
VALENTINA
for REALbasic Tutorial

Paradigma (www.paradigmasoft.com)
© 1999-2000

Acknowledgments:

Andy Bachorski , Andy Fuchs, Bill Mounce, Brian Blood,
Craig A. Berry,  David A. Bayly,   Frank J. Schima, Guillermo Zaballa,
Hideaki Iimori,  John Roberts, Lynn Fredricks,  Paul Shaap, Robert Brenstein.



2

Introduction ......................................................................................................3
Architecture of Valentina for REALbasic ...................................................... 4
Installing Valentina for REALbasic ................................................................4
Getting Started with the Examples .................................................................4
Initializing the Valentina Kernel .....................................................................5
Example 1 (Single Table Database) .................................................................6
Example 2 (BLOB) .........................................................................................17
Example 3 (2 tables, One to Many relation) ................................................. 18
Example 4 (3 tables, Many to Many relation) .............................................. 21
Example 5 (dynamic database structure) ..................................................... 24
Example 6 (optimized) ...................................................................................28

Contents



3

Intr oduction

Valentina for REALbasic can be thought of as your own database-engine which you build
into your application developed with REALbasic. This is a slightly different method than
the database architecture of REALbasic Pro, which suggests that you consider your appli-
cation as a client of a foreign remote database.

Like C++ and other high level languages, REALbasic allows you to develop standard
Macintosh applications meeting a variety of needs. To incorporate a database into your
application, you will need to choose between a static database structure or a dynamic data-
base structure. While your development may include facets of each type, the actual pro-
gramming is considerably different for each type of structure. A brief discussion of these is
included below, but rest assured that Valentina for REALbasic provides the tools for bothstatic
and dynamic database structures.

Applications with a Static Database Structure

Applications with a static database structure have a fixed number of named tables and each
table has a fixed number of named fields. Each field is assigned a type which never varies.
Because you know the names of the tables and fields,  you can easily incorporate these as
program variables by including them as  properties of the database object and then using
them directly in your code.

Applications with a Dynamic Database Structure

Applications with a dynamic database structure are usually called Database Management
Systems (“DBMS”). These allow the user to create, delete and modify database tables and
the associated fields. A DBMS is designed to work on an arbitrary database. To accomplish
this, a DBMS will use an array of tables and each table will have an array of fields. The
application must provide a user interface for issuing the commands necessary for managing
the database structure.

Most of your applications will have a static database structure. For example, an email appli-
cation has a predefined database structure to contain information which is consistent with
the storing and retrieving of email messages. Other examples could include address books,
library catalogs and inventory control programs.

Introduction

Introduction



4

Ar chitecture of Valentina for REALbasic

REALbasic is an excellent product, which offers an object-oriented programming
environment very similar to the C++ language. Valentina for REALbasic makes extensive
use of the object-oriented features of REALbasic.

For applications with a static database structure, we highly recommend that you define the
structure of a database via a set of classes derived from the database classes of Valentina.
This allows you to work with a database as with normal properties. Besides, this offers a
great way to implement object-oriented databases.

Installing Valentina for REALbasic

To install the V4RB plug-in, drag it to the folder "plugins" in the REALbasic folder.
The minimal requirements of Valentina for REALbasic:
• Macintosh with any PPC processor
• MacOS 7.5 or greater (OS 8.6 recommended)
• REALbasic Standard Edition or greater.

Working with Valentina you should always keep keep issues of RAM in mind.
Valentina uses caching to improve database operations.
Besides resolving queries Valentina uses free RAM for additional allocations.

Getting Started with the Examples

In Examples 1-4, we consider the technique of using classes to define a database structure .
In examples 5-6, we consider how to implement an application with a dynamic database
structure without using classes.

Since the V4RB implementation of the Valentina kernel is done with classes, you can see
dramatic speed improvements over databases which use a convertion to string method.

To work with the examples, you need to assign REALbasic between 15 to 20 MB of RAM,
using the GetInfo dialog. Examples 1 to 3 allocate 3 MB to the Valentina cache; Examples
4 to 6 allocate 7 MB to the Valentina cache.

Architecture of Valentina for REALbasic

Architecture of Valentina for REALbasic



5

Initializing the Valentina Kernel

To begin your own project, you need to create an application sub-class in it. Then in the
Open and Close methods of the application sub-class write the following code:

TestApplication.Open:
Sub Open()

dim Err as integer

Err = ValentinaDebugON( 1 )

 // init database kernel of Valentina
Err = ValentinaInit( 3 * 1024 *1024, "", "" )
if Err <> 0 then

MsgBox "Valentina was not initialized !!! Error: " + Str(Err)
end if

End Sub

TestApplication.Close:
Sub Close()

dim i as integer

For i=0 to Ubound(windows)
If Windows(i)<> nil Then

Windows(i).Close
End If

Next

// now we can shutdown Valentina because all database
// are closed and their objects are destroyed.
ValentinaShutDown

End Sub

This code initializes the kernel of Valentina at the start of the application and exits the
kernel on quit. Valentina can handle multiple open databases, in all our examples we will
use multiple databases, each attached to its own window. Therefore, we need to establish an
array of all open windows as properties of the application. This is so that on closing the
application, first all database windows are closed, then the Valentina kernel is shut down.

If your application will only have one open database at a time, then it is not problematic to
make it a global database. In this case, you don't have to  be concerned with arrays of
windows, and your Close method could be as simple as:

Sub Close()
 ValentinaShutDown

End Sub

Initializing the Valentina Kernel

Initializing the Valentina Kernel



6

Example 1 (Single Table Database)

In the first example, we will build an application with a static database structure which has
one table in the database. This table will have 11 fields of each type which Valentina sup-
ports except BLOB fields: boolean, byte, ushort, short, long, ulong, float, double, date,
time, string.

We will then write methods which will add 100’000 records to our table. Next, we will
make a window which will display records in the EditFields and have navigation buttons.
Finally, we will make a query window which allows you to write SQL queries, execute
them, and view the results.

Define database classes

1) We begin the process by adding a new class “MyDatabase” to the project which will be a
child of the VDataBase class. This class will manage our database.

2) Although we want to have only one Table (a Base Object in the terminology of Valentina)
in the Database, we need to create yet another class, which will be a child of VBaseObject.
Let’s name it as “boPerson” (prefix “bo” just means base object ).

3) Since the database must know its Tables, let’s add the following property to the class
“MyDatabase”:

mPerson as boPerson

4) We want to create an instance of the class “boPerson” when we create an instance of the
DataBase. To implement this, we need to add a constructor to the class “MyDataBase”, i.e.
a method with the same name as the name of the class. In the constructor of the database we
will create an object of Person:

Sub MyDatabase
mPerson = new boPerson

End Sub

5) Now we need to define fields of the Table.
For this, add the following 11 properties to the class “boPerson” (see example):

BoolFld as VBoolean
ByteFld as VByte
ShortFld as VShort
UShortFld as VUshort
LongFld as VLong
ULongFld as VULong
FloatFld as VFLoat
DoubleFld as VDouble
StringFld as VString
DateFld as VDate
TimeFld as VTime

Example 1

Example 1



7

6) For BaseObject “boPerson” we also need to define a constructor where we will create
fields of the Table:

Sub boPerson()
// set name of the Table (BaseObject)
name = "Person”

// Make fields of the BaseObject (Table)
BoolFld = new VBoolean( “bool_fld” )
ByteFld = new VByte( "byte_fld”, kV_Nullable )

ShortFld = new VShort( "short_fld" )
UShortFld = new VUShort( "ushort_fld” )

LongFld = new VLong( "long_fld” )
LongFld = new VULong( "ulong_fld” )

FloatFld = new VFloat( "float_fld” )
DoubleFld = new VDouble( "double_fld” )

StringFld = new VString( "string_fld”,  30 )

DateFld = new VDate( "date_fld” )
TimeFld = new VTime( "time_fld” )

End Sub

The name surrounded by the quotation marks is the name for the field inside of the data-
base.

That is all!  We have defined the structure of the database via classes!

Let’s repeat the steps:
1. Create a new class MyDatabase as a child to VDatabase class.
2. Create a new class boPerson as a child to VBaseObject class
3. Add the property mPerson to the MyDatabase class.
4. Add a constructor to MyDatabase class.
5. Add fields of table as properties to boPerson class.
6. Add a constructor to boPerson

NOTES:
• The field ByteFld we have specified to be nullable.
• We need only one line of code to define one field.
• The order of fields in the constructor defines the order of fields in the Table.
• For Valentina, order of fields in the table is not important at all, because each field is stored
in the separate logical file.
• Constant kV_Nullable is defined in “ValentinaUtilities” module. You need drag this mod-
ule from folder V4RB into your project.

Example 1

Example 1



8

Don’t confuse an object of class Database with the database on disk. When you create a new
object of class Database, you create an object in RAM. After that you can create a new
database on disk or open an existing one.

You might ask, where and when must we create an object of the database? Where must a
reference to a database object be stored?

The most common way is to relate a database object with a window, i.e. a window manag-
ing the database content which is displayed in this window. Of course, in your own applica-
tion you can have a group of different windows for each database, but in this case there
must be one “main database window” also.

Let’s do that in our example.
In the class Window1 (which must already be in your project) add the following property:

mDataBase as MyDataBase

On close of Window1 we need to destroy the DataBase object  in RAM:
Window1.Close:
Sub Close()

 // Close disk files
mDatabase.Close

// and Destroy database object in RAM
mDatabase = nil

End Sub

Example 1

Example 1



9

Creating/Opening a Database

To implement a standard MacOS document-oriented application we need to write the class
menu handlers “New” and “Open” in the Application.

To implement a standard MacOS document-oriented application, we need to write the class
menu handlers “New” and “Open” in the Application.

On “FileNew” we ask the user where the new disk file must be located and create a new
database on the disk. Now we ask Valentina to keep the database in 1 disk file with 32 KB
segments.

TestApplication.FileNew:
Sub FileNew()

dim f as FolderItem

f = GetSaveFolderItem( “VALA”, “DataBase1” )
if( f <> nil )

mDataBase.Create( f, 1, 32*1024 )
end if

End Sub

On “FileOpen” we ask the user where the existing database is located and open it.

TestApplication.FileNew:
Sub FileNew()

dim f as FolderItem

f = GetOpenFolderItem( “VALA”, “DataBase1” )
if( f <> nil )

mDataBase.Open( f )
end if

End Sub

We also need to enable the menu items “New...” and “Open...”

TestApplication.EnableMenuItems:
Sub EnableMenuItems()

FileNew.enabled = true
FileOpen.enabled = true

End Sub

Example 1

Example 1



10

Edit fields in the database window

To display records of a BaseObject, we need to add to Window1 of our project 11 EditFields,
one for each field of the Table.

Now we need to create 2 methods: one will move data from a database record to the EditFields
to display them, and the other will collect data from the EditFields and store them in the
fields of the database. See the next page.

Example 1

Example 1



11

Sub PopulatePanes()
dim res as Boolean

if( mDataBase = nil ) then
return

end if

if( mDataBase.mPerson.GetRecID = 0 ) then
res  = mDataBase.mPerson.FirstRecord

end if

TotalRecs.Text = Str( mDataBase.mPerson.RecordCount )

EditField1.Text = mDataBase.mPerson.BoolFld.GetString
EditField2.Text = Str( mDataBase.mPerson.ByteFld.Value )
EditField3.Text = Str( mDataBase.mPerson.ShortFld.Value )
EditField4.Text = Str( mDataBase.mPerson.UShortFld.Value )
EditField5.Text = Str( mDataBase.mPerson.LongFld.Value )
EditField6.Text = Str( mDataBase.mPerson.ULongFld.Value )
EditField7.Text = Str( mDataBase.mPerson.FloatFld.Value )
EditField8.Text = Str( mDataBase.mPerson.DoubleFld.Value )
EditField9.Text = mDataBase.mPerson.StringFld.Value
EditField10.Text = mDataBase.mPerson.DateFld.GetString
EditField11.Text = mDataBase.mPerson.TimeFld.GetString

End Sub

Window1.CollectPanes:
Sub CollectPanes()

if( mDataBase = nil ) then
return

end if

mDataBase.mPerson.BoolFld.SetString( EditField1.Text )
mDataBase.mPerson.ByteFld.Value = Val(EditField2.Text)
mDataBase.mPerson.ShortFld.Value = Val(EditField3.Text)
mDataBase.mPerson.UShortFld.Value = Val(EditField4.Text)
mDataBase.mPerson.LongFld.Value = Val(EditField5.Text)
mDataBase.mPerson.ULongFld.Value = Val(EditField6.Text)
mDataBase.mPerson.FloatFld.Value = Val(EditField7.Text)
mDataBase.mPerson.DoubleFld.Value = Val(EditField8.Text)
mDataBase.mPerson.StringFld.Value = EditField9.Text
mDataBase.mPerson.DateFld.SetString( EditField10.Text )
mDataBase.mPerson.TimeFld.SetString( EditField11.Text )

End Sub

In this example, we show 2 different ways of performing the same function – using the field
property Value and using the methods GetString/SetString. The use of either method is up
to the developer.

Example 1

Example 1



12

Navigation buttons in the database window

To navigate through the records of the BaseObject, we will add several buttons to the data-
base window. Their Action methods are below:

Window1.BevelButton1.Action: // button “First”
Sub Action()

dim res as Boolean
res = mDataBase.mPerson.FirstRecord
PopulatePanes

End Sub

Window1.BevelButton2.Action: // button “Prev”
Sub Action()

dim res as boolean
res = mDataBase.mPerson.PrevRecord
PopulatePanes

End Sub

Window1.BevelButton3.Action: // button “Next”
Sub Action()

dim res as boolean
res = mDataBase.mPerson.NextRecord
PopulatePanes

End Sub

Window1.BevelButton4.Action: // button “Last”
Sub Action()

dim res as Boolean
res = mDataBase.mPerson.LastRecord
PopulatePanes

End Sub

Window1.BevelButton5.Action: // button “Add”
Sub Action()

mDataBase.mPerson.SetBlank // Clear memory buffer
CollectPanes // Read data from panes to the fields

mDataBase.mPerson.AddRecord // Add new record to the table
PopulatePanes // Update panes (records number)

End Sub

Window1.BevelButton6.Action: // button “Update”
Sub Action()

CollectPanes // Read data from panes to the fields
mDataBase.mPerson.UpdateRecord // Update current record of the table

End Sub

Window1.BevelButton7.Action: // button “Delete”
Sub Action()

mDataBase.mPerson.DeleteRecord
PopulatePanes

End Sub
Example 1

Example 1



13

Adding records to a database

To test the speed of Valentina, we should have a database with thousands of records. Let’s
write a method which will add records to table boPerson.

boPerson.TestAddRecords:
Sub TestAddRecords(N as integer)

dim i as integer

for i = 1 to N
// We want to add a new record, it is good practice to clear the memory
// buffer of the BaseObject first.
SetBlank

BoolFld.Value = (i Mod 2) = 1

if( i Mod 23 <> 0 ) then
ByteFld.Value = i Mod 256  // truncate to range to 0.255

else
// do nothing, so field of this record will have NULL value.

end if

ShortFld.Value = - i // don’t truncate.
UShortFld.Value = i // because it will happen automatically.

LongFld.Value = -2000000 * i
ULongFld.Value = 2000000 * i

FloatFld.Value = 3.1415 * i
DoubleFld.Value = 3.1415 * i * 10000

if( (i mod 2) = 1 ) then
StringFld.Value = “line “ + Str(i)

else
StringFld.Value = “other line “ + Str(i)

end if

DateFld.Set( (i mod 2500) + 1, (i mod 12) + 1, (i mod 31) + 1 )
TimeFld.Set( i mod 12, i mod 60, i mod 60 )

AddRecord
next

// Because we have added many records, we should flush this BaseObject (Table)
// from cache to disk.
Flush

End Sub

This method will be called from the Window1 menu event handler.

Example 1

Example 1



14

Query window

Let’s make another window in our project which will be used to perform SQL queries and
for looping through records of a cursor. The Query window must have this property:

mCursor as VCursor

This window is very similar to Window1 – the same 11 EditFields, and the same navigation
buttons. We can copy all these controls from Window1 by drag and drop.

We will add another multi-line scrollable EditField “SQLString” for entering SQL queries.
We will  also add the button “Execute” with the following Action:

QueryWindow.ButtExecute.Action:
Sub Action()

mCursor = nil // destroy results of prev query

mCursor = mCallerWindow.mDataBase.SQLselect( SQLString.Text )

mCursor.CurrentPosition = 1
PopulatePanes

End Sub

Example 1

Example 1



15

Important : while navigation buttons of the main Window use methods of the VBaseObject
class,  the corresponding buttons of the QueryWindow use the VCursor class:

QueryWindow.BevelButton1.Action: // button “First”
Sub Action()

mCursor.CurrentPosition = 1
PopulatePanes

End Sub

QueryWindow.BevelButton2.Action: // button “Prev”
Sub Action()

if( mCursor.CurrentPosition > 1 ) then
mCursor.CurrentPosition = mCursor.CurrentPosition - 1
PopulatePanes

end if
End Sub

QueryWindow.BevelButton3.Action: // button “Next”
Sub Action()

if( mCursor.CurrentPosition < mCursor.RecordCount ) then
mCursor.CurrentPosition = mCursor.CurrentPosition + 1
PopulatePanes

end if
End Sub

QueryWindow.BevelButton4.Action: // button “Last”
Sub Action()

mCursor.CurrentPosition = mCursor.RecordCount
PopulatePanes

End Sub

Example 1

Example 1



16

Working with example 1

1) Run example 1

2) Select File - New from the menu bar
to create a new database on disk.

3) Select Test - “Add 100’000 records” from the menu bar
This command will add 100’000 records to the database.

4) In Window1, you can now see the resulting records.
Try to navigate through the records using  the “First”, “Last”, “Prev”, and “Next” buttons.

5) Click  the “Query” button to open a QueryWindow.

6) In the top edit field, there is already an example SQL query. Click the “Execute” button.
In the edit fields, the found records will be displayed. You can navigate through selected
records using the  “First”, “Last”, “Prev”, and “Next” buttons.

7) Now try entering some of your own SQL queries.

Example 1

Example 1



17

Example 2 (BLOB)

The second example demonstrates the use of BLOB fields in Valentina. The first BLOB we
will be used to store pictures, the second BLOB to store a large amount of text.

The second example is based on the first. So we can duplicate the project of example 1 and
rename it.

To class boPerson we add 2 properties:
PictureFld as VBLOB
TextFld as VText

In the constructor of boPerson we add 2 lines:
PictFld = new VBLOB( “pict_fld”,  30 * 1024 )
TextFld = new VText( “text_fld”, 2 * 1024 )

To Window1 we must add the control ImageWell to display a picture and another multi-line
EditField to display the text.

Change method boPerson.AddTestRecords to fill the 2 new fields:

select case ( i Mod 3)
case 0

pic = picture1
case 1

pic = picture2
case 2

pic = picture3
end select

PictFld.SetPicture( pic )
TextFld.Value = "This is big, very big notes text, several KB :-)”

Here picture1, picture2 and picture3 are some arbitrary pictures.

That is all. The only thing to note -- BLOBs are slows down speed of adding of new records
(but not speed of searching and sorting) so we will add not too many records in this test.

Example 2

Example 2



18

Example 3 (2 tables, One to Many relation)

In this example, we will demonstrate working with 2 Tables in a database.
This example is based on the project of example 1.

We want to have in the database 2 Tables – “Person” and “Task” related as One to Many
[1:M], i.e. one person can have zero, one or several tasks. But each task belongs to one and
only one Person.

We already have the “Person” Table in our database. To add the “Task” table

1) Add to the project a new class “boTask” as a child of class VBaseObject

2) Add a property to class MyDataBase – a reference to the second table:
mTask as boTask

3) Add to class boTask the following properties:
mPersonPtr as VObjectPtr
mName as VString
mStartTime as VTime
mFinishTime as VTime
mStatus as VByte

4) Make a constructor for class “boTask” where we define the name of the table and
make objects of the fields using the “new” operator:

boTask.boTask:
Sub boTask(inDataBase as MyDataBase)

// Set name of table
name = "task”

// Make fields of table
          mPersonPtr    = new VObjectPtr( "person_ptr”, inDataBase.mPerson, kV_SetCascade )

mName    = new VString( "name”, 20 )
mStartTime    = new VTime( "start_time” )
mFinishTime = new VTime( "finish_time” )
mStatus     = new VByte( "status” )

End Sub

Important : the field mPersonPtr requires a reference to the child BaseObject. To access an
instance of the boPerson class, we need to pass an instance of MyDataBase as a parameter
to the constructor.

We have specified the parameter DeletionControl of field mPersonPtr as kV_SetCascade.
This means that if a record of the Table “Person” will be deleted, then all related records in
the Table “Task” will be deleted too. In other words, we have specified the RULE: “if there
is no Person – there will be no tasks for that person”.

Example 3

Example 3



19

5) Add creation of boTask object to the constructor of class MyDataBase:

Sub MyDatabase()
mPerson = new boPerson
mTask = new boTask( self )

End Sub

Why do we pass an instance of MyDataBase to the constructor of boTask but not an instance
of boPerson? Because if our database has many tables in the database, then you will be able
access any of them via the instance of the DataBase: inDataBase.mPerson,
inDataBase.OtherTable, etc.

6) Update methods for adding records
We need to change our methods which add records to the database, because now we need to
fill 2 tables with data.

The method boPerson.TestAddRecords does not need to be modified, but we now need to
fill the second table. Also, we need to relate records in the Table “Task” to records in the
Table “Person”. For example, we will add 4 Tasks for each person.

Add method TestAddRecords() to the MyDataBase class as follows:

Sub TestAddRecords()
dim res as Boolean
mPerson.TestAddRecords(100000)

// Now we will add records to the second table
res = mPerson.FirstRecord

// This loop will add 400”000 records to the table "Task”
do

mTask.TestAddRecords( mPerson.GetRecID )
loop until mPerson.NextRecord = false

Flush
End Sub

Add method TestAddRecords() to the boTask class as follows:
Sub TestAddRecords( PersonID as integer )

dim i as integer
for i = 1 to 4

SetBlank

mPersonPtr.value = PersonID // HERE WE RELATE RECORDS !!!
mName.value = “task” + str(i)
mStartTime.Set( i, 0, 0 )
mFinishTime.Set( i + 6, 20, 40 )
mStatus.value = i
AddRecord

next
End Sub

Example 3

Example 3



20

Working with Example 3

1) Run the project of example 3

2) Make a new database on disk using New from the File menu.

3) Choose “Add 500’000 records” from the Test menu.

4) Go to the query window.

Now you can try a SQL query for both tables:

SELECT *
FROM Person, Task
WHERE person.id = task.person_ptr AND byte_fld < 10 AND status = 1
ORDER BY string_fld DESC

Important : Valentina is smart enough to resolve the same query without an explicit speci-
fication of a LINK condition

SELECT *
FROM Person, Task
WHERE byte_fld < 10 AND status = 1
ORDER BY string_fld DESC

You can try any other queries.

Example 3

Example 3



21

Example 4 (3 tables, Many to Many relation)

In this example, we demonstrate how to use the ObjectPtr field to establish a Many to Many
relation between 2 Tables.

This example is based on the project of example 3.

In a real life situation, several Persons will probably work on the same task. For example,
Bob, John and Robert can work on “task 35”, and at the same time Bob and John can work
on “task 48”.

The Database of example 3 can not handle such a situation. The database Design is shown
in the following picture:

As you can see, to establish a Many to Many relation between the Person and Task
tables, we need to create an additional Table with 2 fields - which plays the role of
pointers. Such a database structure allows us to connect one Person to many Tasks, and
one Task to many Persons.

1) Since we need a third table, we should create in the our project another class linkHas
as a child of VBaseObject. We assign to it the prefix “link” to emphasize that this
table does not keep user’s data: it is used only to build a relation (link) between 2
tables.

2) Add to MyDataBase class a reference to this Table (BaseObject):
mLinkHas as linkHas

3) Add to linkHas class properties for fields of the Table:
PersonPtr as VObjectPtr
TaskPtr as VObjectPtr

Example 4

Example 4



22

4) Add to linkHas class a constructor to make objects of the fields:

LinkHas.linkHas:
Sub linkHas(inDataBase as MyDataBase)

// Initialise class members
// Note, this is not required, but it is often handy to have a reference from
// a table to its database
mDataBase = inDataBase

// Set name of the Table
name = "has”

// Make fields:
// Note, BaseObjects mPerson and mTask have already been created in the
// the constructor of MyDataBase. This is very important!
 PersonPtr = new VObjectPtr( "person_ptr”, inDataBase.mPerson, kV_Cascade )
TaskPtr = new VObjectPtr( "task_ptr”, inDataBase.mTask, kV_Cascade )

End Sub

Note that in this constructor, we need to access the 2 Tables of our database – Person and
Task. That is why it is better to pass an object of the database via a parameter.

5) Since we have made a copy of the project of Example 3, now we can remove the field
PersonPtr from the class boTask. Delete it as a property and remove it from the constructor
of boTask.

6) Change slightly the method AddTestRecords of class boTask to fill 3 tables with data:

boTask.TestAddRecords:
Sub TestAddRecords( PersonID as integer )

 dim i as integer

// In the following loop we add 4 Task records for each Person.
for i = 1 to 4

// First we add a record to the Task table
SetBlank

mName.value = "task " + str(i)

mStartTime.Set( i, 0, 0 )
mFinishTime.Set( i + 6, 20, 40 )

mStatus.value = i
AddRecord

// Now we add a link-record between Person and Task
mDataBase.mLinkHas.PersonPtr.value = PersonID
mDataBase.mLinkHas.TaskPtr.value = GetRecID
mDataBase.mLinkHas.AddRecord

next
End Sub

Example 4

Example 4



23

Working with Example 4

1) Run the project of example 3

2) Make a new database on disk using New from the File menu.

3) Choose “Add 900’000 records” from the Test menu.

4) Go to the Query window.
Now you can try a SQL query on both tables:

SELECT *
FROM Person, Has, Task
WHERE  byte_fld < 10 AND status = 1 AND

       person.id = has.person_ptr AND has.task_ptr = task.id
ORDER BY string_fld DESC

Again, with Valentina you can skip the specification of a LINK condition:

SELECT *
FROM Person, Has, Task
WHERE byte_fld < 10 AND status = 1
ORDER BY string_fld DESC

Example 4

Example 4



24

Example 5 (dynamic database structure)

In this example, we show quite a different way of using Valentina for REALbasic. It is
based on the project of example 4.

We do not recommend using this method normally. However, it is useful if you really want
to develop a DBMS-like application, i.e. an application which can open and work with a
database with an unknown structure.

We will not define the structure of the database via classes. We also will not create classes
for the Tables or create properties for the fields.

We will use only one class MyDataBase. Actually we could even skip this class entirely and
instead put all methods in a separate module.

So how will we create a database? For this we create several methods which work together.
We will use the CreateBaseObject() and CreateField() methods.

Sub CreateStructure()
dim obj as VBaseObject

obj = CreateBaseObject( "Person” )
obj = CreateBaseObject( "Task” )
obj = CreateBaseObject( "Has” )

CreateFieldsOfPerson
CreateFieldsOfTask
CreateFieldsOfHas

End Sub

Sub CreateFieldsOfPerson()
 dim fld as VField

dim thePerson as VBaseObject
thePerson = BaseObject( "person” )

fld = thePerson.CreateField( "bool_fld”, kV_TypeBoolean )
fld = thePerson.CreateField( "byte_fld”, kV_TypeByte )
fld.Nullable = true

fld = thePerson.CreateField( "short_fld”, kV_TypeShort )
fld = thePerson.CreateField( "ushort_fld”, kV_TypeUShort )
fld = thePerson.CreateField( "long_fld”, kV_TypeLong )
fld = thePerson.CreateField( "ulong_fld”, kV_TypeULong )
fld = thePerson.CreateField( "float_fld”, kV_TypeFloat )
fld = thePerson.CreateField( "double_fld”, kV_TypeDouble )
fld = thePerson.CreateField( "string_fld”, kV_TypeString, 30 )
fld = thePerson.CreateField( "date_fld”, kV_TypeDate )
fld = thePerson.CreateField( "time_fld”, kV_TypeTime )

End Sub

Example 5

Example 5



25

Sub CreateFieldsOfTask()
dim fld as VField

dim theTask as VBaseObject
theTask = BaseObject( "task” )

fld = theTask.CreateField( "name”, kV_TypeString, 20 )
fld = theTask.CreateField( "start_time”, kV_TypeTime )
fld = theTask.CreateField( "finish_time”, kV_TypeTime )
fld = theTask.CreateField( "status”, kV_TypeByte )

End Sub

Sub CreateFieldsOfHas()
dim fld as VField

dim theHas as VBaseObject
theHas = BaseObject( "has” )

fld = theHas.CreateField( "person_ptr”, kV_TypeObjectPtr,
BaseObject("person”),  kV_Cascade )

fld = theHas.CreateField( "task_ptr”, kV_TypeObjectPtr,
BaseObject("task”), kV_Cascade )

End Sub

The main difference of working with a dynamic database is that your methods get references
based on class VField, but not on VByte or VString. This means you cannot use the property
Value of that class to read / write the value of the fields. For this purpose you can only use
methods of the class Vfield: SetString() and GetString().

Taking this into account, we should change all methods which use the property Value of the
fields. Besides, since we do not have static references to the fields of the BaseObjects, we
need to obtain them dynamically each time using method VBaseObject.Field() (see next
page for an example).

If you will need to get access to properties of a specific class such as VString, then you need
to use type casting:

dim fld as VField
dim StrFld as VString

fld = BaseObject(“person”).Field(“string_fld”)
if( fld.type = kV_TypeString ) then

StrFld = VString( fld )
end if

Example 5

Example 5



26

Sub AddRecordsToPerson(N as integer)
dim i as integer
dim thePerson as VBaseObject

thePerson = BaseObject( "person” )

for i = 1 to N
thePerson.SetBlank

if( (i Mod 2) = 1 ) then
thePerson.Field("bool_fld”).SetString( "1” )

else
thePerson.Field("bool_fld”).SetString( "0” )

end if

if( i Mod 23 <> 0 ) then
thePerson.Field("byte_fld”).SetString( Str(i Mod 256) )

else
// Do nothing, so field will have NULL value.

end if

thePerson.Field("short_fld”).SetString( Str(- i))
thePerson.Field("ushort_fld”).SetString( Str(i))
thePerson.Field("long_fld”).SetString( Str( -2000000 * i))
thePerson.Field("ulong_fld”).SetString( Str(2000000 * i))
thePerson.Field("float_fld”).SetString( Str(3.1415 * i))
thePerson.Field("double_fld”).SetString( Str( 3.1415 * i * 10000))
thePerson.Field("string_fld”).SetString( “line “ + Str(i) )

d.Year = (i mod 2500) + 1
d.Month = (i mod 12) + 1
d.Day = (i mod 31) + 1
thePerson.Field("date_fld”).SetString( d.shortDate )

d.Hour = i mod 12
d.Minute = i mod 60
d.Second = i mod 60
thePerson.Field("time_fld”).SetString( d.ShortTime )

thePerson.AddRecord
next

 thePerson.Flush
End Sub

Example 5

Example 5



27

We do not recommend using this technique in general because it is significantly slower than
using classes. There are 2 reasons for that:

1) There is great overhead in converting field context to / from strings.

2) We must spend time obtaining references to fields via the methods of Field(). Using
classes, we have direct references to fields stored as properties.

As you can test for yourself, example 5 works about 20 times (!!!) slower than example 4
on the task of adding records. Time for searching and sorting is the same, because this is
work done in the Valentina database engine.

Example 5

Example 5



28

Example 6 (optimized)

This example is very similar to Example 5, except that the code is optimized.

The only difference is that we have changed the following methods:
BaseObject( Name as String )
Field( Name as String )

 To these methods, everywhere where this is possible:
BaseObject( Index as integer )
Field( Index as Integer )

As we have noted before, using these methods adds some overhead. Accessing BaseObjects
and Fields by index is faster than by name, because we avoid performing string comparison.

To be able to do this we add to our project the module MyConstants. In this module we add
constants for each BaseObject and Field:

kPerson = 1
kTask = 2
kHas = 3

....

So we change the following code:
BaseObject( “person” )

 to this:
BaseObject( kPerson )

Example 6

Example 6


	Introduction 
	Architecture of Valentina for REALbasic 
	Installing Valentina for REALbasic 
	Getting Started with the Examples 
	Initializing the Valentina Kernel 
	Example 1 (Single Table Database) 
	Example 2 (BLOB) 
	Example 3 (2 tables, One to Many relation) 
	Example 4 (3 tables, Many to Many relation) 
	Example 5 (dynamic database structure) 
	Example 6 (optimized) 

