
Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 1
Copyright © 1994- 1996 Apple Computer, Inc. All rights reserved.

Open Transport AppleTalk

Developer Note

PRELIMINARY
Revision 1.1b14

1/18/96



Table of Contents

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 2
Copyright © 1994- 1996 Apple Computer, Inc. All rights reserved.

Table of Contents

Revision History ................................................................................................................................... 4

Related Documents .............................................................................................................................. 4

AppleTalk for Open Transport .......................................................................................................... 5

Technical Specifications....................................................................................................................... 6
Address Formats ........................................................................................................................... 6

DDP Addresses ...................................................................................................................... 6
NBP name................................................................................................................................ 7
Combined Addresses ............................................................................................................ 7
DDP Multi-Node Addresses ................................................................................................ 8

Multihoming AppleTalk .............................................................................................................. 9
Using DDP...................................................................................................................................... 10

Endpoint Information............................................................................................................ 10
Default Type .................................................................................................................... 10
Binding ............................................................................................................................. 10

Options .................................................................................................................................... 12
The OPT_CHECKSUM Option..................................................................................... 12
The DDP_OPT_SRCADDR Option .............................................................................. 12

Using ATP ...................................................................................................................................... 13
Options .................................................................................................................................... 14

Using ADSP ................................................................................................................................... 15
Options .................................................................................................................................... 16

The OPT_CHECKSUM Option..................................................................................... 16
The OPT_ENABLEEOM Option .................................................................................. 16

Using PAP ...................................................................................................................................... 17
Options .................................................................................................................................... 17

The PAP_OPT_OPENRETRY Option .......................................................................... 17
The OPT_ENABLEEOM Option .................................................................................. 17
The OPT_SEVERSTATUS Option ................................................................................ 18

The AppleTalk Services Library......................................................................................................... 19
OTOpenAppleTalkServices ......................................................................................................... 20

OTAsyncOpenAppleTalkServices....................................................................................... 21
GetMyZone .................................................................................................................................... 22
GetZoneList .................................................................................................................................... 23
GetLocalZones ............................................................................................................................... 24
GetInfo ............................................................................................................................................ 25

The Mapper library and AppleTalk .................................................................................................. 27
Name formats ................................................................................................................................ 27

Wild Cards .............................................................................................................................. 28
Zone names............................................................................................................................. 28
NBPEntity................................................................................................................................ 28

OTInitDDPAddress ...................................................................................................................... 29
OTInitNBPAddress....................................................................................................................... 30
OTInitDDPNBPAddress .............................................................................................................. 31
OTCompareDDPAddresses ........................................................................................................ 32
OTInitNBPEntity ........................................................................................................................... 33
OTGetNBPEntityLengthAsAddress .......................................................................................... 34



Table of Contents

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 3
Copyright © 1994- 1996 Apple Computer, Inc. All rights reserved.

OTSetAddressFromNBPEntity ................................................................................................... 35
OTSetAddressFromNBPString.................................................................................................... 36
OTSetNBPEntityFromAddress ................................................................................................... 37
OTSetNBPName ............................................................................................................................ 38
OTSetNBPType.............................................................................................................................. 39
OTSetNBPZone.............................................................................................................................. 40
OTExtractNBPName .................................................................................................................... 41
OTExtractNBPType ...................................................................................................................... 42
OTExtractNBPZone ...................................................................................................................... 43

Index....................................................................................................................................................... 44



Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 4
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Revision History
01/18/96 Added DDP_OPT_SRCADDR option documentation
01/12/96 Added ServersStatus option to PAP
11/30/95 Update to reflect 1.1b10
07/18/94 Update to reflect 1.0d13
06/28/94 Partially revised to reflect 1.0d13
03/25/94 Address formats revised
03/15/94 DDP Multi-Node addresses added
03/10/94 PAP added, option name correction
02/14/94 Updated
10/19/93 First compiled from the AppleTalk endpoint notes

Related Documents

Inside AppleTalk®, Second Edition, Gushuran S. Sidhu, et. at., Addison-Wesley Publishing, Inc.

Apple Shared Library Manager Developer’s Guide, by ESD Publications, October 4, 1993, Apple
Computer, Inc.

Open Transport Client Developer Note



Overview

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 5
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

AppleTalk for Open Transport
This document describes how the Open Transport implementation of AppleTalk can be used by client
applications. This document should be used along with the Open Transport Client Developer Note. That
document describes general information about Open Transport endpoint libraries and Open Transport
mapper libraries. However, it does not not provide any information specific to AppleTalk.

This document describes AppleTalk address formats, options specific to each kind of endpoint, and the
Open Transport AppleTalk services library.



Address Formats

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 6
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Technical Specifications
This section describes AppleTalk address formats that are used in the Open Transport Endpoint functions
(like Snd(), Bind(), etc.) Followed by the address formats are sections for each of the AppleTalk protocols
that can be opened as endpoints and support the standard Open Transport endpoint functions. Finally,
the AppleTalk services library is described. The AppleTalk services library is used for AppleTalk-related
functions that are not transport independent and do not fit into the endpoint model.

The file OpenTptAppleTalk.h contains the declarations of the necessary constants and data structures
needed. This file may be included by both ‘C’ and ‘C++’ source files. The MPW object files
OpenTptATalk.o or OpenTptATalk.n.o must be linked with clients that are making AppleTalk specific
Open Transport calls (but not AppleTalk-specific Option Management calls). The first file is for far-model
MPW programs, and the second file is for near-model MPW clients.

Address Formats
All of the AppleTalk endpoints handle both Name Binding Protocol (NBP) names and DDP addresses in
places where the endpoint functions require the client to supply a protocol address.

DDP Addresses

Open Transport AppleTalk allows four different forms of a DDP address. The primary form (8-bytes
long) is called a DDPAddress and includes the DDP type. For all protocol layers above DDP, the client
need not specify the DDP type when passing an address to an AppleTalk endpoint.

A DDPAddress looks like this:

2-byte address type (AF_ATALK_DDP)
2-byte network  number
1-byte node number
1-byte socket
1-byte DDP type
1-byte pad byte

For C++ devlopers, the data structure has inline methods for getting and setting the various fields. These
are:  Init(), SetNetwork(), SetNode(), SetSocket(), SetType() , GetNetwork(), GetNode(), GetSocket(), and
GetType().

The Bind(), GetProtAddr(), ResolveAddr(), and RcvUData() calls each return an address as the part of their
return result. For each of these calls, the address format returned is a DDPAddress structure.



Address Formats

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 7
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

For example, a C++ code fragment that sends an echo request packet to a specific DDP address (network
number $1234, node $87, socket $4, type $4) might look like this:

OSErr DoSend(TEndpoint* ep)
{
    DDPAddress  theDest;                            // Who to send to
    theDest.Init(0, 0xff, 4, 4);

    static unsigned char    theBuffer[] = "\x01Hello";  // What to send them

    TUnitData               unitData;                   // To pass to SndUData
    unitData.udata.Init(theBuffer, 6, 6);               // Initialize data part
    unitData.addr.Init(&theDest, sizeof(theDest));      // Initialize address part

    OSErr err = ep->SndUData(&unitData);
    if ( err != kOTNoError )
    {
        fprintf(stderr, "SndUData() returns %d\n", err);
    }
    return err;
}

NBP name

The 2nd kind of address is an NBP address.  It's structure is defined as the structure NBPAddress in
OpenTptAppleTalk.h

An NBP address looks like this:

2-byte addresstype(AF_ATALK_NBP)
n-bytes NBP name string in form “name:type@zone”

[NOT null-terminated]

This form of an address can be used to specify the destination address in the following Open Transport
calls: SndUData(), SndURequest(), Connect(),  Bind(), and ResolveAddr(). The address is a character string of
the form “<name>:<type>@<zone>“ where name, type, and zone are 32-characters maximum. The
character “*” can be used for the zone name to specify the current zone. NBP wildcards, “=“ and “≈”, are
not allowed in a name passed to any of the calls listed above. The string is neither a null-terminated “C”
string nor a pascal string. The address is always referenced by a TNetbuf structure whose len field gives
the length of the string.

If a client is going to use an NBP name repeatedly to send packets (DDP) or connectionless transactions
(ATP), it is recommended that the client use the ResolveAddr() call first to resolve the NBP address into a
DDP address and then use that address. Otherwise, for every packet or transaction, there could be an
NBP lookup that occurs on the network.

A client can use the ResolveAddr() on any AppleTalk endpoint to resolve an NBP name into a DDP
address. The address that is returned is a DDPAddress with the DDP type field set to zero.

If a client passes an NBP address to the Bind() call, that will cause the AppleTalk endpoint to open a
dynamic DDP socket, and register the name on that socket. The full address that the name is registered on
is returned in the address returned from Bind().

Combined Addresses

The 3rd address form is a combined address made up of both a DDP and NBP address. It's structure is
defined as the structure DDPNBPAddress in OpenTptAppleTalk.h



Address Formats

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 8
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

A combined DDP/NBP address looks like this:

2-byte address type(AF_ATALK_DDPNBP)
2-byte network  number
1-byte node number
1-byte socket
1-byte DDP type
1-byte pad byte
n-bytes NBP name string in form “name:type@zone”

[NOT null-terminated]

This form can be used anywhere the NBP address form can be used. An AppleTalk endpoint that is
passed this form of an address by a client will check to see if the DDP portion of the address is valid. If so,
it is used, otherwise, the NBP portion is used.

This form of an address can be used on the Bind() call if the client wants to bind the endpoint to a
particular socket and register a name on that socket at the same time. More information about binding is
supplied in the next section describing DDP.

As with an NBP name, a combined address is referenced by a TNetbuf whose len field gives the total
length of the address.

DDP Multi-Node Addresses

Open Transport AppleTalk supports a modified DDP address which may be used only by clients of DDP
to Bind to multiple node addresses on the same physical port. This address takes the form of a normal
DDPAddress (includes the space for a DDP type) however the first field is a "AF_ATALK_MNODE",
signalling the DDP Multi-Node address. The only significant fields are the network number and the node
number fields which the client may use to "suggest" an address to be used.  The client need not specify
either the socket or the DDP type since these fields are ignored for multi-node addresses.  DDP will
deliver any packet addressed to the bound multi-node [network:node] address, regardless of socket or
DDP type.  Multi-node clients must perform their own filtering if these two attributes are important. A
future (post 1.0) version of DDP will likely support multinode in a more general way.

A DDP Multi-Node Address looks like this:

2-byte address type(AF_ATALK_MNODE)
2-byte network  number
1-byte node number
1-byte 0
1-byte 0
1-byte pad byte

Multi-Node clients are internally copied on outgoing broadcast packets and self-send packets, reducing
traffic on the net.

In version 1.1 of Open Transport, a multi-node endpoint must use the DDP_OPT_SRCADDR option to
specify the source address for outgoing packets (see the section on DDP Options).

From C++, use the Init(UInt16 network, UInt8 node) function to initialize a DDP address to a multi-node
address.



Address Formats

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 9
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Multihoming AppleTalk
The Open Transport implementation of AppleTalk has a significant feature not found in the classic
AppleTalk implementation for the Macintosh. The Open Transport implementation supports
multihoming (sometimes called multiporting.) It is possible for AppleTalk to be active on more than one
network port on the machine at once.

The Network control panel selects which port is the “default” AppleTalk port. If an Open Transport client
does not specify a port when creating an endpoint, the endpoint will be created on the default port. All
calls through the classic AppleTalk device-driver based APIs will always use the default port.

There is no internal forwarding between ports when AppleTalk is active on more than one port. A client
that opens an endpoint on one port will only be able to communicate with other nodes that can be
reached through that port.

Some readers may know of two special cases of multihoming that the existing classic AppleTalk stack
does support. The AppleTalk Internet Router supports multiple ports and routes traffic between them.
And, Apple Remote Access supports two ports and handles internal forwarding so that data from an
Appletalk client is sent out the right port.

NOTE: Multihoming is currently only available to Open Transport clients that speicifically request it by
specifying the link layer when opening an AppleTalk endpoint.



DDP

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 10
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Using DDP
DDP is a connectionless datagram style of endpoint. It does not support any of the connection-oriented
calls,  nor any of the transaction calls.

A DDP endpoint can be created using OTOpenEndpoint() passing the DDP identification string constant
kDDPName. For example:

OSErr err = OTOpenEndpoint(OTCreateConfiguration(kDDPName));

Endpoint Information
DDP can send packets from 0 to 586 bytes long.

As with all connectionless datagram endpoints, expedited data is not supported for DDP.

By default, no checksum is performed on outgoing packets. However, any incoming packets containing a
checksum are always checked. If the checksum does not match, the incoming packet will be discarded. If
a client wants to put checksums on all outgoing packets, the OPT_CHECKSUM option can be specified in
the options buffer of every TUnitData structure passed to the SndUData() call. Or, the client can use the
OptionMgmt() call to turn on the checksum option, and DDP.will send checksums with all outgoing
packets.

Default Type

A new concept for the Open Transport implementation of AppleTalk is the default DDP type. Every DDP
endpoint has a default type associated with it that can be specified at bind time. If a DDP type is specified
when the client binds, that type becomes the default type. The default type has special significance for
both sending and receiving packets.

When a client sends a packet and no type is specified in the address contained in the TSendUnitData
structure passed to SndUData(), then the default type is used. If the DDP endpoint was not bound to a
type, and the client does not specify one (or specifies zero as the type), DDP will not send the packet. If
the client specifies a DDP type when sending a packet, that type overrides the default type

When receiving packets, if a type was specified at bind time ,then the client is guaranteed that all packets
received will be of the same type. If no type was specified then all packet types addressed to the bound
socket are accepted. After calling RcvUData() to receive an incoming packet, DDP will return to the client
in the address field of the TUnitData, a DDPAddress structure containing the DDP address of the sender
and the DDP type of that packet.

Multiple clients can bind with the same socket using different types and DDP will deliver incoming
packets to the right client based upon the DDP type specified in the packet.

Binding

The DDP bind operation associates an endpoint with an AppleTalk address. As with all connectionless
endpoints, only one client may bind to any given address at the same time.

The basic rules of address binding are:

1) Static sockets are $01-$7F inclusive. Dynamic sockets are $80-$FE inclusive. Sockets $00
and $FF are invalid. Sockets $01-$3F are reserved for Apple's use only.



DDP

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 11
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

2) DDP node range is $01-$FE inclusive. On extended networks (Phase 2 networks), node
$FE is reserved. Node $FF is used as the  broadcast address. Node $00 is invalid.

3) If the client leaves the socket empty (or gives a zero-lenth address) when binding, DDP
will allocate a dynamic socket (in the range $80 to $FF).

4) Only static sockets can be specified when binding. If a client tries to bind to a specific
socket in the range $80 to $FF, the bind will fail with a kOTBadAddrErr.

5) Specifying a DDP type of $00 when binding will cause DDP to not filter packets based on
type (i.e. all packets bound for the socket are delivered).

6) Specifying a DDP type when binding will cause DDP to set that type as the default for
that endpoint. Only packets addressed for the bound socket with the default type will be
delivered.

7) Binding to a socket using DDP type $00 ensures exclusive access to that socket (i.e. no
other clients can bind with that socket).

8) Multiple clients can bind to the same static socket if a unique DDP type is used by each
client.

9) Network and node numbers are ignored when binding.

Given the bind rules above, there are several ways a client can bind to an endpoint:

1) No socket and type are specified. (Either they are both zero in the requested address, or a
zero-length address is requested.) This will cause DDP to allocate a dynamic socket for
the client, set the default type to 0 and give the client exclusive access to the socket. All
incoming packets bound for the allocated socket will be passed to the client. When
sending, the client must specify the DDP type.

AppleTalk endpoints above DDP in the protocol layers ignore the DDP type specified.

2) A static socket is specified but no type. The endpoint will be bound to the static socket
and the endpoint has no default DDP type. All incoming packets bound for the socket
will be passed to the client. When sending, the client must specify the DDP type.

3) No socket is given but a type is specified. DDP will assign a dynamic socket to the
endpoint and set the endpoint’s default DDP type to the type specified. Only incoming
packets bound for the assigned socket with the default type will be passed to the client.
When sending, the default DDP type will be used if the client does not specify a type.

AppleTalk endpoints above DDP in the protocol layers ignore the DDP type, so this case
is the same as #1 for all AppleTalk endpoints except DDP.

4) A static socket and a type are specified. The endpoint will be bound to the socket and
type specified. The type specified will become the endpoint’s default DDP type. Only
incoming packets addressed to the specified socket and type will be delivered to the
client. When sending, the default DDP type will be used if the client does not specify a
type.

AppleTalk endpoints above DDP in the protocol layers ignore the DDP type, so this case
is the same as #2 for all AppleTalk endpoints except DDP.



DDP

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 12
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

5) Multiple binds to a static socket using unique types. This is an extension of case 4 above
with DDP de-multiplexing the packets.

AppleTalk endpoints above DDP in the protocol layers ignore the DDP type, so this case
is valid only for DDP endpoints.

6) An NBP address is passed. DDP will assign a dynamic socket and register the name on
that socket. The endpoint will have no default DDP type. If the name already exists on
the network, the bind will fail.

7) A combined NBP and DDP address is passed. DDP treats this in two parts. First, the DDP
tries to bind to the DDP address according to the first five of these scenarios. If the bind is
successful, then the NBP name is registered on the socket that the endpoint was bound
to.

See the Open Transport Client Developer Note , for details on the specific calls to Bind().

Options
This section documents the options that DDP supports in the current release of Open Transport.

The OPT_CHECKSUM Option

The OPT_CHECKSUM can be used two ways. The client can specify this option on every call to
SndUData() and control the sending of DDP checksums on a per packet basis, or the client can use the
OptionMgmt() function to enable or disable checksums for all outgoing packets.

By default, a checksum is not performed.

The DDP_OPT_SRCADDR Option

The DDP_OPT_SRCADDR is used to override the source address on an outgoing packet. This option is
only allowed on a per-packet basis, and may not be used in the OptionMgmt() function call.  The option
must be a DDP Address structure using the AF_ATALK_DDP address format.  The source network
number, node number, and source socket will be taken from the DDP Address structure.  It is an error for
these values to be illegal.

This option is most often used in conjuction with a multi-node endpoint, but it may also be used on
normal endpoints.



ADSP

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 13
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Using ATP
ATP is a connectionless transaction endpoint. It does not support any of the connection-oriented endpoint
calls.

When sending a transaction request, ATP sends an Exactly Once (XO) request if the
T_ACKNOWLEDGED bit is set for the transaction, and sends an At Least Once (ALO) request if it is not.
ATP treats the first four bytes of data that the client specifies as the ATP User Bytes and places them in
the ATP header of the outgoing request. If the client does not specify at least four bytes of data in the
request, the user bytes are padded with zeros. Similarly, the 4 bytes in the user bytes portion of the ATP
header of the first reply packet are placed in the first four bytes of the user’s response buffer. The 4 bytes
in the user bytes portion of the ATP header for responses after the first response packet are ignored. Note
that if one endpoint sends a request containing less than 4 bytes of data, the responding side will receive a
request containing 4 bytes of data. The first 4 data bytes of a client’s reply data will be used as the user
bytes for each ATP reply packet.

ATP imposes no limit on the number of outstanding transactions  that a client may generate. A client may
have several ATP transactions

Options are available to configure ATP to to set retry count and interval between retries, as well as the
release timer setting. These are described below.

The maximum packet data length for ATP is dependent on the layer running underneath it. In the
AppleTalk environment, with DDP as the datagram delivery protocol, ATP may have up to 578 data
bytes in any given packet.  This does not include the 4 ATP header bytes or the 4 bytes of ATP User data
which precede the data portion of all packets. When running over DDP, ATP request packets may contain
the 582 data bytes, and ATP reply buffers may contain up to 4628 data bytes.

When sending a request, the client may specify any of the AppleTalk address types discussed earlier
(DDP, NPB, combined)



ADSP

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 14
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Options

ATP options are provided to enable the client to configure ATP behavior in several areas.

ATP supports the generic option OPT_RETRYCNT to set the number of times a request will be retried
before giving up and returning an error to the client. (Default setting is 8 retries.)

ATP also supports the option OPT_INTERVAL which enables the client to specify how long an interval
should exist between retry attempts.  (Default setting is 2 seconds.)

ATP also supports the option ATP_OPT_RELTIMER which enables the client to specify how long to wait
for an ATPRelease before discarding outgoing response data packets. The acceptable values for this field
are {0=30 secs; 1=1 minute; 2=2 minutes; 3=4 minutes; 4=8 minutes}. (Default setting is 30 seconds.)

ATP also supports the option ATP_OPT_REPLYCNT, which specifies the number of replies (1 through 8)
expected to a request.  Eight (8) is the default.  If the responder is not going to set the EOM bit in the
message, it is vital that this option be used so that ATP knows not to wait for more responses.



ADSP

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 15
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Using ADSP
ADSP is a connection-oriented stream. It does not support any of the connectionless datagram or
transaction endpoint calls.

When initiating a connection, the client may specify any of the AppleTalk address types discussed earlier
(DDP, NPB, combined).

ADSP supports two data channels. Normal data and expedited data. Not all connection-oriented streams
support an expedited data channel so clients that wish to run over other stream protocols should not use
ADSP’s expedited (or “attention”) channel.

By default, ADSP’s normal data channel does not support the T_MORE flag. ADSP send and receives a
continuous stream of bytes with no message delimiters. This is discourage the use of ADSP’s end-of-
message facility since not all stream protocols support this facility. In this default case, all calls to Rcv()
will return with the T_MORE bit set in the flags, and the T_MORE bit is ignored on all calls to Snd().
Through the use of option management, the client can use the OPT_ENABLEEOM option to turn on
ADSP’s EOM facility.

After ADSP’s EOM facility has been turned on, ADSP supports an infinite length Transport Data Service
Units (TSDU) on the normal data channel. It also support zero-length TSDUs. This means that a client can
send any number of bytes before calling Snd() without passing the T_MORE flag. The client may also call
Snd() with no data and without the T_MORE flag set. This will be carried across the transport to the
remote client; that client will receive a zero-length read without the T_MORE flag set.

The expedited channel supports a TSDU size of either 570 or 572 (See below). And, depending upon how
the options are set up, it also supports zero-length TSDU’s.

The expedited channel is a little unusual since the ADSP protocol defines an “attention code”, a two-byte
value from $0000 to $EFFF, that goes along with each unit of expedited data. The current implementation
is to treat these two bytes as the first part of each expedited TSDU. This has the following
properties/problems:

• The minimum TSDU is two bytes. If the client sends zero or one byte, then the data is
padded out to two bytes before being transmitted. The client on the receiving side may not
be expecting this behavior if it is a transport independent application and isn’t coded
specifically for ADSP.

• The client is responsible for ensuring the first two bytes are not in the reserved range $F000
to $FFFF.

Other alternatives for handling the attention channel are being explored.  Some of the alternatives
include:

• Ignore the attention code altogether. This prevents the client from talking to another ADSP
client where the attention codes are meaningful. (This implies the application is not
transport independent.)

• Use option management to set the attention code before every send on the attention
channel, if control over the attention code is desired. The client would use option
management to read the attention code on incoming expedited data.

• Use an option that changes the behavior of ADSP from ignoring the attention code
altogether for clients that are transport independent, to treating the attention code as the



ADSP

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 16
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

first two bytes of the TSDU. This is most likely the way the ADSP endpoint will treat the
attention channel.

Options
ADSP supports two options:

The OPT_CHECKSUM Option

By default, outgoing ADSP packets do not have DDP checksums. The client can force ADSP to send all
outgoing packets with DDP checksums by using the OptionMgmt() call to turn on the OPT_CHECKSUM
option.

The OPT_ENABLEEOM Option

A client can enable ADSP’s end-of-message facility by using the OptionMgmt() call to turn on the
OPT_ENABLEEOM option. This option is remembered internally on a per endpoint basis. One ADSP
endpoint may have EOM enabled, and an another endpont may not.



PAP

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 17
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Using PAP
PAP is a connection-oriented stream. It does not support any of the connectionless datagram or
transaction endpoint calls.

When initiating a connection, the client may specify any of the AppleTalk address types discussed earlier
(DDP, NPB, combined).

PAP supports a single data channel and has OrderlyRelease capability.

By default, PAP’s data channel  does not support the T_MORE flag.  PAP sends and receives a continuous
stream of bytes with no message delimiters. This is to discourage the use of PAP’s end-of-message facility
since not all stream protocols support this facility. In this default case, all calls to Rcv() will return with
the T_MORE bit set in the flags, and the T_MORE bit is ignored on all calls to Snd(). Through the use of
option management, the client can use the OPT_ENABLEEOM option to turn on PAP’s EOM facility.

After PAP’s EOM facility has been turned on, PAP supports an infinite length Transport Data Service
Units (TSDU) on its data channel. It also support zero-length TSDUs. This means that a client can send
any number of bytes before calling Snd() without passing the T_MORE flag. The client may also call Snd()
with no data and without the T_MORE flag set. This will be carried across the transport to the remote
client; that client will receive a zero-length read without the T_MORE flag set.

Due to its evolution, PAP exhibits somewhat different behavior, depending on whether it is acting as a
server or a workstation.  In its workstation form, PAP requests connections, sends data, and closes
connections pretty much as expected.  When performing a server function, PAP has some additional
responsibility in the world of connection arbitration.  A PAP server, upon receiving an OpenConnection
request must delay granting the request for some fairly arbitrary period of time (nominally 2 seconds),
accumulating any additional requests which come in and then, at the end of the waiting period, grant the
request of the workstation which claims to have been waiting the longest, via a "wait time" field in the
PAP header of the packet.  On the workstation side of this equation, in order to support this requirement,
PAP tracks the elapsed time for each endpoint which has been opened and fills out the "wait time" field
appropriately so that if a client has to try multiple times to connect to a busy LaserWriter, the endpoint
remembers the accumulated time since the first attempt and reports that to the LaserWriter on every
subsequent connection attempt.

Options
PAP supports two options:

The PAP_OPT_OPENRETRY Option

By default, outgoing PAP OpenConnection packets will not be retried by PAP.  (ATP will retry the
request per its configuration options.) The client can force PAP to retry outgoing OpenConnection
packets by using the OptionMgmt() call to specify a retry count in the PAP_OPT_OPENRETRY  option.

The OPT_ENABLEEOM Option

A client can enable PAP’s end-of-message facility by using the OptionMgmt() call to turn on the
OPT_ENABLEEOM option. This option is remembered internally on a per endpoint basis. One PAP
endpoint may have EOM enabled, and an another endpont may not.



PAP

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 18
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

The OPT_SEVERSTATUS Option

This option is used to set  the status string returned by the server in response to a SendStatus request
from a client.  This option is remembered internally on a per socket basis. The value of this option is the
string to return. The lenght of the string must be in the range 0 – 255  bytes, and it is not preceeded by a
lenght byte.



AppleTalk Services Library

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 19
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

The AppleTalk Services Library
A client of the OpenTransport implementation of AppleTalk may need to access some of AppleTalk’s
features that are not available through the standard Open Transport Endpoint Library. For example, the
standard endpoint API’s do not provide a way for a client to find out any information relating to
AppleTalk zones, network numbers, or router addresses.

In order to provide this information, there is an Open Transport API specific to AppleTalk called the
AppleTalk services library. Like other Open Transport libraries such as the mapper and endpoint
libraries, the AppleTalk services library supports the basic Open Transport Library provider functions:

InstallNotifier()
GetNotifier()
RemoveNotifier()
SetSynchronous()
SetAsynchronous()
IsSynchronous()

These functions are described in the Open Transport Client Developer’s Note.

In addition to these basic functions, the AppleTalk services library has the following functions:

GetATalkInfo()
GetMyZone()
GetLocalZones()
GetZoneList()

The functions OTOenAppleTalkServices() and OTCloseProvideer() create and destroy an AppleTalk services
object. More than one client can create an AppleTalk services object, and a client can create more than one
if desired. If the AppleTalk services object is used in asynchronous mode (recommmended), it allows only
one call of each type to be outstanding at any time on any single AppleTalk services object. In order to use
the object in asynchronous mode, the client must use InstallNotifier() to install a notifier routine that will
be called when a call completes.

The AppleTalk Services calls are described on the following pages.



AppleTalk Services Library

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 20
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

OTOpenAppleTalkServices

FUNCTION

OTOpenAppleTalkServices Create an AppleTalk services object.

C INTERFACE

pascal ATSvcRef OTOpenAppleTalkServices(OTConfiguration* path,
OTOpenFlags flags, OSErr* err);

C++ INTERFACE

none

DESCRIPTION
Parameters Before

Call
After
Call

path x /
flags x /
err x (x)

OTOpenAppleTalkServices creates an AppleTalkServices object and returns a reference to the
client.

The client may pass a copy (see OTCloneConfiguration in the Open Transport Client Note) of the
OTConfiguration* that was used to open an AppleTalk endpoint to create an AppleTalkServices
object using the same hardware port as the endpoint.  kDefaultAppleTalkServicesPath may also
be passed, in which case, the object will be created on the default hardware port (the one chosen
using the Network CDev). The flags parameter is currently ignored and should be zero. The err
parameter should point to a variable of type OSErr. If the call completes succesfully, a reference
to the AppleTalk services object that was just created is returned and the error variable will be set
to zero. If an error occurs, the reference returned will be zero, and the error variable will be set.

RESULT CODES

%%%%

SEE ALSO

OTAsyncOpenAppleTalkServices



AppleTalk Services Library

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 21
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

OTAsyncOpenAppleTalkServices

FUNCTION

OTAsyncOpenAppleTalkServices Create an AppleTalk services object asynchronously.

C INTERFACE

OSErr OTAsyncOpenAppleTalkServices(OTConfiguration* config,
OTOpenFlags oflag, OTNotifyProcPtr proc, void* contextPtr)

C++ INTERFACE

None. (C++ clients should use the C interface to this function.)

DESCRIPTION
Parameters Before

Call
After
Call

config x /
oflag x /
proc x /
contextPtr x /

OTAsyncOpenAppleTalkServices  creates an AppleTalk services object asynchronously,
based on the supplied information.   If this function returns an error immediately, then the
noticiation function will not be called.  If kOTNoError is returned, then the notification function
will be called with the results of the open.

The config and oflag parameters have the same meaning as for OpenAppleTalkServices.

When the open is complete, your notification function will be called with the code parameter set
to T_OPENCOMPLETE.  The result parameter will either be kOTNoError if the open was
successful, or will return a result code describing the error.  If the open was successful, the cookie
is  the EndpointRef for the endpoint that was opened.

Warning: The OTAsyncOpenAppleTalkServices function destroys the OTConfiguration
returned by OTCreateConfiguration.  Never attempt to use the same configuration to open
multiple endpoints.  You can use the OTCloneConfiguration function to clone the
configuration for this purpose.

RESULT CODES

kOTBadFlagErr

kOTBadNameErr

kOTCancelledErr

SEE ALSO

OpenAppleTalkServices



AppleTalk Services Library

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 22
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

GetMyZone

FUNCTION

GetMyZone Get the current zone

C INTERFACE

pascal OSErr OTATalkGetMyZone(ATSvcRef ref, TNetbuf* zone);

C++ INTERFACE

pascal OSErr TAppleTalkServices::GetMyZone(TNetbuf* zone);

DESCRIPTION
Parameters Before

Call
After
Call

ref (C only) x /
zone->maxlen x /
zone->len / x
zone->buf x (x)

GetMyZone is used to determine this machine’s current AppleTalk zone. The current zone will be
put into the TNetbuf pointed to by the zone parameter.

If the AppleTalk services object is in asynchronous mode, the client’s notifier will be called with a
T_GETMYZONECOMPLETE event and the cookie parameter to the notifier will contain the zone
parameter.

The zone returned in the TNetbuf will be a pascal-style string of at most 32 characters. Using a
pascal-style string is redundant since the length of the string could be determined from the
maxlen field of the TNetbuf, but the other zone-related calls use pascal-style strings, so this call
also uses them for consistency.

RESULT CODES

kOTBadReferenceErr

kOTNoDataErr

kOTBufferOverflowErr

SEE ALSO

GetZoneList, GetLocalZones



AppleTalk Services Library

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 23
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

GetZoneList

FUNCTION

GetZoneList Get the list of zones available on the AppleTalk network.

C INTERFACE

pascal OSErr OTATalkGetZoneList(ATSvcRef ref, TNetbuf* zones);

C++ INTERFACE

pascal OSErr TAppleTalkServices::GetZoneList(TNetbuf* zones);

DESCRIPTION
Parameters Before

Call
After
Call

ref (C only) x /
zones->maxlen x /
zones->len / x
zones->buf x (x)

GetZoneList is used to determine the current list of AppleTalk zones The zone list will be put into
the TNetbuf pointed to by the zones parameter.

If the AppleTalk services object is in asynchronous mode, the client’s notifier will be called with a
T_GETZONELISTCOMPLETE event and the cookie parameter to the notifier will contain the
zones parameter.

The zones returned in the TNetbuf will be a series of pascal strings placed one after the other.

RESULT CODES

kOTBadReferenceErr

kOTNoDataErr

kOTBufferOverflowErr

SEE ALSO

GetMyZone, GetLocalZones



AppleTalk Services Library

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 24
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

GetLocalZones

FUNCTION

GetZoneList Get the list of zones available on the local network cable.

C INTERFACE

pascal OSErr OTATalkGetLocalZones(ATSvcRef ref, TNetbuf* zones);

C++ INTERFACE

pascal OSErr TAppleTalkServices::GetLocalZones(TNetbuf* zones);

DESCRIPTION
Parameters Before

Call
After
Call

ref (C only) x /
zones->maxlen x /
zones->len / x
zones->buf x (x)

GetLocalZones is used to determine the list of AppleTalk zones available on the current network
cable. The zones will be put into the TNetbuf pointed to by the zones parameter. For a non-
extended network (e.g. LocalTalk), this call will return only one zone, the same one returned by
GetMyZone.

If the AppleTalk services object is in asynchronous mode, the client’s notifier will be called with a
T_GETLOCALZONESCOMPLETE event and the cookie parameter to the notifier will contain the
zones parameter.

The zones returned in the TNetbuf will be a series of pascal strings placed one after another

RESULT CODES

kOTBadReferenceErr

kOTNoDataErr

kOTBufferOverflowErr

SEE ALSO

GetMyZone, GetZoneList



AppleTalk Services Library

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 25
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

GetInfo

FUNCTION

ATalkGetInfo Get information about AppleTalk.

C INTERFACE

pascal OSErr OTATalkGetInfo(ATSvcRef ref, TNetbuf* info);

C++ INTERFACE

pascal OSErr TAppleTalkServices::GetInfo(TNetbuf* zones);

DESCRIPTION
Parameters Before

Call
After
Call

ref (C only) x /
info->maxlen x /
info->len / x
info->buf x (x)

GetInfo is used to query AppleTalk for information about the current environment. This call
returns the machine’s DDP address, the address of a local router, the current cable range for the
cable the machine is connected to, and whether or not the current network link is extended
(Phase 2) or not .

If the AppleTalk services object is in asynchronous mode, the client’s notifier will be called with a
T_GETATALKINFOCOMPLETE event and the cookie parameter to the notifier will contain the
info parameter.

The TNetbuf will be filled in with a structure that looks like:

struct AppleTalkInfo
{

DDPAddress fOurAddress;
DDPAddress fRouterAddress;
UInt16 fCableRange[2];
UInt16 fFlags;

};
//
// fFlags is bitmapped:
//
enum
{

kATalkInfoIsExtended = 0x0001,
kATalkInfoHasRouter = 0x0002

};

The fOurAddress contains the machines DDP address.

If the kATalkInfoHasRouter bit is set in the fFlags field, then the DDP address of a router on the
same cable as this machine is contained in the fRouterAddress field.

The cable range (or network range) for the cable this machine is connected to is returned in the
fCableRange array.

If the current network link is an extended network (AppleTalk Phase 2), then the
kATalkInfoIsExtended bit in the fFlags field will be set.



AppleTalk Services Library

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 26
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

RESULT CODES

kOTBadReferenceErr

kOTBufferOverflowErr

SEE ALSO

none



AppleTalk Utilities

AppleTalk Utilities
A number of utility functions have been provided for those clients which do not require transport-
independent behavior, and need to manipulate AppleTalk address information.  They are provided to
ease the transition to the Open Transport implementation of AppleTalk

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 27
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

The Mapper library and AppleTalk
This section is an addendum to the information in the Open Tranport Client Developer Note which describes
the Open Transport mapper library. This section describes how a mapper behaves for AppleTalk and the
formats of data passed to and returned from the calls.

When using the OTOpenMapper() to create a mapper, use the constant kNBPName when creating an
OTConfiguration to pass as the first parameter to OTOpenMapper().

A Mapper created on an AppleTalk network supports all three mapper calls: RegisterName(), DeleteName(),
andLookUpName(),.

Name formats
As an input parameter to all four calls, an NBP name format is as follows:

object name::object type@zone name

For example:

FreddyPrinter:LaserWriter@Lake Wobegon

and

Ronnies Mac Plus:Workstation@*

The restrictions are that each component of the name may be up to 32 characters long for a total length of
98 characters including the separators (":" between the object name and object type; and "@" between the
object type and the zone name.)  When the name is stored in a netbuf the netbuf len field refers to the total
length of the name string including separators.

Open Transport defines the "\" character to be an escape charatcer for NBP names.  This allows the
special characters ":", "@" and "\" to be used anywhere in an NBP name without confusion by preceeding
the special character with a "\" character. For example: "Test\:1:Workstation\@Foo@Zone\\RD1"
corresponds to an NBP entity with the name "Test:1", type "Workstation@Foo", and zone "Zone\RD1".

For LookUpName(), there may be more than one name returned in the output TNetbuf. The names are
returned as a group of structures that each look like:

short length of address field (= 8)
short length of name field
short address type(AF_ATALK_DDP)
short network number
byte node
byte socket
byte type (always zero)
byte pad byte
bytes “<name>:<type>@<zone>“
pad bytes to quad boundary



AppleTalk Utilities

AppleTalk Utilities
A number of utility functions have been provided for those clients which do not require transport-
independent behavior, and need to manipulate AppleTalk address information.  They are provided to
ease the transition to the Open Transport implementation of AppleTalk

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 28
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

The structures are padded so that each one begins on a multiple of four bytes away from the start of the
previous one. For example, given a pointer to the start of one name, the start of the next  name is
computed:

Ptr = Ptr + ((length + 3) & ~3);

The C or C++ functions/methods for an NBPEntity  or DDPNBPAddress can be used to parse the name,
if desired.

Wild Cards

AppleTalk names may be "wild carded" when used in the LookUpName() call.

The entire object name and/or object type fields may be wild carded by the "=" character to match
anything

i.e. Freddy:=   matches any object named Freddy in this zone

=:Workstation@* matches any Workstation in this zone

The object name and/or object type fields may be partially wild carded using at most one "≈" character
anywher in the name and/or type field. A single “≈” character in a field is equivalent to “=“.

i.e. A≈:=@*   matches any object with a name beginning with "A" in this zone

= :Laser≈  matches  any  ob jec t  wi th  an  ob jec t  type  beg inning  wi th zone [ w o u l d
include LaserWriters, LaserShare spoolers, Laserprinters, etc.]

Wild cards may not be used for the RegisterName() or DeleteName(),  calls.

Zone names

The current zone is frequently represented by the "*" character which is a form of wild carding. This is
entirely optional.  A zone of "*" and no zone are considered by NBP to be the same thing.

NBPEntity

The NBPEntity structure allows a convenient way to manipulate an AppleTalk NBP name.  It's use is not
required to manipulate NBP addresses under Open Transport, but it is provided as a convenience for
porting programs written for classic AppleTalk.  The definition of this structure is:

struct NBPEntity
{

UInt8 fEntity[kNBPMaxEntityLength];
};



AppleTalk Utilities

AppleTalk Utilities
A number of utility functions have been provided for those clients which do not require transport-
independent behavior, and need to manipulate AppleTalk address information.  They are provided to
ease the transition to the Open Transport implementation of AppleTalk

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 29
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

OTInitDDPAddress

FUNCTION

OTInitDDPAddress Initialize an NBPAddress structure

C INTERFACE

pascal void OTInitDDPAddress(DDPAddress* address, UInt16 net, UInt8
node, UInt8 socket, UInt8 ddpType);

DESCRIPTION
Parameters Before

Call
After
Call

address x (x)
net x /
node x /
socket x /
ddpType x /

OTInitDDPAddress can be used to initialize a DDPAddress structure with the net, node, socket
and ddpType information provided in the call.

SEE ALSO

OTInitNBPAddress, OTInitDDPNBPAddress, OTCompareDDPAddresses



AppleTalk Utilities

AppleTalk Utilities
A number of utility functions have been provided for those clients which do not require transport-
independent behavior, and need to manipulate AppleTalk address information.  They are provided to
ease the transition to the Open Transport implementation of AppleTalk

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 30
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

OTInitNBPAddress

FUNCTION

OTInitNBPAddress Initialize an NBPAddress structure

C INTERFACE

pascal void OTInitNBPAddress(NBPAddress* address, const char* name);

DESCRIPTION
Parameters Before

Call
After
Call

address x (x)
name (x) /

OTInitNBPAddress can be used to initialize an NBP address with the name specified in name.
The name parameter is assumed to already be in the canonical format described in the previous
section.  The function returns the size of the NBPAddress, which is basically four (the size of the
OTAddressType field) plus the length of the string at name.

SEE ALSO

OTInitDDPAddress, OTInitDDPNBPAddress



AppleTalk Utilities

AppleTalk Utilities
A number of utility functions have been provided for those clients which do not require transport-
independent behavior, and need to manipulate AppleTalk address information.  They are provided to
ease the transition to the Open Transport implementation of AppleTalk

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 31
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

OTInitDDPNBPAddress

FUNCTION

OTInitDDPNBPAddress Initialize a DDPNBPAddress structure

C INTERFACE

pascal size_t OTInitDDPNBPAddress(DDPAddress* address, const char* name,
UInt16 net, UInt8 node, UInt8 socket, UInt8 ddpType);

DESCRIPTION
Parameters Before

Call
After
Call

address x (x)
name (x) /
net x /
node x /
socket x /
ddpType x /

OTInitDDPNBPAddress can be used to initialize a DDPNBPAddress structure with the name,
net, node, socket and ddpType information provided in the call.  It returns the resulting size of
the address structure, which is just the length of the name  parameter, plus the size of a
DDPAddress.

SEE ALSO

OTInitNBPAddress, OTInitDDPAddress



AppleTalk Utilities

AppleTalk Utilities
A number of utility functions have been provided for those clients which do not require transport-
independent behavior, and need to manipulate AppleTalk address information.  They are provided to
ease the transition to the Open Transport implementation of AppleTalk

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 32
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

OTCompareDDPAddresses

FUNCTION

OTCompareDDPAddresses Compare two DDPAddresses

C INTERFACE

pascal Boolean OTCompareDDPAddresses(const DDPAddress* addr1, const
DDPAddress* addr2);

DESCRIPTION
Parameters Before

Call
After
Call

addr1 (x) /
addr2 (x) /

OTCompareDDPAddresses compares two DDP addresses for equality.  It will only compare DDP
addresses (not NBP or DDPNBP addresses).   Other address types will always return false. It uses
the zero-matches-anything rule that is part of the AppleTalk specification when doing the
matching.  The function returns true if the two addresses match.



AppleTalk Utilities

AppleTalk Utilities
A number of utility functions have been provided for those clients which do not require transport-
independent behavior, and need to manipulate AppleTalk address information.  They are provided to
ease the transition to the Open Transport implementation of AppleTalk

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 33
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

OTInitNBPEntity

FUNCTION

OTInitNBPEntity Initializes an NBPEntity structure

C INTERFACE

pascal void OTInitNBPEntity(NBPEntity* entity);

DESCRIPTION
Parameters Before

Call
After
Call

entity x (x)

OTInitNBPEntity initializes an NBPEntity structure.  It sets the NBP name, type and zone to
empty strings.



AppleTalk Utilities

AppleTalk Utilities
A number of utility functions have been provided for those clients which do not require transport-
independent behavior, and need to manipulate AppleTalk address information.  They are provided to
ease the transition to the Open Transport implementation of AppleTalk

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 34
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

OTGetNBPEntityLengthAsAddress

FUNCTION

OTGetNBPEntityLengthAsAddress Returns the number of bytes needed to store an
NBPEntity into an NBPAddress or DDPNBPAddress.

C INTERFACE

pascal size_t OTGetNBPEntityLengthAsAddress(const NBPEntity* entity);

DESCRIPTION
Parameters Before

Call
After
Call

entity (x) /

OTGetNBPEntityLengthAsAddress returns the number of bytes required to store an
NBPEntity into an NBPAddress or DDPNBPAddress.   This allows the proper sizing of the
buffer.

SEE ALSO

OTSetAddressFromNBPEntity



AppleTalk Utilities

AppleTalk Utilities
A number of utility functions have been provided for those clients which do not require transport-
independent behavior, and need to manipulate AppleTalk address information.  They are provided to
ease the transition to the Open Transport implementation of AppleTalk

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 35
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

OTSetAddressFromNBPEntity

FUNCTION

OTSetAddressFromNBPEntity Stores an NBPEntity as an NBP address string.

C INTERFACE

pascal size_t OTSetAddressFromNBPEntity(UInt8* namebuf, const NBPEntity*
entity);

DESCRIPTION
Parameters Before

Call
After
Call

namebuf x (x)
entity (x) /

OTSetAddressFromNBPEntity stores the information in the NBPEntity into the buffer
namebuf in the format required for the Mapper calls.  It returns the number of bytes that were
used in the buffer (Use OTGetNBPEntityLengthAsAddress to determine the number of bytes
needed ahead of time).  This function will handle all of the "escaping" needed for the name
format

SEE ALSO

OTGetNBPEntityLengthAsAddress, OTSetNBPEntityFromAddress



AppleTalk Utilities

AppleTalk Utilities
A number of utility functions have been provided for those clients which do not require transport-
independent behavior, and need to manipulate AppleTalk address information.  They are provided to
ease the transition to the Open Transport implementation of AppleTalk

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 36
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

OTSetAddressFromNBPString

FUNCTION

OTSetAddressFromNBPString Copies an NBP address string into a buffer

C INTERFACE

pascal size_t OTSetAddressFromNBPString(UInt8* namebuf, const char*
nbpName, SInt32 len);

DESCRIPTION
Parameters Before

Call
After
Call

namebuf x (x)
nbpname (x) /
len x /

OTSetAddressFromNBPString will copy the string nbpName into the buffer namebuf. The len
parameter indicates the number of characters to copy.  If the len parameter is -1, then the length
of the nbpName string will be used for the copy.  The number of bytes actually copied is returned.



AppleTalk Utilities

AppleTalk Utilities
A number of utility functions have been provided for those clients which do not require transport-
independent behavior, and need to manipulate AppleTalk address information.  They are provided to
ease the transition to the Open Transport implementation of AppleTalk

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 37
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

OTSetNBPEntityFromAddress

FUNCTION

OTSetNBPEntityFromAddress Parses and stores the name in an NBPAddress or
DDPNBPAddress into an NBPEntity.

C INTERFACE

pascal size_t OTSetNBPEntityFromAddress(NBPEntity* entity, const UInt8*
addrBuf, size_t len);

DESCRIPTION
Parameters Before

Call
After
Call

entity x (x)
addrBuf (x) /
len x /

OTSetNBPEntityFromAddress parses an NBPAddress or DDPNBPAddress into the NBP name,
type and zone, and stores the result into an NBPEntity.  From the NBPEntity, each of the
consituent parts of the name may be easily retrieved or changed.

SEE ALSO

OTGetNBPEntityLengthAsAddress, OTSetAddressFromNBPEntity, OTSetNBPName,
OTSetNBPType, OTSetNBPZone, OTExtractNBPName,  OTExtractNBPType,
OTExtractNBPZone



AppleTalk Utilities

AppleTalk Utilities
A number of utility functions have been provided for those clients which do not require transport-
independent behavior, and need to manipulate AppleTalk address information.  They are provided to
ease the transition to the Open Transport implementation of AppleTalk

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 38
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

OTSetNBPName

FUNCTION

OTSetNBPName Set the NBP name portion in an NBPEntity structure.

C INTERFACE

pascal Boolean OTSetNBPName(NBPEntity* entity, const char* name);

DESCRIPTION
Parameters Before

Call
After
Call

entity (x) (x)
name (x) /

OTSetNBPName will store the NBP name specified by the name parameter into the NBPEntity
entity, deleting any previous name stored there.  The name supplied should NOT have any of
the NBP escape charaters stored in it.   This function returns false if the name parameter is longer
than the maximum allowed NBP name (32 characters).

SEE ALSO

OTSetNBPType, OTSetNBPZone, OTExtractNBPName,  OTExtractNBPType,
OTExtractNBPZone



AppleTalk Utilities

AppleTalk Utilities
A number of utility functions have been provided for those clients which do not require transport-
independent behavior, and need to manipulate AppleTalk address information.  They are provided to
ease the transition to the Open Transport implementation of AppleTalk

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 39
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

OTSetNBPType

FUNCTION

OTSetNBPType Set the NBP type portion in an NBPEntity structure.

C INTERFACE

pascal Boolean OTSetNBPType(NBPEntity* entity, const char* type);

DESCRIPTION
Parameters Before

Call
After
Call

entity (x) (x)
type (x) /

OTSetNBPType will store the NBP type specified by the type parameter into the NBPEntity
entity, deleting any previous type stored there.  The type supplied should NOT have any of the
NBP escape charaters stored in it.   This function returns false if the type parameter is longer than
the maximum allowed NBP type (32 characters).

SEE ALSO

OTSetNBPName, OTSetNBPZone, OTExtractNBPName,  OTExtractNBPType,
OTExtractNBPZone



AppleTalk Utilities

AppleTalk Utilities
A number of utility functions have been provided for those clients which do not require transport-
independent behavior, and need to manipulate AppleTalk address information.  They are provided to
ease the transition to the Open Transport implementation of AppleTalk

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 40
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

OTSetNBPZone

FUNCTION

OTSetNBPZone Set the NBP zone portion in an NBPEntity structure.

C INTERFACE

pascal Boolean OTSetNBPZone(NBPEntity* entity, const char* zone);

DESCRIPTION
Parameters Before

Call
After
Call

entity (x) (x)
zone (x) /

OTSetNBPZone will store the NBP zone specified by the zone parameter into the NBPEntity
entity, deleting any previous zone stored there.  The zone supplied should NOT have any of
the NBP escape charaters stored in it.   This function returns false if the zone parameter is longer
than the maximum allowed NBP zone (32 characters).

SEE ALSO

OTSetNBPName, OTSetNBPType, , OTExtractNBPName,  OTExtractNBPType,
OTExtractNBPZone



AppleTalk Utilities

AppleTalk Utilities
A number of utility functions have been provided for those clients which do not require transport-
independent behavior, and need to manipulate AppleTalk address information.  They are provided to
ease the transition to the Open Transport implementation of AppleTalk

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 41
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

OTExtractNBPName

FUNCTION

OTExtractNBPName Extract the NBP name from an NBPEntity structure.

C INTERFACE

pascal void OTExtractNBPName(const NBPEntity* entity, char* name);

DESCRIPTION
Parameters Before

Call
After
Call

entity (x) /
name x (x)

OTExtractNBPName will extract the NBP name information from the NBPEntity entity, and
store it into the string buffer specified by the name parameter.

SEE ALSO

OTSetNBPName, OTSetNBPType,  OTSetNBPZone, OTExtractNBPType,  OTExtractNBPZone



AppleTalk Utilities

AppleTalk Utilities
A number of utility functions have been provided for those clients which do not require transport-
independent behavior, and need to manipulate AppleTalk address information.  They are provided to
ease the transition to the Open Transport implementation of AppleTalk

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 42
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

OTExtractNBPType

FUNCTION

OTExtractNBPType Extract the NBP type from an NBPEntity structure.

C INTERFACE

pascal void OTExtractNBPType(const NBPEntity* entity, char* type);

DESCRIPTION
Parameters Before

Call
After
Call

entity (x) /
type x (x)

OTExtractNBPType will extract the NBP type information from the NBPEntity entity, and
store it into the string buffer specified by the type parameter.

SEE ALSO

OTSetNBPName, OTSetNBPType,  OTSetNBPZone, OTExtractNBPName,,  OTExtractNBPZone



AppleTalk Utilities

AppleTalk Utilities
A number of utility functions have been provided for those clients which do not require transport-
independent behavior, and need to manipulate AppleTalk address information.  They are provided to
ease the transition to the Open Transport implementation of AppleTalk

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 43
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

OTExtractNBPZone

FUNCTION

OTExtractNBPzone Extract the NBP zone from an NBPEntity structure.

C INTERFACE

pascal void OTExtractNBPZone(const NBPEntity* entity, char* zone);

DESCRIPTION
Parameters Before

Call
After
Call

entity (x) /
zone x (x)

OTExtractNBPZone will extract the NBP zone information from the NBPEntity entity, and
store it into the string buffer specified by the zone parameter.

SEE ALSO

OTSetNBPName, OTSetNBPType, OTSetNBPZone, OTExtractNBPName,  OTExtractNBPType



Index

Open Tpt Driver  Note, Rev 1.1b14      1/18/96 page 44
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Index
Address Formats 6
attention code 15
Binding 10
Combined Addresses 7
DDP Addresses 6
DDP Multi-Node Addresses 8
DDPNBPAddress 28
DDP_OPT_SRCADDR 8, 12
Default Type 10
Endpoint Information 10
expedited data 10
GetInfo 25
GetLocalZones 24
GetMyZone 22
GetZoneList 23
Index 44
multi-node endpoint 8, 12
Multihoming AppleTalk 9
NBP name 7
NBPEntity 28
NBPEntity  28
Options 12, 14, 16, 17

OPT_CHECKSUM 12
OTAsyncOpenAppleTalkServices 21
OTCompareDDPAddresses 32
OTExtractNBPName 41
OTExtractNBPType 42
OTExtractNBPZone 43
OTGetNBPEntityLengthAsAddress 34
OTInitDDPAddress 29
OTInitDDPNBPAddress 31
OTInitNBPAddress 30
OTInitNBPEntity 33
OTOpenAppleTalkServices 20
OTSetAddressFromNBPEntity 35
OTSetAddressFromNBPString 36
OTSetNBPEntityFromAddress 37
OTSetNBPName 38
OTSetNBPType 39
OTSetNBPZone 40
Transport Data Service Units 15, 17
TSDU 15, 17
Wild Cards 28
Zone names 28


