
VALENTINA
for REALbasic Reference

Paradigma (www.paradigmasoft.com)
© 1999-2000

Acknowledgments:

Andy Bachorski , Andy Fuchs, Bill Mounce, Brian Blood,
Craig A. Berry, David A. Bayly, Frank J. Schima, Guillermo Zaballa,
Hideaki Iimori, John Roberts, Lynn Fredricks, Paul Shaap, Robert Brenstein.

V4RBR-2

Contents

Global Methods ... 4
The Class Hierarchy ... 6
Class VDataBase ... 7

Class description .. 8
Properties description .. 8
Methods description... 9
Database structure methods .. 10
BaseObject methods... 10
SQL Methods .. 10

Class VBaseObject .. 11
Class description .. 12
Record Methods ... 12
Navigation Methods ... 13
Field Methods ... 14
Database structure methods .. 15

Class VField...17
Class Description .. 18
Properties Description ... 19
Methods description... 20

Numeric Fields .. 21
Class VBoolean ... 22
Class VByte ... 22
Class VShort .. 22
Class VUShort ... 22
Class VLong .. 22
Class VULong ... 22
Class VFloat .. 22
Class VDouble ... 22
Class VDate ... 23
Class VTime .. 23
Class VDateTime .. 23
Class VString... 24

V4RBR-3

Class VVarChar .. 24
Class Description .. 24
Properties Description ... 24
Methods Description .. 25

Class VBLOB .. 26
Class Description .. 26
Properties Description ... 27
Methods Description .. 27
Adding and updating of records with BLOB .. 28

Class VText ..29
Class Description .. 29
Adding and updating of records with a Text field... 30

class VPicture .. 31
Class Description .. 31
Methods Description .. 31

Class VObjectPtr .. 32
Class VCursor ... 34

Class description .. 35
Creation of cursor .. 35
Properties description .. 36
Field Methods ... 37
Type casting Methods .. 37
Navigation Methods ... 40
Import/Export .. 41

Appendix A: Valentina Utilities module ... 42

Contents

V4RBR-4

Global Methods

ValentinaDebugON([level])
ValentinaDebugOFF

Sets the level of debugging for Valentina.

Parameter ‘level’ can be one of the following:
0 - no debug messages.
1 - message only if error was occurred.
2 - each function will produce message to the console window.

If on your MacOS computer is installed “DCon” which is included into MondoToConsole
Package at <http://homepage.mac.com/vanhoek/>, or on your Windows computer is in-
stalled analog utility “DbgView” <http://www.sysinternals.com/dbgview.htm> then you can
collect debugging messages from V4RB in the console window. Advnatage of this method
is that even after crash of REALbasic and your app you still see log of execution, you see
point of crash and you have time to think. Also this window will show you any Valentina
error even if you have no check them explicitly.

Example:
#if DebugBuild

ValentinaDebugON(2)
#endif

• DO NOT FORGET to set the debuging level to zero for final release!

Global Methods

Global Methods

V4RBR-5

ValentinaInit(CacheSize as Integer,
MacSerialNumber as String,
WinSerialNumber) as Integer

To improve disk access, Valentina uses a cache mechanism. In the ValentinaInit method,
you must define the size of the cache. It can be 100 kB if the database is tiny, or it can be
several MB if the db is big. You can place this parameter in the preferences of your applica-
tion, so a user can define it manually. By default, it is a good idea to allocate half of free
memory to the cache.

If you are registered user then specify your serial number for the MacOS version of or both
MacOS and Windows versions in this method. Otherwise pass empty strings, and Valentina
will work in the time limited mode - 10 minutes per launch. After 10 minutes any request to
the database will be ignored and Valentina will make 3 beeps.

ValentinaShutDown
Destroy cache and other allocations of Valentina kernel.

V4RBR-6

The Class Hierarchy

Valentina for REALbasic is implemented as set of classes which allow you to control a
database:

class VDataBase
class VBaseObject
class VField

class VBoolean
class VByte
class VShort
class VUShort
class VLong
class VULong
class VFloat
class VDouble
class VDate
class VTime
class VDateTime
class VString
class VarChar
class VBLOB

class VText
class VPicture

class VCursor

Note, indention to the right shows inheritance of a class.

The class VField is shown as bold; this means it is an abstract class and captures the essence
of it’s subclasses. You can not create it by operator NEW. Only the subclasses can be cre-
ated and used explicitly.

The Class Hierarchy

The Class Hierarchy

V4RBR-7

Class VDataBase

properties

Name as String (r/o)
BaseObjectsCount as Integer(r/o)

SchemaVersion as intger // Version of db Schema
Creator as String // Mac creator sign
ErrNumber as Integer (r/o) // Number of last error, 0 if OK.

DateFormat as Integer // specifies the format of date:
// 0 - M/D/Y, 1 - D/M/Y, 2 - Y/M/D

DateSep as String // separator for date, e.g. ‘/’
TimeSep as String // separator for time, e.g. ‘:’

methods

// Disk files methods
Create(Location as FolderItem, Mode as Integer, SegmentSize as Integer) as Boolean
Open(Location as FolderItem) as Boolean
Close
Flush

// BaseObject methods
BaseObject(Index as Integer) as VBaseObject
BaseObject(Name as String) as VBaseObject

// Database structure methods
CreateBaseObject(inName as String) as VBaseObject
DeleteBaseObject(inBaseObject as VBaseObject)

// SQL Methods
SQLSelect(Query as String) as VCursor

Class VDataBase

Class VDataBase

V4RBR-8

Class description

This class manages a database. Valentina can have multiple open databases.
Each database has unique (case insensitive) name. Each database must have at least one
table.

Properties description

BaseObjectsCount
You can use it to get the number of BaseObjects (Tables) in this database. Then you can
iterate BaseObjects by index using method BaseObject().

Creator
With Macintosh applications, you can specify the creator’s signature for database files. This
allows you design an icon suite for your application. This assignment can be made using
REALbasic and is usually done during the file SAVE operation.

SchemaVersion
Number of version of database schema. Initial value is 1.
Can be used if you want to change database structure in the new version of your application.

ErrNumber
You cam examine this property to see if an operation was successful. Since this is a property
of the database, each open database has its own “last error” number.

There are 2 kind of errors: OS-relative errors and Valentina-specific errors. OS-based errors
are negative. You can find their description in your OS documentation. Valentina specific
errors are positive numbers. See the Appendix A of this document.

Class VDataBase

Class VDataBase

V4RBR-9

Methods description

Create(Location as FolderItem, Mode as Integer, SegmentSize as Integer) as Boolean
Valentina has its own internal file system, so it can store many logical files in a single disk
file. Valentina can store databases in one, two, three or four files. This is determined when
you specify the parameter “Mode” in the Create method. The choices are:

1 (description, data, BLOB, indexes)
2 description + (data, BLOB, indexes)
3 description + (data, BLOB) + indexes
4 description + data + BLOB + indexes

While each disk file can be up to 2GB (on MacOS up to 9.0) then total size of database will
2 GB for mode 1 and up to 8 GB for mode 4. Storing a tmp information in the separate disk
file reduce chance of db corruption. Sometimes you may wish keep all db in the one disk
file (this sometimes love MAC users). If you have separate description file then you can
open it forsing Valentina to build a new empty database.

The parameter “SegmentSize” in the Create method defines the size of each segment of
disk file assigned to the database. When Valentina needs additional disk space it allocates it
in segments. A typical setting for this parameter is to 32 * 1024 bytes. However, if you want
a tiny database in the your application, as in an address book, then you might set it to 2 or 4
KB. We don’t recommend using a segment size more than 64KB.

Note, the size of segment of 32 KB doesn’t limit the database to be 32KB. This is just the
size of segment; for example if your database is 1 MB then it has 34 segments inside of the
file. A segment of Valentina is like a disk cluster in the MacOS or Windows operating
system.

Open(Location as FolderItem) as Boolean
Opens existing database at specified location.

Close
Closes the database.

Flush
Flushes all unsaved information of this database from the cache to the disk.

Class VDataBase

Class VDataBase

V4RBR-10

Database structure methods

CreateBaseObject(inName as String) as VBaseObject
Creates a new empty Table in the database.
You need to add columns to this table using VBaseObject.CreateField() method.

DeleteBaseObject(inBaseObject as VBaseObject)
Removes the specified BaseObject (Table) from the database. This operation is undoable
and instantaneous!

BaseObject methods

BaseObject(Index as Integer) as VBaseObject
Returns a BaseObject by index.

BaseObject(Name as String) as VBaseObject
Returns BaseObject by name, case insensitive.

SQL Methods

SQLSelect(Query as String) as VCursor

Valentina for REALbasic uses SQL to search a database. See document “Valentina SQL” on
information about SQL supported by Valentina.

The SQLSelect method is given a string as a paramemter (this is a SQLstring specifying
what is to be searched for), resolves it, and returns the resulting table as a cursor of type
VCursor. When you finish working with the cursor, you must assign it the value nil to
destroy it and free memory.

If you pass wrong SQL string then cursor will be empty (no records). You should always
check Valentina’s error after query to see if operations was successful.

Class VDataBase

Class VDataBase

V4RBR-11

Class VBaseObject

properties
Name as String
FieldCount as Integer // (r/o) number of fields in this BaseObject
RecordCount as Integer // (r/o) number of logical records in this BaseObject.
DataBase as VDataBase // Databaseof this BaseObject.

methods

// Field Methods:
Field(inIndex as Integer) as VField
Field(inName as String) as VField

// Record Methods:
SetBlank // Clears memory buffer of BaseObject,

// set nullable fields to NULL

AddRecord // Adds a new record with current value of fields
UpdateRecord // Updates existing record with new values
DeleteRecord as Boolean // Deletes current record
DeleteAllRecords // Makes table empty, very fast.

Flush // Saves on disk information of this BaseObject only.

// Navigation Methods:
FirstRecord as Boolean
LastRecord as Boolean
PrevRecord as Boolean
NextRecord as Boolean

GetRecID as Integer
GoToRecID(RecID as Integer) as Boolean

// Methods to change database structure:
CreateField(Name as String, Type as Integer,

 [Param1 as Integer], [Param2 as Integer], [Method as String]) as VField

CreateField(Name as String, type as Integer,
 Target as VBaseObject, Control as Integer) as VField

DeleteField(inFld as VField)

ChangeType(inFld as VField, NewType as Integer, Param as Integer) as VField

Class VBaseObject

Class VBaseObject

V4RBR-12

Class description

Each VBaseObject manages a table of the database.
Each VBaseObject must have at least one field but not more than 65535 fields.

Record Methods

SetBlank
Each VBaseObject has a memory buffer in RAM for field values of the current record. This
buffer can be cleared by the SetBlank method, i.e. all numeric fields become zero, all string
fields get the empty string. If any fields are nullable then they get the NULL value.

AddRecord
Adds a new record to the table with the current values in the memory buffer of this BaseOb-
ject. So at first we need to assign values to the fields for the new record and then call
AddRecord():

thePerson.SetBlank
thePerson.FirstName.Value = “Jojn”
thePerson.LastName.Value = “Roberts”
thePerson.AddRecord

UpdateRecord
This method stores new modified values of fields of CURRENT record.

thePerson.GotorecID(SomeRecID)
thePerson.FirstName.Value = “Brian”
thePerson.LastName.Value = “Blood”
thePerson.UpdateRecord

DeleteRecord as Boolean
Deletes the current record of BaseObject.
Returns TRUE if the operation was successful.
Returns FALSE is record was not deleted, e.g. it was locked or not exists.

If after deleted record exists next record it becomes current. Otherwise the previouse record
become current. If BaseObject becomes empty then current record is undefined.

DeleteAllRecords
Deletes all records in the BaseObject.
BaseObject becomes empty, the current record – undefined.

Flush
This method flushes all unsaved information of this BaseObject from the cache to the disk.

Class VBaseObject

Class VBaseObject

V4RBR-13

Navigation Methods

The navigation methods of VBaseObject class will seldom be used. The VCursor class
provides more powerful methods for selecting, sorting and navigation of the records.

FirstRecord as Boolean
Go to the first logical record of BaseObject. Reads record from disk to the memory buffer.
of BaseObject.
Returns TRUE if the first record is found.
Returns FALSE if the current record already was first or BaseObject is empty.

LastRecord as Boolean
Go to the last logical record of BaseObject. Reads record from disk to the memory buffer. of
BaseObject.
Returns TRUE if the last record is found.
Returns FALSE if the current record already was last or BaseObject is empty.

PrevRecord as Boolean
Go to the previous logical record of BaseObject. Read record from disk to the memory
buffer. of BaseObject.
Returns TRUE if the previous record is found.
Returns FALSE if the current record was the first or BaseObject is empty.

NextRecord as Boolean
Go to the next logical record of BaseObject. Reads record from disk to the memory buffer.
of BaseObject.
Returns TRUE if the next record is found.
Returns FALSE if the current record was the last or BaseObject is empty.

GetRecID as Integer
Returns RecID of the current record. Range is 1..N, 0 - if current record is undefined.

GoToRecID(inRecID as Integer) as Boolean
Makes a record with the specified RecID current. Reads record from disk to the memory
buffer of BaseObject. This is the fastest way to access a record.
Returns TRUE if record found. Otherwise returns FALSE, i.e. record is deleted.

Class VBaseObject

Class VBaseObject

V4RBR-14

Field Methods

Field(inIndex as Integer) as VField
Field(inName as String) as VField
This methods allows you to access fields of BaseObject by index or name.The index starts
from 1. If the field with specified index or name doesn’t exist then it returns nil.

fld = theBaseObject.Field(2);

To get access to all the properties of the field you need to perform type casting:

dim fld as VField
dim fldString as VString

fld = boPerson.Field(“name”)
if(fld.type = kTypeString) then

fldString = VString(fld)
// now you can access properties of VString field: MaxLength, Language,...
// using fldString

end if

This fragment of code can be written by using the REALbasic operator isA:

fld = boPerson.Field(“name”)
if(fld isA VString) then

fldString = VString(fld)
end if

Class VBaseObject

Class VBaseObject

V4RBR-15

Database structure methods

You may need these methods if:
1) you are developing an application with a dynamic database structure;
2) you want to change the database structure of your existing application (for example into
a new version)

The main purpouse for these methods – is to change the size of the record of the Table. If a
Table has records then disk files must be transformed. Valentina will perform these opera-
tions with the help of temporary files: so if computer crashes for any reason, the database
will not be corrupted.

CreateField(Name as String, Type as Integer,
 [Param1 as Integer], [Param2 as Integer], [Method as String]) as VField

CreateField(Name as String, type as Integer,
 Target as VBaseObject, Control as Integer) as VField

Method CreateField appends to this BaseObject (Table) a new field (column). This opera-
tion can be made even if there are records in the Table. This is a very fast operation.

For all numeric fields, VDate and VTime you should use first method with 2 parameters:
boPerson.CreateField(“BornDate”, kV_TypeDate)

Constants kV_TypeBoolean, kV_TypeByte, ... are defined in the module “ValentinaUtilities”.

For String and VarChar field you must specify Param1 as MaxLength, and you can specify
Param2 as Language (default value -1):

boPerson.CreateField(“FirstName”, kV_TypeString, 25)
boPerson.CreateField(“FirstName”, kV_TypeString, 25, 3)// German

For BLOB field you should specify Param1 as the size of the segment in bytes:
boPerson.CreateField(“Photo”, kV_TypeBLOB, 50 * 1024)

For TEXT field you should specify Param1 as the size of the segment in bytes and you can
specify Param2 as Language:

boPerson.CreateField(“Notes”, kV_TypeText, 5 * 1024)
boPerson.CreateField(“Notes”, kV_TypeText, 5 * 1024, 3)

Finaly for ObjectPtr field you must use the second form of CreateField method in which
you must specify the (parent) BaseObject to which it is pointing and deletion control (about
deletion control see chapter “VObjectPtr class”):

boTask.CreateField(“person_ptr”, kV_TypeObjectPtr, thePerson, kV_Cascade)

If you want create a Method of BaseObject (i.e. virtual field) then you need specify the
parameter ‘Method’:

boPerson.CreateField(, "FullName", kV_TypeVarChar, 504, -1,
 "CONCATE(FirstName, ' ', LastName)")

Class VBaseObject

Class VBaseObject Database structure methods

V4RBR-16

DeleteField(inFld as VField)
Removes the referenced field (column) from the BaseObject. This operation is undoable! It
can be made in about 0 seconds for a BaseObject with any number of records.

ChangeType(inFld as VField, NewType as Integer, Param as Integer) as VField
Sometimes you may need to change the type of the field. For example if you first made a
field “Quantity” as VUShort and later you have found that in real life the quantity might be
more than 65’535, you will need change its type to VULong.

For String and VarChar fields Param is MaxLength.
For BLOB an its subtypes (Text, Picture) Param is SegmentSize.
For the remaining types of fields, Param is ignored and should be zero.

Class VBaseObject

Class VBaseObject Database structure methods

V4RBR-17

Class VField

Properties
Name as String // up to 32 bytes
Type as Integer (r/o) // Constants are defined in the

// ValentinaUtilities module

Indexed as Boolean // true if the field is indexed
Unique as Boolean // true the field has unique values only
Nullable as Boolean // true if the field accepts NULL values
IsMethod as Boolean // true if the field is method.

IsNull as Boolean // (r/o) true if the current value of the field is
// NULL.

Methods

SetBlank() // clear value of field.

SetMethod(inText as String) // set text of the Method
GetMethod as String // returns text of the Method

GetString as String // returns value of Field as string
SetString(inValue as String) // store string value in the Field

Class VField

Class VField

V4RBR-18

Class Description

This is a base abstract class for all other types of fields. You must not create an instance of
this class! Each field must have a unique name (case insensitive) in the BaseObject.

Using VBaseObject.GetField() or VCusor.Getfield() you can get reference of a VField. There
is no any difference between VField of BaseObject and VField of Cursor.

If you need get access to properties of VField subclasses then you need do type casting to
that class. For example, if you have got reference of string Field and want get access to
property MaxLength of class VString you can write:

dim fld as VField
dim str_fld as VString

fld = Person.GetField(“Name”)
str_fld = VString(fld)
if(str_fld <> nil)

maxLen = str_fld.MaxLength
end if

Class VField

Class VField

V4RBR-19

Properties Description

Name
Each field should have unique name in scope of BaseObject. Maximal length of name is
32 bytes.

Type
Each field has a type, which defines the context of the data which can be stored in it. The
type of field is defined when you use a constructor of a subclass of VField.

Each field has several flags, which define its behavior:

Indexed
If true then Valentina will maintain an index for this field. This property can be changed at
runtime.

Unique
If true then this field will not accept duplicate entries. Also, if the field unique then it is
automatically indexed.

Nullable
If true then this field can have the NULL value. Because this feature adds 1 bit per record
for the field, the default is false.

IsMethod
True if the field is virtual, i.e. it is BaseObject Method.

IsNull
This is a record property. It is true if the value of this field for the current record of the table
is NULL. Don’t confuse it with the property Nullable! Nullable is a property of the column
of table, IsNull is a property of the current record.

Class VField

Class VField

V4RBR-20

Methods description

SetBlank

Clear value of any field. For numeric field it set it to zero, for String fields it set it empty
string. If a field is Nullable then set its value to NULL.

GetString as String
SetString(inValue as String)

These methods allow you to get or set a field value using strings regardless of the assigned
field type. When assigning a value to a field, Valentina will convert the string to the appro-
priate type.

This is particularly useful for the VDate and VTime fields, because Valentina uses the set-
tings of the control panels for conversion. This allows you to display the correct interna-
tional format. You can change format of Date/Time using property VDataBase.DateFormat.

If you develop an application with a dynamic database structure then you will use these
methods instead of the Value property of the appropriate field class.

SetMethod(inText as String)

If you want create in a BaseObject virtual field, i.e. Method then you must set text for this
method after field constructor of field and BEFORE you will Create database on disk.

Example:

Person(inDB as VDatabase)
mFirstName = new VVarChar(“FirtName”, 504)
mLastName = new VVarChar(“LastName”, 504)
mFullName = new VVarChar(“FullName”, 504)
mFullName.SetMethod(“CONCAT(FirstName, ‘ ‘, LastName)”)

end sub

GetMethod as String

Returns string of text for BaseObject Method.

Class VField

Class VField

V4RBR-21

Numeric Fields

The numeric field classes are described below. They differ only in the type of property
‘Value’. For example, VBoolean value has type boolean while VDouble has type double.
Each class has a constructor where you should specify the name of this field (column).

All of these classes are subclasses of VField. This means that they inherit all the properties
and the methods of VField class. All these classes have constructors with 2 parameters: the
name of the column and the Flags.

In the module “ValentinaUitilities” are defined the following constants:
kV_Indexed = 1
kV_Unique = 2
kV_Nullable = 4
kV_IndexByWords = 8

If you specify Flags as 0 then the field will not be indexed, will not be unique, and will not
be nullable.

fld = new VByte(“byte_fld”, 0)
fld = new VByte(“byte_fld”, kV_Indexed)
fld = new VByte(“byte_fld”, kV_Indexed + kV_Unique)
fld = new VByte(“byte_fld”, kV_Indexed + kV_Nullable)

We use these Flags in the constructor just to write less code. If we did not use flags then we
would need to write several lines of code instead of one:

fld = new VByte(“byte_fld”)
fld.indexed = true
fld.nullable = true

NOTE: constants kV_Indexed, kV_Uniuqe and kV_Nullable should be used in the con-
structors only. At runtime you should change properties of the field:

fld.indexed = true.

Numeric Fields

Numeric Fields

V4RBR-22

Class VBoolean
constructor VBoolean(Name as String, [Flags as Integer])
properties Value as Boolean

Class VByte
constructor VByte(Name as String, [Flags as Integer])
properties Value as Integer

Class VShort
constructor VShort(Name as String, [Flags as Integer])
properties Value as Integer

Class VUShort
constructor VUShort(Name as String, [Flags as Integer])
properties Valueas Integer

Class VLong
constructor VLong(Name as String, [Flags as Integer])
properties Valueas Integer

Class VULong
constructor VULong(Name as String, [Flags as Integer])
properties Valueas Integer

Class VFloat
constructor VFloat(Name as String, [Flags as Integer])
properties Valueas single

Class VDouble
constructor VDouble(Name as String, [Flags as Integer])
properties Valueas double

Numeric Fields

Numeric Fields

V4RBR-23

Class VDate

constructor VDate(Name as String, [Flags as Integer])

properties Year as Integer // any year between -222..+222

Month as Integer // 1.12
Day as Integer // 1..31

methods Set(year as Integer, month as Integer, day as Integer)

Class VTime

constructor VTime(Name as String, [Flags as Integer])

properties Hour as Integer // 0..23
Minute as Integer // 0..59
Second as Integer // 0..59

methods Set(hour as Integer, minute as Integer, second as Integer)

The classes VDate and VTime differ from the group of numeric fields in that they have a
complex “value” representing several properties. Also, they have the method Set() that
allows the setting of all three properties in one call.

Class VDateTime

constructor VDateTime(Name as String, [Flags as Integer])

properties Year as Integer // any year between -222..+222

Month as Integer // 1.12
Day as Integer // 1..31
Hour as Integer // 0..23
Minute as Integer // 0..59
Second as Integer // 0..59

methods SetDate(year as Integer, month as Integer, day as Integer)
SetTime(hour as Integer, minute as Integer, second as Integer)

Numeric Fields

Numeric Fields

V4RBR-24

Class VString
Class VVarChar

parent class VField

• VString and VVarChar classes have the same API (except constructor).

constructor
VString(Name as String, MaxLength as Integer, Language as Integer, [Flags as Integer])
VVarChar(Name as String, MaxLength as Integer, Language as Integer, [Flags as Inte-
ger])

properties
MaxLength as Integer // maximal length of string which can be stored
Language as Integer // number of corresponded itlb2 resource
IndexByWords as Boolean // if true then indexed by each word of the string
Value as String

methods
ReadRawData as String
WriteRawData(inData as String)

Class Description

This type of field is used for storing strings in a database.

Properties Description

MaxLength
Maximal length of the String and VarChar field can be in range 1 .. 65535 bytes.

Language
You can specify the language which will be used for indexing this field.

EXAMPLE:

dbReference = new VString(“REFERENCE”, 9, -1, kV_Indexed + kV_Unique)
dbVerse = new VString(“VERSE”, 400, -1)

dbReference = new VVarChar(“REFERENCE”, 9, -1, kV_Indexed + kV_Unique)
dbVerse = new VVarChar(“VERSE”, 400, -1)

Class VString

Class VString

V4RBR-25

Using the flag IndexByWords, you can specify that the String or VarChar field should be
indexed by each word.

To set/get the value of String field you should use the property Value:

FirstName.Value = “John”
LastName.Value = “Roberts”

Methods Description

ReadRawData() as String
WriteRawData(outData as String)

These methods allow you to use VString field to store raw data (which contains 0 chars).

NOTE:
1) if you use this methods then you must not index this field,
2) This field will not be correctly displayed in the Valentina DBMS application.

Class VSrting

Class VSrting

V4RBR-26

Class VBLOB

parent class VField

constructor
VBLOB(Name as String, SegmentSize as Integer)

properties
SegmentSize as Integer // in bytes, N * 1024

methods

GetDataSize as Integer
DeleteData

ReadRawData as String
ReadRawData(inHowMuch as Integer, inOffset as Integer) as String

WriteRawData(inData as String)
WriteRawData(inData as String, inOffset as Integer)

SetPicture(inData as Picture)
GetPicture as Picture

Class Description

This type of field is intended for storing large chunks of data (e.g., pictures, text, movies,
etc.).

Constructors of BLOB fields don’t have parameter Flags, because a BLOB can’t be in-
dexed, unique or nullable.

Class VBLOB

Class VBLOB

V4RBR-27Class VBLOB

Class VBLOB

Properties Description

SegmentSize
The parameter SegmentSize is used by Valentina only once - when it creates the BLOB-
file. This parameter can’t be changed at runtime. By default it is 10 KB.

Methods Description

GetDataSize as Integer
Returns the size of value of the current record for this BLOB field.

DeleteData
Deletes the BLOB data of the field. After this function you must Update record of BaseOb-
ject to store in the table new reference of BLOB record (NULL). This method is useful for
you if you want delete BLOB data, but don’t want delete records of BaseObject.

ReadRawData as String
ReadRawData(inHowMuch as Integer, inOffset as Integer) as String

WriteRawData(inData as String)
WriteRawData(inData as String, inOffset as Integer)

- These methods allow you to store in the BLOB field any raw data using String of REAL-
basic as exchange structure between REALbasic and Valentina.

- Second form of methods allow you random access to the context of BLOB field.EXAMPLE:
// we will use second form here

dim s1, s2, s3, s4 as String
s1 = “aaaaaa” // 6 chars
s2 = “bbbbbbbb” // 8 chars

blob_fld.WriteRawData(s1)
blob_fld.WriteRawData(s2, 6)
...
s3 = blob_fld.ReadRawData(6, 0)
s4 = blob_fld.ReadRawData(8, 6)

V4RBR-28

Adding and updating of records with BLOB

There are 2 cases:
1) if the value of a reference in the table-record is NULL, then assigning a value to it will
cause a new BLOB-record to be created;
2) if the value of a reference in the Table-record is not NULL, i.e. current record has some
BLOB-context for this field, then assigning a new value will cause the old BLOB-record to
be updated with the new value.

So, if you want to add a new record to the databasewith a BLOB-field, you must be sure that
the referenced BLOB-field is NULL. For this you must call ‘SetBlank’ for the BaseObject
to clear the buffer of the record, or call ‘SetBlank’ for that BLOB-field, so the value of that
one field will be cleared.

If you want to update a value of a BLOB-field of the current record then you just assign the
new context to it. After that you should call ‘UpdateRecord’ of the BaseObject.

If you update the context of a field with a NULL value, the old context of the field will be
deleted and the value of the BLOB-field will become NULL.
NOTE: the table record still exists!

Example:

To add a record:
mfPhoto.SetBlank
mfPhoto.SetPicture(thePicture)
AddRecord

To update a record:
mfPhoto.SetPicture(theNewPicture) // replaces oldPicture
UpdateRecord

This clears the context of the current VBLOB-record but doesn’t delete the table-record:
mfPhoto.DeleteData // there is no more Photo associated with this Person.
UpdateRecord

Class VBLOB

Class VBLOB

V4RBR-29

Class VText

parent class VBLOB

constructor
VText(Name as String, SegmentSize as Integer, Language as Integer, [Flags as Integer])

properties
Language as Integer
Value as String

Class Description

This is a special class for storing text which combines the features of VString and VBLOB.

It can be indexed like VString but it has no limit on the size of the content because it’s type
is like VBLOB. If a VText field is indexed, then it is always indexed by words; so there is
no property ‘IndexByWords’.

You can specify the language which will be used for indexing this field. This feature allows
you to develop international (e.g., Japanese) ready applications. To determine the local
language, the MacOS uses the ID of the itl2 system resource. For example, the value of this
resource is 3 for the German language. You can use toolbox routines to get the ID of the itl2
resource by its name (like “German” or “Japanese”).

If the language for field is -1, then a byte-to-byte method of comparison is used. This is the
fastest method but it can be used only for English and some Romance languages.

String and Text fields can be searched using a regular expression search. The syntax of
RegEx is similar to the syntax of RegEx found in Userland’s Frontier. Its description can be
found in the folder “Syntax of RegEx”. To search by RegEx you use the “LIKE” word in the
SQL query.

Class VText

Class VText

V4RBR-30

Adding and updating of records with a Text field

A VText field has a property ‘Value’ which works a little differently from the property
‘Value’ of usual fields (see the VBLOB field description also). There are 2 cases:

1) if the ‘Value’ is NULL and a new value is assigned to it, then a new VBLOB-record will
be created;

2) if the ‘Value’ is not NULL and you assign a new value, then the existing VBLOB-
record will be updated with the content of the new value.

So, if you want to add a new record to the database with a VText-field, you must be sure that
value of table-record of VText-field is NULL. To do this you must first call ‘SetBlank’ for
BaseObject to clear buffer of record, or call ‘SetBlank’ for that VText-field so that the value
of that one field will be cleared.

If you want to update the value of the VText-field of the current record then you just assign
the new content to it. After that, as usual, you should call ‘UpdateRecord’ for the BaseObject.

If you update the context of a VText-field with NULL then the old content of the field will
be deleted and the value of VText-field becomes NULL.
NOTE: the table record still exists!

Class VText

Class VText

V4RBR-31

class VPictur e

parent class VBLOB

constructor
VPicture(Name as String, SegmentSize as Integer)

methods

SetPicture(inData as Picture, [Quality as Integer])
GetPicture as Picture

Class Description

Picture field is a special BLOB field which can storepictures in the different formats. On
default it stores Pictures with JPG compression.

Advanced information
1) This field must get and returns back:
- on MacOS PICT handle.
- on Windows DIB handle.

2) This is the regular BLOB field which stores data in the next format:
* PicType (4 bytes)
* PicSize (4 bytes)
* Picture itself.

Methods Description

SetPicture(inData as Picture, Quality as Integer)
Stores Mac PICT to the database with JPG compression. Parameter Quality can be in range
0..100 and specify quality of jpeg compression.

GetPicture as Picture
Read picture with JPG compression from database and returns it as PICT with JPG
comression, i.e. this methid don’t decomress PICT. You can use it as normal picture because
MacOS will work with it correctly.

NOTES: this methods use QuickTime for compression.

Class VPicture

Class VPicture

V4RBR-32

Child Table,
Many Table

Parent Table,
One Table

The field of type ObjectPtr is intended to establish a “many to one” relation [M:1] between
two tables (BaseObjects) by ‘direct pointer’.

• In SQL this is called a FOREIGN KEY
• In 4Dimention, FileMaker and MS Access this is called as Relation.

It stores references to the related parent record (“One” record). This reference is an un-
signed long number (4 bytes, ulong) and it is the physical record number of the parent
record in the table. To set the Value of this field you must get RecID of current record
PointedObject:

mObjectPtr.Value = boPerson.GetRecID

Sometimes you may wish to relate a record of Table B to a non-current record of Table A, in
this case you can save the RecID to a variable and use it later:

dim RecID as Integer
RecID = TableA.GetRecID
TableA.GoToRecord(SomeOtherRecord)
...
TableB.TableA_Ptr.Value = RecID

• • • • • RecID is 1-based, zero is used for the ID of the undefined record. Therefore, you should
never define ObjectPtr field as nullable, sinse it is possible to search for records where
ptr =0.

Class VObjectPtr

parent class VField

constructor
VObjectPtr(Name as String, PointedObject as VBaseObject, DeletionControl as Integer)

properties
Value as Integer // here is stored RecID of pointed record
PointedObject as VBaseObject
DeletionControl as Integer

Class VObjectPtr

Class VObjectPtr

V4RBR-33

The ObjectPtr field must know the pointed object (parent object) and deletion control to
have correct behavior.

The PointedObject must be defined when you create the field. There is no reason to change
PointedObject runtime.

The DeletionControl regulates record deletion in the “Many” table when a record is deleted
in the “One” table. It can be changed at runtime. This is the rule, which defines the behavior
on deletion of record. There are three ways deletions are handled.

Leave related Many records:
From the database only the “One” record is deleted, and the ObjectPtr field of the related
many records is automatically set to 0. In the “ValentinaUtilities” module the defined con-
stant kV_SetNull is for this case.

Delete related Many records:
The “One” and “Many “ components are all deleted. If a Many record also have related
Many records in the third Table(s) then they are also deleted in a "cascade delete". In the
“ValentinaUtilities” module defined constant kV_Cascade is for this case.

Can not delete if related Many:
The deletion of the One record is not allowed if there is at least one related Many record.
In the “ValentinaUtilities” module defined constant kV_Restrict is for this case.

As we have noted above ObjectPtr field can be used to establish MANY to ONE relation.
Actually it can be used to establish ONE to ONE relation also. For this you should specify
ObjectPtr field as unique. Valentina can use this information to optimize query resolving.

Besides using ObjectPtr field you can establish a Many to Many relation between 2 tables.
For this you need to create additional third table - Link as shown on the picture:

Class VObjectPtr

Class VObjectPtr

V4RBR-34

Class VCursor

properties
DataBase as VDataBase // Databaseof this Cursor.
SQLstring as String // SQL string of this Cursor

FieldCount as Integer// (r/o) number of selected fields for this Cursor.
RecordCount as Integer// Number of selected records, can be reduced.

CurrentPosition as Integer// Current position in the cursor

ReadOnly as Boolean// (r/o) true if records in this cursor can’t be changed,
// i.e. you can’t add/update/delete records.

methods

VCursor(inDatabase as VDatabase, inSQLstr as String)

// Field Methods:
Field(Index as Integer) as VField
Field(Name as String) as VField

// Navigation Methods:
FirstRecord as Boolean
LastRecord as Boolean
PrevRecord as Boolean
NextRecord as Boolean

// Record Methods:
SetBlank // blank the memory buffer of the record
Add // adds a new record to the cursor
Update // updates current record of cursor
Delete as Boolean // deletes current record of cursor
DeleteAll // deletes all records of cursor

DropRecord // removes the current record from cursor
// but don’t delete it from original BaseObject.

ImportText(File as FolderItem,
FieldDelimter as String,
LineDelimter as String)

ExportText(File as FolderItem,
FieldDelimter as String,
LineDelimter as String)

Class VCursor

Class VCursor

V4RBR-35

Class description

This class provides the result of an execution of SQL’s SELECT statement. Valentina offers
a cursor with random access to records.

Each cursor has independent memory buffer, so you can have many cursors at the same
time for the same BaseObject, which point on different records.

Creation of cursor

VCursor(inDatabase as VDatabase, inSQLstr as String)
This constructor provides you the second way to create Cursor (the first one is via the
method VDatabase.SQLSelect(). If you want to define a subclass of VCursor than you need
use constructor of VCursor.

Example:

sub myCursor
VCursor(inDB, inSQL) // init parent class.

end sub

Class VCursor

Class VCursor

V4RBR-36Class VCursor

Class VCursor

Properties description

FieldCount
Here you can find how many columns this cursor has.

RecordCount
Equal to the number of records found as a result of SQL query.

CurrentPosition
To navigate through the records of the cursor you can use the property CurrentPosition.
Position in the Cursor is not the same as CurrentRecord in BaseObject. For example first
record of the Cursor can be 125th in the BaseObject.

Example:
CurrentPosition = 1 // go to the first record of cursor.
CurrentPosition = RecordCount // go to the last record of cursor.

// go to the NextRecord:
if(CurrentPosition < RecordCount)

CurrentPosition = CurrentPosition + 1
end if

NOTE: when you assign a new value to the CurrentPosition you force Valentina to load a
record from disk to the memory buffer. So this is not “just variable”. On the other hand, if
the record was read before and it is in the cache, then repeated reading of its data is a “no
time” operation.

If you try to assign a wrong value then the current record is not changed.

ReadOnly
True if the records of Cursor can be readed only; otherwise it is false.

V4RBR-37

Field Methods

Field(Index as Integer) as VField
Field(Name as String) as VField
You can use these methods to access fields of the cursor and their values.
The order of fields in the cursor is the same as the order of fields in the SELECT statement
of query.

dim i, Records as Integer
LastName as String
dim cur as VCursor

cur = gDataBase.SQLSelect(“select * from person where name like ‘john’ no_case”)

Records = cur.RecordCount
for i = 1 to Records

cur.CurrentPosition = i
LastName = cur.Field(“last_name”).GetString

next

Type casting Methods

After you get the field as VField you can use type casting to get a reference on the actual
class of the field.

As described in the paragaph “VField” you may need do type casting
a) to access value of field not as string but as number to be about 20 times faster.
b) to access properties of VField subclasses.

To save yout type class VCursor has set of methods which do this type casting for you.

BooleanField(Index as Integer) as VBoolean
BooleanField(Name as String) as VBoolean

ByteField(Index as Integer) as VByte
ByteField(Name as String) as VByte

ShortField(index as integer) as VShort
ShortField(name as string) as VShort

UShortField(index as integer) as VUShort
UShortField(name as string) as VUShort

Class VCursor

Class VCursor

V4RBR-38

LongField(index as integer) as VLong
LongField(name as string) as VLong

ULongField(index as integer) as VULong
ULongField(name as string) as VULong

LLongField(index as integer) as VLLong
LLongField(name as string) as VLLong

ULLongField(index as integer) as VULLong
ULLongField(name as string) as VULLong

FloatField(index as integer) as VFloat
FloatField(name as string) as VFloat

DoubleField(index as integer) as VDouble
DoubleField(name as string) as VDouble

DateField(index as integer) as VDate
DateField(name as string) as VDate

TimeField(index as integer) as VTime
TimeField(name as string) as VTime

DateTimeField(index as integer) as VDateTime
DateTimeField(name as string) as VDateTime

StringField(index as integer) as VString
StringField(name as string) as VString

VarCharField(index as integer) as VVarChar
VarCharField(name as string) as VVarChar

BlobField(index as integer) as VBlob
BlobField(name as string) as VBlob

TextField(index as integer) as VText
TextField(name as string) as VText

PictureField(index as integer) as VPicture
PictureField(name as string) as VPicture

ObjectPtrField(index as integer) as VObjectPtr
ObjectPtrField(name as string) as VObjectPtr

Class VCursor

Class VCursor

V4RBR-39

So you have several ways to work with fields of cursor:
Let you have variables, which defined as:

dim fld as VField
dim fldLong as VLong

now you can write on of the following:

fld = curs.Field(“long_fld”)
VLong(fld).value = 5

VLong(curs.Field(“long_fld”)).value = 5

curs.LongField(“long_fld”).value = 5

As you can see the last form is the shortest.

Class VCursor

Class VCursor

V4RBR-40

Navigation Methods

FirstRecord as Boolean
Go to the first logical record of Cursor. Returns true if the first record is found.

LastRecord as Boolean
Go to the first logical record of Cursor. Returns true if the last record is found

PrevRecord as Boolean
Go to the previous logical record of Cursor if it exists. Returns true if the previous record is
found. Otherwise, it returns false and this means we are at the first logical record in the
Cursor.

NextRecord as Boolean
Go to the next logical record of Cursor if it exists. Returns true if the next record is found.
Otherwise it returns false which means we are at the last logical record in the Cursor.

Example:

if(myCursor.FirstRecord)
Do

// work here
Loop Until myCursor.NextRecord = false

end if

Just for you info:
The result of this methods can be reached also with using of property ‘CurrentPosition’ in
conuction with ‘RecordCount’, but this is less effective way.

Example:

if(myCursor.RecordCount > 0)
myCursor.CurrentPosition = 1
For i = 1 to myCursor.RecordCount

// work here
myCursor.CurrentPosition = myCursor.CurrentPosition + 1

Next
end if

Class VCursor

Class VCursor

V4RBR-41

Import/Export

ImportText(File as FolderItem,
 FieldDelimter as String,
 LineDelimter as String)

Imports the specified text file into the fields of the Cursor. The Cursor must be designed to
have the flag CanBeUpdated true.

The parameters FieldDelimter and LineDelimter are optional, i.e. you may specify either or
both of them. On default they are TAB (09) and CR(13) respectively. If the cursor represents
a subset of the table-fields, then the omitted fields will be filled with blank values.

In the current version supported importing to the Cursor designed for a single Table only.

ExportText(File as FolderItem,
 FieldDelimter as String,
 LineDelimter as String)

This command exports the fields and records of a Cursor to the designated text file. Using
the SELECT statement you can define the fields to export and their order, as well as the
records to be exported.

The current version of Valentina will export data only into a cursor based on a single table.

Class VCursor

Class VCursor

V4RBR-42

Appendix A: Valentina Utilities module

You must drag the module Valentina Utilities into your project to have access to the con-
stants defined in it.

Constants of types of fields
kV_TypeBoolean = 2
kV_TypeByte = 3
kV_TypeShort = 4
kV_TypeUShort = 5
kV_TypeLong = 6
kV_TypeULong = 7
kV_TypeLLong = 27
kV_TypeULLong = 28
kV_TypeFloat = 8
kV_TypeDouble = 9
kV_TypeString = 10
kV_TypeVarChar = 26
kV_TypeDate = 12
kV_TypeTime = 13
kV_TypeDateTime = 14
kV_TypeBLOB = 21
kV_TypeText = 17
kV_TypePicture = 19
kV_TypeObjectPtr = 15

Constants for parameter Flags in the constructors of the fields
kV_Indexed = 1
kV_Unique = 2
kV_Nullable = 4
kV_IsMethod = 16

Constants for DeletionControl of field ObjectPtr
kV_SetNull = 0
kV_Cascade = 1
kV_Restrict = 2

Appendix A

Appendix A

	Global Methods
	The Class Hierarchy
	Class VDataBase
	Class description
	Properties description
	Methods description
	Database structure methods
	BaseObject methods
	SQL Methods

	Class VBaseObject
	Class description
	Record Methods
	Navigation Methods
	Field Methods
	Database structure methods

	Class VField
	Class Description
	Properties Description
	Methods description

	Numeric Fields
	Class VBoolean
	Class VByte
	Class VShort
	Class VUShort
	Class VLong
	Class VULong
	Class VFloat
	Class VDouble
	Class VDate
	Class VTime
	Class VDateTime
	Class VString
	Class VVarChar
	Class Description
	Properties Description
	Methods Description

	Class VBLOB
	Class Description
	Properties Description
	Methods Description
	Adding and updating of records with BLOB

	Class VText
	Class Description
	Adding and updating of records with a Text field

	class VPicture
	Class Description
	Methods Description

	Class VObjectPtr
	Class VCursor
	Class description
	Creation of cursor
	Properties description
	Field Methods
	Type casting Methods
	Navigation Methods
	Import/Export

	Appendix A: Valentina Utilities module

