
QuickDraw™ 3D Renderer
Acceleration Virtual Engine

RAVE
A 3D Graphics Hardware Abstraction Layer

Engineering Reference Specification

Version 1.0.5
March 28, 1996

Brent Pease
Technical Lead, QD3D RAVE, IMG

ALink: PEASE
email: brent@apple.com

Mike Kelley
Manager, Dynamic Media, , IMG

ALink: KELLEY.M
email: mwk@apple.com

This page is intentionally
almost blank

Contents
Chapter 1: Organization of this Document..1

Chapter 2: Background..3
What is a low level 3D driver?...3
What is not included?...3
Who are the users?...3

Chapter 3: Functional Overview..5
Plug-and-play for 3D drawing engines..5
Designed for speed..5
Minimum feature set..6
Optional features...6
Apple-supplied drawing engine...6
Multiple device support...7
QuickDraw 3D..7
OpenGL..7
API naming conventions..8

Chapter 4: The Drawing Context..9
The TQADevice..10
Using TQADevice to draw to memory..11
Using TQADevice to draw to a GDevice..11
Drawing across multiple GDevices..11
QAEngineGestalt..11
Gestalt Optional Features...13
Gestalt Fast Features...13
Choosing a drawing engine...14
Creating a TQADrawContext...15
Deleting a TQADrawContext...16
Re-positioning a TQADrawContext...16
2D clipping a TQADrawContext...16
Supporting different pixel depths...17

Chapter 5: State Variables...18
Setting a variable with QASetFloat/QASetInt/QASetPtr..19
Reading a variable with QAGetFloat/QAGetInt/QAGetPtr...19
Required state variables...20
kQATag_ColorBG_a/r/g/b..20
kQATag_Width...20
kQATag_ZFunction..20
kQATag_ZMinOffset..21

Apple Computer Confidential i

Optional state variables..22
kQATag_Antialias...22
kQATag_Blend..22
kQATag_PerspectiveZ...22
kQATag_Texture..23
kQATag_TextureFilter...23
kQATag_TextureOp..24
OpenGL state variables..25

Chapter 6: Drawing..26
TQAVGouraud data type...26
TQAVTexture data type..27
QADrawPoint..28
QADrawLine..28
QADrawTriGouraud..28
QADrawTriTexture...28
QADrawVGouraud..29
QADrawVTexture..29
TriMesh..29
QASubmitVerticesGouraud...30
QASubmitVerticesTexture..30
QADrawTriMeshGouraud...30
QADrawTriMeshTexture..30
QADrawBitmap..31
Rendering with transparency...31
Z sorted transparency..32
OpenGL blending modes...32
Rendering with texture mapping..32
kQATextureOp_None..33
kQATextureOp_Modulate...33
kQATextureOp_Highlight...34
kQATextureOp_Decal..34
The complete texture mapping model..35
kQATextureOp_Shrink...35
Using the texture map alpha channel for transparency..36
Using the texture map alpha channel as a matte..36
Rendering with antialiasing...36
Using color lookup tables..37
QAColorTableNew..38
QAColorTableDelete...38
QATextureBindColorTable..38
QABitmapBindColorTable..38

Apple Computer Confidential i i

Chapter 7: Creating Textures and Bitmaps..39
The TQAImage...39
QATextureNew..39
QATextureDelete...42
QATextureDetach..42
QABitmapNew...42
QABitmapDelete...43
QABitmapDetach..44

Chapter 8: Buffering and Synchronization...45
QARenderStart...45
QARenderEnd..45
QARenderAbort...46
QAFlush...46
QASync...47
Using TQADrawContext as a cache...47

Chapter 9: Adding a New Drawing Engine...49
The public TQADrawContext methods...50
The private TQADrawContext new and delete functions...52
Texture and Bitmap New/Detach/Delete...53
Adding Gestalt..53
Checking the TQADevice..54
Registering your drawing engine..55

Chapter 10: Porting OpenGL...57
Transparency..57
RGB blending only..57
ARGB blending via multiple passes...58
Texture mapping...58
kQATextureOp_Modulate...59
kQATextureOp_Highlight...59
kQATextureOp_Decal..59

Index...61

Apple Computer Confidential i i i

Apple Computer Confidential iv

Chapter 1: Organization of this Document
This document is an Engineering Requirements Specification (ERS) for the Power
Macintosh low level 3D driver, called RAVE. Version 0.2 of this document was a draft version
distributed to third parties for review. Version 0.9 was a major revision which incorporated
third party feedback.

The 1.0 release of RAVE described here matches implementation used by the QuickDraw™
3D 1.0 interactive renderer. All portions of this document can be considered final, except for
the extended features and modes used for OpenGL compatibility. These are still under
review.

The 1.0.2 release is identical to 1.0, except that QARenderEnd(), QAFlush(),
QASync(), and QARenderAbort() now return an error code.

◊ The 1.0.5 release changed the name from Tinsel Town to RAVE and adds new functionality
which includes the TriMesh and color lookup tables. The TriMesh is described in Chapter 6
and color lookup tables are also described in chapter 6 under the section "Using color
lookup tables."

This document can be divided into three sections:

Chapters 1 - 3 provide an introduction to RAVE. This material is useful for any developer
considering using RAVE, or for QuickDraw 3D developers who would like more information
on the mechanism used to plug drawing engines into the QuickDraw 3D interactive
renderer.

Chapters 4 - 8 provide a specification of the RAVE application programming interface (API).
These are the calls used by an application to draw an image with RAVE. This material is
important for application or middle-ware developers who need to know how to use RAVE as a
drawing engine, and for developers who are planning to add their own RAVE drawing engine.

Chapters 9 - 10 describe how to add a new RAVE drawing engine. This section is primarily of
use by hardware or software vendors who wish to add their own custom 3D drawing engine to
RAVE.

This document assumes the reader is familiar with low-level 3D rendering algorithms. For
those who would like additional information, the following reference (usually referred to as
"Foley and van Dam") will be useful:

Computer Graphics, Principles and Practice, 2nd edition. Foley, van Dam, Feiner,
Hughes. Addison-Wesly Publishing Company. Chapters 3, 15, 16, 18, and 19.

◊ Throughout this document, important paragraphs are marked by a ◊ symbol.

Apple Computer Confidential 1

Code examples, and names which are taken from code or include files, are shown in Courier
typeface, e.g. QADrawTriGouraud().

OpenGL™ is a registered trademark of Silicon Graphics, Inc.

Apple Computer Confidential 2

Chapter 2: Background

What is a low level 3D driver?
A low level 3D driver is a software layer designed to support the low-level rasterization
operations required for interactive 3D rendering. In many respects a 3D driver interface is
very similar to a 2D drawing API. There are, however, several key differences:

— 3D drawing requires a Z (depth) value, which is used to perform hidden surface removal.

— Support for double-buffered (or back buffered) image display is necessary. Double
buffering conceals the flashing caused by re-drawing the image. High performance
double buffering can also used to avoid the tearing artifacts often caused by updating a
window at high speed.

— Special 3D rasterization modes such as texture mapping are supported.

What is not included?
There is no absolute definition of what should be included in a low level 3D driver. However,
this document assumes that none of the following are directly supported:

— No transformation, shading or clipping.

— No I/O mechanisms (i.e. the driver is a drawing mechanism only).

— No high level primitives such as curved surfaces.

Who are the users?
A low level 3D driver is used for four purposes:

— It provides a hardware abstraction layer (HAL) that allows system software (e.g.
QuickDraw 3D) to utilize a wide variety of hardware without code changes.

— It provides third party hardware vendors with a means to ship 3D acceleration hardware
that can plug-and-play with a variety of 3D applications.

— It provides a highly optimized means for a third party middle-ware vendor (e.g. a vendor
of a game development framework) to access hardware and Apple's optimized software
rasterizers.

— It provides a highly optimized means for specialized application vendors (e.g. games and
entertainment applications) to access hardware acceleration through a very flexible and
lightweight mechanism.

Apple Computer Confidential 3

Note that in the first three cases, the 3D driver layer operates as a System Programming
Interface (SPI). However, the fourth bullet implies use by application developers, i.e. as an
Application Programming Interface (API).

Apple Computer Confidential 4

Chapter 3: Functional Overview

Plug-and-play for 3D drawing engines
RAVE is designed to provide independent software and hardware vendors (ISVs and IHVs)
with a simple and efficient means of adding low level 3D rasterizers to the Macintosh.
Typically these low level 3D rasterizers are designed to accelerate 3D rendering for
interactive use.

3D rasterizers plugged into RAVE are referred to as drawing engines. When a drawing
engine is registered with the RAVE manager, it becomes available for use by all applications
running on the system. QuickDraw 3D's interactive renderer uses RAVE, so registering a
drawing engine with RAVE automatically makes it available for use by all QuickDraw 3D-
based applications as well.

For an IHV, RAVE is used primarily as a means of making the 3D rasterization features of the
vendor's hardware available for use by Macintosh applications. By writing a RAVE plug-in, an
IHV's product can immediately plug-and-play with 3D software on the Macintosh.

For most ISVs, RAVE will not be used directly; instead, it will be an enabling technology that
provides a flexible plug-and-play environment for 3D acceleration. However, some ISVs will
use RAVE directly:

— Vendors of middle-ware (e.g. a third party game development framework) should use
RAVE as their interactive 3D drawing method.

— Vendors of games or entertainment applications who prefer an extremely low level, but
very lightweight, drawing library may use RAVE in place of a higher level API such as
QuickDraw 3D.

◊ Warning: Because RAVE provides no support for Apple's 3D metafile, 3D user
interface, plug-in shaders, or windows that cross devices, it is not recommended for
use by general applications.

Designed for speed
RAVE is intended for interactive 3D rendering. To provide maximum performance, RAVE
has been designed to provide the minimum possible overhead between the application and
the drawing engine. Two key design features were made to meet this goal:

— Calls from an application to RAVE do not require a context change.

— Calls to a RAVE drawing engine do not pass through an intermediate manager layer —
the application calls directly into the selected drawing engine's code.

Apple Computer Confidential 5

◊ Because of these features, calling a drawing engine through RAVE provides the same level of
performance as linking the engine directly with the application.

Minimum feature set
RAVE does not require that all drawing engines provide the same features. The minimum
feature set of a RAVE drawing engine is:

— Hidden surface removal (usually Z buffering with a minimum of 16 bits/pixel)

— Points and lines of programmable width

— Gouraud shaded triangles

— Bitmaps of 1, 16 or 32 bits/pixel

— Double buffering

Optional features
More advanced RAVE drawing engines may support any or all of the following features:

— High precision hidden surface removal (24 bits or more)

— Perspective corrected hidden surface removal

— Texture mapping, fast and/or high quality

— Transparency blending, RGB or ARGB

— Antialiasing, fast and/or high quality

— Z sorted rendering of non-opaque objects

— OpenGL support, which includes a collection of features such as scissoring, multiple
blending modes, area and line stipple patterns, etc.

Apple-supplied drawing engine
Apple ships RAVE with a software-only drawing engine which is highly optimized for the
Power Macintosh. This drawing engine is guaranteed to be able to draw to any device. This
basic drawing engine provides the following features (in addition to the minimum feature
set):

— Z buffering with 16 or 32 bits of precision

— Direct rendering at 16 or 32 bit/pixel (fewer than 16 bits/pixel is supported with lower
performance)

— Perspective-corrected texture mapping

Apple Computer Confidential 6

Multiple device support
RAVE does not require that a drawing engine be capable of drawing to all devices in the
system. Instead, when the application wishes to choose a drawing engine, it must specify to
which device the drawing will be performed. Each drawing engine is queried by RAVE to
determine if it can support the indicated device; if not, the drawing engine will not be offered
to the application.

This means that a drawing engine can specialize itself for the device(s) for which it is most
suitable. For example, a drawing engine that uses a frame buffer's built-in 3D acceleration
hardware may have no effective means of rendering to a different device. Rather than forcing
that drawing engine to implement an inefficient solution, RAVE allows the drawing engine to
work with only its native device.

◊ Warning: This means that RAVE does not provide automatic support for windows
that cross multiple devices. It is the application's responsibility to recognize these
cases, and construct multiple RAVE drawing contexts (potentially with different
drawing engines) as necessary to draw the entire window.

QuickDraw 3D High-Level API
RAVE and the high level QuickDraw 3D API are designed to work together as a team. The
QuickDraw 3D interactive renderer uses the available RAVE drawing engines to accelerate
interactive rendering for all applications that use QuickDraw 3D.

The high level QuickDraw 3D API provides much greater functionality than RAVE, and is the
recommended API for general purpose 3D programming. Some examples of features
included in QuickDraw 3D are:

— Cut and paste of 3D data

— Automatic support of multiple devices

— Powerful, high level datatypes such as NURBS and mesh

— A highly optimized interactive renderer

— A plug-in mechanism for high quality renderers (RAVE supports only interactive
rendering)

— A plug-in shader mechanism

— User interface guidelines and tool kits

OpenGL support
Although the minimum feature set of a RAVE drawing engine doesn't provide all the features
necessary for OpenGL, a drawing engine may optionally choose to add support for these
features. A drawing engine that provides these optional features can be used to accelerate
OpenGL compliant rendering, as well as to accelerate QuickDraw 3D.

Apple Computer Confidential 7

API naming conventions
All functions, datatypes and constants declared by the RAVE.h include file follow naming
conventions to avoid conflicts with application code:

— All function names begin with the prefix QA, e.g. QADrawTriGouraud().

— All data type names begin with the prefix TQA, e.g. TQADrawContext.

— All constant names begin with the prefix kQA, e.g. kQAAntiAlias_Fast.

Apple Computer Confidential 8

Chapter 4: The Drawing Context
◊ All data structures and prototypes in this document are defined in the RAVE.h include file.

All RAVE drawing is performed into a drawing context, referred to as a TQADrawContext.
More than one TQADrawContext can exist simultaneously; each one maintains its own
state information, and is unaffected by calls which reference any other TQADrawContext.
All drawing calls take a TQADrawContext as their first parameter.

The TQADrawContext data structure is shown below:

struct TQADrawContext
{

TQADrawPrivate *drawPrivate;
const TQAVersion version;
TQASetFloat setFloat;
TQASetInt setInt;
TQASetPtr setPtr;
TQAGetFloat getFloat;
TQAGetInt getInt;
TQAGetPtr getPtr;
TQADrawPoint drawPoint;
TQADrawLine drawLine;
TQADrawTriGouraud drawTriGouraud;
TQADrawTriTexture drawTriTexture;
TQADrawVGouraud drawVGouraud;
TQADrawVTexture drawVTexture;
TQADrawBitmap drawBitmap;
TQARenderStart renderStart;
TQARenderEnd renderEnd;
TQARenderAbort renderAbort;
TQAFlush flush;
TQASync sync;
TQASubmitVerticesGouraud submitVerticesGouraud;
TQASubmitVerticesTexture submitVerticesTexture;
TQADrawTriMeshGouraud drawTriMeshGouraud;
TQADrawTriMeshTexture drawTriMeshTexture;

};

The drawPrivate field points to the private data maintained by the drawing engine
associated with this context. The version field is a constant field initialized by the RAVE
manager; it indicates the RAVE manager version. The remaining fields (setFloat,
setInt etc.) are function pointers to the methods of the drawing engine.

None of the TQADrawContext fields are directly referenced by the application. Instead,
the application uses the macros defined in RAVE.h to call the methods. For example, the
application code shown below sets the background color of a TQADrawContext to
opaque black (the QASetFloat() function is described in more detail in Chapter 5:
State Variables):

#include "RAVE.h"
TQADrawContext *drawContext;
...
QASetFloat (drawContext, kQATag_ColorBG_a, 1.0);

Apple Computer Confidential 9

QASetFloat (drawContext, kQATag_ColorBG_r, 0.0);
QASetFloat (drawContext, kQATag_ColorBG_g, 0.0);
QASetFloat (drawContext, kQATag_ColorBG_b, 0.0);

During compilation, macro expansion causes the QASetFloat() call to be replaced with
the code shown below. Because this code directly calls the drawing engine's setFloat
method, no intermediate manager layer is necessary, providing the highest possible
performance.

(drawContext)->setFloat (drawContext, 1, 1.0);

◊ It is recommended that all calls to drawing engine methods be performed with the macros
defined in RAVE.h, as directly referencing the TQADrawContext method fields may
complicate ports to future versions of RAVE.

◊ The TQADrawContext methods are not static — some calls (e.g. QASetInt()) can
cause the methods to change. This is discussed in more detail in Chapter 9: Adding a New
Drawing Engine. This issue does not affect applications that always use the macros defined
in RAVE.h to access the drawing methods.

The TQADevice
When a TQADrawContext is created, it requires information about where drawing should
be performed. This information is provided by a TQADevice, which is passed as a
parameter to QADrawContextNew() (discussed later in this chapter). A TQADevice
represents any one of a variety of different device types into which drawing can occur. On the
Macintosh, a TQADevice can represent either a GDevice, or a region of memory.

On the Macintosh, the TQADevice structure (and its supporting datatypes) are:

typedef enum TQADeviceType
{

kQADeviceMemory = 0,
kQADeviceGDevice = 1

} TQADeviceType;

typedef struct TQADeviceMemory
{

long rowBytes;
TQAImagePixelType pixelType;
long width;
long height;
void *baseAddr;

} TQADeviceMemory;

typedef union TQAPlatformDevice
{

TQADeviceMemory memoryDevice;
GDHandle gDevice;

} TQAPlatformDevice;

typedef struct TQADevice
{

TQADeviceType deviceType;
TQAPlatformDevice device;

} TQADevice;

Apple Computer Confidential 10

Using TQADevice to draw to memory
The following example code initializes a TQADevice for drawing to memory:

TQADevice myDevice;
long targetMemory [100][100];

myDevice.deviceType = kQADeviceMemory;
myDevice.device.memoryDevice.rowBytes = 100 * sizeof (long);
myDevice.device.memoryDevice.pixelType = kQAPixel_ARGB32;
myDevice.device.memoryDevice.width = 100;
myDevice.device.memoryDevice.height = 100;
myDevice.device.memoryDevice.baseAddr = targetMemory;

Drawing to memory occurs in the native pixel format of the platform. Note that not all
drawing engines support drawing to memory (see Choosing a drawing engine, later in this
chapter).

Using TQADevice to draw to a GDevice
The following example code initializes a TQADevice for drawing to a GDevice:

TQADevice myDevice;
GDHandle gDeviceHandle;
...
myDevice.deviceType = kQADeviceGDevice;
myDevice.device.gDevice = gDeviceHandle;

Drawing across multiple GDevices
An individual TQADrawContext can render to only a single TQADevice, and therefore
to only a single GDevice. Because a Macintosh window can cross multiple GDevices, it is
the application's responsibility to determine which GDevices the window touches, and to
create a separate TQADrawContext for each one.

QAEngineGestalt
To assist the application in choosing a drawing engine, QAEngineGestalt() provides
information about the functionality of a drawing engine:
TQAError QAEngineGestalt (

const TQAEngine *engine, /* Engine being queried */
TQAGestaltSelector selector, /* Gestalt parameter being requested */
void *response);/* (Out) Buffer that gets response */

engine selects which drawing engine is being queried.

Apple Computer Confidential 11

selector is an enumerated constant which indicates which gestalt value is being
requested. It can be any one of the following values:

kQAGestalt_OptionalFeatures: Returns a mask of one or more
kQAOptional_xxx flags (described below). response should point to an
unsigned long.

kQAGestalt_FastFeatures Returns: a mask of one or more kQAFast_xxx
flags (described below). response should point to an unsigned long.

kQAGestalt_VendorID: Returns the vendor ID of this engine. response
should point to a long.

kQAGestalt_EngineID: Returns the engine ID of this engine. response
should point to a long.

kQAGestalt_Revision: Returns the revision number of this engine (larger values
are more recent). response should point to a long.

kQAGestalt_ASCIINameLength: Returns the strlen() of the
.kQAGestalt_ASCIIName (described next). response should point to a long.

kQAGestalt_ASCIIName: Copies the ascii name of this drawing engine into
response . response should point to a C string, whose length is determined by
kQAGestalt_ASCIINameLength (described above).

response a pointer to where the retrieved information should be stored. The type and size
of this data is dependent on the value of selector.

Apple Computer Confidential 12

Gestalt Optional Features
The kQAGestalt_OptionalFeatures gestalt response is a bit mask for which any
combination of the flags shown below can be ORed together. Each flag indicates whether
the named feature is supported by the drawing engine. Note that supported features are not
necessary accelerated (e.g. the drawing may perform the feature in software).

kQAOptional_DeepZ: Deep Z buffering (i.e. Z buffer resolution >= 24
bits/pixel).

kQAOptional_Texture: Texture mapping.

kQAOptional_TextureHQ: High quality texture mapping (tri-linear interpolation or
equivalent).

kQAOptional_TextureColor: Full color texture modulation and highlight.

kQAOptional_Blend: Transparency blending.

kQAOptional_BlendAlpha: Transparency blending that outputs an alpha channel.

kQAOptional_Antialias: Antialiasing.

kQAOptional_ZSorted: Z sorted rendering (e.g. for transparency).

kQAOptional_PerspectiveZ: Perspective corrected hidden surface removal.

kQAOptional_OpenGL: Extended OpenGL feature set.

kQAOptional_NoClear: This engine doesn't clear the buffer before drawing, so
double-buffering may not be required in some applications.

Gestalt Fast Features
The kQAGestalt_FastFeatures gestalt value is a bit mask for which any combination
of the flags shown below can be ORed together. Each flags indicates whether the named
feature is accelerated by the drawing engine. Unfortunately, it is difficult to define exactly
what accelerated means — we consider these flags to mean that the named feature is
performed substantially faster than it would be in software with a fast CPU.

kQAFast_Line: Line drawing.

kQAFast_Gouraud: Gouraud shading.

kQAFast_Texture: Texture mapping.

kQAFast_TextureHQ: High quality texture mapping.

kQAFast_Blend: Transparency blending.

kQAFast_Antialiasing: Antialiasing.

kQAFast_ZSorted: Z sorted rendering.

Apple Computer Confidential 13

Choosing a drawing engine
Not all drawing engines can be used with all TQADevices. For example, some drawing
engines may not support kQADeviceMemory. Others may only support a particular
GDevice. Therefore, once the application has initialized the target TQADevice, the
application must scan through the available drawing engines to choose one which is capable
of drawing to the target TQADevice. If more than one drawing engine can draw to the
TQADevice, the application must choose between the available engines.

The application can search through the available drawing engines with the
QADeviceGetFirstEngine() and QADeviceGetNextEngine() functions:

TQAEngine *QADeviceGetFirstEngine (
const TQADevice *device);

TQAEngine *QADeviceGetNextEngine (
const TQADevice *device,
const TQAEngine *currentEngine);

◊ By default, QADeviceGetFirstEngine() returns the preferred drawing engine for
the indicated device — in most cases, this is the best engine to choose for high performance
rendering. The following heuristic is used to choose the preferred engine:

First choice: The user's preference (e.g. set by the monitors control panel).

Second choice: The drawing engine which is tightly coupled to the indicated device (i.e.
it can render only to that device).

Third choice: The drawing engine which accelerates the most features.

If the default choice of the preferred engine isn't appropriate, the application can search for
an engine with the desired features. For example, assume an application requires a drawing
engine that accelerates texture mapping. This could be coded as:

TQAEngine *findPreferredEngine (TQADevice *device)
{

TQAEngine *engine;
unsigned long fast;

for (engine = QADeviceGetFirstEngine (device);
engine;
engine = QADeviceGetNextEngine (device, engine))

{
if (QAEngineGestalt (engine, kQAGestalt_FastFeatures, &fast)

== kQANoErr)
{

if (fast & kQAFast_Texture)
{

return (engine);
}

}
}
return (NULL);

}

Apple Computer Confidential 14

Here, QADeviceGetFirstEngine() and QADeviceGetNextEngine() are used
to loop through the drawing engines which can target device, and
QAEngineGestalt() is used to get information about each engine's specific features.

◊ If a NULL TQADevice pointer is passed to QADeviceGetFirstEngine() or
QADeviceGetNextEngine(), the available drawing engines are returned without any
device checking. This is useful when the application needs to query information about all the
available engines regardless of which devices are supported.

Creating a TQADrawContext
Once a TQADevice has been initialized, and a drawing engine (i.e. TQAEngine) has been
chosen, a TQADrawContext can be created. This is performed with the
QADrawContextNew() function:

TQAError QADrawContextNew (
const TQADevice *device,/* Target device */
const TQARect *rect, /* Target rectangle (device coordinates) */
const TQAClip *clip, /* 2D clip region */
const TQAEngine *engine,/* Drawing engine to use */
unsigned long flags, /* Mask of kQAContext_xxx */
TQADrawContext **newDrawContext); /* (Out) New TQADrawContext */

device is a pointer to the target TQADevice.

rect is the rectangular region of the target TQADevice to which this
TQADrawContext will draw. rect is in device coordinates.

clip is the 2D clipping region for rect, or NULL (indicating no clipping). This 2D clipping
region will be applied to any pixels before they are drawn to the TQADevice. Clipping is not
supported when device is of type kQADeviceMemory (i.e. clip must be NULL).

engine specifies the drawing engine, as discussed in Choosing a drawing engine, earlier
in this chapter.

The flags parameter is a bit mask for which any combination of the following flags can be
ORed together:

kQAContext_NoZBuffer: The TQADrawContext should not be Z buffered.

kQAContext_DeepZ: Z should have at least 24 bits of precision.

kQAContext_DoubleBuffer: The TQADrawContext should be double
buffered.

kQAContext_Cache: This draw context will be used to create a scene cache. See
Chapter 8: Buffering and Synchronization for more discussion.

newDrawContext is a pointer to the TQADrawContext pointer which is initialized by
this call. If an error occurs, *newDrawContext is set to NULL.

Apple Computer Confidential 15

For example, to create a double buffered display with a Z buffer:

TQADrawContext *drawContext;
if (QADrawContextNew (&myDevice, &myRect, &myClip,

engine, kQAContext_DoubleBuffer, &drawContext) != kQANoErr)
{

/* Error! Could not create TQADrawContext */
}

Deleting a TQADrawContext
QADrawContextNew() allocates memory and other resources which must eventually be
freed. The application performs this by calling QADrawContextDelete() when it is
finished with the TQADrawContext:

void QADrawContextDelete (
TQADrawContext *drawContext); /* Drawing context to delete */

For example, to delete the drawing context created in the previous example:

QADrawContextDelete (drawContext);

Re-positioning a TQADrawContext
There is no call to re-position a TQADrawContext once it has been created. Instead, the
old context must be deleted, and a new TQADrawContext created for the new window
position.

2D clipping a TQADrawContext
The drawing engine determines the 2D clipping for a TQADrawContext from the clip
parameter passed to QADrawContextNew(). There is no call to change the clip region
of a TQADrawContext after it has been created; instead, the old TQADrawContext
must be deleted, and a new one created.

The clip parameter is of type TQAClip. Like TQADevice, TQAClip supports different
types of clipping information depending on the platform. On the Macintosh, TQAClip
provides a clipRgn, as shown below:

TQAClip myClip;
RgnHandle clipRgn;
...
myClip.clipType = kQAClipRgn;
myClip.clip.clipRgn = clipRgn;

Apple Computer Confidential 16

Supporting different pixel depths
Because the drawing engine can test the pixel depth of the target TQADevice, an engine
has complete freedom to choose which bit depths it supports — engines that don't support
the pixel depth of the targeted TQADevice will never be returned by
QADeviceGetFirstEngine() or QADeviceGetNextEngine()

It is recommended that all drawing engines support 16 and 32 bits/pixel.

Apple Computer Confidential 17

Chapter 5: State Variables
A TQADrawContext retains a variety of state information about the current rendering
modes. This information is stored as state variables. Each state variable has a unique identifier
constant called a tag.

State variables may be either float, unsigned long or pointer. The list below (from RAVE.h)
shows the tag names, and their datatypes:

* These variables are required by all drawing engines:
kQATag_ZFunction (Int) One of kQAZFunction_xxx
kQATag_ColorBG_a (Float) Background color alpha
kQATag_ColorBG_r (Float) Background color red
kQATag_ColorBG_g (Float) Background color green
kQATag_ColorBG_b (Float) Background color blue
kQATag_Width (Float) Line and point width (pixels)
kQATag_ZMinOffset (Float) Min Z offset to guarantee visibility
kQATag_ZMinScale (Float) Min Z scale to guarantee visibility

* These variables are used for optional features:
kQATag_Antialias (Int) One of kQAAntialias_xxx
kQATag_Blend (Int) One of kQABlend_xxx
kQATag_PerspectiveZ (Int) One of kQAPerspectiveZ_xxx
kQATag_TextureFilter (Int) One of kQATextureFilter_xxx
kQATag_TextureOp (Int) Mask of kQATextureOp_xxx
kQATag_Texture (Ptr) Pointer to current TQATexture

* These variables are used for OpenGL support:
kQATagGL_DrawBuffer (Int) Mask of kQAGL_DrawBuffer_xxx
kQATagGL_TextureWrapU (Int) kQAGL_Clamp or kQAGL_Repeat
kQATagGL_TextureWrapV (Int) kQAGL_Clamp or kQAGL_Repeat
kQATagGL_TextureMagFilter (Int) kQAGL_Nearest or kQAGL_Linear
kQATagGL_TextureMinFilter (Int) kQAGL_Nearest, etc.
kQATagGL_ScissorXMin (Int) Minimum X value for scissor rectangle
kQATagGL_ScissorYMin (Int) Minimum Y value for scissor rectangle
kQATagGL_ScissorXMax (Int) Maximum X value for scissor rectangle
kQATagGL_ScissorYMax (Int) Maximum Y value for scissor rectangle
kQATagGL_BlendSrc (Int) Source blending operation
kQATagGL_BlendDst (Int) Destination blending operation
kQATagGL_LinePattern (Int) Line rasterization pattern
kQATagGL_AreaPattern0 (Int) First of 32 area pattern registers
kQATagGL_AreaPattern31 (Int) Last of 32 area pattern registers
kQATagGL_DepthBG (Float) Background Z
kQATagGL_TextureBorder_a (Float) Texture border color alpha
kQATagGL_TextureBorder_r (Float) Texture border color red
kQATagGL_TextureBorder_g (Float) Texture border color green
kQATagGL_TextureBorder_b (Float) Texture border color blue

These tag values are grouped into three enumerated types: TQATagInt, TQATagFloat
and TQATagPtr. Some variables are used only for optional features; these variables do not
need to be supported by drawing engines which don't provide those optional features.

Apple Computer Confidential 18

Setting a variable with QASetFloat/QASetInt/QASetPtr
State variables are set using QASetInt(), QASetFloat() or QASetPtr(),
depending on whether the variable is unsigned long, float or a pointer:

void QASetFloat (
TQADrawContext *drawContext, /* Draw context */
TQATagFloat tag, /* Tag of variable to set */
float newValue); /* New value for variable */

void QASetInt (
TQADrawContext *drawContext, /* Draw context */
TQATagInt tag, /* Tag of variable to set */
unsigned long newValue); /* New value for variable */

void QASetPtr (
TQADrawContext *drawContext, /* Draw context */
TQATagPtr tag, /* Tag of variable to set */
const void *newValue); /* New value for variable */

For example, to set the Z hidden surface test to kQAZFunction_LT:

TQADrawContext *drawContext;
...
QASetInt (drawContext, kQATag_ZFunction, kQAZFunction_LT);

To allow future expansion, a drawing engine must accept QASetFloat/Int/Ptr() calls
for tags which it doesn't recognize. These calls should be treated as no-ops. Similarly, calls to
set variables used only for optional features that the drawing engine does not support should
be treated as no-ops.

Reading a variable with QAGetFloat/QAGetInt/QAGetPtr
State variables are read using QAGetFloat(), QAGetInt() or QAGetPtr(),
depending on whether the variable is unsigned long, float or a pointer:

float QAGetFloat (
const TQADrawContext *drawContext, /* Draw context */
TQATagFloat tag); /* Tag of variable to get */

unsigned long QAGetInt (
const TQADrawContext *drawContext, /* Draw context */
TQATagInt tag); /* Tag of variable to get */

void *QAGetPtr (
const TQADrawContext *drawContext, /* Draw context */
TQATagPtr tag); /* Tag of variable to get */

For example, to read the red component of the current background color:

TQADrawContext *drawContext;
float backgroundColor_r;
...
backgroundColor_r = QAGetFloat (drawContext, kQATag_ColorBG_r);

QAGetFloat/Int/Ptr() calls for unrecognized or unsupported tag values return 0.

Apple Computer Confidential 19

Required state variables

kQATag_ColorBG_a/r/g/b
Float. Required. Default value is 0.0. Range 0.0 <= value <= 1.0

These four variables set the background color. The background color is used when clearing a
buffer with QARenderStart(). kQATag_ColorBG_a sets the alpha value,
kQATag_ColorBG_r sets the red value, kQATag_ColorBG_g sets the green value,
kQATag_ColorBG_b sets the blue value.

kQATag_Width
Float. Required. Default value is 1.0. Range 0.0 < value < kQAMaxWidth

This variable sets the width of points or lines. Width is measured in pixels. kQAMaxWidth is
currently defined as 128.0.

kQATag_ZFunction
Int. Required.. Default value is kQAZFunction_LT if a Z-buffered draw context, or

kQAZFunction_None if not.

This sets the current Z test mode used for hidden surface removal. Draw contexts which
aren't Z-buffered only support kQAZFunction_None. For Z-buffered contexts,
kQATag_ZFunction can have one of the following values:

kQAZFunction_None: Z is neither tested nor written
kQAZFunction_LT: Znew < Zbuffer
kQAZFunction_True: Znew is always visible (and written)

The following Z test modes are also defined, but are only supported by drawing engines
which support the optional OpenGL features:

kQAZFunction_EQ: Znew == Zbuffer
kQAZFunction_LE: Znew <= Zbuffer
kQAZFunction_GT: Znew > Zbuffer
kQAZFunction_NE: Znew != Zbuffer
kQAZFunction_GE: Znew >= Zbuffer

◊ For drawing engines which support kQAOptional_PerspectiveZ, when
kQATag_PerspectiveZ is set to kQAPerspectiveZ_On, kQATag_ZFunction
should be interpreted so it yields the same visual result as for kQAPerspectiveZ_Off.
For example, kQAZFunction_LT, which means "show the closest surface", is equivalent
to a visibility function of InvWnew > InvWbuffer.

Apple Computer Confidential 20

kQATag_ZMinOffset, kQATag_ZMinScale
Float. Required. READ ONLY — value is set by drawing engine.

These read-only variables are used by the drawing engine to indicate the minimum scale and
offset for Z that must be performed to guarantee that a drawn object will pass a
kQAZFunction_LT hidden surface test. For example, these variables would be used by
an application that needed to draw a triangle, and then re-draw the triangle edges slightly
closer in a different color. kQATag_ZMinScale indicates the value by which Z must be
scaled, and kQATag_ZMinOffset indicates the value by which Z must be offset. The
code example below shows how these values are used:

TQAVGouraud myVertex;
...
/* Draw the point once */
QADrawPoint (drawContext, &myVertex);

/* Adjust Z to guarantee that the second draw will also be visible */
myVertex.z *= QAGetFloat (drawContext, kQATag_ZMinScale);
myVertex.z += QAGetFloat (drawContext, kQATag_ZMinOffset);
QADrawPoint (drawContext, &myVertex);

Typically, a drawing engine that uses fixed point Z will return 1.0 for scale, and a small
negative value (e.g. -1/65536) for offset. A drawing engine that uses floating point Z will
usually return 0.0 for offset, and a value slightly less than 1.0 (e.g. 0.9999) for scale.

◊ For drawing engines which support kQAOptional_PerspectiveZ, when
kQATag_PerspectiveZ is set to kQAPerspectiveZ_On, the values returned for
offset and scale are changed to the values used to scale and offset InvW. In this mode, scale
will be >= 1.0, and offset is a small positive number.

Apple Computer Confidential 21

Optional state variables

kQATag_Antialias
Int. Optional: Only necessary if kQAOptional_Antialias is true. Default is

kQAAntiAlias_Fast.

This variable controls the current antialiasing mode. It can be set to any of:

kQAAntiAlias_Off: Antialiasing is forced off.

kQAAntiAlias_Fast: Do whatever antialiasing can be performed with no speed
penalty (this often means antialiasing is turned off).

kQAAntiAlias_Mid: Turn on mid-quality antialiasing. This is the recommended
setting when antialiasing at interactive speeds is desired.

kQAAntiAlias_Best: Turn on the highest quality antialiasing. This indicates that
high quality antialiasing, even at the expense of interactive performance, is desired.

kQATag_Blend
Int. Optional: Only necessary if kQAOptional_Blend is true. Default value is

kQABlend_PreMultiply.

This variable controls the current transparency blending model. It can have one of the
following values (see Chapter 6: Rendering with transparency for more discussion of
these modes):

kQABlend_PreMultiply: Use a pre-multiplied transparency blending function.

kQABlend_Interpolate: Use an interpolated transparency blending function.

kQABlend_OpenGL: Use the blending function defined by the
kQATag_BlendSrc and kQATag_BlendDst state variables. This mode is only
supported by drawing engines that set kQAOptional_OpenGL true.

kQATag_PerspectiveZ
Int. Optional: Only necessary if kQAOptional_PerspectiveZ is true. Default value is

kQAPerspectiveZ_Off.

This variable controls whether the Z or the InvW field of TQAVGouraud/TQAVTexture
is used for hidden surface removal. When kQATag_PerspectiveZ is set to
kQAPerspectiveZ_Off, normal hidden surface removal using Z is performed. When
set to kQAPerspectiveZ_On, hidden surface removal is performed with InvW, causing
perspective-correct hidden surface removal. See kQATag_ZFunction for further
discussion.

Apple Computer Confidential 22

kQATag_Texture
Pointer. Optional: Only necessary if kQAOptional_Texture is true. Default value is

NULL.

This variable holds a pointer to the current texture map. Texture map pointers are created by
TQATextureNew(), e.g.:

TQATexture *texture;
TQADrawContext *drawContext;
TQAEngine *engine;
if (QATextureNew (engine, kQATexture_None, kQAPixel_RGB32,

images, &texture) != kQANoErr)
{

... Couldn't create texture
}
...
QASetPtr (drawContext, kQATag_Texture, texture);

kQATag_TextureFilter
Int. Optional: Only necessary if kQAOptional_Texture is true. Default value is

kQATextureFilter_Fast.

This variable sets the current texture mapping filter mode. It can have one of the following
values:

kQATextureFilter_Fast: The fastest texture map filtering mode available
(usually means no filtering).

kQATextureFilter_Mid: Mid-quality texture filtering. This is the recommended
setting when filtered texture mapping at interactive speeds is desired.

kQATextureFilter_Best: Turn on the highest quality texture filtering. This
indicates that high quality, even at the expense of interactive performance, is desired.

Apple Computer Confidential 23

kQATag_TextureOp
Int. Optional: Only necessary if kQAOptional_Texture is true. Default value is

kQATextureOp_None.

This variable sets the current texture mapping operation. It is a bit mask for which any
combination of the following flags can be ORed together:

kQATextureOp_Modulate: The texture map color is modulated with the
interpolated kd_r, kd_g and kd_b values.

kQATextureOp_Highlight: The interpolated value of ks_r, ks_g, and ks_b
are added to the texture map color.

kQATextureOp_Decal: When the texture map alpha is zero, replace the texture
map color with the interpolated r, g, and b values.

kQATextureOp_Shrink: The drawing engine should tweak the incoming u and v
values such that a range of 0.0 <= u,v <= 1.0 is guaranteed not to cause wrapping.

More detail on the texture mapping operations can be found in Chapter 6: Rendering with
texture mapping.

Apple Computer Confidential 24

OpenGL state variables
In general, the OpenGL state variables will correspond one-to-one with the state variables
that affect rasterization in the OpenGL API itself. These are not fully specified yet, but we're
working on it...

Apple Computer Confidential 25

Chapter 6: Drawing
RAVE supports drawing of four types of primitives: points, lines, triangles and bitmaps. Each
primitive has its own QADraw...() function; these functions are described in this chapter.
The final sections of this chapter provide additional detail on rendering with transparency,
texture mapping and antialiasing.

Points, lines and triangles are defined by vertices. RAVE uses two different vertex data types:
TQAVGouraud for Gouraud shading, and TQAVTexture for texture mapping. These
vertex data types are described next.

TQAVGouraud data type
The TQAVGouraud data structure is used to specify position, depth, color and
transparency information for Gouraud shaded triangles, and for drawing points and lines.

typedef struct TQAVGouraud
{

float x; /* X pixel coordinate, 0.0 <= x < width */
float y; /* Y pixel coordinate, 0.0 <= y < height */
float z; /* Z coordinate, 0.0 <= z <= 1.0 */
float invW; /* 1 / w; required only for kQAPerspectiveZ_On */

float r; /* Red, 0.0 <= r <= 1.0 */
float g; /* Green, 0.0 <= g <= 1.0 */
float b; /* Blue, 0.0 <= b <= 1.0 */
float a; /* Alpha, 0.0 <= a <= 1.0, 1.0 is opaque */

} TQAVGouraud;

The x and y fields specify the vertex position in 2D coordinates relative to the upper left of
the rect passed to QADrawContextNew(). x and y are floating point values specified
in pixels.

z specifies the depth of the vertex. 0.0 is closest, 1.0 is farthest.

invW is used only by drawing engines which support kQAOptional_PerspectiveZ.
For these engines, when the state variable kQATag_PerspectiveZ is set to
kQAPerspectiveZ_On, hidden surface removal is performed with invW instead of with
z. This causes hidden surface removal to be perspective-corrected. invW is the opposite of
Z — the larger invW is, the closer the object. See kQATag_ZFunction for more
discussion.

Vertex color is indicated by the r, g, and b fields, which represent a standard linear RGB
color space. a represents transparency, 1.0 = opaque, 0.0 = completely transparent.

◊ By default, RAVE operates in a pre-multiplied transparency mode. See Rendering with
transparency, later in this chapter, for more detail.

Apple Computer Confidential 26

TQAVTexture data type
The TQAVTexture data structure is used to specify position, depth, transparency and
texture mapping information for texture mapped triangles. Not all the fields are required;
many are used only when the kQATag_TextureOp state variable is set to enable more
complex texturing modes. The kQATag_Texture state variable specifies which texture
map to use while rendering the texture mapped objects.

typedef struct TQAVTexture
{

float x; /* X pixel coordinate, 0.0 <= x < width */
float y; /* Y pixel coordinate, 0.0 <= y < height */
float z; /* Z coordinate, 0.0 <= z <= 1.0 */
float invW; /* 1 / w (always required) */

/* rgb are used only when kQATextureOp_Decal is set.
a is always required */

float r; /* Red, 0.0 <= r <= 1.0 */
float g; /* Green, 0.0 <= g <= 1.0 */
float b; /* Blue, 0.0 <= b <= 1.0 */
float a; /* Alpha, 0.0 <= a <= 1.0, 1.0 == opaque */

/* uOverW and vOverW are required by all modes */

float uOverW; /* u / w */
float vOverW; /* v / w */

/* kd_r/g/b are used only when kQATextureOp_Modulate is set */

float kd_r; /* Scale factor for texture red, 0.0 <= kd_r */
float kd_g; /* Scale factor for texture green, 0.0 <= kd_g */
float kd_b; /* Scale factor for texture blue, 0.0 <= kd_b */

/* ks_r/g/b are used only when kQATextureOp_Highlight is set */

float ks_r; /* Red specular highlight, 0.0 <= ks_r <= 1.0 */
float ks_g; /* Green specular highlight, 0.0 <= ks_g <= 1.0 */
float ks_b; /* Blue specular highlight, 0.0 <= ks_b <= 1.0 */

} TQAVTexture;

The x, y and z fields have the same meaning as in the TQAVGouraud data structure.

The uOverW, vOverW and invW fields specify the u, v coordinates of this vertex for
texture mapping. Texture coordinates are always specified in perspective corrected form, i.e.
divided by the homogenous correction factor w. For non-perspective rendering modes,
invW should always be 1.0.

When using a drawing engines that supports kQAOptional_PerspectiveZ, and the
state variable kQATag_PerspectiveZ is set to kQAPerspectiveZ_On, hidden
surface removal is performed with invW instead of with z. See the discussion for
TQAVGouraud, earlier in this chapter.

The remaining fields are used to specify texture map color modulation and highlight
information, and to specify additional color information for use when decal rendering mode is

Apple Computer Confidential 27

enabled. These fields are discussed in detail in Rendering with texture mapping, later in
this chapter.

QADrawPoint
QADrawPoint() draws a single point to TQADrawContext. The size of the point is
specified by the kQATag_Width state variable.

void QADrawPoint (
const TQADrawContext *drawContext, /* Draw context */
const TQAVGouraud *v); /* Vertex */

QADrawLine
QADrawLine() draws a single line to TQADrawContext. The width of the line is
specified by the kQATag_Width state variable. If different colors are specified by v0 and
v1, the line color will be smoothly interpolated.

void QADrawLine (
const TQADrawContext *drawContext, /* Draw context */
const TQAVGouraud *v0, /* Vertex 0 */
const TQAVGouraud *v1); /* Vertex 1 */

QADrawTriGouraud
QADrawTriGouraud() draws a single Gouraud shaded triangle to TQADrawContext.
flags can be kQATriFlags_None or kQATriFlags_Backfacing. It's suggested
(but not required) that an application set kQATriFlags_Backfacing for backfacing
triangles, as this information may assist the drawing engine in resolving ambiguous hidden
surface removal situations.

void QADrawTriGouraud (
const TQADrawContext *drawContext, /* Draw context */
const TQAVGouraud *v0, /* Vertex 0 */
const TQAVGouraud *v1, /* Vertex 1 */
const TQAVGouraud *v2, /* Vertex 2 */
unsigned long flags); /* Mask of kQATriFlags_xxx */

QADrawTriTexture
QADrawTriTexture() draws a single texture mapped triangle to TQADrawContext.
The TQATexture selected by the kQATag_Texture state variable will be used as the
texture map (see Chapter 5: kQATag_Texture). flags has the same function as for
QADrawTriGouraud(), above.

void QADrawTriTexture (
const TQADrawContext *drawContext, /* Draw context */
const TQAVTexture *v0, /* Vertex 0 */
const TQAVTexture *v1, /* Vertex 1 */
const TQAVTexture *v2, /* Vertex 2 */
unsigned long flags); /* Mask of kQATriFlags_xxx */

Apple Computer Confidential 28

QADrawVGouraud
QADrawVGouraud() draws a variable number of TQAVGouraud as either points, lines,
or triangles, as selected by vertexMode. flags is either NULL, or points to an array of
kQATriFlags_None/kQATriFlags_Backfacing.

void QADrawVGouraud (
const TQADrawContext *drawContext, /* Draw context */
unsigned long nVertices, /* Number of vertices */
TQAVertexMode vertexMode, /* One of kQAVertexMode_xxx */
const TQAVGouraud vertices[], /* Array of vertices */
const unsigned long flags[]); /* Array of per-triangle flags

(or NULL) */

vertexMode can be any of the following:

kQAVertexMode_Point /* Draw nVertices points */
kQAVertexMode_Line /* Draw nVertices/2 line segments */
kQAVertexMode_Polyline/* Draw nVertices-1 connected line segments */
kQAVertexMode_Tri /* Draw nVertices/3 triangles */
kQAVertexMode_Strip /* Draw nVertices-2 triangles as a strip */
kQAVertexMode_Fan /* Draw nVertices-2 triangles as a fan from v0 */

QADrawVTexture
QADrawVTexture() draws a variable number of TQAVTexture as either points, lines,
or triangles, as selected by vertexMode. flags is either NULL, or points to an array of
kQATriFlags_None/kQATriFlags_Backfacing. vertexMode has the same
meaning as for QADrawVGouraud(), above.

void QADrawVTexture (
const TQADrawContext *drawContext, /* Draw context */
unsigned long nVertices, /* Number of vertices */
TQAVertexMode vertexMode, /* One of kQAVertexMode_xxx */
const TQAVTexture vertices[], /* Array of vertices */
const unsigned long flags[]); /* Array of per-triangle flags

(or NULL) */

If the drawing engine supports kQAOptional_OpenGL, QADrawVTexture() can be
used to draw texture mapped points and lines. If the drawing engine does not support
kQAOptional_OpenGL, the point and line vertexModes are no-ops.

TriMesh
RAVE supports a drawing type called "TriMesh." The main reason for using this data type is
to save memory and processing time by sharing vertices between triangles.

◊ Note for engine developers: If a drawing engine does not support the TriMesh then the
manager will decompose it into individual triangles. Therefore, the TriMesh methods only
need to be supported if a drawing engine can take advantage of vertex sharing.

The process to draw a TriMesh is to first submit all the vertices that are going to be used by
calling either QASubmitVerticesGouraud() or

Apple Computer Confidential 29

QASubmitVerticesTexture(). This establishes the current state of active vertices
which can be referenced by later calls to QADrawTriMeshGouraud() or
QADrawTriMeshTexture().Note that there is no unsubmit call, it is up to the engine
to handle memory management in whatever way is appropriate.

Once the vertices have been submitted, triangles are drawn by calls to
QADrawTriMeshGouraud() or QADrawTriMeshTexture(). The following details
each API call.

QASubmitVerticesGouraud
QASubmitVerticesTexture
QASubmitVerticesGouraud() and QASubmitVerticesTexture() submit
the given list of vertices to the engine. These functions will not draw anything. Note that
there is a separate state for the gouraud and texture vertices so that calls to
QADrawTriMeshGouraud() will use vertices submitted by
QASubmitVerticesGouraud() and calls to QADrawTriMeshTexture() will use
vertices submitted by QASubmitVerticesTexture().

◊ The application is resposible for allocating all memory for the vertices passed into these calls.
In addition the application must make sure that this memory is valid until all drawing is
completed.

void QASubmitVerticesGouraud (
const TQADrawContext *drawContext, /* Draw context */
unsigned long nVertices, /* Number of vertices */
const TQAVGouraud *vertices); /* Array of vertices */

void QASubmitVerticesTexture (
const TQADrawContext *drawContext, /* Draw context */
unsigned long nVertices, /* Number of vertices */
const TQAVTexture *vertices); /* Array of vertices */

QADrawTriMeshGouraud
QADrawTriMeshTexture
QADrawTriMeshGouraud() and QADrawTriMeshTexture() take a list of
triangles and draws them. Each triangle is of type TQAIndexedTriangle which has a flag
field and three indices that reference into the current state of vertices submitted by
QASubmitVerticesGouraud() or QASubmitVerticesTexture().

Apple Computer Confidential 30

typedef struct TQAIndexedTriangle /* A single tri for QADrawTriMesh */
{

unsigned long triangleFlags; /* Tri flags, see kQATriFlags_ */
unsigned long vertices[3]; /* Indices into a vertex array */

} TQAIndexedTriangle;

void QADrawTriMeshGouraud (
const TQADrawContext *drawContext, /* Draw context */
unsigned long nTriangles, /* Number of triangles */
const TQAIndexedTriangle *triangles); /* Array of triangles */

void QADrawTriMeshTexture (
const TQADrawContext *drawContext, /* Draw context */
unsigned long nTriangles, /* Number of triangles */
const TQAIndexedTriangle *triangles); /* Array of triangles */

QADrawBitmap
QADrawBitmap() draws a bitmap to TQADrawContext. The bitmap parameter is a
TQABitmap pointer returned by QABitmapNew(); see Chapter 7: Creating Textures
and Bitmaps for more information.

Unlike the other drawing calls, QADrawBitmap() accepts negative x or y values for the
pixel position. This is so the upper-left corner of the bitmap can be positioned to the left or
above the upper-left corner of the TQADrawContext. This allows a bitmap to be smoothly
moved off any edge of the draw context rectangle. (When the bitmap boundary extends
outside the draw context, it is the drawing engine's responsibility to clip it appropriately.)

void QADrawBitmap (
const TQADrawContext *drawContext,
const TQAVGouraud *v, /* xyz, and (if 1 bit/pixel) argb */
TQABitmap *bitmap); /* Allocated by QABitmapNew() */

Rendering with transparency
A RAVE drawing engine that sets the kQAOptional_Blend flag supports two
transparency blending models, pre-multiplied and interpolated. The functions for these
two transparency models, assuming a back-to-front drawing order, are shown below. (Dst
indicates the data previously in the frame buffer, Src indicates the new incoming data.)

Pre-multiplied Interpolated
a = 1 – (1 – aSrc) * (1 – aDst) a = 1 – (1 – aSrc) * (1 – aDst)
r = rSrc + (1 - aSrc) * rDst r = aSrc * rSrc + (1 - aSrc) * rDst
g = gSrc + (1 - aSrc) * gDst g = aSrc * gSrc + (1 - aSrc) * gDst
b = bSrc + (1 - aSrc) * bDst b = aSrc * bSrc + (1 - aSrc) * bDst

The kQATag_Blend state variable selects the current transparency model; the default
value is kQABlend_PreMultiply. The models differ only in the function for r, g and b;
the a function is identical.

◊ Drawing engines that don't set the kQAOptional_ZSorted flag require that the
transparent objects be submitted by the application in back-to-front Z order (otherwise the

Apple Computer Confidential 31

blend functions shown above will not yield the correct results). Typically an application
renders all opaque objects first, then submits the transparent objects in back-to-front order.

[Drawing engines that set the kQAOptional_ZSorted flag perform this Z sorting
automatically; they are discussed later in this chapter.]

The pre-multiplied transparency model is the recommended model for rendering shaded
transparent 3D primitives such as triangles. Because the pre-multiplied model does not scale
rSrc, gSrc and bSrc by aSrc, it allows a transparent object to have a specular highlight
amplitude greater than its alpha value. For example, a sheet of glass might pass 99% of the
light behind it, indicating an alpha value of 0.01. However, that same glass could contribute a
specular highlight much greater than 0.01 — 0.5 would not be uncommon. The pre-
multiplied transparency model allows this object to be rendered correctly.

The interpolated transparency model (perhaps the more familiar one) is chosen by setting
kQATag_Blend to kQABlend_Interpolate. This mode is less suitable for rendering
shaded transparent objects, but is very effective for compositing bitmap images.

Z sorted transparency

◊ Drawing engines that set the kQAOptional_ZSorted flag do not require that
transparent objects be submitted in back-to-front order. Engines of this type may either
implement a rendering algorithm, such as a painter's or scanline algorithm, that naturally
rasterizes objects in Z sorted order, or they may store and sort non-opaque objects
themselves. Engines of this type may even correctly blend intersecting transparent objects,
although this is not a required feature.

Drawing engines of this type may operate in either back-to-front or front-to-back Z order. In
either case, it is the drawing engine's responsibility to implement transparency blending
operations that are equivalent to the pre-multiplied and interpolated modes described in the
previous section. The application's use of these modes should be unaffected, except that it
is no longer the application's responsibility to submit objects in back-to-front order.

OpenGL blending modes

Drawing engines that set the kQAOptional_OpenGL flag support a wide variety of other
blending modes, best described by official OpenGL documentation.

Rendering with texture mapping
RAVE supports a powerful texture map rendering model that allows very realistic rendering of
a wide variety of texture mapped material types. RAVE's texture map rendering modes vary
between extremely simple (kQATextureOp_None), to an advanced diffuse color
mapping model (kQATextureOp_Highlight). These modes are described in detail in
the following sections.

Apple Computer Confidential 32

[If you want to skip some reading, The complete texture mapping model, later in this
chapter, summarizes the entire texture mapping model in pseudo-code.]

kQATextureOp_None

Before diving into the fancy stuff, let's begin with the basics. RAVE's texture mapping mode
is controlled by the kQATag_TextureOp state variable. By default, this variable is set to
kQATextureOp_None. In this mode, RAVE performs the most basic texture operation
possible, simply replacing the object color with the texture map color. The pseudo-code
below demonstrates this mode:

aSrc = a * TextureLookUp(u,v).a; /* Or opacity test */
rSrc = TextureLookUp(u,v).r;
gSrc = TextureLookUp(u,v).g;
bSrc = TextureLookUp(u,v).b;

u and v are the perspective corrected texture coordinates after interpolation, and a is the
interpolated alpha value (see TQAVTexture data type, earlier in this chapter). aSrc, rSrc,
gSrc and bSrc are the texture mapped object color — this Src color is then passed
through transparency blending to generate the final pixel color .

Because there is no modulation of the texture map color, this mode creates a flat looking
image with no lighting effects. This is most useful when the texture mapping engine is being
used as a 2D image warping engine (e.g. for video effects). However, it doesn't create a
realistic 3D rendering.

◊ In this mode, the texture map's alpha channel is used to control the transparency of the
rendered object on a pixel-by-pixel basis. As shown above, the resulting pixel alpha is the
product of the texture alpha and the vertex alpha (which is interpolated from the
TQAVTexture data).

◊ To reduce cost, a drawing engine may choose to implement the alpha multiply as an opacity
test, rather than a multiply, i.e.:

aSrc = (TextureLookUp(u,v).a == 1) ? a : 0;

kQATextureOp_Modulate

A more realistic texture mapped image can be obtained by modulating the texture map color
with kd_r, kd_g and kd_b (from TQAVTexture). This mode is enabled by setting the
kQATextureOp_Modulate flag in the kQATag_TextureOp state variable. The
equations below show the effect of modulation:

aSrc = a * TextureLookUp(u,v).a; /* Or opacity test */
rSrc = kd_r * TextureLookUp(u,v).r;
gSrc = kd_g * TextureLookUp(u,v).g;
bSrc = kd_b * TextureLookUp(u,v).b;

Usually modulation is performed to add the effect of lighting to the texture, i.e. kd_r, kd_g
and kd_b are the illumination brightness. Note that kd_r, kd_g and kd_b can have a value

Apple Computer Confidential 33

greater than 1.0. This allows a more accurate rendering of scenes where the light intensity is
high.

◊ To reduce cost, a drawing engine may replace the three modulation components kd_r,
kd_g and kd_b with a single value kd. This replacement is transparent to the application,
except that colored lights applied to texture maps will appear white. Drawing engines that use
this simplification must negate the kQAOptional_TextureColor flag.

kQATextureOp_Highlight

Image realism can be further improved by setting the kQATextureOp_Highlight flag.
When both kQATextureOp_Modulate and kQATextureOp_Highlight are
true, the texture operation is:

aSrc = a * TextureLookUp(u,v).a; /* Or opacity test */
rSrc = kd_r * TextureLookUp(u,v).r + ks_r;
gSrc = kd_g * TextureLookUp(u,v).g + ks_g;
bSrc = kd_b * TextureLookUp(u,v).b + ks_b;

The ks_r, ks_g and ks_b values are used to add a specular highlight to the texture
mapped object. In fact, the equations shown above bear a strong resemblance to the classic
phong illumination model: kd_r/g/b is the diffuse light, TextureLookUp() is the
diffuse color, and ks_r/g/b is the product of specular light and specular color. This mode
can be described as diffuse color mapping.

◊ To reduce cost, a drawing engine may replace the three specular highlight components
ks_r, ks_g and ks_b with a single value ks. This replacement is transparent to the
application, except that the specular highlight of texture mapped objects will always be white,
not colored. Drawing engines that use this simplification must negate the
kQAOptional_TextureColor flag.

kQATextureOp_Decal

In the previous examples, the texture map alpha channel (multiplied by the vertex alpha)
provides the transparency of the texture mapped object. This allows the texture map alpha to
control the transparency of the object on a pixel-by-pixel basis.

◊ Setting kQATextureOp_Decal changes the interpretation of texture map alpha. When
kQATextureOp_Decal is true, the texture map alpha is used to blend between the
texture map color and the interpolated r, g, and b fields from TQAVTexture.

aT = TextureLookUp(u,v).a;
rSrc = aT * TextureLookUp(u,v).r + (1 - aT) * r; /* Or opacity test */
gSrc = aT * TextureLookUp(u,v).g + (1 - aT) * g;
bSrc = aT * TextureLookUp(u,v).b + (1 - aT) * b;
aSrc = a;

◊ To reduce cost, a drawing engine may choose to implement these alpha blends as opacity
tests, i.e.:

rSrc = (aT == 1) ? TextureLookUp(u,v).r : r;

Apple Computer Confidential 34

The complete texture mapping model

If you find reading all this text boring, here's a much more concise description. The following
pseudo-code demonstrates the complete texture mapping model. Features that can be
simplified for cost reduction are noted in the right side comments.

/* Begin by looking up argb from the texture map */
aSrc = TextureLookUp(u,v).a;
rSrc = TextureLookUp(u,v).r;
gSrc = TextureLookUp(u,v).g;
bSrc = TextureLookUp(u,v).b;

if (stateTextureOp & kQATextureOp_Decal)
{

rSrc = aSrc * rSrc + (1 - aSrc) * r; /* Or opacity test */
gSrc = aSrc * gSrc + (1 - aSrc) * g;
bSrc = aSrc * bSrc + (1 - aSrc) * b;
aSrc = a;

}
else
{

aSrc = aSrc * a; /* Or opacity test */
}

if (stateTextureOp & kQATextureOp_Modulate)
{

rSrc *= kd_r; /* Or kd replaces kd_r/g/b */
gSrc *= kd_g;
bSrc *= kd_b;

}

if (stateTextureOp & kQATextureOp_Highlight)
{

rSrc += ks_r; /* Or ks replaces ks_r/g/b */
gSrc += ks_g;
bSrc += ks_b;

}
/* And proceed with transparency blending */

kQATextureOp_Shrink

Unlike the texture modes described previously, kQATextureOp_Shrink does not affect
the per-pixel texture mapping algorithm. Instead, the application sets
kQATextureOp_Shrink to avoid unwanted texture wrapping. Setting
kQATextureOp_Shrink to true indicates that the drawing engine should guarantee that
a uv range of 0.0 <= uv <= 1.0 will not cause wrapping.

In theory, a uv range of 0.0 - 1.0 should not cause wrapping anyway. However, in practice the
errors that occur during uv interpolation can cause overflow or underflow of u and v, resulting
in occasional one pixel texture wraps at the 0 and 1 boundaries. Setting
kQATextureOp_Shrink indicates that these errors should be suppressed.

◊ kQATextureOp_Shrink is not the same as uv clamping in OpenGL. The difference is
that clamping is designed to accept uv over an arbitrary range, while
kQATextureOp_Shrink is only effective over an input uv range of 0-1. This means
kQATextureOp_Shrink is less expensive to implement — usually it can be performed

Apple Computer Confidential 35

by slightly compressing the range of u and v before interpolation begins, rather than by
implementing per-pixel clamp tests. However, drawing engines that do support OpenGL-
style clamping can use this feature to implement kQATextureOp_Shrink.

kQATextureOp_Shrink is typically used by applications which perform uv clamping by
geometry subdivision (rather than by per-pixel clamping).

Using the texture map alpha channel for transparency
Texture maps of pixel types kQAPixel_ARGB16 or kQAPixel_ARGB32 include a per-
pixel alpha channel. When the alpha blending mode is set to kQABlend_PreMultiply,
this alpha channel can be used to control object transparency on a pixel-by-pixel basis.

◊ Because this transparency model assumes that diffuse color has been pre-multiplied by
alpha, every pixel of the texture map must be pre-multiplied by its associated alpha
value before the texture map is created with QATextureMapNew().

◊ This transparency mode models a transparent material (such as glass). For these types of
materials the specular highlight is unaffected by the diffuse transparency of the object. In
other words, setting the alpha channel of the texture to 0 will not make the object vanish —
its specular highlight will still be rendered.

Using the texture map alpha channel as a matte
Setting the transparency blending model to kQABlend_Interpolate allows the per-
pixel texture map alpha channel to be used as a matte that "cuts out" portions of the drawn
geometry. With this blending mode, a per-pixel alpha value of 0 will completely eliminate the
rendered object (including its specular highlight).

◊ Note that the texture pixels' diffuse colors should not be pre-multiplied by their associated
alpha value. This multiplication will be performed by the blending operation.

◊ In this mode, the alpha channel operates as a soft-edge matte. Unfortunately, this means that
per-vertex interpolated alpha cannot be used to model a transparent surface as accurately, as
the specular highlight will be scaled by the alpha value. In some cases this can be corrected
by increasing the brightness of the specular highlight when per-vertex alpha is used.
However, for the general case the current specification doesn't provide a method for
simultaneously rendering accurate transparency while using the texture alpha channel as a
matte. [That's because it would require a lot more hardware! -Eds.]

Rendering with antialiasing
Drawing engines that set the kQAOptional_Antialias flag support antialiased
rendering. The application indicates its preferred level of antialiasing with the
kQATag_Antialias state variable (see Chapter 5); however, the interpretation of this

Apple Computer Confidential 36

variable is the drawing engine's responsibility. For example, consider a drawing engine that
supports antialiased line drawing with no speed penalty, but that slows down 50% when
triangle antialiasing is enabled. For this engine, setting kQATag_Antialias to
kQAAntialias_Fast will enable line antialiasing. However, triangle antialiasing will not
be enabled until kQATag_Antialias is set to kQAAntialias_Mid.

◊ In RAVE, antialiasing operates independently of the transparency blending mode. This is in
contrast to OpenGL, where specific blending modes must be selected when antialiasing is
enabled.

Using color lookup tables
RAVE supports two pixels types defined in TQAImagePixelType for using color tables,
kQAPixel_CL4 and kQAPixel_CL8. These additional pixel types are only valid when
creating a texture or bitmap. The concept of a color table has also been added to the API to
support these new pixel types. TQAColorTableType defines the type of color tables
supported by the API and TQAColorTable represents an actual color table.

typedef enum TQAImagePixelType
{

kQAPixel_Alpha1 = 0, /* 1 bit/pixel alpha */
kQAPixel_RGB16 = 1, /* 16 bit/pixel, R=14:10, G=9:5, B=4:0 */
kQAPixel_ARGB16 = 2, /* 16 bit/pixel, A=15, R=14:10, G=9:5,

B=4:0 */
kQAPixel_RGB32 = 3, /* 32 bit/pixel, R=23:16, G=15:8, B=7:0 */
kQAPixel_ARGB32 = 4, /* 32 bit/pixel, A=31:24, R=23:16, G=15:8,

B=7:0 */
kQAPixel_CL4 = 5, /* 4 bit color look up table, always big

endian, ie high 4 bits effect left pixel */
kQAPixel_CL8 = 6 /* 8 bit color look up table */

} TQAImagePixelType;

typedef enum TQAColorTableType
{

kQAColorTable_CL8_RGB32 = 0, /* 256 entry, 32 bit/pixel,
R=23:16, G=15:8, B=7:0 */

kQAColorTable_CL4_RGB32 = 1 /* 16 entry, 32 bit/pixel,
R=23:16, G=15:8, B=7:0 */
} TQAColorTableType;

typedef struct TQAColorTable TQAColorTable;

Before using these pixel types you must check the gestalt flags kQAOptional_CL8 and
kQAOptional_CL4 to see if they are supported by the current drawing engine.
Additionally you may want to check kQAFast_CL8 and kQAFast_CL4 to see if they are
accelerated. If they are not accelerated it is safe to assume that the texture or bitmap will be
expanded to a pixel type that the drawing engine can render directly.

◊ Note to engine developers: Support for the color lookup table is not required, however the
manager will NOT provide support if the engine does not support it. This means that if an

Apple Computer Confidential 37

application tries to create a texture or bitmap that requires a color table and your engine does
not support color tables the call will return the error kQANotSupported.

After creating a texture or bitmap of type kQAPixel_CL4 or kQAPixel_CL8 you must
"bind" a color table created by QAColorTableNew to the new object by calling either
QATextureBindColorTable or QABitmapBindColorTable. When the object is
drawn the most recently bound color table will be used as the source color data.

Note that a color table must be bound before an object of pixel type kQAPixel_CL4 or
kQAPixel_CL8 can be drawn. Additionally it is an error to bind a color table of a different
size then the pixel type by which it was created. For example a texture created with
kQAPixel_CL4 can only be bound to a color table created with kQACL4_RGB32.

The only currently supported format for a color table is RGB32. The engine may color space
reduce this data in order to fit in on-chip memory. When creating a color table you may
optionally specify that index 0 is completely transparent by setting the
transparentIndexFlag to true.

QAColorTableNew
TQAError QAColorTableNew(

const TQAEngine *engine, /* Drawing engine to use */
TQAColorTableType tableType, /* Depth, color space, etc. */
void *pixelData, /* lookup table entries in pixelType

format */
long transparentIndexFlag, /* boolean, false means no

transparency, true means index 0 is transparent */
TQAColorTable **newTable); /* (Out) Newly created TQAColorTable

*/

QAColorTableDelete
void QAColorTableDelete(

const TQAEngine *engine, /* Drawing engine to use */
TQAColorTable *colorTable); /* Previously allocated by

QAColorTableNew() */

QATextureBindColorTable
TQAError QATextureBindColorTable(

const TQAEngine *engine, /* Drawing engine to use */
TQATexture *texture, /* Previously allocated by

QATextureNew() */
TQAColorTable *colorTable); /* Previously allocated by

QAColorTableNew() */

QABitmapBindColorTable
TQAError QABitmapBindColorTable(

const TQAEngine *engine, /* Drawing engine to use */
TQABitmap *bitmap, /* Previously allocated by

QABitmapNew() */
TQAColorTable *colorTable); /* Previously allocated by

QAColorTableNew() */

Apple Computer Confidential 38

Chapter 7: Creating Textures and Bitmaps
In some cases a drawing engine may need to store textures and bitmaps in special purpose
memory (e.g. on an accelerator card), rather

 than in general purpose system memory. To support this, RAVE provides new and delete
functions for textures and bitmaps. These functions provide an opportunity for the drawing
engine to copy the data into special purpose memory if necessary(or to perform any other
required setup).

Although these functions allow a drawing engine to copy textures and bitmaps into special
purpose memory, the API does not require that copying be performed. This avoids
penalizing drawing engines (such as software rasterizers) which can directly use the
application's texture or bitmap information in system memory.

The TQAImage
Both texture maps and bitmaps are composed of pixel images. The RAVE API describes
these images with a general-purpose datatype called TQAImage:

struct TQAImage
{

long width; /* Width of pixmap */
long height; /* Height of pixmap */
long rowBytes; /* Rowbytes of pixmap */
void *pixmap; /* Pixmap */

};

 A bitmap image, or non-mipmapped texture map, is described by a single TQAImage. A
mipmapped texture is described by an array of TQAImage, one for each map page.

◊ For some low-cost accelerators, having rowBytes = width * sizeof (pixel) will improve
performance.

QATextureNew
QATextureNew() is used to create a texture map. QATextureNew() sets a
TQATexture pointer. This TQATexture pointer is used by the application to select a
texture map during rendering (see Chapter 5: kQATag_Texture), and in subsequent calls
to QATextureDelete() or QATextureDetach().
TQAError QATextureNew (

const TQAEngine *engine, /* Drawing engine to use */
unsigned long flags, /* Mask of kQATexture_xxx flags */
TQAImagePixelType pixelType, /* Depth, color space, etc. */
const TQAImage images[], /* Image(s) for texture */
TQATexture **newTexture); /* (Out) New TQATexture */

Apple Computer Confidential 39

engine is the drawing engine with which this texture will be used.

flags is a bitmask for which any combination of the following flags may be ORed together:

kQATexture_Lock: Load this texture and do not allow it to be swapped out. Usually
this is used by the application to improve performance by locking a texture which will be
heavily used. For software drawing engines this is usually a no-op. Warning: If the
drawing engine cannot meet this request, QATextureNew() will fail and return an
error.

kQATexture_Mipmap: This is a mipmapped texture. See below for further
discussion.

pixelType indicates the pixel format of the images. It can be any of:

kQAPixel_RGB16: A 16 bit/pixel map. Red is bits [14:10], green is [9:5], blue is
[4:0]. There is no per-pixel alpha value, so the texture is treated as opaque (although
transparency can still be applied via the triangle's vertex alpha values).

kQAPixel_ARGB16: Same as kQAPixel_RGB16, above, except that bit [15] is
used as a per-pixel alpha value. Because it is one bit, alpha can be either 0 or 1. When
alpha is 1, the texture is opaque; when alpha is 0, it is completely transparent.

kQAPixel_RGB32: A 32 bit/pixel map. Red is bits [23:16], green is [15:8], blue is
[7:0]. There is no per-pixel alpha value, so the texture is treated as opaque (just like
kQAPixel_RGB16).

kQAPixel_ARGB32: Same as kQAPixel_RGB32, above, except that bits [31:24]
are used as an eight bit per-pixel alpha. An alpha of 255 is opaque, while an alpha of 0 is
completely transparent.

kQAPixel_CL4: A 4 bit color lookup table indexed texture. See "Using color lookup
tables" above.

kQAPixel_CL8: A 8 bit color lookup table indexed texture. See "Using color lookup
tables" above.

images is an array of one or more TQAImage structures that point to the texture image.
When kQATexture_Mipmap is false, images points to a single TQAImage which
defines the texture map. Both the width and height of the TQAImage must be an even
power of 2, e.g. 64, 128, 256 etc.

Apple Computer Confidential 40

When kQATexture_Mipmap is true, images points to an array of TQAImage, one for
each page of the texture mipmap. images[0] is the highest resolution page; its width and
height must be an even power of 2. Each subsequent TQAImage should have a width and
height 1/2 the value of the previous page, with the exception that width and height have a
minimum value of 1. The table below gives example TQAImage resolutions for a 64x16
mipmapped texture:

Width Height
images[0] 64 16
images[1] 32 8
images[2] 16 4
images[3] 8 2
images[4] 4 1
images[5] 2 1
images[6] 1 1

newTexture is a pointer to your TQATexture pointer. If QATextureNew() returns
kQANoErr, newTexture will be set to point to the new TQATexture.

◊ It is not required that QATextureNew() copy the pixmap data pointed to by images.
Therefore, after calling QATextureNew(), the application must not free or reuse the
memory which holds the image pixmaps. If the application needs to free or reuse the
image pixmap memory, it must call QATextureDetach(), described later in this chapter,
before doing so.

◊ Although it isn't required that the image pixmap memory be copied, QATextureNew() is
required to copy all necessary information from the TQAImage structures themselves.
Therefore the application can free or reuse this memory after the QATextureNew() call.

For example, to create a 128x256 non-mipmapped texture with 32 bit RGB pixels:

TQAEngine *engine;
TQATexture *texture;
TQAImage image;
long pixmap [256][128];
...
image.width = 128;
image.height = 256;
image.rowBytes = image.width * sizeof (long);
image.pixmap = pixmap;

if (QATextureNew (engine, kQATexture_None, kQAPixel_RGB32,
&image, &texture) != kQANoErr)

{
/* Error, map could not be created. */

}
/* 'image' can now be changed, but _not_ 'pixmap'! */

QATextureNew() returns kQANotSupported if the requested pixel type is not
supported. kQAOutOfMemory is returned if there isn't enough memory. kQAError will
be returned for other errors, e.g. the texture could not be locked.

Apple Computer Confidential 41

QATextureDelete
QATextureDelete() is used to delete a TQATexture:

void QATextureDelete (
const TQAEngine *engine, /* Drawing engine */
TQATexture *texture); /* Created by QATextureNew() */

For example, to delete the texture created in the previous example:

QATextureDelete (engine, texture);

QATextureDetach
QATextureDetach() forces the drawing engine to copy the pixmap data which was
originally provided to it by QATextureNew(). Once QATextureDetach() has been
called, the pixmap data for the texture's images can be freed or reused safely.

TQAError QATextureDetach (
const TQAEngine *engine, /* Drawing engine */
TQATexture *texture); /* Created by QATextureNew() */

Because QATextureDetach() may have to allocate memory, it returns TQAError to
indicate success or failure. If the return value is not kQANoErr, then the texture was not
successfully detached.

QABitmapNew
QABitmapNew() is used to create a bitmap. QABitmapNew() sets a TQABitmap
pointer. This TQABitmappointer is used to render the bitmap with QADrawBitmap(),
and in subsequent calls to QABitmapDelete() or QABitmapDetach().
TQAError QABitmapNew (

const TQAEngine *engine, /* Drawing engine to use */
unsigned long flags, /* Mask of kQABitmap_xxx flags */
TQAImagePixelType pixelType, /* Depth, color space, etc. */
const TQAImage *image, /* Image */
TQABitmap **newBitmap); /* (Out) New TQABitmap */

engine is the drawing engine with which this bitmap will be used.

flags is a bitmask. Currently, only one flag is defined:

kQABitmap_Lock: Load this bitmap and do not allow it to be swapped out. Usually
this is used by the application to improve performance by locking a bitmap which will be
heavily used. For software drawing engines this is usually a no-op. Warning: If the
drawing engine cannot meet this request, QABitmapNew() will fail and return an
error.

pixelType indicates the pixel format of the images. It can be any of:

Apple Computer Confidential 42

kQAPixel_Alpha1: A 1 bit/pixel bitmap. Bits that are 0 are fully transparent; bits that
are 1 are rendered in the color passed to QADrawBitmap().

kQAPixel_RGB16: A 16 bit/pixel map. Red is bits [14:10], green is [9:5], blue is
[4:0]. There is no per-pixel alpha value, so the texture is treated as opaque (although
transparency can still be applied via the triangle's vertex alpha values).

kQAPixel_ARGB16: Same as kQAPixel_RGB16, above, except that bit 15 is used
as a per-pixel alpha value. Because it is one bit, alpha can be either 0 or 1. When alpha is
1, the texture is opaque; when alpha is 0, it is completely transparent.

kQAPixel_RGB32: A 32 bit/pixel map. Red is bits [23:16], green is [15:8], blue is
[7:0]. There is no per-pixel alpha value, so the texture is treated as opaque (just like
kQAPixel_RGB16).

kQAPixel_ARGB32: Same as kQAPixel_RGB32, above, except that bits 31:24 are
used as an eight bit per-pixel alpha. An alpha of 255 is opaque, while an alpha of 0 is
completely transparent.

image points to a single TQAImage which defines the bitmap. Width and height may have
any value greater than 0.

newBitmap is a pointer to your TQABitmap pointer. If QABitmapNew() returns
kQANoErr, newBitmap will be set to point to the new TQABitmap .

◊ It is not required that QABitmapNew() copy the pixmap data pointed to by image.
Therefore, after calling QABitmapNew(), the application must not free or reuse the
memory which holds the image pixmap. If the application needs to free or reuse the
image pixmap memory, it must call QABitmapDetach(), described later in this chapter,
before doing so.

◊ Although it isn't required that the image pixmap memory be copied, QABitmapNew() is
required to copy all necessary information from the TQAImage structure itself. Therefore
the application can free or reuse this memory after the QABitmapNew() call.

QABitmapDelete
QABitmapDelete() is used to delete a TQABitmap:

void QABitmapDelete (
const TQAEngine *engine, /* Draw engine */
TQABitmap *bitmap); /* Created by QABitmapNew() */

Apple Computer Confidential 43

QABitmapDetach
QABitmapDetach() forces the drawing engine to copy the pixmap data which was
originally provided to it by QABitmapNew(). Once QABitmapDetach() has been
called, the pixmap data for the bitmap's image can be freed or reused safely.

TQAError QABitmapDetach (
const TQAEngine *engine, /* Draw engine */
TQABitmap *bitmap); /* Created by QABitmapNew() */

Because QABitmapDetach() may have to allocate memory, it returns TQAError to
indicate success or failure. If the return value is not kQANoErr, then the bitmap was not
successfully detached.

Apple Computer Confidential 44

Chapter 8: Buffering and Synchronization

QARenderStart
QARenderStart() is used to initialize a TQADrawContext before rendering. This
function must always be called before any QADraw...() calls are made.

void QARenderStart (
const TQADrawContext *drawContext, /* Draw context */
const TQARect *dirtyRect, /* Minimum area to clear */
const TQADrawContext *initialContext);/* Previously cached context */

When initialContext is NULL, QARenderStart() clears the drawContext z
buffer to 1.0, and the argb buffer to the values contained in the state variables
kQATag_ColorBG_a/r/g/b. When initialContext is non-NULL,
drawContext is initialized to the contents of initialContext. See Using
TQADrawContext as a cache, later in this chapter, for more discussion of
initialContext.

dirtyRect indicates the minimum area of the drawContext to initialize. With some
drawing engines, setting dirtyRect to an area smaller than the entire draw context will
improve performance by avoiding unnecessary re-initialization of the draw context. Note,
however, that dirtyRect is only a hint — the drawing engine may choose to initialize the
entire buffer anyway. Therefore, dirtyRect cannot be used to avoid clearing a region of
the previous image, or to perform incremental rendering. Instead, effects like these should
be performed with initialContext.

If NULL is passed for dirtyRect, the entire buffer will be initialized.

◊ When OpenGL rendering is being performed, QARenderStart() performs the function
of glClear(). In this mode, QARenderStart() and QARenderEnd() are no
longer required to occur in matched pairs, and QADraw...() commands may occur at any
time.

QARenderEnd
QARenderEnd() signals the end of rendering to a TQADrawContext. For a double-
buffered context, this displays the back buffer. For a single-buffered context, this causes a
call to QAFlush(), discussed later in this chapter, and signals the drawing engine that
rendering is complete. This signal is then used for releasing locks on framebuffer regions,
removing cursor shields, etc.

After a call to QARenderEnd() has been made, no further QADraw...() calls can be
made until QARenderStart() has been called again.

Apple Computer Confidential 45

TQAError QARenderEnd (
const TQADrawContext *drawContext, /* Draw context */
const TQARect *modifiedRect); /* Minimum area to show */

modifiedRect indicates the minimum area of the drawContext back buffer to show.
On some drawing engines, setting modifiedRect to an area smaller than the entire draw
context may improve performance by avoiding unnecessary pixel copying. Note, however,
that modifiedRect is only a hint — the drawing engine may choose to show the entire
buffer anyway.

If modifiedRect is NULL, the entire back buffer is shown.

QARenderEnd() returns a TQAError value, which signals whether there have been any
error since the previous call to QARenderStart(). If all rendering commands executed
correctly, kQANoErr is returned. If any rendering call caused an error, an error code other
than kQANoErr will be returned.

◊ If the return value does not equal kQANoErr, it indicates that an error occurred while
rendering the frame. In this case, the application should assume that the rendered image is
incorrect.

◊ Calling QARenderEnd() automatically causes a call to QAFlush().

QARenderAbort
QARenderAbort() causes any asynchronous rendering operations in drawContext to
be aborted immediately, and any queued commands to be discarded. QARenderAbort()
replaces QARenderEnd() as a means of ending the render to a draw context — the
application should not call both.

QARenderAbort() returns a TQAError value; see QARenderEnd() for a discussion
of how to interpret this value.

TQAError QARenderAbort (
const TQADrawContext *drawContext); /* Draw context */

QAFlush
RAVE permits a drawing engine to buffer as many drawing commands as desired. This means
that, even when drawing to a single-buffered draw context, drawing an object does not
guarantee that the object will become visible on the screen.

TQAError QAFlush (
const TQADrawContext *drawContext); /* Draw context */

QAFlush() causes the drawing engine to begin rendering all buffered commands.
QAFlush() is not a blocking call — calling QAFlush() does not guarantee that
rendering of the buffered commands has completed, merely that it has begun. QAFlush()

Apple Computer Confidential 46

does guarantee that all the buffered calls will be performed eventually — wait long enough,
and the rendered image will be complete.

QAFlush() is typically used to occasionally update a long, single-buffered render, so that
the user can see what progress has been made. QAFlush() has no visible effect on a
double-buffered draw context, although it will initiate rendering to the back buffer.

QAFlush() returns a TQAError value; see QARenderEnd() for a discussion of how to
interpret this value.

◊ Calling QARenderEnd() automatically causes a call to QAFlush().

QASync
QASync() is functionally identical to QAFlush(), except that it is blocking — it doesn't
return until all outstanding rendering commands have been completed.

TQAError QASync (
const TQADrawContext *drawContext); /* Draw context */

QASync() should be called whenever completion of all rendering is necessary. For
example, an application should call QASync() before reading the rendered image to save it
to disk.

QASync() returns a TQAError value; see QARenderEnd() for a discussion of how to
interpret this value.

Using TQADrawContext as a cache
To improve performance when a large percentage of the objects in a scene don't change
from frame to frame, RAVE supports draw context caching. To use this feature, the
application first builds a cache by creating a TQADrawContext with the
QAContext_Cache flag, and then drawing the unchanging objects to that context. This
cache can then be passed to QARenderStart() as the initialContext — basically
this means the QARenderStart() will initialize the buffer to the image stored in the
cache, rather than to a blank screen.

For example, consider a (rather trivial) application where two triangles, t1 and t2, remain
constant from frame to frame, but triangle t3 changes every frame This could be coded as:

Apple Computer Confidential 47

TQAVGouraud t1[3], t2[3], t3[3];
TQADrawContext *cache, *draw;
...
/* Create TQADrawContexts (we should be checking for errors!) */
QADrawContextNew (device, rect, NULL, engine, QAContext_Cache, &cache);
QADrawContextNew (device, rect, NULL, engine,

QAContext_DoubleBuffer, &draw);

/* Create the cache context */
QARenderStart (cache, NULL, NULL);
QADrawTriGouraud (cache, &t1[0], &t1[1], &t1[2], kQATriFlags_None);
QADrawTriGouraud (cache, &t2[0], &t2[1], &t2[2], kQATriFlags_None);
QARenderEnd (cache, NULL);

/* Render a bunch of frames using the cache and moving tri3 only */
while (movingTriangle3)
{

myMoveTri (t3);
QARenderStart (draw, NULL, cache);
QADrawTriGouraud (draw, &t3[0], &t3[1], &t3[2], kQATriFlags_None);
QARenderEnd (draw, NULL);

}

A drawing engine is not required to support caching; if it doesn't, it should return NULL when
the QAContext_Cache flag is passed to QADrawContextNew().

◊ Cache contexts must be singled buffered, and must be created with the same TQADevice
and TQARect parameters as the draw context with which they will be used.

Apple Computer Confidential 48

Chapter 9: Adding a New Drawing Engine
Developing a new drawing engine and adding it to RAVE requires seven steps:

1: Write methods for the public calls in TQADrawContext (setInt, setFloat,
drawPoint etc.). This methods are all prototyped in RAVE.h, e.g. the setInt
method is a function pointer of type TQASetInt. Writing these methods is most of
the work; fortunately, RAVE allows you to begin with a minimal feature set so you can get
something running quickly.

2: Write a TQADrawPrivateNew and TQADrawPrivateDelete method for your
drawing engine's private draw context data. This is where you store your state variables,
and any other private data necessary for rendering a TQADrawContext . These
methods will be called by the QADrawContextNew() and
QADrawContextDelete() functions. Because these aren't public methods, their
prototypes are in RAVE_system.h (which is used only for drawing engine development).

3: Write TQATextureNew, TQATextureDetach, TQATextureDelete,
TQABitmapNew, TQABitmapDetach, and TQABitmapDelete methods. These
prototypes are in Drive3D_system.h. These methods are called by their associated
public functions in RAVE.h, e.g. QATextureNew() calls your TQATextureNew
method.

4: Write a TQAEngineGestalt method for your engine; its functionality is the same as
QAEngineGestalt(). You'll need to get an Apple-assigned vendorID number to
service the kQAGestalt_VendorID request. The prototype is in
Drive3D_system.h.

5: Write a TQAEngineDeviceCheck method. RAVE will call this method to determine
which TQADevices your drawing engine supports. Yes, same place for the prototype.

6: Write a TQAEngineGetMethod method. The RAVE manager will call this method to
retrieve your engine's methods during registration. This method is used only for the
engine methods (the draw context methods are set by your TQADrawPrivateNew
function).

7: Finally, build all your code as a shared library, and include an initialization call to
QARegisterEngine(), to which you pass your TQAEngineGetMethod
method. This call registers your drawing engine with the RAVE manager.

Apple's 3D drawing engine development kit includes the RAVE_system.h include file, and
code examples for all of these steps. The remainder of this chapter provides more detail on
each of the steps described above.

Apple Computer Confidential 49

The public TQADrawContext methods
The public TQADrawContext structure, defined in RAVE.h, holds function pointers
which point to your engine's drawing methods. These function pointers are called whenever
the application uses one of the drawing macros, such as QADrawPoint(), defined in
RAVE.h. TQADrawContext also has a pointer (drawPrivate) to your engine's private
data for this TQADrawContext. There is also a version field, which is set by the RAVE
manager. In future releases of RAVE, this field will be used to signal any additions to the
TQADrawContext structure.

struct TQADrawContext
{

TQADrawPrivate *drawPrivate;
const TQAVersion version;
TQASetFloat setFloat;
TQASetInt setInt;
TQASetPtr setPtr;
TQAGetFloat getFloat;
TQAGetInt getInt;
TQAGetPtr getPtr;
TQADrawPoint drawPoint;
TQADrawLine drawLine;
TQADrawTriGouraud drawTriGouraud;
TQADrawTriTexture drawTriTexture;
TQADrawVGouraud drawVGouraud;
TQADrawVTexture drawVTexture;
TQADrawBitmap drawBitmap;
TQARenderStart renderStart;
TQARenderEnd renderEnd;
TQARenderAbort renderAbort;
TQAFlush flush;
TQASync sync;
TQASubmitVerticesGouraud submitVerticesGouraud;
TQASubmitVerticesTexture submitVerticesTexture;
TQADrawTriMeshGouraud drawTriMeshGouraud;
TQADrawTriMeshTexture drawTriMeshTexture;

};

The TQADrawContext is passed as the first parameter to all of your draw context
methods. This allows your functions to retrieve the drawPrivate pointer, to which all of
your private data is attached. For most of your functions, the TQADrawContext pointer is
passed as const. This indicates that your function must not alter any field of the
TQADrawContext . Respect the const declaration — if you override it and change
anything in the TQADrawContext structure, you will break many apps (including
QuickDraw 3D).

Three functions receive the TQADrawContext without a const declaration:
QASetFloat(), QASetInt() and QASetPtr(). These functions are permitted to
change methods in the TQADrawContext. For example, this allows TQASetInt() to
change the drawTriTexture method depending on the current state of the
kQATag_TextureOp state variable.

◊ When your TQASetInt/Float/Ptr() methods need to change a draw context
method pointer, they should call QARegisterDrawMethod(). This notifies the

Apple Computer Confidential 50

manager that a method has been changed. Do not directly change the method pointer in the
TQADrawContext structure.

To demonstrate how these methods are called, consider the following application code that
draws a point to drawContext:

TQADrawContext *drawContext;
TQAVGouraud vertex;
...
QADrawPoint (drawContext, &vertex);

From this source code, the C preprocessor macro substitution generates the code shown
below, which calls your engine's drawPoint method:

(drawContext)->drawPoint (drawContext, &vertex);

All of the method function pointers in TQADrawContext are defined in RAVE.h. For
example, the TQADrawPoint function type is:

typedef void (*TQADrawPoint) (
const TQADrawContext *drawContext, /* Draw context */
const TQAVGouraud *v); /* Vertex */

◊ With two exceptions, your drawing engine must implement a function for all of the methods
in TQADrawContext. The first exception is for drawing engines that don't support texture
mapping. These don't need to provide drawTriTexture or drawVTexture methods.
The second exception is for the drawVGouraud and drawVTexture methods. If your
application does not provide these, the RAVE manager will insert generic functions that
decompose these calls into multiple calls to your drawPoint/Line/Tri functions.

The pseudo-code below shows an example function MyDrawPoint(), which matches the
TQADrawPoint template:

void MyDrawPoint (
const TQADrawContext *drawContext, /* Draw context */
const TQAVGouraud *v) /* Vertex */

{
MyPrivateData *myData; /* Actual type of my private context */

/* Cast generic drawPrivate pointer to my actual private data type */
myData = (MyPrivateData *) drawContext->drawPrivate;

/* Call my Z-buffered pixel draw function with xyz and argb, and
 * also pass it the current Z function, which is stored in my
 * private draw context data structure. This isn't a complete
 * implementation! (I really should be checking kQATag_Width, for
 * example) */

MyDrawPixelWithZ (v->x, v-y, v->z, v->a, v->r, v->g, v->b,
myData->stateVariable [kQATag_ZFunction]);

}

Apple Computer Confidential 51

The private TQADrawContext new and delete
functions
Once you have written all your TQADrawContext public methods, the next step is to write
a TQADrawPrivateNew method. This method is prototyped in Drive3D_system.h:

typedef TQAError (*TQADrawPrivateNew) (
TQADrawContext *newDrawContext,/* Draw context to initialize */
const TQADevice *device,/* Target device */
const TQARect *rect, /* Target rectangle (device coordinates) */
const TQAClip *clip, /* 2D clip region (or NULL) */
unsigned long flags); /* Mask of kQAContext_xxx */

This method will be called by the RAVE manager when the application creates a new drawing
context with QADrawContextNew(). The pseudo-code below shows an example
function MyDrawPrivateNew(), which matches the TQADrawPrivateNew
template:

TQAError MyDrawPrivateNew (
TQADrawContext *drawContext,
const TQADevice *device,
const TQARect *rect,
const TQAClip *clip,
unsigned long flags)

{
MyPrivateData *myData;

/* Allocate a new MyPrivateData structure, and store it
 * in drawContext->drawPrivate. */

myData = MyDataNew (...);
drawContext->drawPrivate = (TQADrawPrivate *) myData;
if (! myData)
{

return (kQAOutOfMemory);
}

/* Set the method pointers of drawContext to point to my
 * draw methods. */

newDrawContext->setFloat = MySetFloat;
newDrawContext->setInt = MySetInt;
...
return (kQANoErr);

}

RAVE initializes all the fields of the TQADrawContext to NULL before calling your
TQADrawPrivateNew method. This allows RAVE to recognize and replace functions
that you didn't initialize (e.g. drawVGouraud or drawVTexture).

◊ Because your drawing engine initializes the TQADrawContext methods, you can load
different methods depending on the type of draw context being created. For example, you
may have a different line drawing function for 16 bits/pixel than for 32 bits/pixel. By testing
the depth of the target TQADevice and then loading the method that matches that depth,
you can avoid having to test the display depth every time your line drawing code is called.

Apple Computer Confidential 52

In addition to your TQADrawPrivateNew method, you must implement a
TQADrawPrivateDelete method which is called by QADrawContextDelete().
This method must free any memory or resources allocated by your
TQADrawPrivateNew. For example:

void MyDrawPrivateDelete (
TQADrawPrivate *drawPrivate)

{
MyDataDelete ((MyPrivateData *) drawPrivate);

}

Your new and delete method function pointers (MyDrawPrivateNew() and
MyDrawPrivateDelete(), in the examples above) are communicated to RAVE during
the registration process; see Registering your drawing engine, later in this chapter, for
more information.

Texture and Bitmap New/Detach/Delete
These methods are called by the public RAVE functions which manage textures and
bitmaps, e.g. QATextureNew() will call your TQATextureNew method. You must
always implement TQABitmapNew, TQABitmapDetach and TQABitmapDelete
methods. If your drawing engine supports texture mapping, you must also implement
TQATextureNew, TQATextureDetach, and TQATextureDelete.

These methods are functionally identical to the public functions, except they don't include
the engine parameter (engine is necessary in the public call so the manager knows to
which engine the call should be passed).

Like TQADrawPrivateNew and TQADrawPrivateDelete, these methods are
communicated to RAVE during the registration process, discussed later.

Adding Gestalt
To allow the application to evaluate your drawing engine, you must register a
TQAEngineGestalt method. This is prototyped in Drive3D_system.h:
typedef TQAError (*TQAEngineGestalt) (

TQAGestaltSelector selector, /* Gestalt parameter being requested */
void *response);/* Buffer that receives response */

The TQAEngineGestalt method is functionally identical to the
QAEngineGestalt() function: It receives a selector, and returns a response.

For example, assume your drawing engine supports texture mapping, and accelerates
Gouraud shading and line drawing. Apple has assigned you a vendorID of 5, and your
internal engineID number is 1001. A suitable TQAEngineGestalt function would be:

Apple Computer Confidential 53

TQAError MyEngineGestalt (
TQAGestaltSelector selector, /* Gestalt parameter being requested */
void *response) /* Buffer that receives response */

{
const static char *myEngineName = "My Engine Name";

switch (selector)
{

case kQAGestalt_OptionalFeatures:
*((unsigned long *) response) = kQAOptional_Texture;
break;

case kQAGestalt_FastFeatures:
*((unsigned long *) response) = kQAFast_Line | kQAFast_Gouraud;
break;

case kQAGestalt_VendorID:
*((long *) response) = 5;
break;

case kQAGestalt_EngineID:
*((long *) response) = 1001;
break;

case kQAGestalt_Revision:
*((long *) response) = 0;
break;

case kQAGestalt_ASCIINameLength:
*((long *) response) = strlen (myEngineName);
break;

case kQAGestalt_ASCIIName:
strcpy (response, myEngineName);
break;

default: /* Must flag unrecognized selectors!!! */
return (kQAParamErr);

}
return (kQANoErr);

}

◊ When vendorID and engineID are identical for two drawing engines, RAVE registers
only the most recent version. This decision is made by examining the revision number
from your TQAEngineGestalt method — a larger number is newer.

Your TQAEngineGestalt method function pointer is communicated to RAVE during
drawing engine registration.

Checking the TQADevice
RAVE needs a method to determine if your drawing engine can draw to a specific
TQADevice. This is performed by the TQAEngineDeviceCheck method, prototyped in
Drive3D_system.h:

typedef TQAError (*TQAEngineDeviceCheck) (
const TQADevice *device); /* Target device */

Your TQAEngineDeviceCheck method should simply return kQANoErr if you can
draw to the indicated TQADevice, or kQAError if you can not.

Apple Computer Confidential 54

Registering your drawing engine
Congratulations! You have now written all the RAVE methods required to register your
drawing engine. The final step is to call QARegisterEngine(), a RAVE manager
function prototyped in Drive3D_system.h:
TQAError QARegisterEngine (

TQAEngineGetMethod engineGetMethod); /* getMethod method */

engineGetMethod is a function in your engine which the RAVE manager can query to
retrieve your engine methods1. For the engine examples we've given in this section, a
suitable TQAEngineGetMethod function would be:
TQAError MyEngineGetMethod (

TQAEngineMethodTag methodTag, /* Method being requested */
TQAEngineMethod *method) /* (Out) Method */

{
switch (methodTag)
{

case kQADrawPrivateNew:
method->drawPrivateNew = MyDrawPrivateNew;
break;

case kQADrawPrivateDelete:
method->drawPrivateDelete = MyDrawPrivateDelete;
break;

case kQAEngineCheckDevice:
method->engineCheckDevice = MyEngineCheckDevice;
break;

case kQAEngineGestalt:
method->engineGestalt = MyEngineGestalt;
break;

case kQABitmapNew:
method->bitmapNew = MyBitmapNew;
break;

case kQABitmapDetach:
method->bitmapDetach = MyBitmapDetach;
break;

case kQABitmapDelete:
method->bitmapDelete = MyBitmapDelete;
break;

default:
return (kQANotSupported);

}
return (kQANoErr);

}

There are two ways you can register your engine. During your initial debug, you may find it
convenient to link your drawing engine with your test application, rather than build it as a
shared library. When working this way, you will need to explicitly call
QARegisterEngine() as part of your application initialization code.

Once your drawing engine is stable, you can switch to building it as a shared library. When the
RAVE manager shared library is loaded by an application, it searches for and loads RAVE

1 The drawing methods do not use this mechanism; see the earlier section on TQADrawPrivateNew
for more discussion.

Apple Computer Confidential 55

drawing engines as part of its initialization process. To have RAVE load your drawing engine,
you must:

• Build your drawing engine as a shared library.

• Set the creator of your shared library to 'tnsl'.

• Have your shared library's initialization method call QARegisterEngine().

• Put your drawing engine either in the current folder (the first location searched), or the
Extensions folder.

Apple Computer Confidential 56

Chapter 10: Porting OpenGL Hardware
This chapter discusses some specific topics of interest to IHVs who are implementing a
RAVE drawing engine for hardware based on an OpenGL rasterization model.

Transparency
RAVE supports two transparency models, pre-multiplied and interpolated2. The equations for
these two blending modes are shown below (see Chapter 6: Rendering transparency for a
more detailed discussion of these modes). Dst indicates the data previously in the frame
buffer; Src indicates the new incoming data:

Pre-multiplied Interpolated
a = 1 – (1 – aSrc) * (1 – aDst) a = 1 – (1 – aSrc) * (1 – aDst)
r = rSrc + (1 - aSrc) * rDst r = aSrc * rSrc + (1 - aSrc) * rDst
g = gSrc + (1 - aSrc) * gDst g = aSrc * gSrc + (1 - aSrc) * gDst
b = bSrc + (1 - aSrc) * bDst b = aSrc * bSrc + (1 - aSrc) * bDst

OpenGL provides both of the blend functions shown above for rgb — however, the a blend
function (which is the same for both modes) is not supported. This means that neither of
these transparency models can be directly implemented by OpenGL hardware.

◊ It is possible, however, to emulate the RAVE transparency models on OpenGL hardware.
Two methods are described here, one for frame buffers that don't store an alpha channel,
and one for frame buffers that do.

RGB blending only

Drawing engines which don't store an alpha channel can easily implement these transparency
models by simply ignoring the alpha channel formula. RAVE's transparency modes are then
equivalent to the following OpenGL blending modes:

Pre-multiplied:
glBlendFunc (GL_ONE, GL_ONE_MINUS_SRC_ALPHA);

Interpolated:
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

Drawing engines which use this method should not set the
kQAOptional_BlendAlpha bit of the optionalFeatures parameter returned by
QAEngineGestalt(). This indicates to the application that blending of the alpha
channel is not supported.

2 If ZcTag_Blend has been set to ZcBlend_OpenGL, blending is performed according to the
OpenGL™ specification (presumably this won't cause any porting difficulty).

Apple Computer Confidential 57

ARGB blending via multiple passes

It's possible to correctly perform the transparency blending function for both rgb and a by
designing the drawing engine to rasterize each transparent object more than once, each time
altering the blending mode, object alpha and buffer write masks. The pseudo-code below
demonstrates this method:

/* First pass. Perform rgb blending. Disable Z buffer writes and
 * alpha channel writes during this pass */

glColorMask (true, true, true, false); /* Disable alpha write */
glDepthMask (false); /* Disable Z write */
if (premultpliedTransparency)
{

glBlendFunc (GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
}
else
{

glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
< render object >

/* Second pass. During this pass we set the frame buffer alpha
 * to (1-aDst)*(1-aSrc). This requires re-rendering the object
 * with its alpha changed to 1-a, and some creative use of the
 * blending modes */

glColorMask (false, false, false, true); /* Write alpha only */
glDepthMask (false); /* Disable Z write */
glBlendFunc (GL_ONE_MINUS_DST_ALPHA, GL_ZERO);
< render object with alpha replaced with 1-a >

/* Third pass replaces the (1-aDst)*(1-aSrc) result in the alpha channel
 * with the final result of 1-(1-aDst)*(1-aSrc). This requires
 * re-rendering the object with its alpha values changed to 1, and
 * yet more creative use of the blending modes. If desired, Z buffer
 * writes are enabled during this pass. */

glColorMask (false, false, false, true); /* Write alpha only */
glDepthMask (true); /* Enable Z write */
glBlendFunc (GL_ONE_MINUS_DST_ALPHA, GL_ZERO);
< render object with alpha replaced with 1 >

Texture mapping
RAVE supports several different texture mapping modes, the choice of which is controlled
by the kQATag_TextureOp state variable. This bit mask variable can be set to any
combination of the kQATextureOp_Modulate, kQATextureOp_Highlight and
kQATextureOp_Decal flags. Chapter 6: Rendering with texture mapping provides a
detailed description of these modes; the sections below describe how to emulate these
modes on an OpenGL rasterizer.

Apple Computer Confidential 58

kQATextureOp_Modulate

kQATextureOp_Modulate can be approximated by the GL_MODULATE mode,
using the kd_r, kd_g and kd_b values from the TQAVTexture data as the modulating
color. Note that there is a slight functional difference, as GL_MODULATE does not allow the
modulating color magnitude to be greater than 1.0, a feature that RAVE supports to provide
improved image realism.

◊ It is recommended that new hardware designs support a maximum modulation amplitude
greater than 1.0 (2.0 seems to be a sufficient).

kQATextureOp_Highlight

kQATextureOp_Highlight can be emulated by performing two rendering passes. The
first pass renders the texture mapped object (optionally with GL_MODULATE), while the
second pass adds the highlight value. Pseudo-code for this is shown below:

/* First pass. Render the texture mapped object. If
 * kQATextureOp_Modulate is true, use the kd_r, kd_g and kd_b values
 * from the TQAVTexture data to modulate the texture color via
 * GL_MODULATE. Z buffer write is disabled during this pass. */

glDepthMask (false); /* Disable Z write */
< render texture mapped object >

/* Second pass. Re-render the object as Gouraud shaded, with
 * the ks_r, ks_g and ks_b values from the TQAVTexture data as the
 * object color. Re-enable the Z write during this pass, and
 * set the blend function to additive rendering. */

glDepthMask (true); /* Enable Z write */
glBlendFunc (GL_ONE, GL_ONE); /* Add highlight color */
< render highlight color as a Gouraud shaded object >

kQATextureOp_Decal

When kQATextureOp_Decal is true and kQATextureOp_Modulate is false,
the OpenGL GL_DECAL mode is equivalent to the RAVE kQATextureOp_Decal
mode. If kQATextureOp_Highlight is true, an additional rendering pass will be
required to add the highlight color, as shown in the previous section.

◊ Unfortunately, we have not yet been able to find a reasonable combination of OpenGL
commands which accurately renders the case when both kQATextureOp_Decal and
kQATextureOp_Modulate are true. Vendors should determine for themselves if
there is some means of making their hardware implement this mode correctly. If not, we
recommend that kQATextureOp_Decal take precedence over
kQATextureOp_Modulate — if both are true, kQATextureOp_Modulate
should be ignored.

◊ Note that ignoring kQATextureOp_Modulate is not the ideal solution — Apple
recommends that vendors modify their future products to support these modes
simultaneously.

Apple Computer Confidential 59

[One simple modification to an OpenGL rasterizer that enables simultaneous
kQATextureOp_Decal and kQATextureOp_Modulate is to provide a switch that
inverts the alpha opacity test of the texture map. This allows two rendering passes to be
performed, one for the pixels covered by the opaque regions of the texture map, and the
other for the pixels which are rendered with the Gouraud interpolated color.]

Apple Computer Confidential 60

Index
alpha channel 36 kQAGestalt_ASCIIName 12
antialiasing 36 kQAGestalt_ASCIINameLength 12
Apple engine 6 kQAGestalt_EngineID 12
back-to-front 31 kQAGestalt_FastFeatures 12
background color 20 kQAGestalt_OptionalFeatures 12
cache 47 kQAGestalt_Revision 12
color lookup tables 37 kQAGestalt_VendorID 12, 49
cursor shields 45 kQANotSupported 41
diffuse color mapping 34 kQAOptional_Antialias 13, 22, 36
dirtyRect 45 kQAOptional_Blend 13, 22, 31
Drive3D_system.h 49 kQAOptional_BlendAlpha 13, 57
front-to-back 32 kQAOptional_DeepZ 13
glBlendFunc 57 kQAOptional_NoClear 13
GL_DECAL 59 kQAOptional_OpenGL 13, 32
GL_MODULATE 59 kQAOptional_PerspectiveZ 13, 20, 21, 22
initialContext 45, 47 kQAOptional_Texture 13, 23, 24
interpolated 31 kQAOptional_TextureColor 13, 34
kQAAntiAlias_Best 22 kQAOptional_TextureHQ 13
kQAAntiAlias_Fast 22 kQAOptional_ZSorted 13, 31, 32
kQAAntiAlias_Mid 22 kQAPerspectiveZ_Off 22
kQAAntiAlias_Off 22 kQAPerspectiveZ_On 22
kQABitmap_Lock 42 kQAPixel_Alpha1 43
kQABlend_Interpolate 22, 32, 36 kQAPixel_ARGB16 40, 43
kQABlend_OpenGL 22 kQAPixel_ARGB32 40, 43
kQABlend_PreMultiply 22, 31, 36 kQAPixel_CL4 40
kQAContext_Cache 15 kQAPixel_CL8 40
kQAContext_DeepZ 15 kQAPixel_RGB16 40, 43
kQAContext_DoubleBuffer 15 kQAPixel_RGB32 40, 43
kQAContext_NoZBuffer 15 kQATag_Antialias 22, 36
kQADeviceGDevice 10, 11 kQATag_Blend 22
kQADeviceMemory 10, 11 kQATag_ColorBG_a 20
kQAFast_Antialiasing 13 kQATag_ColorBG_b 20
kQAFast_Blend 13 kQATag_ColorBG_g 20
kQAFast_Gouraud 13 kQATag_ColorBG_r 20
kQAFast_Line 13 kQATag_PerspectiveZ 22
kQAFast_Texture 13 kQATag_Texture 23, 39
kQAFast_TextureHQ 13 kQATag_TextureFilter 23
kQAFast_ZSorted 13 kQATag_TextureOp 24

Apple Computer Confidential 61

kQATag_Width 20 QADeviceGetFirstEngine 14
kQATag_ZFunction 20 QADeviceGetNextEngine 14
kQATag_ZMinOffset 21 QADrawBitmap 31
kQATag_ZMinScale 21 QADrawContextDelete 16
kQATextureFilter_Best 23 QADrawContextNew 15
kQATextureFilter_Fast 23 QADrawLine 28
kQATextureFilter_Mid 23 QADrawPoint 28
kQATextureOp_Decal 24, 34, 59 QADrawTriGouraud 28
kQATextureOp_Highlight 24, 34, 59 QADrawTriTexture 28
kQATextureOp_Modulate 24, 33, 59 QADrawVGouraud 29
kQATextureOp_None 33 QADrawVTexture 29
kQATextureOp_Shrink 24, 35 QAEngineGestalt 11
kQATexture_Lock 40 QAFlush 46
kQATexture_Mipmap 40, 41 QAGetFloat 19
kQATriFlags_Backfacing 28 QARegisterEngine 55
kQATriFlags_None 28 QARenderAbort 46
kQAVertexMode_Fan 29 QARenderEnd 45
kQAVertexMode_Line 29 QARenderStart 45
kQAVertexMode_Point 29 QASetInt 19
kQAVertexMode_Polyline 29 QASubmitVerticesGouraud 30
kQAVertexMode_Strip 29 QASubmitVerticesTexture 30
kQAVertexMode_Tri 29 QASync 47
kQAZFunction_GE 20 QATextureDelete 42
kQAZFunction_GT 20 QATextureDetach 42
kQAZFunction_LE 20 QATextureNew 39
kQAZFunction_LT 20 QuickDraw 3D 7
kQAZFunction_NE 20 RAVE.h 9
kQAZFunction_None 20 re-positioning 16
kQAZFunction_True 20 response 12
macros 10, 51 revision 54
matte 36 shared library 55
methods, private 49 state variables 18
methods, public 49 tag 18
modifiedRect 46 texture mapping 32, 58
newDrawContext 15 TQABitmap 42
OpenGL 7, 57 TQABitmapDelete 49
pixel depth 17 TQABitmapDetach 49
pre-multiplied 31 TQABitmapNew 49
preferred drawing engine 14 TQADevice 10
QABitmapDelete 43 TQADeviceMemory 10
QABitmapDetach 44 TQADeviceType 10
QABitmapNew 42 TQADrawContext 9, 50
QAContext_Cache 47 TQADrawPrivateDelete 49, 53

Apple Computer Confidential 62

TQADrawPrivateNew 49, 52
TQAEngineDeviceCheck 49, 54
TQAEngineGestalt 49, 53
TQAEngineGetMethod 49
TQAImage 39
TQAPlatformDevice 10
TQATagFloat and TQATagPtr 18
TQATagInt, 18
TQATexture 39
TQATextureDelete 49
TQATextureDetach 49
TQATextureNew 49
TQAVGouraud 26
TQAVTexture 27
transparency 31, 36, 57
transparency, Z sorted 32
TriMesh 29
uv clamping 35
width 20

Apple Computer Confidential 63

