QuickDraw™ 3D Renderer
Acceleration Virtual Engine

RAVE

A 3D Graphics Hardware Abstraction Layer

Engineering Reference Specification

Version 1.0.5
March 28, 1996

Brent Pease

Technical Lead, QD3D RAVE, IMG
ALink: PEASE

email: brent@apple.com

Mike Kelley

Manager, Dynamic Media, , IMG
ALink: KELLEY.M

email: mwk@apple.com

This page is intentionally
almost blank

Contents

Chapter 1: Organization Of thiS DOCUMENL..........ccuuvrummermmmrsssimesssmmsssssssssssessses 1
Chapter 2: BACKGIOUNC.......cccovsvvvesssvesssesssssssssssssssssssssssssessssssssssseses 3
WhAL IS @ IOW IBVE] 3D GIVEI.....oovevvrssvvrssnrsssnesssens 3
WHaL IS NOLINCIUTEO......vvvvsevrseressvrssessssssssessessnes 3
WO I8 TNE USEISY...ovrrvvrevvrrsserssesssssssssssssssssssssssssssesss 3
Chapter 3: FUNCHONEI OVEIVIEW.....coovvvrrsrevrsseressses 5
Plug-and-play for 3D Arawing ENGINES..........cvwummrmmmmsssmssmssmssmsssee 5
DESIGNEA FOF SPEEU......vvrvvvrssrvrrsssressssssssessses 5
IMINIMIUM FEAEUTE SEL...vvvvvesvesersssrsssssssessssssssssssssssssssssssses s 6
OPIONAI TEALUIES...vvsvveesverrsserssesesssessssssssssses 6
Apple-SUPPlIEd AraWiNgG ENGINE.......o..vmsrrvrsrssses 6
MUIIPIE TBVICE SUPPOI......ooseevrsevvesssvrssssessess 7
QUICKDIAW 3D....vvvvsvvvesssessssssssssssssssssssssssssssssssssssssesssssssssssses 7
OPPBNGL o eereeertssveesssesssssssssesssessssssesesssssss 5888 7
API NAMING CONVEINEIONS. .11111vvrsvvrrss 8
Chapter 4: TNE DIaWING COMTEXL......co.uvuvrsmrrsesssmssssessesssssses 9
THE TQADRBVICE. ..cvvvvveeeessses 10
Using TQADEVICE t0 AraW T0 MEIMOIY.......vvvvvrssevmssmsssees 11
Using TQADEVICE t0 Araw t0 8 GDBVICE.......c.ccvvvvssmsvssssssimss 11
Drawing aCroSs MUIIPIE GDRVICES.......o.vvvevvrssmvssenes 1
QAENGINEGESIAIL......occcvvvrrssvvvrrsssssssssssssssssissses 1
GESEAIt OPLIONAI FEAIUIES....ovcvvrvvrssersssrsssssessess s ssssssssssssssss 13
GESLAIL FASE FRATUIES...occ.vverevvreosevssssessses 13
ChOOSING 8 ArAWING ENGINE...oo.vvvvvrsrrsesssesssessssssssssssssssssssssssssssssssssesssssssssssssssss s 14
Creating @ TQADIAWCONEXL........vvuuuvvrvessssssssssssssssssissee 15
Deleting @ TQADIBWCONTEXL.......oovvvesuressersssessssssssssssssssssssssssssssssssssssessssesssssssssssssssssssssssssssssssssssssssnes 16
Re-positioning @ TQADIAWCONTEXL...........cccuuvmmmmsmmss 16
2D Clipping @ TQADIAWCONIEXL.....oc.vvvvevessvssssvssssssssssssssssssesssesenes 16
Supporting different PIXEl AEPENS.........vvvvrmvvrrmisssssimssssmsssssirsssssss—————————————.—,——, 17
Chapter 5: SEALE VAITADIES.........c.vvveevvvesssessssssssssssssssssssssssssssssssssessssssssssseses 18
Setting a variable with QASetFlIoat/QASELINY/QASEIPLY.......cvoveurrvverrrrrrssns 19
Reading a variable with QAGetFI0at/QAGEtIN/QAGELPII............ocoeeesrirvvrsreessssssmssssssssssssssmsssssssssssssssness 19
REQUITE SEALE VAITADIES......cccocovvesevrssiressvrsssnsssesssessssssssssssessssss s 20
KQATAG_COIOIBG _A/I/Q/D......vvocvveesvvresssssessses 20
KQATAG WITEN. .oveevevrsnerrsssvssssnessses 20
KQATAY ZFUNCHON. ..vvvevvvvessssssessesses 20
KQATAY ZMINOMISEL......oooevvvvessrvrrssasssssssssssssssssssssssssssssses 21

Apple Computer Confidential

OPLiONAl STALE VAIADIES...vo.vvvrevvvessvvrssserssssrsses 22

KQATAG_ ANTANIES. .o vrcvvrssersssvsssesssesss s s 22
KQATAG BIBNG....oosvvreevrsevessssessses 22
KQATAG_PEISPECHVEZ.....occvvvssvvrsssesssssssssesssnes 22
KQATAY TEXIUIE.....ovvevvvresevssserssssessees 23
KQATAG_ TEXLUIEFIIET......oocvvvevevesersssnesssssssssessssssssssssssesssnes 23
KQATAY TEXIUIBOPD....vvvvvvvvessvessssessees 24
OPENGL STALE VATADIES....c.ovevvesvrssvrsssrsssessssssssesssssssssssssssssssssssssss s 25
CRBDTET 62 DIAWING...v11vrtvtsevessvsevsesssesssesssesssessssssssssssssssssssssssssssss s 26
TQAVGOUIAUU ALA EYB.....vveesvvvresssens 26
TQAVTEXIUIE A TYIB...ovsevvesrvvsssersssessseses 27
QADIAWPOINE........oocecvvvvveessisssssesssssssssssssssssssssss s sssss s ssss s ssss s sss s ss s ss s ss s 28
(QADIAWLINE. .vvrsvvvrssvvessssssssssssssesssssssssessssessssessssessssessssessssassssessssassssassssessssassssassssssssesssssssssssssssssssssseses 28
QADIAWTIIGOUIAUC....cccccversevsrvesssessessssssssses 28
QAD T AWTHITEXEUNE. o vvvsevvrsssssssssssssssssssssssssssssssssesssssssssssssssssssssesssssssssssssssssssssssssssasssssssssssssssssssssssssssees 28
QADIAWVGOUFAU. ..cccccvvvrrssvsses 29
(QADTAWVTEXEUIE. .ovresvevrsssvrsses 29
THIVIESI. otrsereserssesssesssssssssesessssssssssssss s 29
QASUDMIEVEITICESGOUIAU....vvvvsvvvrsssvvressees 30
QASUDIMILVEIICESTEXIUE. ..vvvvvveeesssssssssssssesses 30
QADIAWTHIMESNGOUIAU....vvvscvvvssrvvsssessssssssses 30
QADIAWTIIMESNTEXIUIE. ..ccocesvvvvrseesssssssssssessses 30
(QADITAWBIEMIAD ... vrtvvsvvsersesssssessssssssssssssesssesssessssssss s 31
Rendering WIth traNSPAIENCY.........vwummmmmsmmssssssmsssssssssssssssssssssssssssssisses 31
Z SOMTEA TTANSPAIEIICY...vvvvrvvvessrsssessssess s s sssssssssssssssssssenes 32
OPENGL DIENTING MOUES....cc.vvvvrssrvvrrsssssssssssmsssssssmsssssssssssssmsssssssisssssssssssssisssss s 32
Rendering With tEXTUIE MAPPING........eusermmrrmesmsessessssssnes 3?2
KQATEXIUIEOP INONB.....ovvvecvvvvresssssssssssmssesss 33
KQATEXIUIEOP_ MOQUIALE......vvcvvvvsrvvrssssrsses 33
KQATEXIUIEOR HIGNNGNL........ooooccvvresivvsnssssssssssssissses 34
KQATEXIUIEOP__DBCAL...ovvvvvrrsrvrrsssesssssssses 34
The complete texture MaPPING MOUEL...........c.cmvvvvresmmssssimsssssisssss——————————————; 35
KQATEXIUIEOP_ SNIINK...vvvsvvvrsevvvrsssvrsses 35
Using the texture map alpha channel for traNSPArENCY..........ccmmmmmmmmmmmsmsmsmssssssssimsssssssssmssssssssssssssssns 36
Using the texture map alpha Channel 85 8 MALE. ... 36
Rendering With ANIAlESING...........vvwuuvvrmsmmssssmsssssssmssssssmssssssimsssssisssssssssssssssssssisssssssssssisssssssssssisssns 36
USING COIOT I0OKUP TADIES.....vvvvveevesersserssrsssesssesssessssssss 37
QACOIOITADIENEW.vooecevvvvveeesssssssessssisss s sssssssssssssssssssssss 38
QACOIOI TADIEDEIBLE. . vvrrssvvresssrrsssrsrssees 38
QATEXIUEBINACOIOITADIE.v.vvveeesvsrssseesssssisssssesssssssssssssss s sssssssssssssssssssssssssssssssssssssssns 38
QABItMAPBINACOIOITADIE. ..c..veevrvresrrsserssrsssessssssssssessssssses s 38

Apple Computer Confidential

Chapter 7: Creating TEXtUIES aNd BIEMADS........cuveerumvermmssesssssssssssmesses 39

THE TQAIMAYE. ...vvevvvvrsssvssesssssssssssssssssesssssssssssssssssssssssess 39
QATEXLUIENEW. .1vvvvvessssssssssess 39
QATEXIUMEDIBLE. ...c.cccrrvvsrseessisssssssssssssssssss s iR s s s 42
QATEXIUNEDBIACK. ..o vevvvrssssssssssssssssssssssssssss s s 1 42
QABIEMADNEW. 111vrvvvvessvsssassssassssssssssasssssassssssssssssssssssssssssssssssssssssses 42
QABIIMAPDEIBLE. ..oocvvressvvrssrsssesssssssssssssssses 43
QABIEMAPDELACH. ...vvevvvrssvvrsssvssens 44
Chapter 8: Buffering and SyNCRIONIZALION.veurermsmssssssssmssmsssssmssees 45
QARBNGETSIAI.....ccccccvverersssseessssssssssssssssssssssssssssssssssssss s sssss s ssss s sssss s ss s ss s 45
QARENUBIENG...oovvvrsrvrrsssrssessssssssssessssesssssssssssssssssssssssssses 45
QARBNBTADON.....ovecevvsvseesssssssseessssssssssssssssssssssssssssssssssss s ssssss s ssss s ssssss s sss s sssssssssssssssssns 46
QAFIUSNL ..o s ssss s s s sssssssEs SRR Ssssssssspts 46
(QASYNIC.vvvvvressessssessssssssssssssssssssssss s8R 47
Using TQADFaWCONLEXE 8S 8 CACNE.......cvvvvvvrvsvssssvssssesss 47
Chapter 9: Adding @ New DraWing ENQING............ccureermmeersmsssssmsssesses 49
The public TQADrawCONEXt MENOTS......c..vvvvrvvrrssssssrssssssssssssssssissssssissses 50
The private TQADrawContext new and delete fUNCHIONS............wevemmmrrvemmmmssrssssssssssssssssssssssssssssssssssssens 52
Texture and Bitmap NeW/DEtaCh/DEIBLE.........c..cvvwmvvrmsmvrssssssssssssssssssisssssssisssssssssssssssssssssssssssssssssssees 53
AQTING GESTAIL. ... evvrsrvvrssnrrssssssssesssesssssssssssssssesees 53
Checking the TQADEVICE......c.vvvvsrvvresmsssssisssees 54
RegiStering YOUI AraWiNG ENGINE.ccueverssseerssesssssssses 55
Chapter 10: POMING OPENGL.......couvevrsmremssmeessees 57
TTANISPAIEIICY v1111vvvvessesesess s8R 57
RGB DIBNGING ONIY...vvvrvrrrvvrsversssersses 57
ARGB blending Via MUILIPIE PASSES......vvvsrrrersrssrmsssssssssrssees 58
TEXIUIE MIADPING. . 1vvr11vrssevesssressasssssesssssssssssssssssssssssssssssssssssesssssssssses 58
KQATEXUIEOP_ MOQUIBLE......vcc.vvvrsrvvrssses 59
KQATEXLUIEOP_HIGNHGNL.......ooseveeevvresssresssneesssesses 59
KQATEXIUIEOP DBCAL...ovvcvvvvrssvrrsses 59
INTEX..o1vrtvvresssseessssesssssssssssssssssssssssssssssssssss s s ERRRRR e 61

Apple Computer Confidential ii

Apple Computer Confidential

Chapter 1: Organization of this Document

This document is an Engineering Requirements Specification (ERS) for the Power
Macintosh low level 3D driver, called RAVE. Version 0.2 of this document was a draft version
distributed to third parties for review. Version 0.9 was a major revision which incorporated
third party feedback.

The 1.0 release of RAVE described here matches implementation used by the QuickDraw™
3D 1.0 interactive renderer. All portions of this document can be considered final, except for
the extended features and modes used for OpenGL compatibility. These are still under
review.

The 1.0.2 release is identical to 1.0, except that QARender End() , QAFI ush(),
Q@ASync() ,and QARender Abor t () now return an error code.

a The 1.0.5 release changed the name from Tinsel Town to RAVE and adds new functionality
which includes the TriMesh and color lookup tables. The TriMesh is described in Chapter 6
and color lookup tables are also described in chapter 6 under the section "Using color
lookup tables.”

This document can be divided into three sections:

Chapters 1 - 3 provide an introduction to RAVE. This material is useful for any developer
considering using RAVE, or for QuickDraw 3D developers who would like more information
on the mechanism used to plug drawing engines into the QuickDraw 3D interactive
renderer.

Chapters 4 - 8 provide a specification of the RAVE application programming interface (API).
These are the calls used by an application to draw an image with RAVE. This material is
important for application or middle-ware developers who need to know how to use RAVE asa
drawing engine, and for developers who are planning to add their own RAVE drawing engine.

Chapters 9 - 10 describe how to add a new RAVE drawing engine. This section is primarily of
use by hardware or software vendors who wish to add their own custom 3D drawing engine to
RAVE.

This document assumes the reader is familiar with low-level 3D rendering algorithms. For
those who would like additional information, the following reference (usually referred to as
"Foley and van Dam") will be useful:

Computer Graphics, Principles and Practice, 2nd edition. Foley, van Dam, Feiner,
Hughes. Addison-Wesly Publishing Company. Chapters 3, 15, 16, 18, and 19.

a Throughout this document, important paragraphs are marked by a a symbol.

Apple Computer Confidential 1

Code examples, and names which are taken from code or include files, are shown in Courier
typeface, €.g. QADr awTr i Gour aud() .

OpenGL™ is a registered trademark of Silicon Graphics, Inc.

Apple Computer Confidential

Chapter 2: Background

What is a low level 3D driver?

A'low level 3D driver is a software layer designed to support the low-level rasterization
operations required for interactive 3D rendering. In many respects a 3D driver interface is
very similar to a 2D drawing API. There are, however, several key differences:

— 3D drawing requires a Z (depth) value, which is used to perform hidden surface removal.

— Support for double-buffered (or back buffered) image display is necessary. Double
buffering conceals the flashing caused by re-drawing the image. High performance
double buffering can also used to avoid the tearing artifacts often caused by updating a
window at high speed.

— Special 3D rasterization modes such as texture mapping are supported.

What is not included?

There is no absolute definition of what should be included in a low level 3D driver. However,
this document assumes that none of the following are directly supported:

— No transformation, shading or clipping.
— No I/0 mechanisms (i.e. the driver is a drawing mechanism only).
— No high level primitives such as curved surfaces.

Who are the users?

A'low level 3D driver is used for four purposes:

— It provides a hardware abstraction layer (HAL) that allows system software (e.g.
QuickDraw 3D) to utilize a wide variety of hardware without code changes.

— It provides third party hardware vendors with a means to ship 3D acceleration hardware
that can plug-and-play with a variety of 3D applications.

— It provides a highly optimized means for a third party middle-ware vendor (e.g. a vendor
of a game development framework) to access hardware and Apple's optimized software
rasterizers.

— It provides a highly optimized means for specialized application vendors (e.g. games and
entertainment applications) to access hardware acceleration through a very flexible and
lightweight mechanism.

Apple Computer Confidential 3

Note that in the first three cases, the 3D driver layer operates as a System Programming
Interface (SPI). However, the fourth bullet implies use by application developers, i.e. asan
Application Programming Interface (API).

Apple Computer Confidential

Chapter 3: Functional Overview

Plug-and-play for 3D drawing engines

RAVE is designed to provide independent software and hardware vendors (ISVs and IHVs)
with a simple and efficient means of adding low level 3D rasterizers to the Macintosh.
Typically these low level 3D rasterizers are designed to accelerate 3D rendering for
interactive use.

3D rasterizers plugged into RAVE are referred to as drawing engines. When a drawing
engine is registered with the RAVE manager, it becomes available for use by all applications
running on the system. QuickDraw 3D's interactive renderer uses RAVE, so registering a
drawing engine with RAVE automatically makes it available for use by all QuickDraw 3D-
based applications as well.

For an IHV, RAVE is used primarily as a means of making the 3D rasterization features of the
vendor's hardware available for use by Macintosh applications. By writing a RAVE plug-in, an
[HV's product can immediately plug-and-play with 3D software on the Macintosh.

For most ISVs, RAVE will not be used directly; instead, it will be an enabling technology that
provides a flexible plug-and-play environment for 3D acceleration. However, some ISVs will
use RAVE directly:

— Vendors of middle-ware (e.g. a third party game development framework) should use
RAVE as their interactive 3D drawing method.

— Vendors of games or entertainment applications who prefer an extremely low level, but
very lightweight, drawing library may use RAVE in place of a higher level API such as
QuickDraw 3D.

a Warning: Because RAVE provides no support for Apple's 3D metafile, 3D user
interface, plug-in shaders, or windows that cross devices, it is not recommended for
use by general applications.

Designed for speed

RAVE is intended for interactive 3D rendering. To provide maximum performance, RAVE
has been designed to provide the minimum possible overhead between the application and
the drawing engine. Two key design features were made to meet this goal:

— Calls from an application to RAVE do not require a context change.

— Calls to a RAVE drawing engine do not pass through an intermediate manager layer —
the application calls directly into the selected drawing engine's code.

Apple Computer Confidential 5

Because of these features, calling a drawing engine through RAVE provides the same level of
performance as linking the engine directly with the application.

Minimum feature set

RAVE does not require that all drawing engines provide the same features. The minimum
feature set of a RAVE drawing engine is:

— Hidden surface removal (usually Z buffering with a minimum of 16 bits/pixel)

— Points and lines of programmable width

— Gouraud shaded triangles

— Bitmaps of 1, 16 or 32 bits/pixel

— Double buffering

Optional features

More advanced RAVE drawing engines may support any or all of the following features:
— High precision hidden surface removal (24 bits or more)

— Perspective corrected hidden surface removal

— Texture mapping, fast and/or high quality

— Transparency blending, RGB or ARGB

— Antialiasing, fast and/or high quality

— Zsorted rendering of non-opague objects

— OpenGL support, which includes a collection of features such as scissoring, multiple
blending modes, area and line stipple patterns, etc.

Apple-supplied drawing engine

Apple ships RAVE with a software-only drawing engine which is highly optimized for the
Power Macintosh. This drawing engine is guaranteed to be able to draw to any device. This
basic drawing engine provides the following features (in addition to the minimum feature
set):

— Zhuffering with 16 or 32 bits of precision

— Direct rendering at 16 or 32 bit/pixel (fewer than 16 bits/pixel is supported with lower
performance)

— Perspective-corrected texture mapping

Apple Computer Confidential 6

Multiple device support

RAVE does not require that a drawing engine be capable of drawing to all devices in the
system. Instead, when the application wishes to choose a drawing engine, it must specify to
which device the drawing will be performed. Each drawing engine is queried by RAVE to
determine if it can support the indicated device; if not, the drawing engine will not be offered
to the application.

This means that a drawing engine can specialize itself for the device(s) for which it is most
suitable. For example, a drawing engine that uses a frame buffer's built-in 3D acceleration
hardware may have no effective means of rendering to a different device. Rather than forcing
that drawing engine to implement an inefficient solution, RAVE allows the drawing engine to
work with only its native device.

Warning: This means that RAVE does not provide automatic support for windows
that cross multiple devices. It is the application's responsibility to recognize these
cases, and construct multiple RAVE drawing contexts (potentially with different
drawing engines) as necessary to draw the entire window.

QuickDraw 3D High-Level API

RAVE and the high level QuickDraw 3D API are designed to work together as a team. The
QuickDraw 3D interactive renderer uses the available RAVE drawing engines to accelerate
interactive rendering for all applications that use QuickDraw 3D.

The high level QuickDraw 3D API provides much greater functionality than RAVE, and is the
recommended API for general purpose 3D programming. Some examples of features
included in QuickDraw 3D are:

— Cutand paste of 3D data

— Automatic support of multiple devices

— Powerful, high level datatypes such as NURBS and mesh
— Ahighly optimized interactive renderer

— A plug-in mechanism for high quality renderers (RAVE supports only interactive
rendering)

— Aplug-in shader mechanism
— User interface guidelines and tool kits

OpenGL support

Although the minimum feature set of a RAVE drawing engine doesn't provide all the features
necessary for OpenGL, a drawing engine may optionally choose to add support for these
features. A drawing engine that provides these optional features can be used to accelerate
OpenGL compliant rendering, as well as to accelerate QuickDraw 3D.

Apple Computer Confidential 7

API naming conventions

All functions, datatypes and constants declared by the RAVE.h include file follow naming
conventions to avoid conflicts with application code:

— Al function names begin with the prefix QA, e.g. QADr awTr i Gour aud() .

— Al data type names begin with the prefix TQA, €.g. TQADr awCont ext .

— Al constant names begin with the prefix k QA e.9. kQAAnt i Al i as_Fast .

Apple Computer Confidential

Chapter 4: The Drawing Context

a

All data structures and prototypes in this document are defined in the RAVE.h include file.

All RAVE drawing is performed into a drawing context, referred to asa TQADr awCont ext .
More than one TQADr awCont ext can exist simultaneously; each one maintains its own
state information, and is unaffected by calls which reference any other TQADr awCont ext .
All drawing calls take a TQADr awCont ext as their first parameter.

The TQADr awCont ext data structure is shown below:
struct TQADr awCont ext

{

TQADr awPri vat e *drawPri vate;

const TQAVersion ver si on;

TQASet Fl oat set Fl oat ;

TQASet | nt setint;

TQASet Pt r setPtr;

TQAGet Fl oat get Fl oat ;

TQAGet I nt getint;

TQAGet Pt r gethtr;

TQADr awPoi nt dr awPoi nt ;

TQADr awLi ne dr awLi ne;

TQADr awTri Gour aud dr awTr i Gour aud;

TQADrawTri Texture drawlri Text ure;

TQADr awWQour aud dr awMGour aud;

TQADr avWText ur e dr awMText ur e;

TCQADr awBi t map dr awBi t map;

TQARender St ar t render Start;

TQARender End r ender End;

TQARender Abor t r ender Abort ;

TQAF ush flush;

TQASync sync;

TQASubm t Verti cesCGour aud subm t Verti cesCGour aud;

TQASubm t VerticesTexture subnitVerticesTexture;

TQADr awTr i MeshGour aud drawTr i MeshGour aud;

TQADr awTr i MeshText ur e dr awTr i MeshText ur e;
}s

The dr awPr i vat e field points to the private data maintained by the drawing engine
associated with this context. The ver si on field is a constant field initialized by the RAVE
manager; it indicates the RAVE manager version. The remaining fields (set FI oat ,

set | nt etc.) are function pointers to the methods of the drawing engine.

None of the TQADr awCont ext fields are directly referenced by the application. Instead,
the application uses the macros defined in RAVE.h to call the methods. For example, the
application code shown below sets the background color of a TQADr awCont ext t0
opaque black (the QASet FI oat () function is described in more detail in Chapter 5:
State Variables):

#i ncl ude "RAVE. h"
TQADr anCont ext *dr awCont ext ;

.Q.A.Set Fl oat (drawContext, kQATag Col orBG a, 1.0);

Apple Computer Confidential

Qy

Qy

@Set Fl oat (drawCont ext, k@ATag_Col orBG r, 0.0);
@ASet Fl oat (drawCont ext, kQATag_Col orBG g, 0.0);
@ASet Fl oat (dr anCont ext, kQATag_Col orBG b, 0.0);

During compilation, macro expansion causes the QaSet Fl oat () call to be replaced with
the code shown below. Because this code directly calls the drawing engine's set Fl oat
method, no intermediate manager layer is necessary, providing the highest possible
performance.

(drawCont ext) - >set Fl oat (drawContext, 1, 1.0);

It is recommended that all calls to drawing engine methods be performed with the macros
defined in RAVE.h, as directly referencing the TQADr awCont ext method fields may
complicate ports to future versions of RAVE.

The TQADr awCont ext methods are not static — some calls (e.g. QASet I nt ()) can
cause the methods to change. This is discussed in more detail in Chapter 9: Adding a New
Drawing Engine. This issue does not affect applications that always use the macros defined
in RAVE.h to access the drawing methods.

The TQADevice

When a TQADr awCont ext IS created, it requires information about where drawing should
be performed. This information is provided by a TQADevi ce, which is passed as a
parameter to QADr awCont ext New() (discussed later in this chapter). A TQADevi ce
represents any one of a variety of different device types into which drawing can occur. On the
Macintosh, a TQADevi ce can represent either a GDevi ce, or a region of memory.

On the Macintosh, the TQADevi ce structure (and its supporting datatypes) are:
t ypedef enum TQADevi ceType
kQADevi ceMenor y
kQADevi ce@evi ce
} TQADevi ceType;
typedef struct TQADevi ceMenory
{

0,
1

| ong r owByt es;
TCAl nagePi xel Type pi xel Type;
| ong wi dt h;

| ong hei ght ;
voi d *paseAddr ;

} TQADevi ceMenory;

t ypedef uni on TQAPI at f or nDevi ce
TQADevi ceMenory nenor yDevi ce;
COHandl e glevi ce;

} TQAPI at f or nDevi ce;

typedef struct TCQADevi ce
{

TQADevi ceType devi ceType;
TQAPI at f or nDevi ce devi ce;
} TQADevi ce;

Apple Computer Confidential 10

Using TQADevice to draw to memory

The following example code initializes a TQADevice for drawing to memory:

TQADevi ce nyDevi ce;
| ong target Menory [100] [100] ;

nyDevi ce. devi ceType = kQADevi ceMenory;

nyDevi ce. devi ce. nenor yDevi ce. rowBytes = 100 * si zeof (long);
nyDevi ce. devi ce. neror yDevi ce. pi xel Type = kQAPi xel _ARGEB32;
nyDevi ce. devi ce. nenor yDevi ce. wi dth = 100;

nyDevi ce. devi ce. nenor yDevi ce. hei ght = 100;

nyDevi ce. devi ce. neror yDevi ce. baseAddr = tar get Menory;

Drawing to memory occurs in the native pixel format of the platform. Note that not all
drawing engines support drawing to memory (see Choosing a drawing engine, later in this
chapter).

Using TQADevice to draw to a GDevice

The following example code initializes a TQADevice for drawing to a GDevice:

TQADevi ce nyDevi ce;
CGHandl e gDevi ceHandl e;

.rTS/.Devi ce. devi ceType = kQADevi ce@evi ce;
nyDevi ce. devi ce. gDevi ce = gDevi ceHandl e;

Drawing across multiple GDevices

Anindividual TQADr awCont ext can render to only a single TQADevi ce, and therefore
to only asingle GDevi ce. Because a Macintosh window can cross multiple GDevi ces, itis
the application's responsibility to determine which GDevi ces the window touches, and to
create a separate TQADr awCont ext for each one.

QAEngineGestalt

To assist the application in choosing a drawing engine, QAEngi neGest al t () provides
information about the functionality of a drawing engine:

TQAError QAENgi neGestalt (
const TQAENgi ne *engi ne, /* Engi ne being queried */
TQACGestal t Sel ector selector, /* Gestalt paraneter being requested */
voi d *response);/* (Qut) Buffer that gets response */

engi ne selects which drawing engine is being queried.

Apple Computer Confidential 11

sel ect or isan enumerated constant which indicates which gestalt value is being
requested. It can be any one of the following values:

kQAGest al t _Opt i onal Feat ur es: Returnsamask of one or more
kQAOpt i onal _xxx flags (described below). r esponse should point to an
unsi gned | ong.

kQAGest al t _Fast Feat ur es Returns: a mask of one or more k QAFast _xxx
flags (described below). r esponse should point to an unsi gned | ong.

kQAGest al t _Vendor | D: Returns the vendor ID of this engine. r esponse
should pointtoal ong.

kQAGest al t _Engi nel D: Returns the engine ID of this engine. r esponse
should pointtoal ong.

kQAGest al t _Revi si on: Returns the revision number of this engine (larger values
are more recent). r esponse should pointtoal ong.

kQAGest al t _ASCI | NarreLengt h: Returnsthe strl en() ofthe
kQAGest al t _ASCI | Name (described next). r esponse should pointtoal ong.

kQAGest al t _ASCI | Namre: Copies the ascii name of this drawing engine into
response . r esponse should point to a C string, whose length is determined by
kQAGest al t _ASCI | NamreLengt h (described above).

r esponse a pointer to where the retrieved information should be stored. The type and size
of this data is dependent on the value of sel ect or .

Apple Computer Confidential 12

Gestalt Optional Features

The kQAGest al t _Opt i onal Feat ur es gestalt response is a bit mask for which any
combination of the flags shown below can be ORed together. Each flag indicates whether
the named feature is supported by the drawing engine. Note that supported features are not
necessary accelerated (e.g. the drawing may perform the feature in software).

kQAMpt i onal _DeepZz: Deep Z buffering (i.e. Z buffer resolution >= 24
bits/pixel).

kQAQpt i onal _Text ur e: Texture mapping.

kQApt i onal _Text ur eHQ High quality texture mapping (tri-linear interpolation or
equivalent).

kQAOQpt i onal _Text ur eCol or : Full color texture modulation and highlight.
kQApt i onal _Bl end: Transparency blending.

kQAOpt i onal _Bl endAl pha: Transparency blending that outputs an alpha channel.
kQApt i onal _Anti al i as: Antialiasing.

kQApt i onal _ZSor t ed: Z sorted rendering (e.g. for transparency).

kQApt i onal _Per spect i veZ: Perspective corrected hidden surface removal.
kQAOpt i onal _OpenGL: Extended OpenGL feature set.

kQAOQpt i onal _Nodl ear : This engine doesn't clear the buffer before drawing, so
double-buffering may not be required in some applications.

Gestalt Fast Features

The kQAGest al t _Fast Feat ur es gestalt value is a bit mask for which any combination
of the flags shown below can be ORed together. Each flags indicates whether the named
feature is accelerated by the drawing engine. Unfortunately, it is difficult to define exactly
what accelerated means — we consider these flags to mean that the named feature is
performed substantially faster than it would be in software with a fast CPU.

kQAFast _Li ne: Line drawing.

kQAFast _Gour aud: Gouraud shading.

kQAFast _Text ur e: Texture mapping.

kQAFast _Text ur eHQ High quality texture mapping.
kQAFast _BI end: Transparency blending.

kQAFast _Anti al i asi ng: Antialiasing.

kQAFast _ZSort ed: Zsorted rendering.

Apple Computer Confidential 13

Qy

Choosing a drawing engine

Not all drawing engines can be used with all TQADevi ces. For example, some drawing
engines may not support k QADevi ceMeror y. Others may only support a particular
GDevi ce. Therefore, once the application has initialized the target TQADevi ce, the
application must scan through the available drawing engines to choose one which is capable
of drawing to the target TQADevi ce. If more than one drawing engine can draw to the
TQADevi ce, the application must choose between the available engines.

The application can search through the available drawing engines with the
QADevi ceGet Fi r st Engi ne() and QADevi ceGet Next Engi ne() functions:

TQAENgi ne *QADevi ceCGet Fi rst Engi ne (
const TQADevi ce *device);

TQAENgi ne *QADevi ceCGet Next Engi ne (

const TQADevi ce *devi ce,
const TQAENngi ne *current Engi ne);

By default, QADevi ceGet Fi r st Engi ne() returnsthe preferred drawing engine for
the indicated device — in most cases, this is the best engine to choose for high performance
rendering. The following heuristic is used to choose the preferred engine:

First choice: The user's preference (e.g. set by the monitors control panel).

Second choice: The drawing engine which is tightly coupled to the indicated device (i.e.
it can render only to that device).

Third choice: The drawing engine which accelerates the most features.
If the default choice of the preferred engine isn't appropriate, the application can search for

an engine with the desired features. For example, assume an application requires a drawing
engine that accelerates texture mapping. This could be coded as:

TQAENgi ne *fi ndPref erredEngi ne (TQADevi ce *devi ce)

TQAENgi ne *engi ne;
unsi gned | ong fast;

for (engine = QADevi ceGet Fi r st Engi ne (device);
engi ne;
engi ne = QADevi ceGet Next Engi ne (devi ce, engine))

if (QMENngi neGestalt (engine, kQAGestalt FastFeatures, &f ast)
== kQANoEr r)

if (fast & kQAFast_Texture)
{

}
}

}
return (NULL);

return (engine);

Apple Computer Confidential 14

g_)/

Here, QADevi ceGet Fi r st Engi ne() and QADevi ceGet Next Engi ne() are used
to loop through the drawing engines which can target devi ce, and
QAENgi neGest al t () isused to get information about each engine's specific features.

If a NULL TQADevi ce pointer is passed to QADevi ceGet Fi r st Engi ne() or
QADevi ceGet Next Engi ne() , the available drawing engines are returned without any
device checking. This is useful when the application needs to query information about all the
available engines regardless of which devices are supported.

Creating a TQADrawContext

Once aTQADevi ce has been initialized, and a drawing engine (i.e. TQAENngi ne) has been
chosen, a TQADr awCont ext can be created. This is performed with the
QADr awCont ext New() function:
TQAError QADr awCont ext New (
const TQADevi ce *device,/* Target device */
const TQARect *rect, /* Target rectangle (device coordinates) */
const TQAdip *clip, [/* 2Dclip region */
const TQAENngi ne *engine,/* Drawi ng engine to use */
unsi gned | ong flags, /* Mask of kQAContext xxx */
TQADr anCont ext **newDrawContext); /* (Qut) New TQADr awCont ext */

devi ce isapointer to the target TQADevi ce.

rect isthe rectangular region of the target TQADevi ce to which this
TQADr awCont ext willdraw. r ect isin device coordinates.

cl i p isthe 2D clipping region for r ect , or NULL (indicating no clipping). This 2D clipping
region will be applied to any pixels before they are drawn to the TQADevi ce. Clipping is not
supported when devi ce is of type kQADevi ceMenor y (i.e. clip must be NULL).

engi ne specifies the drawing engine, as discussed in Choosing a drawing engine, earlier
in this chapter.

The f | ags parameter is a bit mask for which any combination of the following flags can be
ORed together:
kQACont ext _NoZBuf f er : The TQADr awCont ext should not be Z buffered.
kQACont ext _Deepz: Z should have at least 24 bits of precision.

kQACont ext _Doubl eBuf f er : The TQADr awCont ext should be double
buffered.

kQACont ext _Cache: This draw context will be used to create a scene cache. See
Chapter 8: Buffering and Synchronization for more discussion.

newDr awCont ext isa pointer to the TQADr awCont ext pointer which is initialized by
this call. If an error occurs, * newDr awCont ext IS Setto NULL.

Apple Computer Confidential 15

For example, to create a double buffered display with a Z buffer:

TQADr anCont ext *dr awCont ext ;

if (CQADrawCont ext New (&myDevi ce, &nmyRect, &mydip,
engi ne, kQACont ext Doubl eBuffer, &rawContext) != kQANoErr)

/* Error! Could not create TQADrawContext */
}

Deleting a TQADrawContext

QADr awCont ext New() allocates memory and other resources which must eventually be
freed. The application performs this by calling QADr awCont ext Del et e() whenitis
finished with the TQADr awCont ext :

voi d QADr awCont ext Del et e (
TQADr anCont ext *drawContext); /* Drawing context to delete */

For example, to delete the drawing context created in the previous example:

QADr anCont ext Del et e (dr awCont ext) ;

Re-positioning a TQADrawContext

There is no call to re-position a TQADr awCont ext once it has been created. Instead, the
old context must be deleted, and a new TQADr awCont ext created for the new window
position.

2D clipping a TQADrawContext

The drawing engine determines the 2D clipping for a TQADr anCont ext fromthecl i p
parameter passed to QADr awCont ext New() . There is no call to change the clip region
of a TQADr awCont ext after it has been created; instead, the old TQADr awCont ext
must be deleted, and a new one created.

The cl i p parameter is of type TQAC i p. Like TQADevi ce, TQAC i p supports different
types of clipping information depending on the platform. On the Macintosh, TQAC! i p
providesacl i pRgn, as shown below:

TQAAip nydip;
RgnHandl e cl i pRgn;

rTyC] i p.clipType = kQAQ i pRgn;
nyQip.clip.clipRgn = clipRgn;

Apple Computer Confidential 16

Supporting different pixel depths

Because the drawing engine can test the pixel depth of the target TQADevi ce, an engine
has complete freedom to choose which bit depths it supports — engines that don't support
the pixel depth of the targeted TQADevi ce will never be returned by

QADevi ceCet Fi r st Engi ne() 0r QADevi ceGet Next Engi ne()

It is recommended that all drawing engines support 16 and 32 bits/pixel.

Apple Computer Confidential 17

Chapter 5: State Variables

A TQADr awCont ext retains a variety of state information about the current rendering
modes. This information is stored as state variables. Each state variable has a unique identifier

constant called a tag.

State variables may be either float, unsigned long or pointer. The list below (from RAVE.h)
shows the tag names, and their datatypes:

* These variables are required by all draw ng engi nes:

kQATag_ZFuncti on
kQATag_Col or BG a
kQATag_Col or BG r
kQATag_Col or BG g
kQATag_Col or BG b
kQATag_Wdt h
kQATag_ZM nCI f set
kQATag_ZM nScal e

(I'nt)

(Fl oat)
(Fl oat)
(Fl oat)
(Fl oat)
(Fl oat)
(Fl oat)
(Fl oat)

e of kQAZFuncti on_xxx

Background col or al pha

Background col or red

Background col or green

Background col or bl ue

Li ne and point width (pixels)

Mn Z offset to guarantee visibility
Mn Z scale to guarantee visibility

* These variabl es are used for optional features:

kQATag_Antial i as
kQATag_Bl end
kQATag_Per spectiveZ
kQATag_TextureFil ter
kQATag_Text ureQp
kQATag_Text ure

(I'nt)
(I'nt)
(I'nt)
(I'nt)
(I'nt)
(Ptr)

e of kQAAntialias_xxx

e of kQABl end_xxx

e of kQAPerspectiveZ xxx
e of kQATextureFilter_ xxx
Mask of kQAText ur eQo_xxx
Pointer to current TQATexture

* These variabl es are used for @en@. support:

kQATag@__Dr awBuf f er
kQATagQ__Text ur eW apU
kQATagA._Text ureW apV
kQATag@__Text ureNagFi | ter
kQATagQ@. TextureM nFil ter
kQATagd._Sci ssor XM n
kQATag@__Sci ssor YM n
kQATag@._Sci ssor XMax
kQATag@._Sci ssor YMax
kQATag@__Bl endSrc
kQATagA._Bl endDst
kQATag@__Li nePattern
kQATag@__AreaPat t ern0
kQATagQ@._AreaPattern3l
kQATagQ._Dept hBG
kQATag@__Text ureBorder_a
kQATagQ@._Text ur eBorder _r
kQATag@__Text ur eBor der _g
kQATag@__Text ur eBorder _b

(I'nt)
(I'nt)
(I'nt)
(I'nt)
(I'nt)
(I'nt)
(I'nt)
(I'nt)
(I'nt)
(I'nt)
(I'nt)
(I'nt)
(I'nt)
(I'nt)
(Fl oat)
(Fl oat)
(Fl oat)
(Fl oat)
(Fl oat)

Mask of kQAG_DrawBuf f er _xxx

kQAMA_d anp or kQAA__Repeat

kQAA@._d anp or kQAA._Repeat
kQAG@_Nearest or kQAG__Li near
kQAGQ._Nearest, etc.

M ni rum X val ue for scissor rectangle
MnimumY val ue for scissor rectangle
Maxi mum X val ue for scissor rectangle
Maxi rum Y val ue for scissor rectangle
Sour ce bl endi ng operation

Desti nati on bl endi ng operation

Line rasterization pattern

First of 32 area pattern registers
Last of 32 area pattern registers
Background Z

Text ure border col or al pha

Texture border color red

Texture border col or green

Text ure border col or blue

These tag values are grouped into three enumerated types: TQATagl nt , TQATagFl oat
and TQATagPt r . Some variables are used only for optional features; these variables do not
need to be supported by drawing engines which don't provide those optional features.

Apple Computer Confidential 18

Setting a variable with QASetFloat/QASetInt/QASetPtr

State variables are set using QASet I nt (), QASet Fl oat () Or QASet Ptr (),
depending on whether the variable is unsi gned | ong, f | oat orapointer:

voi d QASet Fl oat (

TQADr anCont ext *dr awCont ext , /* Draw context */

TQATagFl oat tag, /* Tag of variable to set */

fl oat newval ue) ; /* New val ue for variable */
void QSetInt (

TQADr anCont ext *dr awCont ext , /* Draw context */

TQATagl nt tag, /* Tag of variable to set */

unsi gned | ong newval ue) ; /* New val ue for variable */
void QSetPtr (

TQADr anCont ext *dr awCont ext, /* Draw context */

TQATagPt r tag, /* Tag of variable to set */

const void *newval ue) ; /* New val ue for variable */

For example, to set the Z hidden surface test to kQAZFunct i on_LT:
TQADr anCont ext *dr awCont ext ;

éAéet Int (drawContext, kQATag_ZFunction, kQAZFunction_LT);

To allow future expansion, a drawing engine must accept QASet Fl oat / I nt / Pt r () calls
for tags which it doesn't recognize. These calls should be treated as no-ops. Similarly, calls to
set variables used only for optional features that the drawing engine does not support should
be treated as no-ops.

Reading a variable with QAGetFloat/QAGetInt/QAGetPtr

State variables are read using QAGet Fl oat (), QAGet I nt () Or QAGet Ptr (),
depending on whether the variable is unsi gned | ong, f | oat ora pointer.
float QAGet Fl oat (

const TQADrawCont ext *drawCont ext, /* Draw context */

TQATagFl oat tag); /* Tag of variable to get */
unsi gned long Q@CGetInt (

const TQADr awCont ext *dr awCont ext , /* Draw context */

TCATagl nt tag); /* Tag of variable to get */
voi d *QAGet Ptr (

const TQADr awCont ext *dr awCont ext , /* Draw context */
TQATagPt r tag); /* Tag of variable to get */

For example, to read the red component of the current background color:

TQADr anCont ext *dr awCont ext ;
f1 oat backgr oundCol or _r;

bé;:kgroundCbl or_r = QAGetF oat (drawContext, kQATag_Col orBGr);

QAGet Fl oat / I nt/ Pt r () callsfor unrecognized or unsupported tag values return 0.

Apple Computer Confidential 19

Required state variables

kQATag_ColorBG_a/r/g/b
Float. Required. Default value is 0.0. Range 0.0 <= value <= 1.0

These four variables set the background color. The background color is used when clearing a
buffer with QARender St ar t () . kQATag_Col or BG_a Sets the alpha value,
kQATag_Col or BG r sets the red value, k QATag_Col or BG_g Sets the green value,
kQATag_Col or BG b sets the blue value.

kQATag_Width
Float. Required. Default value is 1.0. Range 0.0 < value < kQAMaxWidth

This variable sets the width of points or lines. Width is measured in pixels. kQAMaxWidth is
currently defined as 128.0.

kQATag_ZFunction
Int. Required.. Default value is kKQAZFunction_LT if a Z-buffered draw context, or
kQAZFunction_None if not.

This sets the current Z test mode used for hidden surface removal. Draw contexts which
aren't Z-buffered only support kQAZFunct i on_None. For Z-buffered contexts,
kQATag_ZFunct i on can have one of the following values:

kQAZFunct i on_None: Zisneither tested nor written
kQAZFunction_LT: Znew < Zbuffer
kQAZFunct i on_True: Znew isalways visible (and written)

The following Z test modes are also defined, but are only supported by drawing engines
which support the optional OpenGL features:

kQAZFunction_EQ Znew == Zbuffer
kQAZFunction LE. Znew <= Zbuffer
kQAZFunction_GT: Znew = Zbuffer
kQAZFunction_NE. Znew != Zhuffer
kQAZFunction_GE: Znew == Zbuffer

For drawing engines which support kQAQpt i onal _Per spect i vez, when
kQATag_Per spect i veZissetto kQAPer spect i veZ_On,kQATag_ZFuncti on
should be interpreted so it yields the same visual result as for k QAPer spect i vezZ_Of f .
For example, kQAZFunct i on_LT, which means "show the closest surface”, is equivalent
to a visibility function of InvWnew > InvWhuffer.

Apple Computer Confidential 20

Qy

kQATag_ZMinOffset, kQATag_ZMinScale
Float. Required. READ ONLY — value is set by drawing engine.

These read-only variables are used by the drawing engine to indicate the minimum scale and
offset for Z that must be performed to guarantee that a drawn object will pass a
kQAZFunct i on_LT hidden surface test. For example, these variables would be used by
an application that needed to draw a triangle, and then re-draw the triangle edges slightly
closer in a different color. kQATag_zZM nScal e indicates the value by which Z must be
scaled, and kQATag_ZM nOf f set indicates the value by which Z must be offset. The
code example below shows how these values are used:

TQAVGour aud ny\Vertex;

);*. Draw t he poi nt once */
QADr awPoi nt (drawCont ext, &nyVertex);

/* Adjust Z to guarantee that the second draw will also be visible */
nyVertex.z *= QAGet Fl oat (drawContext, kQATag_ZM nScal e);

nyVertex.z += QACGet Fl oat (drawContext, kQ@ATag_ZM nCifset);

QADr awPoi nt (drawCont ext, &nyVertex);

Typically, a drawing engine that uses fixed point Z will return 1.0 for scale, and a small

negative value (e.g. -1/65536) for offset. A drawing engine that uses floating point Z will
usually return 0.0 for offset, and a value slightly less than 1.0 (e.g. 0.9999) for scale.

For drawing engines which support k QAQpt i onal _Per spect i vez, when
kQATag_Per spect i veZisset to kQAPer spect i veZ_On, the values returned for
offset and scale are changed to the values used to scale and offset I nv\w In this mode, scale
will be >= 1.0, and offset is a small positive number.

Apple Computer Confidential 21

Optional state variables

kQATag_Antialias
Int. Optional: Only necessary if kQAOptional_Antialias is true. Default is
kQAAntiAlias_Fast.

This variable controls the current antialiasing mode. It can be set to any of:
kQAANt i Al i as_Of f : Antialiasing is forced off.

kQAANt i Al i as_Fast : Do whatever antialiasing can be performed with no speed
penalty (this often means antialiasing is turned off).

kQAANt i Al'i as_M d: Turn on mid-quality antialiasing. This is the recommended
setting when antialiasing at interactive speeds is desired.

kQAANt i Al i as_Best : Turn on the highest quality antialiasing. This indicates that
high quality antialiasing, even at the expense of interactive performance, is desired.

kQATag_Blend
Int. Optional: Only necessary if KQAOptional_Blend is true. Default value is
kQABIlend_PreMultiply.

This variable controls the current transparency blending model. It can have one of the
following values (see Chapter 6: Rendering with transparency for more discussion of
these modes):

kQABI end_PreMul ti pl y:Use apre-multiplied transparency blending function.
kQABI end_I nt er pol at e: Use an interpolated transparency blending function.

kQABI end_OpenGL: Use the blending function defined by the
kQATag_Bl endSr c and kQATag_Bl endDst State variables. This mode is only
supported by drawing engines that set k QAOpt i onal _QpenGL true.

kQATag_PerspectiveZ
Int. Optional: Only necessary if KQAOptional_PerspectiveZ is true. Default value is
kQAPerspectiveZ_Off.

This variable controls whether the z or the I nvWfield of TQAVGour aud/TQAVText ur e
is used for hidden surface removal. When k QATag_Per spect i veZ isset to

kQAPer spect i veZ_O f, normal hidden surface removal using z is performed. When
set tok QAPer spect i veZ_On, hidden surface removal is performed with I nv causing
perspective-correct hidden surface removal. See k QATag_ZFunct i on for further
discussion.

Apple Computer Confidential 22

kQATag_Texture
Pointer. Optional: Only necessary if KQAOptional_Texture is true. Default value is

NULL.

This variable holds a pointer to the current texture map. Texture map pointers are created by
TQAText ur eNew() ,€.0.:

TQAText ure *texture;
TQADr anCont ext *dr awCont ext ;
TQAENgI ne *engi ne;

i f (QATextureNew (engine, kQATexture_ None, kQAPRi xel R@B32,
i mages, & exture) !'= KQANoErr)

. Couldn't create texture

}
.Q.A.SetPtr (drawCont ext, kQATag _Texture, texture);

kQATag_TextureFilter
Int. Optional: Only necessary if KQAOptional _Texture is true. Default value is
kQATextureFilter_Fast.

This variable sets the current texture mapping filter mode. It can have one of the following
values:

kQAText ur eFi | t er _Fast : The fastest texture map filtering mode available
(usually means no filtering).

kQAText ur eFi | t er _M d: Mid-quality texture filtering. This is the recommended
setting when filtered texture mapping at interactive speeds is desired.

kQAText ur eFi | t er _Best : Turn on the highest quality texture filtering. This
indicates that high quality, even at the expense of interactive performance, is desired.

Apple Computer Confidential 23

kQATag_TextureOp
Int. Optional: Only necessary if KQAOptional _Texture is true. Default value is
kQATextureOp_None.

This variable sets the current texture mapping operation. It is a bit mask for which any
combination of the following flags can be ORed together:

kQAText ur eQp_Mdul at e: The texture map color is modulated with the
interpolated kd_r , kd_g and kd_b values.

kQAText ur eQp_Hi ghl i ght : The interpolated value of ks_r ,ks_g, andks_b
are added to the texture map color.

kQAText ur eOp_Decal : When the texture map alpha is zero, replace the texture
map color with the interpolated r , g, and b values.

kQAText ur eQp_Shr i nk: The drawing engine should tweak the incoming u and v
values such that a range of 0.0 <= u, v <= 1.0 is guaranteed not to cause wrapping.

More detail on the texture mapping operations can be found in Chapter 6: Rendering with
texture mapping.

Apple Computer Confidential 24

OpenGL state variables

In general, the OpenGL state variables will correspond one-to-one with the state variables
that affect rasterization in the OpenGL API itself. These are not fully specified yet, but we're
working on t...

Apple Computer Confidential

25

Chapter 6: Drawing

m)

RAVE supports drawing of four types of primitives: points, lines, triangles and bitmaps. Each
primitive has its own QADr aw. . . () function; these functions are described in this chapter.
The final sections of this chapter provide additional detail on rendering with transparency,
texture mapping and antialiasing.

Points, lines and triangles are defined by vertices. RAVE uses two different vertex data types:
TQAVGour aud for Gouraud shading, and TQAVText ur e for texture mapping. These
vertex data types are described next.

TQAVGouraud data type

The TQAVGour aud data structure is used to specify position, depth, color and
transparency information for Gouraud shaded triangles, and for drawing points and lines.

typedef struct TQAVGour aud
{

fl oat X; /* X pixel coordinate, 0.0 <= x < width */
fl oat y; /* Y pixel coordinate, 0.0 <=y < height */
fl oat Z; /* Z coordinate, 0.0 <=z <= 1.0 */

f1 oat i nvW /* 1/ w required only for kQAPerspectiveZ On */

fl oat r; /* Red, 0.0 <=1 <=1.0 */

fl oat g; /* Geen, 0.0 <=g9g<=1.0"%*

fl oat b; /* Blue, 0.0 <= b <=1.0 */

f1 oat a; /* Alpha, 0.0 <= a <= 1.0, 1.0 is opaque */
} TQAVGour aud;

The x and y fields specify the vertex position in 2D coordinates relative to the upper left of
ther ect passed to QADr anCont ext New() . x andy are floating point values specified
in pixels.

z specifies the depth of the vertex. 0.0 is closest, 1.0 is farthest.

i nvWis used only by drawing engines which support k QAOpt i onal _Per spect i veZ.
For these engines, when the state variable k QATag_Per spect i veZissetto

kQAPer spect i veZ_0On, hidden surface removal is performed with i nvwinstead of with
z. This causes hidden surface removal to be perspective-corrected. i nv\Wis the opposite of
Z—the larger i nvWis, the closer the object. See kQATag_ZFunct i on for more
discussion.

Vertex color is indicated by the r , g, and b fields, which represent a standard linear RGB
color space. a represents transparency, 1.0 = opaque, 0.0 = completely transparent.

By default, RAVE operates in a pre-multiplied transparency mode. See Rendering with
transparency, later in this chapter, for more detail.

Apple Computer Confidential 26

TQAVTexture data type

The TQAVText ur e data structure is used to specify position, depth, transparency and
texture mapping information for texture mapped triangles. Not all the fields are required;
many are used only when the k QATag_ Text ur eQp State variable is set to enable more
complex texturing modes. The k QATag_Text ur e State variable specifies which texture
map to use while rendering the texture mapped objects.

typedef struct TQAVTexture

fl oat X; /* X pixel coordinate, 0.0 <= x < wdth */
f1 oat y; /* Y pixel coordinate, 0.0 <=y < height */
fl oat z; /* Z coordinate, 0.0 <=z <= 1.0 */

f1 oat i nvW /* 1/ w(always required) */

/* rgb are used only when kQATextureQp_Decal is set.
ais always required */

fl oat r; /* Rd, 0.0 <=1 <=1.0 */

f1 oat g; /* Geen, 0.0 <=g<=1.0*

f| oat b; /* Blue, 0.0 <= b <=1.0 */

fl oat a; /* Alpha, 0.0 <= a <= 1.0, 1.0 == opaque */

/* uOverWand vOverWare required by all nodes */

fl oat uQverW /* u/ w*/
f| oat vOverW [* v [w*/

/* kd_r/g/b are used only when kQATextureQp_Mdul ate is set */

fl oat kd r; /* Scale factor for texture red, 0.0 <= kd_r */
f1 oat kd_g; /* Scale factor for texture green, 0.0 <= kd_g */
f| oat kd_b; /* Scale factor for texture blue, 0.0 <= kd_b */

/* ks_r/g/b are used only when kQATextureQp_H ghlight is set */

fl oat ks_r; /* Red specular highlight, 0.0 <= ks_r <= 1.0 */

fl oat ks_g; /* Green specular highlight, 0.0 <= ks_g <= 1.0 */

f1 oat ks_b; /* Blue specular highlight, 0.0 <= ks_b <= 1.0 */
} TQAVText ure;

The x,y and z fields have the same meaning as in the TQAVGour aud data structure.

The uover WvOver Wand i nvWfields specify the u, v coordinates of this vertex for
texture mapping. Texture coordinates are always specified in perspective corrected form, i.e.
divided by the homogenous correction factor w. For non-perspective rendering modes,

i nvWshould always be 1.0.

When using a drawing engines that supports k QAOpt i onal _Per spect i vez,and the
state variable k QATag_Per spect i veZ is setto k QAPer spect i veZ_On, hidden
surface removal is performed with i nvwinstead of with z. See the discussion for
TQAVGour aud, earlier in this chapter.

The remaining fields are used to specify texture map color modulation and highlight
information, and to specify additional color information for use when decal rendering mode is

Apple Computer Confidential 27

enabled. These fields are discussed in detail in Rendering with texture mapping, later in
this chapter.

QADrawPoint

QADr awPoi nt () drawsasingle pointto TQADr awCont ext . The size of the point is
specified by the kQATag_W dt h state variable.
voi d QADr awPoi nt (

const TQADr awCont ext *drawContext, /* Draw context */
const TQAVGour aud *V); /* Vertex */

QADrawLine

QADr awLi ne() drawsasingle line to TQADr awCont ext . The width of the line is
specified by the kQATag_W dt h state variable. If different colors are specified by v0 and
v 1, the line color will be smoothly interpolated.

voi d QADr awLi ne (
const TQADr awCont ext *drawContext, /* Draw context */

const TQAVGour aud *v0, /* Vertex 0 */
const TQAVGour aud *v1); /[* Vertex 1 */
QADrawTriGouraud

QADr awTr i Gour aud() draws asingle Gouraud shaded triangle to TQADr awCont ext .
f1 ags canbe kQATr i FI ags_None Or kQATr i FI ags_Backf aci ng. It's suggested
(but not required) that an application set k QATr i FI ags_Backf aci ng for backfacing
triangles, as this information may assist the drawing engine in resolving ambiguous hidden
surface removal situations.

voi d QADrawTri Gouraud (
const TQADr awCont ext *drawContext, /* Draw context */

const TQAVGour aud *v0, /* Vertex 0 */

const TQAVCGour aud *vl, /* Vertex 1 */

const TQAVGour aud *v2, /* Vertex 2 */

unsi gned | ong flags); /* Mask of kQATri Fl ags_xxx */
QADrawTriTexture

QADr awTr i Text ur e() drawsasingle texture mapped triangle to TQADr anCont ext .
The TQAText ur e selected by the kQATag_Text ur e state variable will be used as the
texture map (see Chapter 5: kQATag_Texture).f | ags has the same function as for
QADr awTr i Gour aud(), above.

void QADrawTri Texture (
const TQADrawCont ext *drawContext, /* Draw context */

const TQAVText ure *v0, /* Vertex 0 */
const TQAVText ure *vi, /* Vertex 1 */
const TQAVTexture *v2, /* Vertex 2 */
unsi gned | ong flags); [* Mask of kQATri Fl ags_xxx */

Apple Computer Confidential 28

Q)/

QADrawVGouraud

QADr awVGour aud() draws a variable number of TQAVGour aud as either points, lines,
or triangles, as selected by ver t exMode. f | ags is either NULL, or points to an array of
KQATri Fl ags_None/kQATri Fl ags_Backf aci ng.

voi d QADr awwGour aud (
const TQADrawCont ext *drawCont ext, /* Draw context */

unsi gned | ong nVerti ces, /* Nunber of vertices */

TQAVer t exMode ver t exMode, /* One of kQAVertexMde xxx */

const TQAVGour aud vertices[], /* Array of vertices */

const unsigned long flags[]); /* Array of per-triangle flags
(or NULL) */

ver t exMode can be any of the following:

kQAVert exMbde_Point /* Draw nVertices points */
kQAVer t exMbde_Li ne /* Draw nVertices/2 |line segments */
kQAVert exMode_Pol yl i ne/* Draw nVertices-1 connected |ine segments */

kQAVer t exMode_Tri /* Draw nVertices/3 triangles */

kQAVert exMode_Strip /* Draw nVertices-2 triangles as a strip */
kQAVer t exMbde_Fan /* Draw nVertices-2 triangles as a fan fromv0 */
QADrawVTexture

QADr awvText ur e() draws avariable number of TQAVText ur e as either points, lines,
or triangles, as selected by ver t exMode. f | ags is either NULL, or points to an array of
kKQATri Fl ags_None/kQATri Fl ags_Backf aci ng.vert exMbde has the same
meaning as for QADr awvGour aud() , above.

voi d QADrawVTexture (
const TQADr awCont ext *dr awCont ext , /* Draw context */

unsi gned | ong n\Verti ces, /* Nunber of vertices */

TQAVer t exMbde vert exMode, /* One of kQAVertexMde xxx */

const TQAVText ure vertices[], /* Array of vertices */

const unsigned long flags[]); /* Array of per-triangle flags
(or NULL) */

If the drawing engine supports k QAOpt i onal _QpenGL, QADr awvText ur e() can be
used to draw texture mapped points and lines. If the drawing engine does not support
kQAOQpt i onal _Open@., the pointand line ver t exModes are no-ops.

TriMesh

RAVE supports a drawing type called "TriMesh." The main reason for using this data type is
to save memory and processing time by sharing vertices between triangles.

Note for engine developers: If a drawing engine does not support the TriMesh then the
manager will decompose it into individual triangles. Therefore, the TriMesh methods only
need to be supported if a drawing engine can take advantage of vertex sharing.

The process to draw a TriMesh is to first submit all the vertices that are going to be used by
calling either QASubni t Verti cesGour aud() or

Apple Computer Confidential 29

g_)/

QASubmi t Verti cesText ur e() . This establishes the current state of active vertices
which can be referenced by later calls to QADr awTr i MeshGour aud() or

QADr awTr i MeshText ur e() . Note that there is no unsubmit call, it is up to the engine
to handle memory management in whatever way is appropriate.

Once the vertices have been submitted, triangles are drawn by calls to
QADr awTr i MeshGour aud() Or QADr awTr i MeshText ur e() . The following details
each API call.

QASubmitVerticesGouraud
QASubmitVerticesTexture

QASubnmi t Verti cesGour aud() and QASubmi t Verti cesText ure() submit
the given list of vertices to the engine. These functions will not draw anything. Note that
there is a separate state for the gouraud and texture vertices so that calls to

QADr awTr i MeshGour aud() will use vertices submitted by

QASubni t Ver ti cesGour aud() and callsto QADr awTr i MeshText ur e() will use
vertices submitted by QASubmi t Verti cesText ure().

The application is resposible for allocating all memory for the vertices passed into these calls.
In addition the application must make sure that this memory is valid until all drawing is
completed.

voi d QASubmi t Verti cesCGouraud (

const TQADr awCont ext *dr anCont ext , /* Draw context */
unsi gned | ong nVerti ces, /* Nunber of vertices */
const TQAVGour aud *vertices); /* Array of vertices */

voi d QASubnitVerticesTexture (
const TQADr awCont ext *dr awCont ext, /* Draw context */

unsi gned | ong nVerti ces, /* Nunber of vertices */
const TQAVTexture *vertices); /* Array of vertices */
QADrawTriMeshGouraud
QADrawTriMeshTexture

QADr awTr i MeshGour aud() and QADr awTr i MeshText ur e() take alist of
triangles and draws them. Each triangle is of type TQAI ndexedTr i angl e which has a flag
field and three indices that reference into the current state of vertices submitted by
QASubmi t Verti cesGour aud() or QASubmi t Verti cesTexture().

Apple Computer Confidential 30

Q)/

typedef struct TQAl ndexedTriangle /* Asingle tri for QADrawlri Mesh */

{
unsi gned | ong triangleFlags; /* Tri flags, see kQ@ATri Fl ags_ */
unsi gned | ong vertices[3]; /* Indices into a vertex array */
} TQAl ndexedTri angl e;

voi d QADr awTr i MeshGour aud (
const TQADr awCont ext *dr anCont ext , /* Draw context */
unsi gned | ong nTri angl es, /* Nunber of triangles */
const TQAl ndexedTriangle *triangles); /* Array of triangles */

voi d QADrawTri MeshTexture (
const TQADr awCont ext *dr awCont ext , /* Draw context */
unsi gned | ong nTri angl es, /* Nunber of triangles */
const TQAl ndexedTriangle *triangles); /* Array of triangles */

QADrawBitmap

QADr awBi t map() draws a bitmap to TQADr awCont ext . The bi t map parameter isa
TQABI t map pointer returned by QABI t mapNew() ; see Chapter 7: Creating Textures
and Bitmaps for more information.

Unlike the other drawing calls, QADr awBi t map() accepts negative x ory values for the
pixel position. This is so the upper-left corner of the bitmap can be positioned to the left or
above the upper-left corner of the TQADr awCont ext . This allows a bitmap to be smoothly
moved off any edge of the draw context rectangle. (When the bitmap boundary extends
outside the draw context, it is the drawing engine's responsibility to clip it appropriately.)
voi d QADrawBi t map (

const TQADr awCont ext *dr awCont ext,

const TQAVGour aud *v, /* xyz, and (if 1 bit/pixel) argb */
TQABI t map *bitmap); /* Allocated by QABitmapNew() */

Rendering with transparency

ARAVE drawing engine that sets the kQAOpt i onal _BI end flag supports two
transparency blending models, pre-multiplied and interpolated. The functions for these
two transparency models, assuming a back-to-front drawing order, are shown below. (Dst
indicates the data previously in the frame buffer, Sr ¢ indicates the new incoming data.)

Pre-multiplied Interpolated

a=1-(1-aSc) * (1 - abst) a=1-(1-aSc) * (1 - abst)

r =rSrc + (1 - aSrc) * rDst r =asrc * rSrc + (1 - aSrc) * rDst
g =9gSrc + (1 - aSrc) * gDst g =aSrc * gSrc + (1 - aSrc) * gDst
b =DbSc + (1- aSrc) * bDst b =aSc * bSrc + (1 - aSrc) * bDst

The kQATag_BI end state variable selects the current transparency model; the default
value is kQABI end_Pr eMul ti pl y. The models differ only in the function for r ,g and b;
the a function is identical.

Drawing engines that don't set the k QAOpt i onal _ZSor t ed flag require that the
transparent objects be submitted by the application in back-to-front Z order (otherwise the

Apple Computer Confidential 31

blend functions shown above will not yield the correct results). Typically an application
renders all opaque objects first, then submits the transparent objects in back-to-front order.

[Drawing engines that set the k QAOpt i onal _ZSor t ed flag perform this Z sorting
automatically; they are discussed later in this chapter.]

The pre-multiplied transparency model is the recommended model for rendering shaded
transparent 3D primitives such as triangles. Because the pre-multiplied model does not scale
r Src,gSr c and bSr ¢ by aSr c, it allows a transparent object to have a specular highlight
amplitude greater than its alpha value. For example, a sheet of glass might pass 99% of the
light behind it, indicating an alpha value of 0.01. However, that same glass could contribute a
specular highlight much greater than 0.01 — 0.5 would not be uncommon. The pre-
multiplied transparency model allows this object to be rendered correctly.

The interpolated transparency model (perhaps the more familiar one) is chosen by setting
kQATag_Bl end to kQABI end_I nt er pol at e. This mode is less suitable for rendering
shaded transparent objects, but is very effective for compositing bitmap images.

Z sorted transparency

Drawing engines that set the k QAQpt i onal _ZSor t ed flag do not require that
transparent objects be submitted in back-to-front order. Engines of this type may either
implement a rendering algorithm, such as a painter's or scanline algorithm, that naturally
rasterizes objects in Z sorted order, or they may store and sort non-opaque objects
themselves. Engines of this type may even correctly blend intersecting transparent objects,
although this is not a required feature.

Drawing engines of this type may operate in either back-to-front or front-to-back Z order. In
either case, it is the drawing engine's responsibility to implement transparency blending
operations that are equivalent to the pre-multiplied and interpolated modes described in the
previous section. The application’s use of these modes should be unaffected, except that it
is no longer the application’s responsibility to submit objects in back-to-front order.

OpenGL blending modes

Drawing engines that set the k QAQpt i onal _QpendGL flag support a wide variety of other
blending modes, best described by official OpenGL documentation.

Rendering with texture mapping

RAVE supports a powerful texture map rendering model that allows very realistic rendering of
awide variety of texture mapped material types. RAVE's texture map rendering modes vary
between extremely simple (kQAText ur eOp_None), to an advanced diffuse color
mapping model (k QAText ur eQp_Hi ghl i ght). These modes are described in detail in
the following sections.

Apple Computer Confidential 32

Qy

g_)/

[If you want to skip some reading, The complete texture mapping model, later in this
chapter, summarizes the entire texture mapping model in pseudo-code.]

kQATextureOp_None

Before diving into the fancy stuff, let's begin with the basics. RAVE's texture mapping mode
is controlled by the k QATag_Text ur eQp state variable. By default, this variable is set to
kQAText ur eOp_None. In this mode, RAVE performs the most basic texture operation
possible, simply replacing the object color with the texture map color. The pseudo-code
below demonstrates this mode:

aSrc = a * TextureLookUo(u, V). a; /* O opacity test */
rSrc = TextureLookUp(u,V).r;
gSrc = TextureLookUp(u, V). g;
bSrc = Text ureLookUp(u, V). b;

u and v are the perspective corrected texture coordinates after interpolation, and a is the
interpolated alpha value (see TQAVTexture data type, earlier in this chapter). aSr c,r Src,
gSr c and bSr c are the texture mapped object color — this Sr ¢ color is then passed
through transparency blending to generate the final pixel color .

Because there is no modulation of the texture map color, this mode creates a flat looking
image with no lighting effects. This is most useful when the texture mapping engine is being
used as a 2D image warping engine (e.g. for video effects). However, it doesn't create a
realistic 3D rendering.

In this mode, the texture map's alpha channel is used to control the transparency of the
rendered object on a pixel-by-pixel basis. As shown above, the resulting pixel alpha is the
product of the texture alpha and the vertex alpha (which is interpolated from the
TQAVText ur e data).

To reduce cost, a drawing engine may choose to implement the alpha multiply as an opacity
test, rather than a multiply, i.e.:

aSrc = (TextureLookUp(u,v).a ==1) ? a: 0

kQATextureOp_Modulate

A more realistic texture mapped image can be obtained by modulating the texture map color
withkd_r,kd_g and kd_b (from TQAVText ur e). This mode is enabled by setting the
kQAText ur eOp_Modul at e flaginthe kQATag_Text ur eQp state variable. The
equations below show the effect of modulation:

aSrc = a * TextureLookUp(u,V).a; /* O opacity test */
rSrc = kd_r * TextureLookUp(u,v).r;
gSrc = kd_g * TextureLookUp(u,V).g;
bSrc = kd_b * Text ureLookUo(u, v). b;

Usually modulation is performed to add the effect of lighting to the texture, i.e. kd_r ,kd_g
and kd_b are the illumination brightness. Note that kd_r , kd_g and kd_b can have a value

Apple Computer Confidential 33

Q)/

m)

Q)/

g_)/

greater than 1.0. This allows a more accurate rendering of scenes where the light intensity is
high.

To reduce cost, a drawing engine may replace the three modulation components kd_r ,
kd_g and kd_b with asingle value kd. This replacement is transparent to the application,
except that colored lights applied to texture maps will appear white. Drawing engines that use
this simplification must negate the k QACpt i onal _Text ur eCol or flag.

kQATextureOp_Highlight

Image realism can be further improved by setting the k QAText ur eQp_Hi ghl i ght flag.
When both k QAText ur eCp_Mbdul at e and k QAText ur eCp_Hi ghl i ght are
t r ue, the texture operation is:

aSrc = a * TextureLookUp(u,V).a; /* O opacity test */
rSrc = kd_r * TextureLookUo(u,v).r + ks_r;
gSrc = kd_g * TextureLookUp(u,Vv).g + ks_g;
bSrc = kd_b * TextureLookUp(u,v).b + ks_b;

Theks_r,ks_gandks_b values are used to add a specular highlight to the texture
mapped object. In fact, the equations shown above bear a strong resemblance to the classic
phong illumination model: kd_r / g/ b is the diffuse light, Text ur eLook Up() is the
diffuse color,and ks_r / g/ b is the product of specular light and specular color. This mode
can be described as diffuse color mapping.

To reduce cost, a drawing engine may replace the three specular highlight components
ks_r,ks_gand ks_b withasingle value ks. This replacement is transparent to the
application, except that the specular highlight of texture mapped objects will always be white,
not colored. Drawing engines that use this simplification must negate the

kQAQpt i onal _Text ur eCol or flag.

kQATextureOp_Decal

In the previous examples, the texture map alpha channel (multiplied by the vertex alpha)
provides the transparency of the texture mapped object. This allows the texture map alpha to
control the transparency of the object on a pixel-by-pixel basis.

Setting k QAText ur eQp_Decal changes the interpretation of texture map alpha. When
kQAText ur eOp_Decal s true, the texture map alpha s used to blend between the
texture map color and the interpolated r , g, and b fields from TQAVText ur e.

aT = TextureLookUWo(u, V). a;

rSrc = aT * TextureLookUp(u,v).r + (1 - aT) * r; /* O opacity test */
gSrc = aT * TextureLookUp(u,v).g + (1 - aT) * g;

bSrc = aT * TextureLookUp(u,v).b + (1 - aT) * b;

asrc = a;

To reduce cost, a drawing engine may choose to implement these alpha blends as opacity
tests, i.e..

rSrc = (aT == 1) ? TextureLookUp(u,Vv).r : r;

Apple Computer Confidential 34

Q)/

The complete texture mapping model

If you find reading all this text boring, here's a much more concise description. The following
pseudo-code demonstrates the complete texture mapping model. Features that can be
simplified for cost reduction are noted in the right side comments.

/* Begin by looking up argb fromthe texture nmap */
aSrc = TextureLookUp(u, V). a;
rSrc = TextureLookUp(u,V).r;
gSrc = TextureLookUWo(u, V). g;
bSrc = Text ureLookUp(u, V). b;

if (stateTextureQp & kQAText ureQp_Decal)
{
rsrc
gSrc
bSrc
asSrc
}

el se
{ .

aSrc = aSrc * a; /* O opacity test */
}

if (stateTextureQ & kQAText ureQp_Modul at e)

{
rSrc *= kd_r; /* O kd replaces kd r/g/b */
gSrc *= kd_g;
bSrc *= kd_b;

aSrc * rSrc + (1 - aSrc) *r; /* O opacity test */
asrc * gSrc + (1 - aSrc) * g;

asrc * bSrc + (1 - aSrc) * b;

a;

if (stateTextureQp & kQATextureQp_H ghlight)

rsrc += ks_r; /* O ks replaces ks_r/g/b */
gSrc += ks_g;
bSrc += ks_b;

/* And proceed with transparency bl ending */

kQATextureOp_Shrink

Unlike the texture modes described previously, k QAText ur eOp_Shr i nk does not affect
the per-pixel texture mapping algorithm. Instead, the application sets

kQAText ur eOp_Shr i nk to avoid unwanted texture wrapping. Setting

kQAText ur eQp_Shr i nk to true indicates that the drawing engine should guarantee that
auvrange of 0.0 <= uv <= 1.0 will not cause wrapping.

In theory, a uv range of 0.0 - 1.0 should not cause wrapping anyway. However, in practice the
errors that occur during uv interpolation can cause overflow or underflow of u and v, resulting
in occasional one pixel texture wraps at the 0 and 1 boundaries. Setting

kQAText ur eOp_Shr i nk indicates that these errors should be suppressed.

kQAText ur eQp_Shr i nk is not the same as uv clamping in OpenGL. The difference is
that clamping is designed to accept uv over an arbitrary range, while

kQAText ur eQp_Shr i nk is only effective over an input uv range of 0-1. This means
kQAText ur eOp_Shri nk is less expensive to implement — usually it can be performed

Apple Computer Confidential 35

by slightly compressing the range of u and v before interpolation begins, rather than by
implementing per-pixel clamp tests. However, drawing engines that do support OpenGL-
style clamping can use this feature to implement k QAText ur eQp_Shr i nk.

kQAText ur eOp_Shri nk is typically used by applications which perform uv clamping by
geometry subdivision (rather than by per-pixel clamping).

Using the texture map alpha channel for transparency

Texture maps of pixel types k QAPI xel _ARGB16 0or kQAPi xel _ARGB32 include a per-
pixel alpha channel. When the alpha blending mode is set to k QABI end_Pr eMul ti pl vy,
this alpha channel can be used to control object transparency on a pixel-by-pixel basis.

Because this transparency model assumes that diffuse color has been pre-multiplied by
alpha, every pixel of the texture map must be pre-multiplied by its associated alpha
value before the texture map is created with QATextureMapNew().

This transparency mode models a transparent material (such as glass). For these types of
materials the specular highlight is unaffected by the diffuse transparency of the object. In
other words, setting the alpha channel of the texture to 0 will not make the object vanish —
its specular highlight will still be rendered.

Using the texture map alpha channel as a matte

Setting the transparency blending model to kQABI end_I nt er pol at e allows the per-
pixel texture map alpha channel to be used as a matte that “cuts out" portions of the drawn
geometry. With this blending mode, a per-pixel alpha value of 0 will completely eliminate the
rendered object (including its specular highlight).

Note that the texture pixels' diffuse colors should not be pre-multiplied by their associated
alpha value. This multiplication will be performed by the blending operation.

In this mode, the alpha channel operates as a soft-edge matte. Unfortunately, this means that
per-vertex interpolated alpha cannot be used to model a transparent surface as accurately, as
the specular highlight will be scaled by the alpha value. In some cases this can be corrected
by increasing the brightness of the specular highlight when per-vertex alpha is used.
However, for the general case the current specification doesn't provide a method for
simultaneously rendering accurate transparency while using the texture alpha channel as a
matte. [That's because it would require a lot more hardware! -Eds.]

Rendering with antialiasing

Drawing engines that set the k QAOpt i onal _Ant i al i as flag support antialiased
rendering. The application indicates its preferred level of antialiasing with the
kQATag_Ant i al i as state variable (see Chapter 5); however, the interpretation of this

Apple Computer Confidential 36

g_)/

Qy

variable is the drawing engine's responsibility. For example, consider a drawing engine that
supports antialiased line drawing with no speed penalty, but that slows down 50% when
triangle antialiasing is enabled. For this engine, setting k QATag_Ant i al i as to
kQAANt i al i as_Fast will enable line antialiasing. However, triangle antialiasing will not
be enabled until kQATag_Anti al i as isSetto kQAAnt i al i as_M d.

In RAVE, antialiasing operates independently of the transparency blending mode. This is in
contrast to OpenGL, where specific blending modes must be selected when antialiasing is
enabled.

Using color lookup tables

RAVE supports two pixels types defined in TQAI nagePi xel Type for using color tables,
kQAPi xel _CL4 and kQAPi xel _CL8. These additional pixel types are only valid when
creating a texture or bitmap. The concept of a color table has also been added to the API to
support these new pixel types. TQACol or Tabl eType defines the type of color tables
supported by the APl and TQACo! or Tabl e represents an actual color table.

t ypedef enum TQA magePi xel Type

kQAPi xel _Al phal

kQAPi xel _REB16

kQAPI xel _ARGB16
B=4:0 */

kQAPi xel _R@EB32

kQAPI xel _AREB32
B=7:0 */

kQAPi xel _CL4 , /* 4 bit color |ook up table, always big
endian, ie high 4 bits effect left pixel */

kQAPi xel (L8 =6 /* 8 bit color look up table */
} TQA nagePi xel Type;

0, /* 1 bit/pixel alpha */
/* 16 bit/pixel, R=14:10, G=9:5, B=4:0 */
2, /* 16 bit/pixel, A=15, R=14:10, G=9:5,

TR
=

/* 32 bit/pixel, R=23:16, G=15:8, B=7:0 */
4, [* 32 bit/pixel, A=31:24, R=23:16, G=15:8,

inon
w

1
(4]

t ypedef enum TQACol or Tabl eType

kQACol or Tabl e_CL8_REB32 =0, /[* 256 entry, 32 bit/pixel,
R=23:16, G=15:8, B=7:0 */
kQACol or Tabl e_CL4_REB32 =1 /* 16 entry, 32 bit/pixel,

R=23: 16, G=15:8, B=7:0 */
} TQACol or Tabl eType;

typedef struct TQACol or Tabl e TQACol or Tabl e;

Before using these pixel types you must check the gestalt flags k QA0pt i onal _CL8 and
kQApt i onal _CL4 tosee if they are supported by the current drawing engine.
Additionally you may want to check k QAFast _CL8 and k QAFast _CL4 to see if they are
accelerated. If they are not accelerated it is safe to assume that the texture or bitmap will be
expanded to a pixel type that the drawing engine can render directly.

Note to engine developers: Support for the color lookup table is not required, however the
manager will NOT provide support if the engine does not support it. This means that if an

Apple Computer Confidential 37

application tries to create a texture or bitmap that requires a color table and your engine does
not support color tables the call will return the error k QANot Suppor t ed.

After creating a texture or bitmap of type k QAPi xel _CL4 or k QAP xel _CL8 you must
"bind" a color table created by QACol or Tabl eNewto the new object by calling either
QAText ur eBi ndCol or Tabl e Or QABi t mapBi ndCol or Tabl e. When the object is
drawn the most recently bound color table will be used as the source color data.

Note that a color table must be bound before an object of pixel type k QAP xel _CL4 or
kQAPi xel _CL8 can be drawn. Additionally it is an error to bind a color table of a different
size then the pixel type by which it was created. For example a texture created with

kQAPi xel _CL4 can only be bound to a color table created with k QACL4_RGB32.

The only currently supported format for a color table is RGB32. The engine may color space
reduce this data in order to fit in on-chip memory. When creating a color table you may
optionally specify that index 0 is completely transparent by setting the

t ranspar ent | ndexFl ag totrue.

QAColorTableNew
TQAError QACol or Tabl eNew(
const TQAENgi ne *engi ne, /* Drawi ng engine to use */
TQACol or Tabl eType tabl eType, /* Depth, color space, etc. */
voi d *pi xel Data, /* lookup table entries in pixel Type
format */
| ong transparent | ndexFl ag, /* bool ean, fal se neans no
transparency, true neans index O is transparent */
TQCol or Tabl e **newTlabl e); /* (Qut) New y created TQACol or Tabl e
*
/
QAColorTableDelete
voi d QACol or Tabl eDel et g(
const TQAENgi ne *engi ne, /* Drawi ng engine to use */
TQCol or Tabl e *col or Tabl e) ; /* Previously allocated by

QCol or Tabl eNew() */

QATextureBindColorTable

TQAError QAText ur eBi ndCol or Tabl e(

const TQAENgi ne *engi ne, /* Drawi ng engine to use */

TAText ure *texture, /* Previously allocated by
QATextureNew() */

TQCol or Tabl e *col or Tabl e) ; /* Previously allocated by

QCol or Tabl eNew() */

QABitmapBindColorTable

TQAError QABi t mapBi ndCol or Tabl e(

const TQAENgi ne *engi ne, /* Drawi ng engine to use */
TQABI t map *bi t nmap, /* Previously allocated by

QABi t mapNew() */
TQACo! or Tabl e *col or Tabl e) ; /* Previously allocated by

QCol or Tabl eNew() */

Apple Computer Confidential 38

Chapter 7: Creating Textures and Bitmaps

In some cases a drawing engine may need to store textures and bitmaps in special purpose
memory (e.g. on an accelerator card), rather

than in general purpose system memory. To support this, RAVE provides newand del et e
functions for textures and bitmaps. These functions provide an opportunity for the drawing
engine to copy the data into special purpose memory if necessary(or to perform any other
required setup).

Although these functions allow a drawing engine to copy textures and bitmaps into special
purpose memory, the APl does not require that copying be performed. This avoids
penalizing drawing engines (such as software rasterizers) which can directly use the
application’s texture or bitmap information in system memory.

The TQAImage

Both texture maps and bitmaps are composed of pixel images. The RAVE API describes
these images with a general-purpose datatype called TQAI mage:

struct TQA nage

{
| ong wi dt h; /* Wdth of pixnmap */
| ong hei ght ; /* Height of pixmap */
| ong r owByt es; /* Rowbytes of pixmap */
voi d *pi xmap; /* Pixmap */
s

A bitmap image, or non-mipmapped texture map, is described by a single TQAI nage. A
mipmapped texture is described by an array of TQAI mage, one for each map page.

For some low-cost accelerators, having r owByt es = width * sizeof (pixel) will improve
performance.

Qy

QATextureNew

QAText ur eNew() is used to create a texture map. QAText ur eNew() setsa
TQAText ur e pointer. This TQAText ur e pointer is used by the application to select a
texture map during rendering (see Chapter 5: kQATag_Texture), and in subsequent calls
to QAText ur eDel et e() or QAText ur eDet ach().

TQAError QAText ureNew (

const TQAENgi ne *engi ne, /* Drawi ng engine to use */

unsi gned | ong flags, /* Mask of kQATexture_xxx flags */
TCQAIl nagePi xel Type pi xel Type, /* Depth, color space, etc. */
const TQA mage i mages[], /* Image(s) for texture */

TQAText ure **newlexture); /* (Qut) New TQATexture */

Apple Computer Confidential 39

engi ne is the drawing engine with which this texture will be used.

f | ags is abitmask for which any combination of the following flags may be ORed together:

kQAText ur e_Lock: Load this texture and do not allow it to be swapped out. Usually
this is used by the application to improve performance by locking a texture which will be
heavily used. For software drawing engines this is usually a no-op. Warning: If the
drawing engine cannot meet this request, QAText ur eNew() will fail and return an
error.

kQAText ur e_M pmap: Thisisa mipmapped texture. See below for further
discussion.

pi xel Type indicates the pixel format of the images. It can be any of:

kQAPi xel _RGB16: A 16 bit/pixel map. Red is bits [14:10], green is [9:5], blue is
[4:0]. There is no per-pixel alpha value, so the texture is treated as opaque (although
transparency can still be applied via the triangle's vertex alpha values).

kQAPi xel _ARGB16: Same as k QAPi xel _RGB16, above, except that bit [15] is
used as a per-pixel alpha value. Because it is one bit, alpha can be either 0 or 1. When
alpha is 1, the texture is opaque; when alphais 0, it is completely transparent.

kQAPi xel _RGB32: A 32 bit/pixel map. Red is bits [23:16], green is [15:8], blue is
[7:0]. There is no per-pixel alpha value, so the texture is treated as opaque (just like
kQAPixel _RGB16).

kQAPi xel _ARGB32: Same as k QAPi xel _RGB32, above, except that bits [31:24]
are used as an eight bit per-pixel alpha. An alpha of 255 is opaque, while an alpha of 0 is
completely transparent.

kQAPi xel _CL4:A4hit color lookup table indexed texture. See "Using color lookup
tables" above.

kQAPi xel _CL8: A8 bit color lookup table indexed texture. See "Using color lookup
tables" above.

i mages isan array of one or more TQAI mage structures that point to the texture image.
When kQAText ur e_M pnap isfalse, i mages points to a single TQAI mage which
defines the texture map. Both the wi dt h and hei ght of the TQAI mage must be an even
power of 2, e.g. 64, 128, 256 etc.

Apple Computer Confidential 40

When kQAText ur e_M pmap istrue, i mages points to an array of TQAI mage, one for
each page of the texture mipmap. i mages[0] is the highest resolution page; its width and
height must be an even power of 2. Each subsequent TQAI mage should have a width and
height 1/2 the value of the previous page, with the exception that width and height have a
minimum value of 1. The table below gives example TQAI mage resolutions for a 64x16
mipmapped texture:

Width Height
images[0] 64 16
images[1] 32 8
images[2] 16 4
images[3] 8 2
images[4] 4 1
images[5] 2 1
images[6] 1 1

newText ur e isa pointer to your TQAText ur e pointer. If QAText ur eNew() returns
kQANoOETr r ,newText ur e will be set to point to the new TQAText ur e.

It is not required that QAText ur eNew() copy the pixmap data pointed to by i mages.
Therefore, after calling QAText ur eNew() , the application must not free or reuse the
memory which holds the image pixmaps. If the application needs to free or reuse the
image pixmap memory, it must call QAText ur eDet ach() , described later in this chapter,
before doing so.

Although it isn't required that the image pixmap memory be copied, QAText ur eNew() is
required to copy all necessary information from the TQAI mage structures themselves.
Therefore the application can free or reuse this memory after the QAText ur eNew() call.

For example, to create a 128x256 non-mipmapped texture with 32 bit RGB pixels:

TCQAENgI ne *engi ne;

TQAText ure *texture;

TQAl mage i mage;

| ong pi xmap [256] [128];

i mage. w dth = 128;

i mage. hei ght = 256;

i mage. rowBytes = image.w dth * sizeof (long);
i mage. pi xmap = pi xnap;

i f (QATextureNew (engi ne, kQATexture_None, kQAPRi xel R@B32,
& mage, &exture) != kKQANoErr)

/* Error, map could not be created. */

}

/* "inmage' can now be changed, but _not_ 'pixmap'! */

QAText ur eNew() returns k QANot Suppor t ed if the requested pixel type is not
supported. k QAQut OF Menor y is returned if there isn't enough memory. k QAEr r or will
be returned for other errors, e.g. the texture could not be locked.

Apple Computer Confidential 41

QATextureDelete

QAText ur eDel et e() isused to delete a TQAText ur e:
void QATextureDel ete (

const TQAENgi ne *engi ne, /* Drawi ng engine */
TQAText ur e *texture); /* CGreated by QATextureNew() */

For example, to delete the texture created in the previous example:

AText urebDel ete (engi ne, texture);

QATextureDetach

QAText ur eDet ach() forces the drawing engine to copy the pixmap data which was
originally provided to it by QAText ur eNew() . Once QAText ur eDet ach() hasbeen
called, the pixmap data for the texture's images can be freed or reused safely.

TQAError QAText ureDet ach (

const TQAENgi ne *engi ne, /* Drawi ng engine */

TQAText ure *texture); /[* Oreated by QATextureNew() */
Because QAText ur eDet ach() may have to allocate memory, it returns TQAEr r or to
indicate success or failure. If the return value is not k QANoEr r , then the texture was not
successfully detached.

QABitmapNew

QABi t mapNew() is used to create a bitmap. QABi t mapNew() Setsa TQABI t nap
pointer. This TQABI t mappointer is used to render the bitmap with QADr awBi t map() ,
and in subsequent calls to QABi t mapDel et e() Or QABi t mapDet ach() .

TQAError QABi t mapNew (

const TQAENgi ne *engi ne, /* Drawing engine to use */

unsi gned | ong fl ags, [* Mask of kQABitmap_xxx flags */
TQA nagePi xel Type pi xel Type, /* Depth, color space, etc. */
const TQA mage *i mage, [* 1l mage */

TQABI t nmap **newBi t map) ; /* (Qut) New TQABi tmap */

engi ne is the drawing engine with which this bitmap will be used.

f | ags isabitmask. Currently, only one flag is defined:

kQABi t map_Lock: Load this bitmap and do not allow it to be swapped out. Usually
this is used by the application to improve performance by locking a bitmap which will be
heavily used. For software drawing engines this is usually a no-op. Warning: If the
drawing engine cannot meet this request, QABi t mapNew() Will fail and return an
error.

pi xel Type indicates the pixel format of the images. It can be any of:

Apple Computer Confidential 42

kQAPi xel _Al phal:A1bit/pixel bitmap. Bits that are 0 are fully transparent; bits that
are 1 are rendered in the color passed to QADr awBi t map() .

kQAPi xel _RGB16: A 16 bit/pixel map. Red is bits [14:10], green is [9:5], blue is
[4:0]. There is no per-pixel alpha value, so the texture is treated as opaque (although
transparency can still be applied via the triangle's vertex alpha values).

kQAPi xel _ARGB16: Same as k QAPi xel _RGB16, above, except that bit 15 is used
as a per-pixel alpha value. Because it is one bit, alpha can be either 0 or 1. When alpha is
1, the texture is opaque; when alpha is 0, it is completely transparent.

kQAPi xel _RGB32: A 32 bit/pixel map. Red is bits [23:16], green is [15:8], blue is
[7:0]. There is no per-pixel alpha value, so the texture is treated as opaque (just like
KQAPixel _RGB16).

kQAPi xel _ARGB32: Same as k QAPi xel _RGB32, above, except that bits 31:24 are
used as an eight bit per-pixel alpha. An alpha of 255 is opaque, while an alpha of 0 is
completely transparent.

i mage points to a single TQAImage which defines the bitmap. Width and height may have
any value greater than 0.

newBi t map isa pointer to your TQABI t map pointer. If QABI t mapNew() returns
kQANOET r,newBi t map Will be set to point to the new TQAB t map .

It is not required that QABI t mapNew() copy the pixmap data pointed to by i mage.
Therefore, after calling QABi t mapNew() , the application must not free or reuse the
memory which holds the image pixmap. If the application needs to free or reuse the
image pixmap memory, it must call QABi t mapDet ach() , described later in this chapter,
before doing so.

Although it isn't required that the image pixmap memory be copied, QABi t mapNew() IS
required to copy all necessary information from the TQAI nage structure itself. Therefore
the application can free or reuse this memory after the QABI t mapNew() call.

QABitmapDelete

QABi t mapDel et e() isused to delete a TQABI t map:

void QABi t maplel ete (
const TQAENgi ne *engi ne, /* Draw engi ne */
TQABI t nmap *bitmap); /* Oeated by QABitnapNew() */

Apple Computer Confidential 43

QABitmapDetach

QABi t mapDet ach() forces the drawing engine to copy the pixmap data which was
originally provided to it by QABi t mapNew() . Once QABI t mapDet ach() has been
called, the pixmap data for the bitmap's image can be freed or reused safely.

TQAError QABi t mapDet ach (

const TQAENgi ne *engi ne, /* Draw engi ne */

TQABI t map *bitmap); /* Qreated by QABitmapNew() */
Because QABi t mapDet ach() may have to allocate memory, it returns TQAEr r or to
indicate success or failure. If the return value is not k QANoEr r , then the bitmap was not
successfully detached.

Apple Computer Confidential

44

Chapter 8: Buffering and Synchronization

Q)/

QARenderStart

QARender St ar t () Isused to initialize a TQADr awCont ext before rendering. This
function must always be called before any QADr aw. . . () calls are made.
void QARender Start (

const TQADr awCont ext *dr awCont ext /* Draw context */

const TQARect *di rtyRect, /* Mnimumarea to clear */
const TQADrawContext *initial Context);/* Previously cached context */

Wheni ni ti al Cont ext ISNULL, QARender St art () clears the dr awCont ext z
buffer to 1.0, and the argh buffer to the values contained in the state variables
kQATag_Col or BG a/ r/ g/ b.Wheni ni ti al Cont ext iSnon-NULL,

dr awCont ext isinitialized to the contents of i ni t i al Cont ext . See Using
TQADrawContext as a cache, later in this chapter, for more discussion of

i nitial Context.

di rt yRect indicates the minimum area of the dr awCont ext to initialize. With some
drawing engines, setting di r t yRect to an area smaller than the entire draw context will
improve performance by avoiding unnecessary re-initialization of the draw context. Note,
however, that di r t yRect isonly a hint — the drawing engine may choose to initialize the
entire buffer anyway. Therefore, di r t yRect cannot be used to avoid clearing a region of
the previous image, or to perform incremental rendering. Instead, effects like these should
be performed with i ni t i al Cont ext .

If NULL is passed for di r t yRect , the entire buffer will be initialized.

When OpenGL rendering is being performed, QARender St ar t () performs the function
of gl A ear (). Inthis mode, QARender St art () and QARender End() are no
longer required to occur in matched pairs, and QADr aw. . . () commands may occur at any
time.

QARenderEnd

QARender End() signals the end of rendering to a TQADr awCont ext . For a double-
buffered context, this displays the back buffer. For a single-buffered context, this causes a
call to QAFI ush(), discussed later in this chapter, and signals the drawing engine that
rendering is complete. This signal is then used for releasing locks on framebuffer regions,
removing cursor shields, etc.

After a call to QARender End() has been made, no further QADr aw. . . () calls can be
made until QARender St ar t () has been called again.

Apple Computer Confidential 45

Q)/

Q)/

TQAError QARender End (

const TQADrawCont ext *drawCont ext, /* Draw context */

const TQARect *nmodi fiedRect); /* Mninmumarea to show */
nodi fi edRect indicates the minimum area of the dr awCont ext back buffer to show.
On some drawing engines, setting modi f i edRect toan area smaller than the entire draw
context may improve performance by avoiding unnecessary pixel copying. Note, however,
that modi f i edRect isonly a hint— the drawing engine may choose to show the entire
buffer anyway.

If rodi fi edRect is NULL, the entire back buffer is shown.

QARender End() returnsa TQAEr r or value, which signals whether there have been any
error since the previous call to QaARender St ar t () . If all rendering commands executed
correctly, kQANoEr r is returned. If any rendering call caused an error, an error code other
than k QANoEr r will be returned.

If the return value does not equal k QANoET r , it indicates that an error occurred while
rendering the frame. In this case, the application should assume that the rendered image is
incorrect.

Calling QARender End() automatically causes a call to QAFI ush() .

QARenderAbort

QARender Abor t () causes any asynchronous rendering operations in dr awCont ext to
be aborted immediately, and any queued commands to be discarded. QARender Abor t ()
replaces QARender End() asameans of ending the render to a draw context — the
application should not call both.

QARender Abor t () returnsa TQAEr r or Vvalue; see QARender End() for a discussion
of how to interpret this value.

TQAError QARender Abort (
const TQADrawCont ext *drawContext); /* Draw context */

QAFlush

RAVE permits a drawing engine to buffer as many drawing commands as desired. This means
that, even when drawing to a single-buffered draw context, drawing an object does not
guarantee that the object will become visible on the screen.
TQAError QAFl ush (

const TQADr awCont ext *drawCont ext); /* Draw context */
QAFI ush() causes the drawing engine to begin rendering all buffered commands.
QAFI ush() isnot a blocking call — calling QAFI ush() does not guarantee that
rendering of the buffered commands has completed, merely that it has begun. QAFI ush()

Apple Computer Confidential 46

does guarantee that all the buffered calls will be performed eventually —wait long enough,
and the rendered image will be complete.

QAFI ush() is typically used to occasionally update a long, single-buffered render, so that
the user can see what progress has been made. QAFI ush() has no visible effect ona
double-buffered draw context, although it will initiate rendering to the back buffer.

QAFI ush() returnsa TQAEr r or value; see QARender End() for a discussion of how to
interpret this value.

Calling QaRender End() automatically causes a call to QAFI ush() .

QASync

Q@ASync() isfunctionally identical to QAFI ush() , except that it is blocking — it doesn't
return until all outstanding rendering commands have been completed.
TQAError QASync (

const TQADrawCont ext *drawContext); /* Draw context */
Q@async() should be called whenever completion of all rendering is necessary. For
example, an application should call QaSync () before reading the rendered image to save it
to disk.

QASync() returnsa TQAEr r or Value; see QARender End() for a discussion of how to
interpret this value.

Using TQADrawContext as a cache

To improve performance when a large percentage of the objects in a scene don't change
from frame to frame, RAVE supports draw context caching. To use this feature, the
application first builds a cache by creating a TQADr awCont ext Wwith the

QACont ext _Cache flag, and then drawing the unchanging objects to that context. This
cache can then be passed to QARender St art () asthei ni ti al Cont ext — basically
this means the QARender St ar t () will initialize the buffer to the image stored in the
cache, rather than to a blank screen.

For example, consider a (rather trivial) application where two triangles, t 1 and t 2, remain
constant from frame to frame, but triangle t 3 changes every frame This could be coded as:

Apple Computer Confidential 47

g.)/

TQAVGour aud t1[3], t2[3], t3[3];
TQADr awCont ext *cache, *draw;

/* Oreate TQADrawCont exts (we shoul d be checking for errors!) */
QADr anCont ext New (devi ce, rect, NUL, engine, QAContext_Cache, &cache);
QADr anCont ext New (devi ce, rect, NUL, engine,

QCont ext _Doubl eBuf fer, &draw);

/* Oeate the cache context */

QARender Start (cache, NULL, NULL);

QADr awTri GCour aud (cache, & 1[0], & 1[1], & 1[2], kQATri Fl ags_None);
QADr awTri Gouraud (cache, & 2[0], & 2[1], & 2[2], kQATri Fl ags_None);
QRender End (cache, NULL);

/* Render a bunch of franes using the cache and noving tri3 only */
whi | e (rovi ngTri angl e3)
{
nyMoveTri (t3);
QARender Start (draw, NULL, cache);
QADr awTri Gouraud (draw, & 3[0], & 3[1], & 3[2], kQATri Fl ags_None);
QARender End (draw, NULL);
}

A drawing engine is not required to support caching; if it doesn't, it should return NULL when
the QACont ext _Cache flag is passed to QADr awCont ext New() .

Cache contexts must be singled buffered, and must be created with the same TQADevi ce
and TQARect parameters as the draw context with which they will be used.

Apple Computer Confidential 48

Chapter 9: Adding a New Drawing Engine

Developing a new drawing engine and adding it to RAVE requires seven steps:

1: Write methods for the public calls in TQADr awCont ext (set I nt,set Fl oat ,
dr awPoi nt etc.). This methods are all prototyped in RAVE.h, e.g. the set | nt
method is a function pointer of type TQASet I nt . Writing these methods is most of
the work; fortunately, RAVE allows you to begin with a minimal feature set so you can get
something running quickly.

2. Write a TQADr awPr i vat eNewand TQADr awPr i vat eDel et e method for your
drawing engine's private draw context data. This is where you store your state variables,
and any other private data necessary for rendering a TQADr awCont ext . These
methods will be called by the QADr awCont ext New() and
QADr awCont ext Del et e() functions. Because these aren't public methods, their
prototypes are in RAVE_system.h (which is used only for drawing engine development).

3. Write TQAText ur eNew, TQAText ur eDet ach, TQAText ur eDel et e,
TQABI t mapNew, TQABI t mapDet ach,and TQABi t mapDel et e methods. These
prototypes are in Drive3D_system.h. These methods are called by their associated
public functions in RAVE.h, e.g. QAText ur eNew() calls your TQAText ur eNew
method.

4: Write a TQAENgi neGest al t method for your engine; its functionality is the same as
QAENgi neGest al t (). You'll need to get an Apple-assigned vendor | Dnumber to
service the k QAGest al t _Vendor | Drequest. The prototype is in
Drive3D_system.h.

5: Write a TQAENngi neDevi ceCheck method. RAVE will call this method to determine
which TQADevi ces your drawing engine supports. Yes, same place for the prototype.

6: Writea TQAENgi neGet Met hod method. The RAVE manager will call this method to
retrieve your engine's methods during registration. This method is used only for the
engine methods (the draw context methods are set by your TQADr awPr i vat eNew
function).

7. Finally, build all your code as a shared library, and include an initialization call to
QARegi st er Engi ne() , towhich you pass your TQAEngi neGet Met hod
method. This call registers your drawing engine with the RAVE manager.

Apple's 3D drawing engine development kit includes the RAVE_system.h include file, and
code examples for all of these steps. The remainder of this chapter provides more detail on
each of the steps described above.

Apple Computer Confidential 49

Qy

The public TQADrawContext methods

The public TQADr awCont ext structure, defined in RAVE.h, holds function pointers
which point to your engine's drawing methods. These function pointers are called whenever
the application uses one of the drawing macros, such as QADr awPoi nt (), defined in
RAVE.h. TQADr awCont ext also hasa pointer (dr awPr i vat e) to your engine's private
data for this TQADr awCont ext . Thereisalsoa ver si on field, which is set by the RAVE
manager. In future releases of RAVE, this field will be used to signal any additions to the
TQADr awCont ext Sstructure.

struct TQADr awCont ext

{
TQADr awPri vat e

*drawPri vat e;

const TQAVersi on ver si on;
TQASet Fl oat set Fl oat ;
TQASet | nt setint;
TQASet Pt r sethtr;
TQAGet Fl oat get Fl oat ;
TQAGet I nt getint;
TQAGet Pt r gethtr;
TQADr awPoi nt dr awPoi nt ;
TQADr awLi ne dr awLi ne;

TQADr awTr i Gour aud
TQADx awTr i Text ure

dr awlr i Gour aud;
drawTri Text ure;

TQADr awWQour aud dr awMGour aud;
TQADr awNText ur e dr awMText ur €;
TQADr awBi t map dr awBi t map;
TQARender St art render Start;
TQARender End r ender End;
TQARender Abor t r ender Abort ;
TQAFI ush flush;
TQASync sync;

TQASubm t Verti cesGour aud
TQASubm t Verti cesTexture
TQADr awTr i MeshGour aud
TQADr awTr i MeshText ur e

subm t Verti cesGour aud;
subm t Verti cesText ure;
dr awTr i MeshGour aud;
dr awTr i MeshText ur e;

}s

The TQADr awCont ext is passed as the first parameter to all of your draw context
methods. This allows your functions to retrieve the dr awPr i vat e pointer, to which all of
your private data is attached. For most of your functions, the TQADr awCont ext pointer is
passed as const . This indicates that your function must not alter any field of the

TQADr awCont ext . Respect the const declaration — if you override it and change
anything in the TQADr awCont ext structure, you will break many apps (including
QuickDraw 3D).

Three functions receive the TQADr awCont ext Withouta const declaration:

QASet Fl oat (), Q@ASet | nt () and QASet Pt r () . These functions are permitted to
change methods in the TQADr awCont ext . For example, this allows TQASet | nt () to
change the dr awTr i Text ur e method depending on the current state of the
kQATag_Text ur eQp State variable.

When your TQASet | nt / Fl oat / Pt r () methods need to change a draw context
method pointer, they should call QARegi st er Dr awivet hod() . This notifies the

Apple Computer Confidential 50

QJ’

manager that a method has been changed. Do not directly change the method pointer in the
TQADr awCont ext structure.

To demonstrate how these methods are called, consider the following application code that
draws a point to dr awCont ext :

TQADr anCont ext *dr awCont ext ;
TQAVGour aud vertex;

QADr awPoi nt (drawCont ext, &vertex);

From this source code, the C preprocessor macro substitution generates the code shown
below, which calls your engine's dr awPoi nt method:

(drawCont ext) - >drawPoi nt (drawCont ext, &vertex);

All of the method function pointers in TQADr awCont ext are defined in RAVE.h. For
example, the TQADr awPoi nt function type is:
typedef void (*TQADrawPoi nt) (

const TQADrawCont ext *drawCont ext, /* Draw context */
const TQAVCGour aud *V); /* Vertex */

With two exceptions, your drawing engine must implement a function for all of the methods
in TQADr awCont ext . The first exception is for drawing engines that don't support texture
mapping. These don't need to provide dr awTr i Text ur e Or dr awVText ur e methods.
The second exception is for the dr awvGour aud and dr awvText ur e methods. If your
application does not provide these, the RAVE manager will insert generic functions that
decompose these calls into multiple calls to your dr awPoi nt / Li ne/ Tri functions.

The pseudo-code below shows an example function My Dr awPoi nt () , which matches the
TQADr awPoi nt template:

void MyDrawPoi nt (
const TQADrawCont ext *drawCont ext, /* Draw context */
const TQAVGour aud *v) /* Vertex */

M/Pri vat eDat a *nyDat a; /* Actual type of ny private context */

/* Cast generic drawPrivate pointer to ny actual private data type */
nyData = (M/PrivateData *) drawContext->drawPri vat e;

/* Call ny Z-buffered pixel draw function with xyz and argb, and
* also pass it the current Z function, which is stored in ny

* private draw context data structure. This isn't a conplete

* inplementation! (I really shoul d be checking kQATag_Wdth, for
* exanple) */

M/DrawPi xel WthZ (v->x, v-y, v->z, v->a, Vv->r, v->g, V->b,
nyDat a- >st at eVari abl e [kQATag_ZFunction]);

Apple Computer Confidential 51

Q)/

The private TQADrawContext new and delete
functions

Once you have written all your TQADr awCont ext public methods, the next step is to write

aTQADr awPr i vat eNewmethod. This method is prototyped in Drive3D_system.h:
typedef TQAError (*TQADrawPrivateNew) (

TQADr anCont ext *newDr awCont ext,/* Draw context to initialize */

const TQADevi ce *device,/* Target device */

const TQARect *rect, /* Target rectangle (device coordinates) */

const TQMip *clip, [/* 2Dclip region (or NUL) */

unsi gned | ong flags); /* Mask of kQAContext xxx */
This method will be called by the RAVE manager when the application creates a new drawing
context with QADr awCont ext New() . The pseudo-code below shows an example
function MyDr awPr i vat eNew() , which matches the TQADr awPr i vat eNew
template:
TQAError MyDrawPri vat eNew (

TQADr anCont ext *dr awCont ext ,

const TQADevi ce *devi ce,

const TQARect *rect,

const TQMdip *clip,
unsi gned | ong flags)

M/PrivateData *nyDat a;

/* Allocate a new M/PrivateData structure, and store it
* in dranwCont ext->drawPri vate. */

nyData = M/DataNew (...);

drawCont ext - >drawPrivate = (TQADrawPrivate *) nyDat a;
if (! nyData)

{

return (kQQut & Menory) ;

/* Set the nethod pointers of drawContext to point to ny
* draw net hods. */

newDr awCont ext - >set Fl oat = MySet Fl oat ;
newDr awCont ext - >set I nt = MySetInt;

.r.e.turn (KQANoErr) ;
}
RAVE initializes all the fields of the TQADr awCont ext to NULL before calling your
TQADr awPr i vat eNewmethod. This allows RAVE to recognize and replace functions
that you didn't initialize (e.9. dr awwGour aud Or dr awVText ur e).

Because your drawing engine initializes the TQADr awCont ext methods, you can load
different methods depending on the type of draw context being created. For example, you
may have a different line drawing function for 16 bits/pixel than for 32 bits/pixel. By testing
the depth of the target TQADevice and then loading the method that matches that depth,
you can avoid having to test the display depth every time your line drawing code is called.

Apple Computer Confidential 52

In addition to your TQADr awPr i vat eNewmethod, you must implement a

TQADr awPr i vat eDel et e method which is called by QADr awCont ext Del et e() .
This method must free any memory or resources allocated by your

TQADr awPr i vat eNew. For example:

void M/DrawPri vateDel ete (
TQADr awPri vat e *drawPri vat e)

M/Dat aDel ete ((M/PrivateData *) drawPrivate);
}
Your new and delete method function pointers (MyDr awPr i vat eNew() and
My/Dr awPr i vat eDel et e() , in the examples above) are communicated to RAVE during
the registration process; see Registering your drawing engine, later in this chapter, for
more information.

Texture and Bitmap New/Detach/Delete

These methods are called by the public RAVE functions which manage textures and
bitmaps, e.g. QAText ur eNew() Wwill call your TQAText ur eNewmethod. You must
always implement TQABi t mapNew, TQABI t mapDet ach and TQABI t mapDel et e
methods. If your drawing engine supports texture mapping, you must also implement
TQAText ur eNew, TQAText ur eDet ach,and TQAText ur eDel et e.

These methods are functionally identical to the public functions, except they don't include
the engi ne parameter (engi ne is necessary in the public call so the manager knows to
which engine the call should be passed).

Like TQADr awPr i vat eNew and TQADr awPr i vat eDel et e, these methods are
communicated to RAVE during the registration process, discussed later.

Adding Gestalt

To allow the application to evaluate your drawing engine, you must register a
TQAENgi neGest al t method. This is prototyped in Drive3D_system.h:

typedef TQAError (*TQAENngi neGestalt) (
TQCGestal t Sel ector selector, /* Gestalt paraneter being requested */
voi d *response);/* Buffer that receives response */

The TQAENngi neGest al t method is functionally identical to the
QAENgi neGest al t () function: It receivesasel ect or,andreturnsar esponse.

For example, assume your drawing engine supports texture mapping, and accelerates
Gouraud shading and line drawing. Apple has assigned you a vendor | Dof 5, and your
internal engi nel Dnumber is 1001. A suitable TQAENgi neGest al t function would be:

Apple Computer Confidential 53

m)

TQAError M/Engi neGestalt (
TQAGestal t Sel ector selector, /* Gestalt paraneter being requested */
voi d *response) /* Buffer that receives response */

const static char *nyEngi neName = "M/ Engi ne Nane";
switch (sel ector)

case kQACestal t_(pti onal Feat ures:
*((unsigned | ong *) response)
br eak;
case k@AGestalt_Fast Feat ures:
*((unsigned long *) response) = kQAFast _Line | kQAFast _Qour aud;
br eak;
case k@Gestalt_Vendor | D
*((long *) response) = 5;
br eak;
case k@AGestalt_Engi nel D
*((long *) response) = 1001,
br eak;
case k@AGestalt_Revi sion:
*((long *) response) = 0;
br eak;
case kQAGestalt_ASd | NaneLengt h:
*((long *) response) = strlen (nyEngi neNane);
br eak;
case k@AGestal t_ASA | Nane:
strcpy (response, nyEngi neNane);
br eak;
defaul t: /* Mist flag unrecogni zed sel ectors!!! */
return (kQAParantrr);

}
return (kQANoErr);

KQApt i onal _Text ure;

Whenvendor | Dand engi nel Dare identical for two drawing engines, RAVE registers
only the most recent version. This decision is made by examining the r evi si on number
fromyour TQAEngi neGest al t method —a larger number is newer.

Your TQAENgi neGest al t method function pointer is communicated to RAVE during
drawing engine registration.

Checking the TQADevice

RAVE needs a method to determine if your drawing engine can draw to a specific
TQADevice. This is performed by the TQAEngi neDevi ceCheck method, prototyped in
Drive3D_system.h:
typedef TQAError (*TQAENngi neDevi ceCheck) (

const TQADevi ce *devi ce) ; /* Target device */
Your TQAENgi neDevi ceCheck method should simply return k QANoEr r if you can
draw to the indicated TQADevice, or k QAET r or if you can not.

Apple Computer Confidential 54

Registering your drawing engine

Congratulations! You have now written all the RAVE methods required to register your
drawing engine. The final step is to call QARegi st er Engi ne() , a RAVE manager
function prototyped in Drive3D_system.h:

TQAError QARegi st er Engi ne (
TQAENgi neGet Met hod engi neGet Met hod) ; /* get Met hod net hod */

engi neGet Met hod iS a function in your engine which the RAVE manager can query to
retrieve your engine methods?. For the engine examples we've given in this section, a
suitable TQAENgi neGet Met hod function would be:

TQAError MyENngi neGet Met hod (
TQAENgi neMet hodTag net hodTag, /* Method being requested */
TQAENngi neMet hod * et hod) /* (Qut) Method */

swi t ch (et hodTag)
{

case kQADr awPri vat eNew
et hod- >dr awPr i vat eNew = M/Dr awPr i vat eNewy;
br eak;

case kQADr awPri vat eDel et e:
et hod- >dr awPr i vat eDel et e = MyDrawPri vat eDel et e;
br eak;

case kQAEngi neCheckDevi ce:
et hod- >engi neCheckDevi ce = M/Engi neCheckDevi ce;
br eak;

case kQAEngi neGestalt:
nmet hod- >engi neGestalt = M/Engi neGestal t;
br eak;

case kQABi t mapNew:
net hod- >bi t napNew = M/Bi t mapNew;
br eak;

case kQABi t mapDet ach:
et hod- >bi t rapDet ach = MyBi t mapDet ach;
br eak;

case kQABi t mapDel et e:
et hod- >bi t napDel et e = MyBi t maplel et €;
br eak;

defaul t:
return (kQANot Supported);

}

return (kQANoErr);
}
There are two ways you can register your engine. During your initial debug, you may find it
convenient to link your drawing engine with your test application, rather than build it as a
shared library. When working this way, you will need to explicitly call
QARegi st er Engi ne() as part of your application initialization code.

Once your drawing engine is stable, you can switch to building it as a shared library. When the

RAVE manager shared library is loaded by an application, it searches for and loads RAVE

1 The drawing methods do not use this mechanism; see the earlier section on TQADrawPrivateNew

for more discussion.

Apple Computer Confidential

drawing engines as part of its initialization process. To have RAVE load your drawing engine,
you must:

Build your drawing engine as a shared library.
Set the creator of your shared library to ‘tnsl'.
Have your shared library's initialization method call QARegi st er Engi ne() .

Put your drawing engine either in the current folder (the first location searched), or the
Extensions folder.

Apple Computer Confidential 56

Chapter 10: Porting OpenGL Hardware

This chapter discusses some specific topics of interest to IHVs who are implementing a
RAVE drawing engine for hardware based on an OpenGL rasterization model.

Transparency

RAVE supports two transparency models, pre-multiplied and interpolated2. The equations for
these two blending modes are shown below (see Chapter 6: Rendering transparency for a
more detailed discussion of these modes). Dst indicates the data previously in the frame
buffer; Sr c indicates the new incoming data:

Pre-multiplied Interpolated

a=1-(1-aSc) * (1 - abst) a=1-(1-aSc) * (1 - abst)

r =rSrc + (1 - aSrc) * rDst r =asrc * rSrc + (1 - aSrc) * rDst
g =9gSrc + (1 - aSrc) * gDst g =aSrc * gSrc + (1 - aSrc) * gDst
b =bSc + (1- aSrc) * bDst b =aSc * bSrc + (1 - aSrc) * bDst

OpenGL provides both of the blend functions shown above for r gb — however, the a blend
function (which is the same for both modes) is not supported. This means that neither of
these transparency models can be directly implemented by OpenGL hardware.

a It is possible, however, to emulate the RAVE transparency models on OpenGL hardware.
Two methods are described here, one for frame buffers that don't store an alpha channel,
and one for frame buffers that do.

RGB blending only

Drawing engines which don't store an alpha channel can easily implement these transparency
models by simply ignoring the alpha channel formula. RAVE's transparency modes are then
equivalent to the following OpenGL blending modes:

Pre-multiplied:
gl Bl endFunc (Q._ONE, GL_CONE_M NUS_SRC ALPHA) ;

Interpolated:

gl Bl endFunc (G_SRC ALPHA, GL_ONE_M NUS_SRC ALPHA);

Drawing engines which use this method should not set the

kQApt i onal _Bl endAl pha bit of the opt i onal Feat ur es parameter returned by
QAENngi neGest al t (). Thisindicates to the application that blending of the alpha
channel is not supported.

2 |f ZcTag_Blend has been set to ZcBlend_OpenGL, blending is performed according to the
OpenGL™ specification (presumably this won't cause any porting difficulty).

Apple Computer Confidential 57

ARGB blending via multiple passes

It's possible to correctly perform the transparency blending function for both r gb and a by
designing the drawing engine to rasterize each transparent object more than once, each time
altering the blending mode, object alpha and buffer write masks. The pseudo-code below
demonstrates this method:

/* First pass. Performrgb blending. Dsable Z buffer wites and
* al pha channel wites during this pass */

gl Col or Mask (true, true, true, false); [/* Dsable alpha wite */
gl Dept hivask (fal se); /* Dsable Z wite */
if (premultpliedTransparency)

gl Bl endFunc (GL_ONE, GL_ONE_M NUS_SRC ALPHA) ;
}

el se
gl Bl endFunc (Q._SRC ALPHA, GL_ONE_M NUS_SRC ALPHA) ;
< render object >

/* Second pass. During this pass we set the frame buffer al pha
* to (1-abst)*(1-aSrc). This requires re-rendering the object
* with its al pha changed to 1-a, and sone creative use of the
* bl endi ng nodes */

gl Col or Mask (false, false, false, true); /* Wite alpha only */
gl Dept hivask (fal se); /* Disable Z wite */
gl Bl endFunc (GQ._ONE_M NUS DST_ALPHA, A._ZERO;

< render object with al pha replaced with 1-a >

/* Third pass replaces the (1-abst)*(1-aSrc) result in the al pha channel
with the final result of 1-(1l-abst)*(1-aSrc). This requires
re-rendering the object with its al pha val ues changed to 1, and

yet nore creative use of the blending nodes. If desired, Z buffer
wites are enabl ed during this pass. */

* X X X X

gl Col or Mask (false, false, false, true); /* Wite alpha only */
gl Dept hivask (true); /* Enable Z wite */
gl Bl endFunc (Q._ONE_M NUS DST ALPHA, A._ZERO;

< render object with alpha replaced with 1 >

Texture mapping

RAVE supports several different texture mapping modes, the choice of which is controlled
by the k QATag_Text ur eQp state variable. This bit mask variable can be set to any
combination of the k QAText ur eQp_Mbdul at e, kQAText ur eQp_Hi ghl i ght and
kQAText ur eOp_Decal flags. Chapter 6: Rendering with texture mapping provides a
detailed description of these modes; the sections below describe how to emulate these
modes on an OpenGL rasterizer.

Apple Computer Confidential 58

g_)/

Qy

Qy

kQATextureOp_Modulate

kQAText ur eQp_Modul at e can be approximated by the GL_MODULATE mode,
using the kd_r , kd_g and kd_b values from the TQAVText ur e data as the modulating
color. Note that there is a slight functional difference, as GL_MODULATE does not allow the
modulating color magnitude to be greater than 1.0, a feature that RAVE supports to provide
improved image realism.

It is recommended that new hardware designs support a maximum modulation amplitude
greater than 1.0 (2.0 seems to be a sufficient).

kQATextureOp_Highlight

kQAText ur eQp_Hi ghl i ght can be emulated by performing two rendering passes. The
first pass renders the texture mapped object (optionally with GL_MODULATE), while the
second pass adds the highlight value. Pseudo-code for this is shown below:

/* First pass. Render the texture mapped object. I|f

* kQAText ure_Mddul ate is true, use the kd_r, kd g and kd_b val ues
* fromthe TQAVTexture data to nmodul ate the texture color via

* @_MXDULATE. Z buffer wite is disabled during this pass. */

gl Dept hivask (fal se); /* Dsable Z wite */
< render texture mapped object >

/* Second pass. Re-render the object as Gouraud shaded, with

* the ks_r, ks_g and ks_b values fromthe TQAVTexture data as the
* object color. Re-enable the Z wite during this pass, and

* set the blend function to additive rendering. */

gl Dept hvask (true); /* Enable Z wite */
gl Bl endFunc (G._ONE, G._ONB); /* Add highlight color */
< render highlight color as a Gouraud shaded object >

kQATextureOp_Decal

When kQAText ur eOp_Decal istrue and kQAText ur eOp_Modul at e isf al se,
the OpenGL GL_DECAL mode is equivalent to the RAVE k QAText ur eQp_Decall
mode. IfkQAText ur eQp_Hi ghl i ght ist r ue, an additional rendering pass will be
required to add the highlight color, as shown in the previous section.

Unfortunately, we have not yet been able to find a reasonable combination of OpenGL
commands which accurately renders the case when both k QAText ur eQp_Decal and
kQAText ur eOp_Mvdul at e are t r ue. Vendors should determine for themselves if
there is some means of making their hardware implement this mode correctly. If not, we
recommend that k QAText ur eQp_Decal take precedence over

kQAText ur eOp_Modul at e —ifbotharet r ue, kQAText ur eCp_Modul at e
should be ignored.

Note that ignoring k QAText ur eOp_Modul at e is not the ideal solution — Apple
recommends that vendors modify their future products to support these modes
simultaneously.

Apple Computer Confidential 59

[One simple modification to an OpenGL rasterizer that enables simultaneous

kQAText ur eQp_Decal and kQAText ur eCp_Modul at e isto provide a switch that
inverts the alpha opacity test of the texture map. This allows two rendering passes to be
performed, one for the pixels covered by the opaque regions of the texture map, and the
other for the pixels which are rendered with the Gouraud interpolated color.]

Apple Computer Confidential

60

Index

alpha channel 36

antialiasing 36

Apple engine 6
back-to-front 31
background color 20

cache 47

color lookup tables 37
cursor shields 45

diffuse color mapping 34
dirtyRect 45
Drive3D_system.h 49
front-to-hack 32
glBlendFunc 57
GL_DECAL 59
GL_MODULATE 59
initialContext 45, 47
interpolated 31
kQAAntiAlias_Best 22
kQAAntiAlias_Fast 22
kQAAntiAlias_Mid 22
kQAAntiAlias_Off 22
kQABiItmap_Lock 42
kQABIend_Interpolate 22, 32, 36
kQABIlend_OpenGL 22
kQABIlend_PreMultiply 22, 31, 36
kQAContext_Cache 15
kQAContext_DeepZ 15
kQAContext_DoubleBuffer 15
kQAContext_NoZBuffer 15
kQADeviceGDevice 10, 11
kQADeviceMemory 10, 11
kQAFast_Antialiasing 13
kQAFast_Blend 13
kQAFast_Gouraud 13
kQAFast_Line 13
kQAFast_Texture 13
kQAFast_TextureHQ 13
kQAFast_ZSorted 13

kQAGestalt_ASCIIName 12
kQAGestalt_ASClINameLength 12
kQAGestalt_EnginelD 12
kQAGestalt_FastFeatures 12
kQAGestalt_OptionalFeatures 12
kQAGestalt_Revision 12
kQAGestalt_VendorID 12, 49
kQANotSupported 41
kQAOptional_Antialias 13, 22, 36
kQAOptional_Blend 13, 22, 31
kQAOptional_BlendAlpha 13, 57
kQAOptional_DeepZ 13
kQAOptional_NoClear 13
kQAOptional_OpenGL 13, 32
kQAOptional_PerspectiveZ 13, 20, 21, 22
kQAOptional_Texture 13, 23, 24
kQAOptional_TextureColor 13, 34
kQAOptional_TextureHQ 13
kQAOptional_ZSorted 13, 31, 32
kQAPerspectiveZ Off 22
kQAPerspectiveZ_On 22
kQAPixel_Alphal 43
kQAPixel_ARGB16 40, 43
kQAPixel_ARGB32 40, 43
kQAPixel_CL4 40

kQAPixel_CL8 40
kQAPixel_RGB16 40, 43
kQAPixel_RGB32 40, 43
kQATag_Antialias 22, 36
kQATag_Blend 22
kQATag_ColorBG_a 20
kQATag_ColorBG_b 20
kQATag_ColorBG g 20
kQATag_ColorBG_r 20
kQATag_PerspectiveZ 22
kQATag_Texture 23, 39
kQATag_TextureFilter 23
kQATag_TextureOp 24

Apple Computer Confidential 61

kQATag_Width 20
kQATag_ZFunction 20
kQATag_ZMinOffset 21
kQATag_ZMinScale 21
kQATextureFilter_Best 23
kQATextureFilter Fast 23
kQATextureFilter_Mid 23

kQATextureOp_Decal 24, 34, 59
kQATextureOp_Highlight 24, 34, 59
kQATextureOp_Modulate 24, 33, 59

kQATextureOp_None 33
kQATextureOp_Shrink 24, 35
kQATexture_Lock 40
kQATexture_Mipmap 40, 41
kQATriFlags_Backfacing 28
kQATriFlags_None 28
kQAVertexMode_Fan 29
kQAVertexMode _Line 29
kQAVertexMode_Point 29
kQAVertexMode_Polyline 29
kQAVertexMode_Strip 29
kQAVertexMode_Tri 29
kQAZFunction_GE 20
kQAZFunction_GT 20
kQAZFunction_LE 20
kQAZFunction_LT 20
kQAZFunction_NE 20
kQAZFunction_None 20
kQAZFunction_True 20
macros 10, 51

matte 36

methods, private 49
methods, public 49
modifiedRect 46
newDrawContext 15
OpenGL 7, 57

pixel depth 17
pre-multiplied 31

preferred drawing engine 14
QABitmapDelete 43
QABitmapDetach 44
QABitmapNew 42
QAContext_Cache 47

QADeviceGetFirstEngine 14
QADeviceGetNextEngine 14
QADrawBitmap 31
QADrawContextDelete 16
QADrawContextNew 15
QADrawLine 28
QADrawPoint 28
QADrawTriGouraud 28
QADrawTriTexture 28
QADrawVGouraud 29
QADrawVTexture 29
QAEngineGestalt 11
QAFlush 46

QAGetFloat 19
QARegisterEngine 55
QARenderAbort 46
QARenderEnd 45
QARenderStart 45

QASetInt 19
QASubmitVerticesGouraud 30
QASubmitVerticesTexture 30
QASync 47
QATextureDelete 42
QATextureDetach 42
QATextureNew 39
QuickDraw 3D 7

RAVE.h 9

re-positioning 16

response 12

revision 54

shared library 55

state variables 18

tag 18

texture mapping 32, 58
TQABitmap 42
TQABItmapDelete 49
TQABItmapDetach 49
TQABItmapNew 49
TQADevice 10
TQADeviceMemory 10
TQADeviceType 10
TQADrawContext 9, 50
TQADrawPrivateDelete 49, 53

Apple Computer Confidential

62

TQADrawPrivateNew 49, 52
TQAENgineDeviceCheck 49, 54
TQAEngineGestalt 49, 53
TQAEngineGetMethod 49
TQAImage 39
TQAPIatformDevice 10
TQATagFloat and TQATagPtr 18
TQATagInt, 18

TQATexture 39
TQATextureDelete 49
TQATextureDetach 49
TQATextureNew 49
TQAVGouraud 26
TQAVTexture 27

transparency 31, 36, 57
transparency, Z sorted 32
TriMesh 29

uv clamping 35

width 20

Apple Computer Confidential

63

