
 Performance Tools Notes
This document combines the ETO #20 Release Notes for MrPlus, MrProf, MrProfUtil,
and PPCProf. The individual documents can be found conveniently by using the
“Bookmarks” feature of Acrobat.

 MrPlus v. 1.0d2c2 — “Prerelease”

Contents
Introduction
New Features
Description

Static Analysis
Software Dynamic Analysis
Hardware Dynamic Analysis

Syntax, Parameters, and Options
Cautions

Memory Requirements
Known Outstanding Bugs
Bug Fixes in Rev1.0d2

Introduction

MrPlus is an MPW performance tool which operates on Apple PEF files. It is a multi-
function tool which can do the following:

• Produce static information about the executable file, such as counts of important
program structures, frequency of appearance of the various instructions, and
frequency of appearance of references to the various registers.

• Produce a PEF file which is an enhanced version of the original file. It contains
instrumentation code which, at the time of execution, outputs dynamic information
about the program. Corresponding to the static information already listed will be
dynamic data on the instruction mix. The distinction is that the dynamic information
states the frequency of execution instead of the frequency of appearance. The dynamic
information also includes a routine profile: the relative number of instructions executed
in each routine.

• Produce a PEF file containing instrumentation that traps attempts to store into low
memory (0–32K).

• Optimize the program by reordering portions of code in the PEF file to improve the
utilization of the instruction cache and to reduce the number of page faults in a system
with virtual memory enabled.

New Features

The following new options have been added in this version of MrPlus. (for details, see
the “Options” section below.)

• -report web

• -report unwind

• -arrout

• -progress

• -member

• -cntout

Description

Static Analysis

The input to MrPlus is a PEF file and optionally an XCOFF file; if the latter is present,
symbolic information will be included in reports and will be available for debugging. All
reports produced by MrPlus go to Standard Error. Certain static reports are produced by
default, i.e. even if no options are given. These include items such as code and data
section sizes, and counts of the number of various program structures such as routines,
switches implemented by jump tables, unconditional returns, conditional returns, etc.
Other static report generation is controlled by the various -report options (see the
section headed “Options” below).

Software Dynamic Analysis

In addition to the static reports, the options -instrument calls or -instrument
branches control the dynamic analysis and optimization features of MrPlus (again, see
the “Options” section). If either of these options is used, MrPlus will produce an
instrumented PEF file (<program>.prof), a file that maps the instrumentation counters to
program locations (<program>.pmap), and, if an XCOFF file had been originally input,
an XCOFF file for the instrumented PEF file (<program>.prof.xcoff).

To explain the instrumentation, it is necessary to define the term basic block. A basic
block, in any portion of a program, is the longest contiguous stretch of code which,
except at its end points, contains no branches and no points to which branches are taken.
The software counters record transitions between basic blocks. Such transitions are
known in the compiler literature as “arcs.” The .pmap file records, for each counter, the
vital statistics of the source and destination basic blocks for which transitions are counted:
their start addresses and their lengths. Execution of the instrumented program now
produces a file containing the counter values. The user is prompted for a name for this
file (but see the option -cntout in the “Options” section below). The name
<program>.pcnt is assumed here.

Important: ProfileLib must be accessible to the instrumented program. However,
linking with ProfileLib is not necessary because imports from it are
added by MrPlus as part of the instrumentation step. Normally, the
ProfileLib file is placed in the Extensions folder of the System Folder.

A second execution of MrPlus, using as inputs the original PEF file and the files
<program>.pcnt, <program>.pmap, and optionally <program>.xcoff [???], can
produce several dynamic reports, a PEF file that has had certain optimizations applied
(<program.opt>), and a corresponding XCOFF file (<program.opt.xcoff). (See the
options -arrange routines, -arrange blocks, and -opt dynamic in the “Options”
section below.)

The illustration below shows a flowchart for the processes just described.

MrPlus

Sam ple (Inst rum ent ed)

Sam ple.x c of f

St at ic Repor t s

Input
(Sam ple.prof)

Sam ple.pm ap

Sam ple.prof .x c of f

Sam ple.pc nt

MrPlus
Sam ple.pc nt

Sam ple.pm ap

Dynam ic & St at ic Repor t sSam ple.opt
Sam ple.opt .x c of f

Sam ple.x c of f

Analysis of program "Sample"

Sam ple

Hardware Dynamic Analysis

If called with the -monitor icache option, MrPlus outputs a PEF file containing added
instructions that cause hardware counters to gather information during execution. The
information gathered is the execution time as reported by the hardware time base
register. On a 604 processor, additional data gathered are the number of instructions
completed and of instruction cache misses. The naming conventions for the output files
are <program>.mon for the instrumented program and <program>.mon.xcoff for the
corresponding XCOFF file.

Syntax, Parameters, and Options

Syntax

MrPlus
[-report imix | regs | glue | web | unwind] |
[-instrument calls | branches | stores | none] |
[-monitor icache] |
[-arrange routines | blocks | none]
[-arrout arrfile]
[-opt static | dynamic | none]
[-progress]
[-member name]
[-cntin PCNTfile] [-cntout PCNTfile]
[-mapin PMAPfile] [-mapout PMAPfile]
[-fragout PEFfile]
[-xcin XCOFFfile] [-xcout XCOFFfile]
PEFfile

Parameters

PEFfile Specifies the program to be analyzed and/or optimized.

Options

Note: In a number of the options below, the name “PEFfile” is used. It simply stands
for the actual filename of the input program.

-report imix | regs | glue | web | unwind

imix

Report the static and dynamic occurrence count of classes of
instructions. The dynamic count is reported only if the -opt
dynamic or -arrange options are used.

reg

Report static register usages.

glue

Report occurrences of linker generated glue routines that enable
cross TOC calls.

web

For each EXPORTED, INIT, TERM, and/or ENTRY function in
PEFfile, list the pair “fragment name/function name” for all
IMPORTED functions statically reachable from that function.
Thus, -report web indicates for any code flow entering PEFfile
which imports that code flow could possibly invoke.

unwind

Indicates how many functions save LR, CR, General Registers,
and/or Floating Point Registers.

The above are not mutually exclusive. -report may be given repeatedly
with different arguments.

-instrument calls | branches | stores

An instrumented version of the program is produced. The name of the file
is PEFfile.prof unless changed by the option -fragout.

calls

The instrumentation counts only routine calls.

branches

The instrumentation counts all branches.

stores

The instrumentation detects attempts to store in low memory (0–32K). An
alert box appears containing the low memory address, the name of the
executing fragment, and the offset within the fragment of the trapped
instruction. The alert box offers the choice of aborting or continuing.

-monitor icache

An instrumented version of the program is produced. The name of the file
is PEFfile.mon unless changed by the option -fragout.

icache

The instrumentation enables hardware counters. The basic
information is the execution time as reported by the hardware time
base register. Additionally reported on a 604 are the number of
completed instructions and the number of instruction cache
misses. A calculated miss rate is also displayed.

The argument icache exists because the -monitor option may be
extended with additional arguments in the future.

-arrange routines | blocks

This causes production of an optimized version of PEFfile. The filename
is PEFfile.opt unless changed by the option -fragout. -arrange
requires that dynamic information has been collected.

routines

Routines are rearranged relative to each other in order to improve
utilization of the instruction cache and to reduce the number of
page faults in a system with virtual memory enabled.

blocks

In addition to the actions for the argument routines, unexecuted
blocks of routines are placed at the end of the code section.

In addition, for either -arrange option, a text file is written listing the
preferred link order of routines. This file can be input to linkers which
have been enhanced to use it in order to specify the desired routine
ordering. The default name of this file is PEFfile.arr unless changed by
the option -arrout below.

-arrout arrfile

This option specifies the name of the "link order" text file produced by the
-arrange option above.

-opt static | dynamic

-opt static

Unneeded NOPs that follow some call instructions are removed,
non-trivial epilog code for multiple return routines is shared, glue
code called from 5 or fewer sites is inlined to call “pointer glue
12”, and load/store multiple instructions using 3 or fewer
registers are replaced by the requisite number of simple
load/stores.

-opt dynamic

In addition to the static optimizations just given, there is direct
branching to dominant (of greater than 50% probability) switch
targets and the setting of branch prediction hint bits. -opt
dynamic requires that dynamic information has been collected.
For -opt dynamic, any load/store multiple instructions executed
are fully expanded with the requisite number of simple load/stores,
while those not executed are not expanded.

-progress

MrPlus writes to Standard Error additional details about its progress in
processing the PEFfile.

-member name

MrPlus can only process one code fragment member per invocation.
Name is the name of the member within the PEFfile that MrPlus should
process. This option is not required for the typical case where the PEFfile
contains only one code fragment member.

When the PEFfile contains more than one member and the -member
option is not supplied, MrPlus will simply list all the members. The user
must run MrPlus with the -member option for each member to be
processed, using as input for each step the PEFfile produced by the
previous step, in order to recursively process each individual member.

-cntin PCNTfile

PCNTfile is the name of the file of counters produced when the software
instrumented file is executed. At the end of that execution, the user was
prompted for this filename. The option is used to communicate the name
of this file to MrPlus.

-cntout PCNTfile

Normally, at the termination of a "PEFfile.prof" application which
collected counters (that is, it was created with -instrument calls or
-instrument branches) the user is prompted with a dialog box to
supply the name of the file where the counters should be written.

For some applications, it may be inappropriate or cumbersome to
interactively solicit the output PCNT filename. In this case, the -cntout
option can be used to specify the PCNTfile name where counters are to be
written when the application terminates, and no dialog box will appear.

Furthermore, sometimes the user wishes to run “PEFfile.prof” a number
of times and automatically collect a different PCNTfile for each run. In
this case, PCNTfile should contain a trailing underscore (example: “-
cntout MyCounters_”) and ProfileLib will append the timestamp in hex to
the filename in order to guarantee that each PCNTfile has a unique name
(example: “MyCounters_AD6DE2BB", "MyCounters_AD6DF781”, etc.)

-mapin PMAPfile

PMAPfile is the name of a file produced by MrPlus when it produces a
software instrumented PEF file. The option is used to communicate the
name of this file to MrPlus for the subsequent analysis/optimization run.

-mapout PMAPfile

This option is used to override the default name for the output file that
shows that mapping of the software counters. The default name is
PEFfile.pmap.

-fragout PEFfile

This option is used to override the default names for the output PEF file.
The default names are PEFfile.prof for a software instrumented file,
PEFfile.mon for a hardware instrumented file, and PEFfile.opt for an
optimized file.

-xcin XCOFFfile

This option is used to name an input XCOFF file. By default,
PEFfile.xcoff will be read. No error is given if the .xcoff file cannot be
opened.

-xcout XCOFFfile

This option is used to override the default names for the output XCOFF
files. The default names are PEFfile.prof.xcoff for the case of
instrumentation for software counters, PEFfile.mon.xcoff for the case of
instrumentation for hardware counters, and PEFfile.opt.xcoff for the case
of an optimized program file. If the -fragout option is used then the
default name for the .xcoff file becomes instead <fragout>.xcoff, where
<fragout> is the parameter for the -fragout option.

Note: The options -arrange, -instrument, -monitor, and -opt all may have the
argument none. This is for convenience in the writing of scripts. Using the
argument none has the same effect as omitting the option.

Cautions

Memory Requirements

Approximate memory requirements are given in the table below:

Option Memory Requirement

-instrument branches 25 * (Code Size)

-instrument calls 15 * (Code Size)

-instrument stores 11 * (Code Size)

All other options 10 * (Code Size)

Known Outstanding Bugs

• Very simple libraries with no imports and no global variables have no TOC entries,
and MrPlus -instrument options fail because it is not able to add TOC entries.

• MrPlus writes output information only to StdErr.

• MrPlus is unable to recognize and/or process some switch statements as implemented
by some compilers. These problems can cause MrPlus to crash, to write a warning or
error message, or to produce a PEFfile which will not run correctly.

• MrPlus is unable to recognize and/or process some forms of hand-coded assembly
instructions or some unusual sequences of instructions as produced by some
compilers. These problems can cause MrPlus to crash, to write a warning or error
message, or to produce an incorrect PEFfile.

• MrPlus is sometimes confused by read-only data in the code section. Such data is
often indicated by “Decode31 unknown” warning messages. In many cases, MrPlus
will correctly process the PEFfile. But is other cases it may crash or produce an
incorrect PEFfile.

• MrPlus does not update the “function size” fields of TraceBack entries when
optimizing or instrumenting a PEF file.

• The -cntout option can be used in cases where the user does not want ProfileLib to
prompt for a counter filename with a dialog box. However, if the filename already
exists, ProfileLib will prompt the user for a new filename.

Bug Fixes in Rev1.0d2; (ETO #20)

• MrPlus did not handle PEF files containing multiple code fragments. these are now
correctly handled using the -member option described in the “Options” section.

• Fragments with no init, term, or entry descriptors and no TVector exports would cause
MrPlus to fail to locate the TOC base address.

• A variety of problems were fixed where MrPlus was unable to recognize and/or
process some switch statements as implemented by some compilers. These problems
caused MrPlus to crash, to write a warning or error message, or to produce an
incorrect PEFfile.

• A variety of problems were fixed where MrPlus was unable to recognize and/or
process read-only data (including TraceBacks) in the code section. These problems
caused MrPlus to crash, to write a warning or error message, or to produce an
incorrect PEFfile.

• PEFfiles with no code were not recognized and erroneous error messages were
written.

• MrPlus did not recognize entry descriptors which pointed to routine descriptors (mixed
mode UPP).

• -instrument stores would sometimes incorrectly trap indexed store instructions
using R0 as storing to low memory when in fact they were correctly storing outside of
low memory. This was because MrPlus was not using the contents of R0 in the
address calculation.

• Some compilers do not have a SYMR as the first item in the reloation entries, and
MrPlus would not produce instrumented or optimized PEFfiles in such cases.

• MrPlus would zero the low order 2 address bits or data section pointers to strings in
the code section when producing instrumented or optimized PEFfiles.

• In the loader section, MrPlus did not update the addresses of exported symbols in the
code section when producing instrumented or optimized PEFfiles.

 MrProf v. 1.0d2c2 — “Prerelease”

Important: It is absolutely essential that you read these Release Notes. Although
MrProf’s functionality has been implemented as a Macintosh
application, it departs so radically from Macintosh Human Interface
Guidelines that you will have great difficulty if you attempt to “wing
it.” These notes, therefore, are written in the manner of a tutorial and
are illustrated with a number of screen shots.

Bringing this application into conformity with the Guidelines will be a
priority item in the immediate future.

Contents
General Description
Tutorial

Loading the Data
Showing the Call Graph
The Data Display
Showing a Transition Graph
“Who branched to me”
Consolidation of Arcs and Blocks

Known Outstanding Bugs
Bug Fixes in v. 1.0d2 (ETO #20)

General Description

MrProf is a Macintosh application that provides tabular and graphic presentations of data
collected when executing programs that were instrumented by MrPlus. The input data to
MrProf are a .pmap file, optionally a .xcoff file, and one or more .pcnt files. It is
assumed that the reader is familiar with MrPlus, understands its uses of these files, and is
familiar with the terms “basic block” and “arc”.

The basic tabular output of MrProf shows, for each arc, the first and last addresses of the
“from” basic block, the first and last addresses of the “to” basic block, the number of
times the arc was traversed, and, for the “to” block, the source code line number and the
routine name.

The graphical output is a call graph for all the routines in the analyzed program, and, for
each routine, a diagram of the intra-routine branches.

Details and screen shots are in the tutorial section that follows.

Tutorial

Loading the Data

Launch MrProf either directly or by “opening” a .pcnt or a .pmap file. This window has
no close box, zoom box, or grow box. It also does not (yet) have scroll bars.

Now select “Open” in the “File” menu. A Standard-File dialog will appear, the only
visible files being .pmap files. “Opening” a .pmap file will cause four columns of data
and a vertical scroll bar to show in the window. Note: If the launch of MrProf was the
result of “opening” a .pmap file, the data and scroll bar will appear in the window. This
will not, however, occur if the launch was caused by “opening” a .pcnt file.

You will notice immediately that clicking in the scroll arrows moves the display one line
per mouse click and clicking in the shaded area moves the display one page per click.
Holding down the mouse button has no effect. The “page up” and “page down” keys on
the extended keyboard will, when held down, cause continuous paging of the display.

Data from .pcnt and .xcoff files are loaded, respectively, by selecting “Load” in the
“Counter” and “Symbol” menus. The preferred order is to load symbols first and then
counter data. This is because a side effect of all selections from the “Counter” menu is the
appearance of the dialog shown below:

In the event that you selected the two loads in the wrong order, just reselect “Load” from
the “Counter” menu. This will harmlessly reload the count data and will again present the
dialog. You will have noticed “Add” in the “Counter” menu. The purpose of this is add
counter data from multiple executions of the subject program, using multiple .pcnt files.

The data shown are the percentage of instructions actually executed and the percentage of
basic block actually entered. The “Close” button dismisses the dialog.

Showing the Call Graph

The “Graph” button causes the display of a “call graph” for the entire program. The
nodes represent routines. If a .xcoff file was loaded, the nodes will contain the routine
names; otherwise, they will contain their starting addresses. On a black & white monitor,
nodes actually entered are shown in black and those never entered are shown in white.
On a color monitor, the nodes that were entered are green; the ones not entered are red.
The graph is dismissed by clicking in its close box.

The Data Display

The appearance of the MrProf window is shown below in a small extract:

Each line represents an arc. The first two columns are the start and end addresses of the
basic block at the “from” end of the arc. The next two are the corresponding addresses of
the block at the “to” end of the arc. The next column is the count, the number of
traversals of the arc. Next is the source line number of the start of the “to” block,
followed by the name of the routine.

The “View” menu provides you with several ways of sorting the data. The choice
“Address” sorts by “to” starting address as a primary key and by “from” starting address
as a secondary key. Sorting by “Count” presents the data in descending order of count
values. Sorting by “Name” is an alphabetic sort on the routine names. Finally, sorting by
“Time” is in effect sorting by the number of executed instructions, because the sort key is
the product of the count value and the size of the “to” block.

After sorting by name, count, or time, items are also sorted by the secondary key of “to”
address.

The example shown above is an extract from the unsorted window.

Showing a Transition Graph

Clicking the mouse in the general area of a routine name, or where the name would be if
the .xcoff file had not been loaded, produces the dialog shown below:

This shows the routine name, the source file name, the block and instruction coverage as
in the first dialog, and again a choice between dismissing the dialog and showing a
graph. If the .xcoff file had not been loaded, then the starting address of the routine
would replace the symbolic information.

Choosing “Graph” presents the display reproduced below:

The nodes represent basic blocks. The numbers in the nodes are source line numbers. If no
.xcoff file is loaded, the entry node will show the starting address of the routine; the other
blocks will have a sequence number corresponding to their address order. The color
representation is the same as for the call graph described earlier.

Adding addresses to this display will help you correlate it to the tabular information. So,
writing in the address, one sees:

C3398

C33B4

C33E0 C33F0

C3400

“Who branched to me”

Putting the cursor on “from” block addresses in the table will enclose those addresses in a
rectangle. Then selecting “Find” in the “Symbol” menu will cause a rectangle to be placed
around that same pair of addresses in the “to” column. This is illustrated in the extract
below:

Repetition of this process provides a way of “walking” up a call chain. It would be nice if
all occurrences of the selected basic block in the “to” column were shown. Unfortunately,
only one is shown: the one with the greatest count value.

Consolidation of Arcs and Blocks

Selecting “New” in the “File” menu will cause the following dialog to appear:

Pressing “New” will cause the appearance of a new window, again titled “MrProf”, but
this time possessing a “close” box. There are four choices, “Arcs”, “Blocks”, both, or
neither. The nature of the data in the window depends on the choice.

This can be done more than once, so that windows which, for example, respectively
combine arcs and blocks can be open simultaneously. Be careful keeping track; the
windows are definitely not labeled.

The table below is a repetition of the first table shown:

The next table shows the result of combining blocks:

In the table above, all blocks within .AddToGlobalLodStoList are collapsed into one. The
two lines represent calls to the routine from two different places. The table is obtained by
putting a mark in the checkbox labeled blocks.

The next table shows the result of combining arcs:

In the table above, the “from” columns are not shown; they were empty. The data are
simply the total count to each “to” block. What is shown, therefore, is the total of all arcs
to a given block. The table is obtained by putting a mark in the checkbox labeled arcs.

Finally, one can see the result of combining both blocks and arcs:

Here we see only one line, the total count for the routine and no internal information.
This table is obtained by marking both checkboxes..

Marking neither checkbox results in no combining; the new window will be a duplicate of
the original one.

Known Outstanding Bugs

• The window opened by MrProf has neither a grow box nor a zoom box.

• The scroll bar in the MrProf window does not behave according to Mac standards
regarding clicks on the arrow vs. the up/down region. Holding down the mouse
button has no effect.

• MrProf’s facilities for opening the various files (pmap, pcnt, and xcoff) are incorrect
according to Mac standards .

• Windows with text columns should have column headings, and heading should remain
visible when information is scrolled.

• The Find menu item does not belong in the Symbol Menu.

• “Find” finds only one block. It should find all appropriate blocks. Repeated “finds”
should move to subsequent blocks, scrolling as needed.

• Windows should be titled with the name of the code being analyzed.

• The method for moving nodes in a call graph is not up to Mac standards. It should be
possible to “drag” nodes around and have “dotted outline” feedback.

• It should be possible to get coverage metrics and/or display a graph without having to
load a file.

Bug Fixes in v. 1.0d2 (ETO #20)

• MrProf did not rotate the cursor when selecting different View options or loading files.

• When a new "from" was selected, the results of a previous “find” were not erased.

• When viewing by Name, Count, or Time, items were not sorted on a secondary key of
“to” address.

• The font size was reduced for text windows, allowing them to fit on small screens.

• Horizontal graph layout was improved.

 MrProfUtil v. 1.0d2c3 — “Prerelease”

Contents
Introduction
Syntax, Parameters, and Options

Introduction

MrProfUtil is a simple MPW tool which operates on PCNTfiles produced with MrPlus.
It provides two useful operations:

• MrProfUtil can add the corresponding counters of a set of multiple PCNTfiles together
and create a single PCNTfile which represents the sum of all activity recorded in each
of the files in the set.

• MrProfUtil can list a set of multiple PCNTfiles in the order of “most aggregate code
coverage” so that users can determine which subset of tests provides the most
coverage for the least amount of testing effort.

Syntax, Parameters, and Options

Syntax

MrProfUtil
-like PCNTfile
[-order] | [-sumout PCNTfile]
[-progress]

Options

-like PCNTfile

PCNTfile is the [directory:]filename of a PCNTfile. MrProfUtil will
process all PCNTfiles in that directory which are “like” (have the same
number of counters as) the specified PCNTfile. Thus, the -like option
specifies the set of files to be processed by another option, such as -order
or -sumout.

-order

Each file in the “like” set is analyzed for its individual code coverage
(percent of counters which are non-zero) and for aggreagate coverage.
The files are then listed in the following order. The file with the most
coverage is listed first. Each successive file is the one which adds the
most aggregate coverage to that provided by the files above it. In other
words, for any integer N , the first N files listed provide the most
aggreagte coverage of any set of N files.

For each row in the listing, the columns are (left to right): aggregate non-
zero counters, aggregate percent coverage, filename, non-zero counters in
this file, percent coverage for this file.

If each PCNTfile corresponds to a particular test case, -order can be used
to determine which subset of all test cases provide the most coverage for
the fewest number of tests run.

-sumout PCNTfile

As each file in the “like” set is processed, the corresponding individual
counters are added together to produce a set of summary counters which
are written to PCNTfile.

-progress

MrProfUtil writes to Standard Error the name of each PCNTfile it is
examining.

PPCProff (v. 1.0a1) Tool

PPCProff prints an analysis of the Profiler.pgh data file generated when you run a
PowerPC application or shared library that was linked using PPCLink’s -profile
option.

For more information, see the PPCLink release notes and Chapter 17 of Building and
Managing Programs in MPW.

Syntax

PPCProff file1 [file2]… -xcoff fileName [option]…

Input

One or more .pgh data files generated during the execution of your program. PPCProff
can accept more than one .pgh file on the command line. For example, you can specify
several .pgh files generated during successive runs of your program and PPCProff will
display the averages of the performance data collected in the files. PPCProff also requires
as input a .xcoff symbolic information file which is specified using the -xcoff option.
The .xcoff file is automatically generated by PPCLink if your program is linked using
the -profile option. PPCProff does not accept standard input.

Output

The analysis of the .pgh data file(s) is sent to standard output unless you redirect it to a
specified output file.

Status

PPCProff can return the following status codes:

0 no errors

1 fatal error

Parameters

file1 [file2]…

Specifies one or more .pgh data files generated during the execution of
your program.

Options

PPCProff supports the following options:

-cutoff n

Ignores routines whose hierarchical times are less than n%. The default is
to ignore routines whose hierarchical times are less than 0.005%.

-[no]mf

Suppresses or enables the use of Process Manager temporary memory.

-p

Writes progress and summary information to diagnostic output.

-procoffsets on | off

Controls whether call site offsets (or line numbers if available) should be
displayed. Line numbers can only be displayed if the .xcoff file,
specified by the -xcoff option, contains line number symbolics. If the
line number information is not available, hex offsets are displayed instead.

on

Displays call site offsets (or line numbers if available).

off

Doesn’t display call site offsets or line numbers.

-sortorder keyword [,keyword]…

Controls how the information is displayed by using the following
keywords.

flat

The routines are sorted by their flat times. Flat time is the time
spent within a routine, excluding the time spent in the routines it
calls.

hier[archical]

The routines are sorted by their hierarchical times. Hierarchical
time is the time spent within a routine including the time spent in
the routines it calls.

[calls]from

The arcs are associated with the called routine. Use this to
determine the callers of the profiled routines.

[calls]to

The arcs are associated with the calling routine. Use this to find
out which routines are called by the profiled routines .

-unmangle on | off

Controls whether C++ symbol names will be mangled or unmangled.

on

Uses unmangled names.

off

Uses mangled names.

-v

Writes verbose progress to diagnostic output. Specifying this option also
implies -p.

-w[arn]

Suppresses the display of warning messages.

-xcoff fileName

Specifies the name of the .xcoff file that was generated by PPCLink
when your program was linked. This file contains symbolic information
that is used to indicate routine names and source file names. If your
source files were compiled with -sym on, then this file will also contain
line number information. This option is required.

PPCProff (v. 1.0a1) Tool

PPCProff prints an analysis of the Profiler.pgh data file generated when you run a
PowerPC application or shared library that was linked using PPCLink’s -profile
option.

For more information, see the PPCLink release notes and Chapter 17 of Building and
Managing Programs in MPW.

Syntax

PPCProff file1 [file2]… -xcoff fileName [option]…

Input

One or more .pgh data files generated during the execution of your program. PPCProff
can accept more than one .pgh file on the command line. For example, you can specify
several .pgh files generated during successive runs of your program and PPCProff will
display the averages of the performance data collected in the files. PPCProff also requires
as input a .xcoff symbolic information file which is specified using the -xcoff option.
The .xcoff file is automatically generated by PPCLink if your program is linked using
the -profile option. PPCProff does not accept standard input.

Output

The analysis of the .pgh data file(s) is sent to standard output unless you redirect it to a
specified output file.

Status

PPCProff can return the following status codes:

0 no errors

1 fatal error

Parameters

file1 [file2]…

Specifies one or more .pgh data files generated during the execution of
your program.

Options

PPCProff supports the following options:

-cutoff n

Ignores routines whose hierarchical times are less than n%. The default is
to ignore routines whose hierarchical times are less than 0.005%.

-[no]mf

Suppresses or enables the use of Process Manager temporary memory.

-p

Writes progress and summary information to diagnostic output.

-procoffsets on | off

Controls whether call site offsets (or line numbers if available) should be
displayed. Line numbers can only be displayed if the .xcoff file,
specified by the -xcoff option, contains line number symbolics. If the
line number information is not available, hex offsets are displayed instead.

on

Displays call site offsets (or line numbers if available).

off

Doesn’t display call site offsets or line numbers.

-sortorder keyword [,keyword]…

Controls how the information is displayed by using the following
keywords.

flat

The routines are sorted by their flat times. Flat time is the time
spent within a routine, excluding the time spent in the routines it
calls.

hier[archical]

The routines are sorted by their hierarchical times. Hierarchical
time is the time spent within a routine including the time spent in
the routines it calls.

[calls]from

The arcs are associated with the called routine. Use this to
determine the callers of the profiled routines.

[calls]to

The arcs are associated with the calling routine. Use this to find
out which routines are called by the profiled routines .

-unmangle on | off

Controls whether C++ symbol names will be mangled or unmangled.

on

Uses unmangled names.

off

Uses mangled names.

-v

Writes verbose progress to diagnostic output. Specifying this option also
implies -p.

-w[arn]

Suppresses the display of warning messages.

-xcoff fileName

Specifies the name of the .xcoff file that was generated by PPCLink
when your program was linked. This file contains symbolic information
that is used to indicate routine names and source file names. If your
source files were compiled with -sym on, then this file will also contain
line number information. This option is required.

	MrPlus
	MrProf
	MrProfUtil
	PPCProff

