
Introduction to Relational Tutorials

The tutorials that follow are designed to be short, simple and quick to learn. They are written

for first time users, as well as those who need to refresh their understanding of how specific fea-

tures work. In general, each tutorial builds on the knowledge you gained from the previous one.

Each concentrates only on the material being introduced, and includes suggestions and tips on

how to integrate Jovis into your applications. With a few exceptions, the amount of time

required for each tutorial should be only a few minutes.

Each tutorial concludes with a summary of what should have been learned. If you find that you

didn't fully understand the tutorial, you should go back and review the information until it is

completely learned. We have tried not to repeat material, or re-explain concepts presented pre-

viously. Therefore, you must be secure in having learned everything as it is summarized at the

end of each tutorial.

Throughout the manual we use the term "Shell Application" to refer to HyperCard, SuperCard,

Director, and Oracle Media Objects. It simply means whichever scripting application you're

using that has an XCmd interface. It is this interface that links Jovis with your scripts. In gen-

eral, the tutorials spend very little time discussing the parameters for each command. (You will

find that the syntax reference section of the manual is devoted to explaining each parameter in

detail.) Instead, the emphasis is on the order in which the commands should be called, and spe-

cial circumstances that you need to be aware of.

We deliberately avoided providing these tutorials on disk. As everyone knows, learning is best

done by doing, and while some scripting is required, it is not so much that it distracts from

what is being explained. Learning and using Jovis is a great deal of fun, and we think you will

quickly catch on to the ideas and information presented throughout the tutorials. In fact, once

you've caught onto using Jovis for managing information, we think you'll wonder how you ever

got along without it.

All of the tutorials use the same database information, which is for a retail store whose cus-

tomers and their purchases are being maintained. Basically, the database holds the customer's

name, address, account ID, and the purchases made. The tutorials begin by creating the data-

base file along with its format. Next, creating, storing and retrieving customer information is

introduced, followed by how to create selections, or subsets, from the entire database. All of

the customer's information is provided in text file format, and can be imported using the

'ImportData' command. (The "Importing and Exporting" tutorial will step you through this

phase.)

Page 2-1Jovis® Copyright © 1997

Relational Tutorials

If you are new to Jovis and need to get started quickly, the core, or foundation tutorials are 1-8.

With these, you can get by, but you will eventually want to explore the rest of Jovis. There are

many features and capabilities built into Jovis. At first, they may seem superfluous, but as your

applications develop greater complexity, you'll discover that Jovis is well designed to meet each

level of your application's requirements.

Storing and retrieving multimedia objects, such as sounds, pictures, and Blobs (Binary Large

OBjects), is done using the Architectural commands. You should go through the first two

tutorials concerning the Architectural level, before you start working with multimedia objects.

A tutorial using Relational and Architectural commands together is provided as a final tutorial.

Relational Tutorials

Jovis® Copyright © 1997Page 2-2

Tutorial 1

Creating, Opening and Closing A Data File

Definitions

Shell Application: We use the term “Shell Application” to refer to HyperCard, SuperCard,

Director and Oracle Media Objects. It means whichever programming application you are

using that has an XCmd interface.

Global File Identifier: A shell application global used as an identifier telling Jovis which data

file you want to work with, as well as where in memory the relevant information is locat-

ed. (We will use “myDB” throughout the tutorials. When you move beyond the tutorials,

you can, of course, call your global file identifier anything you want.)

Function handler: A script used to calculate and return a value.

Initialization: Initialization means that the ‘CreateCollection’ and ‘OpenCollection” com-

mands “call back” to the shell application, Jovis knows which data file is being referred to.

What happens is that you are passing the name of a global to Jovis. Jovis then examines

the global to make sure it contains the word “Jovis”, and then sets up the link to the data

file.

Before You Begin

This tutorial explains how to correctly create, open, and close a Jovis database file from your

scripts. We assume that you know how to use a Macintosh computer, especially naming and

locating files on your hard drive. You must also have a basic comprehension of scripting tech-

niques. Such as creating buttons and fields, as well as writing scripts using “if ”, “else”, “repeat

with”, etc.

It is important for you to begin scripting the commands as they are introduced. First, launch

your shell application, and create a new project or stack, which will be your tutorial project or

stack. If you haven’t already done so, use the Jovis Installer to install Jovis into that project or

stack. This will allow you to start using Jovis with that project or stack. (See the Installation

documentation for further details.)

Page 2-3Jovis® Copyright © 1997

Creating, Opening and Closing A Data File

A simple test to see if Jovis is installed is this one-line script:

put Jovis(“%”)

If Jovis is not installed, your shell application will return a script error, such as “Can’t under-

stand “Jovis”, or something similar. If Jovis is installed, you will get the current version:

Jovis™ Version,1.0.3

You are now ready to write the tutorial scripts to that stack or project. Type each one in as it is

introduced, and before long you will have a functional demo.

Overview

This first tutorial introduces five commands: CreateCollection, OpenCollection,

CloseCollection, Startup, and Shutdown. The concept and use of a shell application global as a

file identifier is introduced. The special handling of errors and warnings for these commands is

also explained. We then explain the Startup and Shutdown commands and how they are used.

Getting Started

CreateCollection/OpenCollection

The first script of this tutorial will be used to create the “DASCO Database” file. Jovis uses the

term “Collection” to mean a data file or database. They mean the exactly the same thing.

The first step in creating or opening a collection is to Initialize a shell application global which

will serve as a file identifier. The global file identifier tells Jovis which data file you want to

work with.. For these tutorials, the global file identifier will be ‘myDB’; the data file to which it

refers will be called “DASCO Database.”

We will use a function script to verify the creation of the data file. This returns “false” if the

data file is not successfully created, and “true” if everything works as intended. Using a func-

tion script provides a clean way to call scripts that indicate the success or failure of creating a

data file. For example:

Relational Tutorials

Jovis® Copyright © 1997Page 2-4

on mouseUp
if CreateNewFile() = “false” then go home

end mouseUp

Here is the script for initializing a global and calling the ‘CreateCollection’ command. You

should type this into your tutorial stack.

1: function CreateNewFile
2: global myDB, JovisErrorCode
3: —
4: if myDB = empty then
5: —
6: put “Jovis” into myDB
7: —
8: get Jovis(“CreateCollection”,”myDB”)
9: if item 1 of JovisErrorCode = “error” then
10: answer JovisErrorCode
11: put empty into myDB
12: return “false”
13: else if item 1 of JovisErrorCode = “Warning” then
14: answer JovisErrorCode
15: put empty into myDB
16: return “false”
17: end if
18: —
19: else
20: return “false”
21: end if
22: —
23: return “true”
24: —

25: end CreateNewFile

This is a fairly straightforward script. When it is executed, it brings up the Macintosh standard

"Put File" dialog (See below.), by way of the ‘CreateCollection’ command, to let you enter a

name and set the location for a new data file.

Page 2-5Jovis® Copyright © 1997

Creating, Opening and Closing A Data File

Execute the script, enter the name “DASCO Database File v1.0”, and set a location on your

hard drive.

The script has several important points that you need to be aware of:

1. Line 2 has declared two globals: ‘myDB’ and ‘JovisErrorCode’. In this example, ‘myDB’ is

going to be used as the global file identifier. This identifier tells Jovis which data file you

want to work with, as well as where in memory the relevant information is located. (We will

use ‘myDB’ throughout the tutorials. When you move beyond the tutorials, you can, of

course, call your global file identifier anything you want.)

Remember to declare the global file identifier AND use the ‘JovisErrorCode’ global when-

ever you create or open a data file using the ‘CreateCollection’ and ‘OpenCollection’ com-

mands. Tutorial two will go into greater detail about error handling, but it is important to

include the ‘JovisErrorCode’ global for this function script.

2. Line 4 of our ‘CreateNewFile’ example tests whether ‘myDB’ is empty. This is important; if

this global is already in use (not empty), the next line in our script will re-initialize the glob-

al, and we will lose the original identifier. Once we are sure that ‘myDB’ is empty, we can

initialize it.

3. In Line 6, we initialize ‘myDB’ by putting the name “Jovis” into it. This initialization means

that when the ‘CreateCollection’ and ‘OpenCollection” commands “call back” to the shell

application, Jovis can figure out which data file is being referred to. (Jovis examines the

content of the global to make sure it equals the word “Jovis”, and then sets up the link to

the data file.)

NOTE: If you inadvertently change what this global contains, you lose the ability to access

the data file no matter what command you try to use, including the ‘CloseCollection’ com-

mand! If this happens, your only alternative is to call the ‘ShutDown’ command and quit

the shell application, relaunch it and then re-open the database. Treat your global file iden-

tifiers with special care and everything will be fine. Creating or opening a second data file

is simply a matter of using a new and different global name. The only limitation is how

much memory you have, and the size of your hard drive. Once the file is created or opened,

you do not have to declare the global in your scripts.

4. Line 8 is our ‘CreateCollection’ call. Notice that the global identifier is in quotes. This

means that we are passing the name of the global to Jovis, NOT the contents of the global.

Every call to Jovis requires that the global be in quotes.
Once the ‘CreateCollection’ command has the name of the global, it will handle the details
of setting up the identifier for future use by any of the other commands. All you have to
do is remember to pass the name of the global in quotes.

Relational Tutorials

Jovis® Copyright © 1997Page 2-6

5. Lines 9 through 12 demonstrate how to handle errors that could occur. Since the
‘CreateCollection’ command has been called, we need to check for errors that may have
occurred. This is done by checking the first item of the global ‘JovisErrorCode’. If there is
an error, item 1 of the ‘JovisErrorCode’ global will equal “error”. The Answer dialog box
will display the error message contained in the global ‘JovisErrorCode’ (line 10). In line 11,
‘myDB’ is emptied, and we exit from the script by returning “false”. If there is no error,
item 1 of the ‘JovisErrorCode’ global will equal “no error”.

Similarly, in lines 13 through 16 we check for warnings. If item 1 of the ‘JovisErrorCode’
global equals “warning”, the Answer dialog box displays the warning message, “myDB” is
emptied, and we exit the script by returning “false”. A warning message is issued when the
user clicks the cancel button from the standard "File Put" dialog’; this is the most frequent
warning message. If there is no warning, item 1 of the ‘JovisErrorCode’ global will equal
“no error”.

The various error and warning messages that may occur are listed later in this Tutorial.

This completes everything concerning our ‘CreateNewFile’ example. The ‘OpenCollection’
command is done similarly. That script is provided in the “Script Examples” section of this
Tutorial; you should type it into your stack as well.

Both the ‘CreateCollection’ and ‘OpenCollection’ commands have several other parameters,
which are all optional. These are explained in the Syntax Reference section of the Jovis manual.

CloseCollection

The correct way to close a data file requires the use of the ‘CloseCollection’ command. Here is
our example for you to type in:

1: on CloseDBFile
2: global myDB,JovisErrorCode
3: if myDB is not empty then
4: if myDB is not “Jovis” then
5: —
6: get Jovis(“CloseCollection”,”myDB”)
7: if item 1 of JovisErrorCode = “error” then
8: answer JovisErrorCode
9: exit CloseDBFile
10: end if
11: —
12: if myDB = “Jovis” then
13: put empty into myDB
14: end if
15: —
16: end if
17: end if
18: end CloseDBFile

Page 2-7Jovis® Copyright © 1997

Creating, Opening and Closing A Data File

This will close your data file without shutting down Jovis.

In line 2, we have once again declared our global file identifier “myDB” just as in the

‘CreateCollection’ example above.

Lines 3 and 4 check to make sure that the identifier is not empty, and that it has not already

been closed. When you call the ‘CloseCollection’ command (line 6), Jovis will save any last

minute changes and then close the file. It then resets the global identifier to the name “Jovis”.

In line 12, we test that no errors occurred by making sure that the identifier now equals “Jovis”.

If so, line 13 puts empty into the global. This prepares it for reuse if necessary. Once a datafile

has been closed, it cannot be accessed by any of the Jovis commands, until, of course, it is

reopened.

NOTE: You MUST “shut down” Jovis before closing your stack, or quitting your shell applica-

tion. See the ‘ShutDown’ command below for further instructions.

If any serious errors occur, our error and warning handlers will have caught them. (The next

tutorial will explain these handlers.)

Using the ‘StartUp’ and ‘ShutDown’ commands

These commands are used by the Jovis system itself. The ‘StartUp’ command is optional, and is

meant for use with large databases. The ‘ShutDown’ file is very important and should be called

when you are about to quit your application.

StartUp

The optional ‘StartUp’ command is used when your data files have several indexes and/or the

file indexes are quite large. For example, data files with over one hundred thousand records,

and/or more than four or five indexes should use this command. It allocates a larger cache than

the default, which is 512k. Low memory warnings and out-of-memory errors often indicate

that the cache is too small.

To allocate a larger cache, you must call this command once before any ‘OpenCollection’ or

‘CreateCollection’ commands are made. It automatically creates and initializes a shell applica-

tion global called ‘JovisPrivateData’. NEVER alter the contents of this global; it is strictly for

use by Jovis. If this command is not used, the ‘OpenCollection’ or ‘CreateCollection’ com-

mands will automatically setup the ‘JovisPrivateData’ global. Here’s a script that uses the

‘StartUp’ command:

Relational Tutorials

Jovis® Copyright © 1997Page 2-8

on SetJovisStartUp
global JovisErrorCode
put 512000 * 2 into CacheSize —> 1meg cache
get Jovis(“StartUp”, CacheSize)
if item 1 of JovisErrorCode = “error” then

answer JovisErrorCode
end if

end SetJovisStartUp

ShutDown

The ‘ShutDown’ command is required. It shuts down the Jovis system before you quit your
shell application. This consists of a simple script, such as:

on ShutDownJovis
global JovisPrivateData
if JovisPrivateData ≠ empty then

get Jovis(“ShutDown”)
end if

end ShutDownJovis

Notice that we check that the Jovis system has not been shut down already. We do this by veri-
fying that the ‘JovisPrivateData’ global is not empty. If the command is successful, the global is
cleared, and is ready to be used again if necessary.

Script Examples

Here is a ‘OpenCollection’ script that could be used for general purposes:

on DoOpenFile
global myDB,JovisErrorCode
if myDB = empty then

— initialize by putting the name “Jovis” into a global
put “Jovis” into myDB
get Jovis(“OpenCollection”,”myDB”)
if item 1 of JovisErrorCode = “error” then

answer JovisErrorCode
put empty into myDB
exit DoOpenFile

end if
if item 1 of JovisErrorCode = “warning” then

answer JovisErrorCode
put empty into myDB
exit DoOpenFile

end if
else

beep

Page 2-9Jovis® Copyright © 1997

Creating, Opening and Closing A Data File

answer “Error: Invalid global identifier.”
end if

end DoOpenFile

Errors and Warnings that may appear in the ‘JovisErrorCode’ global

Script Errors:

Can’t recognize or understand “Jovis” —> Jovis is not installed. See the installation documen-

tation of details.

Expected “)” but found “,” —> missing or unbalanced quotes

General Errors:

Not a valid global name.

Not enough parameters.

Not a Jovis relational file.

Required resources missing.

Not enough memory.

Network Errors:

Server not responding.

File not found. Access to the file has been denied from the server.

File in use. File has been opened in exclusive mode.

File already open. Tried to create a file with same name as one already open at the server.

Warning Messages

Cancel selected by user.

File is open read-only.

Memory Low No Reserve. Save and quit application.

What You Should Have Learned

You should now have a clear understanding of how to create, open and close a Jovis database file

using the ‘CreateCollection’ ,’OpenCollection’, and ‘CloseCollection’ commands. This should

include the concept and importance of using the global file identifier.

You should also understand that you must use the JovisErrorCode’ global for the

‘CreateCollection’ and ‘OpenCollection’ commands. The provided scripts give examples of

how to handle errors which might occur with these commands.

Relational Tutorials

Jovis® Copyright © 1997Page 2-10

Also covered were the two commands, ‘StartUp’ and ‘ShutDown’, which control the Jovis

caching system. While the ‘StartUp’ command is optional, and generally used for large data

files, the ‘ShutDown’ command is a required command. ‘ShutDown’ must be called when it’s

time to quit your application.

What to learn next

We have already discussed using the 'JovisErrorCode' global for the 'CreateCollection' and

'OpenCollection' commands. Jovis contains a very effective error and warning system which is

used for all of the remaining Jovis commands. The next tutorial will address how to use this

system and why it is so important.

Page 2-11Jovis® Copyright © 1997

Creating, Opening and Closing A Data File

Relational Tutorials

Jovis® Copyright © 1997Page 2-12

Tutorial 2

Error and Warning Handlers

Before You Begin

This tutorial explains how Jovis keeps you informed of any errors and warnings that may occur.

Error handling is essential for debugging and proper monitoring of program execution. It is a

requirement, from the day you begin writing an application, until your end-users finish using it.

Fortunately, Jovis provides a very effective system for reporting errors immediately, with the

information needed to solve the problem quickly and easily. Give yourself enough time to fully

learn this tutorial. It will save you time in the end, as well as preventing file corruption, and

possible system restarts.

Overview

The error and warning system contained in Jovis immediately provides you with information

about errors or warnings when they occur. Both errors and warnings provide information about

what command is reporting the error, the name of the data file, what the error is, and an error or

warning ID code number. In addition, you can log errors and warnings to a text file at any time,

as well as abort your scripts if necessary.

Jovis provides an override mechanism so that you can perform error checking locally in your

scripts without the end-user becoming involved. You would use this technique when an error

might be generated, but you want the end-user to see a different message. This override capa-

bility will introduce the 'SetProperty' command.

You should immediately begin using the error and warning system that is presented here. All of

the commands in Jovis use this mechanism, except the 'CreateCollection', 'OpenCollection',

'DBOpen' and 'DBInit' commands, which use the 'JovisErrorCode' global. By implementing

and trying out the scripts in each phase of this tutorial, you can be sure that you have learned

this important feature.

Page 2-13Jovis® Copyright © 1997

Error and Warning Handlers

Getting Started

Jovis primarily reports errors and/or warnings by sending a message to your script, starting at

the 'Card' level. The error message that is sent is "JovisErrorMsg", and the warning message

sent is "JovisWarningMsg". Both of these messages MUST be present in your scripts as func-

tion handlers. Here is the sample error function handler, which you should now put into the

highest message hierarchy, i.e. Stack script or Project script, of your tutorial stack or project:

function JovisErrorMsg theFile, theRel, theCmd, theMsg, ErrCode
beep
put "ERROR!" into temp
put theMsg into line 3 of temp
put "Command:"&&theCmd into line 5 of temp
if theFile is empty then put "Unknown at this time." into theFile
put "File:"&&theFile into line 6 of temp
if theRel is not empty then put "Relation:"&&theRel into line 7 of temp
if ErrCode is not empty then

put "Code Number:"&&ErrCode into line 8 of temp
end if
answer temp with "Exit Script"
return "Stop"

end JovisErrorMsg

Note these important points:

1. To display the information being provided by the incoming parameters, we format a local

variable called 'temp'. Once 'temp' has been "filled in", we call the answer dialog to display the

content of the 'temp' variable.

2. When the user clicks the answer dialog button called "Exit Script", the function handler

returns the word "Stop" to Jovis. When this occurs, Jovis immediately causes the shell applica-

tion to abort further execution of your scripts. At this point you must investigate what caused

the error and fix it immediately.

3. The five parameters includedwith these messages indicate:

theFile: the name of the file on the hard drive which contains the error;

theRel: the name of the relation, we will discuss this term in a future tutorial;

theCmd: the name of the command which triggered the error;

theMsg: a description of the error, if available; and

ErrCode: the ID code for the error, which is listed in the back of the Jovis manual.

Relational Tutorials

Jovis® Copyright © 1997Page 2-14

Here's an example of the warning function handler:

function JovisWarningMsg theFile, theRel, theCmd, theMsg, ErrCode
put "WARNING!" into temp
put theMsg into line 3 of temp
put "Command:"&&theCmd into line 5 of temp
if theFile is empty then put "Unknown at this time." into theFile
put "File:"&&theFile into line 6 of temp
if theRel is not empty then put "Relation:"&&theRel into line 7 of temp
if ErrCode is not empty then

put "Code Number:"&&ErrCode into line 8 of temp
end if
answer temp with "Exit Script","Continue"
if it = "Exit Script" then return "Stop"

end JovisWarningMsg

Again, we simply format a local variable called 'temp' and display its contents using the answer
command. With the Warning message, however, the answer dialog uses two buttons: one is
"Exit Script", the other is called "Continue", which is the default. Because warnings are not con-
sidered serious enough to require you to abort your scripts, the user has the option of allowing
their scripts to continue execution. However, they may abort by clicking the "Exit Script" but-
ton.

Let's take some time now to implement and test these two function handlers. First, open your
tutorial project and type both handlers into the highest message level possible, i.e. the Stack
script or Project script.

Now, we will purposely generate a Jovis error. Using the message box, type the following and
press the return key:

get Jovis("GoofyCommand")

If nothing at all happened, you have mistyped the error handler script, and should double check
it against our example. If the script is correct, you will see this answer dialog:

Page 2-15Jovis® Copyright © 1997

Error and Warning Handlers

Press the return key, and move on to the next step.

Now we will test that the warning function handler to see if it is working correctly. There is no

simple way to cause Jovis to send a warning message, as we did with the error message, so we

will call the handler directly using the message box. Type in the following and press the return

key:

get JovisWarningMsg("sample","","GoofyCommand","Test Warning","?")

This answer dialog should appear:

Press the return key to remove the answer dialog from your screen.

Overriding the Error and Warning Messages

It is possible to override either or both of the error and warning function handlers. The

'SetProperty' command has two properties, one called "ErrorMsg", the other "WarningMsg". By

setting either of these properties to a new function handler name, you can override the standard

function handlers, and call your own handlers. For example:

1: on mouseUp
2: get Jovis("SetProperty","myDB","ErrorMsg","InvalidCriteria") -- replace
3: put "Field Last_Name = [Jones]" into aCriteria
4: get Jovis("CountMatches","myDB","Customers",aCriteria,"true")
5: get Jovis("SetProperty","myDB","ErrorMsg","JovisErrorMsg") -- restore
6: end mouseUp

Relational Tutorials

Jovis® Copyright © 1997Page 2-16

@@
@? @@
@? @@
@??@@?@@
@??@@@H?@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@?hf?@@??@@??@@??W2@@6X??@@@@6X??)X?e?@e?@@?e)Xf@??W2@@6X?e@@ ?@e@@
@??@@?hf?@@??@@??@@??7@??@1??@@??@1??@)Xe?@e?@@?e@)X?e@??7@??I/?e@@ ?@e@@
@??@@?hf?@@??@@??@@??@@??@@??@@??@@??@@)X??@e?@@?e@@)Xe@??@@?g@@ ?@e@@
@??@@?hf?@@??@@??@@??@@??@@??@@??@5??@@@)X?@e?@@?e@@@)X?@??@@?g@@ ?@e@@
@??@@?hf?@@??@@??@@??@@@@@@??@@@@@e?@V'@)X@e?@@?e@V'@)X@??@@?@@@?e@@ ?@e@@
@??@@?hf?@@??@@??@@??@@??@@??@@??@1??@?V'@@@e?@@?e@?V'@@@??@@?N@@?e@@ ?@e@@
@??@@?hf?@@??@@??@5??@@??@@??@@??@@??@eV'@@e?@@?e@??V'@@??@@??@@? ?@e@@
@??@@?hf?@@??@@?C(Y??@@??@@??@@??@@??@e?V'@e?@@?e@?eV'@??3@??@5?e@@ ?@e@@
@??@@?hf?@@@@@@@0Ye?@@??@@??@@??@@??@fV'e?@@?e@?e?V'??V4@@0Y?e@@ ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@?hf@@@@@@ ?@@?g@@e@@e@@ @@ ?@e@@
@??@@? @@ J@@Lg@@e@@e@@ ?@e@@
@??@@? @@e?W2@@6X??W2@6Xe@@@@g@@e@@e@@eW2@@6Xe@6T2@?@@@@6Xe@@e@@@@6XeW2@@@@ ?@e@@
@??@@? @@e?7@??@1??7@XI/eN@@Hg@@e@@e@@e*Ue@1e@@(Me@@e@1e@@e@@e@1e7@e@@ ?@e@@
@??@@? @@e?@@??@@??3@)X?e?@@?g@@e@@e@@eS@@@@@e@@H?e@@e@@e@@e@@e@@e@@e@@ ?@e@@
@??@@? @@e?@@@@@@??V'@)Xe?@@?g@@e@@e@@e7@e@@e@@f@@e@@e@@e@@e@@e@@e@@ ?@e@@
@??@@? @@e?@@?gV'@1e?@@?g@@e@@e@5e@@e@@e@@f@@e@@e@@e@@e@@e@@e@@ ?@e@@
@??@@? @@e?3@??O.??/KV@5e?3@Lg@@e@@?C(Ye3@e@@e@@f@@e@@e@@e@@e@@e3@e@@ ?@e@@
@??@@? @@e?V4@@0Y??V4@0Ye?V4@g@@@@@@@0Y?eV4@@@@e@@f@@e@@e@@e@@e@@eV4@@@@ ?@e@@
@??@@? @@ ?@e@@
@??@@? /Ke@5 ?@e@@
@??@@? V4@@0Y ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@?hf?W2@@6X? ?@@?h?W2@@6X? W2@@h?W2@@6X? ?@@? ?@e@@
@??@@?hf?7@??I/? ?@@?h?7@??I/? ?W&@X?h?7@??I/? ?@@? ?@e@@
@??@@?hf?@@?f?W2@@6X??@@@@@@@@6X??@@@@@@@@6X??W2@@6X??@@@@6X??W2@@@@??@@?f?@@?f?W2@@6X??W2@@6X??*@@@??@@??@@??@@?f?W2@@6X??@@@@@@@@6X??@@@@@@@@6X??W2@@6X??@@@@6X??W2@@@@? ?@e@@
@??@@?hf?@@?f?7@??@1??@@??@@??@1??@@??@@??@1??*U??@1??@@??@1??7@??@@??@@?f?@@?f?7@??@1??7@??@1??N@@H??@@??@@??@@?f?7@??@1??@@??@@??@1??@@??@@??@1??*U??@1??@@??@1??7@??@@? ?@e@@
@??@@?hf?@@?f?@@??@@??@@??@@??@@??@@??@@??@@??S@@@@@??@@??@@??@@??@@?h?@@?@@@??@@??@@??@@??@@?e@@e?@@??@@??@@?f?@@??@@??@@??@@??@@??@@??@@??@@??S@@@@@??@@??@@??@@??@@? ?@e@@
@??@@?hf?@@?f?@@??@@??@@??@@??@@??@@??@@??@@??7@??@@??@@??@@??@@??@@?h?@@?N@@??@@??@@??@@??@@?e@@e?@@??@@??@@?f?@@??@@??@@??@@??@@??@@??@@??@@??7@??@@??@@??@@??@@??@@? ?@e@@
@??@@?hf?@@?f?@@??@@??@@??@@??@@??@@??@@??@@??@@??@@??@@??@@??@@??@@?h?@@??@@??@@??@@??@@??@@?e@@e?@@??@@??@@?f?@@??@@??@@??@@??@@??@@??@@??@@??@@??@@??@@??@@??@@??@@? ?@e@@
@??@@?hf?3@??O.??3@??@5??@@??@@??@@??@@??@@??@@??3@??@@??@@??@@??3@??@@??@@?f?3@??@5??3@??@5??3@??@5?e@@e?3@??@@??3@??O.??3@??@5??@@??@@??@@??@@??@@??@@??3@??@@??@@??@@??3@??@@? ?@e@@
@??@@?hf?V4@@0Y??V4@@0Y??@@??@@??@@??@@??@@??@@??V4@@@@??@@??@@??V4@@@@??@@?f?V4@@0Y??V4@@0Y??V4@@0Y?e@@e?V4@@@@??V4@@0Y??V4@@0Y??@@??@@??@@??@@??@@??@@??V4@@@@??@@??@@??V4@@@@? ?@e@@
@??@@? ?@@? ?@e@@
@??@@? ?/K??@5? ?@e@@
@??@@? ?V4@@0Y? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@?hf?@@@@@e@@e@@ ?@@? ?@e@@
@??@@?hf?@@?h@@ ?@@? ?@e@@
@??@@?hf?@@?f@@e@@eW2@@6Xe@@gW2@6X??W2@@6X??@@@@@@@@6X??@@@@6X??@@??W2@@6X? ?@e@@
@??@@?hf?@@?f@@e@@e7@e@1e@@g7@XI/??*U??@1??@@??@@??@1??@@??@1??@@??7@??@1? ?@e@@
@??@@?hf?@@@@?e@@e@@e@@e@@he3@)Xe?S@@@@@??@@??@@??@@??@@??@@??@@??@@??@@? ?@e@@
@??@@?hf?@@?f@@e@@e@@@@@@heV'@)X??7@??@@??@@??@@??@@??@@??@@??@@??@@@@@@? ?@e@@
@??@@?hf?@@?f@@e@@e@@ ?V'@1??@@??@@??@@??@@??@@??@@??@@??@@??@@? ?@e@@
@??@@?hf?@@?f@@e@@e3@eO.e@@g/KV@5??3@??@@??@@??@@??@@??@@??@5??@@??3@??O.? ?@e@@
@??@@?hf?@@?f@@e@@eV4@@0Ye@@gV4@0Y??V4@@@@??@@??@@??@@??@@@@0Y??@@??V4@@0Y? ?@e@@
@??@@? ?@@? ?@e@@
@??@@? ?@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@?hf?W2@@6X?hf?@@?hf?)X?e?@ @@ W2@@6X ?@e@@
@??@@?hf?7@??I/?hf?@@?hf?@)Xe?@ @@ .Me@1 ?@e@@
@??@@?hf?@@?f?W2@@6X??W2@@@@??W2@@6X?f?@@)X??@e@@e@@e@@@@@@@@6Xe@@@@6XeW2@@6Xe@6T2@?@@h?J@5 ?@e@@
@??@@?hf?@@?f?7@??@1??7@??@@??7@??@1?f?@@@)X?@e@@e@@e@@e@@e@1e@@e@1e7@e@1e@@(Me@@hW&(Y ?@e@@
@??@@?hf?@@?f?@@??@@??@@??@@??@@??@@?f?@V'@)X@e@@e@@e@@e@@e@@e@@e@@e@@e@@e@@H?hf7@H? ?@e@@
@??@@?hf?@@?f?@@??@@??@@??@@??@@@@@@?f?@?V'@@@e@@e@@e@@e@@e@@e@@e@@e@@@@@@e@@ @@ ?@e@@
@??@@?hf?@@?f?@@??@@??@@??@@??@@?h?@eV'@@e@@e@@e@@e@@e@@e@@e@@e@@g@@ ?@e@@
@??@@?hf?3@??O.??3@??@5??3@??@@??3@??O.?f?@e?V'@e3@e@@e@@e@@e@@e@@e@5e3@eO.e@@f@@h@@ ?@e@@
@??@@?hf?V4@@0Y??V4@@0Y??V4@@@@??V4@@0Y?f?@fV'eV4@@@@e@@e@@e@@e@@@@0YeV4@@0Ye@@f@@h@@ ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?O2@@@6K ?@e@@
@??@@? ?W2@@@6X ?@e@@
@??@@? W&@@@)X?hf?@e@@
@??@@? 7@@@0M ?I4@@@1?hf?@e@@
@??@@? O2@@@6K? ?J@@@??O2@@@6Ke@@@Lhf?@e@@
@??@@? ?@(M ?I'@ ?7@@5?@(M? I'@?3@@1hf?@e@@
@??@@? J(Y? V'L? ?@@@HJ(Y ?V'LN@@@hf?@e@@
@??@@? 7H ?N1? ?@@@?7H? N1?@@@hf?@e@@
@??@@? @? @? ?@@@?@ ?@?@@@hf?@e@@
@??@@? @?he?@@@@@he@@e?@@?gW2@6X? @@he?@@?hf@? ?@@@?@ W2@@6X ?@@?e@@ ?@?@@@hf?@e@@
@??@@? @?he?@@? J@@Lg7@?I/? J@@Lhf@? ?@@@?@ 7@eI/ J@@L ?@?@@@hf?@e@@
@??@@? @?he?@@?f@@e@@e@@e@@@@g@@L?e?W2@6Xe@6T2@?@@e@@@@6Xe@@@@hf@? ?@@@?@ @@gW2@@6Xe@@@@6Xe@@@@e@@e@@@@6Xe@@e@@eW2@@6X ?@?@@@hf?@e@@
@??@@? @?he?@@?f@@e@@e@@eN@@Hg3@)Xe?7@?I/e@@(Me@@e@@e@1eN@@Hhf@? ?@@@?@ @@g7@e@1e@@e@1eN@@He@@e@@e@1e@@e@@e7@e@1 ?@?@@@hf?@e@@
@??@@? @?he?@@@@?e3@e@5e@@e?@@?gV'@)X??@@?f@@H?e@@e@@e@@e?@@?hf@? ?@@@?@ @@g@@e@@e@@e@@e?@@?e@@e@@e@@e@@e@@e@@e@@ ?@?@@@hf?@e@@
@??@@? @?he?@@?f?@@@@?e@@e?@@?g?V'@1??@@?f@@f@@e@@e@@e?@@?hf@? ?@@@?@ @@g@@e@@e@@e@@e?@@?e@@e@@e@@e@@e@@e@@@@@@ ?@?@@@hf?@e@@
@??@@? @?he?@@?f7@e@1e@@e?@@?hN@@??@@?f@@f@@e@@e@@e?@@?hf@? ?@@@?@ @@g@@e@@e@@e@@e?@@?e@@e@@e@@e@@e@@e@@ ?@?@@@hf?@e@@
@??@@? @?he?@@?f@@e@@e@@e?3@Lg/K?@5??3@?O.e@@f@@e@@e@5e?3@Lhf@? ?@@@?@ 3@eO.e3@e@5e@@e@@e?3@Le@@e@@e@@e3@e@@e3@eO. ?@?@@@hf?@e@@
@??@@? @?he?@@@@@e@@e@@e@@e?V4@gV4@0Y??V4@0Ye@@f@@e@@@@0Ye?V4@hf@? ?@@@?@ V4@@0YeV4@@0Ye@@e@@e?V4@e@@e@@e@@eV4@@@@eV4@@0Y ?@?@@@hf?@e@@
@??@@? @? @@ @? ?@@@?@ ?@?@@@hf?@e@@
@??@@? @? @@ @? ?@@@?@ ?@?@@@hf?@e@@
@??@@? 3L ?J5? ?@@@?3L? J5?@@@hf?@e@@
@??@@? N)X? W&H? ?@@@LN)X ?W&HJ@@@hf?@e@@
@??@@? ?@)K ?O&@ ?3@@1?@)K? O&@?7@@5hf?@e@@
@??@@? I4@@@0M? ?N@@@??I4@@@0Me@@@Hhf?@e@@
@??@@? 3@@@6K ?O2@@@5?hf?@e@@
@??@@? V'@@@(Y?hf?@e@@
@??@@? ?V4@@@0Y ?@e@@
@??@@? ?I4@@@0M ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@? ?@e@@
@??@@@e@@
@??@M? @@
@? @@
@@
@@

function InvalidCriteria theFile, theRel, theCmd, theMsg, ErrCode
answer "Entered criteria is not valid."

end InvalidCriteria

In line 2, we set the error message handler to a new handler called "InvalidCriteria", which is

shown above. In line 4, we called the 'CountMatches' command, whose description can be

found in the syntax reference section of this manual.. (We will discuss criteria in a later tutorial)

If the criteria is invalid, Jovis will send the "InvalidCriteria" message. The new function handler

will respond to it by displaying the answer dialog. Line 5 then resets the error message back to

our standard handler.

Another way to override the error and warning handlers is to set the message to empty, then use

the 'JovisErrorCode' global discussed in Tutorial 1. If item 1 of this global equals "error", you

can respond as appropriate. The message is reset back to the standard handler before exiting the

script. Here is an example: of using the 'JovisErrorCode' global instead of a handler:

on CountRecords
global JovisErrorCode
get Jovis("SetProperty","myDB","ErrorMsg","") -- clear function handler
put "Field Last_Name = [Jones]" into Criteria
get Jovis("CountMatches","myDB","Customers",Criteria,"true")
if item 1 of JovisErrorCode = "error" then

answer "Error while trying to count records."
end if
get Jovis("SetProperty","myDB","ErrorMsg","JovisErrorMsg") -- restore

end CountRecords

IMPORTANT: Absolutely never override an error or warning message and not check for

errors. When you override, always use either an alternative function handler or the

'JovisErrorCode' global. If you do not, the results are unpredictable, and could lead to serious

problems, including data file corruption and system crashes.

Script Examples

This 'LogError' handler is a straight forward way to write errors that occur to a text file:

on LogError aMsg
global errLogPathName
if errLogPathName is empty then

ask file "Please enter error log name and set it's location."
if the result is "cancel" then exit logError
put it into errLogPathName

end if

Page 2-17Jovis® Copyright © 1997

Error and Warning Handlers

open file errLogPathName
write the abbrev date&" - "&the long time&" - "&aMsg&return

to file errLogPathName at EOF
close file errLogPathName

end LogError

Related Error Messages

"Function handle doesn't execute"

If either of the error or warning function handlers contains a scripting error, the function will

not execute, AND no scripting error will be reported by the shell application! This is a short-

coming of scripts called by external code modules.

If you suspect that an error or warning function handler may contain a scripting error, try call-

ing it from the message box with "fake" parameters. In this way, the shell application will assist

you in finding the problem.

What You Should Have Learned

You should now understand how to implement the standard error and warning function han-

dlers for Jovis. The importance of these handlers should be clear to you. Additionally, you

should understand how to override either handler with a different message, or disable it and use

the 'JovisErrorCode' global.

At this point, you can call any of the Jovis commands knowing that errors and warnings will be

reported to you immediately.

What to learn next

Now that you have learned about handling errors and warnings, you are ready to start creating

the structure needed for storing and retrieving records. The next tutorial will step you through

creating Relations, Fields, and Indexes.

Relational Tutorials

Jovis® Copyright © 1997Page 2-18

Tutorial 3

Creating Database Structures

Before You Begin

This tutorial explains how to create the framework or database structures in a Jovis data file.

You have already created a new data file, the "DASCO Database"; you should also have the

scripts to open, close, and shut down your data base. You need to understand and have fully

implemented the error and warning function handlers. If you don't have all these scripts ready

to use, you should go back and create them now. If you need help, review to the previous tutor-

ial.

Overview

This tutorial will first introduce the commands 'CreateRelation', 'CreateFields', and

'CreateIndexes'.

The database structures we are going to create are for our "DASCO Database". When we are

done, we will be ready to begin creating records. While the three "Create" commands are

straightforward, you do need to make sure that you are using the error and warning function

handlers, so you will catch any errors, such as low memory situations or possible hard drive

problems.

Getting Started

CreateRelation

We will begin with the 'CreateRelation' command. In Jovis, a relation is simply the name used

to organize a group of fields. It is like a table structure that uses columns and rows to organize

and maintain your information. Each row is a record, and each column is a field. A record con-

sists of a series of fields, and each field describes a piece of information. For example, here is a

record from the relation with the three fields 'First_Name', 'Last_Name', and 'Customer_ID'.

Page 2-19Jovis® Copyright © 1997

Creating Database Structures

"John,Smith,14432"

Here's an example of using the 'CreateRelation' command:

get Jovis("CreateRelation","myDB","Customers")

'CreateRelation' takes only three parameters: the command name; the global file identifier; and

the name you have chosen for the new relation.

Limitations

Each relation can contain up to 512 fields, and can hold an unlimited number of records.

(Because of the amount of processing done for each field, a more practical limit of about 150

fields is advised. Hardware may limit the number of records, but Jovis will not.) It is important

to realize that fields within a record are strictly associated with only one relation. A relation

never "shares" or holds combinations of data with other relations. (It is possible to "join" rela-

tions together to access different combinations of fields. This will be explained in Tutorial 12).

Assuming that no errors were returned, you are now ready to call the 'CreateField' command.

CreateField

Data Types

The 'CreateField' command requires that you know the type of data you plan on storing. For

example, a last name field would use the 'TEXT' data type. Jovis provides four types of data:

'TEXT', 'NUMBER', 'DATE', and 'LOGIC' (often referred to as "true" or "false"). Using the

correct data type is important, because when you search by a given field, it must be in the cor-

rect sorted order. Numbers are sorted in numeric order, whereas text is sorted by alphabetic

order. Fields that contain a mixture of numbers and text, such as an address, use should the

'TEXT' data type. You should also refer to the section in this manual concerning restrictions on

names.

Let's continue with our "DASCO Database". We know that our 'Customer' relation will need a

first name field. So, we use the 'CreateField' command for creating this field:

get Jovis("CreateField","myDB","Customers","First_Name","TEXT")

The third parameter is the name of the relation for which we are creating the new field.

The fourth parameter is the name of the field that we are creating. Each field name in a given

relation must be unique and consist of ASCII alphanumeric characters; the underscore charac-

ter may also be used. Spaces, carriage returns, and control characters are NOT permitted

The fifth parameter is the data type, and must be one of the four types mentioned above.

Relational Tutorials

Jovis® Copyright © 1997Page 2-20

We want our "Customers" relation to have 11 fields:

"First_Name; Last_Name; Is_Home_Address;Address1; Address2; City; State; Zip; Phone;
Customer_ID, and Account_Start."

The Zip, Phone, and Customer_ID are Number fields; Account_Start is a Date field; all the
others are Text fields. So we could write:

get Jovis("CreateField","myDB","Customers","First_Name","TEXT")
get Jovis("CreateField","myDB","Customers","Last_Name","TEXT")
get Jovis("CreateField","myDB","Customers","Is_Home_Address","LOGIC")
get Jovis("CreateField","myDB","Customers","Address1","TEXT")
get Jovis("CreateField","myDB","Customers","Address2","TEXT")
get Jovis("CreateField","myDB","Customers","City","TEXT")
get Jovis("CreateField","myDB","Customers","State","TEXT")
get Jovis("CreateField","myDB","Customers","Zip","NUMBER")
get Jovis("CreateField","myDB","Customers","Phone","NUMBER")
get Jovis("CreateField","myDB","Customers","Customer_ID","NUMBER")
get Jovis("CreateField","myDB","Customers","Account_Start","DATE")

This above example is very straightforward. However, because everything is "hard coded", it is
not the most efficient way to create our "DASCO" project. A somewhat "cleaner" way of
scripting the creation of all these fields would be from an itemized list of fields:

on CreateCustomerFields
put "First_Name,Last_Name,Is_Home_Address,Address1,Address2,City,State,"&

"Zip,Phone,Customer_ID,Account_Start" into fieldList
put "text,text,logic,text,text,text,text,number,

number,number,date" into fieldTypes
--
repeat with x = 1 to number of items of fieldList

get Jovis("CreateField","myDB","Customers",
item x of fieldList, item x of fieldTypes)

end repeat
--

end CreateCustomerFields

This will certainly create all our fields. However, our field list will be very useful, sometimes
even necessary, for use with future commands. We will create a function handler that simply
returns the list of fields, or the list of field types. To do this, we use the following script. You
should include this in your Tutorial stack or project.

function getFieldList listType
if listType = "Fields" then

return "First_Name, Last_Name, Is_Home_Address, Address1,"&
"Address2, City, State,Zip, Phone, Customer_ID, Account_Start"

else if listType = "Types" then
return "text,text,logic,text,text,text,text,number,number,number,date"

end getFieldList

Page 2-21Jovis® Copyright © 1997

Creating Database Structures

function CreateJovisFields RelationName,FieldList,TypesList
repeat with x = 1 to number of items of fieldList

get Jovis("CreateField","myDB",RelationName, ¬
item x of FieldList, item x of TypesList)

end repeat
end CreateJovisFields

on CreateCustomerFields
get Jovis("CreateFields","Customers", getFieldList("Fields"), ¬

getFieldList("Types"))
end CreateCustomerFields

The 'getFieldList' function handler returns our field lists, and the 'CreateJovisFields' function

handler does the actual creating of each Jovis field.

The 'CreateCustomerFields' handler is the caller, or driver for the entire procedure. So, you

could type, "CreateCustomerFields" from your message box and the fields for the "Customer"

relation would be created.

CreateIndex

The last remaining "create" command is 'CreateIndex'. Indexes are used for retrieving records

very quickly searching for them in as efficently as possible. In our "Customers" relation, we are

going to want to search by Last_Name, Zip, and Customer_ID. For now, we will only index

three fields, so we can use this simple script.

1: on CreateCustomerIndexes
2: get Jovis("CreateIndex","Customers","myDB","Last_Name","8")
3: get Jovis("CreateIndex","Customers","myDB","Zip")
4: get Jovis("CreateIndex","Customers","myDB","Customer_ID")
5: end CreateCustomerIndexes

Line 2 is our call to 'CreateIndex' for the "Last_Name" field. The parameters are: the relation,

the global file identifier, the field, and the number of characters from that field we want to

index. We will use the first 8 characters from each "Last_Name" field for this index.

Lines 3 and 4, the other two 'CreateIndex' calls, are both NUMBER data types; those use a

fixed 10 byte width, so we can omit the fifth parameter.

When creating indexes on TEXT fields, it is best to use as few characters as possible but still

reasonably distinguish one entry from another. This helps keep the index as small as possible,

without generating too many duplicate entries.

Relational Tutorials

Jovis® Copyright © 1997Page 2-22

For example, imagine we have the following last names:

Jackenson
Jackmund
Jacksmith
Jackson
Jacksten

If we index only the first 4 characters, the index would consist of "Jack," which would be too

general and contain all five entries. If we instead, indexed on the first 5 characters, we would be

using "Jacks", which is somewhat better, but would still contain 3 duplicate entries:

Jacksmith
Jackson
Jacksten

By using the first 8 characters of the "Last_Name" field, as we're planning to do, our index will

certainly use enough characters to maintain a sufficient level of uniqueness. If you are unsure,

perhaps because you haven't seen enough input data, it is better to err on the high side. For

example, 12 characters is certainly better than, say our original of only 4 characters.

Script Examples

Here we show the 'CreateField' scripts above modified to include creating indexes using the

field lists. Notice that the 'getFieldList' function handler has now been extended to return the

index names and index sizes. We also added a new function handler named

"CreateJovisIndexes". Our original driver, 'CreateCustomerFields' is now called

'CreateCustomerRelation", and now also includes a call to the new function handler

"CreateJovisIndexes" as well as the original 'CreateRelation' command call.

Now everything for setting up the "Customers" relation is taken care of. First, we create the

relation, then the fields, and immediately following that, we create the indexes.

function getFieldList listType
if listType = "Fields" then --> MUST be same item count as "Types".

return "First_Name,Last_Name,Is_Home_Address,Address1,Address2,City,"&
"State,Zip,Phone,Customer_ID,Account_Start"

else if listType = "Types" then --> MUST be same item count as "Fields" above.
return "text,text,logic,text,text,text,text,number,number,number,date"

else if listType = "Indexes" then
return "Last_Name,Zip,Customer_ID" --> MUST be same item count as "Sizes".

else if listType = "Sizes" then
return "12,10,10" --> MUST be same item count as "Indexes" above.

end if
end getFieldList

Page 2-23Jovis® Copyright © 1997

Creating Database Structures

Relational Tutorials

Jovis® Copyright © 1997Page 2-24

function CreateJovisIndexes RelationName,IndexList,Sizes
repeat with x = 1 to number of items of IndexList

get Jovis("CreateIndex","myDB",RelationName,
item x of IndexList, item x of Sizes)

end repeat
end CreateJovisIndexes

function CreateJovisFields RelationName,FieldList,TypesList
repeat with x = 1 to number of items of fieldList

get Jovis("CreateField","myDB",RelationName,
item x of FieldList, item x of TypesList)

end repeat
end CreateJovisFields

on CreateCustomerRelation
get Jovis("CreateRelation","myDB","Customers")
get CreateJovisFields("Customers", getFieldList("Fields"),

getFieldList("Types"))
get CreateJovisIndexes("Customers", getFieldList("IndexList"),

getFieldList("Sizes"))
end CreateCustomerRelation

Error Messages That You May Encounter

Not a valid relation name

Relation name too long

Invalid Param Info

Not Enough params

Not Valid Global

Not Enough Memory

Field already exists

Not a valid field type

Field name too long

Field does not exist in relation

Not a valid field name

Invalid field name chars

Index already exists

Page 2-25Jovis® Copyright © 1997

Creating Database Structures

What You Should Have Learned

You have now learned all of the basics for creating a relation and its structures. We covered the

use of the data types 'Text', 'Number', 'Date', and 'Logic', when calling the 'CreateField' com-

mand. Next, we discussed creating indexes, and, how to determine how many characters should

be used for maintain a sufficient level of uniqueness for a 'Text' data type. Finally, we provided a

complete script example for creating the "Customers" relation for our "DASCO Database".

What to learn next

Now that we have created our "Customers" relation and its structures, it is time to start creating

records. You will begin by learning how to load a record's fields with input data and save it to

the database.

Relational Tutorials

Jovis® Copyright © 1997Page 2-26

Page 2-27Jovis® Copyright © 1997

Creating Records

Tutorial 4

Creating Records

Before You Begin

This tutorial explains how to create records for a given relation. You should already have a

"Customers" relation in the "DASCO Database". All of the fields and indexes for this relation

should have been created. The Jovis error and warning function handlers should already be

implemented. The concepts of a shell application global file identifier, and what a relation is, as

well as how to create field and indexes should be familiar.

Overview

In this tutorial, we are going to show you how to create records, load data into the fields of a

record, and then save the record to the datafile. We will also show you how to turn on and off

the "AutoSave" feature. If you are using the client/server version of Jovis, you should study the

"Transactions" tutorial for information on creating records with "Transactions".

Getting Started

CreateRecord, SetRecordField, and UpdateRecord Commands:

Creating a new Jovis record requires 3 simple steps:

1. call 'CreateRecord' to return a new empty record;

2. use 'SetRecordField' or 'FillRecFields' to load your data into the fields of that record; and

3. call 'UpdateRecord' to save the record to the database.

Here's a quick example of how all this works;

1: on CreateNewRecord
2: put Jovis("CreateRecord","myDB","Customers") into aRecord
3: put Jovis("SetRecordField","myDB","Customers",
4: aRecord,"Last_Name","Smith") into aRecord
5: get Jovis("UpdateRecord","myDB","Customers",aRecord)
6: end CreateNewRecord

Line 2 uses the 'CreateRecord' command to return a new, empty record. In line 3 we then use

the 'SetRecordField' command to put data into a given field. In this case, we are putting "Smith"

into the "Last_Name" field of the record.

In line 4, we save the record to the data file by calling 'UpdateRecord'. Notice that parameter 4

is our new record which contains our data for the "Last_Name" field .

DO NOT under any circumstances, install data directly into a Jovis record by setting the shell

application's 'ItemDelimiter' property. For example:

-- NEVER DO THIS:
on DoRecordField aRecor

set ItemDelimiter to NumToChar(28)
put "Smith" into item 4 of aRecord
set ItemDelimiter to comma

end DoRecordField

While this might seem harmless, you are more likely to experience incompatibilities when you

send the record back to Jovis. Then too, the record format and its delimiters might possibly

change in future versions of Jovis. Using 'SetRecordField' is the only way you can be sure of

future compatibility.

Let's find a more efficient way to load the record's fields. One way is to have the names of the

fields in the "Customers" relation be exactly the same as the fields in the shell application . For

example, our "Last_Name" field in the "Customers" relation would also be the same name as a

shell application field. We could then reference, say, a background field "Last_Name" as parame-

ter 6 in the 'SetRecordField', like this:

put Jovis("SetRecordField", "myDB", "Customers", aRecord, "Last_Name", ¬
bkg fld "Last_Name") into aRecord

If we take this idea a step further and use our "getFieldList" function handler from the previous

tutorial (It's also in the "Script Examples" section below), we could do the following:

Relational Tutorials

Jovis® Copyright © 1997Page 2-28

Page 2-29Jovis® Copyright © 1997

Creating Records

on CreateNewRecord
put Jovis("CreateRecord","myDB","Customers") into aRecord
put getFieldList("Fields") into fldList
repeat with x = 1 to number of items of fldList

put Jovis("SetRecordField","myDB","Customers",aRecord,
item x of fldList,bkgnd fld item x of fldList) into aRecord

end repeat
get Jovis("UpdateRecord","myDB","Customers",aRecord)

end CreateNewRecord

This is fairly efficient; the repeat loop gets the job done with very little scripting. However, to

be even more efficient is the 'FillRecFields' command, which will automatically install the shell

application's fields into the new record. Here's our final example using 'FillRecFields':

on CreateNewRecord
put Jovis("CreateRecord","myDB","Customers") into aRecord
put getFieldList("Fields") into fldList
put Jovis("FillRecFields", "myDB", "Customers", aRecord, fldList, ¬

fldList) into aRecord
get Jovis("UpdateRecord","myDB","Customers",aRecord)

end CreateNewRecord

This is the fastest possible solution for installing data into a Jovis record.

AutoSave

The 'UpdateRecord' command incrementally saves the new record to disk as it updates each

index in the relation. By incrementally saving your data to your hard drive, Jovis provides the

strongest possible security against data loss. However, this 'AutoSave' capability may be too

slow in some situations. You can turn "AutoSave" off at any time by setting the fourth parame-

ter of the 'SetProperty' command to "False". While is it turned off, you can control when to

actually save your changes to disk using the 'SaveFile' command.

Here's our previous script example now using both the 'SetProperty' and 'SaveFile' commands.

1: on CreateNewRecord
2: put Jovis("CreateRecord","myDB","Customers") into aRecord
3: put getFieldList("Fields") into fldList
4: put Jovis("FillRecFields","myDB","Customers",aRecord,fldList,fldList) ¬

into aRecord
5: get Jovis("SetProperty","myDB","AutoSave","False")
6: get Jovis("UpdateRecord","myDB","Customers",aRecord)
7: get Jovis("SetProperty","myDB","AutoSave","True")
8: get Jovis("SaveFile","myDB")
9: end CreateNewRecord

In line 5, we have turned off the 'AutoSave". Line 6 we 'update' the record in memory, but it is

not written to disk. In line 7, we turn the "AutoSave" back on by setting parameter four to

"True". (Remember, this command does not actually save any changes. It simply sets an inter-

nal flag.) In line 8 we tell Jovis to save all changes made to the data file.

'

You will find that turning the "AutoSave" flag on and off is very useful, particularly during batch

processing of records.

The reason for the global file identifier in the 'SaveFile' command is very important for two rea-

sons:

1. In the format: get Jovis("SaveFile","FileGlobal"), Jovis needs the global to know which file

to save AND to get information as to how to report any errors.

2. In the format: get Jovis("SaveFile","FileGlobal", "All"), Jovis still needs the global in order

to report errors AND to access the list of files in order to save them.

While the use of the global file identifier is different in either case, it is very much needed and

should never be considered a "dummy" or unused variable in either situation.

Script Examples

To make referring to the "getFieldList" handler easier, we include it here once again :

function getFieldList listType
if listType = "Fields" then

return "First_Name,Last_Name,Is_Home_Address,Address1,Address2,City,"&
"State,Zip,Phone,Customer_ID,Account_Start"

else if listType = "Types" then
return "text,text,logic,text,text,text,text,number,number,number,date"

else if listType = "Indexes" then
return "First_Name,Zip,Customer_ID"

else if listType = "Sizes" then
return "12,10,10"

end if
end getFieldList

Relational Tutorials

Jovis® Copyright © 1997Page 2-30

Error Messages That You May Encounter

Not a Valid Global

Not Enough parameters

Not a valid Jovis command

Invalid record

Missing or invalid fields

File opened read only

Field does not exist

Not enough memory

Client/Server version:

Record locked by another user

Record not locked

What You Should Have Learned

We put to use for the first time the commands 'CreateRecord', 'SetRecordField',

'UpdateRecord', and 'FillRecFields'. You should fully understand how each of these commands

works in relation to each other. We also showed you a way to use the "AutoSave" feature in

order to more quickly save records to disk.

What to learn next

Now that you understand how to create records, you are ready to learn how to retrieve records

from a database file. In the next tutorial, we will introduce the 'ReadRecord', 'GetRecordField',

'LastRecord', 'NextRecord', 'PriorRecord', and 'CountMatches' commands. We will also cover

how to delete a record using the 'DelRecord' command.

Page 2-31Jovis® Copyright © 1997

Creating Records

Relational Tutorials

Jovis® Copyright © 1997Page 2-32

Tutorial 5

Retrieving Records

Before You Begin

This tutorial explains how to retrieve records from a data file. It requires that the "DASCO

Database" be open and the relation "Customers" be setup. The record with the last name Smith

must have been saved to the data file. The error and warning function handlers should already

have been implemented.

Overview
In the previous tutorial we covered creating records and installing data into a record's fields.

This Tutorial will cover retrieving records and getting information from specified fields in a

record. We will also introduce the 'NextRecord', 'PriorRecord', 'LastRecord', and

'CountMatches' commands. Finally, we will show how to delete a record using the 'DelRecord'

command.

Getting Started

ReadRecord

In our previous tutorial we demonstrated how to create a record, install the name "Smith" into

the "Last_Name" field , and save the record to the data file. Now we will retrieve that same

record:

1: on RetrieveRecord
2: put "Field Last_Name = [Smith]" into Criteria
3: put Jovis("ReadRecord","myDB","Customers",Criteria) into aRecord
4: put Jovis("GetRecordField","myDB",aRecord,"Customers","Last_Name")
5: into bg fld "Last_Name"
6: end RetrieveRecord

Line 2 creates a criteria which tells Jovis to retrieve the first record whose "Last_Name" field

equals "Smith". Keep in mind that there may be multiple records in which the "Last_Name

Page 2-33Jovis® Copyright © 1997

Retrieving Records

equals "Smith", but this is the first record in the given relation that meets our criteria.

Line 4 uses the command called 'GetRecordField';it simply returns the data for the field refer-

enced in parameter 4.

NEVER, under any circumstances, should you retrieve data from a Jovis record by setting the

shell application's 'ItemDelimiter' property, and manually retrieving the field's data.)

In the above example, Jovis returns the field information, and puts it into a background field

"Last_Name". As you might suspect, there is a better way of doing this. This next example

uses a repeat loop to populate the shell application's fields using 'GetRecordField' to access the

record's fields.

on RetrieveRecord
put "Field Last_Name = [Smith]" into Criteria
put Jovis("ReadRecord","myDB","Customers",Criteria) into aRecord
put getFieldList("Fields") into fldList
repeat with x = 1 to number of items of fldList

put Jovis("GetRecordField","myDB","Customers",item x of fldList)
into bg fld item x of fldList

end repeat
end RetrieveRecord

The only drawback to this solution is that it depends on how fast the repeat loop can be execut-

ed by the shell application.

This final example of populating the shell application fields uses the 'FillHCFields' command.

This is the fastest possible way to populate shell application fields. You should always use the

'FillHCFields' whenever you are displaying a record's information.

on RetrieveRecord
put "Field Last_Name = [Smith]" into Criteria
put Jovis("ReadRecord","myDB","Customers",Criteria) into aRecord
put getFieldList("Fields") into fldList
get Jovis("FillHCFields","myDB","Customers",aRecord,fldList,fldList)

end RetrieveRecord

Notice that we have named the shell application fields the same as the record's fields. This helps

keep our database in parallel with out interface.

LastRecord

The 'LastRecord' command functions similarly to 'ReadRecord'. It takes a criteria and returns

the last record that matches the given criteria. Once you have called 'LastRecord', you can use

'PriorRecord' and 'NextRecord' to move through the records that match the "current" criteria.

Relational Tutorials

Jovis® Copyright © 1997Page 2-34

(Criteria will be discussed in tutorial seven.)

put "Field Last_Name = [Smith]" into Criteria
put Jovis("LastRecord","myDB","Customers",Criteria) into aRecord

NextRecord, PriorRecord

We mentioned earlier that our 'ReadRecord' example above returns the first record whose

"Last_Name" field equals "Smith", and that there maybe additional records with "Smith" as the

"Last_Name". By using the 'NextRecord' command we can easily get the next record that meets

the "Last_Name" equals "Smith" criteria.

put Jovis("NextRecord","myDB","Customers") into aRecord

If there are no further records, you will get a warning message from the 'JovisWarningMsg'

function handler saying that "No more records satisfy the search criteria." Assuming that there

were additional records, and you read the "next" record, you could then use the 'PriorRecord'

command to "shift" back to the prior record. If you try to call 'PriorRecord' for the record that

is before the first "Smith" record, you will get the same warning message about no further

records matching the given criteria. As you have probably figured out, the 'ReadRecord' and

'LastRecord' commands control how 'NextRecord' and 'PriorRecord' respond. You must always

"set" the criteria with 'ReadRecord' or 'LastRecord' before calling 'NextRecord' and

'PriorRecord'. In doing so, you establish what is called the "current" criteria.

CountMatches

'CountMatches' is a handy command for finding out how many records exist for a given criteria

without having to step through the records and counting them. This command simply returns

the record count for a criteria that you supply.

put "Field Last_Name = [Smith]" into Criteria
put Jovis("CountMatches","myDB","Customers",Criteria) into RecCount

DelRecord

Deleting records is a two step process:

1. Retrieve the record from the database, and

2. Call the 'DelRecord' command with the record that is to be deleted as the fourth parameter.

Here is a complete example of what we mean:

Page 2-35Jovis® Copyright © 1997

Retrieving Records

put "Field Last_Name = [Smith]" into Criteria
put Jovis("ReadRecord","myDB","Customers",Criteria) into aRecord
get Jovis("DelRecord","myDB","Customers",aRecord)

You will find that deleting a record is quite straight forward. We require that the record to be

deleted is "sent" back to Jovis in parameter four, so there is no mistaking which record is going

to be deleted. This is particularly important if you have multiple data files open with several

relations in each file. (If you are using the client/server version of Jovis, you should consult the

"Transactions" tutorial for details on using 'DelRecord'.)

Script Examples

To make referring to the "getFieldList" handler easier, we include it here once again.

function getFieldList listType
if listType = "Fields" then

return "First_Name,Last_Name,Is_Home_Address,Address1,Address2,City,"&
"State,Zip,Phone,Customer_ID,Account_Start"

else if listType = "Types" then
return "text,text,logic,text,text,text,text,number,number,number,date"

else if listType = "Indexes" then
return "First_Name,Zip,Customer_ID"

else if listType = "Sizes" then
return "12,10,10"

end getFieldList

Error Messages That You May Encounter

Errors:
Invalid input info
Not Enough params
Not a valid Jovis command
Not enough memory
No Record
Invalid record
Invalid field
Invalid operator
Missing operand
Missing field name
Missing background field name
Invalid background field name
Missing card field name

Relational Tutorials

Jovis® Copyright © 1997Page 2-36

Warnings:

No more records satisfy search criteria

Record does not exist

What You Should Have Learned

We covered several commands in this tutorial. Most importantly, we discussed how to retrieve a

record and populate the fields in the shell application's interface. We introduced the concept of

a "current" criteria when using 'NextRecord' and 'PriorRecord' commands. The ability to find

out how many records match a given criteria was also presented using the 'CountMatches' com-

mand. Finally, we showed you how to use the 'DelRecord' command to delete a record from the

database.

What to learn next

Our next step is to create more records for our "Customers" relation. Rather than manually

entering several dozen records for our tutorial, we will demonstrate how to use the

'ImportData' command. We will also show you how to export the data using the 'ExportData'

command. Once we've imported our "data set", the subsequent tutorials will explain selections,

record paths, and the 'Merge' command.

Page 2-37Jovis® Copyright © 1997

Retrieving Records

Relational Tutorials

Jovis® Copyright © 1997Page 2-38

Tutorial 6

Importing and Exporting

Before You Begin

This tutorial explains how to import data from a text file into a Jovis database. We have provid-

ed a text file called "DASCO Customers.txt" with 25 records to be imported into our

"DASCO" data file. You need to locate this file and have it ready for access. Your "DASCO"

database file should be open and ready to be used.

Overview

The 'ImportData' and 'ExportData' commands provide the ability copy data to and from a Jovis

data file. This is a fundamental capability for all databases, and allows you to process your data

in more than a single application environment. For example, you might export the "DASCO"

customer names and address to a word processor in order to perform a mail merge. In the other

direction, the 'ImportData' command is a very fast way to enter multiple records from, say a

customer list from a factory outlet store of "DASCO". Whatever the source or destination of

your data, the 'ImportData' and 'ExportData' commands will be use repeatedly.

Getting Started

ImportData

We begin by using the 'ImportData' command to import 25 records from the text file called

"DASCO Customers.txt" which is provided with this tutorial. Here is the script for importing

these records.

on ImportToJovis
put getFieldList("Fields") into fldList
get Jovis("ImportData","myDB","Customers",fldList,tab,return)

end ImportToJovis

In line 2, our function handler 'getFieldList' returns our standard list of fields. The order of the

fields must be the same order as the fields in the text file. (We have already provided them in

Page 2-39Jovis® Copyright © 1997

Importing and Exporting

order for this tutorial).

You do not have to import data for all of the relation's fields. For example, we could import

records that do not include the 'Phone' field, in which case Jovis would leave the 'Phone' field

empty in each record. It is important, however, that you are sure that the fields in the text file

match and are in the same order as the list of fields being passed in parameter four of the

'ImportData' command.

Now we need to discuss the use of delimiters. Fortunately, Jovis allows you to use any delim-

iters you want for importing data. In our example above, we've used the shell application's 'tab'

constant for the field delimiter and the 'return' constant for the record delimiter. You need to

use delimiters wisely, because they must NOT be used within the fields that you are importing.

If this happens, the data will be skewed across the newly created records, and you will be forced

to trash your data file, and start all over. Because importing data affects your entire database

file, you should always work with a backup copy. (Note that ASCII control characters 28, 29,

and 30 are reserved for use by Jovis.)

If you are importing several thousand records, a progress dialog box will be displayed. There is

a button in the dialog for aborting the import process. If you do abort, the integrity of your

data file is left unstable. You will need to create a new data file, and re-import the data.

(Obviously, aborting is meant as a last resort; it allows you to quickly go back to the begin-

ning.)

If you have not already done so, you should now import the text file "DASCO Customers.txt"

into your "DASCO Database". In our sample script above, we did not include the file path to

the "DASCO Customers.txt" text file; as a consequence, Jovis will display the Macintosh

'Standard Get Dialog' so that you can select it. Once you have done this, Jovis will immediately

import the information.

When the import is complete, you can use the "CountRelation' command we discussed in

Tutorial 5 to find out how many records were created. Type the following into the message box.

put Jovis("CountRelation","myDB","Customers")

(It should return 25.)

ExportData

We mentioned earlier that you may want to export your data for various uses, such as a mail

merge. Here is an example that we could use to export data for our own mail merge:

Relational Tutorials

Jovis® Copyright © 1997Page 2-40

1: on ExportToFile
2: put "First_Name,Last_Name,Address1,Address2,City,State,Zip" into
fldList
3: put "Field Account_Start > [6/30/95]" into criteria
4: get Jovis("ExportData","myDB","Customers",fldList,criteria,tab,return)
5: end ExportToFile

In line 2, we specified a subset of fields from the "Customers" relation, and a local variable

'fldList' to contain the fields we need for a mail merge.

In line 3, we got a little creative, and supplied a criteria that indicates that we want to export all

records whose "Account_Start" field is greater than "6/30/95". In other words, only customers

who opened an account after June 30th, 1995 will be included. At this point, you should go

ahead and export the data. The following 8 records and seven fields should have been exported:

First Name Last Name Address1 Address2 City State Zip

William Anderson 11 West Cedar Street Aurora IL 60504

Susan Abbado NE Broker Kennewick WA 99337

Doris Epstein Prentice Place Freeport IL 61032

Judy Ritter Wine Road Poughkeepsie NY 12601

Barbara Taylor Bradford Lane Penn Hills PA 15123

Ruth Addisen 1 North Express Drive 2nd Floor Fort Bragg CA 95437

Dorthy Quinn 77 Running Brook Moorhead MI 56560

Mike Stevens Lancaster Street Lansdowne PA 19050

Script Examples

To make referring to the "getFieldList" handler easier, we include it here once again.

function getFieldList listType
if listType = "Fields" then

return "First_Name,Last_Name,Is_Home_Address,Address1,Address2,City,"&
"State,Zip,Phone,Customer_ID,Account_Start"

else if listType = "Types" then
return "text,text,logic,text,text,text,text,number,number,number,date"

else if listType = "Indexes" then
return "First_Name,Zip,Customer_ID"

else if listType = "Sizes" then
return "12,10,10"

end getFieldList

Page 2-41Jovis® Copyright © 1997

Importing and Exporting

Error Messages That You May Encounter

Not a Jovis relational file

Not enough memory

Not enough parameters

Invalid number of import fields

Invalid field or record delimiter

Missing or invalid fields

What You Should Have Learned

This tutorial presented an introduction to the commands 'ImportData' and 'ExportData'. Along

the way, we discussed the use of delimiters and why you should carefully use the delimiters that

are NOT contained within your database. Also, you should keep in mind that Jovis reserves the

use of the ASCII control characters 28, 29, and 30. We also used the 'ExportData' command in

a "real world" example of exporting records to use for a mail merge.

Before you continue to a new tutorial, your "DASCO Database" file should now contain the 25

records from the "DASCO Customers.txt" text file.

What to learn next

Our next tutorial provides a full explanation of working with criteria, including range and com-

pound criteria. Once you have learned about criteria, you will be ready to learn about selections

and record paths.

Relational Tutorials

Jovis® Copyright © 1997Page 2-42

Tutorial 7

Working with Search Criteria

Before You Begin

This tutorial explains how to worked with search criteria. You must have imported the data in

the "DASCO Customers.txt" text file in order to use the examples in this tutorial. The error

and warning function handlers are required as well. You will also need at least a few card but-

tons and a utility field into which you can dump the records that you retrieve.

Overview

This tutorial is devoted exclusively to showing you how to create both simple and complex cri-

teria. Several of the Jovis commands include a parameter which requires criteria. In particular,

'ReadRecord', 'LastRecord', 'SetSelection', 'ExportData', 'AppendSelection', and 'TrimSelection'

require criteria in order to retrieve records. Our goal is to teach you how to "build" you own

criteria, and become familiar with this important capability.

The tutorial starts by introducing the basic elements of criteria. It continues with how to use

these simple elements with the three operators 'and', 'not', and 'or' to build compound criteria.

Next, we explain how to use indexes to optimize searches, as well as when optimization occurs.

The tutorial includes many examples of what we have introduced. This tutorial is very impor-

tant, so it is a good idea to try out the examples in your own scripts.

Getting Started

Jovis relational commands permit both simple and complex search criteria. All of the com-

mands using search criteria require the same format. Search criteria normally consist of an

operand followed by an operator followed by another operand. This is called a "Term". For

example:

Field Last_Name = [Smith]

The operator in the above example is the equals sign ("="). The left operand is "Field

Page 2-43Jovis® Copyright © 1997

Working with Search Criteria

Last_Name", and the right operand is "[Smith]". Note that you must use either quotes or

square brackets for the right operand. Both of the following criteria are acceptable:

put "Field Last_Name = [Smith]" into aCriteria
put "Field Last_Name = " & quote & "Smith" & quote into aCriteria

The left operand must be the name of a Jovis database field, such as "Zip", "Last_Name", or

"Customer_ID". The right operand can be a shell application constant, a literal string, or a local

or global variable.

Operators can be any of the following:
= Left Operand equals Right Operand
is Left Operand equals Right Operand
≠ Left Operand does not equal Right Operand
<> Left Operand does not equal Right Operand
> Left Operand is greater than Right Operand
>= Left Operand is greater than or equal to Right Operand
≥ Left Operand is greater than or equal to Right Operand
< Left Operand is less than Right Operand
<= Left Operand is less than or equal to Right Operand
≤ Left Operand is less than or equal to Right Operand
in Left Operand is contained in Right Operand
contains Left Operand contains Right Operand
starts_with Left Operand starts with Right Operand

The type of comparison (numeric, date, logic or text) being done depends upon the field type

for the database field.

The operators “in”, “contains”, and “starts_with” will always return false if the field type is

NOT text. Case is ignored when comparing text fields, however diacriticals are not ignored.

For example, the following are some VALID expressions:

on createCriteria
global gCustomer_ID

put "field last_name = [smith]" into myCriteria

put "field zip >= [" & bg fld "zip" & "]" into myCriteria
-- or:
put "field zip ≥ " & quote & bg fld "zip" & quote into myCriteria

put "field Last_Name starts_with [smi]" into myCriteria

put "Field Customer_ID = [" & gCustomer_ID & "]" into myCriteria

end createCriteria

Relational Tutorials

Jovis® Copyright © 1997Page 2-44

These are INVALID expressions and the reasons they are invalid:

field "zip" > [60007] -- do not use quotes around field name in left operand

field customer_ID => "47" -- '=>' is not a valid operator; it should be >= or ≥

field customer_ID ≥ 47 -- need quotes or brackets around constant value

For most of the operators, you do not need to use spaces to separate the operands in your crite-

ria. The exceptions are the operators not, is, in, contains, and starts_with.

For example, all of these criteria are equivalent:

Zip = "10010"
Zip ="10010"
Zip= "10010"

Last_Name starts_with [Jack] -- space is required between "Last_Name" and "Starts_with"

NOTE: You will notice that several of the Jovis commands allow you to optionally omit the

criteria and leave the parameter empty. If you do decide to do this, the default criteria is:

Field !RecID > [0]

Compound Criteria

A single comparison is often too limiting. In many cases you will want to select records that

satisfy more than one criterion.

Jovis allows this by letting you take terms, such as those described above, and combine them

with the operators (not, and, or) to develop compound search expressions.

For example, if you wanted to select customers whose last name is "Smith" and who live in

"Connecticut", you would use this expression:

Field Last_Name = "Smith" and Field state = "CT"

The order in which an expression is evaluated is important. Let us consider the results of 2

expressions using the following five records:

Page 2-45Jovis® Copyright © 1997

Working with Search Criteria

Rec# Name Zip
1 Jones 60615
2 Smith 40412
3 Jones 60235
4 Smith 60007
5 Smith 74715

For example, look at the following expression.

Field Last_Name = "smith" or Field zip >= "60000" and Field zip <= "69999"

Jovis evaluates expressions from left to right. In this case, it first retrieves all records where

"Last_Name" is "Smith" or the "Zip" is greater than 60000, then from that group, it selects a sub-

set of records where the zip is less than 69999.

Using this expression, record #2 is not selected because the zip code is less than 60000, and

record # 5 is not selected since the zip code is greater than 69999, even though the name is

Smith in both records.

Let’s change the above expression to select every record whose zip code is in the range 60000 to

69999 or whose last name is Smith. You can either change the order of the terms, or use paren-

theses, as follows:

Field Last_Name = "smith" or (Field zip >= "60000" and Field zip <= "69999")

Using this second expression, all five records are selected, since either the name is Smith or the

zip code is in the range 60000 to 69999.

Let's take a different example of search criteria, using the following six records:

Rec # Company Name Position Title
1 Commonwealth Co. Personnel Manager
2 U.S. Government Manager of Employee Relations
3 U.S. Government Personnel Manager
4 General Data Director of Personnel
5 Computers etc. Personnel Specialist
6 Commonwealth Co. Vice President of Development

Try this search criteria on the above records:

Field company_name <> "U. S. Government" and
(Field position_title contains "personnel" or
Field position_title contains "employee relations")

Since Jovis evaluates expressions from left to right, it first selects all records where the company

Relational Tutorials

Jovis® Copyright © 1997Page 2-46

name is not "U. S. Government". From that group it then selects any records where the posi-

tion title contains either the word personnel or the words employee relations. From the six

records shown above, the records selected are 1, 4, and 5. Notice that the operators “in” and

“contains” are opposites. Instead of writing:

put "Field position_title contains [personnel]" into criteria

you could have written:

put "[personnel] in Field position_title" into criteria

and obtained the same results.

Optimizing Searches

A search is optimized by limiting the number of records that must be read during the search

process. For example, if you want to find everyone named Smith who lives in Connecticut, you

can optimize the search by only looking at records for people named Smith, and from that

group, those who live in Connecticut. Or you can read only the records of people who live in

Connecticut and then select from that group those people whose name is Smith.

This “narrowing down” process is done by using indexes. An index is simply a field that is sort-

ed separately from the record in order to allow fast searches. In the example above, you might

use the following search criteria:

Field Last_Name = "Smith" and Field state = "CT"

If the field State is indexed, the database goes directly to those records where the State field is

"CT". If the State field is not indexed, but the Last_Name field is indexed, the database goes

directly to the records of people whose last name is "Smith".

Jovis optimizes on the first indexed field that it finds. Since it evaluates the search criteria from

left to right, the order in which the search terms are presented directly affects the speed in

which the records are found.

In the example above, if both fields are indexed, Jovis uses the Last_Name index. If there are

many more people named "Smith" than people who live in the state "CT", the search could be

improved by listing the state field first, like this:

Field State = "CT" and Field Last_Name = "Smith"

Search criteria can only be optimized for a field if:

Page 2-47Jovis® Copyright © 1997

Working with Search Criteria

(1) the values of the field constitute a range,

(2) the field is indexed, and

(3) the succeeding terms are “and”ed to the range terms.

(1) A range can be any of the following combinations:

Field A = "value"
Field A starts_with "value"
Field A > "value"
Field A >= "value"
Field A < "value"
Field A <= "value"
Field A > "value1" and Field A < "value2"
Field A >= "value1" and Field A < "value2"
Field A > "value1" and Field A <= "value2"
Field A >= "value1" and Field A <= "value2"

Notice that the operators ≠ , <>, in, and contains cannot be optimized.

(2) In all of the above cases, database field A must be an indexed field.

(3) This criteria is said to be “and”ed with the range.

Field A = "value1" and Field B ≠ "value2"

In this case, Field A = “value1” is a range. Field B ≠ “value2” must be true in addition to the

Field A's equality, therefore this search is optimized.

On the other hand, if we change the above criteria to:

Field A = "value1" or Field B ≠ "value2"

This search cannot be optimized, because the first term does constitute a range, and, it is not

combined with the second term using an “and” operator.

There are times when it may not make sense to index a field. Since the purpose of an index is to

speed up a search, the possible number of duplicate values in the indexed field is something to

think about. A logic field, in particular, has only two possible values - true or false, and so will

always have many duplicates. Indexing on a logic field for index searching is rarely beneficial,

since the database will end up scanning many records along the index to find the one where a

given field is, say, true and "Last_Name equals "Smith".

To summarize, some fields have just too many duplicate values to make useful indexes. Logic

Relational Tutorials

Jovis® Copyright © 1997Page 2-48

fields especially are much better used as a qualifying term “and”ed to the criteria, as below.

Jovis last_name = "Smith" and Jovis Account_Start = "true"

Now let us take a look at how to optimize an expression with many search criteria.

Field zip > "59999" and
Field zip <= "69999" and
(Jovis last_name = "Smith" and

(Field phone contains "312" or
Field phone contains "708" or
Field phone contains "815"))

The first part of the expression constitutes a range, and the zip code field is indexed, so Jovis

uses this index to first select all the records between 60000 and 69999.

Jovis then looks within that selection for records with "Last_Name" = "Smith" and with the

specified numbers within the phone number field.

Notice that even if we reverse the first two terms, Jovis still recognizes it as a range and opti-

mizes on the zip code field. For example:

Field zip <= "69999" and
Field zip > "59999" and
(Jovis last_name = "Smith" and

(Field phone contains "312" or
Field phone contains "708" or
Field phone contains "815"))

You could probably make the search even more efficient by optimizing on the name field, rear-

ranging the terms within the expression like this:

Field last_name = "Smith" and
(Field zip > "59999" and Field zip <= "69999") and

(Field phone contains "312" or
Field phone contains "708" or
Field phone contains "815")

This is a better way to search if there are fewer Smiths than there are records within the zip

code range, and if "Last_Name" is an indexed field.

Changing the expression again, see what happens in this situation:

(Field phone contains "312" or
Field phone contains "708" or
Field phone contains "815") and

Field last_name = "Smith" and
Field zip > "59999" and Field zip <= "69999"

Page 2-49Jovis® Copyright © 1997

Working with Search Criteria

Remember that the operator “contains” cannot be optimized. Therefore, the first range that

Jovis encounters is still Last_name = Smith.

One way NOT to order the first three terms would be:

Field zip <= "69999" and
Field last_name = "Smith" and Field zip > "59999" and
(Field phone contains "312" or

Field phone contains "708" or
Field phone contains "815")

Doing it this way is disastrous! Jovis optimizes on the first range, which is zip code <= 69999,

so it first gets ALL the records with zip code 00000 - 69999. Then it finds all the Smiths and

zip codes greater than 59999, and finally looks at the phone numbers.

Script Examples

Here are some more examples of criteria for use with our "DASCO" database:

Field last_name starts_with [s] and Field Account_Start > "6/30/95"

Field cusomter_ID = [4761]

Field Account_Start ≥ "6/30/95" and Field Account_Start ≤ "6/30/96"

Field state = "IL" and Field Account_Start > "6/30/95"

Error Messages That You May Encounter

Warnings:

No more records satisfy criteria

Missing or invalid fields

Selection exceeds 30000

Record does not exist

No records selected

Errors:

Invalid selection name

Invalid operator

Missing operand

Unbalanced quotes or brackets

Relational Tutorials

Jovis® Copyright © 1997Page 2-50

Missing field name

Invalid Selection field name

Incorrectly placed left parenthesis

Unbalanced parenthesis

Incorrect placed NOT operator

Incorrect placed AND operator

Incorrect placed OR operator

One of the operands must be a field

What You Should Have Learned

You should be able to create at least simple criteria without referring to this tutorial or other

examples at this point. Because compound criteria is more complex, referring to the documen-

tation may be required. You should feel comfortable with using all of the operators, and clearly

understand the difference between a left and right operand. On occasion, it is worth reviewing

this tutorial, so you do not forget some of the details that were covered.

What to learn next

Now that we have covered creating criteria, we will move on to creating selections or subsets of

a relation. Selections are one of the most powerful features in Jovis. Once you have started

creating selections on your own, you will have completed the core or basic tutorials.

The remaining tutorials explain "peripheral" features, such as record paths, multiple sections,

and the 'Merge' command. We are sure that sooner or later you will need to understand and use

these capabilities, but they are not crucial to getting started with Jovis.

Page 2-51Jovis® Copyright © 1997

Working with Search Criteria

Relational Tutorials

Jovis® Copyright © 1997Page 2-52

Tutorial 8

Creating Selections

Before You Begin

This tutorial explains how to create selections. You will need to have your "DASCO Database"

open, and you should have already imported the "DASCO Customers.txt" text file. If you have

not yet studied the tutorial called "Working with Criteria," you should do that now. This tutori-

al is the last of the eight "core" tutorials which cover the basic features of Jovis. (If you are

using the client/server version of Jovis, you need to study the tutorial on "Transactions".)

Overview

Creating a selection is a basic requirement of all relational databases. We think you will be

impressed with how powerful and flexible this feature is in Jovis.

A selection is a subset of a relation. It has columns and rows just like a relation. The major dif-

ference between a selection and a relation is that a selection is "read-only"; you cannot make

changes to a selection. You access records through a selection, make changes to the records,

and then save the records back to the database. Selections can have as many fields or columns

as are available in a given relation, and as many rows as the provided criteria will generate. One

nice feature in Jovis is that you can "save" a selection to a text file, using the 'ExportSelection'

command. You should keep in mind that selections are held in memory. (In the client/server

version, they are held in memory at the client.). The amount of memory allocated to the shell

application directly effects the size and number of selections you can work with.

The first command to be introduced will be 'SetSelection', followed by 'SelectionToVar',

'SortSelection', 'GetSelectionRecord', and 'ExportSelection'. We will also show you how some of

the commands we have previously introduced are used to support creating and working with

selections.

Getting Started

You use the 'SetSelection' command to create a selection. This generates the selection from the

Page 2-53Jovis® Copyright © 1997

Creating Selections

given relation based on the criteria you have provided. When you create a new selection for a

given relation, the previous selection for that relation is removed from memory. You can create

a current selection for each relation and access it at anytime. Once the selection is created, you

can put it into a variable or a shell application field using the command 'SelectionToVar'. For

example:

on CreateSelection
put "Field Customer_ID > [0]" into aCriteria
put "First_Name,Last_Name,Address1,Address2" into fldList
get Jovis("SetSelection","myDB","Customers",fldList,aCriteria)
put Jovis("SelectionToVar","myDB","Customers",comma,return)

into cd fld "Display"
end CreateSelection

Once the selection has been created, we use the 'SelectionToVar' command to put the selection

into card field "Display". Notice that we are using the comma, which is shell application con-

stant, as a field delimiter, and a carriage return (also a shell application constant) as the record

delimiter. Internally, Jovis uses its own delimiters for the selection; however, you can specify

any character that you wish as a delimiter. Just be sure that the characters you use for delimiters

are not used in the data you have selected. If this happens, the fields and records well be

skewed when you display them.

Many users of Jovis use our product "ListTable™" to display their selections in a "spreadsheet"

style window. ListTable provides full scripting access to each record's field, and makes it very

easy to not only view your selections, but to make changes to the database. ListTable does not

have a 32k text limit, so if your selections are greater than 32k, ListTable will still be able to dis-

play them.

CountSelection

If you have already implemented the above example, you already know that it selects all the

records whose "Customer_ID" field is greater than zero. Because all of our records have a

"Customer_ID" greater than zero, all the records in the database will be selected. Notice that

the we are only selecting the first name, last name, and customer ID; all the other fields in the

relation are omitted. If you need to know how many records were selected, you can use the

'CountSelection' command, like this:

put Jovis("CountSelection","myDB","Customers") into SelectionCount

SortSelection

Selections can be sorted by any of the fields in the selection. They can also be sorted on more

than one field. For example, we could sort the selection by last name, and then sort it by first

Relational Tutorials

Jovis® Copyright © 1997Page 2-54

name, like this:

get Jovis("SortSelection","myDB","Customers","Last_Name","First_Name")

This will give us, for example, all of the "Smith" records grouped together, sorted by first name

within that group.

GetSelectionRecord

Now that we have created a selection, we may want to "update" some information for a given

customer. Let's say that "Alice Brown", which is row number 3 in the selection, has changed her

address. It was "RR 1", and we want to change it to "House #123". Here is the script that

makes this change:

1: on UpdateSelectionRecord
2: put Jovis("GetSelectionRecord","myDB","Customers",3) into aRecord
3: put Jovis("SetRecordField","myDB","Customers",
4: aRecord,"Address1","House #123") into aRecord
5: get Jovis("UpdateRecord","myDB","Customers",aRecord)
6: end UpdateSelectionRecord

You can see how the commands that we introduced in the "Create Record" tutorial come in

handy here. We retrieve the third record using the 'GetSelectionRecord' command, and then

use the 'SetRecordField' and 'UpdateRecord' commands to make and save our changes.

ExportSelection

We mentioned earlier that you can save a selection to a text file. Using the 'ExportSelection'

command, this is an easy process. Here's an example:

on SelectionToFile
put "Field Customer_ID > [0]" into aCriteria
put "First_Name,Last_Name,Address1,Address2,City,State,Zip" into fldList
get Jovis("SetSelection","myDB","Customers",fldList,aCriteria)
put Jovis("ExportSelection","myDB","Customers",tab,return)

into cd fld "Display"
end SelectionToFile

The 'ExportSelection' command has several optional parameters. In our example, because we

didn't provide a file path for creating the text file, the Macintosh "Standard Put File" dialog will

be displayed. Once the file is saved, you could use it to create a mail merge to the selected cus-

tomers.

Page 2-55Jovis® Copyright © 1997

Creating Selections

Script Examples

Here is another example that creates a selection and displays it in a shell application's field called

"Display".

on CreateSelection
put "Field last_name starts_with [s] and

Field Account_Start > [3/31/94]" into aCriteria
put "First_Name,Last_Name,Account_Start,Customer_ID" into fldList
get Jovis("SetSelection","myDB","Customers",fldList,aCriteria)
get Jovis("SortSelection","myDB","Customers","Account_Start")
put Jovis("SelectionToVar","myDB","Customers",comma,return)

into cd fld "Display"
put "Row count: " & Jovis("CountSelection","myDB","Customers") into msg

end CreateSelection

Error Messages That You May Encounter

Warnings

No more records satisfy criteria

Selection exceeds 30000

No records selected

Errors

Field does not exist in relation

Invalid field

Not Enough Memory

Not a valid relation name

What You Should Have Learned

You should have learned how to create and display a selection. We introduced the

'CountSelection' and 'SortSelection' commands. In addition, we showed you how to change

data by referring to the row number in the selection and using 'SetRecordField' and

'UpdateRecord' to save your changes. We also covered how to export a selection to a text file

using the 'ExportSelection' command.

Relational Tutorials

Jovis® Copyright © 1997Page 2-56

What to learn next

You have been working with and creating selections which are the current or active selection for

a given relation. When you create a new selection, the old one is removed from memory. In the

next tutorial, we explain how to reserve selections by assigning them a name and "deactivating"

them. This allows you to swap selections in memory without re-creating them. This is a very

useful feature for applications which need to support an "undo" capability.

Page 2-57Jovis® Copyright © 1997

Creating Selections

Relational Tutorials

Jovis® Copyright © 1997Page 2-58

Tutorial 9

Multiple Selections

Before You Begin

This tutorial explains the additional capabilities that you can use when creating selections. You

need to know how to work with criteria and you should feel comfortable creating selections

with little difficulty. Once again we will use our "DASCO Database", so you will need to have it

open and ready to go. The warning and error function handlers should be in place so that you

can catch any problems as they occur.

Overview

The four commands 'ReserveSelection', 'RestoreSelection', 'ListSelections', and 'DelSelection' are

used with multiple selections. These commands allow you to "set aside" the current selection

for a given relation and create another selection in that same relation. Keep in mind that for

each relation, there can only be a single current or active selection. By reserving and restoring a

selection you can control which selection you want to "currently" work with. As with all selec-

tions, you should keep in mind that selections are held in memory, and that the amount of

memory allocated to the shell application affects the size and number of selections you can

work with.

The basic process for reserving a current selection is to call 'ReserveSelection', and provide a

name for the current selection. Once the 'ReserveSelection' command has been successfully

called, the current selection becomes a named selection, so there is no longer a current selec-

tion. (You could, as an alternative, use the 'DupSelection' command to duplicate the current

selection without clearing it.)

With the 'RestoreSelection' command, you cause a named selection to become the current selec-

tion. In doing so, you will clear the current selection, if there is one. Most of the other selec-

tion commands such as 'SelectionToVar', 'CountSelection', and 'GetSelectionRecord' have an

optional parameter for a named selection. By using this parameter, you can access a "reserved"

selection without making it the current selection. (Note that this does not apply to the

'SortSelection' command.)

Page 2-59Jovis® Copyright © 1997

Multiple Selection

Getting Started

In order to reserve a current selection you must include a unique name in the fourth parameter

of the 'ReserveSelection' command. The current selection must be a valid selection with at least

one record selected. You can use the 'ListSelection' command to get a list of the named selec-

tions for the given relation. This is handy for testing if a named selection already exists. The

'RestoreSelection' command clears the current selection and installs the named selection and

removes it from the list of reserved selections. If you do not need the reserved selection for fur-

ther processing, you should clear it from memory using the 'DelSelection' command. Here's an

example using all four of these commands:

on UseMultiSelections
put "Field State starts_with [Il]" into aCriteria
put "First_Name,Last_Name,Account_Start,Customer_ID" into fldList
get Jovis("SetSelection","myDB","Customers",fldList,aCriteria)
if Jovis("CountSelection","myDB","Customers") > 0 then

get Jovis("ReserveSelection","myDB","Customers","Illinois_Customers")
end if
--
put "Field State starts_with [VT]" into aCriteria
get Jovis("SetSelection","myDB","Customers",fldList,aCriteria)
if Jovis("CountSelection","myDB","Customers") > 0 then

get Jovis("ReserveSelection","myDB","Customers","Vermont_Customers")
end if
--
answer "The currently reserved selections are:" & return & return &

get Jovis("ListSelections","myDB","Customers")
--
if "Illinois_Customers" is in Jovis("ListSelections","myDB","Customers") then

get Jovis("RestoreSelection","myDB","Customers","Illinois_Customers")
put Jovis("SelectionToVar","myDB","Customers",comma,return) into

cd fld "MidWest Customers"
get Jovis("ReserveSelection","myDB","Customers","Illinois_Customers")
get Jovis("DelSelection","myDB","Customers","Illinois_Customers")

end if
--
if "Vermont_Customers" is in Jovis("ListSelections","myDB","Customers") then

get Jovis("RestoreSelection","myDB","Customers","Vermont_Customers")
put Jovis("SelectionToVar","myDB","Customers",comma,return) into

cd fld "NorthEast Customers"
get Jovis("ReserveSelection","myDB","Customers","Vermont_Customers")
get Jovis("DelSelection","myDB","Customers","Vermont_Customers")

end if
end UseMultiSelections

While this is a rather long example, you can easily see that all we have done is create two selec-

tions, one called, "Illinois_Customers" and one called "Vermont_Customers", and reserved them

using the "ReserveSelection' command. Once that was done, we restored each selection, and

Relational Tutorials

Jovis® Copyright © 1997Page 2-60

then, using the 'SelectionToVar' command, we put the selections into their respective shell appli-

cation fields. You probably noticed the numerous "if" statements in the example. Careful test-

ing for the existence of a named selection, and "if" the 'SetSelection' command successfully cre-

ated a selection, keeps our program flowing without unnecessary warnings and errors.

Script Examples

The "QuickSelection" handler below shows how you might implement the two following utility

handlers, "saveCurrentSelection" and "RestorePriorSelection", which can be used to implement a

simple selection "Undo". Basically, you reserve the current selection, and make another selec-

tion. If this new selection comes back empty, you can then revert back to the previous selec-

tion, providing a type of undo process.

on QuickSelection
saveCurrentSelection
put "Field Customer_ID > [0]" into aCriteria
put "First_Name,Last_Name,Address1,Address2" into fldList
get Jovis("SetSelection","myDB","Customers",fldList,aCriteria)
if Jovis("CountSelection","myDB","Customers") > 0) then

put Jovis("SelectionToVar","myDB","Customers",comma,return)
into cd fld "Display"

else
RestorePriorSelection

end if
end QuickSelection

on saveCurrentSelection
if Jovis("countSelection","myDB","Customers") > 0 then

if "MyPriorSelection" is in Jovis("listSelections","myDB","Customers") then
get Jovis("delSelection","myDB","Customers","MyPriorSelection")

end if
get Jovis("reserveSelection","myDB","Customers","MyPriorSelection")

end if
end saveCurrentSelection

on RestorePriorSelection
if "MyPriorSelection" is in Jovis("listSelections","myDB","Customers") then

get Jovis("restoreSelection","myDB","Customers","MyPriorSelection")
end if

end RestorePriorSelection

Page 2-61Jovis® Copyright © 1997

Multiple Selection

Error Messages That You May Encounter

Not Enough Memory

Not a valid relation name

Selection name already exists

What You Should Have Learned

In this tutorial we demonstrated how to work with the multiple selection commands. By using

'ReserveSelection' you can name and reserve the current selection for the given relation. When

you want to access this selection you can use the 'RestoreSelection' command. In addition, we

explained that the current selection is cleared when 'ReservedSelection' is called. This sets the

stage for either creating a new selection or restoring a named selection using the

'RestoreSelection' command.

What to learn Next

Working with multiple selections is quite similar to working with record paths, so we have

placed the "Record Paths" tutorial next. What record paths are and how you can use them will

be explained. You will find that many of the same concepts used with multiple selection are also

applied to record paths, particularly that of reserving a record path by name, and then restoring

it for current use.

Relational Tutorials

Jovis® Copyright © 1997Page 2-62

Tutorial 10

Record Paths

Before You Begin

The concept of using "Record Paths" is similar to using bookmarks; by reserving a record path,

you can return to it at a later time. Record paths can be very useful, especially if you need to

refer to different records within the same relation.

This tutorial assumes that you understand how to use the 'ReadRecord', 'NextRecord',

'PriorRecord' and 'LastRecord' commands, and have studied the tutorial "Retrieving Records,"

which explains how to use these commands. As with all of our tutorials, this one uses the

"DASCO Database" file for the examples we will be presenting.

Overview

As you use the 'ReadRecord', 'NextRecord', 'PriorRecord' and 'LastRecord' commands, you will

find situations when you need to access a record in the same relation using a criteria different

than the current one. With the 'ReserveRecordPath' command, you can store your position in

the database, as well as the current criteria, in memory. In doing so, Jovis clears the current

position and criteria. Calling 'ReadRecord' at this point would result in an error.

To return to the reserved record path, you use the 'RestoreRecordPath' command, which clears

the current record path and criteria, and installs the reserved record path. It also removes it

from the list of reserved record paths. The current record is now the record you last read using

one of the 'ReadRecord' commands. You can test this by using the 'CurrentRecord' command.

In addition to the 'ReserveRecordPath' and 'RestoreRecordPath' commands, there are the com-

mands 'ListRecordPaths', 'CurrentRecord', 'DupRecordPath', and 'DelRecordPath' which we will

also discuss in this tutorial.

Getting Started

When you call the 'ReserveRecordPath' command, you provide a unique name for the reserved

record path. The 'ListRecordPaths' will provide you with a list of the reserved record paths.

Page 2-63Jovis® Copyright © 1997

Record Paths

'DelRecordPath', of course, deletes the named record path. The following example is a utility

routine that checks a customer has not been entered a second time subsequent to this or her

"Account_Start" date.

on IsDuplicateCustomer
put "Field Customer_ID = [4432]" into aCriteria
put Jovis("ReadRecord","myDB","Customers",aCriteria) into aRecord
put Jovis("GetRecordField","myDB","Customers",aRecord,"Last_Name") into LastName
put Jovis("GetRecordField","myDB","Customers",aRecord,"Account_Start") into

AccountStart
get Jovis("ReserveRecordPath","myDB","Customers","myRecordPath")
put "Field Last_Name = [" & LastName & "] and Field Account_Start > [" &

AccountStart &"]" into tempCriteria
put Jovis("ReadRecord","myDB","Customers",tempCriteria) into tempRecord
if tempRecord is not empty then

answer "Found possible duplicate record."
if "myRecordPath" is in Jovis("ListRecordPaths","myDB","Customers") then

get Jovis("DelRecordPath","myDB","Customers","myRecordPath")
end if
exit IsDuplicateCustomer

else
get Jovis("RestoreRecordPath","myDB","Customers","myRecordPath")
put Jovis("CurrentRecord","myDB","Customers") into aRecord
put Jovis("NextRecord","myDB","Customers",aCriteria) into aRecord
-- etc.

end if
end IsDuplicateCustomer

This routine calls 'ReadRecord' and gets the last name and account start field information. It

then calls 'ReserveRecordPath' to save our location in the database. Next we create a criteria

using the last name and account start information and make a second 'ReadRecord' call. If we

find another record with the same last name, and whose account start field is greater than our

original account start field, then we might suspect that a customer's account has been entered

twice. If we do not find a duplicate account, we call 'RestoreRecordPath,' which returns us to

exactly where we left off.

After restoring the record path, we called 'CurrentRecord' just to show that we are back where

we left off. From here you can continue with further processing, or return to the calling han-

dler.

Script Examples

The utility handlers "saveCurrentRecPath" and "RestorePriorRecPath" provided below, can be

used to implement a simple read record undo. Our "QuickReadRec " handler shows how you

might implement these utility handlers. Basically, you reserve the current record position, and

Relational Tutorials

Jovis® Copyright © 1997Page 2-64

make another 'ReadRecord' call, and if this new 'ReadRecord' call comes back empty, you revert

back to the previous record location.

on QuickReadRec Cust_ID
saveCurrentRecPath
put "Field Customer_ID = [" & Cust_ID & "]" into aCriteria
put "First_Name,Last_Name,Address1,Address2" into fldList
put Jovis("ReadRecord","myDB","Customers",fldList,aCriteria) into aRecord
if aRecord is not empty then

put Jovis("GetRecordField","myDB","Customers",aRecord,"Last_Name")
into cd fld "Display"

else
RestorePriorRecPath

end if
end QuickReadRec

on saveCurrentRecPath
if "MyPriorRecPath" is in Jovis("ListRecordPaths","myDB","Customers") then

get Jovis("DelRecordPath","myDB","Customers","MyPriorRecPath")
get Jovis("ReserveRecordPath","myDB","Customers","MyPriorRecPath")

end if
end saveCurrentRecPath

on RestorePriorRecPath
if "MyPriorRecPath" is in Jovis("ListRecordPaths","myDB","Customers") then

get Jovis("RestoreRecordPath","myDB","Customers","MyPriorRecPath")
end if

end RestorePriorRecPath

Error Messages That You May Encounter

Invalid character

Reserved record path already exists

Not enough parameters

No current record

Reserved record path not found

What You Should Have Learned

We introduced the concept of "Record Paths" which is similar to bookmarks. You should have

learned how to reserve and restore a location in a relation. In addition, we covered how to

delete a reserved record path as well as get a list of reserved record paths.

Page 2-65Jovis® Copyright © 1997

Record Paths

What to learn Next

Both the single-user and client/server versions of Jovis use the same database file format and set

of commands. Therefore, it is easy to switch between the single and multi-user versions. In the

next tutorial, we introduce the concept of "Transactions". This allows a client to "lock" a record

in order to make changes, and at the same time, prevent other clients from making changes to

the same record. If you are using the single-user version, and know you might be using the

client/server version in the future, it is a good idea to script in the transaction commands. Jovis

ignores these commands under the single-user version; no errors will be generated. Therefore,

you can script for the client/server version within the single-user version, and your application

will work correctly in both versions.

Relational Tutorials

Jovis® Copyright © 1997Page 2-66

Tutorial 11

Transactions

Before You Begin

In this tutorial we introduce the "Transaction" commands. These commands are used for lock-

ing records, and thereby preventing more than one client from making changes to a record at

the same time. Even if you are using the single-user version, it is important that you consider

scripting the "Transaction" commands; then, if you should begin using the client/server version,

your scripts will be ready to go. It is always easier to script future needs in while you are

designing, typing, and testing than to retro-fit a new layer of commands into what you have

already done.

You need to have learned how to use the read commands, 'ReadRecord', 'NextRecord',

'PriorRecord', 'LastRecord', and 'GetSelectionRecord', as well as the 'CreateRecord',

'DelRecord', and 'UpdateRecord' commands. These are the commands that are used in conjunc-

tion with the "Transaction" commands. You must be sure that the warning and function han-

dlers have been installed. They become invaluable when transaction errors occur. In addition,

you should have the "DASCO Database" open and ready for use.

Overview

The transaction commands are necessary for locking records before updating in a multi-user sit-

uation. This requirement is to prevent two clients from updating the same record at the same

time.

In the single-user version, the transaction commands do nothing and return no errors; they

have no effect in a single-user script. This allows you to write scripts that work with both the

single and client/server versions.

We will spend time not only showing you how to use these commands, but also how best to

implement them into the flow of your applications.

Page 2-67Jovis® Copyright © 1997

Transactions

Getting Started

When a script is about to read a record or series of records which will be updated or deleted,

you must first call the 'BeginTransaction' command before calling 'ReadRecord', or any of the

other "read" commands.

Once you have called 'BeginTransaction', any records read by the script are locked by the Server,

so that other clients on the network will be able to look at the records, but will not be able to

"update" them. Other clients trying to lock the records will get the error message, "Record

locked by another".

When the client who locked the record makes a change, updates, and reads the record again

before committing the transaction, he or she will see the record with the changes that have been

made. At the same time, other clients reading the record will see the record as it was prior to

the changes.

The transaction commands work at the collection level of your database, NOT at the relation

level. In other words, the 'BeginTransaction' command will affect all the relations within a given

collection or database file. You must call 'BeginTransaction' for each data file.

The Server limits the number of records in each relation that may be locked at one time. For

example, a basic 3-client Server allows a maximum of 120 locked records per relation at one

time by all of the connected clients. If another 3 clients are added to the Server, the limit is

increased to 240 records per relation for all of the clients. This limit is intended to keep colli-

sions among clients trying to update the same records to a minimum. When scripting transac-

tions, you should think about the client accessing and updating relevant records, and commit-

ting the transaction so that the records are released to other users of the database. You should

always try to keep to a minimum the number of records being read after you've called

'BeginTransaction'.

The 'UpdateRecord' and 'DelRecord' commands do not physically change the database until the

script executes the 'CommitTransaction' command. At that time, any changes made to the

records are applied to the database, and all records locked by the 'BeginTransaction' command

are unlocked.

If the script executes the 'CancelTransaction' command instead of 'CommitTransaction', then all

the changes are thrown away, and all the records locked by the 'BeginTransaction' command are

unlocked.

As mentioned before, if a script needs to lock records contained in more than one database file,

it must execute the transaction commands for each database file.

Relational Tutorials

Jovis® Copyright © 1997Page 2-68

When new records are being added to the database, the commands 'CreateRecord' and

'UpdateRecord' should also be preceded by transaction commands.

It is impossible to update or delete a record without first locking it. If a script tries to use

either of these commands outside a transaction, the error message, “Record not locked” is

returned.

Records in a selection are never locked, since they are actually a “snapshot” of the records

themselves. So it makes no difference if one client has locked some of the records that go into a

selection being made by another client.

Script Examples

Here is a basic example of using the transaction commands to update a record:

1: on ChangeRecordField
2: if Jovis("IsTransactionOn","myDB") = "False" then
3: get Jovis("BeginTransaction","myDB")
4: end if
5: put "Field Customer_ID = [4432]" into aCriteria
6: put Jovis("ReadRecord","myDB","Customers",aCriteria) into aRecord
7: put Jovis("SetRecordField","myDB","Customers",aRecord"Address1",
8: "PO Box 55") into aRecord
9: get Jovis("UpdateRecord","myDB","Customers",aRecord)
10: get Jovis("CommitTransaction","myDB")
11: end ChangeRecordField

The above example will run exactly the same whether you are using the single or client/server

version of Jovis. By calling the 'IsTransactionOn' command we can avoid a possible error if the

"transaction flag" at the server has already been set. (The 'IsTransactionOn' command will

always return "False" in the single-user version.) Lines 6 though 9 should be familiar; we simply

retrieve a record from the server, change the "Address1" field and call 'UpdateRecord'. The

'CommitTransaction', in line 10, tells the server to commit the record to the database file.

The following example demonstrates the 'CancelTransaction' command. (Notice that we do not

call 'UpdateRecord' in order to delete a record.) Once 'DelRecord' has been called, the

'CommitTransaction' command will do the actual deletion of the record from the database.

Page 2-69Jovis® Copyright © 1997

Transactions

Script Examples

on DeleteRecordField
if Jovis("IsTransactionOn","myDB") = "False" then

get Jovis("BeginTransaction","myDB")
end if
put "Field Customer_ID = [4432]" into aCriteria
put Jovis("ReadRecord","myDB","Customers",aCriteria) into aRecord
if aRecord is empty then

get Jovis("CancelTransaction")
else

get Jovis("DelRecord","myDB","Customers",aRecord)
get Jovis("CommitTransaction","myDB")

end if
end DeleteRecordField

Error Messages That You May Encounter

Errors:

Record not locked

Max locks for file reached

Record locked by another user

Server not responding

File open read only

Warnings:

Transaction already on

Transaction not on

What You Should Have Learned

We covered a lot of material in this tutorial, and you may want to review it on occasion. In par-

ticular, you should have learned that 'BeginTransaction' must be called before any of the read

commands, and that the 'CommitTransaction' command does the actual updating, creating, or

deleting that you require. We explained about the maximum number of records per relation

that can be locked, and that locked records can only be changed by the client who initiated the

transaction. We also explained that the transaction commands can be scripted into the single-

user version and will not cause an error. This allows for compatibility with the client/server

version. Finally, we provided two scripting examples on which you can model your own appli-

cations.

Relational Tutorials

Jovis® Copyright © 1997Page 2-70

What to learn Next

Our next tutorial explains the Merge command, which provides the ability to create selections

across multiple relations. This capability is commonly know as a 'Join' in the SQL language.

Basically, this means that you can concatenate a record from one relation with a record from

another relation. In order to know which record is concatenated with another record, there is a

field in each relation that is used as a compare field. In the next tutorial, we will create a second

relation for customer purchases. One of the fields in this new relation will be a "Customer_ID"

field. For each new purchase, the customer's ID will be included with the purchase record. By

using the 'Merge' command, you can create a selection of customers based on a particular item

of purchase.

Page 2-71Jovis® Copyright © 1997

Transactions

Relational Tutorials

Jovis® Copyright © 1997Page 2-72

Tutorial 12

Merge

Before You Begin

This tutorial explains the 'Merge' command, which provides the ability to create selections

across multiple relations. This capability is commonly know as a 'Join' in the SQL language.

You need to understand all of the basic concepts of Jovis, especially the commands for multiple

selections. The 'Merge' command is for advanced users. We also assume that the "Error" and

"Warning" function handlers have been installed. Do not attempt to run any of the scripts in

this tutorial without these handlers. You should have both the "DASCO Database" and the

"DASCO Purchases.txt." available.

Basically, "merging" means that you can concatenate a record from one relation with a record

from another relation. In order to know which record is concatenated with another, there is a

field in each relation that is used as a compare field. In the this tutorial, we will create a second

relation called "Purchases" which will contain each purchase a customer makes. One of the

fields in this new relation will be a "Customer_ID" field, which duplicates the customer ID that

is in our "Customers" relation. These two fields serve as our compare fields. For each new pur-

chase, the customer's ID will be included with a newly created purchase record. By using the

'Merge' command, you can first create a selection of customers, and then merge it with their

particular purchases.

Overview

Creating a "Merged Selection" is a two step process. The first step is to create a selection using

the 'SetSelection' command. The second step uses the 'Merge' command to create a "Merged

Selection". The selection created in the first step is not altered or deleted.

The 'Merge' command takes each row from the selection that was created in the first step, and,

using a compare field in the selection, searches another relation or another selection for that

same compare field's value. The value can be a number, such as an ID or date, or up to the first

32 characters of a text field. Whatever the value type, it must equal the value it is searching for

if the records are to be concatenated.

This two step process makes it possible to create merged selections with great ease and tremen-

dous flexibility.

Page 2-73Jovis® Copyright © 1997

Merge

Getting Started

To get started, you will need a minimum of two relations. (The Merge command does allow

you to merge within a single relation; however, this situation is not common.) As was men-

tioned above, you need to create a compare field that duplicates information in both relations.

This can be an ID number, a string of up to 32 characters, or a date. Once you have two rela-

tions with the specified compare fields, and the necessary data has been installed, you are ready

to create a merged selection. For this tutorial we need to create a new relation called

"Purchases", as well as the required fields, and three indexes. Here are the scripts for creating

this relation in our "DASCO" database file:

on CreatePurchasesRelation
get Jovis("CreateRelation","myDB","Purchases")
get CreateJovisFields("Purchases", getPurchasesFldList("Fields"),

getPurchasesFldList("Types"))
get CreateJovisIndexes("Purchases", getPurchasesFldList("IndexList"),

getPurchasesFldList("Sizes"))
end CreatePurchasesRelation

function getPurchasesFldList listType
if listType = "Fields" then

return "Customer_ID,Purch_Date,Stock_Item_Ref,Quant,"&
Item_Descrip,Purchase_Amount"

else if listType = "Types" then
return "number,date,text,number,text,number"

else if listType = "Indexes" then
return "Customer_ID,Purch_Date,Stock_Item_Ref"

else if listType = "Sizes" then
return "10,4,6"

end if
end getPurchasesFldList

function CreateJovisIndexes RelationName,IndexList,Sizes
repeat with x = 1 to number of items of IndexList

get Jovis("CreateIndex","myDB",RelationName,
item x of IndexList, item x of Sizes)

end repeat
end CreateJovisIndexes

function CreateJovisFields RelationName,FieldList,TypesList
repeat with x = 1 to number of items of fieldList

get Jovis("CreateField","myDB",RelationName,
item x of FieldList, item x of TypesList)

end repeat
end CreateJovisFields

Now we need to import some data (i.e. purchases) for our new relation. A text file called

"DASCO Purchases.txt" has been provided for this purpose. Here is the script for importing

this data:

Relational Tutorials

Jovis® Copyright © 1997Page 2-74

on ImportToJovis
put getFieldList("Fields") into fldList
get Jovis("ImportData","myDB","Purchases",fldList,tab,return)

end ImportToJovis

There should now be 20 records in the "Purchases" relation.

To begin the merge process, use the 'SetSelection' command to create a selection which contains

data that you want merged with additional information from another relation or another selec-

tion. Be sure to include the compare field in your list of selection fields (parameter four of the

'SetSelection' command). If you plan on merging with another selection, you will need to

reserve your selection with the 'ReserveSelection' command. In our example, we will merge

with the "Purchases" relation, rather than with a selection of purchases. Here is the first step,

creating the initial selection:

on CreateSelection
put "Field Account_Start ≥ [1/1/95]" into aCriteria
put "First_Name,Last_Name,Customer_ID" into fldList
get Jovis("SetSelection","myDB","Customers",fldList,aCriteria)
put Jovis("SelectionToVar","myDB","Customers",comma,return)

into cd fld "Display"
end CreateSelection

The card field "Display" should now contain this information:

Mark,Jackson,3513
William,Anderson,8705
Susan,Abbado,7991
Doris,Epstein,4761
Barbara,Taylor,9553
Ruth,Addisen,2261
Dorthy,Quinn,2425
Mike,Stevens,2764
Tracy,Lippman,4729
Charles,Patrick,3876

Now you must script the parameters for the Merge command. There are six required parameters and a

seventh one that is optional. Be sure to use the correct relation name for parameters two, four, and six.

They control where a selection is located; parameter six in particular indicates where the "merged selec-

tion" will be located.

Equally important is that you make sure the selection field lists are correct. In parameter 3, you must

only use fields which are used in the selection created in the first step. If you are using a named selec-

tion in parameter 4, then the same holds true for parameter 5; only those fields used in the named

selection can be used. (Mistakes in these steps are the source of many "Invalid selection field" error

messages.) The list of fields can be in any order, and you do not need to use all of the fields which are

available in the named selection or the selection create in the first step.

Page 2-75Jovis® Copyright © 1997

Merge

Now we will concatenate the first and last names of those customers whose account was started

on or after 1/1/95 with a description of their purchase item and their customer ID. Here is the

complete script for creating this merged selection:

1: on CreateMergedSelection
2: -- delete previously named selection, if it exists
3: if "MERGED_TABLE" is in Jovis("ListSelections","myDB","Customers") then
4: get Jovis("delSelection","myDB","Customers","MERGED_TABLE")
5: end if
6: --
7: -- The first step is to create a selection
8: put "Field Account_Start ≥ [1/1/95]" into aCriteria
9: put "First_Name,Last_Name,Customer_ID" into fldList
10: get Jovis("SetSelection","myDB","Customers",fldList,aCriteria)
11: --
12: -- Call the 'Merge' command
13: get Jovis("Merge",
14: "myDB,Customers,Current,Customer_ID",
15: "First_Name,Last_Name",
16: "myDB,Purchases,UseRelation,Customer_ID",
17: "Item_Descrip,Customer_ID",
18: "myDB,Customers,MERGED_TABLE",
19: "Exclusive")
20: --
21 -- Display the "merged selection"
22: put "First_Name,Last_Name,◊,Item_Descrip,Customer_ID" into fldList
23: put Jovis("SelectionToVar","myDB","Customers",comma,
24: return,fldList,"","MERGED_TABLE") into cd fld "Display"
25: end CreateMergedSelection

You should now see the following in card field "Display".

Mark,Jackson,Winter Coat,3513
William,Anderson,Desk Lamp,8705
Susan,Abbado,Dining Room Set,7991
Doris,Epstein,Silver Cake Platter,4761
Barbara,Taylor,Down Comforter,9553
Ruth,Addisen,Vacuum Cleaner,2261
Dorthy,Quinn,Snow Shoes,2425
Mike,Stevens,Waterman Fountain Pen,2764
Tracy,Lippman,Sandals,4729
Charles,Patrick,China Place Settings,3876

We now have a list of the customers concatenated with their purchases and Customer IDs.

Relational Tutorials

Jovis® Copyright © 1997Page 2-76

The parameters for the 'Merge' command

We will now discuss each parameter of the 'Merge' command. You must pay particular attention

to each item within the parameters in order to achieve the desired results. The 'Merge' com-

mand needs a great deal of information; therefore the parameters are not organized in the same

style as the other Jovis commands. Being aware of this fundamental difference in parameter

style can save you many hours of debugging time.

Param 2

We begin with parameter 2 as it is used in line 14 of our example above. This parameter pro-

vides the information about the selection created in the first step of the merge procedure. It

requires four items separated by commas. The four items are:

1. Global File Identifier,

2. Relation Name,

3. Selection Name or "Current",

4. Compare Field Name

Item 1, the "Global file identifier," is the identifier for the database containing the relation we

want to work with. Item 2 is the "Relation Name" for the relation where the selection is locat-

ed. Item 3 is the name of the selection, if it is a reserved selection. If it is not reserved, you can

use the literal "Current". (In line 14 of our example above, we use this "Current" selection for

the "Customers" relation.) Item 4 is the name of the compare field. It MUST be a field in the

selection.

This is the information used to search for matching records. There needs to be duplicate infor-

mation in another relation so that an 'equals' operations can be performed between the selection

and a given relation. All four items of this parameter must be present and correct for the merge

to succeed.

Param 3

This parameter is an item-delimited list of fields which are available from the selection indicated

in parameter 2. You can provide all of the fields in the selection or just a few, and they can be in

any order. At least one field is required. In line 15 of our example, we have listed the first and

last name fields. As required, these are fields included in the selection itself. Notice that the

selection created in the first step has three fields - First name, Last name, and Customer ID -

and that we are NOT including the Customer ID field. This is perfectly acceptable, even

Page 2-77Jovis® Copyright © 1997

Merge

though the Customer ID field is going to be used as the compare field.

Param 4

Parameter 4 is the relation that we search using the compare field data in the selection we creat-

ed in first step of this process. In line 16 of our example, which is the fourth parameter, we pro-

vide the information for the "Purchases" relation. This parameter consists of 5 items. Item 1 is

the global file identifier for the file that contains the relation. Item 2 is the name of the relation

that contains the other records being concatenated.

Item 3 can be either the literal "UseRelation", which indicates that the relation should be

searched, or the literal "Current," which indicates that you want to use the current selection

located at the relation indicated in item 2 for searching. You can also provide a named selection

instead of one of the literals. If you use a named selection, be sure it's located in the relation

listed in item 2 of this parameter.

Item 4 of this parameter is the name of the compare field. No matter which literal you use

(either "UseRelation" or "Current", or a named selection), the compare field must be present. If

you are using a selection, one of the fields in the selection must be the compare field. If you are

using the literal "UseRelation", the relation must have the compare field you are planning on

using.

If you use a relation (i.e. the "UseRelation" literal), the 'Merge' command will use the relation's

index for performing the compare. This is straightforward and may require a little more time

because of a few extra disk accesses. However, it is very important to understand that if the

compare field is not indexed, every record in the relation will be accessed, and the requested

fields for every record will be read into memory. This could easily cause an "out of memory"

error if the relation has more records than memory will permit. For relations that have a few

hundred records, there should not be reason for concern. When there are several thousand

records in the relation, this compare field MUST be indexed.

Item 5 of this parameter is optional, and is used when the compare field is a text data type. By

default, if this item is empty, Jovis uses the first 32 characters of the compare field for its

searches. You can use as few a 1 or 2 characters if your data is unique enough to guarantee the

correct record to record concatenation.

Param 5

This parameter consists of an item-delimited list of field names that you want concatenated to

each record. These fields must be included in the relation that is being searched, or the selec-

Relational Tutorials

Jovis® Copyright © 1997Page 2-78

tion indicated in item 3 of parameter 4. You can provide all, or just a few, of the fields in the

relation or selection, but at least one is required. They can be listed in any order. Note that the

compare field does not have to be included.

Param 6

When the 'Merge' command begins its processing, it requires a location and name for the

merged selection. You need to provide three items of information for this parameter. Item 1 is

a global file identifier. Item 2 is the name of a relation where the merged selection will be locat-

ed. Item 3 is the actual name you want to assign to the merged selection. This name must be a

unique name within the relation it is being assigned to. In our example above, the merged selec-

tion is assigned to the "Customers" relation, and is called "Merged_Table". We could have just as

easily assigned it to the "Purchases" relation. Jovis allows you to assign it to any relation that is

most convenient for you. The 'Merge' command will return an error if any of the three items of

this parameter are not provided or incorrect.

Param 7

Parameter 7 indicates whether a merge is "Inclusive" or "Exclusive." An inclusive merge includes

all of the records used during the compare, even if they do not match. The exclusive type

accepts only those records whose compare fields match. This parameter is optional, and can be

omitted. The default is "Exclusive".

Param 8

If the merge operation takes more than 2 seconds, a progress dialog box with a grow bar will

appear. This parameter is for the message displayed with this dialog box. (To suppress the dia-

log's appearance, set the 'SetProperty' command's "delay" property to zero.) This parameter is

optional; the default message is: "Merging data using table: [relation name]".

Using the "selection" commands with merged selections

Now that we have covered each of the parameters of the 'Merge' command, we can briefly dis-

cuss accessing a merged selection with the other "selection" commands, such as 'SelectionToVar'

and 'GetSelectionRecord'. Because a merged selection is considered unique, these commands

require additional information in order to access the selection's fields Note that the

Page 2-79Jovis® Copyright © 1997

Merge

'AppendSelection' and 'TrimSelection' commands cannot be used with merged selections. Also

note that the commands 'CountSelection', 'DelSelection', 'DupSelection', and 'ReserveSelection'

work exactly the same, regardless of the selection type.

For those commands that require additional information, a special field list delimiter is intro-

duced. This delimiter is a diamond character "◊" (type shift/option - "v"), and indicates whether

you want information from the fields, provided with the selection created in the first step,

and/or information from the second part of the merged process.

By using the diamond character as a delimiter, you can indicate from which set of fields of the

merged selection you want to retrieve information. For example, if we use the

'GetSelectionField' command to get the purchase description from the first row of the merged

selection it would look like this:

put Jovis("GetSelectionField", "myDB", "Customers", "◊Item_Descrip", 1,
"Merged_Table") into cd fld "Display"

The card field "Display" now contains "Winter Coat".

On the other hand, if we wanted to retrieve the last name from the first row of the merged

selection we would script the field information in this matter:

put Jovis("GetSelectionField","myDB","Customers",
"Item_Descrip",1,"Merged_Table") into cd fld "Display"

The card field "Display" should now contain "Jackson".

The following provides examples and information for the selection commands that use the dia-
mond delimiter as we demonstrated above.

ListSelectionFields

For merged selections, this command returns the names of all of the fields in the merged selec-
tion. A "◊" character will delimit those fields from the selection created in the first step, from
the other fields. For example:

put Jovis("ListSelectionFields","myDB","Customers",

"MERGED_TABLE") into cd fld "Display"

The card field "Display" should now contain:

First_Name
Last_Name◊Item_Descrip
Customer_ID

Relational Tutorials

Jovis® Copyright © 1997Page 2-80

ExportSelection

This command uses the same type of field list as the 'SelectionToVar' command does. Any of

the field information you need from the first step of the merge process should come before the

diamond delimiter ("◊" - type shift/option "v".). Always remember that this character is a sepa-

rate item in the fields list.

on mouseUp
put "•" into fldDelim
put return into recDelim
put empty into filePath
put "Set name and location for export file:" into SFPrompt
put "First_Name,Last_Name,◊,Item_Descrip,Customer_ID" into fldList
put empty into RecRange
put "Exporting selection...Please standby" into ThermPrompt
put "MERGED_TABLE" into NamedSelection
get Jovis("ExportSelection","myDB","Customers",fldDelim,recDelim,

filePath,SFPrompt,fldList,RecRange,ThermPrompt,NamedSelection)
end mouseUp

GetSelectionCriteria

Merged selections are not created with criteria in the same way as standard selections are. The

compare field always uses the equals operator. If you try to use this command on a merged

selection, it will return empty.

GetSelectionField

Here are two more examples in addition to those above using the 'GetSelectionField' command:

put Jovis("GetSelectionField","myDB","Customers","First_Name","6",
"MERGED_TABLE") into cd fld "Display"

Returns: "Ruth"

put Jovis("GetSelectionField","myDB","Customers","◊,Customer_ID","6",
"MERGED_TABLE") after cd fld "Display"

Returns: "2261"

Page 2-81Jovis® Copyright © 1997

Merge

GetSelectionRecord

Jovis("GetSelectionRecord","myDB","Customers","8",
"false","MERGED_TABLE") into cd fld "Display"

Jovis("GetSelectionRecord","myDB","Customers","◊8",
"false", "MERGED_TABLE") into cd fld "Display"

GetSelectionStats

put Jovis("GetSelectionStats","myDB","Customers","◊,Customer_ID",
"MERGED_TABLE") after cd fld "Display"

RestoreSelection

This commands works exactly the same for either standard or merged selections. The main rea-

son for making a merged selection the "Current" or "Active" selection is so that you can use the

'SortSelection' command. It is not possible to sort named selections. (See 'SortSelection'

below.)

SelectionToVar

In our example above, the completed merge creates a newly named selection called

"MERGED_TABLE". Because the merged selection is a named selection, you can use the

eighth parameter of the 'SelectionToVar' command to display the selection. The sixth parameter

of this command, the selection fields list, is constructed using the "◊" character (shift/option -

'v') which delimits the fields of the merged selection. Note that the "◊" character is a separate

item in the fields list. Our example above shows how to do this. Here it is again:

22: put "First_Name,Last_Name,◊,Item_Descrip,Customer_ID" into fldList
23: put Jovis("SelectionToVar","myDB","Customers",comma,

return,fldList,"","MERGED_TABLE") into cd fld "Display"

SortSelection

Because the 'SortSelection' command requires that the selection be a "Current" or "Active" selec-

tion, you must first make the merged selection a "Current" selection using the 'RestoreSelection'

command. Notice once again that we the use of the diamond character in the list of fields, and

that it is a separate item. In order to show how this command works, we provide two complete

handlers.

Relational Tutorials

Jovis® Copyright © 1997Page 2-82

on mouseUp
get Jovis("RestoreSelection","myDB","Customers","Merged_Table")
get Jovis("SortSelection","myDB","Customers","◊,Customer_ID,d")
put "First_Name,Last_Name,◊,Item_Descrip,Customer_ID" into fldList
put Jovis("SelectionToVar","myDB","Customers",

comma,return,fldList) into cd fld "Display"
end mouseUp

The card field "Display" should now contain:

Barbara,Taylor,Down Comforter,9553

William,Anderson,Desk Lamp,8705

Susan,Abbado,Dining Room Set,7991

Doris,Epstein,Silver Cake Platter,4761

Tracy,Lippman,Sandals,4729

Charles,Patrick,China Place Settings,3876

Mark,Jackson,Winter Coat,3513

Mike,Stevens,Waterman Fountain Pen,2764

Dorthy,Quinn,Snow Shoes,2425

Ruth,Addisen,Vacuum Cleaner,2261

on mouseUp
get Jovis("RestoreSelection","myDB","Customers","Merged_Table")
get Jovis("SortSelection","myDB","Customers","Last_Name")
put "First_Name,Last_Name,◊,Item_Descrip,Customer_ID" into fldList
put Jovis("SelectionToVar","myDB","Customers",

comma,return,fldList) into cd fld "Display"
end mouseUp

The card field "Display" should now contain:

Susan,Abbado,Dining Room Set,7991

Ruth,Addisen,Vacuum Cleaner,2261

William,Anderson,Desk Lamp,8705

Doris,Epstein,Silver Cake Platter,4761

Mark,Jackson,Winter Coat,3513

Tracy,Lippman,Sandals,4729

Charles,Patrick,China Place Settings,3876

Dorthy,Quinn,Snow Shoes,2425

Mike,Stevens,Waterman Fountain Pen,2764

Barbara,Taylor,Down Comforter,9553

Page 2-83Jovis® Copyright © 1997

Merge

Script Examples

The following script provides a number of examples that use the selection commands as well as

our 'Merge' command. In the first example above, we merged a selection of customers with the

"Purchases" relation which resulted in a list of customers and a description of the items they

purchased. In the following example, we reverse the type of merge; it merges the purchases

against a selection of customers. This example is more memory intensive because we use a

named selection called "Selected_Purchases" to searching within.

on mouseUp
global JovisErrorCode
set cursor to watch
--
-- clear out any former selections by the given names
if "Illinois_Customers" is in Jovis("ListSelections","myDB","Customers") then

get Jovis("delSelection","myDB","Customers","Illinois_Customers")
end if
if "Selected_Purchases" is in Jovis("ListSelections","myDB","Purchases") then

get Jovis("delSelection","myDB","Purchases","Selected_Purchases")
end if
if "MERGED_TABLE" is in Jovis("ListSelections","myDB","Customers") then

get Jovis("delSelection","myDB","Customers","MERGED_TABLE")
end if
--
put "Purchase_Amount,Purch_Date,Customer_ID" into fldList
put "Field !RecID > [0]" into cri
get Jovis("SetSelection","myDB","Purchases",fldList,cri)
--
-- let's see what we've got via the script debugger:
put Jovis("SelectionToVar","myDB","Purchases","•",return,"*") into bin
--
-- Reserve the 'Purchases' current selection
get Jovis("ReserveSelection","myDB","Purchases","Selected_Purchases")
--
put "First_Name,Last_Name,State,Zip,Customer_ID" into fldList
put "FIELD State = [Il]" into cri
get Jovis("SetSelection","myDB","Customers",fldList,cri)
--
-- let's see what we've got via the script debugger:
put Jovis("SelectionToVar","myDB","Customers","•",return,"*") into bin
--
-- Reserve the current selection
get Jovis("ReserveSelection","myDB","Customers","Illinois_Customers")
--
put Jovis("ListSelections","myDB","Purchases") into Purchases
put Jovis("ListSelections","myDB","Customers") into Customers
--
-- MERGE:
get Jovis("Merge",
"myDB,Purchases,Selected_Purchases,Customer_ID",

Relational Tutorials

Jovis® Copyright © 1997Page 2-84

"Customer_ID,Purchase_Amount,Purch_Date",
"myDB,Customers,Illinois_Customers,Customer_ID",
"First_Name,Last_Name,Zip",
"myDB,Customers,MERGED_TABLE",
"Exclusive")
--
-- Make merged selection the current selection in order to sort it:
get Jovis("RestoreSelection","myDB","Customers","MERGED_TABLE")

-- Sort merged selection:
get Jovis("SortSelection","myDB","Customers","◊,Last_Name")

-- Now let's display it:
put "Customer_ID,Purchase_Amount,Purch_Date,◊,First_Name," &

"Last_Name,Zip" into fldList
put Jovis("SelectionToVar","myDB","Customers",comma,return,fldList)

into cd fld "Display"

-- For the fun of it, revert the merged selection
-- back to a reserved selection.
get Jovis("ReserveSelection","myDB","Customers","MERGED_TABLE")
--
-- Get the merged selection's field list
put return & return & Jovis("ListSelectionFields","myDB","Customers",

"MERGED_TABLE") after cd fld "Display"
--
put return & return & Jovis("GetSelectionField","myDB","Customers",

"Purch_Date","3","MERGED_TABLE") after cd fld "Display"
put comma & Jovis("GetSelectionField","myDB","Customers",

"◊,Last_Name", "3","MERGED_TABLE") after cd fld "Display"
--
put return & return & Jovis("GetSelectionStats",

"myDB","Customers","◊,Zip","MERGED_TABLE") after cd fld "Display"
put return & return & Jovis("GetSelectionStats", ¬

"myDB","Customers","Purch_Date","MERGED_TABLE") ¬
after cd fld "Display"

--
-- get the actual record for the third row of
-- the selection created by the first step
-- note that 'GetSelectionRecord' takes a sixth parameter
-- for the named selection
put Jovis("GetSelectionRecord","myDB","Customers","3",

"False","MERGED_TABLE") into SelectedCustomerRecNum_3
--
-- get the actual record for the third row of the merged selection
-- note the '◊' character in the forth parameter, (shift/option 'v')
put Jovis("GetSelectionRecord","myDB","Customers","◊3",

"False", "MERGED_TABLE") into SelectedPurchasesRecNum_3
--
-- what named selections does the "Purchases" relation have?
put Jovis("ListSelections","myDB","Purchases") into Purchases
--

Page 2-85Jovis® Copyright © 1997

Merge

-- what named selections does the "Customers" relation have?
put Jovis("ListSelections","myDB","Customers") into Customers
--
-- Clear named selections from memory:
get Jovis("delSelection","myDB","Customers","Illinois_Customers")
get Jovis("delSelection","myDB","Purchases","Selected_Purchases")
get Jovis("delSelection","myDB","Customers","MERGED_TABLE")

end mouseUp

Error Messages That You May Encounter

Warning:

No records selected

Errors:

Invalid selection field - One of the fields in one of the Merge command's parameters is not

valid. You need to carefully go over each field name for spelling and typos, and that it is indeed

included in selection(s) and/or the relation you are merging with.

Global name missing or invalid

Invalid character for merged selection name

Invalid Selection field name

Selection: [Name] not found, or it is empty

Invalid selection row

Script Errors

"Not a valid Jovis command" - Either a typo or the first parameter is not in quotes correctly.

"Never heard of that function name" - misplaced quotes.

What You Should Have Learned

The 'Merge' command is certainly the most involved command that Jovis provides. While the

number of details may perhaps seem overwhelming at first, once you have used it a few times, it

will become simple to work with. You should have learned that the parameters for this com-

mand are styled differently than the other Jovis commands. If any of the items in each of the

parameters is incorrect, the command will fail.

Relational Tutorials

Jovis® Copyright © 1997Page 2-86

What to learn Next

This tutorial marks the last of the relational tutorials. If you have worked your way from the

first tutorial to this one, you deserve a round of applause! We hope that you have not only

acquired the basic skills to use Jovis for you needs, but have gained an insight into how Jovis

works.

There are four more tutorials which discuss the "Architectural" commands and how to use them

within a relational database. We strongly recommend that you continue learning Jovis with

these tutorials, particularly if you intend to use the multimedia capabilities.

Page 2-87Jovis® Copyright © 1997

Merge

Relational Tutorials

Jovis® Copyright © 1997Page 2-88

