XLISP: An Object-oriented Lisp
Version 2.0
February 6, 1988
by
David Michael Betz
P.O. Box 144
Peterborough, NH 03458
(603) 924-4145 (home)
Copyright (c) 1988, by David Michael Betz

All Rights Reserved
Permission is granted for unrestricted non-commercial use

Additions to the manual in italics, by Tom Almy October 26, 1990.

This distributed version has the added functions of XLISP 2.1 incorporated, as well as other
enhancements, all of which can be eliminated via compilation options.

Table of Contents

INTRODUCTION . ..o e e e e e 1
ANOTE FROM THE AUTHOR e 2
XLISP COMMAND LOOP e 3
BREAK COMMAND LOOP e 4
DAT A TYPE S . o 5
THE EVALUATOR e 7
HOOK FUNCTIONS e e e 8
LEXICAL CONVENTIONS e 9
READTABLES . .. 11
LAMBDA LIST S . .. 13
OBJECT S . .. 15
SYMBOLS . . . 19
EVALUATION FUNCTIONS e 20
SYMBOL FUNCTIONS e 22
PROPERTY LIST FUNCTIONS i 25
ARRAY FUNCTIONS . .. e e e e 26
SEQUENCE FUNCTIONS e e 27
LIST FUNCTIONS . . . o e e e e 31
DESTRUCTIVE LIST FUNCTIONS e 35
ARITHMETIC FUNCTIONS e e e 36
BITWISE LOGICAL FUNCTIONS e e 39
STRING FUNCTIONS . .. e e e e 40
CHARACTER FUNCTIONS e 42

STRUCTURE FUNCTIONS e e 44

XLISP 2.0 Table of Contents

OBJECT FUNCTIONS e 46
PREDICATE FUNCTIONS e 48
CONTROL CONSTRUCTS e e 51
LOOPING CONSTRUCTS e e 54
THE PROGRAM FEATURE e 55
INPUT/OUTPUT FUNCTIONS e 57
THE FORMAT FUNCTION e e 59
FILE VO FUNCTIONS e e 60
STRING STREAM FUNCTIONS e 62
DEBUGGING AND ERROR HANDLING FUNCTIONS 63
SYSTEM FUNCTIONS e 65
ADDITIONAL FUNCTIONS AND UTILITIES 68
EXAMPLES: FILE I/O FUNCTIONS 72

XLISP 2.0 INTRODUCTION Page 1

INTRODUCTION

XLISP is an experimental programming language combining some of the features of Common
Lisp with an object-oriented extension capability. It was implemented to allow
experimentation with object-oriented programming on small computers.

There are currently implementations of XLISP running on the IBM-PC and clones under MS-
DOS, on the Macintosh, the Atari-ST and the Amiga. It is completely written in the
programming language ’C’ and is easily extended with user written built-in functions and
classes. It is available in source form to non-commercial users.

Many Common Lisp functions are built into XLISP. In addition, XLISP defines the objects
’Object’ and ’Class’ as primitives. ’Object’ is the only class that has no superclass and hence
is the root of the class heirarchy tree. ’Class’ is the class of which all classes are instances (it
is the only object that is an instance of itself).

This document is a brief description of XLISP. It assumes some knowledge of LISP and some
understanding of the concepts of object-oriented programming.

I recommend the book "LISP" by Winston and Horn and published by Addison Wesley for
learning Lisp. The first edition of this book is based on MacLisp and the second edition is
based on Common Lisp. XLISP will continue to migrate towards compatibility with Common
Lisp.

You will probably also need a copy of "Common Lisp: The Language" by Guy L. Steele, Jr.,
published by Digital Press to use as a reference for some of the Common Lisp functions that
are described only briefly in this document.

XLISP 2.0 A NOTE FROM THE AUTHOR Page 2

A NOTE FROM THE AUTHOR

If you have any problems with XLISP, feel free to contact me for help or advice. Please
remember that since XLISP is available in source form in a high level language, many users
have been making versions available on a variety of machines. If you call to report a problem
with a specific version, I may not be able to help you if that version runs on a machine to
which I don’t have access. Please have the version number of the version that you are
running readily accessible before calling me.

If you find a bug in XLISP, first try to fix the bug yourself using the source code provided.
If you are successful in fixing the bug, send the bug report along with the fix to me. If you
don’t have access to a C compiler or are unable to fix a bug, please send the bug report to me
and I'll try to fix it.

Any suggestions for improvements will be welcomed. Feel free to extend the language in
whatever way suits your needs. However, PLEASE DO NOT RELEASE ENHANCED
VERSIONS WITHOUT CHECKING WITH ME FIRST!! I would like to be the clearing house
for new features added to XLISP. If you want to add features for your own personal use, go
ahead. But, if you want to distribute your enhanced version, contact me first. Please
remember that the goal of XLISP is to provide a language to learn and experiment with LISP
and object-oriented programming on small computers. I don’t want it to get so big that it
requires megabytes of memory to run.

XLISP 2.0 XLISP COMMAND LOOP Page 3

XLISP COMMAND LOOP

When XLISP is started, it first tries to load the workspace "xlisp.wks" from the current

directory. If that file doesn’t exist, or the "-w” flag is in the command line, XLISP builds an
initial workspace, empty except for the built-in functions and symbols.

Then, providing xlisp.wks was not loaded, XLISP attempts to load "init.lsp" from the current
directory. It then loads any files named as parameters on the command line (after appending
"lsp" to their names). If the "-v” flag is in the command line, then the files are loaded
verbosely. The option "-t filename” will open a transcript file of the name "filename”.

XLISP then issues the following prompt:

>

This indicates that XLISP is waiting for an expression to be typed.

When a complete expression has been entered, XLISP attempts to evaluate that expression.
If the expression evaluates successfully, XLISP prints the result and then returns to the
initial prompt waiting for another expression to be typed.

The following control characters can be used while XLISP is waiting for input:

Backspace delete last character

Del delete last character

tab tabs over (treated as space by XLISP reader)
ctrl-C goto top level

ctrl-G cleanup and return one level

ctrl-Z end of file (returns one level or exits program)
ctrl-P proceed (continue)

ctrl-T print information (added function by TAA)

The following control characters can be typed while XLISP is executing:

ctrl-B BREAK -- enter break loop

ctrl-S Pause until another key is struck

ctrl-C go to top level (if lucky: ctrl-B,ctrl-C is safer)
ctrl-T print information

If the global variable *dos-input* is set non-nil, DOS is used to read entire input lines.
Operation this way is convenient if certain DOS utilities, such as CED, are used, or if XLISP
is run under an editor like EPSILON. In this case, normal command line editing is available,
but the control keys will not work (in particular, ctri-C will cause the program to exit!). Use
the XLISP functions top-level, clean-up, and continue instead of ctrl-C, ctrl-G, and ctri-P.

XLISP 2.0 BREAK COMMAND LOOP Page 4

BREAK COMMAND LOOP

When XLISP encounters an error while evaluating an expression, it attempts to handle the
error in the following way:

If the symbol "*breakenable*’ is true, the message corresponding to the error is printed. If the
error is correctable, the correction message is printed.

If the symbol "*tracenable® is true, a trace back is printed. The number of entries printed
depends on the value of the symbol **tracelimit®. If this symbol is set to something other
than a number, the entire trace back stack is printed.

XLISP then enters a read/eval/print loop to allow the user to examine the state of the
interpreter in the context of the error. This loop differs from the normal top-level
read/eval/print loop in that if the user invokes the function ’continue’, XLISP will continue
from a correctable error. If the user invokes the function ’clean-up’, XLISP will abort the
break loop and return to the top level or the next lower numbered break loop. When in a
break loop, XLISP prefixes the break level to the normal prompt.

If the symbol "*breakenable™ is NIL, XLISP looks for a surrounding errset function. If one
is found, XLISP examines the value of the print flag. If this flag is true, the error message
is printed. In any case, XLISP causes the errset function call to return NIL.

If there is no surrounding errset function, XLISP prints the error message and returns to the
top level.

XLISP 2.0 DATA TYPES Page 5

DATA TYPES

(Major modifications)

There are several different data types available to XLISP
programmers. Typical implementation limits are shown for 32 bit word systems. Values in
square brackets apply to 16 bit MS-DOS implementations.

All data nodes are effectively cons cells consisting of two pointers and and one or two bytes
of identification flags (9 or 10 bytes per cell). Node space is managed and garbage collected
by XLISP. Array and string storage is either allocated by the C runtime or managed and
garbaged collected by XLISP (compilation option). If C does the allocation, memory
fragmentation can occur. Fragmentation can be eliminated by saving the image and
restarting XLISP.

. lists
NIL is a special pointer.
. arrays

The CDR field of an array points to the dynamically allocated data array, while the
CAR contains the integer length of the array. Elements in the data array are pointers
to other cells [Size limited to 16383]

o character strings
Implemented like arrays, except string array is byte indexed and contains the actual
characters. Note that unlike the underlying C, the null character (value 0) is valid.
[Size limited to 32767]

. symbols
Implemented as a 4 element array. The elements are value cell, function cell, property
list, and print name (a character string node).

. integers
Small integers (> -129 and <256) are statically allocated and are thus always EQ
integers of the same value. The CAR field is used to hold the value, which is a 32 bit
signed integer.

o characters
All characters are statically allocated and are thus EQ characters of the same value.
The CAR field is used to hold the value. In XLISP characters are "unsigned" and thus
range in value from 0 to 255.

o floats
The CAR and CDR fields hold the value, which is typically a 64 bit IEEE floating
point number.

. objects
Implemented as an array of instance variable count plus one elements. The first
element is the object’s class, while the remaining arguments are the instance
variables.

XLISP 2.0 DATA TYPES Page 6

. streams (file)
The CAR and CDR fields are used in a system dependent way as a file pointer. Files
are not kept open across image saves, but the standard files are opened automatically
during image restores.

o streams (string)
Implemented as a TCONC list of characters (see page 34).
i subrs (built-in functions)

The CAR field points to the actual code to execute, while the CDR field is an internal
pointer to the name of the function.

o fsubrs (special forms)
Same implementation as subrs.
i closures (user defined functions)

Implemented as an array of 11 elements:
name symbol or NIL
lambda or ‘'macro
list of required arguments
optional arguments as list of (<arg> <init> <specified-p>) triples.
&rest argument
&key arguments as list of (<key> <arg> <init> <specified-p>) quadruples.
&aux arguments as list of (<arg> <init>) pairs.
function body
. value environment (see page 64 for format)
10. function environment
11. argument list (unprocessed)
. structures
Implemented as an array with first element being a pointer to the structure name
string, and the remaining elements being the structure elements.

© PN OUR Lo

XLISP 2.0 THE EVALUATOR Page 7

THE EVALUATOR

The process of evaluation in XLISP:

Strings, integers, characters, floats, objects, arrays, structures, streams, subrs, fsubrs and
closures evaluate to themselves.

Symbols act as variables and are evaluated by retrieving the value associated with their
current binding.

Lists are evaluated by examining the first element of the list and then taking one of the
following actions:

If it is a symbol, the functional binding of the symbol is retrieved.

If it is a lambda expression, a closure is constructed for the function described by the
lambda expression.

If it is a subr, fsubr or closure, it stands for itself.
Any other value is an error.
Then, the value produced by the previous step is examined:

If it is a subr or closure, the remaining list elements are evaluated and the subr or
closure is applied to these evaluated expressions.

If it is an fsubr, the fsubr is called with the remaining list elements as arguments
(unevaluated).

If it is a macro, the macro is expanded with the remaining list elements as arguments
(unevaluated). The macro expansion is then evaluated in place of the original macro
call.

XLISP 2.0 HOOK FUNCTIONS Page 8

HOOK FUNCTIONS

(New section)

The evalhook and applyhook facility are useful for implementing debugging programs or just
observing the operation of XLISP. It is possible to control evaluation of forms in any context.

If the symbol *evalhook™® is bound to a function closure, then every call of eval will call this
function. The function takes two arguements, the form to be evaluated and execution
environment. During the execution of this function, *evalhook* (and *applyhook*) are
dynamically bound to NIL to prevent undesirable recursion. This "hook" function returns the
result of the evaluation.

If the symbol *applyhook® is bound to a function, then every function application within an
eval will call this function (note that the function apply, and others which do not use eval,
will not invoke the apply hook function). The function takes two arguments, the function
closure and the argument list (which is already evaluated). During execution of this hook
function, *applyhook* (and *evalhook*) are dynamically bound to NIL to prevent undesired
recursion. This function is to return the result of the function application.

Note that the hook functions cannot reset *evalhook™ or *applyhook* to NIL, because upon
exit these values will be reset. An excape mechanism is provided -- execution of *top-level’,
or any error that causes return to the top level, will unhook the functions. Applications
should bind these values either via progv’, ’evalhook’, or ’applyhook’.

The functions ’evalhook’ and ’applyhook’ allowed for controlled application of the hook
functions. The form supplied as an argument to ’evalhook’, or the function application given
to ’applyhook’, are not hooked themselves, but any subsidiary forms and applications are. In
addition, by supplying NIL values for the hook functions, ’evalhook’ can be used to execute
a form within a specific environment passed as an argument.

XLISP 2.0 LEXICAL CONVENTIONS Page 9

LEXICAL CONVENTIONS

(Major expansion of original document)
The following conventions must be followed when entering XLISP programs:

Comments in XLISP code begin with a semi-colon character and continue to the end of the
line.

Except when escape sequences are used, symbol names in XLISP can consist of any sequence
of non-blank printable characters except the terminating macro characters:

() b , " ;
and the escape characters:
\

In addition, the first character may not be ’#’ (non-terminating macro character), nor may the
symbol have identical syntax with an integer or floating point literal. Uppercase and
lowercase characters are not distinguished within symbol names. All lowercase characters
are mapped to uppercase on input.

Any printing character, including whitespace, may be part of a symbol name when escape
characters are used. The backslash escapes the following character, while multiple characters
can be escaped by placing them between vertical bars. At all times the backslash must be
used to escape either escape characters.

For semantic reasons, certain chararacter sequences should/can never be used as symbols in
XLISP. A single period is used to denote dotted lists. The symbol NIL represents an empty
list. Symbols starting with a colon are keywords, and will always evaluate to themselves.
Thus they should not be used as regular symbols. The symbol T is also reserved for use as
the truth value.

Integer literals consist of a sequence of digits optionally beginning with a sign (+ or ’-’). The
range of values an integer can represent is limited by the size of a C ’long’ on the machine
on which XLISP is running.

Floating point literals consist of a sequence of digits optionally beginning with a sign (+ or
’-’) and including one or both of an embedded decimal point or a trailing exponent. The
optional exponent is denoted by an 'E’ followed by an optional sign and one or more digits.
The range of values a floating point number can represent is limited by the size of a C float’
(double’ on machines with 32 bit addresses) on the machine on which XLISP is running.

XLISP 2.0 LEXICAL CONVENTIONS Page 10

Integer and floating point literals cannot have embedded escape characters. If they do, they
are treated as symbols. Thus ’12\3’ is a symbol even though it would appear to be identical
to ’123’.

Character literals are handled via the #\ read-macro construct:

#\<char> == the ASCII code of the printing character
#\newline == ASCII linefeed character

#\space == ASCII space character

#\rubout == ASCII rubout (DEL)

#\C-<char> == ASCII control character

#\M-<char> == ASCII character with msb set (Meta character)
#\M-C-<char> == ASCII control character with msb set

Literal strings are sequences of characters surrounded by double quotes (the " read-macro).
Within quoted strings the ’\’ character is used to allow non-printable characters to be
included. The codes

recognized are:

\\ means the character ’\’
\n means newline

\t means tab

\r means return

\f means form feed

\nnn means the character whose octal code is nnn

XLISP 2.0 READTABLES Page 11

READTABLES

(Major modifications)

The behaviour of the reader is controlled by a data structure called a "readtable". The reader
uses the symbol *readtable* to locate the current readtable. This table controls the
interpretation of input characters -- if it is changed then the section LEXICAL
CONVENTIONS may not apply. The readtable is an array with 256 entries, one for each of
the extended ASCII character codes. Each entry contains one of the following values, with
the initial entries assigned to the values indicated:

:white-space A whitespace character - tab, cr, If, ff, space

(:tmacro . fun) terminating readmacro - ()", ;¢

(:nmacro . fun) non-terminating readmacro - #

:sescape Single escape character - \

‘mescape Multiple escape character - |

:constituent Indicating a symbol constituent (all printing characters
not listed above)

nil Indicating an invalid character (everything else)

In the case of :TMACRO and :NMACRO, the "fun" component is a function. This can either
be a built-in readmacro function or a lambda expression. The function takes two parameters.
The first is the input stream and the second is the character that caused the invocation of
the readmacro. The readmacro function should return NIL to indicate that the character
should be treated as white space or a value consed with NIL to indicate that the readmacro
should be treated as an occurance of the specified value. Of course, the readmacro code is free
to read additional characters from the input stream. A :nmacro is a symbol constituent except
as the first character of a symbol.

As an example, the following read macro allows the square brackets to be used as a more
visibly appealing alternative to the SEND function:

(setf (aref *readtable* (char-int #\[)) ; #\[table entry
(cons :tmacro
(lambda (f ¢ &aux ex) ; second arg is not used

(do ()
((eq (peek-char t f£) #\]))
(setf ex (append ex (list (read £)))))

(read-char f) ; toss the trailing #\]

(cons (cons ’'send ex) nil))))

(setf (aref *readtable* (char-int #\1))
(cons :tmacro
(lambda (f c)
(error "misplaced right bracket™))))

XLISP 2.0 READTABLES Page 12

XLISP defines several useful read macros:

<expr> == (quote <expr>)

‘<expr> == (backquote <expr>)

,<expr> == (comma <expr>)

,@<expr> == (comma-at <expr>)

#<expr> == (function <expr>)

#(<expr>...) == an array of the specified expressions

#S(<structtype> [<slotname> <value>]...)
== structure of specified type and initial values

#.<expr> == result of evaluating <expr>
#x<hdigits> == a hexadecimal number (0-9,A-F)
#o<odigits> == an octal number (0-7)
#b<bdigits> == a binary number (0-1)

#| |# == a comment

#:<symbol> == an uninterned symbol

XLISP 2.0 LAMBDA LISTS Page 13

LAMBDA LISTS

There are several forms in XLISP that require that a "lambda list" be specified. A lambda list
is a definition of the arguments accepted by a function. There are four different types of
arguments.

The lambda list starts with required arguments. Required arguments must be specified in
every call to the function.

The required arguments are followed by the &optional arguments. Optional arguments may
be provided or omitted in a call. An initialization expression may be specified to provide a
default value for an &optional argument if it is omitted from a call. If no initialization
expression is specified, an omitted argument is initialized to NIL. It is also possible to provide
the name of a ’supplied-p’ variable that can be used to determine if a call provided a value
for the argument or if the initialization expression was used. If specified, the supplied-p
variable will be bound to T if a value was specified in the call and NIL if the default value
was used.

The &optional arguments are followed by the &rest argument. The &rest argument gets
bound to the remainder of the argument list after the required and &optional arguments
have been removed.

The &rest argument is followed by the &key arguments. When a keyword argument is passed
to a function, a pair of values appears in the argument list. The first expression in the pair
should evaluate to a keyword symbol (a symbol that begins with a ’.’). The value of the second
expression is the value of the keyword argument. Like &optional arguments, &key arguments
can have initialization expressions and supplied-p variables. In addition, it is possible to
specify the keyword to be used in a function call. If no keyword is specified, the keyword
obtained by adding a ’’ to the beginning of the keyword argument symbol is used. In other
words, if the keyword argument symbol is foo’, the keyword will be ’:foo’. The &allow-other-
keys marker is ignored.

The &key arguments are followed by the &aux variables. These are local variables that are
bound during the evaluation of the function body. It is possible to have initialization
expressions for the &aux variables.

XLISP 2.0

LAMBDA LISTS

Here is the complete syntax for lambda lists:

(<rarg>...

[&optional [<oarg> | (<oarg> [<init> [<svar>]])]...]
[&rest <rarg>]

[&key

[<karg> | ([<karg> | (<key> <karg>)] [<init> [<svar>]])]
[&aux [<aux> | (<aux> [<init>])]...])

where:

<rarg>
<oarg>
<rarg>
<karg>
<key>
<aux>
<init>
<svar>

is a required argument symbol

is an &optional argument symbol
is the &rest argument symbol

is a &key argument symbol

is a keyword symbol

is an auxiliary variable symbol

is an initialization expression

is a supplied-p variable symbol

Page 14

... &allow-other-keys]

XLISP 2.0 OBJECTS Page 15

OBJECTS

Definitions:

. selector - a symbol used to select an appropriate method
message - a selector and a list of actual arguments

o method - the code that implements a message

Since XLISP was created to provide a simple basis for experimenting with object-oriented
programming, one of the primitive data types included is object’. In XLISP, an object consists
of a data structure containing a pointer to the object’s class as well as an array containing
the values of the object’s instance variables.

Officially, there is no way to see inside an object (look at the values of its instance variables).
The only way to communicate with an object is by sending it a message.

You can send a message to an object using the ’send’ function. This function takes the object
as its first argument, the message selector as its second argument (which must be a symbol)
and the message arguments as its remaining arguments.

The ’send’ function determines the class of the receiving object and attempts to find a method
corresponding to the message selector in the set of messages defined for that class. If the
message is not found in the object’s class and the class has a super-class, the search
continues by looking at the messages defined for the super-class. This process continues from
one super-class to the next until a method for the message is found. If no method is found,
an error occurs.

To perform a method lookup starting with the object’s superclass rather than its class, use the
function ’send-super’. This allows a subclass to invoke a standard method in its parent class
even though it overrides that method with its own specialized version.

When a method is found, the evaluator binds the receiving object to the symbol ’self’ and
evaluates the method using the remaining elements of the original list as arguments to the
method. These arguments are always evaluated prior to being bound to their corresponding
formal arguments. The result of evaluating the method becomes the result of the expression.

Two objects, both classes, are predefined: Object and Class. Both Object and Class are of class
Class. The superclass of Class is Object, while Object has no superclass. Typical use is to
create new classes (by sending :new to Class) to represent application objects. Objects of these
classes, created by sending :new to the appropriate new class, are subclasses of Object. The
Object method :show can be used to view the contents of any object.

XLISP 2.0 OBJECTS Page 16

THE ’Object’ CLASS

Object THE TOP OF THE CLASS HEIRARCHY

Messages:

:show SHOW AN OBJECT’S INSTANCE VARIABLES
returns the object

:class RETURN THE CLASS OF AN OBJECT
returns the class of the object

:prinl [<stream>] PRINT THE OBJECT
returns the object

:isnew THE DEFAULT OBJECT INITIALIZATION ROUTINE
returns the object

:superclass GET THE SUPERCLASS OF THE OBJECT
returns NIL
(Defined in classes.lsp, see :superclass below)

:ismemberof <class> CLASS MEMBERSHIP
<class> class name
returns T if object member of class, else NIL
(defined in classes.lsp)

:iskindof <class> CLASS MEMBERSHIP
<class> class name
returns T if object member of class of subclass of class, else NIL
(defined in classes.lsp)

:respondsto <sel> SELECTOR KNOWLEDGE
<sel> message selector
returns T if object responds to message selector, else NIL.
(defined in classes.lsp)

:storeon READ REPRESENTATION

returns a list, that when executed will create a copy of the object.
Only works for members of classes created with defclass.
(defined in classes.lsp)

XLISP 2.0

THE ’Class’ CLASS

OBJECTS Page 17

Class THE CLASS OF ALL OBJECT CLASSES (including itself)

Messages:

‘new CREATE A NEW INSTANCE OF A CLASS
returns the new class object

:isnew <ivars> [<cvars> [<super>]] INITIALIZE A NEW CLASS
<ivars> the list of instance variable symbol
<cvars> the list of class variable symbols
<super> the superclass (default is Object)
returns the new class object

:answer <msg> <fargs> <code> ADD A MESSAGE TO A CLASS
<msg> the message symbol
<fargs> the formal argument list (lambda list)
<code> a list of executable expressions
returns the object

:superclass GET THE SUPERCLASS OF THE OBJECT
returns the superclass (of the class)
(defined in classes.lsp)

:messages GET THE LIST OF MESSAGES OF THE CLASS
returns association list of message selectors and closures for

messages.

(defined in classes.lsp)

:storeon READ REPRESENTATION
returns a list, that when executed will re-create the class and its

methods.
(defined in classes.lsp)

When a new instance of a class is created by sending the message :new’ to an existing class,
the message ":isnew’ followed by whatever parameters were passed to the :new’ message is
sent to the newly created object. Therefore, when a new class is created by sending :new’ to
class Class’ the message “:isnew’ is sent to Class automatically. To create a new class, a
function of the following format is used.:

(setq <newclassname> (send Class :new <ivars> [<cvars> [<super>]])

When a new class is created, an optional parameter may be specified indicating the
superclass of the new class. If this parameter is omitted, the new class will be a subclass of
’Object’. A class inherits all instance variables, class variables, and methods from its super-

class.

XLISP 2.0 OBJECTS Page 18

INSTANCE VARIABLES OF CLASS 'CLASS’:

MESSAGES - An association list of message names and closures implementing the
messages.

IVARS - List of names of instance variables.
CVARS - List of names of class variables.
CVAL - List of class variable values.

SUPERCLASS - The superclass of this class or NIL if no superclass (only for class
OBJECT).

IVARCNT - instance variables in this class (length of IVARS)
IVARTOTAL - total instance variables for this class and all superclasses of this class.

PNAME - printname string for this class.

XLISP 2.0 SYMBOLS Page 19

SYMBOLS

nil - the empty list

t - truth value

self - the current object (within a method context)

object - the class ’Object’

class - the class ’Class’

obarray - the object hash table

standard-input - the standard input stream, stdin
standard-output - the standard output stream, stdout
error-output® - the error output stream, stderr
*trace-output® - the trace output stream, defaults to stderr
debug-io - the break loop i/o stream, defaults to stderr
breakenable - flag controlling entering break loop on errors
*tracelist® - list of names of functions to trace

tracenable - enable trace back printout on errors
tracelimit - number of levels of trace back information
*evalhook™® - user substitute for the evaluator function
*applyhook™ - user substitute for function application
*readtable™ - the current readtable

unbound - indicator for unbound symbols

gc-flag - controls the printing of gc messages

*gc-hook™ - function to call after garbage collection
integer-format - format for printing integers ("%d" or "%l1d")
float-format - format for printing floats ("%g")

print-case - symbol output case (:upcase or :downcase)
print-level - list levels beyond this setting are printed as #’
print-length - lists longer than this setting are printed as ...
dos-input - use dos line input function for read.

b

There are several symbols maintained by the read/eval/print loop. The symbols '+, ’++’, and
‘+++” are bound to the most recent three input expressions. The symbols **, *** and **** are
bound to the most recent three results. The symbol -’ is bound to the expression currently
being evaluated. It becomes the value of '+ at the end of the evaluation.

Intended to be added:
o *print-base* - radix used in printing integers.

XLISP 2.0 EVALUATION FUNCTIONS Page 20

EVALUATION FUNCTIONS

(eval <expr>) EVALUATE AN XLISP EXPRESSION
<expr> the expression to be evaluated
returns the result of evaluating the expression

(apply <fun> <args>) APPLY A FUNCTION TO A LIST OF ARGUMENTS
<fun> the function to apply (or function symbol). May not be macro or fsubr.
<args> the argument list (unlike Common Lisp, only one allowed)
returns the result of applying the function to the arguments

(funcall <fun> <arg>...) CALL A FUNCTION WITH ARGUMENTS
<fun> the function to call (or function symbol). May not be macro or fsubr.
<arg> arguments to pass to the function
returns the result of calling the function with the arguments

(quote <expr>) RETURN AN EXPRESSION UNEVALUATED
fsubr
<expr> the expression to be quoted (quoted)
returns <expr> unevaluated

(function <expr>) GET THE FUNCTIONAL INTERPRETATION
fsubr
<expr> the symbol or lambda expression (quoted)
returns the functional interpretation

(backquote <expr>) FILL IN A TEMPLATE
fsubr
<expr> the template (quoted)
returns a copy of the template with comma and comma-at expressions

expanded.
(comma <expr>) COMMA EXPRESSION

(Never executed) As the object of a backquote expansion, the expression is evaluated and
becomes an object in the enclosing list.

(comma-at <expr>) COMMA-AT EXPRESSION
(Never executed) As the object of a backquote expansion, the expression is evaluated
(and must evaluate to a list) and is then spliced into the enclosing list.

(lambda <args> <expr>...) MAKE A FUNCTION CLOSURE
fsubr
<args> formal argument list (lambda list) (quoted)
<expr> expressions of the function body (quoted)

returns the function closure

XLISP 2.0 EVALUATION FUNCTIONS Page 21

(get-lambda-expression <closure>) GET THE LAMBDA EXPRESSION
<closure> the closure
returns the original lambda expression

(macroexpand <form>) RECURSIVELY EXPAND MACRO CALLS
<form> the form to expand
returns the macro expansion

(macroexpand-1 <form>) EXPAND A MACRO CALL
<form> the macro call form

returns the macro expansion

XLISP 2.0 SYMBOL FUNCTIONS Page 22

SYMBOL FUNCTIONS

(set <sym> <expr>) SET THE GLOBAL VALUE OF A SYMBOL
<sym> the symbol being set
<expr> the new value
returns the new value
(setq [<sym> <expr>]...) SET THE VALUE OF A SYMBOL
fsubr
<sym> the symbol being set (quoted)
<expr> the new value
returns the new value
(psetq [<sym> <expr>]...) PARALLEL VERSION OF SETQ
fsubr. All expressions are evaluated before any assignments are made.
<sym> the symbol being set (quoted)
<expr> the new value
returns the new value
(setf [<place> <expr>]...) SET THE VALUE OF A FIELD
fsubr
<place> the field specifier (quoted):
<sym> set value of a symbol
(car <expr>) set car of a cons node
(cdr <expr>) set cdr of a cons node
(nth <n> <expr>) set nth car of a list
(aref <expr> <n>) set nth element of an array or string
(elt <expr> <n>) set nth element of a sequence
(get <sym> <prop>) set value of a property
(symbol-value <sym>) set value of a symbol
(symbol-function <sym>) functional value of a symbol
(symbol-plist <sym>) set property list of a symbol
(send <obj> :<ivar>) (When classes.lsp used), set instance
variable of object.
(<sym>-<element> <struct>) (When struct.lsp used), set

the element of structure
struct, type sym.

(<fieldsym> <args>) the function stored in property *setf* in
symbol <fieldsym> is applied to (<args>
<expr>)

<value> the new value

returns the new value

XLISP 2.0 SYMBOL FUNCTIONS Page 23

(push <expr> <place>) CONS TO SYMBOL VALUE
<place> field specifier being modified (see setf)
<expr> value to cons to current symbol value
returns the new value which is (CONS <expr> <place>)

Note: defined as macro in common.lsp

(pop <place>) REMOVE FIRST ELEMENT OF SYMBOL VALUE
<place> the field being modified (see setf)
returns (CAR <place>), field changed to (CDR <place>)
Note: defined as macro in common.lsp

(defun <sym> <fargs> <expr>...) DEFINE A FUNCTION

(defmacro <sym> <fargs> <expr>...) DEFINE A MACRO
fsubr
<sym> symbol being defined (quoted)
<fargs> formal argument list (lambda list) (quoted)
<expr> expressions constituting the body of the function (quoted)
returns the function symbol

(gensym [<tag>]) GENERATE A SYMBOL
<tag> string or number
returns the new symbol

(intern <pname>) MAKE AN INTERNED SYMBOL
<pname> the symbol’s print name string
returns the new symbol

(make-symbol <pname>) MAKE AN UNINTERNED SYMBOL
<pname> the symbol’s print name string
returns the new symbol

(symbol-name <sym>) GET THE PRINT NAME OF A SYMBOL
<sym> the symbol
returns the symbol’s print name

(symbol-value <sym>) GET THE VALUE OF A SYMBOL
<sym> the symbol
returns the symbol’s value

(symbol-function <sym>) GET THE FUNCTIONAL VALUE OF A SYMBOL
<sym> the symbol
returns the symbol’s functional value

(symbol-plist <sym>) GET THE PROPERTY LIST OF A SYMBOL
<sym> the symbol

returns the symbol’s property list

XLISP 2.0 SYMBOL FUNCTIONS Page 24

(hash <sym> <n>) COMPUTE THE HASH INDEX FOR A SYMBOL
<sym> the symbol or string
<n> the table size (integer)
returns the hash index (integer)

(makunbound <sym>) MAKE A SYMBOL VALUE BE UNBOUND
<sym> the symbol
returns the symbol

Note: defined in init.lsp

(fmakunbound <sym>) MAKE A SYMBOL FUNCTION BE UNBOUND
<sym> the symbol
returns the symbol

Note: defined in init.lsp

XLISP 2.0

PROPERTY LIST FUNCTIONS

(get <sym> <prop>)

PROPERTY LIST FUNCTIONS

Page 25

GET THE VALUE OF A PROPERTY

<sym> the symbol
<prop> the property symbol
returns the property value or nil

(putprop <sym> <val> <prop>)

<sym> the symbol

<val> the property value
<prop> the property symbol
returns the property value

(remprop <sym> <prop>)
<sym> the symbol
<prop> the property symbol
returns nil

PUT A PROPERTY ONTO A PROPERTY LIST

REMOVE A PROPERTY

XLISP 2.0 ARRAY FUNCTIONS Page 26

ARRAY FUNCTIONS

(aref <array> <n>) GET THE NTH ELEMENT OF AN ARRAY
This function now also works on strings.
<array> the array
<n> the array index (integer)
returns the value of the array element

(make-array <size>) MAKE A NEW ARRAY
<size> the size of the new array (integer)
returns the new array

(vector <expr>...) MAKE AN INITIALIZED VECTOR
<expr> the vector elements

returns the new vector

XLISP 2.0 SEQUENCE FUNCTIONS Page 27

SEQUENCE FUNCTIONS

These functions work on sequences -- lists, arrays, or strings, and for the most part represent
an extension of the distribution XLISP 2.0.

(concatenate <type> <expr> ...) CONCATENATE SEQUENCES
<type> result type, one of cons, array, or string
<expr> Zero or more sequences to concatenate
returns a sequence which is the concatenation of the arguement sequences

NOTE: if result type is string, sequences must contain only characters.

(elt <expr> <n>) GET THE NTH ELEMENT OF A SEQUENCE
<expr> the sequence
<n> the index of element to return
returns the element if the index is in bounds, otherwise error
(map <type> <fen> <expr> ...) APPLY FUNCTION TO SUCCESSIVE ELEMENTS
<type> result type, one of cons, array, string, or nil
<fen> the function or function name
<expr> a sequence for each argument of the function
returns a new sequence of type <type>.
(every <fen> <expr> ...) APPLY FUNCTION TO ELEMENTS UNTIL FALSE
(notevery <fecn> <expr> ...)
<fen> the function or function name
<expr> a sequence for each argument of the function
returns every returns last evaluated function result, or T

notevery returns T if there is a nil function result, else NIL

(some <fen> <expr> ...) APPLY FUNCTION TO ELEMENTS UNTIL TRUE
(notany <fen> <expr> ...)
<fen> the function or function name
<expr> a sequence for each argument of the function
returns some returns first non-nil function result, or NIL
notany returns NIL if there is a non-nil function result, else T

(length <expr>) FIND THE LENGTH OF A SEQUENCE
Unchanged from the distribution
<expr> the list, vector or string

returns the length of the list, vector or string

XLISP 2.0 SEQUENCE FUNCTIONS Page 28

(reverse <expr>) REVERSE A SEQUENCE
(nreverse <expr>) DESTRUCTIVELY REVERSE A SEQUENCE
Distribution only worked on lists.
<expr> the sequence to reverse
returns a new sequence in the reverse order
(subseq <seq> <start> [<end>]) EXTRACT A SUBSEQUENCE
Distribution only worked on strings.
<seq> the sequence
<start> the starting position (zero origin)
<end> the ending position + 1 (defaults to end) or NIL for end of sequence
returns the sequence between <start> and <end>

(search <seql> <seq2> &key :test :test-not :startl :endl :start2 :end2)

SEARCH FOR SEQUENCE
Note: added function

<seql> the sequence to search for

<seq2> the sequence to search in

‘test the test function (defaults to eql)

‘test-not the test function (sense inverted)

:startl starting index in <seql>

:end1 index of end+1 in <seql> or NIL for end of sequence
:start2 starting index in <seq2>

:end2 index of end+1 in <seq2> or NIL for end of sequence
returns position of first match

(remove <expr> <seq> &Kkey :test :test-not :start :end)

REMOVE ELEMENTS FROM A SEQUENCE
Distribution only worked on lists.

<expr> the element to remove

<seq> the sequence

‘test the test function (defaults to eql)

‘test-not the test function (sense inverted)

:start starting index

:end index of end+1, or NIL for (length <seq>)

returns copy of sequence with matching expressions removed

(remove-if <test> <seq> &key :start :end)

REMOVE ELEMENTS THAT PASS TEST
Distribution only worked on lists.

<test> the test predicate

<seq> the sequence

:start starting index

:end index of end+1, or NIL for (length <seq>)

returns copy of sequence with matching elements removed

XLISP 2.0 SEQUENCE FUNCTIONS Page 29

(remove-if-not <test> <seq> &key :start :end)
REMOVE ELEMENTS THAT FAIL TEST
Distribution only worked on lists.

<test> the test predicate

<seq> the sequence

:start starting index

:end index of end+1, or NIL for (length <seq>)

returns copy of sequence with non-matching elements removed
(count-if <test> <seq> &key :start :end) COUNT ELEMENTS THAT PASS TEST

Note: added function

<test> the test predicate

<seq> the sequence

:start starting index

:end index of end+1, or NIL for (length <seq>)

returns count of matching elements

(find-if <test> <seq> &key :start :end)
FIND FIRST ELEMENT THAT PASSES TEST
Note: added function

<test> the test predicate

<seq> the list

:start starting index

:end index of end+1, or NIL for (length <seq>)
returns first element of sequence that passes test

(position-if <test> <seq> &key :start :end)
FIND POSITION OF FIRST ELEMENT THAT PASSES TEST
Note: added function

<test> the test predicate

<seq> the list

:start starting index

:end index of end+1, or NIL for (length <seq>)

returns position of first element of sequence that passes test, or NIL.

(delete <expr> <seq> &key :test :test-not :start :end)
DELETE ELEMENTS FROM A SEQUENCE
Distribution only worked on lists.

<expr> the element to delete

<seq> the sequence

‘test the test function (defaults to eql)
‘test-not the test function (sense inverted)

:start starting index

:end index of end+1, or NIL for (length <expr>)

returns the sequence with the matching expressions deleted

XLISP 2.0 SEQUENCE FUNCTIONS Page 30

(delete-if <test> <seq> &key :start :end)
DELETE ELEMENTS THAT PASS TEST
Distribution only worked on lists.

<test> the test predicate

<seq> the sequence

:start starting index

:end index of end+1, or NIL for (length <expr>)
returns the sequence with matching elements deleted

(delete-if-not <test> <seq> &key :start :end)

DELETE ELEMENTS THAT FAIL TEST
Distribution only worked on lists.

<test> the test predicate

<seq> the sequence

:start starting index

rend index of end+1, or NIL for (length <expr>)

returns the sequence with non-matching elements deleted

XLISP 2.0

LIST FUNCTIONS Page 31

LIST FUNCTIONS

(car <expr>)
<expr>
returns

(cdr <expr>)
<expr>
returns

(cxxr <expr>)
(cxxxr <expr>)
(cxxxXXT <expr>)

(first <expr>)
(second <expr>)
(third <expr>)
(fourth <expr>)
(rest <expr>)

(cons <exprl> <expr2>)

<exprl>
<expr2>
returns

(list <expr>...)

RETURN THE CAR OF A LIST NODE
the list node
the car of the list node

RETURN THE CDR OF A LIST NODE
the list node
the cdr of the list node

ALL CxxR COMBINATIONS
ALL CxxxR COMBINATIONS
ALL CxxxxR COMBINATIONS

A SYNONYM FOR CAR

A SYNONYM FOR CADR

A SYNONYM FOR CADDR
A SYNONYM FOR CADDDR
A SYNONYM FOR CDR

CONSTRUCT A NEW LIST NODE
the car of the new list node

the cdr of the new list node

the new list node

CREATE A LIST OF VALUES

(list* <expr> ... <list>)
list* is defined in common.lsp

<expr>
returns

(append <expr>...)

<expr>
returns

(last <list>)
<list>
returns

expressions to be combined into a list
the new list

APPEND LISTS
lists whose elements are to be appended
the new list

RETURN THE LAST LIST NODE OF A LIST
the list
the last list node in the list

XLISP 2.0 LIST FUNCTIONS Page 32

(member <expr> <list> &key :test :test-not)
FIND AN EXPRESSION IN A LIST

<expr> the expression to find

<list> the list to search

‘test the test function (defaults to eql)

:test-not the test function (sense inverted)

returns the remainder of the list starting with the expression

(assoc <expr> <alist> &key :test :test-not)
FIND AN EXPRESSION IN AN A-LIST

<expr> the expression to find
<alist> the association list
‘test the test function (defaults to eql)
:test-not the test function (sense inverted)
returns the alist entry or nil
(nth <n> <list>) RETURN THE NTH ELEMENT OF A LIST
<n> the number of the element to return (zero origin)
<list> the list
returns the nth element or nil if the list isn’t that long
(nthedr <n> <list>) RETURN THE NTH CDR OF A LIST
<n> the number of the element to return (zero origin)
<list> the list
returns the nth cdr or nil if the list isn’t that long
(mapc <fen> <list1> <list>...) APPLY FUNCTION TO SUCCESSIVE CARS
<fen> the function or function name
<listn> a list for each argument of the function
returns the first list of arguments
(mapcar <fen> <list1> <list>...) APPLY FUNCTION TO SUCCESSIVE CARS
<fen> the function or function name
<listn> a list for each argument of the function
returns a list of the values returned
(mapl <fen> <list1> <list>...) APPLY FUNCTION TO SUCCESSIVE CDRS
<fen> the function or function name
<listn> a list for each argument of the function
returns the first list of arguments
(maplist <fen> <list1> <list>...) APPLY FUNCTION TO SUCCESSIVE CDRS
<fen> the function or function name
<listn> a list for each argument of the function

returns a list of the values returned

XLISP 2.0 LIST FUNCTIONS Page 33

(mapcan <fcn> <list1> <list>...) APPL FUNCTION TO SUCCESSIVE CARS
<fcn> the function or function name
<listn> a list for each argument of the function
returns list of return values nconc’d together

Note: this function is in init.lsp

(mapcon <fen> <list1> <list>...) APPL FUNCTION TO SUCCESSIVE CDRS
<fcn> the function or function name
<listn> a list for each argument of the function
returns list of return values nconc’d together

Note: this function is in init.lsp

(subst <to> <from> <expr> &key :test :test-not) SUBSTITUTE EXPRESSIONS
Modified to do minimum copying as in Common Lisp
<to> the new expression
<from> the old expression
<expr> the expression in which to do the substitutions
‘test the test function (defaults to eql)
‘test-not the test function (sense inverted)
returns the expression with substitutions
(sublis <alist> <expr> &key :test :test-not) SUBSTITUTE WITH AN A-LIST
Modified to do minimum copying as in Common Lisp
<alist> the association list
<expr> the expression in which to do the substitutions
‘test the test function (defaults to eql)
‘test-not the test function (sense inverted)
returns the expression with substitutions
(pairlis <keys> <values> <alist>) BUILD AN A-LIST FROM TWO LISTS
In file common.lsp
<keys> list of association keys
<values> list of association values, same length as keys
<alist> existing association list
returns new association list
(copy-list <list>) COPY THE TOP LEVEL OF A LIST
In file common.lsp
<list> the list
returns a copy of the list (new cons cells in top level)
(copy-alist <alist>) COPY AN ASSOCIATION LIST
In file common.lsp
<alist> the association list

returns a copy of the association list (keys and values not copies)

XLISP 2.0 LIST FUNCTIONS Page 34

(copy-tree <tree>) COPY A TREE
In file common.lsp
<tree> a tree structure of cons cells
returns a copy of the tree structure

(make_tconc) MAKE A TCONC STRUCTURE

In file common.lsp. (note that string streams are internally implemented as TCONCs.
Older versions of xlisp allowed any TCONC to be used as a steam, but 2.0 implements
a special string stream type.)

returns an empty tconc structure

(tconc <tconc> <expr>) ADD TO TAIL OF TCONC STRUCTURE
(lconc <tconc> <list>)
In file common.lsp

<tconc> a tconc structure
<expr> element to add to tail
<list> list of elements to add to tail
returns modified tconc
(remove-head <tconc>) REMOVE FROM HEAD OF TCONC STRUCTURE
In file common.lsp
<tconc> a tconc structure

returns head of tconc (tconc is modified)

XLISP 2.0 DESTRUCTIVE LIST FUNCTIONS Page 35

DESTRUCTIVE LIST FUNCTIONS

See also nreverse, delete, delete-if, and delete-if-not, under SEQUENCE FUNCTIONS.

(rplaca <list> <expr>) REPLACE THE CAR OF A LIST NODE
<list> the list node
<expr> the new value for the car of the list node
returns the list node after updating the car

(rplacd <list> <expr>) REPLACE THE CDR OF A LIST NODE
<list> the list node
<expr> the new value for the cdr of the list node
returns the list node after updating the cdr

(nconc <list>...) DESTRUCTIVELY CONCATENATE LISTS
<list> lists to concatenate
returns the result of concatenating the lists

(sort <list> <test>) SORT A LIST
<list> the list to sort
<test> the comparison function

returns the sorted list

XLISP 2.0

ARITHMETIC FUNCTIONS Page 36

ARITHMETIC FUNCTIONS

Warning: integer calculations that overflow give erroneous results.
ASIN, ACOS, and ATAN are retrofitted from XLISP 2.1.

(truncate <expr>)

<expr>
returns

(float <expr>)
<expr>
returns

(+ <expr>...)
<expr>
returns

(- <expr>...)
<expr>
returns

(* <expr>...)
<expr>
returns

(/ <expr>...)
<expr>
returns

(1+ <expr>)
<expr>
returns

(1- <expr>)
<expr>
returns

(rem <expr>...)
<expr>
returns

(min <expr>...)
<expr>
returns

TRUNCATES A FLOATING POINT NUMBER TO AN INTEGER
the number
the result of truncating the number

CONVERTS AN INTEGER TO A FLOATING POINT NUMBER
the number
the result of floating the integer

ADD A LIST OF NUMBERS
the numbers
the result of the addition

SUBTRACT A LIST OF NUMBERS OR NEGATE A SINGLE NUMBER

the numbers
the result of the subtraction

MULTIPLY A LIST OF NUMBERS
the numbers
the result of the multiplication

DIVIDE A LIST OF NUMBERS OR INVERT A SINGLE NUMBER
the numbers
the result of the division

ADD ONE TO A NUMBER
the number
the number plus one

SUBTRACT ONE FROM A NUMBER
the number
the number minus one

REMAINDER OF A LIST OF NUMBERS
the numbers
the result of the remainder operation

THE SMALLEST OF A LIST OF NUMBERS
the expressions to be checked
the smallest number in the list

XLISP 2.0

(max <expr>...)
<expr>
returns

(abs <expr>)
<expr>
returns

(ged <nl1> <n2>...)

<nl>
<n2>
returns

(random <n>)
<n>
returns

(sin <expr>)
<expr>
returns

(cos <expr>)
<expr>
returns

(tan <expr>)
<expr>
returns

(asin <expr>)
<expr>
returns

(acos <expr>)
<expr>
returns

(atan <expr>)
<expr>
returns

(expt <x-expr> <y-expr>)

<x-expr>
<y-expr>
returns

ARITHMETIC FUNCTIONS Page 37

THE LARGEST OF A LIST OF NUMBERS
the expressions to be checked
the largest number in the list

THE ABSOLUTE VALUE OF A NUMBER
the number
the absolute value of the number

COMPUTE THE GREATEST COMMON DIVISOR
the first number (integer)
the second number(s) (integer)
the greatest common divisor

COMPUTE A RANDOM NUMBER BETWEEN 1 and N-1
the upper bound (integer)
a random number

COMPUTE THE SINE OF A NUMBER
the floating point number
the sine of the number

COMPUTE THE COSINE OF A NUMBER
the floating point number
the cosine of the number

COMPUTE THE TANGENT OF A NUMBER
the floating point number
the tangent of the number

COMPUTE THE ARC SINE OF A NUMBER
the floating point number
the arc sine of the number

COMPUTE THE ARC COSINE OF A NUMBER
the floating point number
the arc cosine of the number

COMPUTE THE ARC TANGENT OF A NUMBER
the floating point number
the arc tangent of the number

COMPUTE X TO THE Y POWER
the floating point number

the floating point exponent

x to the y power

XLISP 2.0

(exp <x-expr>)
<x-expr>
returns

(sqrt <expr>)
<expr>
returns

(< <nl> <n2>...)
(<= <nl1> <n2>...)
(= <nl1> <n2>..)
(/= <nl1> <n2>...)
(>= <nl1> <n2>...)
(> <nl> <n2>...)
<nl>
<n2>
returns

ARITHMETIC FUNCTIONS Page 38

COMPUTE E TO THE X POWER
the floating point number
e to the x power

COMPUTE THE SQUARE ROOT OF A NUMBER
the floating point number
the square root of the number

TEST FOR LESS THAN
TEST FOR LESS THAN OR EQUAL TO
TEST FOR EQUAL TO
TEST FOR NOT EQUAL TO
TEST FOR GREATER THAN OR EQUAL TO
TEST FOR GREATER THAN
the first number to compare
the second number to compare
the result of comparing <n1> with <n2>...

XLISP 2.0 BITWISE LOGICAL FUNCTIONS Page 39

BITWISE LOGICAL FUNCTIONS

(logand <expr>...) THE BITWISE AND OF A LIST OF NUMBERS
<expr> the numbers
returns the result of the and operation

(logior <expr>...) THE BITWISE INCLUSIVE OR OF A LIST OF NUMBERS
<expr> the numbers
returns the result of the inclusive or operation

(logxor <expr>...) THE BITWISE EXCLUSIVE OR OF A LIST OF NUMBERS
<expr> the numbers
returns the result of the exclusive or operation

(lognot <expr>) THE BITWISE NOT OF A NUMBER
<expr> the number

returns the bitwise inversion of number

XLISP 2.0 STRING FUNCTIONS Page 40

STRING FUNCTIONS

Extension beyond distribution: functions with names starting "string” will also accept a
symbol, in which case the symbol’s print name is used.

(string <expr>) MAKE A STRING FROM AN INTEGER ASCII VALUE

<expr> an integer (which is first converted into its ASCII character value),
string, character, or symbol

returns the string representation of the argument

(string-trim <bag> <str>) TRIM BOTH ENDS OF A STRING
<bag> a string containing characters to trim
<str> the string to trim
returns a trimed copy of the string

(string-left-trim <bag> <str>) TRIM THE LEFT END OF A STRING
<bag> a string containing characters to trim
<str> the string to trim
returns a trimed copy of the string

(string-right-trim <bag> <str>) TRIM THE RIGHT END OF A STRING
<bag> a string containing characters to trim
<str> the string to trim
returns a trimed copy of the string

(string-upcase <str> &key :start :end) CONVERT TO UPPERCASE
<str> the string
:start the starting offset
:end the ending offset + 1 or NIL for end of string
returns a converted copy of the string

(string-downcase <str> &key :start :end) CONVERT TO LOWERCASE
<str> the string
:start the starting offset
:end the ending offset + 1 or NIL for end of string
returns a converted copy of the string

(nstring-upcase <str> &key :start :end) CONVERT TO UPPERCASE
<str> the string
:start the starting offset
:end the ending offset + 1 or NIL for end of string

returns the converted string (not a copy)

XLISP 2.0 STRING FUNCTIONS Page 41

(nstring-downcase <str> &key :start :end) CONVERT TO LOWERCASE
<str> the string
:start the starting offset
:end the ending offset + 1 or NIL for end of string
returns the converted string (not a copy)
(strcat <expr>...) CONCATENATE STRINGS

Macro in init.lsp, to maintain compatibility with distribution.
See “concatenate”.

<expr> the strings to concatenate

returns the result of concatenating the strings

(string< <strl1> <str2> &key :startl :endl :start2 :end2)
(string<= <strl> <str2> &key :startl :end1 :start2 :end2)
(string= <str1> <str2> &key :startl :endl :start2 :end2)
(string/= <strl1> <str2> &key :startl :end1l :start2 :end2)
(string>= <strl1> <str2> &key :startl :end1 :start2 :end2)
(string> <strl1> <str2> &key :startl :endl :start2 :end2)

<strl> the first string to compare

<str2> the second string to compare

:startl first substring starting offset

:end1 first substring ending offset + 1 or NIL for end of string
:start2 second substring starting offset

:end2 second substring ending offset + 1 or NIL for end of string
returns t if predicate is true, nil otherwise

Note: case is significant with these comparison functions.

(string-lessp <strl> <str2> &key :startl :end1l :start2 :end2)
(string-not-greaterp <strl> <str2> &key :startl :end1 :start2 :end2)
(string-equalp <strl> <str2> &key :startl :endl :start2 :end2)
(string-not-equalp <strl> <str2> &key :startl :endl :start2 :end2)
(string-not-lessp <strl> <str2> &key :startl :end1 :start2 :end2)
(string-greaterp <strl> <str2> &key :startl :endl :start2 :end2)

<strl> the first string to compare

<str2> the second string to compare

:startl first substring starting offset

:end1 first substring ending offset + 1 or NIL for end of string
:start2 second substring starting offset

:end2 second substring ending offset + 1 or NIL for end of string
returns t if predicate is true, nil otherwise

Note: case is not significant with these comparison functions.

XLISP 2.0 CHARACTER FUNCTIONS Page 42

CHARACTER FUNCTIONS

(char <string> <index>) EXTRACT A CHARACTER FROM A STRING
<string> the string
<index> the string index (zero relative)
returns the ascii code of the character

(upper-case-p <chr>) IS THIS AN UPPER CASE CHARACTER?
<chr> the character
returns true if the character is upper case, nil otherwise

(lower-case-p <chr>) IS THIS A LOWER CASE CHARACTER?
<chr> the character
returns true if the character is lower case, nil otherwise

(both-case-p <chr>) IS THIS AN ALPHABETIC (EITHER CASE) CHARACTER?
<chr> the character
returns true if the character is alphabetic, nil otherwise

(digit-char-p <chr>) IS THIS A DIGIT CHARACTER?
<chr> the character
returns the digit weight if character is a digit, nil otherwise

(char-code <chr>) GET THE ASCII CODE OF A CHARACTER
<chr> the character
returns the ASCII character code (integer, parity bit stripped)

(code-char <code>) GET THE CHARACTER WITH A SPECFIED ASCII CODE
<code> the ASCII code (integer, range 0-127)
returns the character with that code or nil

(char-upcase <chr>) CONVERT A CHARACTER TO UPPER CASE
<chr> the character
returns the upper case character

(char-downcase <chr>) CONVERT A CHARACTER TO LOWER CASE
<chr> the character
returns the lower case character

(digit-char <n>) CONVERT A DIGIT WEIGHT TO A DIGIT
<n> the digit weight (integer)

returns the digit character or nil

XLISP 2.0 CHARACTER FUNCTIONS Page 43

(char-int <chr>) CONVERT A CHARACTER TO AN INTEGER
<chr> the character
returns the ASCII character code (range 0-255)

(int-char <int>) CONVERT AN INTEGER TO A CHARACTER
<int> the ASCII character code (treated modulo 256)
returns the character with that code

(char< <chrl> <chr2>...)
(char<= <chrl> <chr2>...)
(char= <chrl> <chr2>...)
(char/= <chrl> <chr2>...)
(char>= <chrl> <chr2>...)
(char> <chrl> <chr2>...)

<chrl> the first character to compare
<chr2> the second character(s) to compare
returns t if predicate is true, nil otherwise

Note: case is significant with these comparison functions.

(char-lessp <chrl> <chr2>...)
(char-not-greaterp <chrl> <chr2>...)
(char-equalp <chrl> <chr2>...)
(char-not-equalp <chrl> <chr2>...)
(char-not-lessp <chrl> <chr2>...)
(char-greaterp <chrl> <chr2>...)

<chrl> the first string to compare
<chr2> the second string(s) to compare
returns t if predicate is true, nil otherwise

Note: case is not significant with these comparison functions.

XLISP 2.0 STRUCTURE FUNCTIONS Page 44

STRUCTURE FUNCTIONS
(Added feature from XLISP 2.1)

XLISP provides a subset of the Common Lisp structure definition facility. No slot options are
allowed, but slots can have default initialization expressions.

(defstruct name <slot-desc>...)

or
(defstruct (name <option>...) <slot-desc>...)
fsubr
<name> the structure name symbol (quoted)
<option> option description (quoted)
<slot-desc> slot descriptions (quoted)
returns the structure name

The recognized options are:

(:conc-name name)
(:include name [<slot-dese>...])

Note that if :CONC-NAME appears, it should be before :INCLUDE.
Each slot description takes the form:

<name>
or
(<name> <defexpr>)

If the default initialization expression is not specified, the slot will be initialized to NIL if no
keyword argument is passed to the creation function.

DEFSTRUCT causes access functions to be created for each of the slots and also arranges
that SETF will work with those access functions. The access function names are constructed
by taking the structure name, appending a ’-’ and then appending the slot name. This can
be overridden by using the :CONC-NAME option.

DEFSTRUCT also makes a creation function called MAKE-<structname>, a copy function
called COPY-<structname> and a predicate function called <structname>-P. The creation
function takes keyword arguments for each of the slots. Structures can be created using the
#S(read macro, as well.

The property *struct-slots* is added to the symbol that names the structure. This property
consists of an association list of slot names and closures that evaluate to the initial values
(NIL if no initial value expression).

XLISP 2.0 STRUCTURE FUNCTIONS Page 45

For instance:
(defstruct foo bar (gag 2))
creates the following functions:

(foo-bar <expr>)

(setf (foo-bar <expr>) <value>)
(foo-gag <expr>)

(setf (foo-gag <expr>) <value>)
(make-foo &key :bar :gag)
(copy-foo <expr>)

(foo-p <expr>)

XLISP 2.0 OBJECT FUNCTIONS Page 46

OBJECT FUNCTIONS

This section is completely new. Note that the functions provided in classes.lsp are useful but
not necessary.

Messages defined for Object and Class are listed starting on page 16.

(send <object> <message> [<args>...]) SEND A MESSAGE
<object> the object to receive the message
<message> message sent to object
<args> arguments to method (if any)
returns the result of the method
(send-super <message> [<args>]) SEND A MESSAGE TO SUPERCLASS

valid only in method context
<message> message sent to objects superclass

<args> arguments to method (if any)
returns the result of the method

(defclass <sym> <ivars> [<cvars> [<super>]]) DEFINE A NEW CLASS
defined in class.lsp as a macro
<sym> symbol whose value is to be bound to the class object (quoted)
<ivars> list of instance variables (quoted). Instance variables specified either as

<ivar> or (<ivar> <init>) to specify non-nil default initial value.

<cvars> list of class variables (quoted)
<super> superclass, or Object if absent.

This function sends :SET-PNAME (defined in classes.lsp) to the new class to set the
class’ print name instance variable.
Methods defined for classes defined with defclass:
(send <object> :<ivar>)
Returns the specified instance variable
(send <object> :SET-IVAR <ivar> <value>)
Used to set an instance variable, typically with setf.
(send <sym> :NEW {:<ivar> <init>})
Actually definition for :ISNEW. Creates new object initializing instance
variables as specified in keyword arguments, or to their default if
keyword argument is missing. Returns the object.

(defmethod <class> <sym> <fargs> <expr> ...) DEFINE A NEW METHOD
defined in class.lsp as a macro
<class> Class which will respond to message
<sym> Message name (quoted)
<fargs> Formal argument list. Leading "self" is implied (quoted)
<expr> Expressions constituting body of method (quoted)

returns the class object.

XLISP 2.0 OBJECT FUNCTIONS Page 47

(definst <class> <sym> [<args>...]) DEFINE A NEW GLOBAL INSTANCE
defined in class.lsp as a macro
<class> Class of new object
<sym> Symbol whose value will be set to new object
<args> Arguments passed to :NEW (typically initial values for instance

variables)

XLISP 2.0

PREDICATE FUNCTIONS Page 48

PREDICATE FUNCTIONS

(atom <expr>)
<expr>
returns

(symbolp <expr>)
<expr>
returns

(numberp <expr>)
<expr>
returns

(null <expr>)
<expr>
returns

(not <expr>)
<expr>
return

(listp <expr>)
<expr>
returns

(endp <list>)
<list>
returns

(consp <expr>)
<expr>
returns

(integerp <expr>)
<expr>
returns

(floatp <expr>)
<expr>
returns

(stringp <expr>)
<expr>
returns

IS THIS AN ATOM?
the expression to check
t if the value is an atom, nil otherwise

IS THIS A SYMBOL?
the expression to check
t if the expression is a symbol, nil otherwise

IS THIS A NUMBER?
the expression to check
t if the expression is a number, nil otherwise

IS THIS AN EMPTY LIST?
the list to check
t if the list is empty, nil otherwise

IS THIS FALSE?
the expression to check
t if the value is nil, nil otherwise

IS THIS A LIST?
the expression to check
t if the value is a cons or nil, nil otherwise

IS THIS THE END OF A LIST?
the list
t if the value is nil, nil otherwise

IS THIS A NON-EMPTY LIST?
the expression to check
t if the value is a cons, nil otherwise

IS THIS AN INTEGER?
the expression to check
t if the value is an integer, nil otherwise

IS THIS A FLOAT?
the expression to check
t if the value is a float, nil otherwise

IS THIS A STRING?
the expression to check
t if the value is a string, nil otherwise

XLISP 2.0

(characterp <expr>)

<expr>
returns

(arrayp <expr>)
<expr>
returns

(streamp <expr>)
<expr>
returns

(objectp <expr>)
<expr>
returns

(classp <expr>)
<expr>
returns

(boundp <sym>)
<sym>
returns

(fboundp <sym>)
<sym>
returns

(minusp <expr>)
<expr>
returns

(zerop <expr>)
<expr>
returns

(plusp <expr>)
<expr>
returns

(evenp <expr>)
<expr>
returns

(oddp <expr>)
<expr>
returns

PREDICATE FUNCTIONS Page 49

IS THIS A CHARACTER?
the expression to check
t if the value is a character, nil otherwise

IS THIS AN ARRAY?
the expression to check
t if the value is an array, nil otherwise

IS THIS A STREAM?
the expression to check
t if the value is a stream, nil otherwise

IS THIS AN OBJECT?
the expression to check
t if the value is an object, nil otherwise

IS THIS A CLASS OBJECT?
the expression to check
t if the value is a class object, nil otherwise

IS A VALUE BOUND TO THIS SYMBOL?
the symbol
t if a value is bound to the symbol, nil otherwise

IS A FUNCTIONAL VALUE BOUND TO THIS SYMBOL?
the symbol
t if a functional value is bound to the symbol, nil otherwise

IS THIS NUMBER NEGATIVE?
the number to test
t if the number is negative, nil otherwise

IS THIS NUMBER ZERO?
the number to test
t if the number is zero, nil otherwise

IS THIS NUMBER POSITIVE?
the number to test
t if the number is positive, nil otherwise

IS THIS INTEGER EVEN?
the integer to test
t if the integer is even, nil otherwise

IS THIS INTEGER ODD?
the integer to test
t if the integer is odd, nil otherwise

XLISP 2.0 PREDICATE FUNCTIONS Page 50

(eq <exprl> <expr2>) ARE THE EXPRESSIONS IDENTICAL?
<exprl> the first expression
<expr2> the second expression
returns t if they are equal, nil otherwise

(eql <exprl> <expr2>) ARE THE EXPRESSIONS IDENTICAL?
Note: works with all numbers
<exprl> the first expression
<expr2> the second expression
returns t if they are equal, nil otherwise

(equal <exprl> <expr2>) ARE THE EXPRESSIONS EQUAL?
<exprl> the first expression
<expr2> the second expression

returns t if they are equal, nil otherwise

XLISP 2.0 CONTROL CONSTRUCTS Page 51

CONTROL CONSTRUCTS

(cond <pair>...) EVALUATE CONDITIONALLY
fsubr
<pair> pair consisting of:
(<pred> <expr>...)
where
<pred> is a predicate expression
<expr> evaluated if the predicate is not nil
returns the value of the first expression whose predicate is not nil
(and <expr>...) THE LOGICAL AND OF A LIST OF EXPRESSIONS
fsubr
<expr> the expressions to be ANDed
returns nil if any expression evaluates to nil, otherwise the value of the last

expression (evaluation of expressions stops after the first expression
that evaluates to nil)

(or <expr>...) THE LOGICAL OR OF A LIST OF EXPRESSIONS
fsubr
<expr> the expressions to be ORed
returns nil if all expressions evaluate to nil, otherwise the value of the first

non-nil expression (evaluation of expressions stops after the first
expression that does not evaluate to nil)

(if <texpr> <exprl> [<expr2>]) EVALUATE EXPRESSIONS CONDITIONALLY
fsubr
<texpr> the test expression
<exprl> the expression to be evaluated if texpr is non-nil
<expr2> the expression to be evaluated if texpr is nil
returns the value of the selected expression
(when <texpr> <expr>...) EVALUATE ONLY WHEN A CONDITION IS TRUE
fsubr
<texpr> the test expression
<expr> the expression(s) to be evaluted if texpr is non-nil
returns the value of the last expression or nil
(unless <texpr> <expr>...) EVALUATE ONLY WHEN A CONDITION IS FALSE
fsubr
<texpr> the test expression
<expr> the expression(s) to be evaluated if texpr is nil

returns the value of the last expression or nil

XLISP 2.0 CONTROL CONSTRUCTS Page 52

(case <expr> <case>...[(t <expr>)]) SELECT BY CASE
fsubr
<expr> the selection expression
<case> pair consisting of:
(<value> <expr>...)
where:
<value> is a single expression or a list of expressions
(unevaluated)
<expr> are expressions to execute if the case matches
(t <expr>) default case (no previous matching)
returns the value of the last expression of the matching case
(Iet (<binding>...) <expr>...) CREATE LOCAL BINDINGS
(Iet* (<binding>...) <expr>...) LET WITH SEQUENTIAL BINDING
fsubr
<binding> the variable bindings each of which is either:
1) a symbol (which is initialized to nil)
2) a list whose car is a symbol and whose cadr is an
initialization expression
<expr> the expressions to be evaluated
returns the value of the last expression
(flet (<binding>...) <expr>...) CREATE LOCAL FUNCTIONS
(labels (<binding>...) <expr>...) FLET WITH RECURSIVE FUNCTIONS
(macrolet (<binding>...) <expr>...) CREATE LOCAL MACROS
fsubr

<binding> the function bindings each of which is:
(<sym> <fargs> <expr>...)

where:
<sym> the function/macro name
<fargs> formal argument list (lambda list)
<expr> expressions constituting the body of the function/macro
<expr> the expressions to be evaluated
returns the value of the last expression
(catch <sym> <expr>...) EVALUATE EXPRESSIONS AND CATCH THROWS
fsubr
<sym> the catch tag
<expr> expressions to evaluate
returns the value of the last expression the throw expression
(throw <sym> [<expr>]) THROW TO A CATCH
fsubr
<sym> the catch tag
<expr> the value for the catch to return (defaults to nil)

returns never returns

XLISP 2.0 CONTROL CONSTRUCTS

Page 53
(unwind-protect <expr> <cexpr>...) PROTECT EVALUATION OF AN EXPRESSION
fsubr
<expr> the expression to protect
<cexpr> the cleanup expressions
returns the value of the expression

Note: unwind-protect guarantees to execute the cleanup expressions even if a non-
local exit terminates the evaluation of the protected expression

XLISP 2.0 LOOPING CONSTRUCTS Page 54

LOOPING CONSTRUCTS

(loop <expr>...) BASIC LOOPING FORM
fsubr
<expr> the body of the loop
returns never returns (must use non-local exit)

(do (<binding>...) (<texpr> <rexpr>...) <expr>...) GENERAL LOOPING FORM

(do* (<binding>...) (<texpr> <rexpr>...) <expr>...)
fsubr. do binds simultaneously, do* binds sequentially
<binding> the variable bindings each of which is either:

1) a symbol (which is initialized to nil)
2) a list of the form: (<sym> <init> [<step>])
where:
<sym> is the symbol to bind
<init> the initial value of the symbol
<step> a step expression
<texpr> the termination test expression
<rexpr> result expressions (the default is nil)
<expr> the body of the loop (treated like an implicit prog)
returns the value of the last result expression
(dolist (<sym> <expr> [<rexpr>]) <expr>...) LOOP THROUGH A LIST
fsubr
<sym> the symbol to bind to each list element
<expr> the list expression
<rexpr> the result expression (the default is nil)
<expr> the body of the loop (treated like an implicit prog)
(dotimes (<sym> <expr> [<rexpr>]) <expr>...) LOOP FROM ZERO TO N-1
fsubr
<sym> the symbol to bind to each value from 0 to n-1
<expr> the number of times to loop
<rexpr> the result expression (the default is nil)

<expr> the body of the loop (treated like an implicit prog)

XLISP 2.0 THE PROGRAM FEATURE Page 55

THE PROGRAM FEATURE

(prog (<binding>...) <expr>...) THE PROGRAM FEATURE
(prog* (<binding>...) <expr>...) PROG WITH SEQUENTIAL BINDING
fsubr
<binding> the variable bindings each of which is either:
1) a symbol (which is initialized to nil)
2) a list whose car is a symbol and whose cadr is an
initialization expression
<expr> expressions to evaluate or tags (symbols)
returns nil or the argument passed to the return function
(block <name> <expr>...) NAMED BLOCK
fsubr
<name> the block name (quoted symbol)
<expr> the block body
returns the value of the last expression
(return [<expr>]) CAUSE A PROG CONSTRUCT TO RETURN A VALUE
fsubr
<expr> the value (defaults to nil)
returns never returns

(return-from <name> [<value>]) RETURN FROM A NAMED BLOCK OR FUNCTION

fsubr
<name> the block or function name (quoted symbol)
<value> the value to return (defaults to nil)
returns never returns
(tagbody <expr>...) BLOCK WITH LABELS
fsubr
<expr> expression(s) to evaluate or tags (symbols)
returns nil
(go <sym>) GO TO A TAG WITHIN A TAGBODY OR PROG
fsubr
<sym> the tag (quoted)
returns never returns
(progv <slist> <vlist> <expr>...) DYNAMICALLY BIND SYMBOLS
fsubr
<slist> list of symbols (evaluated)
<vlist> list of values to bind to the symbols (evaluated)
<expr> expression(s) to evaluate

returns the value of the last expression

XLISP 2.0 THE PROGRAM FEATURE Page 56

(progl <exprl> <expr>...) EXECUTE EXPRESSIONS SEQUENTIALLY
fsubr
<exprl> the first expression to evaluate
<expr> the remaining expressions to evaluate
returns the value of the first expression
(prog2 <exprl> <expr2> <expr>...) EXECUTE EXPRESSIONS SEQUENTIALLY
fsubr
<exprl> the first expression to evaluate
<expr2> the second expression to evaluate
<expr> the remaining expressions to evaluate
returns the value of the second expression
(progn <expr>...) EXECUTE EXPRESSIONS SEQUENTIALLY
fsubr
<expr> the expressions to evaluate

returns the value of the last expression (or nil)

XLISP 2.0 INPUT/OUTPUT FUNCTIONS Page 57

INPUT/OUTPUT FUNCTIONS

Note that when printing objects, printing is accomplished by sending the message :prinl to the
object (this is a modification of the distribution).

(read [<stream> [<eof> [<rflag>]]]) READ AN EXPRESSION
<stream> the input stream (default is *standard-input*)
<eof> the value to return on end of file (default is nil)
<rflag> recursive read flag (default is nil, unused in this implementation)
returns the expression read

(set-macro-character <ch> <fcn> [T]) MODIFY READ TABLE
defined in init.lsp
<ch> character to define
<fcn> function to bind to character (see page 11)
T if TMACRO rather than NMACRO

(get-macro-character <ch>) EXAMINE READ TABLE
defined in init.lsp
<ch> character
returns function bound to character

(print <expr> [<stream>]) PRINT AN EXPRESSION ON A NEW LINE
<expr> the expression to be printed
<stream> the output stream (default is *standard-output®)
returns the expression

(prinl <expr> [<stream>]) PRINT AN EXPRESSION

symbols, cons cells (without circularities), arrays, strings, and characters are printed
in a format acceptable to the read function.

<expr> the expression to be printed
<stream> the output stream (default is *standard-output®)
returns the expression
(princ <expr> [<stream>]) PRINT AN EXPRESSION WITHOUT QUOTING
<expr> the expressions to be printed
<stream> the output stream (default is *standard-output®)
returns the expression
(pprint <expr> [<stream>]) PRETTY PRINT AN EXPRESSION
<expr> the expressions to be printed
<stream> the output stream (default is *standard-output®)

returns the expression

XLISP 2.0 INPUT/OUTPUT FUNCTIONS Page 58

(terpri [<stream>]) TERMINATE THE CURRENT PRINT LINE
<stream> the output stream (default is *standard-output®)
returns nil

(flatsize <expr>) LENGTH OF PRINTED REPRESENTATION USING PRIN1
<expr> the expression
returns the length

(flatc <expr>) LENGTH OF PRINTED REPRESENTATION USING PRINC
<expr> the expression

returns the length

XLISP 2.0 THE FORMAT FUNCTION Page 59

THE FORMAT FUNCTION

(format <stream> <fmt> <arg>...) DO FORMATTED OUTPUT
<stream> the output stream
<fmt> the format string
<arg> the format arguments
returns output string if <stream> is nil, nil otherwise

If <stream> is T, then *STANDARD-OUTPUT* is assumed.

The format string can contain characters that should be copied directly to the output and
formatting directives. The formatting directives are:

~A or ~a print next argument using princ

~S or ~s print next argument using prinl

~% start a new line

~~ print a tilde character

~\n ignore return and following whitespace

If XLISP is compiled with ENHFORMAT defined, then the format directives can contain
optional prefix and optional colon (:) or at-sign (@) modifiers between the tilde and directive
character. Prefix characters are unsigned integers, or the character v’ to indicate the number
is taken from the next argument, or a single quote (°) followed by a single character for those
parameters that should be a single character.

For ~A and ~S the full form is:
~mincol,colinc,minpad,padchar:@A (or S)

The string is padded on the right (or left, is @ is given) with at least "minpad” copies of the
"padchar”. Padding characters are then inserted "colinc” characters at a time until the total
width is at least "mincol”. The defaults are 0 for mincol and minpad, 1 for colinc, and space
for padchar. For example:

~15,,2,". @A

The output is padded on the left with at least 2 periods until the output is at least 15
characters wide.

For ~% and ~~, the full form is ~n% or ~n~, where n is an unsigned integer. "n” copies
(default=1) of the character are output.

For ~\n, if the colon modifier is used, then the format directive is ignored (allowing embedded
returns in the source for enhanced readability). If the at-sign modifier is used, then a carriage
return is emitted, and following whitespace is ignored.

XLISP 2.0 FILE I/O FUNCTIONS Page 60

FILE I/O FUNCTIONS

Note that initially, when starting xlisp, there are five system stream symbols which are
associated with three streams. *STANDARD-INPUT* is bound to standard input and
STANDARD-OUTPUT is bound to standard output. * ERROR-OUTPUT* (error message

output), *TRACE-OUTPUT* (from TRACE function), and *DEBUG-IO* (break loop i/0) are
all bound to standard error, which is just about always the console.

When the transcript is active (either -t on the command line or the DRIBBLE function), all
characters that would be sent to the display via either standard output or standard error are
also placed in the transcript file.

XLISP gives special treatment to i /o through standard input [output /error, as shown on page
3. An XLISP program which alters any of the system stream values should save the original
values to restore them. Using the OPEN function to re-open the console will not restore i/o
through standard input/output/error.

(open <fname> &key :direction :element-type) OPEN A FILE STREAM
<fname> the file name string or symbol
:direction :dinput, :output, or :io (default is :input). A file opened for input must

already exist. A file opened for output will delete any existing file by
the same name. A file opened for input or io is positioned at its start.

:element-type FIXNUM or CHARACTER (default is CHARACTER), as returned by
type-of function. Files opened with type FIXNUM are binary files instead
of ascii, which means no crif to/from If conversion takes place, and
control-Z will not terminate an input file. It is the intent of Common
Lisp that binary files only be accessed with read-byte and write-byte
while ascii files be accessed with any function but read-byte and write-
byte. XLISP does not enforce that distinction.

returns a file stream

(close <stream>) CLOSE A FILE STREAM
<stream> the file stream
returns nil

(file-length <stream>) GET LENGTH OF FILE

For an ascii file, the length reported may be larger than the number of characters read
or written because of CR conversion.

<stream> the file stream (should be disk file)

returns length of file, or NIL if cannot be deturmined.

XLISP 2.0 FILE I/O FUNCTIONS Page 61

(file-position <stream> [<expr>]) GET OR SET FILE POSITION
For an ascii file, the file position may not be the same as the number of characters read
or written because of CR conversion. It will be true however, that using file-position to
position a file at a location earlier reported by file-position.
<stream> the file stream (should be a disk file)
<expr> desired file position, if setting position
returns if setting position, and successful, then T; if getting position and

successful then the position; otherwise NIL

(read-char [<stream>]) READ A CHARACTER FROM A STREAM
<stream> the input stream (default is *standard-input®)
returns the character

(peek-char [<flag> [<stream>]]) PEEK AT THE NEXT CHARACTER
<flag> flag for skipping white space (default is nil)
<stream> the input stream (default is *standard-input®)
returns the character (integer)

(write-char <ch> [<stream>]) WRITE A CHARACTER TO A STREAM
<ch> the character to write
<stream> the output stream (default is *standard-output®)
returns the character

(read-line [<stream>]) READ A LINE FROM A STREAM
<stream> the input stream (default is *standard-input®)
returns the string

(read-byte [<stream>]) READ A BYTE FROM A STREAM
<stream> the input stream (default is *standard-input®)
returns the byte (integer)

(write-byte <byte> [<stream>]) WRITE A BYTE TO A STREAM
<byte> the byte to write (integer)
<stream> the output stream (default is *standard-output*®)

returns the byte (integer)

XLISP 2.0 STRING STREAM FUNCTIONS Page 62

STRING STREAM FUNCTIONS

These functions operate on unnamed streams. An unnamed output stream collects characters
sent to it when it is used as the destination of any output function. The functions ’get-output-
stream’ string and list return a sting or list of the characters.

An unnamed input stream is setup with the ‘'make-string-input-stream’ function and returns
each character of the string when it is used as the source of any input function.

Note that there is no difference between unnamed input and output streams. Unnamed input
streams may be written to by output functions, in which case the characters are appended to
the tail end of the stream. Unnamed output streams may also be (destructively) read by any
input function as well as the get-output-stream functions.

(make-string-input-stream <str> [<start> [<end>]])

<str> the string

<start> the starting offset

<end> the ending offset + 1 or NIL for end of string
returns an unnamed stream that reads from the string

(make-string-output-stream)
returns an unnamed output stream

(get-output-stream-string <stream>)
<stream> the output stream
returns the output so far as a string
Note: the output stream is emptied by this function

(get-output-stream-list <stream>)
<stream> the output stream
returns the output so far as a list
Note: the output stream is emptied by this function

XLISP 2.0 DEBUGGING AND ERROR HANDLING Page 63

DEBUGGING AND ERROR HANDLING FUNCTIONS

(trace [<sym>...]) ADD A FUNCTION TO THE TRACE LIST
fsubr
<sym> the function(s) to add (quoted)
returns the trace list

(untrace [<sym>...]) REMOVE A FUNCTION FROM THE TRACE LIST
fsubr. If no functions given, all functions are removed from the trace list.
<sym> the function(s) to remove (quoted)
returns the trace list

(error <emsg> [<arg>]) SIGNAL A NON-CORRECTABLE ERROR
<emsg> the error message string
<arg> the argument expression (printed after the message)
returns never returns

(cerror <cmsg> <emsg> [<arg>]) SIGNAL A CORRECTABLE ERROR
<cmsg> the continue message string
<emsg> the error message string
<arg> the argument expression (printed after the message)
returns nil when continued from the break loop

(break [<bmsg> [<arg>]]) ENTER A BREAK LOOP
<bmsg> the break message string (defaults to "**BREAK**")
<arg> the argument expression (printed after the message)
returns nil when continued from the break loop

(clean-up) CLEAN-UP AFTER AN ERROR
returns never returns

(top-level) CLEAN-UP AFTER AN ERROR AND RETURN TO THE TOP LEVEL
returns never returns

(continue) CONTINUE FROM A CORRECTABLE ERROR
returns never returns

(errset <expr> [<pflag>]) TRAP ERRORS
fsubr
<expr> the expression to execute
<pflag> flag to control printing of the error message

returns the value of the last expression consed with nil or nil on error

XLISP 2.0

(baktrace [<n>])

DEBUGGING AND ERROR HANDLING Page 64

PRINT N LEVELS OF TRACE BACK INFORMATION

<n> the number of levels (defaults to all levels)
returns nil
(evalhook <expr> <ehook> <ahook> [<env>]) EVALUATE WITH HOOKS
<expr> the expression to evaluate. <ehook> is not used at the top level.
<ehook> the value for *evalhook*
<ahook> the value for *applyhook*
<env> the environment (default is nil). The format is a dotted pair of value
(car) and function (cdr) binding lists. Each binding list is a list of level
binding a-lists, with the innermost a-list first. The level binding a-list
associates the bound symbol with its value.
returns the result of evaluating the expression
(applyhook <fun> <arglist> <ehook> <ahook>) APPLY WITH HOOKS
<fun> The function closure. <ahook> is not used for this function application.
<arglist> The list of arguments.
<ehook> the value for *evalhook*
<ahook> the value for *applyhook*
returns the result of applying <fun> to <arglist>
(debug) ENABLE DEBUG BREAKS
(nodebug) DISABLE DEBUG BREAKS

Defined in init.lsp

XLISP 2.0 SYSTEM FUNCTIONS Page 65

SYSTEM FUNCTIONS

(load <fname> &key :verbose :print) LOAD A SOURCE FILE
<fname> the filename string or symbol
:verbose the verbose flag (default is t)
:print the print flag (default is nil)
returns the filename

(restore <fname>) RESTORE WORKSPACE FROM A FILE
<fname> the filename string or symbol
returns nil on failure, otherwise never returns

(save <fname>) SAVE WORKSPACE TO A FILE
<fname> the filename string or symbol
returns t if workspace was written, nil otherwise

(savefun <fcn>) SAVE FUNCTION TO A FILE
defined in init.lsp
<fcn> function name (saves it to file of same name, with extension ".Isp”)
returns t if successful

(dribble [<fname>]) CREATE A FILE WITH A TRANSCRIPT OF A SESSION
<fname> file name string or symbol

(if missing, close current transcript)

returns t if the transcript is opened, nil if it is closed

(ge) FORCE GARBAGE COLLECTION
returns nil

(expand [<num>]) EXPAND MEMORY BY ADDING SEGMENTS
<num> the number of segments to add, default 1
returns the number of segments added

(alloc <num>) CHANGE NUMBER OF NODES TO ALLOCATE IN EACH SEGMENT

<num> the number of nodes to allocate
returns the old number of nodes to allocate

(room) SHOW MEMORY ALLOCATION STATISTICS
returns nil

(time <expr>) MEASURE EXECUTION TIME
fsubr. Note: added function
<expr> the expression to evaluate

returns the execution time, in seconds (floating point)

XLISP 2.0 SYSTEM FUNCTIONS Page 66

(coerce <expr> <type>) FORCE EXPRESSION TO DESIGNATED TYPE
Note: added function
<expr> the expression to coerce
<type> desired type, as returned by type-of
returns <expr> if type is correct, or converted object.
Sequences can be coerced into other sequences, single character strings or symbols with
single character printnames can be coerced into characters, integers can be coerced into
characters or flonums.

(type-of <expr>) RETURNS THE TYPE OF THE EXPRESSION
<expr> the expression to return the type of
returns nil if the value is nil otherwise one of the symbols:
SYMBOL for symbols
OBJECT for objects
CONS for conses
SUBR for built-in functions
FSUBR for special forms
CLOSURE for defined functions
STRING for strings
FIXNUM for integers
FLONUM for floating point numbers
CHARACTER for characters
FILE-STREAM for file pointers
UNNAMED-STREAM for unnamed streams
ARRAY for arrays
sym for structures of type "sym”
(generic <expr>) CREATE A GENERIC TYPED COPY OF THE EXPRESSION
Note: added function, Tom Almy’s invention.
<expr> the expression to copy
returns nil if value is nil, otherwise if type is:
SYMBOL copy as an ARRAY
OBJECT copy as an ARRAY
CONS (CONS (CAR <expr>)(CDR <expr>))
CLOSURE copy as an ARRAY
STRING copy of the string
FIXNUM value
FLONUM value
CHARACTER value
UNNAMED-STREAM copy as a CONS
ARRAY copy of the array
(peek <addrs>) PEEK AT A LOCATION IN MEMORY
<addrs> the address to peek at (integer)

returns the value at the specified address (integer)

XLISP 2.0 SYSTEM FUNCTIONS Page 67

(poke <addrs> <value>) POKE A VALUE INTO MEMORY
<addrs> the address to poke (integer)
<value> the value to poke into the address (integer)
returns the value

(address-of <expr>) GET THE ADDRESS OF AN XLISP NODE
<expr> the node
returns the address of the node (integer)

(getkey) READ A KEYSTROKE FROM CONSOLE
returns integer value of key (no echo)

(system <command>) EXECUTE A SYSTEM COMMAND
<command> Command string, if 0 length then spawn OS shell
returns T if successful (note that MS/DOS command.com always returns

success)

(exit) EXIT XLISP

returns never returns

The following graphic functions represent an extension by Tom Almy:

(mode <ax> [<bx> <width> <height>) SET DISPLAY MODE
<ax> Graphic mode (value passed in register AX)
<bx> BX value for some extended graphic modes
<width> width for extended graphic modes
<height> height for extended graphic modes
returns T
(color <value>) SET DRAWING COLOR
<value> Drawing color (not checked for validity)
returns <value>
(move <x1> <yl> [<x2> <y2> ...]) ABSOLUTE MOVE
(moverel <x1> <y2> [<x2> <y2> ...]) RELATIVE MOVE

For moverel, all coordinates are relative to the preceeding point.
<x1> <yl> Moves to point x1,y1l in anticipation of draw.
<x2> <y2> Draws to points specified in additional arguments.

returns T if succeeds, else NIL
(draw [<x1> <y1> ...]) ABSOLUTE DRAW
(drawrel [<x1> <y1> ...]) RELATIVE DRAW

For drawrel, all coordinates are relative to the preceeding point.
<x1> <yl1> Point(s) drawn to, in order.
returns T if succeeds, else NIL

XLISP 2.0 ADDITIONAL FUNCTIONS Page 68

ADDITIONAL FUNCTIONS AND UTILITIES

This section is completely new (added by Tom Almy).

STEP.LSP

This file contains a simple Lisp single-step debugger. It started as an implementation of the
"hook" example in chapter 20 of Steele’s "Common Lisp". This version was brought up on
Xlisp 1.7 for the Amiga, and then on VAXLISP.

To invoke: (step (whatever-form with args))

For each list (interpreted function call), the stepper prints the environment and the list, then
enters a read-eval-print loop. At this point the available commands are:

(a list)<CR> evaluate the list in the current environment, print the result, and
repeat.
<CR> step into the called function

anything_else<CR> step over the called function.

If the stepper comes to a form that is not a list it prints the form and the value, and
continues on without stopping.

Note that stepper commands are executed in the current environment. Since this is the case,
the stepper commands can change the current environment. For example, a SETF will change
an environment variable and thus can alter the course of execution.

Global variables - newline, *hooklevel*

Functions/macros - while step eval-hool-function step-spaces step-flush

Note — an even more powerful stepper package is in stepper.lsp (documented in stepper.doc).

XLISP 2.0 ADDITIONAL FUNCTIONS Page 69

PP.LSP

In addition to the pretty-printer itself, this file contains a few functions that illustrate some
simple but useful applications.

(pp <object> [<stream>]) PRETTY PRINT EXPRESSION
(pp-def <funct> [<stream>]) PRETTY PRINT FUNCTION/MACRO
(pp-file <file> [<stream>]) PRETTY PRINT FILE

<object> The expression to print

<funct> Function to print (as DEFUN or DEFMACRO)

<file> File to print (specify either as string or quoted symbol)

<stream> Output stream (default is *standard-output*)

returns T

Global variables: tabsize maxsize miser-size min-miser-car max-normal-car

Functions/Macros: sym-function pp-file pp-def make-def pp ppl moveto spaces pp-rest-across
pp-rest printmacrop pp-binding-form pp-do-form pp-defining-form pp-pair-form

See the source file for more information.

XLISP 2.0 ADDITIONAL FUNCTIONS Page 70

REPAIR.LSP

This file contains a structure editor.
Execute (repair ’symbol) to edit a symbol.
or (repairf symbol) to edit the function binding of a symbol (allows changing the
argument list or function type, lambda or macro).

The editor alters the current selection by copying so that aborting all changes is generally
posible; the exception is when editing a closure, if the closure is BACKed out of, the change
is permanent.

For all commands taking a numeric argument, the first element of the selection is the Oth
(as in NTH function).

Any array elements become lists when they are selected, and return to arrays upon RETURN
or BACK commands.

Do not create new closures, because the environment will be incorrect. Closures become
LAMBDA or MACRO expressions as the selection. Only the closure body may be changed,;
the argument list cannot be successfully modified, nor can the environment.

For class objects, only the methods and message names can be modified. For instance objects,
instance variables can be examined (if the object under-stands the message :<ivar> for the
particular ivar), and changed (if :SET-IVAR is defined for that class, as it is if CLASSES.LSP
is used).

(command list on next page)

XLISP 2.0

COMMANDS (gener
(?

RETURN
ABORT
BACK
Bn

L

MAP

PLEV x
PLEN x
EVAL x
REPLACE x

ADDITIONAL FUNCTIONS Page 71

al):

list available commands for the selection.

exit, saving all changes.

exit, without changes.

go back one level (as before CAR CDR or N commands).

go back n levels.

display selection using pprint; if selection is symbol, give short
description.

pprints each element of selection, or if selection is symbol then gives
complete description of properties.

set *print-level* to x. (Initial default is *rep-print-level*)

set *print-length to x. (Initial default is *rep-print-length*)

evaluates x and prints result. The symbol @ is bound to the selection.
replaces the current selection with evaluated x. The symbol @ is bound
to the selection.

COMMANDS (if selection is symbol):

VALUE
FUNCTION
PROP x

edit the value binding.
edit the function binding (must be a closure).
edit property x.

COMMANDS (if selection is list):

CAR
CDR
n

SUBST x y

RAISE n
LOWER n m
ARRAY n m
Inx

Rnx
Dn

select the CAR of the current selection.

select the CDR of the current selection.

where n is small non-negative integer, changes current selection to
(NTH n list).

all occurances of (quoted) y are replaced with (quoted) x. EQUAL is
used for the comparison.

removes parenthesis surrounding nth element of selection.

inserts parenthesis starting with the nth element, for m elements.

as in LOWER, but makes elements into an array.

inserts (quoted) x before nth element in selection.

replaces nth element in selection with (quoted) x.

deletes nth element in selection.

All function names and global variables start with the string "rep-" or "*rep-*".

XLISP 2.0 EXAMPLES Page 72

EXAMPLES: FILE I/O FUNCTIONS

Input from a File

To open a file for input, use the OPEN function with the keyword argument :DIRECTION
set to :INPUT. To open a file for output, use the OPEN function with the keyword argument
:DIRECTION set to :OUTPUT. The OPEN function takes a single required argument which
is the name of the file to be opened. This name can be in the form of a string or a symbol.
The OPEN function returns an object of type FILE-STREAM if it succeeds in opening the
specified file. It returns the value NIL if it fails. In order to manipulate the file, it is
necessary to save the value returned by the OPEN function. This is usually done by assigning
it to a variable with the SETQ special form or by binding it using LET or LET*. Here is an
example:

(setq fp (open "init.lsp" :direction :input))

Evaluating this expression will result in the file "init.lsp" being opened. The file object that
will be returned by the OPEN function will be assigned to the variable "fp".

It is now possible to use the file for input. To read an expression from the file, just supply the
value of the "fp" variable as the optional "stream" argument to READ.

(read fp)

Evaluating this expression will result in reading the first expression from the file "init.Isp".
The expression will be returned as the result of the READ function. More expressions can be
read from the file using further calls to the READ function. When there are no more
expressions to read, the READ function will return NIL (or whatever value was supplied as
the second argument to READ).

Once you are done reading from the file, you should close it. To close the file, use the
following expression:

(close fp)

Evaluating this expression will cause the file to be closed.

XLISP 2.0 EXAMPLES Page 73

Output to a File

Writing to a file is pretty much the same as reading from one. You need to open the file first.
This time you should use the OPEN function to indicate that you will do output to the file.
For example:

(setq fp (open "test.dat" :direction :output))
Evaluating this expression will open the file "test.dat" for output. If the file already exists,
its current contents will be discarded. If it doesn’t already exist, it will be created. In any
case, a FILE-STREAM object will be returned by the OPEN function. This file object will be

assigned to the "fp" variable.

It is now possible to write to this file by supplying the value of the "fp" variable as the
optional "stream" parameter in the PRINT function.

(print "Hello there" fp)

Evaluating this expression will result in the string "Hello there" being written to the file
"test.dat". More data can be written to the file using the same technique.

Once you are done writing to the file, you should close it. Closing an output file is just like
closing an input file.

(close fp)

Evaluating this expression will close the output file and make it permanent.

A Slightly More Complicated File Example

This example shows how to open a file, read each Lisp expression from the file and print it.
It demonstrates the use of files and the use of the optional "stream" argument to the READ
function.

(do* ((fp (open "test.dat" :direction :input))
(ex (read fp) (read fp)))
((null ex) nil)
(print ex))

XLISP 2.0

INDEX

:answer 17

:class 16
:constituent 11
:iskindof 16
:ismemberof 16
disnew 16, 17
:mescape 11
:messages 17
mew 17

:nmacro 11
:prinl 16
:respondsto 16
:sescape 11
:show 16
:storeon 16, 17
:superclass 16, 17
:tmacro 11
:white-space 11
+ 19, 36

++ 19

+++ 19

- 19, 36

* 19, 36
*applyhook™ 8, 19
breakenable 4, 19
debug-io 19
dos-input 3, 19
*error-output® 19
*evalhook™ 8, 19
float-format 19
gc-flag 19
gc-hook 19
integer-format 19
obarray 19
print-case 19
*print-length™ 19
print-level 19
readtable 11, 19

standard-input 19
standard-output 19

trace-output 19

INDEX

tracelimit® 4, 19
tracelist 19
tracenable 4, 19
unbound 19
/ 36

/= 38

< 38

<= 38

= 38

> 38

>= 38

&aux 13
&key 13
&optional 13
&rest 13

1+ 36

1- 36

abs 37

acos 37
address-of 67
alloc 65

and 51
append 31
apply 20
applyhook 8, 64
aref 22, 26
arrayp 49
asin 37

assoc 32
atan 37
atom 48
backquote 20
baktrace 64
block 55
both-case-p 42
boundp 49
break 63

car 22, 31
case 52
catch 52

cdr 22, 31
cerror 63
char 42

Page 74

XLISP 2.0

char-code 42
char-downcase 42
char-equalp 43
char-greaterp 43
char-int 43
char-lessp 43
char-not-equalp 43
char-not-greaterp 43
char-not-lessp 43
char-upcase 42
char/= 43

char< 43
char<= 43
char= 43

char> 43
char>= 43
characterp 49
class 19

classp 49
clean-up 3, 63
clean-up, 4
close 60
code-char 42
coerce 66

color 67

comma 20
comma-at 20
concatenate 27
cond 51

cons 31

consp 48
continue 3, 4, 63
copy-alist 33
copy-list 33
copy-tree 34
cos 37

count-if 29

cxxr 31

cxxxr 31

cxxxxr 31
debug 64
defclass 46
definst 47
defmacro 23
defmethod 46
defstruct 44
defun 23

INDEX

delete 29
delete-if 30
delete-if-not 30
digit-char 42
digit-char-p 42
do 54

do* 54

dolist 54
dotimes 54
draw 67
drawrel 67
dribble 65

elt 22, 27
endp 48

eq 50

eql 50

equal 50
error 63
errset 4, 63
eval 20
evalhook 8, 64
evenp 49
every 27

exit 67

exp 38
expand 65
expt 37
fboundp 49
file-length 60
file-position 61
find-if 29
first 31

flatc 58
flatsize 58
flet 52

float 36
floatp 48

fmakunbound 24

format 59
fourth 31
funcall 20
function 20
ge 65

ged 37
generic 66
gensym 23
get 22, 25

Page 75

XLISP 2.0

get-lambda-expression 21
get-macro-character 57
get-output-stream-list 62
get-output-stream-string 62
getkey 67

go 55

hash 24

if 51

int-char 43

integerp 48

intern 23

labels 52

lambda 20

last 31

Iconc 34

length 27

let 52

let* 52

list 31

listp 48

load 65

logand 39

logior 39

lognot 39

logxor 39

loop 54

lower-case-p 42
macroexpand 21
macroexpand-1 21
macrolet 52

make-array 26
make-string-input-stream 62
make-string-output-stream 62
make-symbol 23
make_tconc 34
makunbound 24

map 27

mapc 32

mapcan 33

mapcar 32

mapcon 33

mapl 32

maplist 32

max 37

member 32

min 36

minusp 49

INDEX Page 76

mode 67
move 67
moverel 67
nconc 35
nil 19
nodebug 64
not 48
notany 27
notevery 27
nreverse 28
nstring-downcase 41
nstring-upcase 40
nth 22, 32
nthedr 32
null 48
numberp 48
object 19
objectp 49
oddp 49
open 60

or 51
pairlis 33
peek 66
peek-char 61
plusp 49
poke 67
pop 23
position-if 29
pp 69
pprint 57
prinl 57
princ 57
print 57
prog 55
prog* 55
progl 56
prog2 56
progn 56
progv 55
psetq 22
push 23
putprop 25
quote 20
random 37
read 57
read-byte 61
read-char 61

XLISP 2.0

read-line 61

rem 36

remove 28
remove-head 34
remove-if 28
remove-if-not 29
remprop 25

repair 70

rest 31

restore 65

return 55
return-from 55
reverse 28

room 65

rplaca 35

rplacd 35

save 65

search 28

second 31

self 15,19

send 15, 22, 46
send-super 15, 46
set 22
set-macro-character 57
setf 22

setq 22

sin 37

some 27

sort 35

sqrt 38

step 68

strcat 41

streamp 49

string 40
string-downcase 40
string-equalp 41
string-greaterp 41
string-left-trim 40
string-lessp 41
string-not-equalp 41
string-not-greaterp 41
string-not-lessp 41
string-right-trim 40
string-trim 40
string-upcase 40
string/= 41
string< 41

INDEX Page 77

string<= 41
string= 41
string> 41
string>= 41
stringp 48

sublis 33

subseq 28

subst 33
symbol-function 22, 23
symbol-name 23
symbol-plist 22, 23
symbol-value 22, 23
symbolp 48
system 67

t 19

tagbody 55

tan 37

tconc 34

terpri 58

third 31

throw 52

time 65

top-level 3, 63
trace 63

truncate 36
type-of 66

unless 51
untrace 63
unwind-protect 53
upper-case-p 42
vector 26

when 51
write-byte 61
write-char 61
zerop 49

