separated by comma
PRINT Print in rectangular form separated by space
READ Read in rectangular form

Operator Functionality

SIN Return sine of complex number

SQR Return square root of complex number

SUB COMPLEX can be specified

TAN Return tangent of complex number

Notice that only two of the relational operators, <> and =, are extended for complex
numbers. The other relational operators depend on the linear ordering of the data type. In
other words, all REAL or INTEGER numbers could be laid out on a number line and, of
any two different numbers, one would be closer to positive infinity than the other. Since
linear ordering is not defined for the complex data type, the <, >, <=, and >= operators
are also not defined.

Added Statements and Operators

Operator
ACSH
ARG
ASNH
ATNH
CMPLX
COMPLEX
CONJG
COSH
IMAG
REAL
SINH
TANH

Functionality

Hyperbolic arccosine of complex or real
Argument (angle) of complex number in polar form
Hyperbolic arcsine of complex or real
Hyperbolic arctangent of complex or real
Combine two REALS into a complex
Declare complex variables

Conjugate of complex

Hyperbolic cosine of complex or real
Return imaginary part of complex number
Return real part of complex number
Hyperbolic sine of complex or real
Hyperbolic tangent of complex or real

SYSTEMS$

SYSTEMS returns system status and configuration information. The following sections
explain what information can be read. The information returned depends on which of the
following strings is specified in the SYSTEM$ command. Examples:

M=VAL (SYSTEMS ("AVAILABLE MEMORY"))
PRINT "VERSION "&SYSTEMS ("VERSION:HTBasic")

AVAILABLE MEMORY

Returns the available memory in bytes. In most cases the FRE function is easier to use.
The amount of available memory when HTBasic is started can be specified with a
command line switch. See FRE.

CRTID

Returns a 12 character CRT identification string. A space in a position indicates that
capability is not present.

Bytes Meaning

1 always "6".

2 always ":".

3-5 CRT width, for example " 80".

6 "H" if at least one display enhancement is supported,

i.e. inverse, blink, underline. Not all CRTs support
all enhancements.
7 "C" if colors are available in at least one screen mode.
8 "G" if graphics are available.
9 "B" if the display is bit-mapped.
10-12 Maximum value for ALPHA PEN.

DISP LINE

The present content of the display line is returned. This allows you to write subroutines
that temporarily save off the display line content, DISP something else, and then restore
the display line.

DUMP DEVICE IS

Returns a string specifying the current DUMP DEVICE.

GRAPHICS INPUT IS

Returns a string specifying the current GRAPHICS INPUT device.

KBD LINE

Returns a string whose content is the same as the current keyboard input line.

KEYBOARD LANGUAGE

Returns a string identifying foreign language keyboards. On some computers, it is not
possible for HTBasic to know the keyboard type. On these systems "ASCII" is returned
regardless of the actual keyboard.

LEXICAL ORDER IS

Returns the current language set by the LEXICAL ORDER IS command. "ASCII" is the
default.

MASS MEMORY

Returns a sixteen character string identifying types and numbers of mass storage devices
attached. On some computers, this information is not available to HTBasic. On these
systems, "0" is returned for each device type. If the number of devices of any type
exceeds nine, "*" is returned in that byte position.

Bytes Meaning

1 number of internal disk drives.

2-4 not assigned.

5 number of initialized EPROM cards (always 0).
6 number of bubble memory cards (always 0).
7-16 not assigned.

For DOS versions, the number of internal disk drives is taken from the "Equipment
Determination” BIOS call. For Windows, NT, and UNIX, the value is always 0.

MASS STORAGE IS or MSI

Returns the current device and directory. MSl is an abbreviation for MASS STORAGE IS
and returns the same information.

PLOTTER IS

Returns a string specifying the current PLOTTER IS device.

PRINTALL IS

Returns a string specifying the current PRINTALL IS device.

PROCESS ID

Under multitasking operating systems such as UNIX, this call returns the process ID of
HTBasic. Under single-tasking operating systems such as DOS, this call always returns
"0".

PRINTER IS

Returns a string specifying the current PRINTER IS device.

SERIAL NUMBER

Returns a string containing the serial number. The number is unique for that class of
hardware. On a PC, the serial number is an 11 character string read from the ID Module
connected to the parallel port. Under SunOS 4.x, the serial number of the computer (the
hostid) is returned as an 11 character string. Under HP-UX, the machine identification
number is returned. If the serial number can not be found, the string "11111111111" is
returned. (This is the same action as the HP Viper Board.)

SYSTEM ID

A string identifying the hardware system is returned. The DOS Versions of HTBasic use
the IBM PC System ID byte located at FOOO:FFFE to determine what seven character
string should be returned. The following table gives the responses generated:

ID Byte Computer SYSTEM$("SYSTEM ID")
F8 PS/2 Model 80 "PS/2 80"

F9 PC Convertible "PC Conv"

FA PS/2 Model 30 "PS/2 30"

FB PC/XT "PC/XT "

FC PC/AT, PS/2 Models 50/60 "PC/AT "

FD PC Jr "PCjr "

FE PC/XT "PC/IXT "

FF PC "PC "

other Unknown "PC "

Under Windows and NT, three numbers are returned, separated by commas. The first
number is the processor type, the second is the number of processors and the third is the
machine OEM ID, if it has one.

Under UNIX, HTBasic uses the machine name returned by "uname -m", which may not
be seven characters long.

SYSTEM PRIORITY

Returns a string containing the current system priority. Use VAL(SYSTEMS$("SYSTEM
PRIORITY")) to retrieve the priority as a numeric value.

TIMEZONE IS

Under operating systems like DOS, which store the local time in the real time clock, this
call always returns "0". Under operating systems like UNIX, which store Greenwich Mean
Time in the real time clock, this call returns the number of seconds difference between
your local time and GMT. Negative values represent timezones west of Greenwich.

TRIG MODE

Returns the current trigonometric mode, "DEG" for degrees and "RAD" for radians.

VERSION:BASIC

Returns a string containing the HP BASIC version humber emulated, i.e. "5.1", "6.2", etc.

VERSION:HTB

Returns a string containing HTBasic version information. This is the same information
printed on the first line of the CRT when HTBasic starts.

VERSION:OS

Returns a string containing operating system revision information. Under DOS, the string
is of the form "x.yy DOS" where x is the major revision and yy is the minor revision.

Under Windows, the string is of the form "x.yy Windows/DOS" and under NT it is "X.yy
Windows NT". X is the major revision and yy is the minor revision.

Under UNIX, the string is of the form "x y", where X is the revision number returned by
"uname -r" (which may not begin with a numeric character) and y is the system name
returned by "uname -s". For example, "4.1.1 SunOS". Use the UNIX command "man
uname" for more information about uname.

VERSION:bin-name

Returns a string containing the version number of the binary named. Replace bin-name
with the name of the binary of interest. LIST BIN can be used to see the version numbers
for all loaded binaries.

WILDCARDS

Returns "OFF:" if wildcarding is turned off. Under UNIX, if wildcarding is turned on, this
function returns "UX:e", where "e" is the escape character. Under DOS, Windows, and
NT, this function always returns "ON:". See WILDCARDS in the Reference Manual.

WINDOW SYSTEM

Returns "Console" under most versions of HTBasic. Under some versions it returns the
name of the current screen driver. See PLOTTER IS for an explanation of screen drivers.

Chapter 6
Graphics

HTBasic contains an extensive assortment of powerful graphic statements. These allow
you to use convenient data units, not just pixels, in defining your graphic display. Your
data units are automatically scaled to the correct graphic device units. Also, the same
program can use a variety of graphic devices (screen, plotter, or printer) without having to
modify the graphics statements.

This chapter coordinates information and concepts relating to the HTBasic graphics
system. The graphics statements are introduced beginning with the simple statements
and progressing to the more complex ones. Several examples are given to help you see
as well as understand the concepts that are presented. Please try the examples on your
computer.

Because of the large number of HTBasic graphic statements, not all of the options and
syntax details are explained in this chapter. For more detailed syntax information or
attribute values refer to the statement descriptions in the Reference Manual as you read
through this chapter.

Simple Graphics Statements

The simplest graphics statements initialize the graphics system, clear the GRAPHICS
and ALPHA screens, and control the pen movement to draw graphic lines. The HTBasic
statements used to perform these functions as well as the graphic coordinate system
used by HTBasic are described in the following paragraphs.

GINIT Statement

The GINIT statement resets all the graphics parameters to their default values. It
terminates any graphics input device or active plotter. If graphics output is directed to a
file, the file is closed. It also causes the graphics screen to be cleared before the next
graphics statement is executed. If you enter GINIT followed by a DRAW 50,50 statement
the following occurs: GINIT resets all graphics parameters to their default values. Before
the DRAW command is executed the screen is cleared and then a line is be drawn from
the origin to 50,50.

GCLEAR and CLS Statements

The GCLEAR statement erases both the GRAPHIC and the ALPHA screen, then re-
displays the ALPHA screen. To clear the ALPHA screen, use the CLEAR SCREEN or
CLS commands.

Graphics Coordinate System

The HTBasic graphics system is based on the Cartesian coordinate system. This system
uses a pair of values to define the location of each point in a graph relative to the origin at
(0,0). The first value specifies how far the point is to the right of the origin and the second
value specifies how far the point is above the origin. Negative values specify locations to
the left of or below the origin. The horizontal line passing through the origin is called the X
axis and a vertical line passing through the origin is called the Y axis.

The default origin, (0,0), is the lower left corner of the display screen. The default top
vertical value is 100. The default right horizontal value depends upon the display aspect
ratio and is usually about 148.

Let us now examine the simple graphic statements used to control the pen movement to
generate graphic lines. They are the MOVE, DRAW, PLOT, and PENUP statements.

MOVE and DRAW Statements

The MOVE statement raises the pen and then moves it to the specified position. The
DRAW statement draws a line from the current position to the specified position using the
current line type and pen number. MOVE always lifts the pen before moving to the
specified position. DRAW always begins with the pen down, draws to the new position,
and ends with the pen down. Let's now try an example:

10 GINIT

20 DRAW 100,100
30 MOVE 100,0
40 DRAW 0,100
50 END

This example draws a large X on the graphics screen. If you were not already in
GRAPHICS mode the display mode is switched to GRAPHICS mode and any ALPHA text
is repainted on the graphics screen. The first DRAW statement lowers the pen at the
current position (0,0 because of the GINIT statement) and draws a line to position
100,100. The MOVE statement raises the pen and moves it to position 100,0. The next
DRAW statement lowers the pen at the current position 100,0 and draws a line to position
0,100.

PLOT Statement

The PLOT statement, like the MOVE and DRAW statements, moves the pen to the
specified location and optionally specifies when the pen is to be raised or lowered. For
example:

PLOT 45,80,-1

first lowers the pen and then moves it to location 45,80. If the optional pen-control value
is not specified, the pen is lowered after a move. The pen-control value is interpreted as

follows.

Pen Control Action

positive even #, & zero pen is raised after a move
positive odd # pen is lowered after a move
negative odd # pen is lowered before a move
negative even # pen is raised before a move

Negative values cause the pen action to occur before the move and positive values
cause the pen action to occur after the move. Even numbers cause the pen to be raised,
and odd numbers cause the pen to be lowered.

Atwo or three column numeric array can be used to supply the coordinate and optional
pen-control values. If a three-column array is specified, the third-column specifies the
pen-control value to use for each row. It can also specify many other operations as
covered later in this chapter. The earlier MOVE/DRAW example could have used the
PLOT statement as follows:

10 GINIT

20 DATA 100,100,-1, 100,0,-2, 0,100,-1
30 INTEGER A(2,2)

40 READ A(*)

50 PLOT A (¥*)

60 END

This example draws the same large X on the screen using the PLOT statement and a
three-column data array to specify the coordinates and the pen-control values.

PENUP Statement

The PENUP statement raises the pen without changing its position. This is used with
plotters when you don't want the pen to "bleed" onto the paper while it is not moving.

User Defined Graphic Units

Up to this point we have been working in the default graphic units. We now turn our
attention to specifying the graphic units that are most convenient for the display of your
data values.

The computer screen is, in effect, our viewport into the entire cartesian coordinate
system. Only the graphic points that fall within the viewport will be displayed; all other
points are eliminated. Lines that cross through the viewport are clipped at the boundaries.
The portion of the screen that is to be used to display graphics is specified by the
VIEWPORT statement. The CLIP statement allows you to specify clipping boundaries
that are different than the VIEWPORT. The SHOW and WINDOW statements specify
which portion of the cartesian coordinate system is mapped into the VIEWPORT for
display.

VIEWPORT Statement

The VIEWPORT statement specifies the area of the screen or graphic device to be used
for graphics output and it also sets the soft-clip boundary limits to match the viewport
bounds. The VIEWPORT parameters control the proportions, size, and position of the
drawing surface. All graphic output is automatically scaled to fit this drawing surface. The
coordinate of the left edge must be less than that of the right edge and the bottom edge
must be less than the top edge. It is specified as follows:

VIEWPORT Letft,Right,Bottom, Top

The VIEWPORT boundary parameters are defined in GDUs (Graphic Display Units).
GDUs are units that describe the physical bounds of the display area on the graphic
output device. By definition, Graphic Display Units are 1/100 of the shorter axis of a
plotting device. A unit in the X direction and a unit in the Y direction are the same length.
The RATIO function returns the ratio of the X to Y physical bounds for the PLOTTER IS
device and can be used to determine the VIEWPORT soft-clip limits.

If the ratio is less than 1, the X axis is 100 GDUs and the Y axis is (L00*RATIO) GDUs
long; if the ratio is greater than 1, the Y axis is 100 GDUs and the X axis is (L00*RATIO)
GDUs long. The VIEWPORT soft-clip limits should not exceed the physical bounds of the
device. By default the left limit is zero, the right limit is the X axis physical bound, the
bottom limit is zero, and the top limit is the Y axis physical bound.

Changing the VIEWPORT does not affect any currently displayed graphics, only graphics
that you subsequently generate.

As mentioned any graphic points that fall outside the VIEWPORT are eliminated and any
lines that cross through the VIEWPORT are clipped at the boundaries. These boundaries
are called the soft-clip bounds. They must be within the device physical limits or the hard-
clip bounds.

The following program outputs the same graphics information to three different

VIEWPORTSs

10 GINIT

20 VIEWPORT 10,50,60,85 !'Viewport #1
30 GOSUB 100

40 VIEWPORT 60,100,60,85 'Viewport #2
50 GOSUB 100

60 VIEWPORT 10,100,30,50 !'Viewport #3
70 GOSUB 100

80 STOP

90 !

100 FRAME

110 AXES 10,10,20,20,2,3

120 RETURN

130 END

The first and second viewports are exactly the same size, they are just located at different
sections of the screen. The third viewport stretches the X axis and squishes the Y axis,
causing the image to be distorted.

CLIP Statement

The CLIP statement allows you to specify new soft-clip limits without changing the current
VIEWPORT values and it enables and disables clipping at the soft-clip boundaries. If no
CLIP statement is executed, the soft-clip boundaries are the most recently defined by
either a VIEWPORT (soft-clip) or PLOTTER IS (hard-clip) statement.

Use the CLIP ON statement prior to any graphic statements that might generate points
outside the soft-clip area. If CLIP ON is active, a theoretical move or draw to any point
that is outside the defined soft-clip area is executed. If a draw is executed, then only that
portion of the vector which lies inside the soft-clip area is drawn. The portion of the vector
that lies outside the soft-clip area is clipped (chopped off) at the edge of the soft-clip
boundary. If both the current logical position and the specified position are outside the
soft-clip area the logical position is updated but no physical pen movement is made.

Execute a CLIP OFF statement to disable clipping so you may add labels, comments,
graphics or any other plotting that is to be done outside the soft-clip area. When clipping
is disabled, clipping will only be done on the physical device limits. If the soft-clip limits
are smaller than the physical device boundaries, then CLIP OFF allows you to generate
graphic coordinates that fall outside the soft-clip limits but inside the device physical
boundaries. For example:

10 GINIT

20 VIEWPORT 10,100,50,80

30 FRAME

40 AXES 3,3,0,0,2,3

50 CLIP OFF

60 MOVE 15,-25

70 LABEL "LABEL OUTSIDE CLIP AREA"
80 END

The default WINDOW setting (0,RATIO*100,0,100) is mapped into the new VIEWPORT
area of (10,100,50,80). We enclose the VIEWPORT area with the FRAME statement so
you can see the area. Clipping is turned off and we move outside the soft-clip area to
(15,-25) and draw a line.

The difference between the CLIP and VIEWPORT statements can be confusing. The
following examples should help you see the different effects these commands have on
graphics scaling and clipping.

Example A Example B

10 GINIT 10 GINIT

20 VIEWPORT 20,60,20,60 20 CLIP 20,60,20,60
25 WINDOW 0,148,0,100 25 WINDOW 0,148,0,100
30 FRAME 30 FRAME

40 MOVE 10,10 40 MOVE 10,10

50 DRAW 80,70 50 DRAW 80,70

60 CLIP OFF 60 CLIP OFF

70 DRAW 90,70 70 DRAW 90,70

80 END 80 END

In example A, the WINDOW values (0,148,0,100) are mapped into the new VIEWPORT
area (20,60,20,60). All the MOVE and DRAW X,Y values are within the window and thus
no clipping is done. In example B, the VIEWPORT remains the entire screen and the

WINDOW values are again mapped into the VIEWPORT area, but the CLIP command
specifies that any line outside the range of the clipping area (20,60,20,60) is not
displayed. After CLIP OFF, the final DRAW is displayed.

You specify the bounds and the units of your coordinate system with either the SHOW or
the WINDOW statement. They both specify a rectangular area with dimensions as large
or as small as you like. The units that you thus define are known as User Defined Units
(UDUs) and are used by all the graphic drawing statements. The meaning of each unit is
entirely up to you. They can be any units of measure you wish to work with (inches, miles,
years, etc.). For example, if you are plotting a sine wave that has a domain of 0 to 2*PI
and a range of -1 to +1, you would use these values as the bounds of your coordinate
system.

SHOW Statement

The SHOW statement specifies the bounds of the data values to be displayed within the
VIEWPORT in isotropic units so that the X and Y units are of equal length. You specify
the left, right, bottom, and top coordinate bounds as follows:

SHOW Left,Right,Bottom, Top

The SHOW values are manipulated internally to give you isotropic units in both the X and
Y directions. The SHOW statement finds the difference between the X and Y ranges and
the smaller range is scaled into the larger, causing the specified area to be centered
within the plotting area. For example:

SHOwW -100,100,2,10

For a screen with square pixels the calculations would be: an X difference of 200 and Y
difference of 8 is found by subtracting the lower bound from the upper. The smaller Y
range is scaled into the larger X range. The difference between the X and Y ranges is 192
(200-8), and half of this, 96, is applied to each Y value. The new minimum Y value is -94
(2-96) and the maximum value is 106 (10+96).

For screens that don't have square pixels, the values are automatically adjusted to
prevent distortion.

WINDOW Statement

The WINDOW statement specifies the bounds of the data values to be displayed within
the VIEWPORT in non-isotropic units where the X and Y units are of different lengths. If
not specified, the default WINDOW is equal to the default VIEWPORT setting. It is
specified as follows.

WINDOW Left,Right,Bottom, Top

The SHOW and WINDOW statements only differ in how they map data onto the
VIEWPORT.

An image can be "mirrored” about the X or Y axis by reversing the order of the limits for
each dimension by specifying the larger value before the smaller value. This is true for
both the SHOW and WINDOW statements. For example:

SHOW 0,RATIO*100,100,0 IMirror about Y Axis
WINDOW RATIO*100,0,0,100 IMirror about X Axis

Please note: You do not have to set the WINDOW bounds to whole units. Set them to
the units most convenient for your data. The coordinates are always translated to the
units required for the full resolution of your graphic device. Do not think that because your
graphic display has a low resolution that this will be carried over to a plotter.

WINDOW and VIEWPORT Effects

We will now use the RECTANGLE statement to see how it is affected by different
WINDOW and VIEWPORT values. There are several forms of the RECTANGLE
statement. The simplest form specifies the desired width and height and draws only the
boarder lines. For example:

10 GINIT

20 MOVE 10,20

30 RECTANGLE 10,10
40 END

draws a small square near the origin. You can change the WINDOW to a smaller range to
cause the square to be drawn larger. Add the following statement.

24 WINDOW 0, 30,0,30

The VIEWPORT is still the entire screen, but the range of values mapped into the
VIEWPORT is now smaller. The WINDOW values are (0,30,0,30) instead of the default
(0,Ratio*100,0,100). This creates a larger box when the same RECTANGLE statement is
used. Note that the square is now stretched onto the VIEWPORT. This is because the
VIEWPORT is not square and the WINDOW was not adjusted to compensate. To get a
square on the screen either the VIEWPORT or the WINDOW must be changed. The
simplest way is to select a square VIEWPORT by adding the following statement.

22 VIEWPORT 0,100,0,100

Note that this displays the square again, but it is shifted to the left, since the right side of
the screen is inaccessible with this VIEWPORT. Try experimenting with different
WINDOW and VIEWPORT settings to understand how they interact with each other.

Annotating Charts and Graphs
Now that you know how to specify a convenient coordinate system and its units of
measure we turn our attention to the HTBasic statements used to annotate charts and
graphs.

AXES and GRID Statements

By including an axis or grid with appropriate tic marks and labels you can make data plots
and graphs more readable and meaningful. The AXES and GRID statements make this
easy. The AXES statement draws a single X-Y axis across the soft-clip area, while the
GRID statement generates grid lines across the entire soft-clip area. They are specified
as follows:

AXES [xtic [,ytic [,xorg [,yorg [,xcnt [,ycnt [,size]]]]]]]
GRID [xtic [,ytic [,xorg [,yorg [,xcnt [,ycnt [,size]]]]l]]

where:

x/ytic = tic spacing
x/yorg = origin of axis
x/ycnt = major tic counts
size = major tic size

The default values for the X and Y tic spacing and the axis or grid location are 0,0,0,0.
The X and Y major tic counts specify the number of tic intervals between major tic marks.
Their default values are 1 indicating that every tic interval is major. The default major tic
length is two graphic display units. The minor tic marks are half the length of the major tic
marks.

The AXES statement produces tic marks that are symmetric about the axis and that
extend to the soft-clip boundaries. If the X or Y axis is outside the soft-clip area, tic marks
are drawn in the soft-clip area. The AXES lines and tic marks are drawn in the current line
type and pen number. A major tic is placed at the axis origin.

The GRID statement generates major tic marks lines across the entire soft-clip area.
Cross tic marks are generated at the minor tic mark intersections. The grid is drawn with
the current line type and pen number. The pen position after a GRID statement is at the
axis origin. For example:

10 GINIT

20 AXES 5,5,50,50,2,3
30 DRAW 60,60

40 END

produces an axis with the origin at 50,50. A tic mark is placed every 5 units in both the X
and Y direction. In the X direction every second tic mark is twice as big as the others,
because it is a major tic. Every third tic mark in the Y direction is a major tic. The DRAW
statement shows you the current X,Y location. Now change line 20 to the GRID
statement.

20 GRID 5,5,50,50,2,3

The origin of the GRID is at 50,50 just like the AXES. The major tic marks extend across
the entire soft-clip area. Where the minor tic marks cross, a small tic is placed. The
DRAW statement again shows you the current X,Y location.

To create a fully enclosed box with tic marks along the outside use two AXES statements,
one with an intercept in the lower left corner of the screen, and the other in the upper
right corner of the screen.

FRAME Statement

The FRAME statement draws a line around the soft-clip area using the current pen and
line type. It ends with the pen up and is positioned in the lower left corner of the FRAME.

LABEL Statement

To annotate a graphics image with text the LABEL statement is used. The CSIZE, LDIR,
and LORG statements control the graphic text size, direction, and origin, respectively.

The LABEL statement draws graphic text beginning at the current pen position, in the
current pen number and line type. Labels are clipped at the soft-clip boundary just like
any other graphics. The scaling of the SHOW and WINDOW statements have no effect
on the LABEL statement. This keeps them from becoming distorted by the scaling of
graphic data.

The LABEL statement is similar to the PRINT statement except that the text is drawn on
the graphics screen. See the PRINT statement for an explanation of arrays, numeric and
string fields, and numeric and string formats. Also the following control characters have a
special meaning when processed by the LABEL statement:

Keystroke Character Action
CTRL-H CHR$(8) moves pen left one character cell.
CTRL-J CHR$(10) moves pen down one character cell.

CTRL-M CHR$(13) moves pen left length of completed label.

CSIZE Statement

The CSIZE statement sets the character size (height) and optionally the expansion factor
(width/ height) for the text generated by the LABEL statement. For example:

CSIZE 10, .8

Both values are specified in graphic display units. The default character height is five and
the default expansion factor is 0.6. These values are in effect at start-up, or when GINIT,
or RESET are executed. A negative height or expansion-factor inverts the character in
relation to that dimension.

LDIR Statement

The LDIR statement specifies the angle of rotation from the X-axis that the LABEL is
drawn. A value of zero specifies drawing along the positive X-axis. Positive values specify
a counter-clockwise direction. The current trigonometric mode (RAD or DEG) determines
the units for the angle. The default is radians. For example:

LDIR 0.56

LORG Statement

The LORG statement specifies the relative position of the LABEL with respect to the
current pen position. Its argument has a range of one through nine. The default LORG
origin is one. The values are defined as follows:

Left Values Middle Values Right Values

3 - left-top 6 - middle-top 9 - right-top

2 - left-center 5 - middle-center 8 - right-center
1 - left-bottom 4 - middle-bottom 7 - right-bottom

If the LABEL is an odd number of characters, the center of the string is the center of the
middle character. The following program demonstrates all 9 LORG values and the effect it
has on LABELS.

10 FOR I=1 TO 9

20 GINIT

30 DRAW 50,50

40 LORG I

50 LABEL "LORG ";VALS (I)
60 WAIT 1

70 NEXT I

80 END

Graphic Attributes

We now cover the concepts relating to, and the statements used to specify the graphic
attributes that can be used to modify displays. These are the graphic line types, colors,
and writing modes. They are described in the following paragraphs.

LINE TYPE Statement

The LINE TYPE statement sets the style or dash pattern and optionally the repeat length
of drawn graphic lines. The repeat factor is the GDU line length before the line pattern is
repeated.

The default LINE TYPE is number one, a solid line. Dotted and dashed lines of various
types may be specified in a manner similar to this example:

LINE TYPE 5

When the GRAPHIC device is not the screen, the line types are device dependent. The
following example demonstrates the screen line types.

10 GINIT

20 FOR T=1 TO 10
30 LINE TYPE T
40 Y = T*10

50 MOVE 10,Y
60 DRAW 90,Y
70 NEXT T

80 END

Color Graphics

HTBasic provides powerful statements for generating color graphic displays. Both the
HSL (Hue, Saturation, Lightness) and the RGB (Red, Green, Blue) color definitions can
be used to specify a color. If the internal computer display contains a color map the
display colors may be specified. An alternate drawing mode and many graphics writing
modes allow great flexibility in creating graphic displays. Each of these topics is covered
in the following paragraphs.

HSL Color Space

The HSL color space is designed to be intuitive and follows the model of mixing paints.
An artist preparing a color for a painting, first selects a hue (pure color pigment). He may
then add black or white paint to arrive at the desired color. Adding white serves to wash
out the color. In technical terms, we say this affects the saturation of the color. The artist
may then adjust the brightness by adding black paint. This affects the amount of light
reflected by the pigment. We call this the luminosity.

Saturation ranges from zero (white) to one (pure color - no added white). Luminosity

ranges from zero (black) to one (pure color - no added black). Hue ranges from zero to
one. The diagram below gives an indication of where several colors occur in that range:

000 Eed
Iagenta B33 167 Yellow

Blue 667 V333 Green

LS00 Cyan

RGB Color Space

The RGB color space is designed to match the way in which our eyes work, and in turn,
the way in which television and computer displays are designed. The display has three
color guns: Red, Green, and Blue. By specifying a number in the range zero
(corresponding to zero intensity) to one (corresponding to maximum intensity) for each of
the three guns, you can uniquely define all the colors that can be produced by that
display.

Pen Numbers

The graphics color is specified with the PEN statement as shown by this example:

PEN 4

If the current graphic device is the plotter it selects which pen is used to draw the lines. If
the current graphic device is the computer system display, the pen number selects the
color in which all graphics lines are drawn. Some display systems can operate in more
than one graphics mode, and the number of available colors depends on the current
graphics mode. In addition the color display can operate in one of two color modes: non-
COLOR MAP mode and COLOR MAP mode.

If the display does not have a color map or if the COLOR MAP option is not specified in
the PLOTTER IS statement, then the display operates in non-color map mode and the
SET PEN statement has no effect. The pen number is translated to an RGB number as
shown in the table below and stored in the display buffer. For example, pen number 5
specifies cyan and it is translated to the RGB number 011.

The following table gives the pen number to RGB number assignments. For monochrome
displays, only the first two entries apply.

PEN COLOR Red
0 black 0
white

red
yellow
green
cyan
blue
magenta

()
X
@
@
=1
c
®

NouhwNER
POOORRELE
ocorRrRRORO
PFRrRrOOORrROD

COLOR MAP Mode

To enable the Color Map mode the COLOR MAP option must be specified in the
PLOTTER IS statement. A display with a color map allows any color to be assigned to
any pen. The SET PEN statement is used to assign colors to pens. The following table
gives the default color to pen assignments.

Pen Color Pen Color

0 black 8 black

1 white 9 olive green
2 red 10 agua

3 yellow 11 royal blue
4 green 12 maroon

5 cyan 13 brick red

6 blue 14 orange

7 magenta 15 brown

SET PEN Statement

The SET PEN statement defines part or all of the color map. A color may be specified in
either the RGB or the HSL color space by using the INTENSITY or the COLOR keywords
respectively. You may redefine an individual pen by specifying one HSL or RGB color
value or multiple pens by specifying an array. In either case, the pen-number specifies
the first entry in the color map to be defined. For example:

SET PEN pen-number COLOR h, s, |

SET PEN pen-number COLOR numeric-array(*)
SET PEN pen-number INTENSITY r, g, b

SET PEN pen-number INTENSITY numeric-array(*)

The pen-number should be in the range 0 to n-1, where n is the number of colors
supported by the map. The closest possible color will be used if the computer display
cannot display the color you select. This statement is ignored if not in COLOR MAP
mode.

Immediate Effect. Any pixels already drawn with the specified pen are changed to the
new color. All SET PEN statements take effect immediately upon execution. The effects
of all SET PEN statements last until the next SET PEN statement of the same pen, or
until GINIT, PLOTTER IS, SEPARATE/MERGE ALPHA, or QUIT. In cases where
dithering is used, changing the color map changes the colors available to the dithering
process, and changes the colors of areas already drawn with dithering that use that
particular pen as part of the dither pattern.

In addition to the PEN and SET PEN statements the GESCAPE statement can affect the
graphics color.

EGA Colors. The EGA display adapter card supports four possible level settings for each
color gun. This allows each pen to have any of 64 possible colors. The red, green, and
blue values are interpreted as follows:

Value % Level
0-.09 OFF
1-.49 1/3 ON
.5-.89 2/3 ON
9-1 ON

VGA Colors. The VGA display adapter card supports 64 possible level settings for each
color gun. This allows each pen to have any of 262,144 possible colors. The red, green,
and blue value range is 0 to 1, where O means the color is totally off and 1 means the
color is totally on.

GESCAPE Statement

The GESCAPE statement exchanges device-specific information with a graphic device. It
is specified as follows:

GESCAPE device-selector, code [,param(*)][;return(*)]

The device selector specifies the graphic device. The code value specifies the type of
operation. The param array sends information to the device and the return array receives
information from the device. The type, size, and shape of the arrays must be appropriate
for the requested operation.

Code
1

~NO O~ WN

100
101
102
103
104
105
106

Description

returns number of color map entries

returns color map values

returns hard-clip values

sets normal drawing mode

sets alternate drawing mode

returns graphic display mask

sets graphic display mask

sets HP PaintJet color palettes for non-COLOR MAP mode
sets HP PaintJet color palettes for COLOR MAP mode
returns the current VIEWPORT and WINDOW

returns the current PEN and AREA PEN assignments
sets PLOTTER device specific variables

sets GRAPHICS INPUT device specific variables

sets DUMP device specific variables

Code 1

Code 1 returns the number of color map entries. The return array must be a one
dimensional INTEGER array and have at least one element. The first element is assigned
the number of color map entries. The following program shows how to return the number
of color map entries.

10 INTEGER A return(0)

20 GESCAPE CRT,1;A return (*)
30 PRINT A return (0)

40 END

Code 2

Code 2 returns color map values. The return array must be a two dimensional REAL
array, with at least one row and three columns. The first row contains color information for
pen 0, second row for pen 1, etc. If the array does not have enough rows, only part of the
color map is returned. If the array has too many rows, only part of the array will be used.
The first column contains the information for red, the second for green, and the third for
blue. The color information ranges in value from zero to one. Color values are multiples of
1/N, where N is the number of non-black shades available for each color. For the IBM PC
EGA and VGA N is 15.

A_return(0,0) - Pen 0 red color map value
A_return(0,1) - Pen O green color map value
A_return(0,2) - Pen 0 blue color map value

A_return(15,0) - Pen 15 red color map value
A_return(15,1) - Pen 15 green color map value
A_return(15,2) - Pen 15 blue color map value

The following program shows how to return the color map values.

10 REAL A return(1l5,2)

20 GESCAPE CRT,2;A return (*)
30 PRINT A return (*)

40 END

Code 3

Code 3 returns the hard-clip values and GSTORE array size. The values are returned in
plotter units or pixels. The return array must be a one dimensional INTEGER array and
must contain at least four elements. The first four elements of the array are assigned the
values, X min, Y min, X max, Y max, respectively. For a CRT, the fifth and sixth elements
give the INTEGER array dimensions needed by the GSTORE command to store the
screen image.

A_return(0) - X minimum hard clip value
A_return(1) - Y minimum hard clip value
A_return(2) - X maximum hard clip value
A_return(3) - Y maximum hard clip value
A_return(4) - # of rows that GSTORE requires
A_return(5) - # of columns that GSTORE requires

The following program shows how to return the hard-clip & GSTORE values.

10 INTEGER A return (5)

20 GESCAPE CRT, 3;A_return (*)
30 PRINT A return (*)

40 END

Codes 4 &5

Codes 4 and 5 change the graphics writing mode. If the code is 4, the drawing mode is
set to normal. If 5 is specified, the drawing mode is set to alternate. The graphics writing
mode provides a great deal of flexibility in the generation of graphic displays. It defines
the method used to modify the pixel color bits. These include clearing, setting, inclusive
or, exclusive or, complementing, and anding the color bits with the complement of the
current pixel color bits. It is specified by a combination of the drawing mode and the sign
of the current pen number.

The writing mode of the pen is specified by the current drawing mode and the sign of the
pen number. The following table defines the different writing modes available. P is a
positive pen number, X is the present value of a pixel. For Non-color map mode, the
value of P is the RGB number, not the pen number.

GESCAPE CRT4 GESCAPE CRT,5
Statement Normal Alternate
PEN P P BINIOR(X,P)
AREA PEN P P BINIOR(X,P)
PEN O BINCMP(X)* 0
AREA PEN O 0 0
PEN -P BINAND(X,BINCMP(P)) BINEOR(X,P)

AREAPEN-P BINAND(X,BINCMP(P)) BINAND(X,BINCMP(P))

*PEN 0 in Normal Drawing Mode will do BINCMP(X) in non-color map mode and O in
COLOR MAP mode.

GESCAPE codes 4 and 5 are not supported on monochrome graphic displays such as
CGA and Hercules (HGC). The following statements show how to change the graphics
writing mode.

GESCAPE CRT, 4 !Set to Normal Drawing Mode
GESCAPE CRT, 5 !Set to Alternate Drawing Mode

Code 6

Code 6 returns the graphics display mask. The return array must be a one dimensional
INTEGER array, and must have at least one element. The first element is assigned the
value of the graphics write-enable mask. The second element, if present, is assigned the
value of the graphics display-enable mask. Each bit in the mask corresponds to one of
the bit planes. Bit O corresponds to the first plane.

A_return(0) - graphics write enable mask
A_return(1) - graphics display enable mask

The following program shows how to return the graphics enable masks.

10 INTEGER A return(l)

20 GESCAPE CRT, 6;A return(*)
30 PRINT A return(*)

40 END

Code 7

Code 7 sets the graphics display mask. This operation is not supported by HTBasic. The
param array must be a one dimensional INTEGER array, and must have at least one
element. The first element is assigned to the graphics write-enable mask. The second
element, if present, is assigned to the graphics display-enable mask.

A_param(0) - graphics write enable mask
A_param(1) - graphics display enable mask

The following program shows how to set the graphics enable masks.

10 INTEGER A param(1l)

20 A param(0)=8

30 A param(1l)=15

40 GESCAPE CRT,7,A param(*)
50 END

Codes 100 & 101

Codes 100 and 101 set the HP PaintJet printer color palettes. If the code is 100, the color
table used for non-COLOR MAP mode is changed. If 101 is specified, the color table
used for COLOR MAP mode is changed. The param array must be a two dimensional
INTEGER array. It must have at least one row, and must have three columns. The first
row contains color information for pen 0, second row for pen 1, etc. If the array does not
have enough rows, or has too many rows, no error is reported. The first column contains
the information for red, the second for green, and the third for blue. The color information
ranges in value from 1 to 99.

A_param(0,0) - Pen 0 red color palette value
A_param(0,1) - Pen O green color palette value
A_param(0,2) - Pen 0 blue color palette value

A_param(15,0) - Pen 15 red color palette value
A_param(15,1) - Pen 15 green color palette value
A_param(15,2) - Pen 15 blue color palette value

The following table gives the default palette settings, used in non-COLOR MAP and
COLOR MAP modes. Note that the color values for black and white have been switched.
This prevents the printer from printing a large amount of black for the background that is
black on the screen.

Non-COLOR MAP Mode COLOR MAP Mode

Color Red Green Blue Red Green Blue
0 90 88 85 90 88 85
1 4 4 29 4 4 6
2 3 26 22 53 8 14
3 2 22 64 89 83 13
4 53 8 14 3 26 22
5 53 5 25 2 22 64
6 89 83 13 4 4 29
7 4 4 6 53 5 25
8 90 88 85 90 88 85
9 4 4 29 24 27 18
10 3 26 22 5 31 12
11 2 22 64 20 5 29
12 53 8 14 26 5 17
13 53 5 25 64 19 26
14 89 83 13 62 21 13
15 4 4 6 72 41 13

In non-COLOR MAP mode with the screen MERGEGd, colors 0 & 9-15 are used when
dumping the graphics screen to the printer. If the screen is in SEPARATE mode, colors 0-
7 are used. This is because the fourth memory plane is used for text, leaving only three
memory planes for graphics. In COLOR MAP mode with the screen MERGEGJ, color 0-15
are used. If the screen is in SEPARATE mode, colors 0-7 are used.

The color palettes are loaded with the color values starting with palette 0, and continues
until either the array is exhausted or palette 15 is reached. The following program shows
how to set the color palettes.

10 INTEGER A param(1l5,2)
20 DATA 90,88,85, 4,4,¢0, 53,8,14, 89,83,13

30
40
50
60
70
80

DATA 3,26,22, 2,222,604,
DATA 90,88,85, 24,27,18,
DATA 26,5,17, 64,19, 26,
READ A param(*)

GESCAPE CRT,101,A param(*)
END

4,4,29,
5,31,12,
62,21,13,

53,5,25
20,5,29
72,41,13

Code 102

Code 102 returns the current VIEWPORT and WINDOW values. The return array should
be a two dimensional REAL array with two rows and four columns. The first row is
assigned the values of the current window. The second row is assigned the values of the
current viewport. For each, the X min, X max, Y min, and Y max values are assigned to
the first through fourth columns, respectively. The following program demonstrates this

capability:

10 REAL W(1, 3)

20 GESCAPE CRT,102;W(*)

30 PRINT "The current window is";wW(0,0),wW(0,1),wW(0,2),W(0,3)
40 PRINT "The current viewport is";W(1l,0),W(1,1),wW(1,2),W(1l,3)
50 END

Code 103

Code 103 returns the current PEN and AREA PEN assignments. The return array should
be a one dimensional INTEGER array with two elements. The first element is assigned
the current PEN assignment. The second element is assigned the current AREA PEN
assignment. The following program demonstrates this capability:

10
20
30
40
50

INTEGER P (1)
GESCAPE CRT,103;P(*)

PRINT "The current PEN is";P(0)
PRINT "The current AREA PEN is";P (1)
END

Code 104

Code 104 sets device-specific information. The param array must be a one dimensional
INTEGER array. The number of elements required depends on the device driver.
Conventionally, it contains two elements. The first element is the operation number and
the second element is the value associated with that operation. See the documentation
for each driver for information on any GESCAPE 104 operations supported by that driver.

For the HPGL plotter driver, this code is used to enable HPGL/2 capabilities. When
HPGL/2 is used, polygons are sent to the plotter for rendering. With many plotting
devices, this allows the polygons to be filled. When generating an HPGL file for import
into other programs, it is often more desirable for the polygon to import as a single unit,
rather than a series of lines. To enable HPGL/2, use the following code. Substitute the
ISC for the HPGL plotter in place of Isc in line 40.

10 INTEGER Param(1l)

20 Param(0)=1 ! HPGL Operation Number: 1 = HPGL/2 Flag
30 Param(1l)=1 ! Value: l=enable, 0=disable

40 GESCAPE Isc,104,Param(*)

Code 105

Sets device-specific information in the GRAPHICS INPUT IS device. The param array
must be a one dimensional INTEGER array. The number of elements required depends
on the device driver. The first element is the operation number and the subsequent
elements are the values associated with that operation.

Code 106

Sets device-specific information in the DUMP DEVICE IS device. The param array must
be a one dimensional INTEGER array. The nhumber of elements required depends on the
device driver. The first element is the operation number and the subsequent elements are
the values associated with that operation.

For the dump drivers, code 106, operation 1 is used to specify a portion of the screen to
dump when DUMP GRAPHICS is executed. The syntax is:

GESCAPE PRT,106,param(*)

The param array must be a one dimensional INTEGER array of five elements. The first
element is the operation number. The remaining elements specify the boundary for the
DUMP. The boundary is specified in screen units:

param(1) - 1

param(2) - Beginning row
param(3) - Ending row
param(4) - Must be 0
param(5) - Must be 0

The row parameters will revert back to the default of full screen if any of the following
conditions occur:

1. Beginning row greater than ending row

2. A new Plotter, Graphics, or Dump driver is loaded

3. AGINIT, SCRATCHA, PLOTTER IS, GRAPHICS INPUT, or CONFIGURE DUMP,
commands are executed or a Basic reset is performed.

The CONFIGURE DUMP statement must be executed before the GESCAPE statement.
The following program demonstrates this capability:

10 INTEGER A(1:5)

20 DUMP DEVICE IS PRT

30 CONFIGURE DUMP TO "HP-PCL"

40 A(l)=1 operation code, always 1
50 A(2)=100 begin row, screen units

|
!
60 A(3)=300 ! end row, screen units

|

70 A(4)=0 reserved, must be 0
80 A(5)=0 ! reserved, must be 0
90 GESCAPE PRT,106,A(*)

100 FRAME

110 MOVE 0,0

120 DRAW 100,100
130 DUMP GRAPHICS
140 END

Incremental and Relative Graphics

Incremental and relative graphic construction allows you to describe an object or symbol
in incremental or relative coordinates, and then position it repeatedly in various locations
on the screen (or output device) simply by performing an absolute MOVE to the starting
location and then executing the incremental or relative graphics statements. The IMOVE,
IDRAW, IPLOT, and RPLOT statements implement incremental and relative graphics.

IMOVE Statement

The IMOVE statement lifts and moves the pen to the position calculated by adding the
specified X and Y displacement to the current pen position. After the IMOVE statement is
executed, the logical pen position is updated and the pen is left in the up position.

IDRAW Statement

The IDRAW statement lowers the pen and then moves it to the position calculated by
adding the specified X and Y displacement to the current pen position. After the IDRAW
statement executes, the logical pen position is updated and the pen is left in the down
position. IDRAW 0,0 draws a point.

IPLOT Statement

The IPLOT statement moves the pen from its current position by the specified X and Y
displacements. Like the PLOT statement discussed previously, you can also specify an
optional pen control value or a two- or three-column array.

RPLOT Statement

The RPLOT statement is the same as the IPLOT statement except that it moves the pen
relative to the logical pen position. You specify when the pen is to be raised or lowered
with the optional pen-control value.

If the arguments of an IMOVE, IDRAW, IPLOT, or RPLOT statement specify a destination
point that is outside the soft-clip area, the logical position is set to that point but the pen is
not moved. Only the portion of the vector that lies inside the clipping area is plotted. If
both the current logical position and the specified position are outside the clip area the
logical position is updated but no physical pen movement is made.

Arcs, Circles, and Rectangles

Special purpose graphic statements are used to generate arcs, circles, and rectangles.
They are the POLYGON, POLYLINE, and RECTANGLE statements. Each is discussed in
the following paragraphs.

POLYGON and POLYLINE Statements

The POLYGON and POLYLINE statements generate variable sided polygons or circles.
The pen starts and ends in the same position, and after execution the pen is up. The
radius is the distance between the logical pen position and the polygon vertices where
the first vertex is in the positive X axis direction. A negative radius will rotate the arc by
180 degrees. The PDIR statement can be used the specify the starting angle.

You can specify the number of chord segments in a full circle and the number to draw. By
default there are 60 segments in a full circle. Here is an example of an arc and a circle:

POLYGON 10 !Circle with radius 10
POLYLINE 10, 20,3 'Arc of 3/20ths circle

For the POLYGON statement, if the number of chords drawn is less than the specified
total number of chords, the polygon closure is affected. If the pen is up when the
POLYGON statement is executed, the polygon is closed by drawing the last vertex to the
first vertex. If pen is down, the polygon is closed by drawing the last vertex to the center
of the polygon and then drawing from the center to the first vertex. The following program
shows the difference:

10 GINIT

20 MOVE 35,50

30 POLYGON 10,10,8
40 MOVE 65,50

50 DRAW 65,50

60 POLYGON 10,10,8
70 END

For the POLYLINE statement, if the number of chords drawn is less than the specified
total number of chords, the polygon is not closed. If the pen is up when the POLYLINE
statement was executed, the first vertex is on the perimeter. If the pen is down when the
POLYLINE statement is executed, the first point (logical pen position) is drawn to the first
point on the perimeter. Change the previous program so that line 30 and 60 use
POLYLINE statements. Execute the program again to see the effect of the pen being up
or down.

30 POLYLINE 10,10,8
60 POLYLINE 10,10,8

RECTANGLE Statement

The RECTANGLE statement generates a four sided polygon described by its width and
height displacement from the current pen position. The signs of the width and height
determine the pen position after the RECTANGLE execution: If the width is positive, the
pen position is on the left side of the rectangle. If the width is negative, the pen position is
on the right side of the rectangle. If the height is positive, the pen position is in the lower
corner of the rectangle and if it is negative, the pen position is in the upper corner. The
following example will help clarify the last pen position

10 MOVE 50,50

20 RECTANGLE 3,5 !Pen at lower left
30 RECTANGLE 3,-5 !'Pen at upper left
40 RECTANGLE -3,5 !'Pen at lower right
50 RECTANGLE -3,-5 !Pen at upper right
60 END

The POLYGON and RECTANGLE statements may specify the FILL and EDGE options
described later in this chapter. If neither are specified EDGE is assumed. The POLYLINE
statement cannot specify these options.

User Defined Symbols

The SYMBOL statement uses a two-dimensional two- or three-column array to plot a
user-defined symbol. Symbols are created with moves and draws in the symbol
coordinate system; an area nine units wide and fifteen units high. The symbol may be
defined to extend outside of this 9x15 cell; thus allowing you to create any size symbol
you wish. The CSIZE, LDIR, and LORG statements affect the SYMBOL statement, but
the SHOW or WINDOW to VIEWPORT scaling does not. This keeps the labels from
becoming distorted by graphic data scaling.

The symbol data is drawn using the current pen control and line type and is clipped at the
clip boundary. A move is always done to the first point and the current pen position is left
at the last X,Y position specified in the array and is not updated to the next symbol
position. This allows a SYMBOL to cover a group of character cells. The following
program shows you how to define a SYMBOL to extend outside the character cell.

10 GINIT

20 DIM A(6,2)

30 READ A (*)

40 DATA 1,7,-2,16,7,-1,15,4,-1,21,8,-1,15,12,-1,16,9,-1,1,9,-1
50 DRAW 50,50

60 RECTANGLE 3,5

70 SYMBOL A (*)

80 END

Notice that the symbol is not closed at one end. Another X,Y data point could be added to
the DATA statement to fix this, or the FILL and EDGE commands would also work. Taking
the same data points as defined for the SYMBOL command, change line 70 to either the
PLOT or RPLOT statements to see what happens.

70 PLOT A(*) !Absolute Points
or
70 RPLOT A (*) !Relative Points

The array is now affected by the scaling of the WINDOW values, and the data points are
mapped onto the WINDOW. This causes the arrow to become larger. The PLOT
statement is in absolute coordinates, that is why it is close to the origin of 0,0. RPLOT is
defined in relative coordinates, being relative to the current position of 50,50.

AREA Fill Styles and Colors

The area fill styles and colors used by the PLOT, IPLOT, RPLOT, POLYGON,
RECTANGLE, and SYMBOL statements are specified with the AREA statement. Area fills

are specified by the FILL and EDGE options. These are described in the following
paragraphs.

AREA Statement

The AREA statement defines the area fill style and color. It is qualified with either the
PEN, COLOR, or INTENSITY keywords. The area color and style remain in effect until
another AREA, GINIT, or SCRATCH A is executed. The IPLOT, PLOT, RPLOT, and
SYMBOL statements can also change the area fill color. This is explained under "Array
Specified Pen Control," later in this chapter.

When you use the AREA PEN statement the fill color is looked up in the color map table,
and the fill style is set to non-dither (solid).

AREA PEN pen

Pen numbers have the same effect as described in the PEN statement except for the
following two conditions. In normal drawing mode, pen 0 erases; it does not complement.
In alternate drawing mode, negative pen values erase; they do not complement. The
default area fill color is PEN one.

When you use the AREA COLOR or AREA INTENSITY statements the fill color is created
with dithering when needed to better approximate the color specified. Use AREA COLOR
to specify a color in the HSL color space and AREA INTENSITY to specify a color in the

RGB color space. These are explained earlier in this chapter. Because of the calculations
needed to set up dithering, AREA COLOR/INTENSITY executes slower than AREA PEN.

Run this example program to see how dithered colors look, and to see how the HSL color
space works. Change line 90 to AREA INTENSITY to see how the RGB color space
works.

10 REM HSL.BAS

20 GINIT

30 GCLEAR

40 KEY LABELS OFF

50 WINDOW 0,1.31,1.31,0
60 FOR L=0 TO 1 STEP .2

70 FOR H=0 TO 1 STEP 1/6

80 FOR S=0 TO 1 STEP .2

90 AREA COLOR H,S,L

100 MOVE H+.11*L,S+.11*L

110 RECTANGLE .09, .1,FILL,EDGE
120 NEXT S

130 NEXT H

140 NEXT L

150 LORG 7

160 MOVE 1.2,1.31

170 LABEL "z = Luminosity"
180 LORG 4

190 MOVE .6,1.31

200 LABEL "x = Hue"

210 LDIR PI/2

220 MOVE 1.31,.6

230 LABEL "y = Saturation"
240 END

When drawing an area in a certain color, it may be possible to produce the color faster
and more accurately by specifying SET PEN followed by AREA PEN, rather than
specifying AREA COLOR or AREA INTENSITY.

10 REM AREAPEN.BAS

20 GINIT

30 PLOTTER IS CRT, "INTERNAL";COLOR MAP
40 AREA INTENSITY 1/3,2/3,1

50 MOVE 10,50

60 RECTANGLE 20,20,FILL,EDGE

6l !

70 SET PEN 15 INTENSITY 1/3,2/3,1
80 AREA PEN 15

90 MOVE 40,50

100 RECTANGLE 20,20,FILL,EDGE

110 END

FILL and EDGE Options

The FILL and EDGE options control the filling and edging of an area defined by the
following statements: PLOT, IPLOT, RPLOT, POLYGON, RECTANGLE, or SYMBOL. If
the FILL option is specified, the area is filled with the current area fill color and style. If the
EDGE option is specified, the area is edged with the current line type and pen color.
When both are specified the area is both filled and edged. If neither are specified, the
area is just edged with the current line type and pen color.

The following program shows the effect that the FILL and EDGE options have on an area.
To see their effect change line 50 to include the EDGE and then both the FILL and EDGE
options.

10 GINIT

20 AREA PEN 2

30 LINE TYPE 4

40 MOVE 50,50

50 RECTANGLE 10,10, FILL
60 END

Array Specified Pen Control

When large amounts of data are involved, or if you want to draw the same object at
various places on the screen, it is often convenient to use arrays to describe the graphic
coordinate values. In the PLOT, IPLOT, RPLOT, and SYMBOL statements you can
specify a two or three column array. The first and second columns of the array specify the
coordinate values. The optional third-column specifies the operation for each row of the
array: pen-control, AREA PEN, AREA INTENSITY, LINE TYPE, PEN, FILL, and EDGE. If
a two-column array is specified, the default pen control used on each row is a one, pen
down after move.

This table shows the meaning of each column for each of the operations specified by
column 3 of the array.

Column 1
X value

X

X

X

X

X

pen number
line type
color

pen number
red value
blue value

Column 2
Y value

Column 3
<-2
-2

©CONOUR_WNE O

Column 3 Meaning

use even/odd pen control
Pen up before moving

Pen down before moving
Pen up after moving

Pen down after moving

Pen up after moving

PEN

LINE TYPE

AREA INTENSITY

Start polygon mode w/FILL
End polygon mode

End of data for array

No operation, values ignored
Start polygon w/EDGE

Start polygon w/FILL & EDGE
Draw a FRAME

AREA PEN

AREA INTENSITY

AREA INTENSITY

No operation, values ignored

AREA Color

Operation 5 in column 3 selects the AREA INTENSITY color. The column 1 value is
divided into red, green, and blue numbers, each five bits in length (the sixteenth bit of
column one is ignored). Each five-bit number specifies a value in the range zero to
sixteen. This number is subtracted from sixteen to calculate the intensity value for each of
the colors: red, green, blue. Intensities range in value from zero (darkest) to sixteen (most
intense).

For example, if column 1 is set to zero, then each of the three groups in column 1 is set
to zero. Sixteen minus zero yields sixteen for all three groups. Sixteen is full intensity,
therefore, the area fill color will be white.

The following equation calculates the value for column 1 given R, G, B values in the
range zero to one.

Columnl = 16-16*R + SHIFT(16-16*G,-5) + SHIFT(16-16*B,-10)

The AREA INTENSITY red, green, and blue values can also be selected with operations
14 and 15. The range of intensity is zero (no color) to 32,767 (full intensity). Operation 14
should be done before 15, and the operation takes effect when operation 15 is done.

FILL and EDGE

A polygon is formed from a line sequence of 2 or more points with the optional FILL or
EDGE specifiers. A polygon is drawn by plotting the first point, each successive point,
and closed by drawing the final point back to the first point.

If FILL is specified, the polygon is filled with the current AREA fill color, and if EDGE is
specified, the polygon is edged with the current PEN color. The array pen-control
instructions supersede any other instructions on pen movement, LINE TYPE, and FILL
and EDGE specifiers.

Graphics Rotation

The PDIR and PIVOT statements cause rotations to be applied to graphic MOVEs and
DRAWSs. The angle specifies the direction and amount of rotation. It is measured in a
counter-clockwise direction from the positive X-axis. The current trigonometric mode
(RAD or DEG) determines the units for the angle. The default trigonometric mode is RAD.

PDIR Statement

The PDIR statement specifies the rotation of IPLOT, RPLOT, POLYGON, POLYLINE, and
the RECTANGLE statements. The rotation takes place about the logical position. The
AXES, GRID, LABEL and SYMBOL statements are not affected by PDIR.

PIVOT Statement

The PIVOT statement causes the rotation of all lines, except those generated by the
AXES, GRID, LABEL and SYMBOL statements. This includes lines generated by the
MOVE, DRAW, IMOVE, IDRAW, PLOT, IPLOT, RPLOT, POLYGON, POLYLINE, and
RECTANGLE statements. This rotation takes place about the logical position. The PIVOT
statement effects only the starting point of the LABEL and SYMBOL statements.

If both the PIVOT and PDIR angles are set, they both have an effect on the lines being
generated. The transformation on the statements affected by the PDIR commands takes
place first. Then the transformations on the lines affected by the PIVOT command are
done. A few examples will help demonstrate this.

10 GINIT

20 DEG

30 DRAW 50,50

40 PIVOT O

50 PDIR 0

60 POLYGON 10,10,8
70 IDRAW 10,10

80 END

No rotations are done since both angles are set to zero. Now change line 50 to have a
rotation of 90 degrees.

50 PDIR 90

The rotation of 90 effects the POLYGON statement, but not the IDRAW. This is because
PDIR only affects the IPLOT, RPLOT, POLYGON, POLYLINE, and RECTANGLE
statements. Now change line 40 to have a rotation of 45 degrees.

40 PIVOT 45

The POLYGON statement is rotated a total of 135 degrees, by the combination of the
PIVOT 45 and the PDIR 90 statements. You will notice that the IDRAW line has been
rotated only 45 degrees by the effect of the PIVOT 45 statement. Now change line 50
back to 0 degrees.

50 PDIR O

The IDRAW line is still rotated by 45 degrees. The POLYGON statement is rotated by 45
degrees as a result of the PIVOT angle. Hopefully this example will clear up some of the
confusion when applying both the PIVOT and PDIR transforms to graphic lines.

Screen Raster Images

The GSTORE statement allows you to save the current graphics screen raster image into
an array and the GLOAD statement restores the graphics image to the graphics screen.
The device-selector specifies the device, which must be a bit-mapped device. The CRT is
assumed if no device selector is specified.

There are many uses for this capability. Images of various graphs and charts can be
stored in different arrays, and then easily redisplayed. Graphs that may be very slow to
generate, need only to be generated once and then displayed very fast. The graphics
information in the arrays can also be written to a file for future use.

Two forms of the GLOAD and GSTORE statements are supported. The first form is
compatible with the GLOAD/GSTORE statements in HP BASIC, and displays an image
that fills the entire screen. The second form operates on an arbitrary sized rectangular
portion of the screen. For users porting programs from HP BASIC that use the
Bstore()/Bload() CSUBs supplied with HP BASIC, the "Porting HP BASIC Programs to
the PC" chapter of the User's Guide, presents Bstore()/Bload() SUBs that call GSTORE
and GLOAD using the integrated syntax.

Full Screen

The size of the array necessary to store a complete screen image for each display
depends on the resolution and on the number of colors the display supports. GESCAPE
CRT,3 can be used in a program to determine the size necessary:

10 INTEGER S (5)

20 GESCAPE CRT, 3;S (*)

30 PRINT "Proper array size is";S(4);"rows and";S(5);"columns."
40 END

The following table gives the sizes for some PC display adapters. The array may be
declared larger or smaller than the size given. If the array is not large enough to contain a
full screen image, GLOAD stops when all the array contents have been transferred. If the
array is too large, only part of the array will be used. If an attempt is made to GLOAD an
image to a display that is different from the GSTORE display, unpredictable results will
occur. If the color map has different values than when the image was GSTOREd, the
colors will not match the original image.

Display Array Size

CGA Image(1:40,1:200)
MGA Image(1:40,1:400)
HGC Image(1:45,1:348)
EGA(merged) Image(1:160,1:350)
VGA(merged) Image(1:160,1:480)
640x480x16 Image(1:160,1:480)
800x600x16 Image(1:200,1:600)
1024x768x16 Image(1:256,1:768)
640x480x256 Image(1:320,1:480)
800x600x256 Image(1:400,1:600)
1024x768x256 Image(1:512,1:768)

Below is an example of the GSTORE and GLOAD statements for the VGA screen. If you
have a display other than a VGA, change line 10 to the appropriate size.

10 INTEGER Image (1:160,1:480)
20 FRAME

30 DRAW 50,50

40 POLYGON 10,10,FILL

50 GSTORE Image (*)

60 END

Now that the image is stored in the array, clear the graphics screen with the GCLEAR
statement. To load the image back onto the screen, use the following statement:

GLOAD Image (*)

Rectangular Blocks

GSTORE Image (*),Width,Height,Rule,Xorigin,Yorigin

When a Width and Height are specified after the image array, only a rectangular block is
transferred between the array and the display. Width and Height are specified in pixels.
Optionally, a Rule can be specified that instructs GLOAD/GSTORE how to combine the
contents of the array with the contents of the screen. Presently, only a value of 3 is
supported. This causes the contents of the array (for GLOAD) or screen (for GSTORE) to
totally overwrite the target. The block will be located with the upper left corner at the
current graphic position. Alternately, a position can be specified with the Xorigin, Yorigin
parameters. These parameters should be specified in the current WINDOW units, not
pixels or VIEWPORT units (GDUS).

For displays with 8 planes or less (256 colors or less), the image is stored with one byte
per pixel. This makes images somewhat transportable among different displays. It also
means that the number of elements necessary to store the image is equal to
Width*Height/2. If the width is even, the array could be declared as

INTEGER Image(1:Width/2,1:Height)

If the array is too small, an error is given. If the array is too large, the extra array
elements are ignored. If GLOAD is used to display an image on a display with less colors
than the GSTORE display, the results are undefined. If the color map is different than the
color map in effect when the image was GSTOREGJ, the colors will not match the original
image.

Screen Storage Formats

The format of the data stored in the array for full screen images differs from display type
to display type. The data is usually packed as efficiently as possible. The following

sections detail the format for common display types. The format of data stored for
rectangular images was previously given.

CGA & Hercules Graphics Cards

The CGA & Hercules graphics cards use one memory bit to display each pixel on the
screen. Each pixel will be stored sequentially into the integer array specified. Information
is taken starting at the upper-left corner a byte at a time from each plane. The left-most
(most significant) bit of each byte corresponds to the left-most screen pixel in each group
of eight pixels. When accessing integers in the array, remember that the Intel 80x86
swaps bytes. Thus, the first byte in memory is found in bits 7 to 0 of the integer and the

second byte in bits 15 to 8. The following diagram summarizes these rules.

MSE LSE

Byte 2 Byte 1

Byte 4 Byte 3

Eyte & Eyte 5

Byte 8 Byte 7

and so on...

Detail of 1st Element
1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
8y |9y |[10y|1Ly(12,¥|13,y 14, ¥15,5(0,5 Ly |25 3,57 |47 3.7 [b.¥ |7¥

EGA, VGA & SuperVGA 16 Color Graphics Cards

MSB

The EGA, VGA & SuperVGA 16 color graphics cards use four memory bits to display
each pixel on the screen. Each of the four bits is stored in a different memory plane. In
non-COLOR MAP mode the four planes are named Blue, Green, Red, and Intensity;
HTBasic always sets the intensity bits. In COLOR MAP mode the color names do not
apply and the planes are numbered 0 to 3. When ALPHA and GRAPHICS are MERGE(,
information is taken starting at the upper-left-hand corner a byte at a time from each
plane, starting with plane 0 and ending with plane 3. When ALPHA and GRAPHICS are
SEPARATE, only 3 planes are used for graphics, so only planes 0 to 2 are
GLOADed/GSTOREd. Each byte contains information for 8 pixels, but the bytes from all
the planes must be considered when deciding what color a pixel is. The left-most (most
significant) bit of each byte corresponds to the left-most screen pixel in each group of
eight pixels. When accessing integers in the GLOAD/GSTORE array, remember that the
Intel 80x86 swaps bytes. Thus, the first byte in memory is found in bits 7 to 0 of the
integer and the second byte in bits 15 to 8. The following diagram summarizes these
rules.

MERGE SEPARATE
LSB MSE LSB

Plane 1 {Green)| Plane 0 (Blue) | |Plane 1 (Green) | Plane 0 {Blue)

Plane 3 (Inten.) | Plane 2 (Red) | | Plane 0(Blue) |Plane 2 (Red)

Plane 1 (Green)| Plane 0 (Blue) | |Plane 2 (Fed) |Plane 1 {Green)

Plane 3 {Inten.) | Plane 2 (Red) | | Plane 1 {Green) |Plane 0 (Blue)

and so on... and so on...

Detail of 15t Element
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Pl
0,y

P1
l,y

Pl

2y (35 |4y |3y |6y | T¥|0y| 1y |2y 3.¥ |4y |3 ¥ |65 |T¥F

P1|P1|PF1 Pl |P1l|PO (PO |PO|PO|PO| PO(PO PO

Note: In color map mode, the bits of the pen number specify which planes are set, while
in non-color map mode, the pen RGB color rather than the pen number specifies which
color planes are set.

Super VGA 256 Color Graphics Cards

Detail of 1st Element

The Super VGA 256 color graphics cards use eight memory bits to display each pixel on
the screen. Each consecutive byte of memory holds the color information for a single
pixel. The format is the same for both MERGEd and SEPARATE modes. When accessing
integers in the GLOAD/GSTORE array, remember that the Intel 80x86 swaps bytes.
Thus, the first byte in memory is found in bits 7 to 0 of the integer and the second byte in
bits 15 to 8. The following diagram summarizes these rules.

MSB LSE

Byte 2 Byte 1
Eyte 4 Eyte 3
Byte & Byte 5
Byte 8 Byte 7

and so on...

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P2

P

P2

n”|r \rn|Frr\rnerer|FeF FriFerF|F°l

S3 & ATI Graphics Cards
16 Color Modes

The S3 & ATI 16 color graphics cards use four memory bits to display each pixel on the
screen. Each consecutive nibble of memory holds the color information for a single pixel.
The format is the same for both MERGEd and SEPARATE modes. When accessing
integers in the GLOAD/GSTORE array, remember that the Intel 80x86 swaps bytes.
Thus, the first byte in memory is found in bits 7 to 0 of the integer and the second byte in
bits 15 to 8. The following diagram summarizes these rules.

MSB LSB

Element 1 Pixel 4 | Pixel 3| Pixel 2 | Pixel 1
Element 2 Pixel 8| Pixel 7| Pixel 6 | Pixel 5

and so on...

|
Detail of 15t Element
1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P4 |P4 (P4 (P4 |P3 (P3 |P3 (P3| P2 P2 |FP2\F2 |P1|FP1|P1|P1

S3 & ATI Graphics Cards
256 Color Modes

The S3 & ATI 256 color graphics cards store the screen in the same manner as the Super
VGA 256 Color graphics cards. See the preceeding 256 color graphics diagram for
details.

Screen Dumps

The DUMP ALPHA and DUMP GRAPHICS statements and function keys copy the
contents of either the ALPHA or the GRAPHICS screen to the DUMP DEVICE IS printing
device.

DUMP ALPHA Statement

The DUMP ALPHA statement sends alphanumeric characters compatible with any ASCII
printer to the current DUMP DEVICE IS device. If the graphics are visible when this
command is executed, an ALPHA ON is executed before the screen dump occurs. This
eliminates the graphics from the information sent to the printer.

DUMP GRAPHICS Statement

The DUMP GRAPHICS statement sends graphics information to the printer or to a file in
the current printer language. The Installing and Using manual explains how to set the
printer language in Chapter 4, "Printer and Image File Drivers."

If the ALPHA and GRAPHICS screens are MERGEGd, then the ALPHA text will also be
dumped to the printer as part of the graphics data. If the graphics are not visible when
this command is executed, a GRAPHICS ON is executed before the screen dump
occurs. To remove the run indicator character in the bottom-right corner of the screen,
use RUNLIGHT OFF before drawing the screen image.

The GESCAPE statement is used to change the PaintJet palette as explained earlier in
this chapter.

DUMP DEVICE IS Statement

The DUMP DEVICE IS statement specifies which device, file, or pipe receives the data
when a DUMP ALPHA or a DUMP GRAPHICS statement is executed without a device
selector. The GINIT statement causes the default DUMP DEVICE IS to be set to the
value of PRT. If the optional EXPANDED keyword is included, the image is rotated by 90
degrees. For example:

DUMP DEVICE IS PRT,EXPANDED

If APPEND is specified and the DUMP is to a file, the file position is moved to the end-of-
file before each DUMP. For some DUMP types, multiple images in a file are not
supported. For example, the PCX file definition only supports one image per file. If
APPEND is specified in these cases, the result is undefined. If APPEND is not specified,
the file is overwritten with each DUMP.

The output can be sent to a device (usually a printer), file, or pipe. If the destination is a
file, it must be an ordinary file or a BDAT file. Pipes are supported under UNIX, but not
DOS. A pipe-specifier must begin with the “|" pipe character, and is followed by a
command to start the process that the output is sent to. When a DUMP occurs, the
information is sent to the process.

Many computer displays and most printers do not have square pixels. This results in a
distortion when the graphics image is printed. This is normal and can be partially
compensated for, if needed, by adjusting the WINDOW to apply an inverse distortion to
the image drawn on the display. HTBasic partially compensates for non-square pixels by
printing more than one printer pixel for each display pixel in some instances.

In some cases the softkey labels and ALPHA text are dumped along with GRAPHICS by
the DUMP GRAPHICS statement. This depends on the screen driver in use, and whether
ALPHA and GRAPHICS are MERGEd or SEPARATE. The two situations in which this
occurs are 1) CRTA driver with GRAPHICS ON, and 2) CRTB driver with MERGE
ALPHA. MERGE and SEPARATE ALPHA are explained in Chapter 8, "CRT, Keyboard,
and Printer."

If you are using the CRTB driver, this problem can be easily solved using the statement
SEPARATE ALPHA FROM GRAPHICS before generating the plot. If you are using the
CRTA driver or have not used SEPARATE ALPHA, to solve the problem you should clear
the ALPHA screen, turn the runlight off, and turn the softkey labels off before starting the
GRAPHICS plot. For example:

KEY LABELS OFF
RUNLIGHT OFF
CLEAR SCREEN

Partial Screen Dumps
GESCAPE code 106 specifies a portion of the display screen to dump. The syntax is:

GESCAPE PRT,106,param(*)

The param array must be a one dimensional INTEGER array of five elements. The first
element is the operation number (1 = sets boundaries for the DUMP commands). The
remaining elements specify the boundary for the DUMP. The boundary is specified in
screen units.

param(2) - Beginning row
param(3) - Ending row
param(4) - must be zero
param(5) - must be zero

The CONFIGURE DUMP, PLOTTER IS CRT,"INTERNAL", and GRAPHICS INPUT IS
KBD,"KBD" commands reset the row parameters back to the defaults, full screen. The
CONFIGURE DUMP command must be executed before the GESCAPE command. The
following program demonstrates this capability:

10 INTEGER A(1:5)

20 A(l)=1 select code-always 1
30 A(2)=100 begin row-screen units
40 A(3)=300 End row-screen units
50 A(4)=0 ! reserved

60 A(5)=0 ! reserved

70 DUMP DEVICE IS PRT

80 CONFIGURE DUMP TO "HP-PCL"

90 GESCAPE PRT, 106, A (*)

100 FRAME

110 MOVE 0,0

120 DRAW 480,480

130 DUMP GRAPHICS

140 END

!
!
|
|

Graphics Devices

The default graphics output device is the CRT display attached to your computer. The
default graphics input device is the keyboard. If a mouse is installed and active, it may
also be used to specify graphic input. HTBasic allows you to specify alternate graphic
devices for both input and output. The graphic output plotter language may also be
specified. You can also send plotter commands directly to the output graphics device.

PLOTTER IS Statement

The PLOTTER IS statement specifies the graphics output device, file, or pipe. The default
graphics output target is the CRT. Executing a PLOTTER IS statement directs all
subsequent graphics output to the specified device, file, or pipe. For example:

PLOTTER IS CRT, "INTERNAL";COLOR MAP

The plotter specifier string specifies the graphics device driver. To re-select the internal
CRT graphics display specify "INTERNAL". The COLOR MAP option is valid only with
this specifier. It can be used on computer displays that have a color map like the EGA or
VGA display adapters. If COLOR MAP is specified and the display does not have a color
map, an error is returned. The SET PEN statement is used to change the color map.

The "HPGL" plotter specifier string specifies the HP graphics language. This specifier can
be used in conjunction with a plotter or disk file. If a file is specified, you must also specify
the physical device (hard-clip) limits. If a device is specified, the device must be able to
return the physical device limits when initialized. For example:

PLOTTER IS 705, "HPGL"

specifies an HPGL plotter connected to the IEEE-488 bus on address five. The plotter
can be connected to the computer over the IEEE-488 bus or the serial interface.

The hard-clip limits of the plotter may be specified. If they are not and output is going to a
file, they default to £392.75 mm in the x axis and +251.5 mm in the y axis. If hard-clip
limits are not specified and output is going to a device, HTBasic asks the device to return
the p-points. The hard-clip units are specified using plotter units equal to 0.025
millimeters. The file is positioned to the beginning and is closed when another PLOTTER
IS, GINIT, or SCRATCH A statement is executed. For example:

PLOTTER IS "Pictfile","HPGL",5,250,7,136

The file can be later sent to a plotting device or imported into a word processor or a
desktop publishing package that supports the HP graphics language. To reset your
graphic output device to the internal display execute the command:

PLOTTER IS CRT, "INTERNAL"

HTBasic supports plotter drivers other than INTERNAL and HPGL. See the Installing and
Using manual, Chapter 3, "CRT and Graphic Drivers" for more information.

GSEND Statement

The GSEND statement sends command strings to the PLOTTER IS device. It is used to
send commands (such as the pen speed, pen force, and character set selection
commands) that are not generated by the high level graphics statements. For example:

GSEND "LBPlotter font characters."&CHRS (3)

sends the HPGL command to draw the specified string using the current plotter internal
character font. Virtually any HPGL command string can be sent to the device using this
statement.

GRAPHICS INPUT IS Statement

The GRAPHICS INPUT IS statement is used to specify the graphic input device. See the
Installing and Using manual, Chapter 5, "Graphic Input Drivers" for more information. The
default graphics input device is the keyboard. The arrow keys move the graphics position
and the ENTER or CONTINUE keys specify a point. If a mouse is installed and active, it
may also be used for graphic input. (Under DOS, you must first load the mouse driver
software supplied with your mouse.) An example GRAPHICS INPUT IS statement is:

GRAPHICS INPUT IS 702, "HPGL"

To perform graphic input, the following statements are used:

DIGITIZE X,Y,Status$ 'Wait for Point
READ LOCATOR X,Y,Status$!Immediate Return Point

Here, X and Y are the target variables for the graphic position, and Status$ is an optional
string that receives information about the state of the GRAPHICS INPUT IS device. The
returned coordinates are in the units defined in the current WINDOW or SHOW
statement. The Status$ string contains eight bytes with the following information:

Byte Meaning

1 Indicates End of Stream for a device supporting
continuous point stream digitizing. Byte 1 may be used
as the pen control value in a PLOT. It is "0" if it is the
last of a continuous point stream. It is "1" otherwise,
including points from a device supporting only single

point digitizing.
2 Comma delimiter character.
3 Clip Indicator - If the character is a "0", then the point

is outside the hard-clip limits. If a "1", the point is
inside the hard-clip limits, but outside the soft-clip limits
(see CLIP). If a "2" then it is inside the soft-clip limits.

4 Comma delimiter character.

5 Tracking ON/OFF - If the character is a "0", then
tracking is off; if a "1", then tracking is on.

6 Comma delimiter character.

7-8 Button Positions. If S$ is the status string and B is the

button number you wish to test, then
BIT(VAL(S$[7,8]),B-1) returns one if B is down, and zero if B
is up.

A point is digitized and the coordinates of that point are assigned to the variables when
the keyboard ENTER or CONTINUE keys, a mouse button, or a digitizer button is
pressed.

READ LOCATOR Statement

The READ LOCATOR statement immediately reads the graphic position and stores it into
the X and Y variables without waiting for a DIGITIZE operation.

SET LOCATOR Statement

The SET LOCATOR statement establishes a reference point for any subsequent graphics
input statements. SET LOCATOR is only valid for graphics input devices that use relative
locators.

WHERE Statement

The WHERE statement returns the current logical pen position in the x and y numeric
variables and pen status information in the optional string variable. For example:

WHERE X,Y,Status$

The Status$ string contains three bytes with the following information:

Byte Meaning

1 Pen Status - Up/Down status of the Pen. If the character
is a "1" then pen is down; if it is a "0" then the pen is up.

2 Comma delimiter character.

3 Clip Indicator - If the character is a "0", then the

point is outside the P1, P2 limits. If a "1", the point
is inside the P1, P2 limits, but outside the viewport.
If a "2" then it's inside the viewport.

Tracking Graphics Input

The SET ECHO and the TRACK statements allow you to follow the movements of the
graphics input device on the PLOTTER IS device.

SET ECHO Statement

The SET ECHO statement displays a tracking cross on the screen or moves the plotter
pen to the specified location. If the location is outside the clipping boundaries no action
takes place.

TRACK and DIGITIZE Statements

The TRACK statement controls tracking of the input device. It enables and disables the
graphic locator from following the input device position on the PLOTTER IS device during
DIGITIZE statements. Tracking stops when a point is digitized, and the tracking cross is
left at the location of the digitized point. When the display device is a plotter, the pen
position tracks the input device. When it is the CRT, the tracking cross tracks the input
device.

Use the arrow keys on the keyboard or the mouse to move the tracking cross around.
Run the following two programs to get a feel for how the DIGITIZE and READ LOCATOR
statements differ. Also look at how the TRACK and SET ECHO statements can be used
to follow the input device on the output device. Press the ENTER key or one of the
mouse buttons to read the current X,Y location in program #1. Enter the "STOP"
command to terminate program #2.

Program #1 Program #2

10 GINIT 10 GINIT

20 PLOTTER IS CRT, "INTERNAL" 20 PLOTTER IS CRT, "INTERNAL"
30 GRAPHICS INPUT IS KBD, "KBD" 30 GRAPHICS INPUT IS KBD, "KBD"
40 FRAME 40 FRAME

50 TRACK CRT IS ON 50 READ LOCATOR X,Y,S$

60 DIGITIZE X,Y,S$ 60 SET ECHO X,Y

70 PRINT X,Y,S$ 70 GOTO 50

80 END 80 END

Mixing Output and Input Devices

As shown by the following examples you can do some interesting things with the
DIGITIZE statement by mixing the possible PLOTTER IS and GRAPHICS INPUT IS
devices. The first example uses the default PLOTTER and GRAPHICS devices. Use the
arrow keys on the keyboard or the mouse to move the tracking cross around. Press the
ENTER key or one of the mouse buttons to read the current tracking cross location.

10 GINIT

20 PLOTTER IS CRT,"INTERNAL"
30 GRAPHICS INPUT IS KBD, "KBD"
40 TRACK CRT IS ON

50 FRAME

60 DIGITIZE X,Y,SS

70 PRINT X,Y,S$

80 END

If you have an HPGL plotter hooked up to your computer then you can try the following
example. Change line 30 in the above program to setup the plotter as the input device.
Chose one of the following lines for the type of communication that your plotter uses. If
you are using the serial interface, make sure that the baud rate, parity, stop bits, and
handshaking are setup correctly. For an IEEE-488 plotter, the device address needs to be
set correctly.

30 GRAPHICS INPUT IS 9,"HPGL" !Serial Interface
30 GRAPHICS INPUT IS 705,"HPGL" !TEEE-488 Address 5

When this program is run, the tracking cross will appear on the CRT display. By moving
the pen around on the plotter, you will see the tracking cross on the screen follow the
plotter movement.

You can also experiment with the other alternatives by setting the PLOTTER device to
the HPGL plotter, and then varying the GRAPHICS device between the keyboard and the
HPGL plotter.

Separate and Merged Alpha

The SEPARATE ALPHA FROM GRAPHICS and MERGE ALPHA WITH GRAPHICS
statements provide control over how ALPHA text and graphics are displayed and

manipulated on the computer screen. Both statements are presented in the following
section.

Merged Alpha

The MERGE ALPHA WITH GRAPHICS statement causes all bit-planes to be used by
both alpha and graphics. Alpha text is converted to graphic pixels and written into the
graphic planes, overwriting any graphics data that might be present. Also, scrolling alpha
text will scroll graphics, dumping either will dump both and the full range of colors are
available for both alpha text and graphic output. This is the default mode for the CRTB
screen driver.

Because this statement turns off COLOR MAP mode, it should be executed before any
PLOTTER IS CRT, "INTERNAL";COLOR MAP statement.

Separate Alpha

The SEPARATE ALPHA FROM GRAPHICS mode is the opposite of MERGE ALPHA
WITH GRAPHICS. When separate, one or more bit plane is reserved for alpha text and
the remaining planes are reserved for graphic output. The alpha and graphic planes can
then be turned on or off or DUMPed independently. However, ALPHA text color and
graphic pens are limited as shown in the following table. Check the Installing and Using
manual to see if this mode is supported on your computer system.

Because this statement turns off COLOR MAP mode, it should be executed before any
PLOTTER IS CRT,"INTERNAL";COLOR MAP statement.

The following table shows the colors available when SEPARATE ALPHA FROM
GRAPHICS is used, depending on the total number of colors available.

Total Graph
Colors Pens
16 0-7

32 0-15
64 0-15
128 0-31
256 0-63

Black White
Alpha Alpha
0 8

0 16

0 16

0 32

0 64

Brown Cyan

Alpha Alpha
32 48

64 96
128 192

Porting Issues

HP BASIC assigns green to the first pen; HTBasic assigns white. If you prefer green or
some other color, you must explicitly set a range of pen values to the color desired. The
range starts with the white alpha pen value from the table above and continues to one
less than the value of the brown alpha pen value. For 16 and 32 color systems, the last
value should be 15 and 31, respectively. For example, the following code changes the
alpha pen from white to green on a 16 color display:

10
20
30
40
50
60

SEPARATE ALPHA FROM GRAPHICS
PLOTTER IS CRT, "INTERNAL";COLOR MAP
FOR I=8 TO 15

SET PEN I INTENSITY 0,1,0
NEXT I
END

Chapter 7
General Input and Output

This chapter discusses the general I/O (input/output) statements of HTBasic. General 1/O
statements apply equally to screen, keyboard, printer, files, pipes, interfaces, devices,
strings, and buffers. The chapters following this one discuss these 1/10
destinations/sources in greater detail. You should read the information in this chapter first,
and then read any of the following chapters you need. BEEP, READ, and DATA
statements are also presented in this chapter.

There are two pairs of statements that are used in general I/O: ENTER/OUTPUT and
STATUS/CONTROL. Some interfaces also support interrupts, which can be used to force
program branching on different interface conditions. Some interfaces also support
background transfers. The TRANSFER statement starts background transfers.

Associated with each 1/0 operation is an 1/O path. An I/O path contains all of the routing
information necessary for the computer to transfer data between your HTBasic program
and the target entity (such as a printer, data acquisition device, string, file, pipe, etc.). The
ASSIGN statement is used to set up an I/O path for use in later ENTER, OUTPUT, and
TRANSFER statements.

ASSIGN Statement

The ASSIGN statement is similar to the OPEN statement of other computer languages.
ASSIGN makes a connection to a screen, keyboard, printer, file, pipe, interface, device,
or buffer. All the information concerning this connection is saved by the ASSIGN
statement in an 1/O path variable. A number of attributes can be specified in the ASSIGN
statement that affect how the I/O operation is done.

The 1/O path variable is then used in 1/O statements to specify the source or destination
of the ENTER, OUTPUT, or TRANSFER. After the initial ASSIGN, subsequent ASSIGN
statements can be used to redirect the 1/0, change the attributes, or close the file or
connection. Several I/O paths can be set up simultaneously. In fact, any number of I/O
path variables may exist in your program, although some operating systems limit the
number of files that can be open at one time.

Syntax

The syntax of the ASSIGN statement is:

ASSIGN @io-path [TO target] [;attrib [,attrib...]]
where:

@io-path = a legal I/O path variable name

target =

device-selector [, device-selector...] |

file-specifier | pipe-specifier |

BUFFER {string-name$ | numeric-array(*) | '['buf-size'l}
attrib =

FORMAT {ON|OFF|MSB FIRST|LSB FIRST} |
{BYTE|WORD} |

EOL eol-chars [END] [DELAY seconds] |

EOL OFF |

APPEND |

RETURN numeric-name

buf-size = size of the buffer in bytes

eol-chars = string expression of up to 8 characters
seconds = numeric-expression rounded to the nearest
0.001 through 32.767 (default is 0)

The following paragraphs give some explanation of how to ASSIGN the different I/O
targets: devices, files, pipes, and buffers. Then the different I/O attributes are explained.

Devices

A device can be the screen, the keyboard, a printer, lab instrument, or data acquisition
device. The device is specified with an interface select code (ISC) or device selector.
Each interface, (IEEE-488, serial, parallel, etc.) that is connected to your computer has a
uniqgue number assigned to it. When you load a device driver for an interface, a default
ISC is assigned, or you can specify another ISC. The following table gives some defaults
ISCs.

ISC Device

1 CRT display

2 Keyboard

3 Graphic display

6 Bit mapped graphic display

7 IEEE-488 Board

8 2nd IEEE-488 Board

9 Serial

10 Centronix (Parallel Printer)

11 2nd Serial

12 2nd Parallel

12 GPIO

17 Various Data Acquisition Boards (no analog capabilities)
18 Various Data Acquisition Boards (with analog capabilities)
32 Processor

If multiple devices can be hooked to the interface simultaneously, as they can on the
IEEE-488, then the primary address must be included with the ISC to uniquely identify
the device. This is also true of data acquisition boards having one or more subsystem:
A/D, D/A, DIO, etc. Together, the ISC and primary address are called a device selector.
Some IEEE-488 devices also require one or more secondary addresses. Each primary or
secondary address should be specified with two digits. Thus 1 should be specified as 01.
The total length of the device selector can be 15 digits. The following examples illustrate
these rules. To do I/0O with an IEEE-488 device (assuming the default ISC) at primary
address 2 and secondary address 6, use this ASSIGN statement:

ASSIGN @Dvm TO 70206

To do I/0O with an IEEE-488 device at primary address 3:

ASSIGN @Scope TO 703

To use analog output with a data acquisition board set to ISC 18 and 02 as the primary
address for analog output, use this ASSIGN:

ASSIGN @Dag TO 1802

To do I/0O with a device hooked to a serial port at ISC 9, you could use:

ASSIGN @Dvm TO 9

A device can have more than one I/O path name, each with different attributes,
associated with it.

An |/O path name can have more than one IEEE-488 device assigned to it. If multiple
devices are specified, they must be on the same interface. When OUTPUT is made to an
I/0O path assigned to multiple devices, all the devices receive the data. When ENTER is
made from multiple devices, the first device specified sends data to the computer and to
all the other devices assigned to the 1/0O path name. When CLEAR, LOCAL, PPOLL

CONFIGURE, PPOLL UNCONFIGURE, REMOTE, or TRIGGER are made on multiple
devices, all the devices receive the IEEE-488 message.

It is possible to do I/O with a device without using an I/O path. But, when an I/O
statement does not specify an I/O path variable, a temporary 1/O path is created
internally, used for the duration of the statement, and then discarded. This is usually
slower than to ASSIGN an I/O path once and use it throughout the program.

OUTPUT @Scope;A(*) ! Usually faster
OUTPUT 703;A(*) ! Usually slower

Files

Afile is opened when the ASSIGN statement specifies a file-specifier. The file's position
pointer is set to the beginning if the APPEND option is not specified and set to the end if it
is. The file position is updated to point to the next byte to be written or read after each
ENTER or OUTPUT statement. The ASSIGN statement will not CREATE a file if it does
not exist. You should use the CREATE statement before ASSIGNing the file if the file
does not yet exist.

CREATE "STEPHANI.E",1
ASSIGN @File TO "STEPHANI.E"

Pipes
Pipes are supported under UNIX, but not under DOS. A process is created with the
command specified in the pipe-specifier. If the pipe-specifier begins with the "|" pipe
character, then OUTPUT can be used to send information to the process. If the pipe-
specifier ends with the pipe character, then ENTER can be used to get information from

the process. For example:

ASSIGN @Users TO "finger |"

Buffers

Buffers are typically used as the source or destination of a TRANSFER. The statement
ASSIGN Q@TIopath TO BUFFER [300]

allocates an unnamed buffer and assigns it to an 1/O path name. Unnamed buffers can
only be accessed through their I/O path. The

ASSIGN @Another TO BUFFER X (*)

statement assigns an I/O path name to the variable X(*) which must be declared as a
buffer in a COM, DIM, INTEGER, or REAL statement. Numeric data stored in a named
buffer should not be accessed through the name of the array if the byte order of the
computer and the byte order of the data is different. In general, STATUS and CONTROL
are the preferred method for accessing the data.

The buffers specified in these ASSIGN statements may now be used in ENTER,
OUTPUT, or TRANSFER statements.

Attributes

The attributes of an 1/0 path allow you to change certain aspects of how data is
transferred. The attributes can be specified when the initial ASSIGN is made, or the
attributes of a previously ASSIGNed I/O path may be individually changed by omitting the
"TO target" portion of the statement:

ASSIGN @Julie; FORMAT OFF

Additional attributes of a particular device, such as the baud rate of a serial device, are
changed using STATUS, CONTROL, READIO, and WRITEIO statements. These
statements are explained later in this chapter.

FORMAT Options

One piece of information stored in the I/O path is whether to transfer information in ASCII
or binary (internal) format. ASCII transfers are called FORMAT-ON-format and binary
transfers are called FORMAT-OFF-format. If FORMAT is not explicitly specified in the
ASSIGN statement, a default format is used. For interfaces, buffers, devices, LIF ASCII
files, and pipes the default is FORMAT ON; for BDAT and ordinary files, the default is
FORMAT OFF.

This example explicitly specifies FORMAT ON:

10 ASSIGN @Filel TO "TEMP.TXT";FORMAT ON

When FORMAT ON is specified in the ASSIGN statement, data items are output in a
readable ASCII format. Numeric items are output in the standard ASCII numeric format
and the ASCII characters in a string are output. If the default output formats are not
acceptable, the USING and IMAGE statements can be used to format the data as
needed.

When FORMAT ON is specified, data items are entered with the data expected to be in
readable ASCII format. Reading data with FORMAT ON works with most devices. For
other devices, most formats can be handled using IMAGE and USING statements.
Numeric data must be scanned to find legal combinations of characters that make up a
numeric value. String data must be scanned for end-of-string terminators.

When FORMAT OFF is specified in the ASSIGN statement, data is transferred in internal
format. LSB/MSB FIRST can be used in the ASSIGN statement to specify the order in
which the data bytes are sent or received. If LSB/MSB FIRST is not specified, data sent
to devices is sent MSB FIRST for compatibility with HP devices; data sent to files, pipes,
and operating system devices is stored in the form must natural to the computer's
processor. Of course, LSB/MSB FIRST can always be used to override these defaults.

20 ASSIGN @Devl TO 9;FORMAT LSB FIRST

The internal format for INTEGER numbers is a two byte, two's complement, binary
integer. The internal format for REAL numbers is an eight byte, IEEE compatible floating
point number (see IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std.
754-1985). The internal format for COMPLEX numbers is two real numbers. The first
eight bytes contain the real part of the number and the last eight bytes contain the
imaginary part.

The format for strings depends on the source or destination of the I/O statement. For
ordinary files and pipes, the internal format for strings is a null-terminated string.

The string format for devices and BDAT files consists of a four-byte-integer string length
followed by the string contents. An even number of bytes is always transferred, therefore,
if the string is odd in length an extra pad byte is transferred. The LSB/MSB FIRST option
can be used to determine the byte ordering of the four byte string length.

For LIF ASCII files FORMAT OFF has no effect. Data is always transferred as ASCII
strings proceeded by a two byte integer length and padded by a trailing space if
necessary to make the string length even. The string length is always transferred with
MSB FIRST.

BYTE and WORD

When BYTE is included in the ASSIGN statement, the data is sent and received as bytes,
even if the interface is capable of 16-bit transfers. The upper 8 bits are zeros. (Note: The
"W" IMAGE specifier will send a word on a 16-bit interface, even if BYTE is specified in
the 1/0O path.) The WORD attribute can only be included in the ASSIGN statement if the
interface is capable of 16-bit transfers. The data is then transferred a word at a time. The
WORD attribute is primarily intended for transfer of FORMAT OFF data and can have
unexpected side effects with FORMAT ON.

When neither BYTE nor WORD is included in the ASSIGN statement, the default is
BYTE. Syntax examples including the BYTE and WORD attributes are:

30 ASSIGN @Gpio TO 15;FORMAT OFF,WORD
40 ASSIGN @Meter TO 711,712;BYTE

EOL

The default End-Of-Line for OUTPUT is a carriage return (CR) followed by a line feed
(LF) sent with no END indication and followed by no DELAY. Specifying END causes an
interface specific END indication to be sent with the EOL. On the IEEE-488, END causes
EOI to be sent with the final character of the EOL. Specifying DELAY causes the
computer to pause for the specified number of seconds after sending the EOL and before
allowing the program to continue. The exact delay time depends on the timing resolution
available on the computer you are using. On the PC, the timing resolution is about 55
milliseconds. The default EOL (CR/LF) can be restored by specifying EOL OFF.

Examples:

50 ASSIGN @Slow printer TO 10;EOL CHRS$ (10) DELAY .1
60 ASSIGN @Jet TO 701;EOL CHRS (13) &CHRS (10) END
70 ASSIGN @Ep TO PRT; EOL OFF ! Restore default

APPEND

If APPEND is specified, the file position is moved to the end-of-file after the ASSIGN. If it
is not specified, the file position is moved to the beginning of the file. APPEND is
supported on BDAT and ordinary files, but not LIF ASCII files.

RETURN

RETURN can be used with ASSIGN to test whether the ASSIGN operation was
successful. If not successful, the error number is returned in the variable specified,
otherwise a zero is returned. The following example shows one possible use for this
feature: ASSIGNing a file, but creating the file only if it does not exist:

10
20
30
40
50
60
70
80
90
100
110
120
130
140

INTEGER Result
F$S="KRISTI.TXT"
REPEAT
ASSIGN @I TO FS$S;RETURN Error
IF Error THEN
IF Error=56 THEN
PRINT "File not found: creating ";F$
CREATE F$,10
ELSE
CAUSE ERROR Error ! Let the error occur
END IF
END IF
UNTIL NOT Error
END

Closing an 1/O Path

Closing an I/0O path makes the path invalid. All subsequent ON event statements for the
closed /O path are not acted upon. If an I/O path name has not been declared in a COM
statement it may be closed in the following ways:

1. Explicitly close a path by executing

ASSIGN @Io-path TO *

2. Re-assigning the 1/0O path

ASSIGN Q@Io-path TO target

3. Exiting the subprogram with SUBEND, SUBEXIT, ON...RECOVER, or RETURN value

4. Stopping the program with END, GET, LOAD, SCRATCH, SCRATCH A, SCRATCH C,
or STOP.

If an 1/O path name has been declared in a COM statement it may be closed in the
following ways:

1. Explicitly close a path by executing
ASSIGN @Io-path TO *

2. Re-assigning the 1/O path with
ASSIGN @Io-path TO target

3. Executing SCRATCH A, SCRATCH C, SUBEND, SUBEXIT, ON...RECOVER, or
RETURN value.

4. Executing EDIT, GET, or LOAD in a program that has a COM statement that does not
match the COM statement that contains the I/O path name.

OUTPUT Statement

OUTPUT can be used to send numeric data, array elements, character strings, sub-
strings, or full arrays. Full arrays are specified with the full array specifier, "(*)", and are
output in row major order. Row major order means the right-most subscript is
incremented before the subscript to the left of it. If the default output formats are not
acceptable, USING/IMAGE can be used to format the data as needed. If the data is sent
with FORMAT OFF, then just the internal representations are sent, with no item
separators. If the data is output with FORMAT ON, then data is sent in ASCII, printable
characters. Numeric and string items are sent as described below.

Numeric ltems

Numeric items are converted to standard numeric format: The number is rounded to
twelve significant digits. If the absolute value is outside the range 1E-4 to 1E+6, then the
number is output in scientific notation. If the number is negative, a leading minus sign is
sent; if the number is positive, a leading space is sent instead. Trailing zeros or decimal
point are not output. If a comma follows the output item, then a comma is sent as an item
separator. If a semicolon follows the output item, then no item separator is sent. If a full
array is sent, a comma will be sent to separate each element unless a semicolon follows
the output item (the array).

Complex items are output in rectangular form, real part first, then a comma, and finally,
the imaginary part. Real and imaginary parts are formatted in standard numeric format as
explained in the previous paragraph. If a semicolon follows the complex item then the
comma separating the real and imaginary parts is suppressed.

String Items

String items are sent by sending each character in the string. If a comma follows the
output item, then CR/LF are sent as an item separator. If a semicolon follows the output
item, then no item separator is sent. If a full array is sent, an item separator will be sent to
separate each element unless a semicolon follows the output item (the array).

Note: CR/LF is the string item separator and is not affected by the EOL sequence
definition in the ASSIGN statement.

End of Line

After all of the OUTPUT items have been sent and if the statement did not end with a
semicolon or comma, then an End-of-Line (EOL) Sequence is sent. The default EOL is
CRI/LF, but may be redefined in the ASSIGN statement.

The following examples illustrate most of these rules. For the examples, assume that the
following lines have first been executed:

10 REM OUTPUTEX.BAS

20 DIM R(1),AS(1)[1]

30 R(0)=-1

40 R(1)=+1

50 MAT AS=("A")

60 ASSIGN QI TO some device

In the Characters Output, the EOL (which defaults to CR/LF), is shown as <eol>, the
string item separator (which is CR/LF), is shown as <crlf>. Spaces are shown as

underlines, " ", to make them stand out.

Program lines Characters output
70 OUTPUT @I;1.E+5,1.E+7 100000, 1.E+7<eol>
80 OUTPUT @I;1;-1 _1-1<eol>

90 OUTPUT @I;R(*), -1, 1,

100 OUTPUT @I:CMPLX(1,1.23456789012345E+7)
1, 1.23456789012E+7<eol>

110 OUTPUT @I;CMPLX(1,1); 11
120 OUTPUT @I;"B";"C","D" BC<crlf>D<eol>
130 OUTPUT @L:A$(*); AA

Inline 70, 1.E+7 is listed in scientific notation because it is outside the range 1E-4 to
1E+6. The numbers are both positive so a leading blank is output before each. The
default EOL is output at the end. In line 80, the -1 has no leading space; the space is
replaced with a negative sign. And the semicolon between the two numbers suppresses
the comma that would normally be output between the two.

In line 90, an array is output. Notice the full array specifier. The comma following the
array causes an item separator to be output between each element. The numeric item
separator is a comma. Line 120 shows an example of a string item separator, CR/LF.
Line 90 also shows that a trailing comma will suppress the EOL.

Line 100 shows that the real and imaginary parts of a complex number are separated by
a comma. This line also shows the default rounding of numbers to 12 significant digits.
Remember that if the default output formats are not suitable for your application, you may
use OUTPUT USING to define your own. Line 110 shows that a semicolon will suppress
the comma between the real and imaginary parts. It also shows that a trailing semicolon
will suppress the EOL.

Line 120 demonstrates the effect on string output of commas and semicolons. The
semicolon suppresses the item separator that would normally follow the "B". The comma
causes the normal string item separator, CR/LF, to be output after the "C". And if no
semicolon or comma is at the end of the statement, an EOL is output after the final string.

END

An optional END may be used after the last data item. If USING is not specified, then
END: 1) suppresses the EOL sequence from being output after the last item, 2) sends an
EOI signal with the last character of the last item sent to an IEEE-488 device, and 3)
truncates a file. A comma before the END will output an item terminator (a comma for
numeric items or a CR/LF for string items). For example:

OUTPUT @I;"Time: ";TIMES (TIMEDATE) END

ENTER Statement

The ENTER statement can be used to enter numeric data, array elements, character
strings, sub-strings, or full arrays. Full arrays are specified with the full array specifier,
"(*)", and are entered in row major order. If the default ENTER formats are not
acceptable, USING/IMAGE can be used to format the data to the specifications of the 1/0
device. If the ENTER is done with FORMAT OFF, then data is expected in the internal
representations given above, with no item or statement terminators. If FORMAT is ON,
then data is expected in ASCII printable characters as explained below.

Numeric ltems

The number builder is used with numeric items to change ASCII data to numeric data for
assignment to a numeric variable. Leading non-numeric characters are ignored. Blanks
are ignored where ever they occur. The number is expected to be in the form:

[sign] mantissa [E exponent] item-terminator
where:

sign=+|-
mantissa = [digits] [.] [digits]
exponent = [sign] digits

The mantissa must have at least one numeric digit, whether it be before or after a
decimal point. Because REAL numbers have only fifteen digits of precision, any mantissa
digits after the 15th digit are considered to be "0". The "E" before the exponent can be
either upper or lower case. The item-terminator is any non-numeric character. The item-
terminator can either be an EOI on the last character of the number, or any non-numeric
character. The entire ENTER statement must also be properly terminated.

10 DIM AS$[30]
20 AS$="hello + 1 2 3 goodbye"&CHRS (13) &CHRS (10)
30 ENTER AS$;X,BS

This example will assign 123 to X and "oodbye" to B$. The "g" was used to terminate X
and thus is not present in B$.

A complex item is entered in rectangular form, real part first, followed by the imaginary
part. The rules for each part are the same as the rules for numeric items given above.

String Items

String items are terminated with either a LF, a CR/LF, an EOI signal, or upon filling the
dimensioned length of the string. The LF or CR/LF terminators are not entered into the
string.

Statement Termination

For both string and numeric items, if the last item was not terminated with a LF, CR/LF, or
an EOI signal, then additional characters are read (but thrown away) until one of these
terminators is received. If no terminator is found within 255 characters, an error is
reported.

10 DIM AS$[30],BS$[2]
20 AS="hello + 1 2 3 goodbye"&CHRS (13) &CHRS (10)
30 ENTER AS$;BS

In this example, because B$ has a dimensioned length of two characters, it is assigned
the value "he". The remaining characters are thrown away, and the CR/LF terminate the
ENTER.

Note: LF or CR/LF are always used for the termination of ENTER, regardless of the
setting of EOL in the ASSIGN statement.

Formatted 1/0

OUTPUT, ENTER, PRINT, DISP, and LABEL allow you to control the format of both
output and input data. The format is specified as an IMAGE. The IMAGE string can
immediately follow the USING keyword as a string (literal or variable) or a line number or
label can follow the USING keyword to reference an IMAGE statement that contains the
format data. For example:

10 OUTPUT CRT USING "ZZZ.DDD";1.2
20 IMAGE ZZZ.DDD
30 OUTPUT CRT USING 20;1.2

An IMAGE string consists of a list of one or more image items. The items specified in the
image list are acted upon as they are encountered. Each image list item should have a
matching output (or enter) item. Processing of the image list stops when no matching
output item is found. However, when the last item in the image list is used, the image list
is reused starting at the beginning to provide matches for all remaining output items.
FORMAT ON is used in connection with USING, even if FORMAT OFF has been
specified.

If more decimal places to the left of the decimal point are required to output a numeric
item than are specified in the image specifier, an error is generated. If M or S is not
specified, then a minus sign will take up one digit place. If the number contains more
decimal places to the right of the decimal point than are specified in the image field, the
output is rounded to fit.

If the number of characters specified in an image specifier for a string is less than the
number of characters in a string, then the remaining characters are ignored. If the
number of characters specified is greater than the number of characters in a string then
trailing blanks are used to fill out the image field.

IMAGE Interpretation

Each character in the IMAGE string has a special meaning. For example, the letter A
means "an alphanumeric character must be printed here", the letter D means "a decimal
numeric value must be printed here", and the letter X means "a space character must be
printed here." The order in which data items are specified in the USING statement must
match the IMAGE string. For Example:

100 PRINT USING 110;"Base Price:", 6995
110 IMAGE 11A,X,4D

In this example, the print format is specified in the IMAGE statement in line 110. The
IMAGE string 11A,X,4D defines two "print fields" or "print zones" separated by one extra
space (X). The first print field (11A) specifies that the first data item in the PRINT USING
statement must be a character string of not more than eleven characters in length. The
second print field (4D) means that the second data item must be a numeric value of not
more than four digits to the left of the decimal point. The fractional part of the number, if
any, is rounded off in this case. Here is the resulting output:

Base Price: 6995

When line 100 is executed, the alphanumeric string "Base Price:" and the numeric
constant "6995" are sent to the specified output device. The default print format normally
used for FORMAT ON output is suppressed.

Notice that each print field specified in the format string has an accompanying data item
specified in the PRINT USING statement. The data items are also of the correct type, a
character string for the A field and a numeric value for the D field. If the data items were
reversed in line 100, a data mismatch would occur, and program execution would halt
with an error. If too many data items were specified in line 100 (three data items, for
example instead of two), then the IMAGE string would have been reused and the third
data item would need to be a string or an error would occur, and program execution
would again halt. So, it is important that the type of data items specified in a PRINT
USING statement, and the order in which they are specified, match the specifications of
the format string.

Complex values and variables are treated as if they were two real variables. Therefore,
no special item specifiers are needed for complex numbers.

Syntax

Some item specifiers can be preceded by a numeric integer constant from 1 to 32767
that specifies the size of the field or the number of repetitions. The exact syntax of the
image specifier is:

image-specifier =
#1%|K[-K|H[-H|B[W]Y][+]-]
[repeat-factor] A... |

[repeat-factor] X... |

[repeat-factor] /... |

[repeat-factor] L... |

[repeat-factor] @... |

numeric-specifier |

"string-literal”

numeric-specifier =

[S|M] [left-digits] [.|R] [right-digits] [exp]
left-digits = [repeat-factor] {D|Z|*}...
right-digits = [repeat-factor] D...

exp =E | ESZ|ESZZ | ESZZZ
repeat-factor = integer-constant (1 to 32767)

OUTPUT, etc.

.(period)
R

E

ESZ

ESZZ

IMAGE specifiers have the following meanings in DISP, LABEL, OUTPUT, and PRINT
statements:

Suppress automatic output of EOL following the last item.

Is ignored in OUTPUT images.

Output a number or string in default format, with a period for the radix.
Means the same thing as K.

Output a number or string, default format, comma radix.

Means the same thing as H.

Output a byte, like the CHRS$ function. If the value is larger than 32767, 255
is sent. If the value is smaller than -32768, 0 is sent. If the value is in between, it is
rounded to an integer and the least significant byte (CINT(value) MOD 256) is sent.

Output a word in 2's complement 16-bit integer form. If the value is larger

than 32767, 32767 is sent. If the value is smaller than -32768, -32768 is sent. If the
interface is 16-bit, the word is output in one operation (even if the BYTE attribute was
used in the I/O path). If the interface is 8-bit, the byte ordering depends on the LSB/MSB
attribute of the 1/0 path. If the destination is a string, native byte ordering is always used
(LSB FIRST on a PC, MSB FIRST on a Sun or HP Workstation). If the WORD attribute
was specified in the I/O path, a pad byte will be output before the word when necessary
to achieve word alignment.

Means the same as W, except that word alignment is not done, and the
BYTE attribute is not ignored.

Change the automatic output of EOL to carriage-return after the last item.
Change the automatic output of EOL to line-feed after the last item.
Output a minus sign if negative, a blank if positive.

Output the sign of the number (+ or -).

Output one numeric digit character. The leading zero's are replaced
by blanks, a minus sign is displayed on negative numbers.

Means the same thing as D except leading zeros are displayed.

Means the same thing as D except leading zeros are replaced with
asterisks.

Output a decimal-point radix indicator.

Output a comma radix indicator.

Output an 'E', a sign character, and a two-digit exponent.
Output an 'E', a sign character, and a one-digit exponent.

Output an 'E', a sign character, and a two-digit exponent.

ESZz77 Output an 'E', a sign character, and a three-digit exponent.

A Output an alphanumeric string character.

X Output a blank.

/ Output a carriage-return and line-feed.

L Output the current EOL sequence. The default is CR/LF.
@ Output a form-feed character.

"string-literal” Output the characters in the string literal. Remember to double the quote marks when the
IMAGE is inside a string literal.

ENTER

%

.(period)
R

IMAGE specifiers have the following meanings in an ENTER statement:

Causes the statement to terminate when the last item is terminated. No
statement terminator is needed, EOI and LF are item terminators, and early termination is
not allowed.

Is the same as # except EOI causes early statement termination when it
terminates an item.

Allows free-field entry. For numerics, entered characters are sent to the

number builder, leading non-numeric characters and blanks are ignored, trailing non-
numeric characters and characters sent with EOI true are delimiters. For strings, entered
characters are sent to the string. A CR may be sent to the string if it is not followed by a
LF. The string is terminated by CR/LF, LF, character received with EOI true, or the string
dimensioned length being filled.

Is like K except LF and CR/LF are not terminators.

Is the same as K except a comma is the radix indicator and a period is a
non-numeric character.

Means the same as -K for strings, and H for numbers.
Demands one Byte, like the NUM function.

Demands a 16-bit Word (2's complement integer). If the interface is 16-bit,

the word is entered in one operation (even if the BYTE attribute was used in the I/O
path). If the interface is 8-bit, the byte ordering depends on the LSB/MSB of the 1/O path.
If the source is a string, native byte ordering is always used (LSB FIRST on a PC, MSB
FIRST on a Sun or HP Workstation). If the WORD attribute was specified in the 1/O path,
a pad byte will be entered before the word when necessary to achieve word alignment.

Is the same as W, except that word alignment is not done, and the BYTE
attribute is not ignored.

Indicates an END (EOI) is needed with the last character of the last item to
terminate the ENTER statement. LFs are no longer statement terminators, but are still
item terminators.

Indicates a LF is needed to terminate the ENTER statement. EOI is ignored;
other END indicators cause an error.

Same meaning as D.
Same meaning as D.

Demands one character for each D, or repeat count. Non-numerics are
consumed while fulfilling the count but also delimit the number. Blanks embedded in the
number are ignored.

Same meaning as D.
Same meaning as D.
Same meaning as D.

Has the same meaning as D, plus the number builder is instructed to use a

ESZ
ESZZ

ESZZ7

L
@

"string-literal”

comma as the radix indicator and a period as a non-numeric character.
Is treated the same as 4D.

Same as 3D.

Same as 4D.

Same as 5D.

Demands one alphanumeric string character.

Enters a character and discards it.

Skips all characters to the next LF. EOI is ignored.

Ignored in ENTER.

Ignored in ENTER.

One character is skipped for each character in the string literal. Remember
to double the quote marks when the IMAGE is inside a string literal.

Creating Format Strings
The following examples illustrate how to combine characters into IMAGE strings. These
examples use PRINT, but DISP, LABEL, or OUTPUT could also have been used to direct
the output to various destinations.

The A character defines a field for alphanumeric character strings. The operator is
specified in the form nA where n is an integer from 1 through 32767. If n is not specified,
then 1 is used.

PRINT Examples

This example shows creation of an alphanumeric field:

110 AS = "John Doe"
120 IMAGE 15A,2X,24A
130 PRINT USING 120;"Student Name:",AS

In line 120 above, the IMAGE item defines an alphanumeric field with 15 alphanumeric
positions, 2 extra spaces, and then 24 more character positions. In line 130, the string
constant "Student Name:" is printed in the first field, and "John Doe" in the last field.

The following shows how the output is printed relative to the field description. The first
line shows the fields specified by the IMAGE string. The second line shows the PRINT
output.

AAAAAAAAAAAAAAAXXAAAAAAAAAAAAAAAAAAAAAAAA
Student Name: John Doe

Notice that the character strings are left justified in the fields. This means that the first
character in the string is printed in the left-most position in the field. The character string
"Student Name:" only fills 13 character positions, the remaining positions are filled with
space characters. John Doe fills 8 positions and the remaining 16 positions in that field
are filled with space characters. Character strings larger than the specified field will be
truncated.

The print position is set to a new line after each line is printed unless the IMAGE format
ends with "#" to suppress the EOL. You would want to do this if you needed to continue
output on the same line with another output statement.

Here is another PRINT USING example:

10 IMAGE "ERROR: ",2D,", ",K

11 Esc$=CHRS (27)

20 PRINT USING "A, ""[H"", A, ""[J"", #";Esc$,Esc$
25 PRINT USING 10;ERRN,"in line "&VALS (ERRLN)

30 PRINT USING 10;19,"Out of range!"

40 PRINT USING 10;Error code, "Oops!"

50 PRINT USING " ""The value of PI is"",X,1D.10D ";PI

ENTER Example

The following examples demonstrate how the ENTER USING rules are used to input
floating point and integer numbers.

10
20
30
40

DIM AS[22]

AS$="Dollars: $34.56 Total"
ENTER AS$ USING "K";X1
ENTER AS USING "14D";X2

In line 30, the number builder ignores non-numeric characters preceding the number and
stops at the first character that is not part of the number so that X1 equals 34.56. In line
40 the number builder stops after 14 characters ("Dollars: $34.5") are input so that X2
equals 34.5.

10 AS = "2XX+3Y"
20 ENTER A$ USING "D,5D";X,Y

In this example, the variable X is assigned the value 2, and Y is assigned 3.

END

An optional END may be used after the last data item. If USING is specified, then the
effect of the END is quite different than if USING is not specified. What the HP BASIC
manuals say should happen and what actually happens are different. No general rule
seems to explain what really happens. Whether this is an HP BASIC bug or not is hard to
say, but HTBasic faithfully emulates the HP behavior except in one exceptional case in
which the HP behavior will almost certainly cause an instrument to read an extraneous,
empty data item. This case is pointed out below. An END after the last item in an
OUTPUT USING statement will have the following effect:

1) If the last image specifier does not have an output item (X, /, @, L, and "literals"), then
EOL is suppressed, including alternate EOLs specified by + or -, and no EOI is sent.
Exception 1: If the IMAGE specifier is L and END is specified in the ASSIGN then EOI is
sent with the EOL whenever the EOL is sent.)

2) If the last image specifier does have an output item (K, H, D, Z, *, A, B, W, and Y) then
EOL is unaffected and EOI is sent with the last byte sent. Exception 2.1: If END is also
used in the ASSIGN statement then two EOIs are sent, one with the last output item and
one with the EOL. This is the exception that HTBasic does not emulate; the general rule 2
is followed. Exception 2.2: If the last output item is a string with a length of zero, and the
image specifier is K, and # has suppressed the EOL, then no EOI is sent. As an example,
this statement will output one character, "A", with no EOI:

QUTPUT 717 USING "K,K,#";"A","" END

3) If the last image specifier changes the default EOL (#, +, and -), then use the next to
last specifier to determine whether to use rule 1 or 2, above.

TRANSFER

The TRANSFER statement sets up unformatted data transfers between memory and a
device. The data transfer normally occurs in the "background.” That is, the BASIC
program continues to run in the "foreground" simultaneously with the background
transfer. Optionally, the TRANSFER statement can wait until the transfer is complete
before continuing. The syntax is

TRANSFER @source-io-path TO @dest-io-path
[; [term-list] [,] [EOR(term-list)] [,] [type]]

Use the ASSIGN statement to initialize the source and destination 1/O paths. The optional
commas are only needed when items occur on both sides of the comma.

Examples

TRANSFER @Device TO @Buffer

TRANSFER @Buff TO Q@Logger;CONT

TRANSFER @Rs232 TO @Buff;DELIM CHRS (13)
TRANSFER @Path TO @Buff;RECORDS 16, EOR (END)

Support

TRANSFER is not supported on all interfaces. The interface hardware must have the
necessary circuitry and the device driver must have the proper software support.

Buffers

The transfer operation must be between a buffer and a device. A buffer must be declared
as the source for an outbound transfer, or as the destination of an inbound transfer. One
buffer can simultaneously be used for an outbound transfer and an inbound transfer. A
transfer directly between two devices is not supported.

Buffers may be unnamed or named. An unnamed buffer is created, assigned an 1/O path,
and given its size by the ASSIGN statement. A named buffer is a previously declared
REAL, INTEGER, or COMPLEX array, or a string scalar (declared in a COM, DIM,
INTEGER, REAL, or COMPLEX statement) that has been ASSIGNed to an I/O path.
Unnamed buffers are usually preferred because the size can be as large as available
memory and no side-affects are possible by accessing the buffer through its variable
name.

Buffers are circular; each buffer has a fill and empty pointer as well as a count. The fill
pointer is used by an inbound transfer to identify the next location for data to be stored
(inserted). The empty pointer is used by an outbound transfer and points to the next
location for data to be output (removed). A value of one for either pointer means the first
byte of the buffer. When the fill and empty pointers have the same value, the count can
be examined to determine whether the buffer is empty or full.

The 1/0O path assigned to the buffer is called the buffer-1/O path. The I/O path assigned to
the device is called the non-buffer-1/0 path. The buffer should be accessed only with the
buffer-1/0 path. The count, fill, and empty pointers can be examined using STATUS on
the buffer-1/0 path. OUTPUT @buf or an inbound transfer are used to place data into a
buffer. ENTER @buf or an outbound transfer are used to read and remove data from a
buffer. The variable name of a named buffer should generally not be used to access the
data in the buffer since the data in the buffer is unformatted and may even have the
wrong byte order.

Transfer Type

The type of the transfer can be specified as CONT, WAIT, or left unspecified.

If WAIT is specified, the transfer executes in foreground mode. Program execution does
not proceed beyond the TRANSFER statement until the transfer terminates. If an error
occurs, it is reported with the line number of the TRANSFER statement. If WAIT is not
specified, execution continues past the TRANSFER statement and the transfer takes
place in the background. Then if an error occurs, the error is not reported until the non-
buffer-1/O path is referenced. The error line reported is not that of the TRANSFER, but of
the statement where the non-buffer-1/0O path was referenced.

If CONT is specified, TRANSFER executes continuously. For an inbound transfer,
execution pauses when the buffer is full and continues when space is available in the
buffer. For an outbound transfer, execution pauses when the buffer is empty and
continues when the buffer has data available. If CONT is not specified, the end-of-
transfer occurs when an outbound transfer empties the buffer or an in-bound transfer fills
the buffer. Or if a termination method has been specified as explained below, the transfer
terminates when the condition occurs.

Both WAIT and CONT can be specified together if a transfer is already active for the
buffer in the opposite direction. The transfer will be continuous, but will run in the
foreground.

If neither WAIT nor CONT is specified, the transfer occurs in the background. The end-of-
transfer occurs when an outbound transfer empties the buffer or an in-bound transfer fills
the buffer. Or if a termination method has been specified as explained below, the transfer
terminates when the condition occurs.

Transfer Method

A couple of methods are available for accomplishing the transfer: DMA (direct memory
access) and interrupts. DMA is the fastest method and will be used automatically, if
possible. A DMA channel must be available, the interface must have the necessary

hardware, and DELIM can not have been specified. If DMA can not be used, interrupts
are used.

Transfer Termination

A term-list can be used to specify a list of conditions that cause the transfer to end. One
or more of the following conditions can be used:

COUNT Bytes
DELIM Character
END

RECORDS Number

If COUNT is specified, the transfer terminates after the specified number of bytes has
been transferred.

If DELIM is specified for an inbound transfer, then the transfer is terminated after the
specified character is detected. DELIM is not allowed with outbound transfers. If the
delimiter string is zero length, delimiter checking is disabled. DELIM prevents DMA from
being used; interrupts will be used instead.

If END is specified for an inbound transfer, the transfer terminates when the device
dependent signal is received. On the IEEE-488 interface, END is the EOI signal. When
an inbound transfer is terminated in this way, bit 3 of register 10 is set. For an outbound
transfer, END does not specify a termination condition, but rather specifies that the
device dependent signal (EOI) is sent with the last byte sent.

If RECORDS is specified, the transfer terminates when the specified number of records
has been transferred. An EOR(term-list) must be specified, defining what will be
considered a record for the purpose of this particular transfer. For inbound transfers the
legal end-of-record termination conditions are COUNT, DELIM, and END, or some
combination of these three. For outbound transfers only COUNT can be used to define a
record, although END can be used to specify that the device dependent signal (EOI) is
sent with the last byte of each record.

ON EOR and ON EOT

The ON EOR and ON EOT statements can be used to generate an event when an end-
of-record or end-of-transfer occurs. The WAIT FOR EOR and WAIT FOR EOT statements
can be used to stop further statement execution until an end-of-record or end-of-transfer
occurs.

Termination

To terminate a CONT, continuous mode, outbound transfer without leaving data in the
buffer, use the following sequence of statements:

CONTROL @Buff,8;0
WAIT FOR EOT @Non_buff

Hanging and Premature Termination

HTBasic will not enter a stopped state until all transfers are completed. Likewise,
HTBasic will not exit a program context until transfers started in that context are finished.
The following statements also cause the computer to "hang" until all transfers complete:
GET, LOAD, RETURN, STOP, SUBEND, SUBEXIT, or modifying a program line.

The ABORTIO statement can be used to prematurely terminate a transfer and free the
computer. The RESET key will also terminate any active transfers, but ABORTIO is
preferred.

Outbound TRANSFER

An outbound transfer has the form:
TRANSFER @Buff TO @Non_buff

If another outbound TRANSFER statement is executed while an outbound TRANSFER is
occurring, HTBasic waits for completion of the first before starting the second. Any
EOT/EOR events caused by the first transfer will then be logged and may be serviced
before the next program line.

Inbound TRANSFER

An inbound transfer has the form:
TRANSFER @Non_buff TO @Buff

If another inbound TRANSFER statement is executed while an inbound TRANSFER is
occurring, HTBasic waits for completion of the first before starting the second. Any
EOT/EOR events caused by the first transfer will then be logged and may be serviced
before the next program line.

STATUS, CONTROL, READIO, and WRITEIO

I/0 paths and many device interfaces have registers that control aspects of their
operation and report their status. For example, screen colors can be controlled by writing
to the registers of the CRT interface. The baud rate can be changed by writing to the
registers of the serial interface. The status of an I/O path variable can be read from the
I/O path registers. These and many other attributes can be controlled and read through
interface registers.

In general, there are three different kinds of registers: 1/O path registers, interface
registers, and hardware registers. The following program shows access to all three types:

10 ASSIGN @Path TO 9

20 PRINT "I/O Path Register 0:",STATUS (QPath,0)
30 PRINT "Interface Register 0:",STATUS(9,0)

40 PRINT "Hardware Register 0:",READIO(9,0)

The CONTROL and STATUS statements are used to access two of the three kinds of
registers: I/O path registers and interface registers. If the statement specifies an I/O path,
I/O path registers are accessed. If the statement specifies an interface select code,
interface registers are accessed.

The range of legal register numbers and their definitions differ depending on the I/O path
assignment or the type of interface. I/O path registers are given below. The registers for
each interface are given in the chapters that follow this one, or the documentation that
came with the interface.

CONTROL Statement

The CONTROL statement sends control information to an interface or an 1/0O path control
register. Information is sent by specifying a starting register number, and a value to be
sent to that register. If it is not specified, the starting register number is zero. If you
specify more than one data value, the register number is incremented by one after
sending each value. For example:

CONTROL 2;Column, Line

sends the value of the variable Column to register zero on interface number two and the
value of the variable Line to register one.

STATUS Statement and Function

The STATUS statement and STATUS() function return control information from an
interface or an 1/0 Path status register. Using the STATUS statement, the values of
several status registers are copied into a list of numeric variables, starting at the specified
register number and continuing until the variable list is exhausted. If it is not specified, the
starting register number is zero. For example:

STATUS 2;Column, Line

gets the value of status register zero on interface number two and stores it into the
variable Column and then it gets the value of status register one and stores it into the
variable Line.

The STATUS() function complements the STATUS statement. It allows immediate access
to a single register without need for a temporary variable or separate STATUS statement.
However, the STATUS() function can only return the value of one register at a time, while
the STATUS statement can return the values of multiple registers in a single statement.

The CONTROL and STATUS registers for /O paths assigned to devices, files, pipes, and
buffers are described in the following paragraphs.

Device 1/O Path Registers

No CONTROL registers exist for I/O paths assigned to devices. The STATUS registers for
I/O paths assigned to devices are:

0 - ASSIGN status: 0 - not assigned, 1 - assigned to a device.

1 - The interface select code.

2 - Number of devices.

3 - Device selector of device 1.

4 - Device selector of device 2 (if two or more devices are present).
n+2 - Device selector of device n (if n or more devices are present).

ASCII File 1/0O Path Registers

No CONTROL registers exist for I/O paths assigned to ASCII files. The STATUS registers
for 1/0 paths assigned to ASCII files are:

0 - ASSIGN status: 0 - not assigned, 2 - assigned to a file.

1 - File type: 3 - ASCI! file.

2 - Always 4.

3 - Number of records. DOS, Windows, and NT files are extendible and
so the number of records can be more or less than the number given
in the CREATE statement for the file.

4 - Record size: 256 bytes.

5 - Current record.

6 - Current byte within record.

BDAT and Ordinary file 1/O Path Registers

For I/O paths assigned to BDAT and ordinary files, all registers can be read with the
STATUS command. Only registers greater than 4 can be set with the CONTROL
command. Ordinary files are listed by CAT with a blank file type or the hame of the
operating system ("DOS" or "HP-UX").

0 - ASSIGN status: 0 - not assigned, 2 - assigned to a file. A DOS device looks like a file

to HTBasic when assigned using its DOS name.

1 - File type: 2 - BDAT file, 4 - ordinary file.

2 - Always 4.

3 - Current number of records. With DOS, Windows, NT, and UNIX,
file lengths are extendible, so the number of records can be more or
less than the number given in the CREATE. If the last record is only
partially filled, it is still counted.

4 - Record size. For ordinary files, the record length is always 1.

5 - Current record.

6 - Current byte within record.

7 - EOF record.

8 - Byte within EOF record.

EOF record and byte define the position of the first byte after the last byte in the file.

BUFFER 1/O Path Registers

All registers can be read with the STATUS command. The following registers can be set
with the CONTROL command: 3, 4, 5, 8, and 9.

0 - ASSIGN status: 0 - not assigned, 3 - assigned to a buffer.

1 - Buffer named flag: 1 - named, 2 - unnamed.

2 - Buffer size in bytes.

3 - Current fill pointer.

4 - Current number of bytes in buffer.

5 - Current empty pointer.

6 - Interface select code for in-coming TRANSFER.

7 - Interface select code for out-going TRANSFER.

8 - Continuous in-coming TRANSFER flag: zero - not continuous,
non-zero - continuous.

9 - Continuous out-going TRANSFER flag: zero - not continuous,
non-zero - continuous.

10 - In-coming TRANSFER status.

Bit Value Meaning

7 128 Always 0

6 64 Active

5 32 Aborted

4 16 Error

3 8 Device caused termination

2 4 Byte count caused termination

1 2 Record count caused termination
0 1 Match char caused termination

11 - Out-going TRANSFER termination status. Same meaning as above.
12 - Count of bytes transferred by last in-coming TRANSFER.
13 - Count of bytes transferred by last out-going TRANSFER.

Pipe I/O Path Registers

No CONTROL registers exist for I/O paths assigned to pipes. The STATUS registers are:

0 - ASSIGN status: 0 - not assigned, 4 - assigned to a pipe.

1 - Always 1.
2 - Read/write flag: 0O=ENTER, 1=OUTPUT, 2=ENTER/OUTPUT.

100 - Child process ID.

Interface Hardware Registers

Accessing hardware registers can cause your system to crash, data to be lost, or
damage to your hardware. TransEra cannot be held responsible for any consequences. If
you need technical assistance from TransEra, it will be provided at the current consulting
rates.

The READIO and WRITEIO statements allow an HTBasic program to directly manipulate
the interface hardware and physical memory locations. The hardware register numbers
and their definitions are dependent on the actual hardware. The level of access to the
computer hardware is also dependent on operating system protection methods. Do not
mix READIO and WRITEIO operations with STATUS and CONTROL operations. In
general, you are better off using STATUS and CONTROL operations and avoiding
READIO and WRITEIO.

READIO Function

The READIO function returns the contents of a hardware register of an interface. The
value of the first argument specifies an interface select code and a valid interface register

number is specified as the second argument. That hardware interface register is read and
its contents are returned. For example:

PRINT "Register=";READIO(7,1)
prints the contents of interface register number one on interface number seven.

Extensions to READIO and WRITEIO allow PEEK and POKE operations. Other
extensions allow the address of a numeric variable to be read, and assembly language
subroutines to be called. All these extensions are explained later in this chapter.

WRITEIO Statement

The WRITEIO statement writes a data value to an interface hardware register. If a valid
interface select code and interface register number are specified, then the data value is
written to the hardware interface register. For Example:

WRITEIO 7, 3;Regdata

writes the value of the variable Regdata to register number three on interface number
seven. Again, extensions to READIO and WRITEIO are explained below.

PEEK/POKE Memory

The number 9826 is used to specify a peek or poke operation in a READIO or WRITEIO
statement. If positive, a byte operation is done; if negative, a word operation is done.
These combinations are shown in the table below. L specifies the address of the byte or
word. If you specify a word operation and L is odd, the even address L-1 is used. V
specifies the value to store into memory.

READIO(9826,L) PEEK byte
READIO(-9826,L) PEEK word
WRITEIO 9826,L;V POKE byte
WRITEIO -9826,L;V POKE word

Under the DOS Version, L specifies a linear process address, not a physical address. To
peek/poke the first megabyte of physical memory, use 8452 instead of 9826. Note the
warning below.

Under Windows and NT, L specifies an address within the HTBasic process.

Under UNIX, L specifies an address within the HTBasic process. The special interface
select code 8452 should be used instead of 9826 to peek physical addresses rather than
process addresses. Peeking physical memory is only possible if the /dev/imem device is
readable by the HTBasic process. Note the following warning.

WARNING: Use PEEK and POKE only on addresses returned by READIO(9827,1)! Using
other locations can cause your system to crash, data to be lost, or damage to your
computer hardware. Use of this function for any other address is unsupported, and
TransEra cannot be held responsible for any consequences.

IN/OUT Operations

At the lowest level, the CPU in your computer must be able to input or output data. Some
CPU's, like the Motorola 680x0 processors in an HP Workstation, use memory space for
all CPU 1/0O, even for devices. Other CPU's, like the Intel 80x86 processors in a PC, have
an 1/0 space in addition to memory space. PEEK/POKE access memory space; IN/OUT
access I/O space. The following four statements are available in HTBasic to access I/O

space.
INP(L) IN byte

INPW(L) IN word
OUTL\V OUT byte

OUTW L,V OuUT word

L specifies the address of the byte or word. V specifies the value to read or write. INJOUT
operations are most typically used to access a data acquisition board plugged into your
computer for which there is no HTBasic driver. Most boards come with example programs
showing how to access them with IN/OUT instructions.

WARNING: Because incorrect use of IN and OUT can cause your system to crash, data
to be lost, or damage to your computer hardware, use this function at your own risk.
TransEra cannot be held responsible for any consequences.

Locating a Numeric Variable

READIO(9827, variable-name) is used to locate a numeric variable or an element of an
array. This operation is useful in connection with assembly language subroutines
because it allows you to identify the starting address of the subroutine so that the
subroutine may be called with the WRITEIO statement.

10 INTEGER A (0:5)
20 Address = READIO(9827,A(0))
30 PRINT "The address of A(*) is ";Address

Calling Assembly Language Subroutines

WRITEIO Proc,L;V can be used to call an assembly language subroutine. L specifies the
address of the routine to call. The value V is loaded into the main accumulator. The value
of Proc depends on the version of HTBasic you are running. A detailed explanation of
calling assembly language subroutines is given in Chapter 14, "Mixed Language
Programming."

Interrupts

Interrupts allow the computer to perform other tasks while you wait for some condition to
occur. This eliminates the need to continually monitor for some event.

ON INTR Statement

The ON INTR statement defines an event branch to be taken when an interface card
generates an interrupt. You specify the interface select code, an optional priority and the
branch type. The branch type may be either a GOTO, GOSUB, CALL, or RECOVER. For
example:

ON INTR 7,4 GOSUB Repair

When an interrupt occurs a DISABLE INTR for the interface is automatically executed.
Consequently, an ENABLE INTR statement must be used to explicitly re-enable
interrupts.

The default priority is one. The highest priority that can be specified is fifteen. ON END,
ON ERROR, and ON TIMEOUT have a higher priority than ON INTR. When an INTR
initiated branch is taken with a GOTO the system priority is not changed. When an ON
INTR branch specifies a CALL or GOSUB the system priority is changed to the specified
priority.

RECOVER causes the program to SUBEXIT from contexts as needed to return to the
defining context and resume execution at the specified program line. ON INTR
statements that specify CALL or RECOVER will be serviced even if the program context
has been changed to another subprogram. ON INTR statements that specify GOTO or
GOSUB will be logged and then serviced when control returns to the defining program
context.

ON INTR is canceled by OFF INTR, disabled by DISABLE or DISABLE INTR.

OFF INTR Statement

The OFF INTR statement cancels event branches defined by ON INTR. Any INTR events
that have been logged but not yet serviced are canceled. An OFF INTR statement without
the optional interface select code disables event-initiated branches on all devices. If the
interface select code is specified only that interface interrupt will be disabled. For
example:

OFF INTR 7

cancels event branches for the IEEE-488 interface.

Enabling and Disabling Interrupts

The DISABLE statement disables all defined event branches except END, ERROR, and
TIMEOUT. While disabled, the first event of each type that occurs, is logged. When event
branching is re-enabled with the ENABLE statement, all logged events are serviced in the
order of their event priorities.

The DISABLE INTR Statement disables interrupts from just the specified interface. For
example:

DISABLE INTR 7
disables interrupts from the IEEE-488 interface.

The ENABLE INTR statement enables interrupts from a specified interface. An optional
bit mask is stored in the interface interrupt-enable register. The default bit mask is the
previous bit mask for that interface, or if there is no previous bit mask then a bit mask of
all zeros is used. The meaning of the bit mask depends on the interface; consult the
interface documentation. For example:

ENABLE INTR 9;1

enables interrupts on the RS-232 interface and stores one into the interface interrupt-
enable register. For the serial interface, one happens to mean "interrupt when a character
is received.”

Interrupt Routines

When an interrupt occurs, the event handler would typically perform the following steps:
1) find out what action needs to be taken, 2) perform the needed action, 3) perform
whatever interface specific action is necessary to acknowledge the interrupt, 4) re-enable
interrupts with the ENABLE INTR command. The following example shows the typical
sequence of statements used for interrupt set up and handling:

1 REM TERMINAL.BAS

10 ON KBD CALL To_ modem

20 ON INTR 9 CALL From modem !Tell BASIC to interrupt
30 ENABLE INTR 9;1 !Tell interface to interrupt
40 LOOP

50 DISP TIMES (TIMEDATE) INow free to do something
60 END LOOP 'while you wait

70 END

80 SUB From modem

90 WHILE BINAND (STATUS(9,10),1)

100 PRINT CHRS (STATUS (9,6)) ; !Interface dependent ack.
110 END WHILE

120 ENABLE INTR 9;1 !re-enable the interrupt

130 SUBEND

140 SUB To_modem
150 OUTPUT 9;KBDS;
160 SUBEND

Specialized I/O Statements
In addition to the general I/O statements explained above, several statements are
provided for specialized I/O. PRINT, DISP, INPUT, and LINPUT allow specialized 1/0 with
the CRT or keyboard. They are explained in Chapter 8, "CRT and Keyboard." The PRINT
statement can also be redirected to a printer. READ and DATA allow data to be stored
within the BASIC program itself. BEEP allows tone generation on computers with the

necessary hardware.

READ/DATA Statements

The READ statement is quite similar to the INPUT statement. However, the values are
read from DATA statements instead of the keyboard. DATA statements contain string
and/or numeric constants separated by commas. This provides a convenient method of
embedding known data that your program requires, right in the program itself. The first
READ statement in a context reads the first DATA statement in that context. Each READ
statement thereafter maintains a DATA pointer that moves to the next item after each is
read from the DATA statement. The DATA pointer can be reset to the beginning of any
DATA statement in the context with the RESTORE statement.

READ statements can be useful for initializing the values of several program variables
more compactly than with individual [LET] assignment statements. It is also handy for
table data that you can READ into an array.

The following example shows the use of the DATA, READ and RESTORE statements.

100 DATA 1,2,"STRING CONSTANT", 10

110 READ A,B,AS$,C ! read data from line 100

120 DATA 13,24,36,42,59

130 DIM D(4),E(4)

140 READ D(%*) ! read array data from line 120
150 MAT D=D* (B)

160 RESTORE 120

170 READ E(%*) ! read data from line 120 again
180 END

Note that line 160 specifies line 120 as the data statement to be restored since there is a
previous data statement in line 100. If line 120 were the first data statement in the
program, line 160 could be simply RESTORE with no line number.

BEEP Statement

BEEP is a statement used to play music or tones by producing notes of a certain
frequency and duration. On machines that do not support variable frequency sound
generation, this statement rings the terminal bell. HP BASIC rounds the frequency value
to a multiple of 81.38 Hz and supports a range of 81 Hz to 5.208 KHz. The rounding and
range for each version of HTBasic is given later in this section.

10 REM -- MUSIC.BAS - Print table of musical notes.

20 REM -- Also play C-major scale.

30 A4=440 ! Frequency of the
reference note

40 R=2"(1/12) ! One octave doubles the
frequency,

12 half-steps in octave
50 C4=A4/ (R"9) ! Scale goes from C to B
60 DATA C,C#,D,D#,E,F,F#,G,G#,A,A#,B
70 DIM Name$ (11) [2]
80 READ Name$ (*)

90 N=C4/8 ! start at Cl
100 CLS ! clear the screen
110 FOR Octave=1l TO 7
120 Col=1+ (Octave-1)*11
130 PRINT TABXY (Col,1);"Note Freqgl";
140 PRINT TABXY (Col,2);"-—-———==———= +";
150 FOR Note=0 TO 11
160 OUTPUT AS$ USING "3A,X,4D.D, #";
Name$ (Note) &VALS (Octave) , N
170 PRINT TABXY (Col,Note+3) ;AS;"|"
180 IF Octave>1 AND LEN (Name$ (Note))=1 THEN BEEP N, .25
190 N=N*R
200 NEXT Note
210 PRINT TABXY (Col,15);"-————-—-—-——— +;

220 NEXT Octave
230 BEEP N, .5 ! complete the last scale
240 END

This example demonstrates the BEEP statement, while also producing a useful table.
The program plays C Major scales for octaves two through seven. At the same time, it
prints a table of musical notes and their associated frequencies. The frequencies printed
are for the Equal Tempered Chromatic Scale adopted by the American Standards
Association in 1936. The "A" note in the fourth octave (A4) is the reference note and has
a value of 440 Hertz. An increase of one octave, to A5 doubles the frequency, while
moving down one octave halves the frequency. Twelve half-steps compose an octave
and are equally spaced geometrically (rather than arithmetically). That is, the ratio of
frequencies between any two adjacent notes is a constant.

Another standard that exists uses A4=435. This was an International standard adopted in
1891. The program is easily modified to show this scale. Change the value 440 in line 30
to 435. Other modifications could change the base of the scale from "C" to something
else, or change the number of notes in a scale.

PC Usage Notes

On the IBM PC, the period (not the frequency) is rounded to a multiple of 0.838 micro-
seconds. The range of frequencies is 40.7 Hz to 32.767 KHz.

UNIX Usage Notes

The -beep command line switch determines whether the BEEPstatement uses the
console to produce the tone, or whether it uses the CRT driver to produce the tone (in
some driver-specific manner). By default, the console is used to produce the tone. This is
not always the appropriate behavior, as would be the case when running remotely.

On the Sun Version, the console uses the /dev/audio device to produce the tone. The
period is rounded to a multiple of 125 micro-seconds. Consequently, the number of
frequencies is very limited. For example, above 1000 Hz the only frequencies available
are 1143, 1333, 1600, 2000, 2667, and 4000.

If the X Windows CRT driver is producing the tone, then the results vary according to the
X Server. OpenWindows 2.0 always produces a tone of 2400 Hz, although the duration of
the BEEP statement matches the duration specified. HP-VUE produces the requested
frequency, but allows the program to continue immediately while the tone is sounding.

Chapter 8
CRT, Keyboard, and Printer

This chapter discusses I/O (input/output) facilities for the screen and keyboard. The
general I/O statements presented in Chapter 7 are given, as well as special statements
for display, keyboard, and printer support. Controlling various attributes of the screen and
keyboard, including screen colors, is explained. Finally, tables of the CRT and KBD
registers are given.

Display (CRT)
The CRT is the display on your computer. CRT stands for Cathode Ray Tube and is often
used as a synonym for display, even when the display is not a tube. Several display
adapters are supported by HTBasic. Each type requires a device driver. When HTBasic
starts, it automatically picks a CRT driver. The -CRT command line switch can be used to
select a different driver. The PLOTTER IS statement can be used to load additional
drivers or change to a driver that is already loaded. The Installing and Using manual,
Chapter 3, "CRT and Graphic Drivers" explains how to use these features.

The interface select code (ISC) of the CRT is permanently set to 1. This ISC is used so
often, a special function, CRT, can be used to return the value 1, while providing a
mnemonic for the ISC.

OUTPUT CRT;"Hello World"
ASSIGN @Output TO CRT

Display Organization
As explained in Chapter 1, "Getting Started," the computer display is organized in a very
particular way by HTBasic. Different statements affect different parts of the display. To
display information in the output area, use the OUTPUT or PRINT statements. To display
information on the Display Line, use the DISP statement. The Input Lines show the
information the user types in response to queries by your programs. Information can be
pre-loaded into the Input Lines by using OUTPUT KBD. The message line shows various
system messages as well as live keyboard calculator results. The softkey menus display
the current softkey macros unless an ON KEY is active, in which case the ON KEY
LABEL overwrites the softkey macro for that key. Each of these areas of the screen are
discussed in more detail through out this chapter.

OUTPUT CRT

The OUTPUT CRT statement sends information to the output area of the screen.
OUTPUT CRT uses rules consistent with OUTPUT to other devices and is useful for
verifying 1/0O program correctness. However, the PRINT statement is often better suited
for screen output.

PRINT

The PRINT statement is provided to allow easy printing of information on the screen or to
a printer. By default, PRINT output goes to the screen, but the PRINTER IS statement
can be used to redirect output from the PRINT statement to a printer, device, or file. The
PRINTER IS statement can also set the width at which output should wrap, and the
characters that should be sent at the end of a line. These features allow easy use of
many different printers.

DISP Statement

The DISP statement is very similar to the PRINT statement. However, DISP output goes
to a part of the screen known as the display line. When the semicolon is used to end
display output, the display line will scroll to the left if output goes off the right end of the
display line. Most other aspects of the DISP statement match those of the PRINT
statement.

PRINT and DISP Statements

With both PRINT and DISP, if you separate arguments in a print list with commas, they
will be printed in columns. The columns are ten characters wide. If you want
"compressed" format, substitute a semicolon in place of the comma. In compressed
format, numerics are printed with one additional trailing space and strings are printed with
no additional spaces. You may also end a print list with a semicolon to suppress the usual
CRILF that forces a new line. Then you can continue output on the same line with
another PRINT statement. If the default PRINT/DISP formats are not acceptable, USING
can be specified to format the data as desired.

Numbers are printed with twelve significant digits. If the number is outside the range 1E-4
and 1E+6 then the number is printed in scientific notation. If the number is positive, it is
always preceded by one space, even in the compressed format. If it is negative, the
negative sign is printed in place of the leading space.

Complex numbers are printed in rectangular form, first the real part, then an extra space,
and finally the imaginary part. The real and imaginary parts are printed using the print
rules given in the previous paragraph.

You can position text on the screen with TAB(column) and TABXY (column,row). The left-
most column is column one, and the top-most row is row one. TAB can also be used on a
printer; TABXY can only be used on the screen. The following example illustrates use of

TABXY.

10 ! Display time in upper-right corner of screen for 30 seconds
20 St=TIMEDATE ! start time

30 REPEAT

40 PRINT TABXY (70,1);TIMES (TIMEDATE)

50 UNTIL TIMEDATE>St+30

60 END

A full array can be printed by using the array name with a full array specifier. The
elements are printed in row major order, and in fields determined by the punctuation
following the array.

Attributes and Colors

Various control characters can be included in PRINT or OUTPUT CRT strings. These
control characters allow simple cursor movement as well as selection of colors and

attributes.

Character
CHR$(7)
CHR$(8)
CHR$(10)
CHR$(12)

CHR$(13)

Character

CHR$(128)
CHR$(129)
CHR$(130)
CHR$(131)
CHR$(132)
CHR$(133)
CHR$(134)
CHR$(135)

Character

CHR$(136)
CHR$(137)
CHR$(138)
CHR$(139)
CHR$(140)
CHR$(141)
CHR$(142)
CHR$(143)

Meaning

Rings the bell.

Moves the print cursor back one space.

Moves the print cursor down one line.

Prints two line-feeds, scrolls the extended output area
buffer so that the next item goes to the top of the CRT.
Moves the print cursor to column one.

Meaning

All attributes off.

Inverse mode on.

Blinking mode on.

Inverse and Blinking modes on.

Underline mode on.

Underline and Inverse modes on.
Underline and Blinking modes on.
Underline, Inverse, and Blinking modes on.

Meaning
White
Red
Yellow
Green
Cyan
Blue
Magenta
Black

The characters from 128 through 143 conflict with International language characters. To
resolve the conflict, the CONTROL CRT,100;1 statement moves this range down to 16
through 31. CONTROL CRT,100;0 moves the range back up to 128 through 143.

Not every attribute is available on every display system. Run the following example on
your computer to find out what attributes are supported by your system.

10 REM -- ATTRIB.BAS - Run this program to see what
20 REM -- attributes are supported by your system.
30 INTEGER I

40 DIM AS$[40]

50 DATA No Attributes, Inverse,Blinking, Inverse and
Blinking,Underline

60 DATA Underline and Inverse,Underline and Blinking
70 DATA "Underline, Inverse, & Blinking"

80 CLEAR SCREEN

90 PRINT "Attributes"

100 FOR I=128 TO 135

110 READ AS

120 PRINT CHRS (I);"CHRS(";I;") ";AS

130 NEXT I

140 PRINT CHRS$ (128);TABXY (50,1);"Colors™"
150 FOR I=136 TO 143

160
170
180
190

PRINT TABXY (50,I-134);CHRS (I);"CHRS (";I;")"
NEXT I
PRINT CHR$ (136) ;
END

Display Functions
It is possible to disable the effect of the attribute characters just described, displaying
them instead of executing them. This is useful when debugging OUTPUT. The DISPLAY
FUNCTIONS ON statement causes all control characters to be displayed but not
executed. The only exception is carriage return, CHR$(13), which is first displayed and
then the print cursor is moved to column one of the next line. DISPLAY FUNCTIONS
OFF returns execution of attribute characters to normal.

This function is the equivalent to pressing the DISPLAY FCTNS key, or to executing the
CONTROL CRT,4 statement.

CRT Related Statements

There are several statements that affect the CRT. Consult the Reference Manual or use
the HELP statement to obtain more information on each of these statements.

Statement What It Does

ALPHA ON/OFF Controls ALPHA screen visibility

ALPHA HEIGHT Sets the number of lines in ALPHA screen
ALPHA PEN Sets the ALPHA display color

CLEAR LINE Clears the keyboard input line

CLEAR SCREEN Clears the ALPHA display

CLS Abbreviation for CLEAR SCREEN

DUMP ALPHA Prints the contents of the ALPHA display
GRAPHICS ON/OFF Controls graphics screen visibility

KBD LINE PEN Sets the color of the input line.

MERGE ALPHA Enables all planes for Alpha and Graphics
PRINT PEN Sets the output area and display line color
RUNLIGHT ON/OFF Controls Run Indicator Visibility
SEPARATE ALPHA Simulates independent alpha and graphics

These statements affect the softkey menus:

Statement What It Does

EDIT KEY Edits a softkey macro

KBD CMODE ON/OFF Changes softkey labels to match HP keyboards
KEY LABELS ON/OFF Controls the display of the softkey labels
KEY LABELS PEN Sets the color for the softkey labels
LOAD KEY Loads softkey macros from a file
ON/OFF KEY Defines an event branch for a softkey
SCRATCH KEY Deletes softkey macros

SET KEY Defines one or more softkey macros
SYSTEM KEY Displays the System Softkeys Menu
USER KEYS Displays the specified User Softkey Menu

More should be said concerning screen colors. Let's assume you wish to set the screen
color to green instead of white. Which of these statements do you use?

ALPHA PEN 4
ALPHA PEN 139

If you are using a bit-mapped display driver (CRTB), then regular pen numbers are used
so the first statement is correct. If you are using an alpha (non-bit-mapped) display driver
(CRTA), then the pen numbers match those used with CHR$(), so the second statement
should be used. More on display drivers is given in the Installing and Using manual.
Suffice it to say that CGA and Hercules displays use the CRTA driver and other displays
usually use the CRTB driver.

CONTROLI/STATUS CRT

The CONTROL CRT statement can be used to control various CRT attributes, while the
STATUS CRT can be used to read the status of those attributes. A complete list of the
CONTROL and STATUS registers for the CRT is given at the end of this chapter. The
following is an example:

10 ON CYCLE 1,15 CALL Time
20 LOOP

30 PRINT TABXY (RND*68+1,RND* (STATUS (CRT, 13) -
8)+1) ; CHRS (32+RND*96) ;

40 END LOOP

50 END

60 SUB Time

70 STATUS CRT, 0;Col,Row
80 CONTROL CRT,0;70,1

90 PRINT TIMES (TIMEDATE) ;
100 CONTROL CRT,0;Col,Row

110 SUBEND

In this example, each time the SUB "Time" is called, the print position is remembered, the
time is written in the upper-right-hand corner of the screen, and then the print position is
restored. Line 10 causes the sub to be called once a second. Lines 20 to 40 are just to
keep the program doing something, to demonstrate the updating of the time. These lines
could be deleted and replaced with whatever program you wish. Notice in line 30 the
function form of STATUS and in line 70, the statement form.

ENTER CRT

ENTER CRT enters information from the CRT screen just as if it had been sent to the
computer from some external device. The present print position is the source of the data
and is updated as data is entered. Trailing spaces on a line are ignored. The last
character on the line is a line-feed (LF) with an EOI signal.

10 PRINT TABXY(1l,1);"HELLO!";TABXY(1,1);
20 ENTER CRT;AS$

The string variable A$ is assigned "HELLO!"

Keyboard (KBD)

The interface select code (ISC) of the keyboard is permanently set to 2. This ISC is used
so often, a special function, KBD, can be used to return the value 2, while providing a
mnemonic for the ISC.

ENTER KBD;AS
ASSIGN @Input TO KBD

ENTER KBD

ENTER KBD reads information from the keyboard. The INPUT and LINPUT statements
also read information from the keyboard but are designed especially for the keyboard and
provide some features not supported by ENTER. The number builder rules are not the
same for the two. ENTER KBD uses rules consistent with ENTER from other sources and
is useful for verifying I/O program correctness. Toward this end, an EOI signal can be
generated from the keyboard by entering a control-E before the character to be sent with
the EOI signal. This pseudo-EOI must be enabled with CONTROL KBD,12;1. No
keystrokes are entered into ENTER items until either a CONTINUE key or ENTER key is
pressed. If CONTINUE is pressed, the present keyboard buffer is transmitted through the
I/0O path to the ENTER statement with no appended characters. If ENTER is pressed, the
buffer is transmitted with CR/LF appended to the buffer.

INPUT Statement

The INPUT statement allows the user to assign a value to a variable by typing in the
value on the keyboard. A prompt is displayed on the display line. The INPUT statement
can specify the prompt, or a question mark (?) will be used by default. To suppress the
prompt, specify a prompt string of "".

The input statement can input values for simple variables, full arrays, array elements, or
sub-strings. A full array name must be followed by the full array specifier, "(*)". Values for
the array must be entered in row major order.

Leading and trailing spaces are ignored. Data values may be entered individually or
multiple values may be entered at once. If multiple values are entered, separate each
value with a comma. If too many values are entered, the extra values are ignored. Both
quoted and unquoted strings are allowed. Commas are not allowed in unquoted strings,
but may appear in quoted strings. To embed one quotation mark in a quoted string, type
in two quotation marks at the place you wish to have one appear.

Two consecutive commas cause the corresponding variable to retain its old value.
Terminating an input line with a comma or pressing CONTINUE or ENTER without
entering any data retains the original values for all remaining variables in the list.

Let's look at a simple program to INPUT a value and assign it to a variable and then
examine how to improve it.

10 DISP "Enter a file name";
20 INPUT F$
30 END

Now let's see how to do this in just one statement:

10 INPUT "Enter a file name: ",F$
20 END

To provide a default answer we might do the following:

10 F$ = "STUDENT.DAT"
20 INPUT "Enter a file name <STUDENT.DAT>: ",F$
30 END

If the default answer is OK with the user, he need only press ENTER to accept the
default. If it is not OK, he can enter the proper value. Of course, this behavior would need
to be documented somewhere in the instructions given to the user.

LINPUT Statement

The LINPUT statement differs slightly from the INPUT statement. Only one value can be
input with each LINPUT statement, the variable must be a simple string, string element,
or sub-string. All characters typed, including commas and quotation marks, are stored in
the variable. Only the end-of-line character will delimit the data.

OUTPUT KBD

OUTPUT KBD sends keystrokes to the keyboard buffer, just as if someone had typed
them. This can be useful in giving the user a default response for INPUT that she can
edit:

10 OUTPUT KBD; "STUDENT.DAT";
20 INPUT "Enter a filename:",F$
30 END

Function keys can be simulated by sending the two character sequences to the KBD
device. The first character is a CHR$(255). This value is followed by a character that
specifies the function key. A table giving the second character codes is found in the
Installing and Using manual.

10 OUTPUT KBD;"""AUTOST File Complete"""&CHRS (255) &"E";
20 WAIT 1

30 OUTPUT KBD;CHRS (255) &" ! "&"SCRATCH"&CHRS (255) &"E";

40 END

The first line in this example shows how to display your own messages on the message
line. The ENTER key is output to the keyboard with the two characters, CHR$(255)&"E".
The semicolon at the end of the line prevents carriage-return/line-feed characters from
being sent to the keyboard. Line 30 is a handy line to execute at the end of your AUTOST
file. The CHR$(255)&"!" characters are the STOP key, followed by a SCRATCH
statement. This will cause your AUTOST file to be SCRATCHed from memory after it is
executed.

The CHR$(255) character displays as a reverse-video "K" on an HP BASIC Workstation.
On other computers, it displays differently. PCs using standard PC character sets (code
pages) display the character as a space. (It is possible on a PC with an EGA or VGA
display to load an HP compatible character set. See Chapter 13, "International Language
Support.”) Sun SPARCstations, HP 700 workstations, and X terminals using the Latin-1
character set display the character as y, lowercase y umlaut or diaeresis. The glyph
displayed for CHR$(255) by HP 700 workstations using the Roman8 character set is
undefined.

CONTROLI/STATUS KBD

The CONTROL KBD statement can be used to control various keyboard attributes, while
the STATUS KBD can be used to read the status of those attributes. A complete list of the
CONTROL and STATUS registers for the keyboard is given at the end of this chapter.
The following is an example:

CONTROL KBD,16;1

This register disables all scrolling keys. This is useful if you have displayed a screen
image that you wish to prevent the user from scrolling off the screen.

Using a Printer

The printer is usually accessed differently under DOS than under UNIX. Under DOS, the
printer is usually accessed directly, as a device. While this is possible under UNIX, it is
better to access the printer using the UNIX print daemon. Both these approaches are
discussed below. There are several special statements that can be used with printers.
These are also presented.

Accessed Directly

A printer can be handled just like any other device. To use the printer, you need to know
the device selector for it. The most common device selectors for printers are 10, 9, and
701. The default device selector for the first centronix portis 10 (LPT1 on a PC). The
default device selector for first serial port is 9 (COM1 on a PC). The default device
selector for an IEEE-488 printer with primary address 1 is 701. These values are default
values and may be different on your system if you specified different values when you
loaded the interface device drivers.

100 SUB Print3(AS$) ! subprogram to support 3 printers at once
110 OUTPUT 9;AS$! first the serial printer

120 OUTPUT 10;AS ! next the parallel printer

130 OUTPUT 701;AS$! last the IEEE-488 printer

140 SUBEND

This example is a subprogram for a hypothetical user who wishes to use three printers
simultaneously. One printer is hooked to the RS-232 port, one to the Centronix port, and
one to the IEEE-488 bus. Print3(String-expression) is used to send output to all three
printers. The point is that a printer can be treated just like any other device.

Using the Print Daemon

Because UNIX is a multitasking, multiuser, networked system, access to the printer must
be coordinated to prevent more than one program from intermixing printer output. It is the
UNIX print daemon's job to collect printer output and manage the printer. You may send
output to the print daemon through a pipe or indirectly through a file.

The command

10 ASSIGN @Prt TO "| 1p"

establishes access to the printer through the print daemon, through the UNIX "Ip"
command, through a pipe, through the @Prt I/O path. Any I/O statement that can specify
an 1/0 path can now output data to the printer. The print daemon collects the output until
the pipe is closed:

20 OUTPUT Q@Prt;A$
30 ASSIGN @Prt TO *

Pipes can also be used in DUMP DEVICE IS, PLOTTER IS, PRINTALL IS, and PRINTER
IS statements.

Alternatively, send output to a file and then use the EXECUTE command to send the file
to the printer:

10 CREATE "TEMP.TXT",O0

20 ASSIGN @Prt TO "TEMP.TXT"; FORMAT ON
30 OUTPUT @Prt;AS

40 ASSIGN @Prt TO *

50 EXECUTE "lp TEMP.TXT";WAIT OFF

SunOS 4.x and HP-UX both can use the UNIX "Ip" command to send output to the print
daemon. Other commands may also work, such as "lpr". Check with your system
administrator or check your system documentation for more information.

The PRT function

Just as the special functions CRT and KBD exist because the screen and keyboard are
accessed so frequently, there exists a special function, PRT, which can be used to access
the printer. One problem exists, however. The ISCs for the screen and keyboard are
permanently set but the printer's is not. The printer can be hooked to any interface. Or
more than one printer may be hooked up at the same time. What value, then, should PRT
return. HP BASIC approaches the dilemma by assigning 701 to PRT and if your printer is
anywhere else, tough luck.

HTBasic solves the dilemma by letting you change the value of PRT. By default, it is 10
on PC Versions and 701 on UNIX Versions, but you may execute a CONFIGURE PRT
statement in your AUTOST file to change the value if needed. PRT can only assume a
numeric value; it is not possible to assign a pipe or file to PRT. As shown in the Print3
example above, you don't have to use the PRT function to output to a printer. It is
available as a convenience only.

10 PRINTER IS PRT
20 PRINT "PRT = ";PRT
30 END

This example prints the value of PRT to the printer. PRT, KBD, and CRT are just ordinary
functions, and can be used anywhere a normal function is used.

The PRINTER IS device

The CAT, LIST, PRINT, and XREF statements send output to the "PRINTER IS" device.
By default this is the CRT, but it can be changed with the PRINTER IS statement to a
printer (or any other device), a file, or a pipe. Thus, screen output produced by these
statements can easily be redirected to your printer.

The PRINTER IS statement has facilities for adapting printer output for various printers.
The output can be set to wrap at a specified WIDTH, or wrap can be disabled altogether.
The characters sent at the end of a line (EOL), CR/LF by default, can be changed to
match that expected by your printer. The PRINTER IS statement can even specify that
EOI be sent with the EOL for IEEE-488 printers. Many older printers lose characters sent
while the printer is returning the carriage. This character loss can be prevented by
specifying a delay after an EOL sequence.

When PRINTER IS is set to a file, the file is opened and the previous contents of the file
are discarded. To append to the file rather than replace the current contents, use the
APPEND option.

The following example program lists itself twice, once to the printer, and once to the CRT.

10 PRINTER IS 9 ! redirect output to the serial printer
20 LIST

30 PRINTER IS CRT ! back to the screen

40 LIST

50 END

The following example sends PRINT output to the UNIX print daemon through a pipe.

10 PRINTER IS "| 1lp"

The PRINTALL IS device

The PRINTALL IS statement is related to the PRINTER IS statement. The PRINTALL IS
statement assigns a logging device for operator interaction and error messages. It works
in conjunction with the print-all mode. When the print-all mode is on, all messages output
to the screen (including output area, DISP line, keyboard line, and message line) are
printed on the PRINTALL device. When print-all mode is off, output appears only in the
normal places, and no information is sent to the PRINTALL device.

The print-all mode is toggled between on and off each time the PRT ALL key is pressed.
STATUS(KBD,1) returns a 1 if print-all mode is on, and 0 if it is off. A program can turn
print-all mode on with CONTROL KBD,1;1 and off with CONTROL KBD,1;0

Print-all is a powerful debugging tool. Use it in connection with TRACE to print TRACE
messages about program execution. Also, certain error conditions can produce more
than one line of output. Only the last message is visible on the message line. With print-
all on, all the messages can be read on the PRINTALL device. The PRINTALL IS
command defines where these messages are printed. Sent to a printer, PRINTALL allows
permanent logging of output. The PRINTALL device is the CRT after start-up and
SCRATCH A.

CRT and KBD Registers

The following tables give the CONTROL and STATUS registers for the CRT and KBD. No
READIO or WRITEIO registers are available for these devices.

CRT CONTROL Registers

The following CONTROL registers are supported.

0 - Set the current Print Column. The left most column is one.

1 - Set the current Print Row (line). The output area top line is one.
2 - Set Insert/Replace Mode. 1 - insert mode, O - replace mode.

3 - This register is undefined in both HTBasic and HP BASIC.

4 - Set/Reset Display Functions Mode. 1 - Control characters (including attribute
characters CHR$(128) to CHR$(158)) are displayed instead of executed. 0 - control
characters execute normally and are not displayed. This command is equivalent to the
DISPLAY FUNCTIONS statement.

5 - Set the default ALPHA screen color (automatically sets registers 15, 16, and 17). This
command is equivalent to the ALPHA PEN statement. For bit-mapped displays (CRTB),
specify a pen number, 0 to 15. For alpha displays (CRTA), specify a color attribute
character, 136 to 143:

Value Color
136 White
137 Red

138 Yellow
139 Green
140 Cyan
141 Blue

142 Magenta
143 Black

6 - This register is undefined in both HTBasic and HP BASIC.

7 - This register is undefined in both HTBasic and HP BASIC.

8 - Set the current print column of the display line. The left most column is one.
9 - This register is undefined in both HTBasic and HP BASIC.

10 - Set cursor visibility. 1 - cursor on. O - cursor off.

11 - CRT character mapping is not supported by HTBasic.

12 - Turn Softkey Menus (Function key labels) on or off.

Value Meaning

0 Same as 2, except that when running the menus are
displayed only if an ON KEY is active in the current menu.

1 Softkey menus off. Same as KEY LABELS OFF.

2 Softkey menus on. Same as KEY LABELS ON.

13 - Set the CRT Height. Sets the number of rows on the CRT that are actually used. The
number includes the softkey menus, message line, input line, display line, a blank line,
and the output area. Thus a value of 9 (the minimum allowed) provides for two lines in the
output area.

14 - The Display Replacement Rule is not supported by HTBasic.

15 - Set the PRINT/DISP Color. Like CONTROL 5, but only affects the output area and
the display line. This command is equivalent to the PRINT PEN statement.

16 - Set the Softkey Menu Color. Like CONTROL 5, but only affects the softkey menu
color. This command is equivalent to the KEY LABELS PEN statement.

17 - Set the Input Line Color. Like CONTROL 5, but only affects the input and message
lines. This command is equivalent to the KBD LINE PEN statement.

18 - The ALPHA Write-enable Mask is not supported by HTBasic. Use SEPARATE or
MERGE ALPHA instead.

19 - This register is undefined in both HTBasic and HP BASIC.

20 - The ALPHA Display-enable Mask is not supported by HTBasic. Use SEPARATE or
MERGE ALPHA instead.

21 - Select Compatibility Display is not supported by HTBasic. Use PLOTTER IS 3 or 6
instead.

100 - Set alternate Attribute Control range. The characters in the range CHR$(128) to
CHR$(143) normally control text attributes and colors. Unfortunately, some character
sets, including PC code pages use this range for international character support. This
register can be used to reassign the attribute and color control characters to the range
CHR$(16) to CHR$(31), leaving the international characters available for display. 1 - Use
the alternate range CHR$(16) to CHR$(31) for attribute control. 0 - Use the normal range
CHR$(128) to CHR$(143) for attribute control. This alternate range applies only to values
used with the CHRS$ function. Values used with CRT registers and the ALPHA PEN, etc.
statements are left unchanged.

101 - Set font size. On PC computers, this command asks the EGA/VGA BIOS for a
character font of the requested height in pixels. Legal values on an EGA are 8 and 14. On
a VGA, 16 is also legal. To switch back to the default font, use a value of 0.

CRT STATUS Registers

The following STATUS registers are supported.

0 - Get the current Print Column. The left most column is one.

1 - Get the current Print Row (line). The output area top line is one.
2 - Get Insert/Replace Mode. 1 - insert mode, O - replace mode.

3 - Get the number of lines in the extended output area that are above the top line of the
screen.

4 - Get Display Functions Mode. 1 - on, O - off.

5 - Get the default ALPHA screen color. The value does not show changes made using
registers 15, 16, 17 and CHR$() character attributes.

6 - Get the ALPHA ON/OFF flag.

7 - Get the GRAPHICS ON/OFF flag.

8 - Get the current print column of the display line. The left most column is one.
9 - Get the Screen Width.

10 - Get the cursor visibility. 1 - cursor on. 0 - cursor off.

11 - Get the CRT character-mapping-disable flag. Always a 0 in HTBasic.
12 - Return the Softkey Menus mode.

13 - Get the CRT Height.

14 - Get the Display Replacement Rule. Not supported by HTBasic.

15 - Get the PRINT/DISP Color.

16 - Get the Softkey Menu Color.

17 - Get the Input Line Color.

18 - Get the alpha write-enable mask. The write-enable mask is set by the MERGE
ALPHA and SEPARATE ALPHA statements on bit-mapped displays.

19 - Get the value of ALPHA MASK. Not supported by HTBasic.
20 - Get the ALPHA display-enable mask. Not supported by HTBasic.
21 - Get the compatibility mode flag. Not supported by HTBasic.

100 - Get alternate Attribute Control range flag. 1 - Alternate range, 0 - normal range.

KBD CONTROL Registers

The following CONTROL registers are supported.

0 - Set CAPS LOCK flag. 1 - set CAPS LOCK on, 0 - set CAPS LOCK off. Under the X
Windows System, this register is ignored.

1 - Turn PRINTALL mode on/off. 1 - on, O - off. The PRT ALL key can also be used to
toggle the mode on and off. See PRINTALL IS earlier in this chapter or in the Reference
Manual for an explanation of what PRINTALL mode does.

2 - Set Softkey Menu: 0 - SYSTEM Softkeys, 1 - User Softkey menu 1, 2 - User Softkey
menu 2, 3 - User Softkey menu 3.

3 - Set keyboard typematic repeat interval. The value specified, multiplied by ten, gives
the interval in milliseconds to wait between characters. Values of 1 to 255 give repeat
intervals of 10 ms. to 2550 ms. The value 256 turns off typematic action.

On the IBM PC and compatibles, 32 discrete typematic rates are supported from 33 ms.
to 500 ms. If an unsupported value is specified, the nearest supported value is used.
Typematic action can not be disabled.

Note: IBM added the ability to change the typematic rate to the AT BIOS dated
11/15/85. IBM machines with an earlier BIOS revision, and some PC compatibles may
not allow it to be changed. Also, on the IBM PC and compatibles, the typematic rate
(register 3) can not be changed without also affecting the typematic delay (register 4) and
vice-versa. You should normally try to set both with a statement similar to: CONTROL
KBD,3;8,70. If you set only register 3, register 4 will be set to 70. If you set only register
4, register 3 will be set to 8.

Under the X Window System, the keyboard typematic repeat interval and delay before
typematic action can not be changed.

4 - Set delay before typematic action starts. The value specified, multiplied by ten, gives
the interval in milliseconds during which a key must be held down before typematic
repeat starts for that key. Values of 1 to 255 give delays of 10 ms. to 2550 ms.

On the IBM PC and compatibles 4 discrete delays are supported: 250, 500, 750, and
1000 ms. If an unsupported value is specified, the nearest supported value is used. The
note given for register 3 above applies to register 4 also.

Under the X Window System, the keyboard typematic repeat interval and delay before
typematic action can not be changed.

5 - This register is undefined in both HTBasic and HP BASIC.
6 - This register is undefined in both HTBasic and HP BASIC.

7 - Disable Keyboard Interrupts:

Value Meaning

0 Enable all keyboard keys.

1 Disable all keyboard keys but RESET key.
2 Disable RESET key only.

3 Disable all keyboard keys.

8 - This register is undefined in both HTBasic and HP BASIC.

9 - This register is undefined in both HTBasic and HP BASIC.
10 - This register is undefined in both HTBasic and HP BASIC.
11 - Knob Pulse Mode is not supported by HTBasic.

12 - Set EOl flag. 1 - If CTRL-E is entered, then EOI is sent with the next character that is
entered. 0 - CTRL-E has no special meaning.

13 - Katakana mode is not supported by HTBasic.

14 - Set base softkey number. 0 - Lowest softkey will be softkey 1 (default), 1 - Lowest
softkey will be softkey 0. This register has no affect with KBD CMODE ON.

15 - Turn KBD CMODE ON/OFF. A non-zero value turns KBD CMODE ON for Nimitz
compatibility. The Nimitz Keyboard is the 98203 keyboard used on the 9836. It has ten
function keys, and the lowest function key is 0. A zero value turns KBD CMODE OFF, ITF
compatibility (the default). The ITF Keyboard is the 46020 Keyboard used on Series 300
computers. It connects to the computer using the HIL interface, has eight function keys,
and the lowest function key is 1. This command is equivalent to KBD CMODE {ON|OFF}.

16 - Disable scrolling keys: UP, DOWN, PREV, NEXT, BEGIN, and END. This allows a
program to freeze the screen display, not allowing the user to scroll it off. A non-zero
value disables scrolling and a zero value enables it.

100 - Controls the "Program Modified" dialog received when attempting to LOAD, GED,
SCRATCH, or Quit when the current program has been modified. The default is 0 or off
(no dialog appears and the current program is lost). However, the standard AUTOST file
enables the "Program Modified" dialog. To disable this feature, edit the AUTOST file.

202 - Controls performance tuning under Windows. The tradeoffs of increased HTBasic
performance are decreased Windows response and decreased performance in other
simultaneously executing Windows applications. The decreased Windows response is
most noticeable as delayed response to mouse and keyboard input in all applications
including HTBasic. Valid input is in the range of 0 to 32767, the default is 32. The
performance gain with increasing value is non-linear, most improvement occurs in the
bottom 10% of the parameter's range.

KBD STATUS Registers

The following STATUS registers are supported.

0 - Get CAPS LOCK flag. Under the X Windows System, this register is undefined.
1 - Get Print All mode state.

2 - Get Softkey Menu number.

3 - This register is undefined in both HTBasic and HP BASIC.

4 - This register is undefined in both HTBasic and HP BASIC.

5 - Get the KBD$ Buffer Overflow Flag. A one means an overflow has occurred since the
last time the register was read. Reading the register sets the flag to zero.

6 - Get the softkey macro expansion overflow flag. 1-overflow. Reading this register
resets it to 0.

7 - Return Keyboard Interrupt Disable Mask.
8 - Return Keyboard Language. Always 0 - US ASCII.
9 - Return Keyboard Type. Always 0 - "Other Keyboard."

10 - Return State of Shift keys at the time of the last KNOB event.

Value Meaning

0 Neither key pressed
1 SHIFT key pressed
2 CTRL key pressed
3 Both keys pressed

11 - Get Horizontal/All Pulse Mode flags. Always 0 - horizontal-pulse mode.
12 - Get EOI flag.

13 - Get Katakana flag.

14 - Get base Softkey number. 1 - base is 0, 0 - base is 1.

15 - Get keyboard compatibility flag. O - ITF, 1 - Nimitz.

16 - Get scrolling disable flag. 1 - disabled, O - enabled.

Chapter 9

Files

This chapter explains how to do input and output to files. File management commands
are presented. The different file types are explained, random and sequential file access
examples are given, and file formats are discussed. An example program showing how to
convert from one file type to another is shown.

Chapter 7, "General Input and Output,” discussed the general principles used for
input/output (1/0). These principles apply to files as well as other I/O targets. In particular,
use of ASSIGN, OUTPUT, ENTER, STATUS, and CONTROL were explained. If you have
not yet read that chapter, you should do so before reading this chapter.

Afile is a collection of data that is kept on disk rather than in the computer's memory.
When the computer is turned off, the data in the computer memory is lost but the data in
a file is not.

File Management Commands

Several commands are available for managing files and the file system. It should be
remembered that a major difference between HTBasic and workstation HP BASIC is that
HTBasic is the guest of an operating system and HP BASIC is the operating system. As a
guest of an operating system, HTBasic must live by the rules established by that system.

Please see the Reference Manual for a more detailed description of each of these
statements:

ASSIGN

ASSIGN is the equivalent to the OPEN command in other computer languages. It was
explained in Chapter 7.

10 ASSIGN @Io TO "C:\RMB\HP-UX.BAT";FORMAT ON,RETURN S
20 IF S THEN

30 PRINT "Oops, Error";S;"opening the file"

40 PAUSE

50 END IF

60 OUTPUT Q@Io;"cd \hp-ux"

70 OUTPUT (@Io;"kermit take hp320.tak",END

80 ASSIGN @Io TO *

90 EXECUTE "hp-ux"

100 END

This example for the DOS Version of HTBasic shows the ASSIGN command being used
to access a file called "HP-UX.BAT". (The file must already exist. Use CREATE to create
a new file.) If the ASSIGN takes place correctly, then OUTPUT is used to send some
data to the file. The END in the last OUTPUT causes the file to be truncated at that point.
This is useful if the old file contents were longer than the new contents. Finally,

"ASSIGN ... *" is used to close the I/O path associated with the @Io variable.

CAT

CAT displays a mass storage device directory (catalog of files), or PROG file subprogram
information. Several options are available. A path-specifier may be included to show
which device or part of a file system to catalog. The catalog may be displayed on the
current PRINTER IS device, or sent to another device or a string array. A COUNT of the
entries can be returned. Only the names of the files, or complete information about the
files, can be selected. Header information about the file system can be displayed or
suppressed. All or only part of the files can be selected for display. For example:

CAT "*.BAS"

CHGRP and CHOWN

CHGRP and CHOWN are useful with an operating system like UNIX in which files are
owned by individuals and groups. These commands allow a user with the appropriate
privilege to change or assign ownership of files. These commands are not used for DOS.

CHGRP changes the group ID (GID) assigned to a file. You must belong to the specified
group and be the owner of the file or be the super-user in order to change the group.

CHOWN changes the owner, or user ID (UID) assigned to a file. Under SunOS 4.x, only
the super-user can change the owner of a file. Under HP-UX, to change the owner or
group, you must own the file or have appropriate privileges.

COPY

COPY is used to make a copy of a file. If a file already exists with the destination name,
an error is normally returned. To suppress the error the ";PURGE" option may be
specified at the end of the statement. A DOS example of the COPY statement is

COPY "DATA.1" TO "A:DATA.1"

HTBasic does not support the copy of a full disk to another disk. Under DOS you can use
the DOS "DISKCOPY" or "XCOPY" commands. Under UNIX, commands like "tar" and
"cpio” might be used.

CREATE

CREATE is used to create a new file or directory. Although SAVE and STORE will
automatically create a new file to store a program in, data files must be explicitly created
before they can be used in ASSIGN, DUMP DEVICE IS, PRINTALL IS, or PRINTER IS
statements.

The four forms of the CREATE statement are CREATE, CREATE ASCIIl, CREATE BDAT,
and CREATE DIR. The plain CREATE statement creates an ordinary file (DOS, NT, or
UNIX). CREATE ASCII and CREATE BDAT create LIF ASCII or BDAT type files (more on
these later). CREATE DIR creates directories.

The CREATE command specifies the maximum number of records to allocate for the file.
However, operating systems like DOS, NT, and UNIX allow the maximum size of a file to
be extended anytime the maximum number of records is exceeded. On such a system,
the number of records specified in the CREATE command is ignored and space for the
file is allocated only as needed.

CREATE "TEMP.TXT",O
CREATE BDAT "DATA.DAT",12,34

INITIALIZE

INITIALIZE is used to format a new disk. Used on an old disk, it completely erases all
previous contents of the disk. HTBasic does not support INITIALIZE. To initialize a new
LIF disk, use an HP BASIC workstation. Under DOS, use the "FORMAT" command to
initialize a new DOS disk. Under Windows or NT, use the File Manager to initialize a disk.
Select "Disk" and then "Format Disk...". Under SunOS 4.x, use the "fdformat" command
to initialize a new SunOS floppy disk. Under HP-UX, use the "mediainit" and "newfs"
commands to initialize and place a file system on a new HP-UX floppy disk.

The following PC example shows use of the EXECUTE statement to call the DOS
FORMAT command:

EXECUTE "FORMAT A:"

LINK

LINK creates a new directory entry for an existing file. This is called a hard link. After
creating the link, both the old name and the new name refer to the same file. For example

LINK "Existing" TO "New" ;PURGE

LINK atomically creates a new link (directory entry) for the existing file and increments
the link count of the file by one. If the new directory entry already exists, an error is given
unless the PURGE option is included.

With hard links, both files must be on the same file system. Both the old and the new link
share equal access and rights to the underlying object.

Because a LINK merely establishes a second name for a single file, operations on that
file are effective for all the links to the file. In other words, if the file is changed using one
of the filenames, the changes are visible through all the other filenames linked to that file.
(Note that this general rule is true in all cases under HTBasic, but is not true under HP
BASIC for RE-STORE and RE-SAVE.)

Under DOS, this command returns an error. LINK is only supported by operating systems
that allow multiple links (directory entries) to a single file.

LOCK and UNLOCK

LOCK/UNLOCK are used to secure (or release) a file for exclusive use. These
commands are designed for use on multitasking or network systems to prevent two users
or two processes from using the same file at the same time, preventing them from
making conflicting transactions. Some DOS networks require that the DOS "SHARE"
command be installed before files can be shared or locked.

10 ASSIGN @Path TO "airline.seats"

20 ASSIGN @Travelagency TO 705

30 ENTER @Travelagency;Requested

40 REPEAT

50 LOCK @Path;CONDITIONAL Notlocked
60 Locked= NOT Notlocked

70 UNTIL Locked

80 ENTER @Path;Available,Booked

90 IF Requested>Available THEN

100 UNLOCK @Path

110 OUTPUT @Travelagency;"Only ";Available;" available"
120 ELSE

130 RESET @Path

140 Available=Available-Requested
150 Booked=Booked+Requested

160 OUTPUT @Path;Available,Booked
170 UNLOCK @Path

180 OUTPUT @Travelagency; "OK"

190 END IF
200 ASSIGN @Path TO *
210 END

MASS STORAGE IS

MASS STORAGE IS and the abbreviation, MSI, allow you to specify the device and path
specifier to be used by default when no explicit device and path specifier are given. For
example, a CAT command, without a path specifier will display files from the default path
specifier. As another example, under DOS these two program fragments ASSIGN the
same two files:

10
20
30
40
50

REM fragment one 10 REM fragment two

MSI "A:" 20 ASSIGN @Filel TO "A:FILE1"
ASSIGN @Filel TO "FILE1" 30 ASSIGN @File2 TO "B:FILE2"
MSI "B:"

ASSIGN @File2 TO "FILE2"

PERMIT

PERMIT is used under UNIX to set the permissions (mode) of a file, directory, or device.
Permissions specify who can read, write, or execute a file, and who can search a
directory. Only the owner of a file or the super-user can change the permissions of a file.
To change file attributes under DOS, Windows, and NT, use the PROTECT statement.
Example:

PERMIT "file";OWNER : READ,WRITE;GROUP : READ;OTHER : READ

PRINT LABEL and READ LABEL

PRINT LABEL and READ LABEL are used to set and read the volume label of a disk

drive. Under UNIX, labels are not supported. Under DOS, Windows, and NT, HTBasic
does not support PRINT LABEL; you must use the DOS/NT "LABEL" command. This

example shows the use of READ LABEL under DOS:

10
20
30
40
50
60
70
80

MASS STORAGE IS "C:"
READ LABEL AS
IF AS$="No Label" THEN
PRINT "The volume in drive C has no label"
ELSE
PRINT "The volume in drive C 1is ";AS
END IF
END

PROTECT

PROTECT is used to set LIF file passwords under HP BASIC and DOS/NT file attributes
under HTBasic. It is not used by UNIX versions. To change file permissions under UNIX,
use the PERMIT statement.

A special form of PROTECT is used by DOS and Windows versions of HTBasic to
change file attributes. The syntax is

PROTECT file-specifier, protect-code

where protect-code is a string containing zero or more of the following characters:

Character Meaning

(none) no protection

R read-only: File cannot be written or deleted.

S system file: For the most part, this attribute
has no meaning.

H hidden: File will not be listed by CAT.

If a character is not included, that attribute is cleared. If the string is blank, all attributes
are cleared. For example:

PROTECT "FILEL","R"

PURGE

PURGE is used to delete files and directories. Under UNIX, the directory entry is deleted
and the link count is decremented. When the link count reaches zero, the file is actually

deleted.

PURGE "FILEL1"

RENAME

RENAME is used to change the name of a file, but can also be used under DOS,
Windows, and UNIX to move a file from one directory to another directory on the same
disk. Under NT, it can even move a file to another disk.

RENAME "C:\HTB\AUTOST" TO "C:\AUTOST.BAS"

RESET

When RESET is used with a file, the file position is set to the beginning of the file.

10 ASSIGN Q@I TO "TEMP.TXT";FORMAT ON
20 OUTPUT QI;"HELLO"

30 RESET Q@I

40 ENTER QI;AS

50 PRINT AS

60 END

SYSTEMS$("MSI")

SYSTEMS$("MSI") allows you to read the present MASS STORAGE IS path specifier.

PRINT "The present MSI is ";SYSTEMS ("MSI")

WILDCARDS

The WILDCARDS statement enables or disables wildcard support. Wildcards are
characters that can be used in a filename as a template to select a group of files to be
operated upon. A filename with wildcard characters in it will be compared with existing
filenames using special rules and all filenames that "match" are acted upon. Under
HTBasic, wildcards are supported only in the CAT statement.

Under DOS, Windows, and NT, if the WILDCARDS statement is executed, it will return an
error because wildcarding is always on. The question mark "?" and the asterisk "*" are
the DOS/NT wildcard characters.

Under UNIX, wildcarding is ON by default and the ESCAPE character is the backslash,
"\". The ESCAPE character can be set to a backslash, a forward apostrophe, or an empty
string (ho ESCAPE character). For example,

WILDCARDS UX;ESCAPE "\"

The wildcard rules for HTBasic are similar to the rules used by the UNIX shells. The
following table gives the wildcarding rules.

Wildcard Rule

? match one character

* match zero or more characters
[set] match one character from the set
['set] match one character not in the set

\ Escape meaning of next character

File Types

HTBasic supports several file types. Typed files for data are LIF ASCIl and BDAT.
HTBasic also supports files without a file type. HTBasic calls such files ordinary files. HP
BASIC calls them HP-UX files. Most DOS, NT, and UNIX files are ordinary files. The
format of data written to these files with FORMAT OFF is explained in Chapter 7.

BDAT Files

BDAT files, by default, are FORMAT OFF and are used to hold binary data. They may
also be ASSIGNed with FORMAT ON and used to hold ASCII data. BDAT files may be
accessed sequentially or randomly. The record size for random access is established

when the file is CREATEd. If not specified, it defaults to 256 bytes.

ASCII Files

ASCII files are LIF ASCII files and are not compatible with DOS ASCII or UNIX ASCII
files. See "Ordinary Files" below to learn how to create a DOS ASCII or UNIX ASCII file. A
LIF ASCII file is compatible with HP BASIC ASCII files and is most useful when
exchanging data using LIF floppies. In a CAT listing, a LIF ASCI! file is listed as file type
"ASCII". LIF ASCII files are always written with FORMAT ON and can only be accessed
sequentially.

Ordinary Files

Ordinary files are files that do not have a file type. HP added ordinary files to HP BASIC
5.0 and called them "HP-UX" files. The name is somewhat misleading since the same file
is called a "DOS" file when on a DOS compulter.

By default, ordinary files are written with FORMAT OFF, but FORMAT ON may also be
used. If you wish to create or access a DOS ASCII file, use an ordinary file with FORMAT
ON. A DOS ASCII file contains characters that are all in the printable ASCII range, and
lines are terminated with a carriage return, line feed (CR/LF) sequence. If you wish to
create or access a UNIX ASCI! file, use an ordinary file with FORMAT ON and EOL
CHR$(10). Lines are terminated in a UNIX ASCII file with just a line feed.

10 CREATE "TEMP.TXT", 512 ! CREATE Ordinary file
20 ASSIGN @X TO "TEMP.TXT";FORMAT ON

' for DOS 30 INTEGER I

40 FOR I=1 TO 10

50 OUTPUT @X;"Line #";I

60 NEXT I

70 ASSIGN @X TO *

80 END

File Organization

"Random" and "sequential" are not file types, but are methods of organizing and
accessing the information in a file. In fact, a BDAT or ordinary file can be accessed either
way, even in the same program. A file should be organized, sequentially or randomly,
based on how the file will be used.

Sequential Files

In sequential files, each data item is stored immediately following the previous one. The
data in the file is stored in the order that it is produced. The data is read in the same order
that it is stored. You read a sequential file from beginning to end. This results in a
compact data storage structure and ease of programming.

The following example uses three files with sequential organization. The first two contain
sorted data. They are merged to create the third file. Merging two files lends itself well to
sequential organization.

10 REM MERGE.BAS -- Merge two sorted files
20 CREATE ASCII "merged", 10

30 ASSIGN @F1 TO "filel";FORMAT ON
40 ASSIGN @F2 TO "file2";FORMAT ON
50 ASSIGN @M TO "merged"; FORMAT ON
60 DIM Keyl$[80],Key2$[80]

70 ON END @F1 GOTO Endfl

80 ON END Q@F2 GOTO Endf2

90 ENTER QF1;Keyl$

100 ENTER @F2;Key2$

110 LOOP

120 IF Keyl$>Key2$ THEN

130 OUTPUT @M;Key2$

140 ENTER @F2;Key2$

150 ELSE

160 OUTPUT @M;Keyl$

170 ENTER QF1;Keyl$

180 END IF

190 END LOOP
200 Endfl:! only file2 has any more data
210 ON END @F2 GOTO Alldone

220 LOOP
230 OUTPUT @M;Key2$
240 ENTER QF2;Key2$

250 END LOOP
260 Endf2:! only filel has any more data
270 ON END @F1 GOTO Alldone

280 LOOP
290 OUTPUT @M;Keyl$
300 ENTER @F1;Keyl$

310 END LOOP

320 Alldone:! both files are out of data
330 ASSIGN @F1 TO *

340 ASSIGN @F2 TO *

350 ASSIGN @M TO *

360 END

Random Access Files

As mentioned previously, "random" is not a file type, but a method of organizing and
accessing the information in a file. A file should be organized based on how the file will be
used. Files in which the items are accessed in a random order should be organized as a
random file.

BDAT files contain fixed length records that can be accessed by record number. The
record number is specified after the I/O path variable. The record length is specified when
creating the file. The record size must be set to accommodate the largest data item.

10 REM RANDOM.BAS -- Random file example (BDAT File)
20 DIM C$[56]

30 CREATE BDAT "customer.dat", 100,60

40 ASSIGN @C TO "customer.dat"

50 CLEAR SCREEN

60 LOOP

70 DISP "A(dd, D(elete, S(how, Q(uit and take a vacation"
80 ON KBD GOTO Inkey

90 LOOP !endlessly until a key is pressed
100 OUTPUT CRT;TIMES (TIMEDATE) ; CHRS (13) ;
110 END LOOP

120 Inkey: K$=KBDS

130 OFF KBD

140 OUTPUT CRT

150 SELECT UPCS$ (K$)

160 CASE "A"

170 PRINT "Add:"

180 INPUT "Customer Number? ",C

190 INPUT "Information? ",CS$

200 OUTPUT @C,C;C$

210 PRINT "Customer number #";C;"added"
220 CASE "D"

230 PRINT "Delete:"

240 INPUT "Customer Number? ",C

250 OUTPUT @QC,C;"DELETED"

260 PRINT "Customer number #";C;"deleted"
270 CASE "sS"

280 PRINT "Show:"

290 INPUT "Customer Number? ",C

300 ENTER @C,C;C$

310 PRINT "Customer number #";C;":",CS$
320 CASE "Q"

330 PRINT "Thank you for using HTBasic!"
340 PRINT "Have a nice wvacation."

350 DISP ! clear display line

360 STOP

370 CASE ELSE

380 PRINT CHR$(7);! ring the bell for a bad command
390 END SELECT

400 END LOOP

410 END

This example, of course, is not a complete application. But it does show the important
aspects of random file use, as well as some user interface techniques. Note that the
record size was declared to be 60. The length of each record can never exceed this,
since each record consists of C$ (which can never be longer than 56 characters) plus the

four byte length of C$ which we know will be included in the file since we are using a
BDAT file with FORMAT OFF (the default).

Ordinary files do not have a physical record length, but you can still use a logical record
length. The record number actually specifies the exact byte position in the file. The first
byte is at position 1. To access a logical record, the byte position must be calculated
based on the logical record length. The following example has the same capabilities as
the previous program, but uses an ordinary file.

10 REM RANDOM.BAS -- Random file example (Ordinary File)
20 DIM C$[58]

30 Length=60 ! 58 Character string + CR/LF
40 CREATE "customer.dat",100

50 ASSIGN @C TO "customer.dat"; FORMAT ON

60 CLEAR SCREEN

70 LOOP

80 DISP "A(dd, D(elete, S(how, Q(uit and take a vacation"
90 ON KBD GOTO Inkey

100 LOOP 'endlessly until a key is pressed
110 OUTPUT CRT; TIMES (TIMEDATE) ; CHRS (13) ;

120 END LOOP

130 Inkey: K$=KBDS

140 OFF KBD

150 OUTPUT CRT

160 SELECT UPCS$ (K$)

170 CASE "A"

180 PRINT "Add:"

190 INPUT "Customer Number? ",C

200 INPUT "Information? ",C$S

210 OUTPUT @C, (C-1) *Length+1;C$

220 PRINT "Customer number #";C;"added"

230 CASE "D"

240 PRINT "Delete:"

250 INPUT "Customer Number? ",C

260 OUTPUT @C, (C-1) *Length+1l;"DELETED"

270 PRINT "Customer number #";C;"deleted"

280 CASE "g"

290 PRINT "Show:"

300 INPUT "Customer Number? ",C

310 ENTER @C, (C-1) *Length+1;C$

320 PRINT "Customer number #";C;":",CS$

330 CASE "Q"

340 PRINT "Thank you for using HTBasic!"

350 PRINT "Have a nice vacation."

360 DISP ! clear display line

370 STOP

380 CASE ELSE

390 PRINT CHRS$ (7);! ring the bell for a bad command
400 END SELECT

410 END LOOP

420 END

BDAT files give an error if a single OUTPUT is too long for the record length (unless the
record length is one). However, ordinary files do not give an error. It is the programmer's
job to make sure that record overflow does not occur.

Converting LIF ASCII files to DOS ASCII

Sometimes it is advantageous to translate from a LIF ASCII file type to an ordinary DOS
or UNIX file so that other DOS/UNIX programs can make use of the data.

The following program is an example showing the general principles of converting from
one data type to another. It works for LIF ASCII to ordinary ASCII conversions, but may
need to be modified to work in other situations.

10 REM ASCIIDOS.BAS

20 DIM Fi$[30],Fo$[30],L$[256]
30 INPUT "Input file?",Fi$

40 INPUT "Output file?",Fo$
50 ASSIGN @I TO Fi$;FORMAT ON
60 CREATE Fo$,1

70 ASSIGN @O TO Fo$;FORMAT ON
80 ON END @I GOTO Done

90 LOOP

100 ENTER QI;LS$S

110 OUTPUT @QO;LS

120 END LOOP
130 Done: END

Knowing several general principles will help you write conversion programs to work in
whatever situation you require. Line 50: Open the input file using FORMAT ON, OFF,
MSB FIRST, or whatever is appropriate. Line 60: Create an output file of the type you
wish to create. Line 70: Open the output file using FORMAT ON, OFF, MSB FIRST, or
whatever is appropriate. Line 100: Enter the data with a statement compatible with how
the data was written. For example, if integers were written in binary, then enter into
integers with the file opened for binary access. Line 110: Output the data in the format
you wish it to be in. For example, if you wish three integers separated by commas, make
sure you know how to use the OUTPUT statement to do so. Finally, use loop constructs
(FOR, LOOP, REPEAT, or WHILE) to handle groups of data that are formatted the same.

Chapter 10
IEEE-488 Interface Bus

This chapter discusses the IEEE-488 (GPIB or HP-IB) bus and the HTBasic statements
used to transfer information between devices. The history of the bus is presented along
with an overview of its signal lines and device addressing. The different levels of
IEEE-488 bus data transfer and control statements are also presented along with the
HTBasic statements that enable and control IEEE-488 interrupts. A list of CONTROL,
STATUS, READIO, and WRITEIO registers for the IEEE-488 is given. A summary of the
bus actions that each IEEE-488 statement generates is also included.

This chapter does not explain installation of the IEEE-488 board or device driver. The
Installing and Using manual contains the necessary installation and configuration
information for device drivers included with HTBasic. For device drivers sold separately,
the documentation included with the driver explains how to load and configure the driver.

This chapter assumes that you already have some familiarity with the operation of
IEEE-488 bus and does not include a detailed bus operation description. Please consult
any one of the many available books about the IEEE-488 bus for more detailed
information about its operation.

IEEE-488 History

The IEEE-488 bus was developed to connect and control programmable instruments and
to provide a standard interface for communication between instruments from different
sources. Hewlett-Packard originally developed the interfacing technique and called it HP-
IB. The interface quickly gained popularity in the computer industry. Because the
interface was so versatile, the IEEE committee renamed it GPIB (General Purpose

Interface Bus). All references to this interface bus in this chapter will use the name
IEEE-488.

IEEE-488 Overview

Almost any instrument can be used with the IEEE-488 specification, because it says
nothing about the function of the instrument itself, or about the form of the instrument's
data. Instead the specification defines a separate component, the interface, that can be
added to the instrument. The signals passing into the interface from the IEEE-488 bus
and from the instrument are defined in the standard. The instrument does not have
complete control over the interface. Often the bus controller tells the interface what to do.
The active controller performs the bus control functions for all the bus instruments.

At power-up time, the IEEE-488 card that is programmed to be the system controller
becomes the active controller in charge. The system controller has several unique
capabilities including the ability to send Interface Clear (IFC) and Remote Enable (REN)
commands. IFC clears all device interfaces and returns control to the system controller.
REN allows devices to respond to bus data once they are addressed to listen. The
system controller may optionally Pass Control to another controller, which then becomes
active controller.

There are 3 types of devices that can be connected to the IEEE-488 (listeners, Talkers,
and controllers). Some devices include more than one of these functions. The standard
allows a maximum of 15 devices to be connected on the same bus. A minimum system
consists of one controller and one talker or listener device (i.e., a PC with a TransEra
GPIB-900 board and a voltmeter).

It is possible to have several controllers on the bus but only one may be active at any
given time. The active controller may pass control to another controller which in turn can
pass it back or on to another controller. A listener is a device that can receive data from
the bus when instructed by the controller and a talker transmits data on to the bus when
instructed. The controller can set up a talker and a group of listeners so that it is possible
to send data between groups of devices as well.

The IEEE-488 interface system consists of 16 signal lines and 8 ground lines. The 16
signal lines are divided into 3 groups (8 data lines, 3 handshake lines, and 5 interface
management lines).

Data Lines

The lines DIO1 through DIO8 are used to transfer addresses, control information and
data. The formats for addresses and control bytes are defined by the IEEE-488 standard.
Data formats are undefined and may be ASCII (with or without parity) or binary. DIO1 is
the Least Significant Bit (note that this will correspond to bit 0 on most computers).

Handshake Lines

The three handshake lines (NRFD, NDAC, DAV) control the transfer of message bytes
among the devices and form the method for acknowledging the transfer of data. This

handshaking process guarantees that the bytes on the data lines are sent and received
without any transmission errors and is one of the unique features of the IEEE-488 bus.

The NRFD (Not Ready for Data) handshake line is asserted by a listener to indicate it is
not yet ready for the next data or control byte. Note that the controller will not see NRFD
released (i.e., ready for data) until all devices have released it.

The NDAC (Not Data Accepted) handshake line is asserted by a listener to indicate it has
not yet accepted the data or control byte on the data lines. Note that the controller will not
see NDAC released (i.e., data accepted) until all devices have released it.

The DAV (Data Valid) handshake line is asserted by the talker to indicate that a data or
control byte has been placed on the data lines and has had the minimum specified
stabilizing time. The byte can now be safely accepted by the devices.

The handshaking process is outlined as follows. When the controller or a talker wishes to
transmit data on the bus, it sets the DAV line high (data not valid) and checks to see that
the NRFD and NDAC lines are both low, then it puts the data on the data lines.

When all the devices that can receive the data are ready, each releases its NRFD (not
ready for data) line. When the last receiver releases NRFD and it goes high, the
controller or talker takes DAV low indicating that valid data is now on the bus.

In response each receiver takes NRFD low again to indicate it is busy and releases
NDAC (not data accepted) when it has received the data. When the last receiver has
accepted the data, NDAC will go high and the controller or talker can set DAV high again
to transmit the next byte of data.

Note that if after setting the DAV line high, the controller or talker senses that both NRFD
and NDAC are high, an error will occur. Also, if any device fails to perform its part of the
handshake and releases either NDAC or NRFD, data cannot be transmitted over the bus.
Eventually a timeout error will be generated.

The speed of the data transfer is controlled by the response of the slowest device on the
bus; for this reason it is difficult to estimate data transfer rates on the IEEE-488 bus as
they are device dependent.

Interface Management Lines

The five interface management lines (ATN, EOI, IFC, REN, SRQ) manage the flow of
control and data bytes across the interface.

The ATN (Attention) signal is asserted by the controller to indicate that it is placing an
address or control byte on the data bus. ATN is released to allow the assigned talker to
place status or data on the data bus. The controller regains control by reasserting ATN;
this is normally done synchronously with the handshake to avoid confusion between
control and data bytes.

The EOI (End or Identify) signal has two uses. A talker may assert EOI simultaneously
with the last byte of data to indicate end-of-data. The controller may assert EOIl along with
ATN to initiate a parallel poll. Although many devices do not use parallel poll, all devices
should use EOI to end transfers (many currently available devices do not).

The IFC (Interface Clear) signal is asserted only by the system controller in order to
initialize all device interfaces to a known state. After releasing IFC, the system controller
becomes the active controller.

The REN (Remote Enable) signal is asserted only by the system controller. Its assertion
does not place devices into remote control mode; REN only enables a device to go into
remote mode when addressed to listen. When in remote mode, a device should ignore its
local front panel controls.

The SRQ (Service Request) line is like an interrupt: it may be asserted by any device to
request the controller to take some action. The controller must determine which device is
asserting SRQ by conducting a serial poll. The requesting device releases SRQ when it is
polled.

Device Addresses

The IEEE-488 standard allows up to 15 devices to be interconnected on one bus. Each
device is assigned a unique primary address, ranging from 0-30, by setting the address
switches on the device. A secondary address may also be specified, ranging from 0-30.
See the device documentation for more information on how to set the device primary and
optional secondary address.

In the HTBasic statements that access the bus, a device selector is used to specify the
interface select code, the primary device address, and the optional secondary device
address. The default IEEE-488 interface select code is 7. The default primary address of
the system controller is 21. The following examples demonstrate how the interface and
device addresses are specified.

Device Selectors ISC code Pri. Add Sec. Add
705 7 5 none
72501 7 25 1

1207 12 7 none
100412 10 4 12

The primary address of the IEEE-488 board can be read using the STATUS statement
and changed with the CONTROL statement. Bits 0-4 of register three specify the
primary address.

STATUS 7,3; Pri add 'Read Primary Address
CONTROL 7,3; Pri add !Set Primary Address

A discussion of the CONTROL and STATUS statements is given later in this chapter.

IEEE-488 Statement Overview

HTBasic provides five levels of IEEE-488 statements: high level transfer, high level bus
control, byte level transfer, low level bus control, and interface interrupt control.

The high level OUTPUT and ENTER statements allow you to easily send and receive
data on the bus. All the necessary bus addressing commands are automatically
generated.

The high level bus control statements allow you to abort transfers, reset the bus interface,
clear specific bus devices, lockout local control of devices, return devices to their local
state, pass active control to another, configure the parallel poll response, request service,
perform a group execute trigger, and conduct parallel and serial polls.

The byte level SEND statement allows more detailed control over the bus. Because the
user must generate all the proper bus addressing commands himself, use of this
statement requires a more detailed knowledge about IEEE-488 bus operations.

The low level bus control statements CONTROL, STATUS, READIO, and WRITEIO allow
you to directly access the IEEE-488 driver status and control registers and the controller
hardware registers.

The interrupt control statements enable, control, and disable interrupts generated by the
IEEE-488 interface hardware.

High Level Transfer Statements

The ENTER and OUTPUT statements are used to transfer data between IEEE-488
devices. They automatically generate all the required bus addressing. For a description of
the ENTER and OUTPUT statements, see Chapter 7, "General Input and Output.” It
explains how to send or suppress CR/LF line terminators and how to set the EOI signal
line on the output of the last data byte. The following example demonstrates
communication with an HP-GL plotter at device address five.

OUTPUT 705;"0P;"
ENTER 705;P1x,Ply,P2x,P2y

The OUTPUT statement requests the plotter to send its P points. The ENTER statement
reads the P point values sent back by the plotter.

The powerful USING option gives you a high degree of control over the data format used
for the transfer operations. For example:

OUTPUT 705 USING "#,K";Strs
ENTER 705 USING "#,K";Strs

Multiple listeners may also be addressed with the same command. As follows:

ASSIGN @Dev to 705,706,707,708
OUTPUT @Dev; "Data"

The OUTPUT statement listen-addresses the devices with primary addresses 5, 6, 7, and
8 and then sends the string "Data" to all of them. If the same I/O Path is used for the
ENTER statement, the first device is addressed as the talker and the remaining devices,
including the active controller, are addressed as listeners.

Some devices allow the selection of a particular mode of operation by the use of the
secondary address. Multiple secondary addresses may be specified. This extended
addressing mode is shown below.

ASSIGN @Dev to 7011011 !'Secondary Address 10 and 11
OUTPUT @Dev; Str$
OUTPUT 70501; Strs$!Secondary Address 01

When the device is not the active controller, it cannot do any bus addressing. If only the
interface select code is used for the ENTER and OUTPUT statements, no bus addressing
will be performed. The device must make sure that it has been addressed to talk or listen
before it participates in the transfer of data. If it has not been addressed, then the device
will wait until it is addressed before continuing.

OUTPUT 7; Str$
ENTER 7; Str$

High Level Bus Control Statements

HTBasic provides many high level IEEE-488 bus control statements. The actions taken
on the IEEE-488 bus by each control statement are determined by three things:

1) whether the device issuing the command is the system controller,

2) whether the device is the active controller, and

3) whether the command was issued with only the interface select code or a primary
address was specified.

Each statement is discussed in the following paragraphs. Also, a quick bus actions
reference is provided at the end of this chapter.

ABORT Statement

The ABORT statement stops IEEE-488 bus activity. You specify either an interface select
code or an I/O Path. This statement is only supported by the IEEE-488 interface. For
example:

ABORT 7

If the computer is the system controller but not the active controller, ABORT causes the
computer to assume active control.

If a primary address is specified, an error is generated. If the computer is the system
controller, the bus action is to issue IFC for greater than 100 micro-seconds and then to
assert REN and de-assert ATN. If the computer is not the system controller but is the
active controller, the bus action is: ATN, MTA, UNL, and de-assert ATN. If it is not the
active controller either, no action is taken.

CLEAR Statement

The CLEAR statement causes the active controller to send a Device Clear command to
one or more devices. The effect on the device is device-dependent. You specify either an
device selector or an I/O Path. This statement is only supported by the IEEE-488
interface. For example:

ASSIGN @Counter to 7
CLEAR (@Counter

If primary addressing is specified, the bus action is: ATN, MTA, UNL, LAG, SDC. If only
an interface select code is specified, the bus action is: ATN, DCL. If the computer is not
the active controller, an error is generated.

LOCAL Statement

The LOCAL statement returns specified IEEE-488 devices to their local (front panel)
state. You specify either a device selector or an I/O Path. This statement is only
supported by the IEEE-488 interface. For example:

LOCAL 728

If a primary device address is specified, a Go To Local (GTL) message is sent to all
listeners and LOCAL LOCKOUT is not canceled. If only an interface select code is
specified, all devices on the bus are returned to the local state and LOCAL LOCKOUT is
canceled.

If a primary device address is specified and the computer is the active controller, the bus
activity is: ATN, MTA, UNL, LAG, GTL.

If the computer is not the active controller but is the system controller and just an
interface select code is specified, the REN line is set false. If it is also the active
controller, the ATN and REN lines are both set false.

When the computer is not the system controller but is the active controller, the bus
activity for an Interface Select Code is to set the ATN line and send a GTL message.
When it is not the active controller, an error is generated.

LOCAL LOCKOUT Statement

The LOCAL LOCKOUT statement sends the LLO message over the IEEE-488 bus. This
prevents front panel control of IEEE-488 devices that are in the remote state. You specify
either an interface select code or an 1/0O Path. This statement is only supported by the
IEEE-488 interface. For example:

LOCAL LOCKOUT 7

If the computer is not the active controller or a primary device address is specified, an
error is generated. If only an interface select code is specified, the bus action is ATN,
LLO. If an I/O Path is specified, it must refer to the IEEE-488 interface.

PASS CONTROL Statement

The PASS CONTROL statement passes active controller capability to the specified
IEEE-488 device. You specify either a device selector or an I/O Path. If an I/O Path is
specified, it must be assigned to an IEEE-488 device. For example:

ASSIGN @Dev to 705
PASS CONTROL @Dev

If the computer is the active controller and a primary address is specified, control is
passed to the addressed device. An error is generated if the computer is not the active
controller or if only an interface select code is specified.

The specified device is talk addressed, a Take-Control-Message TCT is sent, and the
Attention line is set false. The computer then becomes a bus device, as opposed to a bus
controller.

PPOLL Function

The PPOLL function conducts a Parallel Poll of the IEEE-488 and the 8-bit status
message from the IEEE-488 bus is returned. Each bit corresponds to the status of a
device which is configured to respond to a parallel poll. You specify either an interface
select code or an I/0O Path as the function argument. This statement is only supported by
the IEEE-488 interface. For example:

ASSIGN Q@Gpib to 7
Pstatus = PPOLL (QGpib)

If an interface select code is specified, the bus action is as follows: ATN and EOI are set
for =25 microsec., one byte of data is read from the bus, EOIl is released, and ATN is
restored to its previous state. If the computer is not the active controller or a primary
device address is specified, an error is generated.

PPOLL CONFIGURE Statement

The PPOLL CONFIGURE statement configures the parallel poll response for the
specified remote IEEE-488 device(s). You specify either an I/O Path or a device selector
that refers to one or more IEEE-488 devices and a parallel poll configuration value from
zero through 15. The three least significant bits of its binary representation select the data
bus line and the fourth bit selects the logical sense of the response. For example:

PPOLL CONFIGURE 702;3

configures device number two on interface number seven to respond on data line DIO4
with a logic sense of zero when its status bit is set.

If the computer is not the active controller or if only an interface select code is specified,
an error is generated. The bus action is as follows: ATN, MTA, UNL, LAG, PPC, PPE.

PPOLL RESPONSE Statement

The PPOLL RESPONSE statement enables or disables the local IEEE-488 device
parallel poll response to an active controller parallel poll request. You specify either an
interface select code or an I/O Path and an enable value. An enable value of one enables
the parallel poll response, whereas a zero value disables it. This statement is only
supported by the IEEE-488 interface. For example:

ASSIGN Q@Gpib to 7
PPOLL RESPONSE @Gpib;1

The device must have been previously configured for a parallel poll response with the
PARALLEL CONFIGURE statement.

PPOLL UNCONFIGURE Statement

The PPOLL UNCONFIGURE statement disables the parallel poll response of the
specified IEEE-488 device or devices. You specify either an I/O Path or a device selector
that refers to one or more IEEE-488 devices. If only an interface select code is specified,
all devices are deactivated from the parallel poll response. For example:

ASSIGN @Dev to 7
PPOLL UNCONFIGURE (@Dev

If the computer is not the active controller, an error is generated. If a primary device
address is specified, the bus action is: ATN, MTA, UNL, LAG, PPC, PPD; otherwise the
bus action is: ATN, PPU.

REMOTE Statement

The REMOTE statement sets the remote state on an IEEE-488 device by asserting the
IEEE-488 bus remote line (REN). The device will switch to a remote state only after it has
been addressed to listen, causing the front panel to be disabled. You specify either an 1/0
Path or a device selector that refers to one or more IEEE-488 devices. For example:

REMOTE 702

If the computer is the active controller and primary addresses are specified, the computer
listen addresses the devices to switch them to remote mode. The bus action is: REN,
ATN, MTA, UNL, LAG. The remote line is asserted if the computer is the system controller
and ISC select code is specified. If the computer is not the system controller or it is not
the active controller, an error is generated.

REQUEST Statement

The REQUEST statement sends a Service Request (SRQ) on the IEEE-488 bus. You
specify either an interface select code or an I/O Path and a service value. To request
service, the response value must have bit six set. The SRQ line will remain set until

polled by the active controller or another REQUEST statement is executed with bit six
clear. For example:

REQUEST 7;Bit3+Bit4+Bit6

If the computer is the active controller or if the device-selector or the 1/0O Path specifies
address information, an error is generated.

RESET Statement

The RESET statement resets the IEEE-488 interface. It asserts the IFC line for more than
100 ms, clears interrupts, and if the interface is the system controller, sets it to be the
active controller. For example:

RESET 7

SPOLL Function

The SPOLL function performs a serial poll of an IEEE-488 device and returns the serial
poll response, specifying whether the device is requesting service. You specify either an
I/O Path or a device selector. The computer must be the active controller and a primary
device address must be specified, otherwise an error is generated. One secondary
address may also be specified. For example:

Stat = SPOLL (712)

The IEEE-488 bus action is: ATN, UNL, MLA, TAG, SPE not-ATN, Read data byte, ATN,
SPD, UNT.

TRIGGER Statement

The TRIGGER statement allows the active controller to send a trigger message to a
specified IEEE-488 device or to all listen addressed devices on the IEEE-488 bus. You
specify either an I/O Path or a device selector that refers to one or more IEEE-488
devices. For example:

ASSIGN @Gpib to 705
TRIGGER @Gpib

If primary device addresses are specified, the bus action is: ATN, UNL, LAG, GET. If only
an interface select code is specified, the bus action is: ATN, GET. If the computer is not
the active controller, an error is generated.

Byte Level Transfer Statements

If you need more control over the bytes transferred over the bus than the high level
OUTPUT and ENTER statements allow, you can use the SEND statement as described
in the following paragraphs. The OUTPUT and ENTER statements may also be used for
byte level transfers under certain circumstances.

Before you can communicate with a device on the IEEE-488 bus, the talker device and
the listener device(s) need to be addressed. The high level OUTPUT and ENTER transfer
statements generate the necessary device addressing for you. When using the SEND
statement, you must generate all the proper bus addressing commands yourself. This
requires a more detailed knowledge about IEEE-488 bus operations than is presented
here. Please consult any one of the many available books about the IEEE-488 bus or
your IEEE-488 bus device manuals.

SEND Statement

The SEND statement sends byte level IEEE-488 bus data and commands. Commands
are sent with the ATN line asserted; whereas data bytes are sent without the ATN line
asserted. You specify an I/O Path or an interface select code and a list of messages. The
type of message is specified with the keywords CMD, DATA, TALK, LISTEN, SEC, MTA,
MLA, UNT, and UNL. For example:

SEND @Gpib; UNL MLA TALK Primary CMD 24+128

sends the unlisten command, my listen address, the talk address specified by the value
of the variable (Primary), and then the command byte 152.

The CMD message evaluates the following expression values and sends them as
command bytes. If the CMD keyword is given with no expressions, it asserts the ATN line.
For example:

SEND 7; CMD 3*5, P, AS$, N

The DATA message evaluates the following expression values and sends them as data
bytes. If the optional END keyword is added, EOI is set on the last data byte. For
example:

SEND 7; DATA Value*4, ABS(N), Out$ END

The LISTEN message sends the expression values as listen address commands. The
TALK message sends the expression value as a talk address command. The SEC
message sends the expression values as secondary address commands. The MLA
message sends the interface's listen address command. The MTA message sends the
interface's talk address command. The UNL message sends the unlisten command and
the UNT message sends the untalk command.

The computer must be the active controller to use the CMD, TALK, UNT, LISTEN, UNL,
SEC, MTA, or MLA messages. Any talk addressed device may send DATA.

The following table lists the bus commands that can be sent with the CMD message.

Decimal Value Description

1 GTL - Go to Local

4 SDC - Selected Device Clear

5 PPC - Parallel Poll Configure

8 GET - Group Execute Trigger

9 TCT - Take Control

17 LLO - Local Lockout

20 DCL - Device Clear

21 PPU - Parallel Poll Unconfigure
24 SPE - Serial Poll Enable

25 SPD - Serial Poll Disable
32-62 LAG - Listen Address Group
63 UNL - Unlisten

64-94 TAG - Talk Address Group

95 UNT - Untalk

96-111 PPE - Parallel Poll Enable
112-126 PPD - Parallel Poll Disable
96-126 SCG - Secondary Command Group

Note that the listen and talk address groups (LAG and TAG) consist of 31 different
addresses. Each listen and talk address can be further broken down into a secondary

address group (SCG). To find the appropriate listen, talk, or secondary address to send
for a particular device, use the following equations:

Listen Address = Primary Address + 32
Talk Address = Primary Address + 64
Secondary Address = Primary Address + 96

The examples below show the high level transfer statement OUTPUT followed by four
ways to send the exact same information across the IEEE-488 bus with the SEND
statement.

OUTPUT 705 USING "#,K";"gt;"

SEND 7; CMD "?U%" DATA "gt;" END

SEND 7; CMD 32431, 64+21, 3245 DATA "gt;" END
SEND 7; UNL MTA LISTEN 5 DATA "gt;" END

SEND 7; UNL TALK 21 LISTEN 5 DATA "gt;" END

OUTPUT and ENTER Statements

The OUTPUT and ENTER statements can also be used for byte level transfers. If only
the interface select code is specified in the OUTPUT and ENTER statements, no bus
addressing is performed.

If the device is the active controller then no addressing needs to be done, as long as the
addressing has been done once. The talker and listener still need to remain addressed
for transfers to take place. For example:

10 ENTER 705; Strs
20 FOR I=1 to 10

30 ENTER 7; Str$
40 PRINT Str$

50 NEXT I

60 END

This type of addressing will reduce the bus addressing overhead for each piece of data
read. However, we do not recommend this practice because branching to an interrupt
service routine may destroy the current talker or listener setup.

When the device is not the active controller, it cannot do any bus addressing. The device
must make sure that it has been addressed to talk or listen before it participates in the
transfer of data. If it has not been addressed, then the device will wait until it is addressed
before continuing. For example:

OUTPUT 7; Str$!Waits Until Talker Addressed
ENTER 7; Str$!Waits Until Listener Addressed

A combination of the SEND and the ENTER statements can emulate any of the high level
transfer or bus control statements. As an example, let's see how to conduct a serial poll
(SPOLL) operation using these statements.

Poll value = SPOLL(705) 'High level command
SEND 7; CMD "?5E" CMD 24 'Output SPE command
ENTER 7 USING "#,B";Poll value !Read Poll Value

SEND 7; CMD 25 UNT 'Output SPD command

You are limited in your control of the IEEE-488 bus only by your imagination and skill at
combining the SEND and ENTER statements.

Low Level Bus Control Statements

The low level bus control statements allow you to access the status and control registers
in both the IEEE-488 driver and in the IEEE-488 controller hardware. The CONTROL and
STATUS statements access the IEEE-488 driver registers while the READIO and
WRITEIO statements access the controller hardware registers. The definitions of these
registers are given near the end of this chapter.

CONTROL and STATUS Statements

The CONTROL and STATUS statements allow you to configure the serial and parallel poll
response bytes, change the primary address, set interrupt mask registers, read the status
of the data and bus lines, read the interrupt status, and read the controller status and
address. The following program reads the STATUS registers and prints the values out in
both decimal and binary.

10
20
30
40
50

STATUS 7;X0,X1,X2,X3,X4,X5,X6,X7 !'Read all Status Registers
PRINT X0,X1,X2,X3,%X4,X5,%X6,X67

PRINT IVALS (X0,2),IVALS (X1,2),IVALS (X2,2),IVALS (X3,2)
PRINT IVALS (X4,2),IVALS (X5,2),IVALS (X6,2),IVAL(X7,2)
END

READIO and WRITEIO Statements

The READIO and WRITEIO statements directly access the IEEE-488 controller hardware
registers. Do not attempt to use the READIO and WRITEIO registers unless you are very
familiar with the hardware. Use the STATUS and CONTROL registers instead.

Accessing hardware registers can cause your system to crash, data to be lost, or
damage to your computer hardware. TransEra cannot be held responsible for any
consequences. If you need technical assistance from TransEra, it will be provided at the
current consulting rates.

IEEE-488 Interrupts

Interrupts allow the computer to perform other tasks while you wait for some condition to
occur. This eliminates the need to continually monitor the STATUS register for some
event. HTBasic has the capability of monitoring up to 16 different interrupt conditions at

once.

ON INTR Statement

The ON INTR statement defines an event branch to be taken when an interface card
generates an interrupt. You specify the interface select code, an optional priority and the
branch type. The branch type may be either a GOTO, GOSUB, CALL, or RECOVER. For
example:

ON INTR 7,4 GOSUB Repair

When an interrupt occurs a DISABLE INTR for the interface is automatically executed.
Consequently, an ENABLE INTR statement must be used to explicitly re-enable
interrupts.

The default priority is one. The highest priority that can be specified is 15. ON END, ON
ERROR, and ON TIMEOUT have a higher priority than ON INTR. When an INTR initiated
branch is taken with a GOTO, the system priority is not changed. When an ON INTR
branch specifies a CALL or GOSUB, the system priority is changed to the specified
priority.

RECOVER causes the program to SUBEXIT from contexts as needed to return to the
defining context and resume execution at the specified program line. ON INTR
statements that specify CALL or RECOVER will be serviced even if the program context
has been changed to another subprogram. ON INTR statements that specify GOTO or
GOSUB will be logged and then serviced when control returns to the defining program
context.

ON INTR is canceled by OFF INTR, disabled by DISABLE or DISABLE INTR. The
following example shows how to detect the IEEE-488 service request (SRQ).

10 ON INTR 7 GOSUB 80 !Where to Go When Interrupt Occurs
20 ENABLE INTR 7;2 'Enable SRQ Interrupt

30

40

50 ..

60 STOP

70 !

80 Val = SPOLL(701) !Clear SRQ Line

90 ENTER 701;Condition!Read Device Condition
100 PRINT Condition

110 ENABLE INTR 7 'Re-Enable SRQ Interrupt
120 RETURN

130 END

OFF INTR Statement

The OFF INTR statement cancels event branches defined by ON INTR. Any INTR events
that have been logged but not yet serviced are canceled. An OFF INTR statement without
the optional interface select code disables event-initiated branches on all devices. If the
interface select code is specified, only that interface interrupt will be disabled. For
example,

OFF INTR 7

cancels event branches for the IEEE-488 interface.

Enabling and Disabling Interrupts

The DISABLE statement disables all defined event branches except END, ERROR, and
TIMEOUT. While disabled, the first event of each type that occurs is logged. When event
branching is re-enabled with the ENABLE statement, all logged events are serviced in the
order of their event priorities.

The DISABLE INTR statement disables interrupts from just the specified interface. For
example,

DISABLE INTR 7
disables interrupts from the IEEE-488 interface.

The ENABLE INTR statement enables interrupts from a specified interface. An optional
bit mask is stored in the interface interrupt-enable register. The default bit mask is the
previous bit mask for that interface, or if there is no previous bit mask then a bit mask of
all zeros is used. The meaning of the bit mask depends on the interface; consult the
interface documentation. For example,

ENABLE INTR 7;Bitmask

enables interrupts on the IEEE-488 interface and stores the value of the variable Bitmask
into the interface interrupt-enable register. The interrupt enable register bits are defined
as follows:

Interrupt Enable Register Bit Mask.

Bit
15
14
13
12
11
10

OFRPNWAUUIO N

Value
-32768
16384
8192
4096
2048
1024
512
256
128
64

32

16

=N B~ O

Meaning

Active Controller

Parallel Poll Config. change

My Talk address received

My Listen address received

EOI received

SPAS

Remote/Local change
Talker/Listener Address change
Trigger received

Handshake Error

Unrecognized universal command
Secondary command while addressed
Clear received

Unrecognized addressed command
SRQ received

IFC received

The interrupt enable register has the same bit values as STATUS registers 4 and 5.
STATUS register 4 tells which condition caused the interrupt. STATUS register 5 tells
which interrupts are enabled. To enable more than one interrupt, add up all the event
decimal values and use this value as the ENABLE INTR bit mask.

Handling Service Requests

HTBasic can be programmed to branch to a service routine when a device requests
service. The example at the start of this chapter shows how to set up and enable an
interrupt for the SRQ line. When a device sets the SRQ line, your service routine needs
to perform the following steps: 1) find out which device is requesting service, 2) find out
what action needs to be taken, 3) perform the needed action, 4) re-enable the IEEE-488
interrupts.

Step 1 uses either the PPOLL command or the SPOLL command. With the SPOLL
command you have to start with the first address and step through all the addresses, until
you find the device requesting service. If you only have one or two devices on the
IEEE-488 bus, then this method is quite fast and it eliminates step two.

Step 2 uses a serial poll (SPOLL) to read the device response byte and tells the device
that it is being serviced. The device then removes the request by clearing the SRQ line.

Step 3 is dependent on the response byte value. Its interpretation is determined by the
device documentation.

Step 4 re-enables the interrupts with the ENABLE INTR command. Interrupts are
disabled by the Controller until the current request has been serviced. Once serviced, the
interrupts need to be re-enabled.

Parallel Polling Devices

A parallel poll is the fastest way of determining the requesting device. Each device must
first be programmed to respond to a parallel poll request on a unique data line (DIO1 -
DIO8). For example,

PPOLL CONFIGURE 705;11

configures device 5 to respond by placing a 1 on data line DIO4. Bit 3 determines the
logic sense of the data line when the device needs service. The data line to use is
determined by bits 0-2, offset by one. A value of 3 means use data line DIOA4.

To disable a device from responding to a parallel poll use the following commands.

PPOLL UNCONFIGURE 705 !Disables Device 5
PPOLL UNCONFIGURE 7 !Disables All Devices

To conduct the parallel poll the PPOLL function is used as follows:

Pstatus = PPOLL (7) 'Parallel Poll Bus

After the parallel poll the variable Pstatus contains the value of the 8 data lines as set by
the devices that have been configured to respond to the parallel poll.

IEEE-488 Registers

STATUS and CONTROL registers for IEEE-488 interfaces are given below. READIO and
WRITEIO registers are presented for 9914 and 7210 based IEEE-488 interfaces.

IEEE-488 hardware is not supplied standard with most computers. For the DOS and
Windows versions of HTBasic, TransEra sells the GPIB-900 IEEE-488 Controller. The
board fits in any XT or AT bus slot. The board incorporates the TI TMS9914 integrated
circuit, the same controller used in HP BASIC workstations. This board provides
compatibility with HP BASIC at all levels, including the READIO/WRITEIO level which
accesses the 9914 registers directly.

HTBasic also supports most PC IEEE-488 boards from other manufacturers. These
boards most often use the NEC PD7210 Chip and consequently are not completely
compatible with HP BASIC. STATUS and CONTROL registers for the 9914 and the 7210
are the same, although some bits can not be supported by the 7210. The
READIO/WRITEIO registers of the 7210 are completely different from the 9914 used by
HP BASIC. Different tables are given below for the 7210 and the 9914.

READIO/WRITEIO registers allow direct access to the interface hardware. You should
not attempt to use these registers unless you are familiar with how the IEEE-488 chip is
programmed. For documentation on the 9914 IEEE-488 chip, please refer to the Texas
Instruments Data Manual, available from Texas Instruments. For documentation on the
7210 IEEE-488 chip, please refer to the NEC General Purpose Interface Bus Manual,
available from NEC.

The ON INTR 7 and ENABLE INTR 7 statements are supported. The values for the
enable mask in the ENABLE INTR statement are the same as those for STATUS register
5, given below. Some interrupts are not supported by the 7210.

IEEE-488 CONTROL Registers

The following CONTROL registers are supported.

CONTROL 0

Reset. The value must be non-zero.

CONTROL 1

Set Serial Poll Response Byte.

Bit Value Meaning
7 128 Device Dependent Status
6 64 SRQ 1 - It's me, O - It's not me.

5-0 - Device Dependent Status

CONTROL 2

Set Parallel Poll Response Byte.

Bit Value Meaning
7 128 DIO8
6 64 DIO7
5 32 DIO6
4 16 DIO5
3 8 DIO4
2 4 DIO3
1 2 DIO2
0 1 DIO1

CONTROL 3

Set My Bus Address.

Bit Value
7-5 -
4-0

Meaning
Unused
Interface Primary Address

CONTROL 4

Release NDAC Holdoff. 0 - No Secondary Address, 1 - Accept Secondary.

CONTROL 5

Set Parallel Poll Response Mask.

Bit Value Meaning
7-5 - Unused

4 16 Unconfigure
3 8 Logic Sense

2-0 - Bits used for response

IEEE-488 STATUS Registers

The following STATUS registers are supported.

STATUS O

Return Identification. Always 1.

STATUS 1

Return Interrupt and DMA status.

Bit
7
6
5-4
3-2
1
0

Value
128
64

2
1

Meaning

Interrupts Enabled

Interrupt Requested

Hardware Interrupt Level Switches
Not used

DMA channel 1 enabled

DMA channel 0 enabled

STATUS 2

Return Busy Bits.

Bit Value Meaning

7-3 - Unused

2 4 Handshake in progress
1 2 Interrupts Enabled

0 1 TRANSFER in progress

STATUS 3

Return Controller Status and Address.

Bit Value
7 128

6 64

5 32
4-0 -

Meaning

System Controller

Active Controller

Unused

Interface Primary Address

STATUS 4

Return Interrupt Status. Uses same bit definitions as register 5.

STATUS 5

Return Interrupt Enable Mask. Use these values with ENABLE INTR to enable interrupts.

Bit Value Meaning

15 -32768 Active Controller

14 16384 Parallel Poll Config. change

13 8192 My Talk address received

12 4096 My Listen address received

11 2048 EOI received

10 1024 SPAS

9 512 Remote/Local change

8 256 Talker/Listener Address change

7 128 Trigger received

6 64 Handshake Error

5 32 Unrecognized universal command
4 16 Secondary command while addressed
3 8 Clear received

2 4 Unrecognized addressed command
1 2 SRQ received

0 1 IFC received*

*Not supported by the NEC 7210.

STATUS 6

Return Interface Status. The REM & LOC bits are not always accurate on NEC 7210

cards.

Bit Value Meaning

15 -32768 REM

14 16384 LLO

13 8192 ATN True

12 4096 LPAS

11 2048 TPAS

10 1024 LADS

9 512 TADS

8 256 LSB of last address
7 128 System Controller
6 64 Active Controller

5 32 Unused

4-0 - Primary Interface Address

STATUS 7

Return Bus Control and Data Lines.

Bit Value Meaning

15 -32768 ATN True
14 16384 DAV True*
13 8192 NDAC True*
12 4096 NRFD True*
11 2048 EOI True

10 1024 SRQ True

9 512 IFC True*

8 256 REN True

7 128 DIO8

6 64 DIO7

5 32 DIO6

4 16 DIO5

3 8 DIO4

2 4 DIO3

1 2 DIO2

0 1 DIO1

* Not supported by the NEC 7210.

9914 READIO Registers

The following READIO registers are supported.

9914 READIO 1

Return Card Identification. Always 1.

9914 READIO 3

Return Interrupt and DMA status.

Bit Value Meaning

7 128 Interrupts Enabled

6 64 Interrupt Requested

5-4 - Hardware Interrupt Level Switches
3-2 - Not used

1 2 DMA channel 1 enabled

0 1 DMA channel 0 enabled

9914 READIO 5

Return Controller Status and Address.

Bit Value Meaning

7 128 System Controller

6 64 Not Active Controller
5 32 Unused

4-0 - Interface Primary Address

9914 READIO 17

Return Interrupt Status Register 0.

Bit Value Meaning

7 128 Interrupt occurred on ISR 0
6 64 Interrupt occurred on ISR 1
5 32 Byte Received

4 16 Ready for Next Byte

3 8 EOI detected

2 4 SPAS

1 2 Remote/Local Change

0 1 My Address Change

9914 READIO 19

Return Interrupt Status Register 1.

Bit Value
7 128

6 64

5 32

4 16

3 8

2 4

1 2

0 1

Meaning

Trigger Received

Handshake Error

Unrecognized Command Group
Secondary Command While Addressed
Clear Received

My Address Received (Listen or Talk)
SRQ Received

IFC Received

9914 READIO 21

Return Interface Status.

Bit Value
7 128

6 64

5 32

4 16

3 8

2 4

1 2

0 1

Meaning

REM - Remote State

LLO - Local Lockout State

ATN Line True

LPAS - Listener Primary Addressed State
TPAS - Talker Primary Addressed State
LADS - Listener Addressed State

TADS - Talker Primary Addressed State
LSB of Last Address

9914 READIO 23

Return Control-Line Status.

Bit Value
7 128

6 64

5 32

4 16

3 8

2 4

1 2

0 1

Meaning
ATN True
DAV True
NDAC True
NRFD True
EQOI True
SRQ True
IFC True
REN True

9914 READIO 29

Return Command Pass Through.

Bit Value Meaning
7 128 DIO8
6 64 DIO7
5 32 DIO6
4 16 DIO5
3 8 DIO4
2 4 DIO3
1 2 DIO2
0 1 DIO1

9914 READIO 31

Return Bus Data Line Status.

Bit Value Meaning
7 128 DIO8
6 64 DIO7
5 32 DIO6
4 16 DIO5
3 8 DIO4
2 4 DIO3
1 2 DIO2
0 1 DIO1

9914 WRITEIO Registers

The following WRITEIO registers are supported.

9914 WRITEIO 3

Set Interrupt and DMA Enable.

Bit Value Meaning

7 128 Enable Interrupt

6-2 - Unused

1 2 Enable DMA Channel 1
0 1 Enable DMA Channel 0

9914 WRITEIO 17

Set Interrupt Mask Register 0.

Bit Value Meaning

7-6 Unused

5 32 Byte Received

4 16 Ready for Next Byte

3 8 EOI detected

2 4 SPAS

1 2 Remote/Local Change
0 1 My Address Change

9914 WRITEIO 19

Set Interrupt Mask Register 1.

Bit Value
7 128

6 64

5 32

4 16

3 8

2 4

1 2

0 1

Meaning

Trigger Received

Handshake Error

Unrecognized Command Group
Secondary Command While Addressed
Clear Received

My Address Received (Listen or Talk)
SRQ Received

IFC Received

9914 WRITEIO 23

Set Auxiliary Command Register.

Bit Value Meaning
7 128 1- Set, 0 - Clear
6-5 - Unused
4-0 - Auxiliary Command
Auxiliary Command CLEAR SET
Software Reset 0 128
Release DAC Holdoff 1 129
Release RFD Holdoff 2 XX
Holdoff on all Data 3 131
Holdoff on EOI only 4 132
New Byte Available False 5 XX
Force Group Execute Trigger 6 134
Return to Local 7 135
Send EOI with Next Byte 8 XX
Listen Only 9 137
Talk Only 10 138
Goto Standby 11 XX

Take Control Asynchronously 12 XX

Take Control Synchronously 13 XX
Request Parallel Poll 14 142
Send Interface Clear 15 143
Send Remote Enable 16 144
Request Control 17 XX
Release Control 18 XX
Disable all Interrupts 19 147
Pass Through Next Secondary 20 XX
Short T1 Settling Time 21 149
Shadow Handshake 22 150
Very Short T1 Delay 23 151

Request Service Bit 2 24 152

9914 WRITEIO 25

Set Address Register.

Bit
7
6
5
4-0

Value
128
64

32

Meaning

Enable Dual Addressing
Disable Listener Function
Disable Talker Function
Primary Address

9914 WRITEIO 27

Set Serial Poll Response.

Bit Value Meaning

7 128 Device Dependent Status

6 64 1-Send, 0 - Don't Send SRQ
5-0 - Device Dependent Status

9914 WRITEIO 29

Set Parallel Poll Response.

Bit Value Meaning
7 128 DIO8
6 64 DIO7
5 32 DIO6
4 16 DIO5
3 8 DIO4
2 4 DIO3
1 2 DIO2
0 1 DIO1

9914 WRITEIO 31

Set Bus Data Lines Register.

Bit Value Meaning
7 128 DIO8
6 64 DIO7
5 32 DIO6
4 16 DIO5
3 8 DIO4
2 4 DIO3
1 2 DIO2
0 1 DIO1

7210 READIO Registers

The following READIO registers are supported.

7210 READIO 1

Return Card Identification. Always 2.

7210 READIO 3

Return Interrupt and DMA status.

Bit Value Meaning

7 128 Interrupts Enabled

6 64 Interrupt Requested

5-4 - Hardware Interrupt Level Switches
3-2 - Not used

1 2 DMA channel 1 enabled

0 1 DMA channel 0 enabled

7210 READIO 5

Return Controller Status and Address.

Bit Value Meaning

7 128 System Controller
6 64 Active Controller
5 32 Unused

4-0 - Interface Primary Address

7210 READIO 18

Return Bus Data Lines.

Bit Value Meaning
7 128 DIO8
6 64 DIO7
5 32 DIO6
4 16 DIO5
3 8 DIO4
2 4 DIO3
1 2 DIO2
0 1 DIO1

7210 READIO 20

Return Interrupt Status Register 1.

Bit Value Meaning

7 128 Command Pass Through
6 64 Address Pass Through

5 32 Device Execute Trigger
4 16 End Received

3 8 Device Clear

2 4 Handshake Error

1 2 Data Out - Send Byte

0 1 Data In - Read Byte

7210 READIO 22

Return Interrupt Status Register 2.

Bit Value
7 128

6 64

5 32

4 16

3 8

2 4

1 2

0 1

Meaning

Interrupt Occurred on ISR 1 or 2
SRQ Received

Device in Lockout State

Device in Remote State
Command Output - Send Byte
Lockout Change

Remote Change

Address Status Change

7210 READIO 24

Return Serial Poll Status.

Bit Value Meaning
7-0 - Echoes Contents of Serial Poll Mode Reg.

7210 READIO 26

Return Address Status.

Bit Value
7 128

6 64

5 32

4 16

3 8

2 4

1 2

0 1

Meaning

Controller in Charge

ATN Line is High

Serial Poll Mode State

Listener Primary Addressed State
Talker Primary Addressed State
Listener Addressed

Talker Addressed

Talk or Listen Address Received

7210 READIO 28

Return Command Pass Through.

Bit Value Meaning
7 128 DIO8
6 64 DIO7
5 32 DIO6
4 16 DIO5
3 8 DIO4
2 4 DIO3
1 2 DIO2
0 1 DIO1

7210 READIO 30

Return Address Register 0.

Bit Value
7 128

6 64

5 32
4-0 -

Meaning

Not Used

Disable Talker 0.
Disable Listener 0.
Interface Major Address

7210 READIO 32

Return Address Register 1.

Bit Value Meaning

7 128 EOI Sent on Last Data Byte
6 64 Disable Talker 1.

5 32 Disable Listener 1.

4-0 - Interface Minor Address

7210 WRITEIO Registers

The following WRITEIO registers are supported.

7210 WRITEIO 3

Set Interrupt and DMA Enable.

Bit Value Meaning

7 128 Enable Interrupt

6-2 - Unused

1 2 Enable DMA Channel 1
0 1 Enable DMA Channel 0

7210 WRITEIO 18

Set Bus Command & Data Lines.

Bit Value Meaning
7 128 DIO8
6 64 DIO7
5 32 DIO6
4 16 DIO5
3 8 DIO4
2 4 DIO3
1 2 DIO2
0 1 DIO1

7210 WRITEIO 20

Set Interrupt Mask Register 1.

Bit Value Meaning

7 128 Command Pass Through
6 64 Address Pass Through

5 32 Device Execute Trigger
4 16 End Received

3 8 Device Clear

2 4 Handshake Error

1 2 Data Out - Send Byte

0 1 Data In - Read Byte

7210 WRITEIO 22

Set Interrupt Mask Register 2.

Bit Value
7 128

6 64

5 32

4 16

3 8

2 4

1 2

0 1

Meaning

Unused

SRQ Received

DMA Output - Transfer Data
DMA Input - Transfer Data
Command Output - Send Byte
Lockout Change

Remote Change

Address Status Change

7210 WRITEIO 24

Set Serial Poll Mode Response.

Bit Value Meaning

7 128 Device Dependent Status

6 64 1-Send, 0 - Don't Send SRQ
5-0 - Device Dependent Status

7210 WRITEIO 26

Set Address Mode Register.

Bit Value
7 128
6 64
32
4 16
3-2 -
1 2
0 1

Meaning

Talk Only Mode

Listen Only Mode
Transmit/Receive Mode 1
Transmit/Receive Mode 0
Unused

Address Mode 1

Address Mode 0

7210 WRITEIO 28

Set Auxiliary Mode Register. Bits 7 to 5 determine which register is set. Bits 4 to 0 specify
the value to write into the register. Tables giving the values for bits 4 to 0 for each
auxiliary mode register follow the main table.

Bit Value Meaning

7 128 CNT2 - Control Code 2

6 64 CNT1 - Control Code 1

5 32 CNTO - Control Code 0

4-0 - COM4-COMO - Command Codes 4-0

Auxiliary Command Register. If CNT2-CNTO are set to 000 (binary), bits 4 to 0 are
defined by the following values:

Auxiliary Command SET CLEAR
Immediate Execute pon 0 XX
Chip Reset 2 XX
Finish Handshake 3 XX
Trigger 4 XX
Return to Local 5 13
Send EOI 6 XX
Non-Valid/Valid 2nd Cmd./Add. 7 15
Parallel Poll Flag 9 1
Goto Standby 16 XX
Take Control Asynchronously 17 XX
Take Control Synchronously 18 XX
Take Control Synch. on End 26 XX
Listen 19 XX
Listen in Continuous Mode 27 XX
Local Unlisten 28 XX
Execute Parallel Poll 29 XX
Send Interface Clear 30 22
Send Remote Enable 31 23
Disable System Controller 20 XX

Internal Counter Register. If CNT2-CNTO are set to 001 (binary), bits 4 to 0 specify the
State Change Prohibit Times.

Parallel Poll Register. If CNT2-CNTO are set to 011 (binary), bits 4 to 0 have the
following meaning:

Bit Value Meaning

4 16 Disables Participation in Parallel Poll
3 8 Logic Sense of Status

2-0 - Data Line to Assert During Poll

Auxiliary Register A. If CNT2-CNTO are set to 100 (binary), bits 4 to 0 have the
following meaning.

Bit Value Meaning

16 Select 8-bit EOS length
Enable Transmit of EOS
Enable Receive of EOS
RFD Hold Off on End
RFD Hold Off on All Data

OFR,NWM
=N B~ 0o

Auxiliary Register B. If CNT2-CNTO are set to 101 (binary), bits 4 to 0 have the
following meaning.

Bit Value Meaning

4 16 Indicates the Value of ist

3 8 Active Level of The INT Pin

2 4 Sets high speed as T(1)

1 2 Enable Transmit of END in Serial Poll

0 1 Enable Setting of CPT bit if Undefined Cmd.

Auxiliary Register E. If CNT2-CNTO are set to 110 (binary), bits 4 to 0 have the following
meaning.

Bit Value Meaning
4-2 - Unused
1 2 Enable DAC Hold-Off by DCAS State

0 1 Enable DAC Hold-Off by DTAS State

7210 WRITEIO 30

Set Address Register.

Bit
7
6
5
4-0

Value
128
64

32

Meaning

Address Register 0 or 1
Disable Talk Function
Disable Listen Function
Primary Address of 0 or 1

7210 WRITEIO 32

Set End of String Register.

Bit Value Meaning
7-0 - EOS Message Byte to Send

Statement Bus Action Summary

The following tables show the bus actions that take place when the various IEEE-488
control statements are executed. The table is broken down into System and Non-System
Controller, then into Active and Non-Active Controller, and further subdivided into
interface select code only or primary address specified. The mnemonics used in the

tables are listed below:

ATN - Attention Line

DCL - Device Clear

EOI - End or Identify

GET - Group Execute Trigger
GTL - Go to Local

IFC - Interface Clear

LAG - Listen Address Group
LLO - Local Lockout

MLA - My Listen Address
MTA - My Talk Address

PPC - Parallel Poll Configure

PPD - Parallel Poll Disable
PPE - Parallel Poll Enable
PPU - Parallel Poll Unconfigure
REN - Remote Enable

SDC - Selected Device Clear
SPD - Serial Poll Disable
SPE - Serial Poll Enable
TAG - Talk Address Group
TCT - Take Control

UNL - Unlisten

UNT - Untalk

GPIB Action Table
ABORT

ABORT
Eyetem Controller Mot Syetem Contraller
Active Controller Mot Actre Controller Active Controller Mot Active Controller
I8 Only Primary I8 Only Primary 132 Only Primary I8C Only Primary

IFC Error IFC Error ATH Error IMo Acton Error
RELIT REIM MTA

AT AT ML

~ AT

GPIB Action Table

CLEAR

CLEAR
System Controller Not System Contraoller
Active Controller Mot Actve Controller Active Controller Mot Active Controller
I8 Only Primary 182 Only Primary IS Only Primary I8C Only Primary
ATH ATH Error Error ATH ATH Error Error
DL MTL DL MTL
THL UNL
LAG LAG
D sEDC

GPIB Action Table

LOCAL

LOCAL
System Contraller Mot Sxstem Cortroller
Lctve Controller Mot Actwe Controller Actve Corntroller Mot Active Controller
122 Cmly Primary 12 Cmly Primary 1822 Cmly Prnmary 122 Cmly Frnmary
~REIN ATH ~REMN Error ATH ATH Error Error
T MTL =TL MTL
THL THL
LA Lac
=TL &TL

GPIB Action Table
LOCAL LOCKOUT

LOCAL LOCKOUT
Zyetem Controller Mot Syetern Corntroller
LActive Cortroller Mot Letive Coptroller Letve Cortroller Mot Active Controller
130 Cmly Frimary 180 Cmly Primary T30 Crly Primary I8 Crly Primary
ATH Error Error Error ATH Error Error Error
LLO LLO

GPIB Action Table
PASS CONTROL

FASS CONTROL
Syetem Controller Mot Syetern Controller
Artive Cortroller Mot Lotve Controller Artve Cortrroller Mot Active Controller
120 Cmly Frimary 120 Cmly Primary T30 Crly Primary T80 Crly Primary
Error ATH Error Errar Error ATH Error Error
ML THL
TA TAG
T TCT
~A&TH ~ATHN

GPIB Action Table

PPOLL

PROLL
System Controller Mot System Controller
Active Controller Mat Actre Controller Aetive Contraller Mat Actire Contraoller
I8 Only Primary I8 Only Primary I8¢ Only I8 Only Primary
ATH Error Error Error ATH Errar,
ECI ECI
read read
~EQ] ~EO
ATH™ ATH™
*Restore ATH to previous state

GPIB Action Table

PPOLL CONFIGURE

PPOLL
CONFIGUPRE
Syestem Controller Mot System Contraller
Active Controller Mot Actre Controller Active Controller Mot Active Controller
I8 Only Primary IS Only Primary I8 Only Primary I8 Only Primary
Errar ATHN Errar Error Errar ATHN Errar Error
MTL MTL
TML THL
LAG LAG
PPRC PPC
PPE PPE

GPIB Action Table
PPOLL UNCONFIGURE

PPOLL
LINC ONFIGLIRE
Swetem Controller Mot Syetem Contraller
Active Controller Mot Actre Controller Active Controller Mot Active Controller
I8 Only Primary I3 Only Primary 122 Only Primary IS Only Primary
ATH ATHN Errar Error LTH ATH Error Error
PP MTA FFPU MTA
TML THL
LAG LAG
FPC PPRC
PPD PPD

GPIB Action Table
REMOTE

REMOTE
Bystem Controller ot Systern Cortroller
Actve Controller Dot Actwe Controller Active Controller Mot Actwe Controller
187 Cmly Prmary 187 Cmly Primary I Cmly Prmary 122 Cmly Primary
REN EEN REM Error Error Error Error Error
~ 8 T ATH
MTA
UNL
LA

GPIB Action Table

SPOLL

SPOLL
System Contraller Mot Syetemm Cortroller
Arctve Controller Mot Actve Controller Artire Corntroller Mot Actve Controller
I8C Cnly Primary 132 Cnly Primary 180 Cmly Primary 130 Cmly Frimary
Error ATH Error Errar Error ATH Error Errar
WL TTHL
MLL MLA
TAG TAG
ZPE ZPE
~ATH ~ AT
read read
ATH ATH
ZPD SPD
TNT THT

GPIB Action Table
TRIGGER

TRIGGER
Swetem Controller Mot Syvetem Cortroller
Arctve Controller Mot Actve Controller Artire Corntroller Mot Actve Controller
I3C Cnly Frimary 132 Cnly Frimary 132 Cmly Primary 130 Cmly Frimary
ATH ATH Error Errar ATH ATH Error Errar
GET MTLA SET MTA
TML THL
LAG LAG
GET GET

Chapter 11
Serial (RS-232) 1/0

This chapter describes the particulars of doing 1/0 on the serial (RS-232) interface. If you
have not read the general discussion of I/O presented in the "General Input and Output”
chapter, you should do so before reading this chapter. HTBasic requires a driver before
the serial interface can be accessed. The Installing and Using manual explains how to
load the SERIAL driver, how to prevent conflicts with a serial mouse, how to use more
than two serial ports, and how to set driver switches.

This chapter describes the handshaking used for ENTER and OUTPUT, and shows how
to select between hardware and software handshaking. A long discussion is presented on
cabling, communication parameters, and data formats. An in-depth, technical discussion
of the RS-232 standard and its omissions is given. Pin assignments for standard
connectors are listed. The register definitions for CONTROL, STATUS, READIO,
WRITEIO, and the ENABLE INTR are presented.

General I/O

OUTPUT, ENTER, and TRANSFER are explained in the "General Input and Output"
chapter. Before data can be exchanged, the serial driver must be loaded, the computer
and device must be cabled together correctly (not any cable will work), and the RS-232
communications parameters must be set correctly on both the computer and the device.

The CONTROL and STATUS statements read or set various interface parameters, such
as baud rate, character format, etc. CONTROL and STATUS examples given in this
chapter assume that the serial interface has an ISC of 9. This is the default ISC for the
first serial port. If you are using another port, or if you have changed the default ISC, you
will use a value other than 9. The following example reads status register 3 of ISC 9.

PRINT "COM1l baud rate is ";STATUS (9, 3)

The READIO and WRITEIO statements read or set hardware registers. These registers
are typically quite different than the hardware registers on an HP BASIC RS-232
Interface. You should not attempt to use these registers unless you are familiar with the
RS-232C hardware. You should also not mix use of READIO/WRITEIO with
STATUS/CONTROL statements. Using STATUS/CONTROL statements is preferred.

Handshaking

XON/XOFF handshaking capability, not available in HP BASIC, has been added to
HTBasic. This capability is turned on by CONTROL 9,100;1 and turned off by CONTROL
9,100;0. It is on by default. XON is ~Q (DC1) and XOFF is *S (DC3).

Hardware handshaking is also supported. It is turned on by

CONTROL 9,5;0 ! use DTR and RTS
CONTROL 9,12;0 ! read DSR, CD, and CTS
CONTROL 9,100;0 ! make sure XON/XOFF is disabled

It is turned off by

CONTROL 9,5;3 ! hold DTR and RTS active
CONTROL 9,12;176 ! ignore DSR, CD, and CTS
CONTROL 9,100;1 ! optionally enable XON/XOFF

By default, hardware handshaking is off.

ENTER Serial

To improve performance in receiving data, a 4096 byte receive buffer has been added in
the DOS Version. The receive buffer provided in the Windows version is a 1024 byte
buffer. Under UNIX the operationg system buffer is used. When a character is received
on the serial interface, it is placed in the receive buffer. This is true regardless of the state
of the BASIC program or hardware handshaking signals. The program need not be in an
ENTER statement; nor must DSR or CD be active.

XON/XOFF Handshaking:
1. When the buffer is about full, XOFF is sent.
2. When there is room again in the buffer, XON is sent.

Hardware Handshaking:
1. If the receive buffer is empty, turn on DTR and wait for a character to arrive.
2. Get a character from the receive buffer and turn off DTR.

OUTPUT Serial

The following table outlines the steps used to OUTPUT data for software and hardware
handshaking.

XON/XOFF Handshaking:

1. If an XOFF has been received from the device,
then the computer waits for an XON to be received.
2. The data is then sent.

Hardware Handshaking:
1. DTR and RTS are turned on. (In UNIX RTS only/DTR always on.)
2. The computer waits for the device to turn on DSR and CTS.
(In the UNIX version CTS only.)
3. The data is then sent.
4. DTR and RTS are turned off.

Interrupt Support

The SERIAL driver supports ON INTR and ENABLE INTR. The definition of bits used in
the ENABLE INTR statement is the same as for STATUS register 8, given at the end of
this chapter. An example showing use of interrupts with the SERIAL driver is given in the
"Interrupt” section of Chapter 7, "General Input and Output."

When an interrupt occurs, the serial interface hardware requires that it be acknowledged.
To handle or acknowledge the different interrupts, you should do the following:

Interrupt Acknowledge by...

Error Occurred STATUS register 10, UART Line Status
Data Available ENTER or STATUS register 6, Data In
Tx Reg Empty STATUS register 9, Interrupt ID
Modem Status STATUS register 11, Modem Status

(Registers 9 and 11 not available in UNIX.)

Connecting Devices to the Serial Interface

Interfacing computers, peripherals, and instruments with a serial interface is often difficult.
Many users resort to consulting the local RS-232 "guru" to obtain the proper cables and
parameters to make even a simple connection work correctly. Once connected and
configured properly, things work well, but it is common to lose a whole day's labor getting
a new connection to work.

While there is nothing wrong with consulting the local "guru," the following paragraphs
attempt to explain a practical approach to interfacing with an RS-232 interface. An
explanation is not made in every case as to why we do the things we do. For those
interested, a technical discussion is given after the practical approach has been
explained.

In the following discussion, we will use the following communications model:

Computer ———-—| Device

"Standard" Cables

One approach to cabling is to have several types of cables around and when an
interfacing situation arises, try them all out and see if one will work. This is not such a bad
approach, so we present several common cable diagrams below. Your local computer
store can probably assist you in purchasing several different types of cables, as well as
gender changers to convert a male connector into a female and vice versa.

Shield
Tx=

ETS
TS
DEER
GO
D
DTE

Tx=

ET:
CTa
DEER
GID
CD
DTE

Some Common 25-Pin Cables

1—1
2 2
3 <3
4 4
5 20
s g
77
8 5
20 —[6
22 22
HP17255D

1—1
2 —2
3—23
4 —4
5—35
H—56
7T —7
8 —8
20 — 20
22 — 22
straight
Through

1—1 1—1

22
>3

3
5 20 5 20
& 5 & }75
20 & B JE&
2 B

T—7 0

4 4 T—7
g g

Teltr onix WISC O

012-1285-00 02%4MLF

Some Common 9-Pin Cables
3 3
2 >< 2
7 7
3 > 3

& &
3 3
1 1
4 4
9 9
Iull Modem

3—3
2 —2
bT—7
8—28
H——©6
5——35
1—1
4 —4
9 —239
straight
Through

The documentation for the device you wish to communicate with may contain cable
diagrams for hooking up the device to common computers. All but the "Straight Through"
cable could be considered "Null Modem" cables because they attempt to make another
non-modem device look like a modem. A phone call to the device manufacturer can also
save a lot of time in determining what cable to use.

Cabling From the Ground Up

If you wish to identify a cable which should work in a particular application, it can be done
using the straight forward method described here. First, examine the connectors on the
computer and the device. The most common connector is a 25 pin DB connector, but you
will also commonly see 9 pin DB connectors. Less commonly, you'll see connectors of all
shapes and sizes. For the naive reader, a male connector has pins and a female
connector has holes. Connectors almost always have identifying numbers near some of
the pins/holes which give the pin numbers. The DB connector pins are arranged in two
rows, with the first row having one more pin than the second. The pins are numbered
beginning with pin 1 on the wider row. You will need to understand the pin numbering
system used in the connectors only if you plan to make your own cable.

Once you have identified the type of connectors you will need, begin drawing a cable

diagram using the steps in the following paragraphs. When your diagram is complete,
match it with descriptions of the cables you have available. Then use, buy, or build the
correct cable.

Pin 7 is usually the ground pin on a DB-25 pin connector (or pin 5 on a DB-9 connector).
This can be verified by turning off and unplugging the computer, disconnecting any cables
between it and other devices, and measuring with an ohm meter between the chasis and
pin 7. The resistance should be zero. If pin 7 is not the ground, try pin 1, and then the
other pins in turn until a ground is found. Do the same for the device and then start
building your cable diagram by drawing a connection from the ground pin of the computer
to the ground pin of the device.

The computer and the device each talk on one pin of the RS-232 connector and listen on
another. Pins 2 and 3 (or pins 3 and 2 on a DB-9) are usually used for talking and
listening, respectively; but this is not always the case. Turn the computer on and with a
voltmeter, measure the voltage between the chasis of the computer and pin 2. Then do
the same for pin 3. Ignore the polarity of the voltage, we are interested in the magnitude
only. In the discussion that follows, we will refer to the larger voltage as the "transmitter"”
voltage and the smaller voltage as the "receiver” voltage. The computer talks on the pin
with the transmitter voltage and listens on the other. Make the same measurement on the
device. Then on your diagram, hook the talk pin of the computer to the listen pin of the
device and vice versa.

You have now defined a "3-wire cable" and in some instances your cabling task is done.
It's probably worth trying, because if you can use a 3-wire cable, you will save yourself a
lot of headaches. If data is lost when using a 3-wire cable, try enabling software
handshaking (XON/XOFF), explained earlier. With software handshaking turned on,
transfer data using the FORMAT ON option of ASSIGN. If software handshaking can not
be used on the device, you will need a hardware handshaking cable.

Let's continue defining a hardware handshaking cable. The three wires now hooked up
are sufficient for transferring data. The goal now is to inform the computer and the device
when each can and can not send data to the other. Said another way, we wish to prevent
the sending of data while the other is not ready to receive it. We must identify on which
pins each presents its "I'm ready" signal(s) and on which pins each asks "Are you
ready?"

Get out your voltmeter again and measure pins 5, 6, and 8 (DB-9 pins 8, 6, and 1) on the
computer. Remember that we are only interested in the magnitude. Some or all of them
should have the "receiver" voltage. The ones that do are asking "Are you ready?" Now
measure pins 5, 6, 8, and 20 on the device. One or more of these should have the
"transmitter" voltage. If only pin 20 has it, it is the "I'm ready" pin of the device. If more
than one of these pins have the "transmitter" voltage, then use 5 if possible as the "I'm

ready" pin and any other if 5 is not possible. Draw a connection between all the "Are you
ready?" pins of the computer to a single "I'm ready" pin of the device.

All of the pins 5, 6, 8, and 20 on the device that have the "receiver" voltage are the
device's "Ready?" pins. Pin 20 (DB-9 pin 4) on the computer is usually the "Ready!" pin
of the computer. On your cable diagram, draw a connection between the "Ready!" pin of
the computer and the "Ready?" pins of the device.

Your cable diagram is now complete. Match it with descriptions of the cables you have
available. Then use, buy, or build the correct cable. If this cable does not work, you
should probably call the manufacturer of the device and get their help.

Communication Parameters

Plugging the cable between the computer and the device is not all that is required to
make them talk. The devices must speak the same language in order to understand each
other. It doesn't matter what it is, but it is essential they be the same! The language
consists of the baud rate, data bits, parity, and stop bits. You must determine which of
these parameters can be set on the device, what they can be set to, and how they are
set. Typically, you would choose the highest baud rate that both the device and the
computer support, one stop bit, eight data bits, and no parity.

To set these values on the computer running HTBasic, use the serial CONTROL registers
3 and 4, which are listed at the end of this chapter. For example, if you are using COM1
and the interface select code has not been changed from 9 and you wish to set 9600
baud, 1 stop bit, 8 data bits, and no parity, you would use this statement:

CONTROL 9,3;9600,3

Now plug in the cable, set the values, and give it a try. Remember to set the parameters
on both the computer and the device. Depending on the device, you may have to set
some switches, type a command, or do something else.

Data Formats

Once the computer and device are communicating correctly, it is still possible to get
incorrect data if the data is formatted by the device in one way and interpreted by the
computer in another or vice versa. The easiest way to get things working is to instruct the
device to send data in ASCII, with CR/LF terminating each data item. However, the
fastest way to exchange data is to do so in binary. Read the "General Input and Output”
chapter carefully to determine how data is sent and how it is interpreted when it is
received. As with communications parameters, it is important to set both the computer
and the device to the same data format.

Interface Status Errors

An interface status error, Error 167, may occur when the cabling, communication
parameters, or data formats are not correct. The error is not reported when it occurs but
when you access the interface with ENTER or OUTPUT. To discover what the error was,
execute the statement:

PRINT IVALS (STATUS(9,10),2)

This reads the UART line status register. The meaning of the bits is

Bit Value Meaning

7 128 Not used

6 64 Transmit Shift Register Empty

5 32 Transmit Holding Register Empty
4 16 Break Detect

3 8 Framing Error

2 4 Parity Error

1 2 Overrun Error

0 1 Data Ready

Only bits 1 to 4 represent errors and bit 4 is not necessarily an error, if the device
intended to get your attention by sending a BREAK indication. If several of the error bits
are set, the meaning of the bits may not reflect the actual problem; you probably have the
baud rate or character format set differently on the device and the computer. In UNIX
versions, only bit 1 is supported the other bits are always zero.

If only a single error bit is set, the chances are good that the meaning of that bit reflects
the actual error. A framing error indicates that the character did not end when it was
supposed to. You probably have the number of data or stop bits set differently on the
device and computer. A parity error means that the expected parity bit of the character
was different than expected. You probably have the parity set differently on the device
and computer. An overrun error means that a character was sent to the computer when
the computer was not ready to receive it. You may not have handshaking set up correctly.
You may not have executed the proper CONTROL statements, wired the cable correctly,
or set up the device to handshake.

Keep in mind that RESET and SCRATCH will reset the communication parameters to the
values specified with CONTROL registers 13 and 14. STATUS(9,3) and STATUS(9,4)
may be used at any time to check the values of the baud rate and character format to see
if they are what you expect.

Spurious interface status errors can be caused by turning the power to the computer or
device on or off. To prevent an error on the ENTER or OUTPUT statement, the error can
be cleared by STATUS(9,10) or by RESET 9.

RS-232: The Standard Non-Standard

The following is an in-depth technical discussion of the RS-232 standard and its
weaknesses. You do not need to read it unless you wish a greater understanding of the
standard and the issues involved, or if you have a particularly difficult cabling problem
that you are attempting to solve.

The Standard

RS-232 (Electronic Industries Association Recommended Standard #232) describes a
method of connecting a computer to an instrument by way of a communication channel,
most often a modem attached to a phone line. The RS-232 standard has been revised
four times. The current revision is called RS-232-D and was approved on November 12,
1986. The basic communications model is shown in this figure:

DTE

DCE DCE DTE

Cahle

Phone Cahle

Computer

Modem Modem Device

Computers, devices, instruments, terminals, or peripherals are called Data Terminal
Equipment (DTE) since they terminate each end of the communications path. Modems
are called Data Communications Equipment (DCE) since they facilitate the
communication across the communication channel. (In RS-232-D, the term Data
Communications Equipment has been replaced with the term Data Circuit-terminating
Equipment.) The RS-232 standard describes the interface between the DTE and the
DCE. The interface is made using a 25 pin D shell connector. The female connector is
associated with the DCE and an interface cable with a male connector is offered by the
DTE. The standard optionally allows this cable to be detachable from the DTE, however,
no connector type is specified. Only the connection at the DCE is specified by the
standard!

Pin Assignments for PC 25 and 9 pin connectors

25 9 Common

Pin Pin Mnemonic Direction Description

1 - Shield - Shield

2 3 TX To Transmit Data
3 2 Rx From Received Data
4 7 RTS To Request to Send
5 8 CTS From Clear to Send
6 6 DSR From DCE Ready

7 5 GND Both Signal Ground
8 1 CD From Carrier Detect
20 4 DTR To DTE Ready
22 9 RI From Ring Indicator

This table shows the pin assignments for the most often used pins. The direction of the
signal is given to or from the DCE. The following paragraphs both define the commonly
used pins and give a detailed chronological example of how they are used:

Shield - The shield of the cable should be connected to pin 1 on the DTE end only.
Connecting it to both can create a ground loop that allows induced noise.

GND - Signal Ground - The signal ground is common to all the other data and control
signals, going both to and from the DCE.

RI - Ring Indicator - Regardless of the state of DTR, if a ring is detected on the phone
line, this signal should be turned on and off with each ring. This allows the DTE to count
the number of rings and decide when to turn DTR on.

DTR - Data Terminal Ready - When this signal is on, it indicates to the modem that it has
permission to answer the phone and establish a connection, should it ring, and should
maintain the connection until DTR is turned off. When turned off, the modem should hang
up and turn DSR off. DTR should not be turned back on until after DSR has been turned
off. It is permitted by the standard that DTR be on any time the DTE is ready to send or
receive data.

DSR - DCE (Data Set) Ready - When the DCE is ready to operate, and off hook, and the
modem is not in voice mode and the modem has finished establishing a phone call, the
DCE should turn DSR on. At this point data can be transferred over the modem. If a
modem error occurs or a disconnect is detected, DSR should be turned off. The DTE
should interpret this as an aborted connection and the next time DSR is turned on, it is
considered a new call.

CD - Carrier Detect - When the modem is receiving the proper signals from the remote
modem, it turns CD on. When DTR, DSR, and CD are all on, the DTE must be capable of
receiving data at any time. When CD is off, no data will be received.

Rx - Received Data - The DTE receives data from the modem on this pin.

RTS - Request to Send - While the DTE must be willing to receive data anytime CD is on,
it must ask permission to send data by turning RTS on.

CTS - Clear to Send - When the modem is ready to accept data, with DSR already on, it
turns CTS on. If the modem is half-duplex, it also turns CD off to indicate that no data will
be received while transmitting.

Tx - Transmitted Data - With DTR, DSR, RTS, and CTS all on, the DTE can transmit data
on this line. When it is done transmitting, the DTE turns RTS off and then the modem

turns CTS off.

The Non-Standard

The RS-232 standard has several major omissions. It does not specify the connector that
should be used on the DTE if the required cable is detachable, and it does not specify
how to connect two DTESs directly.

If the cable between the DTE and the DCE is detachable from the DTE, the standard only
specifies the connector for the DCE end of the cable: a male 25 pin D shell connector.
The connector for the DTE end of the cable is not specified. The RS-232 port on an IBM
AT has a male 9 pin D shell connector. This is not in violation of the standard, so long as
a cable is provided that makes a 25 pin D shell male connector available at the DCE end
of the cable. The RS-232 port on a Hewlett-Packard 98626 Serial Interface has yet
another type of connector.

It is however, a de-facto (i.e., "non-standard") standard to use a 25 pin D shell male
connector on the DTE. Thus, the DTE to DCE cable has a female connector on one end,
a male connector on the other, and corresponding pins in the connectors are connected
"straight through:" pin 2 to pin 2, pin 3 to pin 3, etc.

While the RS-232 standard describes a straight forward method for connecting a DTE to
a DCE (modem), it does not describe how to connect one DTE directly to another.
Unfortunately, many people would like to connect a computer directly to an instrument —
both DTEs. Individual manufacturers have addressed this problem in different ways, and
have inadvertently created a lot of confusion. The general approach is to make each DTE
think it is communicating with a DCE, thus preserving adherence to the RS-232 standard
as much as possible. This can be done in several different ways, none of which are
completely compatible with the standard.

The problem is that the standard assumes the communication channel is always slower
than the DTE. Thus handshaking is present to prevent the DTE from writing too quickly to
the DCE, but the standard contains no means for preventing the DCE from writing too
quickly to the DTE. The only signal available for the DTE to use to tell the DCE it is not
ready to accept data is DTR. But the standard specifies that "the OFF condition [of DTR]
causes the DCE to be removed from the communication channel." Obviously, character
handshaking with DTR is going to cause problems if the DCE hangs up between every
character. Thus, although DTR is commonly used for handshaking, that use is not
completely compatible with the standard.

A less common approach to hooking two DTEs together is to implement a full DCE
interface in the instrument, plotter, or printer even though it is a data terminating
equipment. Again, this is not completely compatible with the standard. The device must
always be connected locally to the controlling computer (the DTE), but a standard DTE to
DCE cable can then be used.

Pin Assignments

The following table gives the complete pin assignments for the RS-232 standard. "Cir" is
the official RS-232 name for the circuit. "CCITT" gives the CCITT standard number for the
circuit. ("Dir." is the direction of the circuit relative to the DCE.)

Pin Circuit CCITT Dir. Description

1 - - - Shield

2 BA 103 To Transmitted Data

3 BB 104 From Received Data

4 CA 105 To Request to Send

5 CB 106 From Clear to Send

Pin Circuit CCITT Dir. Description

6 CC 107 From DCE (Data Set) Ready
7 AB 102 Both Signal Ground

8 CF 109 From Recvd Line Signal (Carrier) Detect
9 -- -- -- Reserved for Testing
10 -- -- -- Reserved for Testing
11 -- -- -- Unassigned

12 SCF* 122 From 2nd Carrier Detect

13 SCB 121 From 2nd Clear to Send
14 SBA 118 To 2nd Transmitted Data
15 DB 114 From Transmitter Timing (DCE)

16 SBB 119 From 2nd Received Data
17 DD 115 From Receiver Timing (DCE)

18 LL 141 To Local Loopback Test

19 SCA 120 To 2nd Request to Send

20 CD 108.2 To DTE Ready

21 RL 140 To Remote Loopback

22 CE 125 From Ring Indicator

23 CH* 111 To Rate Select (DTE Source)
24 DA 113 To Transmit Timing (DTE)

25 ™ 142 From Test Mode

*Cl, Rate Select (DCE Source), is assigned to pin 12 only if SCF is
not used. Otherwise it is assigned to pin 23.

Serial Registers
STATUS and CONTROL registers for the serial interface are given below.

READIO and WRITEIO registers for the PC serial interface are also given below. These
registers are different than the hardware registers on an HP BASIC RS-232 Interface.
The READIO/WRITEIO registers allow direct access to the interface hardware. You
should not attempt to use these registers unless you are familiar with the PC RS-232C
hardware. You should not mix use of READIO/WRITEIO with STATUS/CONTROL
statements. Using STATUS/CONTROL statements is preferred. For documentation on
the IBM Asynchronous Communications Adapter, please refer to the proper hardware
Technical Reference manual, available from your local IBM or HP dealer.

The ON INTR and ENABLE INTR statements are supported by this interface. The values
for the enable mask in the ENABLE INTR statement are the same as those for STATUS
register 8, given below.

Serial CONTROL Registers

The following CONTROL registers are supported. When a table is given to explain the
meaning of each bit, to calculate the value needed in the CONTROL statement add up
the values in the Value column for each of the options needed.

CONTROL 0

Reset. The value must be non-zero.

CONTROL 1

BREAK. The value must be non-zero. A 400 millisecond BREAK signal is sent.

CONTROL 2

This register is undefined in both HTBasic and HP BASIC.

CONTROL 3

Set baud. The baud rate is set to the value you specify. Available baud rates are 110,
300, 600, 1200, 2400, 4800, 9600, 14400, and 19200. Under 32-bit Windows, 38400,
57600, and 115200 are also available.

CONTROL 4

Set character format.

Bits
7-6
54,3

1,0

Value

56
40
24

OFRPNWOMOO®

Meaning

Not used.

Parity bit is always Zero. (111)
Parity bit is always One. (101)
Parity is Even. (011)

Parity is Odd. (001)

No parity is sent. (000)

2 stop bits (1.5 for 5 bit characters).
1 stop bits.

8 bit. (11)

7 bit. (10)

6 bit. (01)

5 bit. (00)

CONTROL 5

Set hardware handshaking output line state.

Bit Value Meaning

7-5 - Not used.

4 16 16=Enable, 0=Disable Loopback Testing.

3 8 Not used. (2nd-RTS not supported).

2 4 Not used. (DRS not supported).

1 2 2=Tie RTS high, 0=Use RTS in handshaking.
0 1 1=Tie DTR high, 0=Use DTR in handshaking.

(DTR is ignored in the UNIX version.)

CONTROL 6

Data Out. The specified character is loaded into the transmit holding register and then
transmitted. Handshaking lines are not changed or read. Normally, you should use the
OUTPUT statement.

CONTROL 7

Optional Receiver/Driver Status. On this interface, this is ignored.

CONTROL 8 to 11

These registers are undefined in both HTBasic and HP BASIC.

CONTROL 12

Set hardware handshaking input line state.

Bit Value Meaning

7 128 128=Ignore CD, 0=Use CD in handshaking.
(CD is ignored in the UNIX version.)

6 64 Not used.

5 32 32=Ignore DSR, 0=Use DSR in handshaking.
(DSR is ignored in UNIX and with SERIAL32.)

4 16 16=Ignore CTS, 0=Use CTS in handshaking.

3-0 - Not used.

CONTROL 13

Set default baud. Each time HTBasic is started, the default is set to 9600. This register
can not be used to change that. This register can be used to change the default set by
SCRATCH or RESET.

CONTROL 14

Set default character format. Each time HTBasic is started, the default is set to Parity
disabled, 1 stop bit, 8 data bits. This register can not be used to change that. This register
can be used to change the default set by SCRATCH or RESET.

CONTROL 100

XON/XOFF Handshaking. A non-zero value enables XON/XOFF. A zero value disables it.
By default it is on.

Serial STATUS Registers

The following STATUS registers are supported.

STATUS O

Card identification. Returns a 66. This is the same value returned by the HP 98644 Serial
Interface. It signifies that the following differences from the HP 98626 Interface are
present:

1. The optional receiver/driver lines are not present.
Register 7 does nothing.

2. Configuration switches are not present. Defaults are
9600 baud, 8 bit, no parity on a PC. The defaults are the
system settings on UNIX versions.

3. The physical connector is a RS-232-C 9 or 25 pin connector.

STATUS 1

Interrupt Status. If you will be porting programs to an HP BASIC computer, you should be
aware that bits 5 to 0 are defined differently under HP BASIC. Only bits 5 and 4 give the
interrupt number, encoded to specify an interrupt in the range 3 to 6. Also, a bug in HP
BASIC can cause bit 6 to be asserted after a DISABLE INTR has supposedly disabled
the interrupt. This does not occur with HTBasic. Bits 5 through 0 are zero on UNIX
versions and bit 6 is a 1 for a pending interrupt on the Windows version.

Bit
-
6
5-2
1,0

Value
128
64

Meaning

Interrupts Enabled
Interrupt waiting service
Interrupt number, 0-15
Not used.

STATUS 2

Interface Activity Status. Bit 2 is always zero in this implementation because HTBasic
stops handshaking whenever a function call may occur.

Bit Value Meaning

7-3 - Not used.

2 4 Handshake in progress (always 0).
1 2 Interrupts Enabled (ENABLE INTR).
0 1 Not used.

STATUS 3

Baud rate.

STATUS 4

Character format (See CONTROL above).

STATUS 5

Read hardware handshaking output line state (See CONTROL above).

STATUS 6

Data In. Reads next character from the receive buffer. The character is then removed
from the buffer. If no characters are in the buffer, the character in the UART receive buffer
is returned.

STATUS 7

Optional Receiver/Driver Status. On this interface, this is always zero.

STATUS 8

Interrupt Enable Mask. This register is set with the ENABLE INTR statement.

Note: It is recommended that bit 1, Interrupt if Tx Holding Reg. Empty, not be used
because any time ENABLE INTR is executed, this register will be empty and the interrupt
will immediately occur. The interrupt-driven receive buffer code will then immediately
acknowledge the interrupt as a side effect of checking for data in the receiver.

Bit Value Meaning

7-4 - Not used.

3 8 Interrupt if Modem Status (register 11) changes.
2 4 Interrupt on error (register 10, bits 1 to 4).

1 2 Interrupt if Transmit Holding Reg Empty.

0 1 Interrupt if data becomes available.

STATUS 9

Current Interrupt ID. If bit O is 0, then an interrupt is pending, and bits 2 and 1 indicate the
cause. The interrupts are prioritized by value. Multiple interrupts can be pending. An
interrupt handler should read this register repeatedly, handling each interrupt until this
register shows that no interrupt is pending. Also, if a Data Available interrupt is followed
by an Error Occured interrupt before either is serviced, only the later will be reported. This
is different than HP BASIC. If you enable both interrupts, and an Error interrupt occurs,
you should manually check for data available using bit O of register 10. Only Data
Available is supported in the UNIX versions.

Bit Value
7-3 -
2.1 6
4
2
0
0 1

Meaning

Not used.

Error Occurred (register 10, bits 1 to 4)(11).
Data Available (10).

Transmit Holding Register is empty (01).
Modem Status (register 11) changed (00).
1=No interrupt, O=Interrupt pending.

To handle, or acknowledge an interrupt, you should do the following:

Interrupt

Error Occurred
Data Available
Tx Reg Empty
Modem Status

Acknowledge by...

STATUS register 10, UART Line Status.
ENTER or STATUS register 6, Data In.
STATUS register 9, Interrupt ID.
STATUS register 11, Modem Status.

STATUS 10

UART line status. Only Data Ready is supported in the UNIX versions.

Bit Value Meaning

7 128 Not used.

6 64 Transmit Shift Register Empty.

5 32 Transmit Holding Register Empty.
4 16 Break Detect.

3 8 Framing Error.

2 4 Parity Error.

1 2 Overrun Error.

0 1 Data Ready.

STATUS 11

Modem status. This register is not supported in UNIX versions.

Bit Value Meaning

7 128 Carrier Detect (CD).

6 64 Ring Indicator (RI).

5 32 Data Set Ready (DSR).

4 16 Clear to Send (CTS).

3 8 Delta Carrier Detect.

2 4 Trailing Edge Ring Indicator.
1 2 Delta Data Set Ready.

0 1 Delta Clear to Send.

STATUS 12

Return the hardware handshaking (input lines) state. See CONTROL register 12, above.

STATUS 13

Return the current default baud rate.

STATUS 14

Return the current default character format.

STATUS 100

Return the XON/XOFF enable state. 1 - enabled, 0 - disabled.

STATUS 101

Return the number of characters in the receive buffer.

Serial READIO Registers

Note that registers 0 and 1 are used to access the Divisor Latch in addition to other
UART registers. If the Divisor Latch Access Bit (DLAB) of the Line Control Register
(register 3) is set, then registers 0 and 1 access the Divisor Latch. Register 0 accesses
the least significant byte and register 1 the most significant. To calculate the divisor
needed for a particular baud rate, use the formula Divisor = 115200 DIV Baud_rate. If
DLAB is clear, then registers 0 and 1 access the UART registers given below. READIO is
not supported in the UNIX and Windows versions.

READIO 0

Receive Buffer (if DLAB is 0) and Divisor Latch, least significant byte (if DLAB is 1).

READIO 1

Interrupt Enable Register (if DLAB is 0). Interrupt Enable Register bit definitions are:

Bit Value Meaning

7-4 - Not used.

3 8 Enable Modem Status interrupt.

2 4 Enable receive line status Interrupt.

1 2 Enable Transmit Holding Register empty
interrupt.

0 1 Enable data available interrupt.

READIO 2

Interrupt Identification Register.

Bit Value
7-3 -
2,1 6
4
2
0
0 1

Meaning

Not used.

Receiver line status (11).

Data Available (10).

Transmit Holding Register empty (01).
Modem Status (00).

1=No interrupt, O=Interrupt pending.

READIO 3

Line Control Register.

Bits
-

6
54,3

1,0

Value
128
64

56

40

24

OFRLNWOPMOO®

Meaning

Divisor Latch Access Bit (DLAB).
Set Break.

Parity bit is always Zero. (111)
Parity bit is always One. (101)
Parity is Even. (011)

Parity is Odd. (001)

No parity is sent. (000)

2 stop bits (1.5 for 5 bit characters).
1 stop bits.

8 bit. (11)

7 bit. (10)

6 bit. (01)

5 bit. (00)

READIO 4

Modem Control Register.

Bit Value Meaning

7-5 - Not used.

4 16 16=Enable, 0=Disable Loopback Testing.
3 8 Gate interrupts (OUT 2).

2 4 Not used (OUT 1).

1 2 Request to Send (RTS).

0 1 Data Terminal Ready (DTR).

READIO 5

Line Status Register.

Bit Value
7 128

6 64

5 32

4 16

3 8

2 4

1 2

0 1

Meaning

Not used.

Transmit Shift Register Empty.
Transmit Holding Register Empty.
Break Detect.

Framing Error.

Parity Error.

Overrun Error.

Data Ready.

READIO 6

Modem Status Register.

Bit Value Meaning

7 128 Carrier Detect (CD).

6 64 Ring Indicator (RI).

5 32 Data Set Ready (DSR).

4 16 Clear to Send (CTS).

3 8 Delta Carrier Detect.

2 4 Trailing Edge Ring Indicator.
1 2 Delta Data Set Ready.

0 1 Delta Clear to Send.

Serial WRITEIO Registers

Note that registers 0 and 1 are used to access the Divisor Latch in addition to other
UART registers. If the Divisor Latch Access Bit (DLAB) of the Line Control Register
(register 3) is set, then registers 0 and 1 access the Divisor Latch. Register O accesses
the least significant byte and register 1 the most significant. To calculate the divisor
needed for a particular baud rate, use the formula Divisor = 115200 DIV Baud_rate. |If
DLAB is clear, then registers 0 and 1 access the UART registers below. WRITEIO is not
supported in the UNIX and Windows versions.

0 - Transmit Holding Register (if DLAB is 0).
1 - Interrupt Enable Register (if DLAB is 0).
3 - Line Control Register.

4 - Modem Control Register.

5 - Line Status Register.

6 - Modem Status Register.

Serial ENABLE INTR Mask

ON INTR and ENABLE INTR are supported on this interface. The definition of bits used
in the ENABLE INTR statement is given above under STATUS register 8.

Chapter 12
Other 1/O Destinations/Sources

This chapter discusses I/O (input/output) facilities for buffers, strings, a special interface
called the "Processor Interface,” and pipes. This chapter also describes methods for
using interfaces and devices for which there is no HTBasic device driver.

Chapter 7, "General Input and Output,” discussed the general principles used for
input/output. These principles apply to all I/O targets. In particular, use of ASSIGN,
OUTPUT, ENTER, STATUS, CONTROL, and TRANSFER were explained. If you have
not yet read that chapter, you should do so before reading this one. Chapter 8, "CRT,
Keyboard, and Printer” contains information on statements that are especially useful for
printer use, and should be read in connection with the Parallel Interface information in
this chapter.

1/0 to Strings

The OUTPUT and ENTER statements can be used to write or read data to or from a
string. This capability is convenient when you wish to capture the output for further
manipulation, or when converting between different formats.

OUTPUT to Strings

Output to strings starts at the beginning of the string with each OUTPUT statement,
outputs the data into the string in FORMAT ON format, and then sets the string length. A
second OUTPUT statement will overwrite the information from the first.

10 OUTPUT AS;"1"

20 OUTPUT AS;"2"

30 PRINT A$="2"&CHRS$ (13) &CHRS (10)
40 END

This program shows that the second output overwrites the data from the first. It also
illustrates that the normal item and line terminators are output to the string unless
suppressed.

OUTPUT to a string with the "W" image specifier writes binary data to a string. The data
is always written using the native byte ordering of the computer system. Intel processors
use LSB FIRST ordering. Motorola 68xxx, Sun SPARC, and HP PA-RISC processors use
MSB FIRST ordering.

ENTER from Strings

ENTER from strings starts at the beginning of the string with each ENTER statement,
reads the data from the string with FORMAT ON, and returns an EOI signal with the last
character of the string.

10 AS="12"&CHRS (10)&"34"
20 ENTER AS;BS
30 ENTER AS$;CS
40 PRINT BS,C$

In this program, both B$ and C$ will have the value "12", even though the first ENTER did
not read all the data from the string. With strings, each ENTER re-starts from the
beginning of the string.

ENTER from a string with the "W" image specifier reads binary data from a string. The
data is always read using the native byte ordering of the computer system, as explained
previously in the "OUTPUT to Strings" section.

Buffers

I/O to strings, as explained above, has limited application. Buffer /O is more powerful.
HTBasic implements circular buffers. Fill and empty pointers remember where the last
OUTPUT, ENTER, or TRANSFER ended, allowing the next statement to pick up where
the last one left off. The ASSIGN statement sets up a buffer for I/O. While buffers can be
created in strings or arrays (named buffers), unnamed buffers are recommended. The
statement

ASSIGN @Iopath TO BUFFER [300]

creates an unnamed buffer and assigns it an I/O path name. The

ASSIGN @Another TO BUFFER X (*)

statement assigns an I/O path name to a variable previously declared as a buffer in a
COM, DIM, INTEGER, or REAL statement.

The buffer specified in ASSIGN may now be used in ENTER, OUTPUT, and TRANSFER
statements. Information kept about a BUFFER includes the current number of bytes in
the buffer (initially set to 0), the empty and the fill pointers (initially set to 1), the buffer
capacity, and TRANSFER information.

If somehow a BUFFER ceased to exist while the 1/0O path used to write to it still existed,
fatal errors could result. For this reason, the BUFFER lifetime must equal or exceed the
I/0O path lifetime. The following table shows the legal and illegal combinations of
BUFFERs and I/O paths. A value of 0 means the combination is legal. A non-zero value
gives the error returned if this combination is used.

Type of Type of 1/0 Path

BUFFER Local COM Parameter
Local 0 602 602

Same COM - 0 -

Different COM - 602 -
Parameter 0 602 o*
Un-named 0 602 602
ALLOCATE 603 603 603

Not a BUFFER 603 603 603

*If the 1/O path and BUFFER parameters have been passed through multiple CALL
levels, the BUFFER must outlive the I/O path. Also, if a parameter originated as a COM
variable, the rules for COM variables apply.

Unnamed buffers can only be accessed through their /0O path. Named buffers can be
directly accessed through their variable's name, but this procedure is not recommended
since the data in the buffer is unformatted, the data may have the wrong byte order, and
direct access does not automatically update the buffer registers. The data in the buffer
and the string's current length can be changed, but the buffer registers (empty and fill
pointers, current-number-of-bytes register) are not automatically updated. To
automatically update the buffer registers use ENTER, OUTPUT, and TRANSFER
statements.

BUFFER STATUS/ICONTROL Registers

The STATUS and CONTROL registers of an I/O path assigned to a BUFFER were
presented in full in Chapter 7. The following example shows use of registers 2 through 5.

All of these registers can be read, and all but the first can be set.

10
20
30
40
50
60
70
80
90
10
11
12
13
14

ASSIGN @Io TO BUFFER

Info("Start",@Io)
OUTPUT @Io;PI,1/3

Info ("After OUTPUT",@IO)

ENTER @Io;X

Info ("After ENTER",(@I0)

END
SUB Info (When$,@Io)
PRINT When$

0 PRINT "
0 PRINT "
0 PRINT "
0 PRINT "
0 SUBEND

Total buffer size is
Fill pointer is

of bytes in buffer is
Empty pointer is

This program produces the following output:

St

Af

Af

art

Total buffer size is
Fill pointer is

of bytes in buffer
Empty pointer is

ter OUTPUT

Total buffer size is
Fill pointer is

of bytes in buffer
Empty pointer is

ter ENTER

Total buffer size is
Fill pointer is

of bytes in buffer is
Empty pointer is

is

is

1000
1
0
1

1000
17
16

1000
17

[1000];FORMAT OFF

"; STATUS
"; STATUS
"; STATUS

(
(
(
"; STATUS (

@QTIo, 2
@Io, 3
@Io, 4
@QIo, 5

)
)
)
)

Pipes

Under UNIX, OUTPUT and ENTER can be made through pipes to exchange data with
other programs or to read the output of an operating system command. The ASSIGN
statement is used to spawn a child process running a different program or command and
establish an I/O path to communicate with that process. The string specifying the
command must start and/or end with the pipe character, the vertical bar, "|".

If the string begins with "|", then OUTPUT can be used to send information to the
process. If the string ends with "|", then ENTER can be used to get information from the
process. To close the pipe, close the I/O path by assigning it to "*". The following example
runs the "whoami" command, reads the output from the command, and prints it on the
screen. The pipe is then closed.

10
20
30
40
50

ASSIGN @I TO "whoami |"

ENTER @I;AS$

PRINT "You are logged in as ";AS$
ASSIGN @I TO *

END

The Processor Interface (32)

Interface select code 32 has a special usage and cannot be changed. It allows some
system attributes associated with the computer processor to be set or read. CONTROL
and STATUS are the only operations allowed on this interface. To ease porting of HP
BASIC programs, CONTROL operations are supported, but are ignored except as noted.
The following STATUS registers are supported in this version.

STATUS O

Parity Checking. Always 1 (enabled), regardless of the presence or absence of and state
of parity checking.

STATUS 1

External Cache. Always 0 (disabled), regardless of the presence or absence and state of
an external cache.

STATUS 2

Floating-Point Math Hardware. If a math coprocessor is present, and enabled, a one is
returned. If no math coprocessor is present, or if one is present and disabled, then zero is

returned.

When using HTBNO387 (DOS Version), a zero can be written to this register to disable
the coprocessor. This should not be done with HTB386. The control statement looks like

this:

CONTROL 32,2;0

STATUS 3

Internal (Inside the Processor) Cache. Always 0 (disabled) in all versions but the DOS
Version, where it reflects the actual enabled/disabled state of the internal processor
cache.

STATUS 4

Battery-Backed-Up Clock Type. Presently, always 1.

0 = Battery-backed-up clock is NOT present.
1 = Battery-backed-up clock is present.

Accessing Other Interfaces and Devices

If available, an HTBasic device driver is the best way to access a device, interface, or
plug-in board. An HTBasic device driver is loaded only while HTBasic is running and so
does not consume any memory when not needed. In the DOS Version, HTBasic device
drivers are automatically loaded into extended memory when necessary, alleviating DOS
memory shortages. An HTBasic driver also has STATUS and CONTROL registers that
facilitate the set up and use of the board.

However, sometimes it is necessary to access a device for which there is no HTBasic
driver. The approach differs depending on the operating system. Sections are given
below for DOS and for UNIX.

Under DOS

Depending on the software that was supplied with the board, accessing the board can be
accomplished in three different ways:

1. IN, OUT, PEEK, and POKE operations
2. OBJor LIB Calls
3. DOS Device Driver

DOS IN, OUT, PEEK, and POKE operations

ALL boards can be accessed by IN, OUT, PEEK, or POKE operations. In some instances
this is the only way to access a board. The following statements accomplish these

operations:
INP (port) Input a byte
INPW (port) Input a word

OUT port, byte
OUTW port, word

Output a byte
Output a word

READIO (9826, address) PEEK byte
READIO (-9826, address) PEEK word
WRITEIO 9826, address;byte POKE byte
WRITEIO -9826,address;word POKE word

These statements are explained in more detail in the Reference Manual or in Chapter 7,
"General Input and Output,” of this manual.

For example, a Keithley/MetraByte DAC-02 12-bit Analog Output Board comes with no
OBJ, LIB, or DOS device driver. Because of the simplicity of use, it is intended that you
use OUT instructions to control the board. The following programming example is
provided by the manufacturer:

10 INPUT "Enter the data from 0 to 4095 ",D
20 Dh=INT (D/16)

30 D1=D-16*Dh

40 Dl=16*D1

50 OUT &H330,D1

60 OUT &H331,Dh

70 GOTO 10

80 END

With HTBasic, it is possible to output all 12 bits at once. The DAC-02 requires the bits to
be left justified. The following statement will accomplish the same thing as the last
example:

OUTW &H330, SHIFT (D, -4)

DOS OBJ or Library Calls

Some boards are supplied with OBJs or LIBs that can be linked with particular
programming languages to facilitate use of the board. For example, a Keithley/MetraByte
DAS-16 A/D Board comes with a library of routines accessed via "Calls" from BASICA
such as

CALL DAS16 (MD%,DIO% (0),FLAGS)

A library designed for use with one programming language usually doesn't work with all
programming languages. In particular, a BASICA or QuickBASIC library can not be called
directly from HTBasic. You may, however, write the portions of the program that access
the board in a language for which a library is supplied, and then use the HTBasic
EXECUTE statement to call those portions as subroutines of HTBasic. This method is
described in Chapter 14, "Mixed Language Programming."

If this method does not meet your requirements, look at options 1 and 3. Since all boards
are accessible by IN, OUT, PEEK, or POKE operations, you can access the board at that
level (provided the manufacturer has provided or is willing to provide documentation for
the IN/OUT registers of the board). Another option is to use a DOS device driver for the
board, if the manufacturer makes one available. DOS device drivers are discussed next.

DOS Device Driver

Some boards are supplied with a DOS device driver that can be accessed from most any
programming language, as well as most application programs. The driver is installed in
your CONFIG.SYS and when your computer is booted, the driver is added to the drivers
already present in DOS. The board is then accessed using the same statements used to
access a file. The DOS device driver has a hame that you use instead of a filename. Any
file I/O to that name will go to the board instead of a file.

For example, the Keithley/MetraByte DAS-50 A/D Board comes with a DOS device driver
that creates a DOS device named "$DAS50". The following example, provided by the
manufacture, is translated from QuickBASIC to HTBasic:

10
30
40
50

100

1000
1010
1020

1030
5000

ASSIGN @I TO "S$DAS50";FORMAT ON

ON END @I GOSUB 1000

INPUT "Enter Sample rate required ",X

OUTPUT @I;"Set Rate ";X;" ch 0&1 samples 1000 range 5v"

STOP

REM To retrieve error one must read from the device
ENTER @I;N,A$

PRINT AS

ERROR RETURN
END

Under UNIX

Under UNIX, devices are available to any programming language and most application
programs as names in the file system. The driver is linked into the operating system
before the computer was shipped to you, or afterwards as part of the device's installation
procedure. When UNIX boots, the driver is brought into memory. The device is then
accessed using the same statements used to access a file. The device has a name that
you use instead of a filename. Any file 1/O to that name will go to the device instead of a
file.

Device names are typically found in the /dev directory, or a subdirectory of /dev. For
example, the serial ports on a SPARCstation 2 running SunOS 4.x are called /devi/ttya
and /dev/ttyb. Serial ports under HP-UX are similarly named.

10 ASSIGN @S1 TO "/dev/ttya"; FORMAT ON
20 OUTPUT @S1;"MEASURE:VOLT?"

30 ENTER @S1;V

40 END

Just as with a file, you must have the proper permissions to access a device. In the case
of serial ports, it is also important that the port not be enabled for login. Refer to your
system documentation or system administrator for more information.

Use Pipes

Under UNIX, it is also possible to write a program in another language and establish a
pipe to output/enter data to/from the other program. This approach may be useful if a
library of routines to access the device is supplied for the C language. Write just the
portions of the program that call the libraries in C, and then read commands from
HTBasic from stdin and write output for HTBasic to stdout.

Chapter 13

International Language Support

This chapter describes HTBasic international language support. HP BASIC is fairly tightly
tied to the Roman-8 character set. HTBasic is not tied to any given character set.
HTBasic depends on the operating system for keyboard, display, and printer support of
different character sets. HTBasic provides support for collation or lexical ordering and
upper- and lowercase conversions. Users are encouraged to use the character sets
supported by the operating system. The use of Roman-8 is discouraged when it is not
supported by the operating system.

This chapter describes handling attribute/color character conflicts, LEXICAL ORDER
(collating sequence), upper/lowercase conversions, LABEL characters, and user-defined
lexical order rules. Limited Roman-8 character set support is explained. Lexical order and
character set tables are given at the end of the chapter.

DOS Code Pages

Under DOS, character set support is provided through "Code Pages." A code page is
simply a character set. Starting with DOS 3.3, international language support was
included with DOS using code pages. Code page support is included for keyboards,
displays, and printers. A synopsis of commands necessary to install code page support is
given later in this chapter.

The Japanese version of DOS HTBasic runs under DOS/V. The proper character set
support should have been loaded when DOS/V was installed on the computer. This
support is accessed by HTBasic through the VGAB screen driver.

Windows and Unix Character Sets

Under Windows and Unix, character sets are supported through printer and screen fonts
and keyboard input methods. The correct combinations of fonts and input methods are
usually installed as part of the system installation.

Character Sets

ASCII is one of the most widely used character sets, but unfortunately, defines characters
only up to CHR$(127) and excludes many characters necessary in languages throughout
the world. Other character sets define characters up to CHR$(255) and include other
necessary characters. The following paragraphs describe several of these character sets.
Each version of HTBasic has built-in support for one character set, but the capability is
present for users to add support for other character sets.

Japanese-enabled versions of HTBasic, when run in Japanese mode, allow use of two-
byte characters using the ISO-932 and Shift-JIS character sets. These are explained later
in this chapter.

Character set tables for code pages 850, 437, Roman-8, Latin-1, ISO-932 and an
overview of the Shift-JIS character set are given at the end of this chapter.

Code Pages 437 and 850

The default DOS character set is named code page 437. Code page 437 lacks many
characters necessary for European languages. Code page 850 is a character set
designed with all the characters needed for most European, North American, and South
American languages. It is a superset of code page 437. It replaces some of the table-
drawing and Greek characters in code page 437 with additional international characters.

The DOS version of HTBasic expects code page 850 to be in use. If it is not, the
keyboard may not match the display and upper- and lowercase conversions and collating
may not function as expected. If code page 437 is in use, conversions will work correctly
unless a conversion produces a character that is not in code page 437.

Roman-8

The HP BASIC Series 200/300 character set is named Roman-8. It is available on the
popular LaserJet printer, but is not implemented in a DOS code page. The DOS version
of HTBasic provides a solution for users wishing to use the Roman-8 character set. This
solution works only while HTBasic is running, and is discussed later in this chapter.

The HP 700 Workstation Version of HTBasic expects the Roman-8 character set to be in
use. If it is not, the keyboard may not match the display and upper- and lowercase
conversions and collating may not function as expected.

Latin-1

The character set used by the Sun SPARCstation and by Microsoft Windows is called
Latin-1 or ISO 8859-1. Most X Windows systems from vendors other than HP also use
this character set.

The Sun SPARCstation and Windows versions of HTBasic expect the Latin-1 character
set to be in use. If it is not, the keyboard may not match the display and upper- and
lowercase conversions and collating may not function as expected.

ISO-932 and Shift-JIS

All Japanese-enabled versions of HTBasic use the 1SO-932 single-byte and Shift-JIS
character double-byte sets for character representation when run in Japanese mode.
These are the same character sets used by HP BASIC. The ISO-932 character set is the
same as the ASCII set for characters whose values are less than 128. Characters
whose values are between CHR$(129) and CHR$(159) or between CHR$(224) and
CHR$(252) are used as leading bytes for two-byte characters using the Shift-JIS
character mapping. Characters whose values are between CHR$(161) and CHR$(223)
are half-width katakana characters from the 1ISO-932 character set. CHR$(160) is a
space. CHR$(128) and CHR$(253) - CHR$(255) are undefined.

Non-ASCII characters are entered into HTBasic programs using the operating system's
Input method. ASCII, katakana, and hiragana characters are entered using the normal
keyboard keys together with special shift keys. Kanji are usually entered by allowing the
user to type a phonetic (ASCII, katakana, or hiragana) representation of the desired
character on the keyboard and pressing a convert key, which displays a list of possible
characters at the bottom of the screen or in a separate window. The user then chooses
the desired character from the list.

Variable Names
HP BASIC limits the international characters in variable names to CHR$(161) to
CHR$(254). In HTBasic, this range is expanded to CHR$(128) to CHR$(254) since many
commonly used characters are in the range excluded by HP BASIC. In Japanese mode,
HTBasic allows characters in the range CHR$(161) - CHR$(223) (single-width katakana
characters) in variable names.

Attribute Character Conflict

HP BASIC uses the range CHR$(128) to CHR$(143) for attribute and color control
characters. This range is used by some character sets for various international
characters. To allow use of characters in this range, HTBasic will move attribute and color
control characters from this range to CHR$(16) to CHR$(31) with the statement:.

CONTROL CRT,100;1

To restore the normal range, use

CONTROL CRT,100;0

When HTBasic is run in Japanese mode, CONTROL CRT,100;1 is executed
automatically.

CONTROL CRT,100 does not affect values used with CONTROL registers, only values
PRINTed or OUTPUT to the CRT. This statement is an enhancement to HP BASIC and
will return an error if executed on a Series 200/300 computer.

The following table shows the attribute and color control characters for both the normal
and alternate ranges. Remember that not all attributes are supported on every display.

Attribute Normal Alternate
None 128 16
Inverse 129 17
Blinking 130 18
Inverse & Blinking 131 19
Underline 132 20
Underline & Inverse 133 21
Underline & Blinking 134 22
Underline, Inverse, & Blinking 135 23
Attribute Normal Alternate
White 136 24
Red 137 25
Yellow 138 26
Green 139 27
Cyan 140 28
Blue 141 29
Magenta 142 30

Black 143 31

Lexical Order

"Lexical order" is another term for "alphabetical order". A "lexical order" defines an
ordering of each character in a character set. By assigning an order number to each
character, strings can be compared in a meaningful way with "<", ">", and MAT SORT.
Different languages have different lexical orders.

The statement LEXICAL ORDER IS can be used to specify lexical order rules. The
current LEXICAL ORDER is returned by the SYSTEMS$("LEXICAL ORDER IS") function.

Rules for five languages are built into HTBasic: ASCIl, FRENCH, GERMAN, SPANISH,
and SWEDISH. (In HTBasic, LEXICAL ORDER IS STANDARD is equivalent to LEXICAL
ORDER IS ASCII). These languages are inclusive enough to support most ordering
conventions. If the language you are using is not listed, check the LEXICAL ORDER
tables near the end of this chapter to see which most nearly matches your language. You
may define your own ordering rules as explained later in this chapter.

In Japanese mode, HTBasic defaults to LEXICAL ORDER IS STANDARD.

You must have the correct character set active for the built-in rules to function correctly.
The character set expected by each version of HTBasic was presented previously in this
chapter. Limited support for Roman-8 on operating systems that don't support it is
explained later in this chapter.

Execute one of the following statements to specify lexical ordering rules:

LEXICAL ORDER IS ASCII
LEXICAL ORDER IS FRENCH
LEXICAL ORDER IS GERMAN
LEXICAL ORDER IS SPANISH
LEXICAL ORDER IS SWEDISH

Upper and Lowercase Conversions

The LEXICAL ORDER IS statement also determines upper/lowercase conversions in
addition to ordering rules. Rules for the built-in languages are given in the table below.
Note that (uppercase Y umlaut) does not exist in codepage 437, 850 or the Latin-1
character sets. In these cases, Y is used for UPC$("y").

Uppercase Table

P B A T o s e mm

ASCITI : A-7Z AARAAAECEEEEITITPNOOOOO@UUTIUYYE
FRENCH : A-7Z AAAAAARCEEEEIIIIDPNOOOOGO@UUUUYYE

P B A T o s e mm

GERMAN : A-7 AAARAARCEEEEITTTIPNOOGOOO@UTTUYYE
SPANISH: A-Z AARAAAAFCEEEEIIITPNOOOOO@UUUUYYE

P B A T o s e mm

SWEDISH: A-7Z AAAAAARCEEEETIITTPRNOOOOO@UTTUYYE

Lowercase Table

P B A T o s e mm

ASCITI : a—-z A44433xceéeeliiidnosdsdeuiiliyyb
FRENCH : a-z 344d33xceédeliiiidfiosdssdeuiiiyib
GERMAN : a—z aaﬁﬁﬁémgééééiiiiﬁﬁoé@@émﬁﬁﬁﬁﬁﬁp
SPANISH: a-z A44d33xceéseliiidfiosdssdeniiiyib
SWEDISH: a-z 344433xceéseliiiidnosdssdeuiiiyib

You may define rules for other languages using "LEXICAL ORDER IS Array(*)", which
has been enhanced to allow case conversion rules to be stored in the array along with
order rules. HP BASIC does not support these enhancements but does not return an
error if they are present. These enhancements are explained later under "User-Defined
UPC$/LWCS$ Rules".

In Japanese mode, uppercase and lowercase conversion is limited to ASCII characters;
Japanese characters are not converted.

Japanese Character Conversions

In Japanese mode, HTBasic supports converting between hirigana and double-width
katakana and between single- and double-width katakana and single- and double-width
Roman characters. This support is accessed through the CVT$ command.

LABEL Character Set

One limitation of most operating system character set support is that it does not contain
vector definitions of the characters for the LABEL statement. Also, like HP BASIC, the
HTBasic LABEL statement does not support all the international language characters
above CHR$(127). But unlike HP BASIC, HTBasic has been enhanced to allow the user
to define his own characters, or delete existing characters. The characters that are
defined by default are:

Char Latin-1 PC-850 Roman-8
U 252 129 207
é 233 130 197
a 226 131 192
a 228 132 204
a 224 133 200
a 229 134 212
c 231 135 181
é 234 136 193
é 235 137 205
e 232 138 201
T 239 139 221
7 238 140 209
i 236 141 217
A 196 142 216
A 197 143 208
E 201 144 220
® 230 145 215
yis 198 146 211
0] 244 147 194
o] 246 148 206
0 242 149 202
1] 251 150 195
u 249 151 203
Char Latin-1 PC-850 Roman-8
O 214 153 218
U 220 154 219
2} 248 155 214
£ 163 156 187
()] 216 157 210
a 225 160 196
i 237 161 213
6 243 162 198
U 250 163 199
f 241 164 183
N 209 165 182
é 191 168 185
i 161 173 184
o 164 207 186
R 223 225 222
) 175 238 176
180 239 168
8§ 167 245 189
° 176 248 179

Umlaut 168 249 171

When run in Japanese mode, HTBasic allows the user to load a Japanese character set
for use with the LABEL command. This is not done by default because of its memory
requirements; the Japanese character set contains several thousand characters.

Defining Your Own LABEL Characters

To define your own characters, use one of these two syntaxes:

CONFIGURE LABEL First_char TO String$
CONFIGURE LABEL First_char TO Array$(*)

where First_char is a numeric expression, rounded to an integer, which gives the LABEL
character to be defined, and String$ is a string expression that contains the new
definition. If a string array is specified, then one definition is stored in each element and
additional characters following First_char are also defined. Characters in the range 33 to
255 may be defined.

HTBasic provides 8 kilobytes (UNIX and Windows versions) or 2.5 kilobytes (DOS
version) of definition space. If you run out of space, you can free up space by deleting
unused definitions. To delete the definition of a character, specify a zero length string for
the definition.

The LABEL font is defined in a character cell that is 8 units wide and 16 units high. The x
units are numbered 0 to 7; the y units are numbered 0 to 15. The baseline is y=5. The
normal descender, such as that for the lower-case "g", goes down to y=1. Characters are
left justified in the character cell. The top of an H is at y=14. The right side of the H is at

15| |

ORI T&AETOTOT [T

X=6.

Each character in the definition gives an x,y coordinate and a flag indicating whether to
move or draw to that coordinate. The flag is stored in bit 7 of the character. If set, MOVE
to x,y; otherwise DRAW to x,y. The x coordinate is stored in bits 6, 5, and 4. The y
coordinate is stored in bits 3, 2, 1, and 0.

The following example shows the definition of the character "H":

Val = Move+ x*16 +y
133 = 128 + 0*16 + 5

14 = 0*16 + 14
238 = 128 + 6*1l6 + 14
101 = 6*16 + 5
138 = 128 + 0*16 + 10
106 = 6*16 + 10

CONFIGURE LABEL 72 TO CHR$ (133) &CHRS$ (14) &CHRS (238) &
CHRS$ (101) &CHRS (138) &CHRS$ (106)

Using LABELCHR.BAS

An example program, LABELCHR.BAS, is distributed with HTBasic that can be used to
examine the definitions of characters, or develop new definitions. LABELCHR.BAS wiill
not fully automate the task of adding characters, but is presented as an aid in developing
character definitions.

When you run LABELCHR.BAS the screen will be painted with four grids. Grid #1 will be
blank and is the current grid. Grid #2 displays an ASCII table of existing LABEL
definitions for characters in the range 128 to 255. (The grid is actually too small to
enclose all the characters. It is normal for the last row and last column to be displayed
outside of the grid.) Grid #3 displays the letter "g", a good example of where a descender
is located in the character cell. Grid #4 displays the letter "H", a good example of where
an uppercase letter is located in the character cell.

The softkey menu displays the available choices. Softkey 1 is "Digitize Char", 2 is
"Display Char", 3 is "Which Grid?", 4 is "Erase ON/OFF", 5 is "Show Chars", and 8 is
"EXIT". Pressing "EXIT" will cause the program to end; control is returned to the BASIC
system. Pressing "Which Grid?" will specify one of the four grids as the current grid.
Pressing "Show Chars" will display an ASCII table in the current grid. The table is just like
the one displayed in grid 2 at start up, unless you have changed some character
definitions.

Pressing "Display Char" will display a character in the current grid. You will be asked to
input the character you wish to display. Type the character and hit ENTER, or type the
NUM of the character and hit ENTER. Depending on the Erase Flag, the character will be
displayed on a fresh grid, or it will be displayed on top of the old contents of the grid. This
capability is useful when building a new definition based on existing characters.

Pressing softkey 4, the "Erase ON/OFF" flag is toggled between ON and OFF. When ON,
the current grid is cleared before each character is displayed. When OFF, the current grid
is overlaid with each displayed character. An asterisk, "*", is displayed next to the ON or
OFF to show the current state of Erase.

Pressing "Digitize Char" allows you to construct a new character definition. Typically, you
would display in one or more of the grids whatever characters will assist you in creating a
new definition, and then you would display in the current grid a character that is most like
the new one you wish to define. Then you would press "Digitize Char" and begin digitizing
the new character. You may use a mouse, or the arrow keys to move the cursor in the
grid.

When using a mouse, move the cursor to the desired coordinate and then press the left
button to Draw or the right button to Move there. Click either mouse button with the
cursor outside the grid to end the definition. If using the arrow keys, move to the location
you wish to Move/Draw to and press ENTER. The softkey menu will change, displaying
"Draw", "Move", and "Digitize Done". Press "Move" or "Draw". When you are done, press
ENTER and then "Digitize Done".

As each point is digitized, the correct value to use in CHRS is printed on the display line.
You should write these values down and use them when constructing your definitions.
When you are done digitizing a character you are given the option of immediately
assigning it to a character. If you wish to do so, enter the NUM of the character; if you do
not wish to do so, enter -1 for the NUM. If you immediately define the character, you can
then see it using "Display Char" or "Show Chars". The definition lasts until you QUIT
HTBasic.

Installing DOS Code Page Support

Code page support is for DOS version of HTBasic only; users of other versions can skip
to the next section. DOS users should read your DOS manual for a full explanation of
code page installation and usage. For MS-DOS 5.0, see Chapter 13, "Customizing for
International Use," in the MS-DOS User's Guide. For PC-DOS 4.0, see Chapter 7, "Using
Code Page Switching," of the Using DOS 4.0 manual. For MS-DOS 4.0, see Appendix E,
"How to Use Code Pages," of the MS-DOS User's Reference. Also read the information
given in other places in the manual for each individual command summarized below.
These summaries are given here for reference only.

COUNTRY

This command tells DOS what conventions to use for display of date, time, currency
symbols, etc. In DOS 4.0 (and later revisions) it also specifies lexical order and
capitalization, but these features are not used by HTBasic. HTBasic uses LEXICAL
ORDER IS instead.

DEVICE

This command is used to load DISPLAY.SYS and PRINTER.SYS, device drivers for code
page support of displayed character sets and printed character sets. In the command

DEVICE=DISPLAY.SYS CON=(xXXX,VYVY,Z)

"xxx" should be the display type. Currently (for DOS 4.0 and 5.0), it should be "EGA" for
both an EGA or a VGA. The CGA and Hercules are not supported. "yyy" should be 437,
the code page number of the character set in the ROM of your display card. The "z"
parameter specifies how many code pages, besides the one in ROM, you will be using.
This is usually one, since you usually use only one code page besides 437.

If your printer type is supported by PRINTER.SYS, it can automatically load the correct
character set into the printer when the code page is prepared or changed.

Note: DUMP ALPHA with the CRTB display driver (PLOTTER IS 6) active sends the
ALPHA screen to the printer using the printer's graphic capabilities and will dump the
screen correctly, even if PRINTER.SYS does not support your printer.

GRAFTABL

This command is needed if you have a CGA display to display characters above
CHR$(127) correctly in graphics mode. In text mode, the hardware is limited to code
page 437.

NLSFUNC

This command loads information from COUNTRY.SYS and enables the use of CHCP.

MODE

This command communicates with the device drivers loaded by DEVICE. The MODE xxx
CODEPAGE PREPARE command (which can be abbreviated MODE xxx CP PREP)

must be used to prepare each code page that will be used on each device. This should
be done before KEYB.

KEYB

This command loads the keyboard driver for international keyboards. One of our
customers reported that using KEYB decreases the maximum reliable baud rate. They
solved the problem by booting without KEYB. The problem can also be solved by using
hardware handshaking or by using a faster computer. We don't know what version of
DOS they were using. This is the kind of bug that Microsoft would probably be interested
in fixing since it affects all programs using serial interrupts. If you experience this
problem, please contact Microsoft.

CHCP

This command is used to select or change the current code page. It informs the drivers
for the keyboard, display, and printers of the change. It is equivalent to informing each

driver individually of the change using MODE CON CP SELECT, MODE PRN CP
SELECT, and KEYB commands.

Examples

The following two examples are representative only. If your configuration works, there is
no reason to change it. However, if your configuration does not work, these examples will
be helpful since they have been tested and are known to work. Use them as a known
starting point.

The following example shows the CONFIG.SYS and AUTOEXEC.BAT commands, in the
correct order, to install code page 850 support in MS-DOS 3.3 with a German keyboard.
No printer driver is installed. The files COUNTRY.SYS, DISPLAY.SYS, EGA.CPI, and
KEYBOARD.SYS should be in the C:\DOS directory. A path should be established to the
NLSFUNC, MODE, and KEYB commands before they are executed, or they should be in
the root directory.

CONFIG.SYS
country=049,,c:\dos\country.sys
device=c:\dos\display.sys con=(ega,437,1)

AUTOEXEC.BAT

nlsfunc

mode con codepage prepare=((850) c:\dos\ega.cpi)
keyb gr,,c:\dos\keyboard.sys

chcp 850

The following example shows the code page related commands installed by the PC-DOS
4.0 INSTALL/SELECT program. Again, German is the language installed. Code page 850
is prepared for use, but code page 437 is made active. KEYB and NLSFUNC are
executed in CONFIG.SYS rather than AUTOEXEC.BAT using the DOS 4.0 INSTALL
command. All the necessary files are placed in the necessary places by the
INSTALL/SELECT program.

CONFIG.SYS
COUNTRY=49, , COUNTRY.SYS
DEVICE=DISPLAY.SYS CON=(EGA,437,1)
INSTALL=KEYB.COM US,,KEYBOARD.SYS
INSTALL=NLSFUNC.EXE COUNTRY.SYS

AUTOEXEC .BAT

MODE CON CP PREP=((850) EGA.CPI)
KEYB GR, ,KEYBOARD.SYS

CHCP 437

User-Defined Lexical Orders

The lexical order rules provided with HTBasic are sufficient for most uses. But if needed,
you may define your own rules. The lexical order of each character may be specified.
Also, because the lexical order of some languages treat some letters as if they were two,
treat some two-letter combinations as if they were one, and ignore some letters, you may
define certain special cases to handle these situations. User-defined lexical rules are
stored in an array and are activated with the statement:

LEXICAL ORDER IS Array(*)

When user-defined rules are in effect, SYSTEM$("LEXICAL ORDER 1S") returns "USER
DEFINED".

Order Table

The main part of user-defined lexical order rules is stored in an order table, which is the
first 256 elements of the array. These elements specify the lexical order for each CHR$
from 0 to 255. The order number is stored in the upper byte of each element. For
example, to assign lexical order number O to the letter "A", and lexical order 1 to the letter

IIBII:

10 INTEGER A(0:256)

20 A (NUM("A"))=SHIFT(0,-8)
30 A(NUM("B"))=SHIFT(1l,-8)

When "A" is compared to "B", it will be smaller, since 0 is smaller than 1. "A"<B" returns
1.

Any special cases (2-to-1, 1-to-2, ignore) are noted in the lower byte of each element,
and if additional information is needed it is stored in a "Special Case" table that follows
after the first 256 elements of the array.

The lower byte of each element in the order table may have a value from O to 255. The
meaning of each value is given in the following table:

Value Meaning

0 No special case.

1 Ignore this character.

64+index 2-to-1 translation might be needed on this character.
128+index Perform 1-to-2 translation.

192-255 Sub-order number exists for this character.

In the above table, "index" is a value from 0 to 63 and specifies an index into the special
case table.

Special Case Table

The length of the special case table is stored in the 257th element of the array and can
be from 0 to 64 elements. The length must be stated, even if it is zero. Thus, the smallest
the array specified in the LEXICAL ORDER IS statement can be is 257 elements.

The special case table starts with the 258th element of the array, which is the element
immediately following the length. An index of O specifies the 258th element of the array.

Note: In the example, the BASE of the array was 0, and so the 258th element of the
array is A(257). Thus, index 0 in the special case table is A(257). If the BASE of the array
had been another value, the element number for the start of the special case table would
have been different, but still at the 258th element.

Ignore Characters

To expand on our previous example, let's specify that the letter "C" be ignored:

40 A(NUM("C"))=1
100 A(256)=0

Now "ABC" will be equal to "AB" and "C" will be equal to "". You can see from line 100
that we have also specified a zero length special case table. As we add to our example,
we will add to line 100. Because the array A(*) has been declared with a length of 257
characters, the array declaration in line 10 will also have to be changed as we add
special cases.

2-to-1 Translation

A 2-to-1 translation takes a two character combination, and translates it to one character.
Note: The strings involved are not actually changed. The change occurs internally for the
string comparison and is then discarded.

To define 2-to-1 translations starting with a certain character, the order table entry for the
starting character is used to store three things: 1) the order number is stored in the upper
byte for use when the character occurs, but not as part of a two character combination, 2)
the value 64 is stored in the lower byte to indicate that this character is the first character
of one or more 2-to-1 translations, 3) an index into the special case table is stored in the
lower byte.

The index into the special case table points to a list of two character combinations that all
start with the same first character. The first entry in the list gives the number of two
character combinations in the list. The remaining entries give the second character of
each two character combination and the order number to use in place of the combination.
The second character is given in the upper byte and the order number is given in the
lower byte.

Note: The first character was given in the order table and need not be repeated in the
special case table. Only the second character of each combination is given in the special
case table.

For example, we might want to consider "DX" to be a single character with order number
4 and "DY" to be a single character with order number 3. For all other occurrences of the
letter "D" we want "D" to have order number 2. For our example,

10 INTEGER A(O:259)

50 A (NUM("D"))=SHIFT(2,-8)+64+0
100 A(256)=0+3

110 A(257)=2

120 A(258)=SHIFT (NUM("X"),-8) + 4
130 A(259)=SHIFT (NUM("Y"),-8) + 3

Line 50 is the order table entry for the letter "D". Order number 2 will be used for "D"
unless it is "DX" or "DY". The value 64 indicates one or more 2-to-1 translations exist that
start with the letter "D". The value 0 is the index into the special case table.

Line 100 is the length of the special case table. Previously in our example, we had set it
to zero, but we are now adding three entries to the special case table.

In line 110, A(257) is at index O in the special case table. This is the start of our list of two
character combinations beginning with "D". Since we have two, "DX" and "DY", we set
A(257) to two.

Lines 120 and 130 define "DX" and "DY" to have order numbers 4 and 3. Now the
following will both be true:

"DY" <"DX" - because 3 <4
"DZ" <"DX" - because 2 < 4 ("D" < "DX").

1-to-2 Translation

A 1-to-2 translation takes a single character and translates it into two characters. This
capability also includes intelligent handling of upper and lowercase. For example, if "E" is
to be translated to "FG" then "Exyz" should be translated to "Fgxyz", while "EXYZ" should
be translated to "FGXYZ".

Note: The strings involved are not actually changed. The change occurs internally for the
string comparison and is then discarded.

To define 1-to-2 translations for a certain character, the order table entry for the character
is used to store three things: 1) the first order number is stored in the upper byte, 2) the
value 128 is stored in the lower byte to indicate a 1-to-2 translation, 3) an index into the
special case table is stored in the lower byte.

The special case table entry contains the second order numbers for both upper and
lowercase. The lower byte contains the lowercase order number, while the upper byte
contains the uppercase order number. The uppercase order number is used if the initial
character is uppercase and is not followed by a lowercase character.

For our example, if we want to use an order number of 5 for "F", 6 for "G", and 37 for "g",
then:

10 INTEGER A(0:260)

60 A(NUM("E"))=SHIFT(5,-8)+128+3
100 A(256)=0+3+1

140 A(260)=SHIFT(6,-8) + 37

Line 100 is the length of the special case table. Previously in our example, we had set it
to three, but we have now added one more entry to the special case table.

Line 60 is the order table entry for the letter "E" and line 140 is the special case entry for
"E". In place of "E", two order numbers will be used, 5 and 37 for "Fg", or 5 and 6 for
"FG". Now the following will all be true:

"E" >"FD"

"E" ="FG"

"E" <"FH"

"EXYZ" ="FGXYZ"
"Exyz" = "Fgxyz"

Sub-Order Numbers

Sometimes it is useful to assign several characters the same order number, yet still
collate them in a specific order. For example, it might make sense to assign all
occurrences of "E", regardless of the accent, the same order number, but still allow them
to be collated in a specific order. This can be accomplished using sub-order numbers.
Sub-order numbers can range from 0 to 63. To assign a sub-order number to a character,
set the lower byte of the order table entry to the sub-order value plus 192.

When strings are compared, if the order numbers of two characters are the same, the
sub-order numbers are used to determine the lexical order. If a sub-order number has not
been explicitly assigned to a character, 0 is used. A sub-order number can not be
assigned to characters that are used in Ignore, 2-to-1, or 1-to-2 translations since the
lower byte of the order table entry is already used.

As an example of sub-order number usage, say we wish to give "H" and "I" the same
order number, 7, but wish "H" to collate before "I" using sub-order numbers. We can give
"H" a sub-order number of 0 and "I" a sub-order number of 1:

80 A(NUM("H"))=SHIFT(7,-8)+192+0
90 A(NUM("I"))=SHIFT(7,-8)+192+1

Putting User-Defined Rules Into Effect

An order number must be assigned to each value, 0 through 255, in the order table. Once
this has been done, as well as assigning all special cases, the array may be specified in
a LEXICAL ORDER IS statement to make it take effect. All of the user-defined order rules
explained above are compatible between HTBasic and HP BASIC. HTBasic extensions to
LEXICAL ORDER IS that allow user-defined upper and lowercase conversions are
explained in the following paragraphs.

But first, let's complete our example:

5 REM USERDEF.BAS
10 INTEGER A(0:260)
20 A(65)=0

30 A(66)=256

40 A(67)=1

50 A(68)=576

60 A(69)=1411

65 A(70)=1280

75 A(71)=1536

80 A(72)=1984

90 A(73)=1985

100 A(256)=4

110 A(257)=2

120 A(258)=22532
130 A(259)=22787
140 A(260)=1573

150 FOR I=74 TO 255
160 A(I)=SHIFT (I-66,-8)

170 NEXT I

180 FOR I=0 TO 64

190 A(I)=SHIFT(I+190,-8)
200 NEXT I

210 LEXICAL ORDER IS A(*)
220 END

We have added lines 65, 75, and 150 to 200 to assign the characters that were not yet
assigned. We have also sped up the program by pre-evaluating functions like NUM("A")
and SHIFT(0,-8) wherever possible. Finally, line 210 causes all the changes to take
effect.

User-Defined UPC$/LWCS$ Rules

In addition to specifying order rules, HTBasic has been enhanced to let you specify upper
and lowercase conversion rules as well. This capability is an extension to HTBasic and
will not work if used with HP BASIC. However, HP BASIC will not return an error; the
UPC$/LWCS$ rules will simply be ignored.

Note: There is some danger in specifying meaningless upper/lowercase rules because
HTBasic uses these rules in checking the syntax of a command or program line. For
example, when you type "RUN", UPC$("RUN") is compared against the list of known
statements. As long as you take reasonable care in defining your rules, you shouldn't
have any problems.

Upper/lowercase rules are stored in the LEXICAL ORDER IS array immediately following
the special case table. The UPC$/LWC$ table consists of 257 elements. The first element
must have the value 21576 to indicate that the UPC$/LWCS$ table is present. The rules
themselves are stored in the next 256 elements, one for each possible character. All 256
characters must be defined. In each element, the upper byte contains the UPC$ value
and the lower byte contains the LWC$ value.

For example, in the USERDEF.BAS example above, the special case table ends at
element A(260). Element A(261) should be assigned a value of 21576 if upper/lowercase
rules are also being specified. Elements A(262) through A(517) would contain the rules
for CHR$(0) through CHR$(255). To set the UPC$/LWCS$ values for "A" and "a", the
following statements would be used:

A(257+A(256))=21576
A(258+A (256) tNUM("A"™))=SHIFT(NUM("A"),-8)+NUM("a")
A (258+A(256)tNUM("a"))=SHIFT (NUM("A"),-8)+NUM("a")

The subscript calculation in this example deserves some explanation. If the array BASE
is zero then A(256) is the length of the special case table, 257+A(256) is the first element
after the special case table, and 258+A(256)+NUM("x") is the UPC$/LWCS$ definition for

X".
Of course, it is best to simplify these statements to:

A(261)=21576
A(327)=16737
A(359)=16737

Example Data Files

If you installed the optional LEXICAL ORDER files during installation, the in the LEXICAL
subdirectory in the HTBasic directory there are several examples of user-defined
LEXICAL ORDER IS tables that change both the order rules and the upper/lowercase
rules. The files that are included depend on the version of HTBasic. Files for code page
850 have filenames of PC*.LEX. Files for Roman-8 have filenames of R8*.LEX. Files for
the out-dated version of Roman-8 used by HP BASIC are stored in files with names
HP*.LEX. Files for Latin-1 have filenames of L1*.LEX.

The file LEXICAL.BAS contains a SUB named "Lexical" that can be used to load the
tables stored in these files. (This SUB is listed earlier in this chapter.) Line 50 specifies
PC*.LEX files stored in the C:\\HTB directory, but you may change this line to fit your
needs.

Roman-8 Character Set Support

Although Roman-8 is a fairly popular character set, especially among users of the
European-language versions of HP BASIC, it is not available under DOS, Windows and
most non-HP versions of UNIX. Since HTBasic depends upon the operating system for
character set support, you should convert from Roman-8 to the native character set of
your computer. A conversion program is presented in the next section.

If you must use the Roman-8 character set, the sections following the translation
program section describe solutions that give most of the capabilities needed. To use a
different character set you must 1) change the character set used by the display, 2)
change the character set produced by the keyboard, 3) change the lexical order rules,
and 4) change the LABEL character definitions.

Roman-8 Translation Program

An example program, HP2PC.BAS, is distributed with HTBasic that can be used to
translate ASCII files (including program files saved in ASCII) from the Roman-8 character
set to code page 850 or Latin-1. The program only translates characters that appear
literally or in CHR$(xxx) statements, where "xxx" is a constant above 127. If a character
is specified in any other way (for example, "CHR$(X+3)"), it is not translated. You will
have to make those translations manually.

If any attribute control characters in the range CHR$(128) to CHR$(143) are seen, they
are translated to the alternate range at CHR$(16) to CHR$(31) and you must add the
following statement to make attribute characters be recognized in this new range:

CONTROL CRT,100;1

Several characters that exist in the Roman-8 character set are not found in code page
850 or Latin-1. When translating to code page 850, the characters in the range
CHR$(144) to CHR$(160) are translated to CHR$(219), a rectangular block, to make
them easy to spot and hand translate. When translating to Latin-1, the characters in the
range CHR$(144) to CHR$(160) are unchanged and the Dutch guilder symbol "™,
CHR$(190), is translated to "*", CHR$(42), to make it easy to spot and hand translate.
Other characters are translated to similar characters:

From... To...
Character Roman-8 Character PC-850 Latin-1
Grave accent 169) 96 96
Circumflex 170 N 94 94
Tilde 172 ~ 126
Lira 175 £ 156 163
235 S 83 83
236 S 115 115
238 Y 89 89

To translate to code page 437, specify code page 850. The only difference is the
translation for CHR$(191), the "¢" symbol. It is translated to CHR$(189) which is correct
for code page 850, but should be CHR$(155) for code page 437. This minor correction
can then be done by hand.

DOS Display Font

HTBasic includes a font loader program, LOADFNT, that can load the Roman-8 character
font into the EGA or VGA display hardware. Note that changing the display font without
changing the keyboard font causes a mismatch for characters above CHR$(128).
CONFIGURE KBD, explained below, can correct this situation for the most part.

See the Installing and Using the DOS Version manual for more information on LOADFNT.
The CGA and the Hercules Monochrome Graphics Adapters have their character fonts
defined in hardware and cannot be changed. The Roman-8 font is stored in a file named
HP200.FNT. The following example loads this file, assuming it is in the C:\HTB directory:

C>LOADENT C:\HTB\HP200.FNT

This command can be placed in the AUTOEXEC.BAT file so that it is automatically
loaded every time DOS is started. Once loaded, the Roman-8 font is used for all
applications, which may not be desirable. To disable the Roman-8 font use:

C>LOADENT OFF
To re-enable it, use:
C>LOADFNT ON

Note: LOADFNT is not compatible with code page support, and may be ignored if code
page drivers are installed.

Windows Display Font

A Windows font containing the Roman-8 character set, ROMANS8.FON, is supplied with
the Windows version of HTBasic. To install the Roman-8 font, select Control Panel,
Fonts, and Add.... Then change the drive and directory to LEXICAL subdirectory of the
HTBasic directory (HTBWIN, be default). Then select Roman8 and OK. Roman8 should
then be accessible to any Windows program that uses fixed width fonts.

To select Roman8 for use with HTBasic, use the -fn command line switch, explained in
the Installing and Using the Windows Version manual. Basically, select Program
Manager, TransEra HTBasic, File, Properties, and add "-fn Roman8" to the command
line. For example,

C:\HTBWIN\HTBWIN.EXE -fn Roman8

Note that changing the display font without changing the keyboard font causes a
mismatch for characters above CHR$(128). CONFIGURE KBD, explained below, can
correct this situation for the most part.

Keyboard

The statement CONFIGURE KBD has been added to HTBasic to allow simple keyboard
character set re-mapping. (This is different than CONFIGURE KEY, which re-maps
function and editor keys.) CONFIGURE KBD is not a complete keyboard driver. It uses a
look-up table to translate characters from one character set to another.

The files PCTOR8.KBD (formerly HP200.KBD) and L1TOR8.KBD contain the necessary
keyboard re-mappings from code page 850 and Latin-1 to Roman-8. The following
program will set up the re-mapping. Use either PCTORS8 or LITORS in line 60, depending
on the character set in use by the operating system keyboard driver. Where no translation
exists for a character, CHR$(252) is returned.

10 ! SETKBD.BAS

20 DIM Pc2hp$[256]

30 CLEAR SCREEN

40 PRINT "Set up translation string to Roman-8"

60 ASSIGN @Io TO "PCTOR8.KBD" !Use L1TOR8 for Latin-1
70 ENTER @Io;Pc2hp$

80 ASSIGN @Io TO *

90 CONFIGURE KBD 0 TO Pc2hp$

100 END

To enter a character without re-mapping, use the ANY CHAR function.
The syntax of the CONFIGURE KBD statement is:
CONFIGURE KBD First_char TO Strings

where First_char is a numeric expression, rounded to an integer, that gives the first
keyboard character to be re-mapped, and the first character in String$ gives the display
character that it is re-mapped to. If the length of String$ is longer than one, then
additional characters following First_char are also re-mapped.

LEXICAL ORDER

Only the HP 700 Workstation version of HTBasic has built-in lexical order rules for the
Roman-8 character set. When using Roman-8 with other versions, you must load
LEXICAL ORDER rules from data files. The data files are named:

Language File

ASCII R8BASCII.LEX
FRENCH R8FRENCH.LEX
GERMAN RBGERMAN.LEX
SPANISH R8SPANIS.LEX
SWEDISH R8SWEDIS.LEX

The SUB "Lexical", listed previously in this chapter and stored on the distribution disks in
the file LEXICAL.BAS, can be used to set the LEXICAL ORDER using these files.
Change line 50 to specify "R8" instead of "PC" and change the directory as necessary:

50 A$="C:\HTB\R8"&LS$[1l;6]&".LEX"

LABEL

The CONFIGURE LABEL statement must be used to define characters above 127 so that
they match the Roman-8 character set. CONFIGURE LABEL is explained earlier in this
chapter.

LEXICAL ORDER Tables

The following pages contain LEXICAL ORDER tables for FRENCH, GERMAN, SPANISH
and SWEDISH. Different tables are presented for code page 850, Roman-8 and Latin-1
character sets. No tables are given for ASCII because when the LEXICAL ORDER IS
ASCII, regardless of the character set the order number is the same as the NUM of each
character.

For code page 850 and the Latin-1 character sets, the order number for each character
was chosen according to the following guidelines: If the character existed in the Roman-8
character set, it is given the same order number it had under HP BASIC. New alphabetic
characters were added in alphabetical order. New symbol characters were added after
CHR$(127) and given sequentially increasing order numbers.

The order numbers for Roman-8 differ slightly than those in HP BASIC. This is because
several characters have been added to Roman-8 since HP BASIC was created. The new
characters are 177, 178 and 242 to 245.

Each table contains the Order number, the NUM, and the CHR$ for each character. If the
character is ignored during comparisons, the order will be blank. For two-character
combinations that have a single order number, the two characters are given in the Chr$
column, but no Num is listed. For characters that are expanded into two characters, the
two characters are listed in the Order column. If the original character is uppercase, two
expansions are listed. Remember that two order numbers are produced, not just one. If
the character has a sub-order number, it is given following a decimal point in the Order
column.

Character Set Tables

The following pages contain character set and LEXICAL ORDER tables for code pages
850, 437, Roman-8 and Latin-1 character sets.

Code Page 437 Character Set

Please see the printed manual for the table.

Code Page 850 Character Set

Please see the printed manual for the table.

LEXICAL ORDER IS FRENCH (Code Page 850)

Please see the printed manual for the table.

LEXICAL ORDER IS GERMAN (Code Page 850)

Please see the printed manual for the table.

LEXICAL ORDER IS SPANISH (Code Page 850)

Please see the printed manual for the table.

LEXICAL ORDER IS SWEDISH (Code Page 850)

Please see the printed manual for the table.

Roman-8 Character Set

Please see the printed manual for the table.

LEXICAL ORDER IS FRENCH (Roman-8)

Please see the printed manual for the table.

LEXICAL ORDER IS GERMAN (Roman-8)

Please see the printed manual for the table.

LEXICAL ORDER IS SPANISH (Roman-8)

Please see the printed manual for the table.

LEXICAL ORDER IS SWEDISH (Roman-8)

Please see the printed manual for the table.

Latin-1 Character Set

Note in the table below, CHR$(145) and CHR$(146) are extensions to Latin-1 found in
Windows fonts and may not be present in other implementations of Latin-1, such as
those found on the Sun SPARCstation.

Please see the printed manual for the table.

LEXICAL ORDER IS FRENCH (Latin-1)

Please see the printed manual for the table.

LEXICAL ORDER IS GERMAN (Latin-1)

Please see the printed manual for the table.

LEXICAL ORDER IS SPANISH (Latin-1)

Please see the printed manual for the table.

LEXICAL ORDER IS SWEDISH (Latin-1)

Please see the printed manual for the table.

1ISO-932 Character Set

Note in the table below, the characters marked with diamonds are taken to be
introductory bytes for two-byte Shift-JIS characters.

Please see the printed manual for the table.

Overview of the Shift-JIS Character Set

The table below shows the categories of two-byte characters in the Shift-JIS character
set. The range values are in hexadecimal. The second byte in a Shift-JIS character may
have values between hexadecimal 40 and FC, excluding 7F.

Range Type of character
8140-81FC Symbols

8240-824E undefined

824F-8258 Digits

8259-825F undefined

8260-8278 Uppercase Roman letters
8279-8280 undefined

8281-8299 Lowercase Roman letters
829B-829E undefined

829F-82F1 Hiragana

82F2-82FC undefined

8300-8396 Katakana

8397-839E undefined

839F-83B6 Uppercase Greek letters
83B7-83BE undefined

83BF-83D6 Lowercase Greek letters
83D7-83FC undefined

8440-8461 Uppercase Russian Cyrillic
8462 undefined

8463-8491 Lowercase Russian Cyrillic
8492-849E undefined

849F-84BE Box drawing

84BF-84FC undefined

85xX-86XX undefined

8740-879C symbols

879D-97FC undefined

8840-889E undefined

889F-8FFC Level 1 kaniji

89xx-9872 Level 1 kanji

Range Type of character
9873-989E undefined

989F-9FFC Level 2 kaniji

EOxx-EFxx Level 2 kaniji

FOxx-FCxx Level 3 kanji (undefined in most

implementations)

The level 1 kanji are arranged in the order of the hiragana representations of their most
common on pronunciation. The level 2 and level 3 kanji are arranged in order of the
stroke count of their principal radical followed by the stroke count of the remaining portion

of the character.

All two-byte characters, including the Roman, Greek, and Russian characters, are twice
as wide when displayed as the one-byte characters. The HTBasic CVT$ function can
convert between one- two-byte Roman and katakana characters.

Note that voiced katakana and hiragana characters are represented by a single two-byte
character in the shift-JIS character set while they are represented by a one-byte
character plus a separate one-byte voicing mark in the 1ISO-932 character set.

