Open Transport Module
Developer Note

PRELIMINARY
Revision 1.1b14
01/18/96

Open Tpt Driver Note, Rev 1.1b14 01/18/96
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

page 1

Table of Contents

REVISION HISTOTY ...ttt 4
Related DOCUMENTS ...t 4
Module Development for Open TranSPOItccovieiieriiiieee e 5

Dynamic Loading
Building Modules and Drivers
Module exports
GetOTINSEAIINTO ...
INIESErEAMMOTUIE........oiiii bbb s
TerminateStreamMMOTUIE...........coiiiiiii s
Building Modules With ASLIMccccciiiiiiiiiie s
68K ASLIM MOTUIES ...t

PPC ASLM Modules

ing Modules with CFM.

Bu

WOIKING WIth POIT DIIVETS ...t
APIS FOF POIt DIIVETS ..ot bbb
OTREGISTEIPOIT ...t
OTUnregisterPort .
OTChangePortState .
OTGetIndexedPort
OTFindPort
OTFindPortByRef
OTFINAPOIBYDEVoviiiiiitiieistsie ettt

Registering Port Drivers.
PCI Drivers and the Name Registry.

Port Driver Configuration INfO ...

Module and DIiVEr OPEFAtiON ...ttt
SeCONAArY INTEITUPT SEIVICEScuvviiiiiiiieiieieise ettt
THMEE SEIVICES ...t bbbt
AALOITHC SEIVICES ..ottt ettt r e bas
POWVET SEBIVICESvvviiiieieteieist ettt b bbbttt bt
Open and CloSe SUPPOIt COUEcruiieiiiieiree e

mi_close_comm ...
mi_close_detached.
mi_open_comm.
mi_next_ptr

mi_open_detached.
mi_bufcall

Table of Contents

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 2

Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

mi_tpi_ack_alloc
tpi_err_ack_allo
mi_tpi_ok_ack_alloc
Other TPI prototypes.
Synchronization support.

Table of Contents

TOCTL IMIBSSAGES .o-vevcvreeerseesaeeeeesesseeeseseseesessesss st et s e eb bbbt een

Appendix A- Performance hints55
Appendix B - RaNdom NOTES/WAIMINGSccuririieriiieiieisiiiesese e 57
TNOBX .ot 58
Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 3

Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Revision History

01/18/95 Updated for 1.1b14. Added some info on PCI/Name Registry drivers

8/28/95 Updated for 1.1b2 (partially - still more to do)

11/28/94 Update for 1.0a2 Open Transport. Changes to ValidateHardware call and
removed one timer call.

09/16/94 Update for 1.0d16 Open Transport and new Power calls

07/25/94 Merged with Open Transport Ethernet Developer Note, with additions for PCI
Bus development

06/16/94 Minor corrections

05/04/94 Revised for new address formats

02/14/94 Creation

Related Documents

Data Link Provider Interface Specification Unix International, OSI Workgroup

Transport Provider Interface Specification Unix International, OSI Special Interest Group, Revision

1.5 (Date: 92/12/10)
Streams Modules and Drivers Unix® SVR4.2 UNIX Press

Apple Shared Library Manager Developer’s Guide, by ESD Publications, October 4, 1993, Apple

Computer, Inc.
Open Transport Client Developer Note
Designing PCI Cards and Drivers for Power Macintosh Computers , Apple Computer, Inc.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 4

Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module Development

Module Development for Open Transport

Open Transport has chosen the STREAMS model for implementing protocols and
drivers. This provides a large amount of flexibility for mixing and matching protocols.
It also allows a wide range of third-party STREAMS modules and drivers to be easily
ported to the Open Transport environment.

Part of the flexibility of the STREAMS environment comes from being a messaging
interface with only a few well-defined messages. The most common types of messages
are M_DATA (for sending raw data), M_PROTO (for sending normal commands), and
M_PCPROTO (for sending high-priority commands). Since STREAMS does not define
the content of M_PROTO or M_PCPROTO messages, it is necessary for modules to
agree on a message format if they are to communicate.

Open Transport has standardized on the Transport Provider Interface (TPI) message
format for most protocol modules, and the Data Link Provider Interface (DLPI) for most
STREAMS hardware drivers.

This document describes what must be done to create STREAMS modules and drivers
for Open Transport. It assumes that you are familiar with the material in the Streams
Modules and Drivers for Unix® SVR4.2 published by Unix Press, as well as the TPI and
DLPI specifications (see the Related Documents section for references).

Open Transport classifies STREAMS modules into three different categories. These are
modaules, drivers, and port drivers.

A module is a STREAMS module that expects MODOPEN to be set in the sflags
parameter of its open routine. It is always "pushed" onto other modules, and never
"opened" as a driver.

A driver is a STREAMS module that expects 0 or CLONEOPEN to be set in the sflags
parameter of its open routine. It is always "opened" as a driver, and never "pushed"”
onto other modules. It may be I_LINKed or I_PLINKed below other drivers

A port driver is a STREAMS module that acts exactly like the driver described above,
but it is "registered" with Open Transport in Open Transport's port registry (see the
Open Tpt Client Note for information on the port registry). This allows several things
to happen. First, it is visible in the port registry for clients to browse. Second, multiple
instances of the module are possible. You can register a single module as several
different ports, which allows a single driver to support multiple hardware devices (one
for each port registered). For PowerPC port drivers implemented using CFM, this
allows a separate static data instance for each hardware device, which is very
convenient. It also gives each instance of the driver a unique major device number (See
the section on Port Drivers for more information).

Module Development

Dynamic Loading

Open Transport supports two methods of dynamic loading for STREAMS modules. A
STREAMS module may be written as an Apple Shared Library Manager (ASLM) shared
library, or as a CFM shared library. For 68K STREAMS modules, you must use ASLM.
For PowerPC, CFM is the preferred mechanism, but ASLM may also be used (Note:
ASLM will not be available for module loading in Copland).

Whenever a STREAMS module or driver is described as exporting a function in this
document, it means to export the function using the named export method of the
appropriate DLL. For ASLM, this means using the "extern" keyword in front of the
name of a function in the export file. For CFM, this means using the -export switch to
export the functions when linking a shared library.

For hardware STREAMS drivers that are written on Power Macintosh systems with the
Native driver architecture, the driver must be written to conform with that architecture.
This means that the hardware driver must be written using CFM only. Open Transport
will get all of the information it needs from the System Registry in this case.

Building Modules and Drivers

This section defines the actual steps necessary to build STREAMS modules and drivers
for Open Transport. It will describe any code that needs to be supplied to include the
modaule or driver into the Open Transport system, but it will not talk about how to write
the operational portion of a STREAMS modules or driver.

WARNING: When building PowerPC version of modules, NEVER set any
compiler options that indicate that structure should be aligned in any way but
PowerPC native. Open Transport includes #pragmas to align all structures that
are shared between 68K and PowerPC code to 68K alignment. However, any
structures that are not shared between 68K and PowerPC code (which includes
most of the module-level headers) are aligned to PowerPC standard alignment.
If you override this alignment, your code will not be looking at the fields you
think you are. Many of Open Transport's data structures are common with the
Unix world, where a 16-bit field is followed by a 32-bit field, causing non-optimal
alignment on the 32-bit field unless PowerPC standard alignment is used.

Module exports

In order to use your STREAMS module or driver, Open Transport needs to be able to
locate information about your module. This section will describe those exports.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 5
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 6
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module Development

GetOTlInstallInfo

When a service requires the use of your driver, Open Transport will automatically load
it and install it into the STREAMS module tables. In order to do this, your module must
export a function named either Get OTl nstal | I nfo or Get OTxxxxxl nstal | I nfo
(where xxxxx is the name of the module or driver).

install _info* GetOTllnstalllnfo(void);

NOTE: The reason for having two different possible names for most of the Open
Transport interface functions is so that you can put more than one STREAMS
module in a single shared library. This is often necessary when a STREAMS
module is both a driver and a module.

This function returns the installation information that Open Transport needs to install
the driver into the STREAMS tables.

struct install_info

{
struct streantab* install_str;
Ul nt 32 install _flags;
Ul nt 32 install _sqlvl;
char* i nstal | _buddy;
voi d* ref | oad;
Ul nt 32 ref _count;

¥

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 7

Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module Development
install_str This is a pointer to the driver's st r eant ab structure.

install_flags This contains bits to inform Open Transport about some of your
capabilities and needs (see below for the bit definitions).

install_sqlvl This flag is set to the type of reentrancy your driver can handle.
Legal values are:

SQLVL_QUEUE Each stream containing your module
can be entered once from the upper
gueue and once from the lower queue at
the same time.

SQLVL_QUEUEPAIR Each stream containing your module
can be entered from either the upper
queue or the lower queue, but not at the

same time.

SQLVL_MODULE Your module can only be entered once,
no matter which instance of the module
is entered.

SQLVL_GLOBAL Only 1 STREAMS module or driver can

be entered at any one time. Between all
modules that use SQLVL_GLOBAL,
only 1 will be entered at a time.

install_buddy This field is set to the name of a module/driver that needs to be
synchronized with this driver. For modules with
SQLVL_MODULE synchronization, it means that both modules are
considered a single module from the point of view of the
synchronization. For other synchronization, it means that if you
call nps_become_wri t er, you will be synchronized between both
sets of modules. You can make more than 2 modules be install
buddies, by creating a "ring" of buddies (i.e. A has B as a buddy, B
has C as a buddy, and C has A as a buddy). NEVER set up
install_buddies that are not in a "ring"-type configuration, or Open
Transport may go into an infinite loop trying to find your
"buddies". For drivers that are registered ports (see the section
"Working with Registered Ports"), you must use the real module
name of the port, not the name it is registered with. In addition,
making a registered port driver a writer buddy means that all
instances of the registered port driver are synchronized together,
which can have a detrimental performance impact if the driver
synchronization is set to SQLVL_MODULE.

ref_load This field is used by Open Transport to keep a load reference to the
module. It should be initialized to zero.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 8
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module Development

ref_count This field is used by Open Transport to keep track of when a driver
is first loaded, and when it is last unloaded. It should be initialized
to zero.

The install_flags contain several bits that must be set in order for Open Transport to

properly use your module:
/1

11 Flags used in the install_flags field

/1

enum

{
kOTModI sDri ver = 0x00000001,
kOTModI shodul e = 0x00000002,
kOrModUpper | sTPI = 0x00001000,
kOTrModUpper | sDLPI = 0x00002000,
kOTWbdLowver | sTPI = 0x00004000,
kOTMvdLower | sDLPI = 0x00008000,

/1
/1 This flag says you don't want per-context globals
/1

kOTMbdd obal Cont ext = 0x00800000,

““ These flags are only valid if kOTModl sDriver is set.

“A\Ojsuanmw_ nterrupts = 0x08000000,

kOTModl sConpl exDri ver = 0x20000000,

““ These flags are only valid if kOThvodl sMbdul e is set.
: “A\O._.?oa_ sFilter = 0x40000000

These flags have the following meaning:

kOTModIsDriver Set this bit if your STREAMS module is a
driver (i.e. expects CLONEOPEN or 0 in the
sflags parameter of the open routine). This bit
or the kOTModl sModul e bit MUST be set for

your STREAMS module to be valid.

kOTModIsModule Set this bit if your STREAMS module is a
module (i.e. expects MODOPEN in the sflags
parameter of the open routine). This bit or the
kOTModl sDri ver bit MUST be set for your

STREAMS module to be valid.

Set this bit if your STREAMS module
understands TPl commands on its upper
gueue.

kOTModUpperlIsTPI

kOTModUpperIsDLPI Set this bit if your STREAMS module
understands DLPI commands on its upper

queue.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 9
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module Development

kOTModLowerlsTPI Set this bit if your STREAMS module
understands TPl commands on its lower

queue.

kOTModLowerlsDLPI Set this bit if your STREAMS module
understands DLPI commands on its lower

queue.

kOTModGlobalContext Set this bit if your driver requires a single static
data space for all instances of the driver. For
CFM drivers, Open Transport normally creates
a new static data area for each hardware device
that the driver handles. However, ASLM does
not support this, so drivers using ASLM are
not easily ported to CFM unless this flag is set.
This bit is only valid for STREAMS drivers, not
modules (modules never get a second static
data instance).

kOTModUseslnterrupts Set this bit if your driver fields hardware
interrupts. This bit is only valid for STREAMS
drivers, not modules. Only set this bit if you
are a driver for a PCI module. If you are

writing a STREAMS driver

kOTModIsComplexDriver Set this bit if your driver has "complex"
plumbing needs and requires a "Configurator"
(see the Open Tpt Protocol Dev. Note and
sample code for more information). Basically,
this bit says that just "opening" the driver is not
enough for operation. This bit is only valid for

STREAMS drivers, not modules.

kOTModIsFilter Set this bit if your STREAMS module is a
"filter"-type module (i.e. it does not affect the
operation of modules above or below it, so it is
in effect invisible to them). This bit is only

valid for STREAMS modules, not drivers.

If you have a STREAMS module that is both a driver and a module, you must export
two GetOTlnstallinfo functions with two different names, using two different
streamtabs. This is most commonly done by appending an "m" to the end of the driver
name for the module version (e.g. "ip" is the driver version of the ip protocol, and "ipm"
is the module version of the ip protocol).

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 10
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module Development

InitStreamModule

Whenever Open Transport loads your module or driver for the first time, Open
Transport will call an optional initialization function exported by the module.

NOTE: Instantiating a module for the first time means that the module is
currently not loaded by Open Transport. This can include the module having
been used earlier, and then unloaded because it was no longer in use.

For drivers that support multiple hardware devices, Open Transport treats each

hardware device that the driver supports as though there were multiple drivers.
For instance, if a driver supports both "enetl" and "enet2" devices, the first time
"enetl" is used, InitStreamModule will be called for "enetl". If someone
subsequently uses the "enet2" device, InitStreamModule will be called again for
"enet2".

This function must be named either I nit StreamModul e or
I ni t xxxxxSt reamvbdul e (where xxxxx is the name of the module or driver).

Bool ean | nit Streamvbdul e(voi d* syst enDependent);

If the | ni t St r eamVodul e returns false to Open Transport, then the loading of the
module will be aborted and a kENXIOErr error will be returned to the client.
Otherwise, the module will be loaded, and installed into a stream.

The syst enDependent parameter will be a pointer to a value that depends on the type
of driver/module. For Native drivers that are in the System Registry, this will be a
pointer to a PCl | nf o structure defined in OpenTptPClSupport.h. For normal drivers
and modules, this parameter will be NULL. For all registered port drivers it will be the
value registered as the cont ext Pt r when the port was registered.

If your device supports changing power usage, the | ni t St r eamvbdul e function
should set the power level for normal operation.

TerminateStreamModule

Whenever Open Transport removes the last instance of a module or driver from the
system, Open Transport will call an optional termination function exported by the
module. This function must be named either Ter m nat eSt r eamModul e or
Ter m nat exxxxxSt r eamivbdul e (where xxxxx is the name of the module or driver).

voi d Term nat eStreanm\bdul e(voi d);

If your device supports changing power usage, the Ter m nat eSt r earmVbdul e function
should set the power level to low power or no power, as appropriate.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 11
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module Development

Of course, modules and drivers may also use the initialization and termination features
of their DLL technology (both CFM and ASLM allow initialization and termination
routines). However, Open Transport often loads a module or driver just to obtain
information about the module. In this case, InitStreamModule and
TerminateStreamModule are not called.

All memory allocations that do not use the Open Transport allocation routines
(OTAllocMem and OTFreeMem) or any interrupt-safe allocators supplied by the
interrupt sub-system must be done from within your initialization and termination
routines (i.e. NewPtr, NewHandle, DisposePtr, DisposeHandle, PoolAllocateResident,
and PoolDeallocate may only be called from your initialization and termination
routines).

Once your module has been loaded, all communication with it will be through
STREAMS messages, and the entry points in the st r eant ab.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 12
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module Development

Building Modules with ASLM

In order to build your modules with ASLM, you need to create a .exp file and invoke
the BuildSharedLibrary script from the ASLM SDK.

68K ASLM Modules

For 68K code, your module may be built with any compiler that uses 4 byte integers and
has "C" stack-based calling conventions (Of course, these restrictions only apply to those
functions you are exporting either through the streamtab or to Open Transport). After
linking your module into a single object file, a line similar to the following needs to be
executed to create the shared library:

Bui | dShar edLi brary “M/Mdul eLi b. 0" d
-lib "MMdul e. RSC' 0
-syndir " -synfile OTLi b$M/Mbdul e -symon a
-clientFile "M/Mdul e.cl.o" 0
-exp "M/Modul e. exp" a
-restype cd02 -resid 02 0
-i "{QAncludes}" -i "{Or ncludes}" d
-obj "M/NModul e" 0
"{ OTLi bs} QpenTpt Modul e. 0" a

| "{ OTLi bs}Li br ar yManager . 0" 9

“{Libraries}"Interface.o 0
“{Li braries}"MacRunTi ne. o

This command will create a file called MyModule.RSC. ASLM places shared libraries
into multiple resources.

-resid ASLM creates several resources for each shared library it creates.
This switch gives a resource ID to those resources. By using
different resource IDs for different shared libraries, you can
combine multiple ASLM shared libraries into a single shared
library file.

-restype This switch specifies the resource type that the code will be placed
into. By using different resource types for different shared
libraries, you can combine multiple ASLM shared libraries into a
single library file. DO NOT USE 'code' or 'CODE' as the resource

type.
-lib This switch specifies where the output resource file is to go.

-clientFile This switch specifies the client file. You must supply this
parameter, but the client file is unused unless you are exporting
other entry points into your module for your own use (see the
ASLM documentation for more details)

-sym on This optional switch specifies that symbols are desired.

-symDir This optional switch specifies where a symbol file should be placed

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 13
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module Development

-symfile This optional switch specifies the name of the symbol file without
the .SYM extension.

-exp This switch locates the export file that tells ASLM the particulars
about your shared library.

-obj This switch tells ASLM where to put the intermediate object files it
creates, and what file name root to use.

The first file on the command line is the object file to make into a shared library. All
other files on the command line are libraries to link with.

PPC ASLM Modules

For PowerPC ASLM libraries, your module can be built with any compiler that outputs
standard XCOFF files. After linking your module into a single object file, a line similar
to the following needs to be executed to create the shared library:

Bui | dShar edLi brary “M/Mdul eLi b. 0" d
- pover pc -xcof f Synfile -symon d
-syndir ":" -synfile OTLi b$M/Modul e 0
-lib "M/Mdul e. RSC' 9
-clientFile "M/Mdul e.cl.o" 0
-exp "M/Modul e. exp" a
-restype cd02 -resid 02 0
-i {StdQncl udes} o
-obj "M/Mdul e" 0
“{ OTLi bs} OpenTpt Modul eLi b* o

| " { OTLi bs} Li br ar yManager PPC. 0" 9

“{Libraries}"RunTi ne. o

The switches mean the same thing as in the 68K example, except:
-powerpc Tells the tool that we are building a PowerPC shared library.
-sym on This optional switch specifies that symbols are desired.
-symDir This optional switch specifies where a symbol file should be placed

-symfile This optional switch specifies the name of the symbol file without
the .xSYM (or .xc) extension.

-xcoffSymFile This switch specifies that an xcoff file is desired for symbols
instead of a .xSYM file. ".xc" will be used as the extension for the
file in this case.

The first file on the command line is the XCOFF file to make into a shared library. All
other files on the command line are libraries to link with. Both XCOFF and PEF libraries
are supported.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 14
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module Development

.exp files for ASLM Modules

An ASLM export file describes how the library is to be created. Below is a sample of
what should be placed in the export file for your module. If you want more details,
please refer to the ASLM documentation.

\.x
* I'nclude QpenTpt Mdul e.h to get pertinent defines
*/
#i ncl ude <QpenTpt Modul e. h>
#def i ne kMyModul eNane " MyModul e” /* "StreanTab" nane of nodul e */
#def i ne kMyVer si on "1.0" /* Version nunber of nmodule */
*
* Just use this verbatim?®*/
Library
{
\,x
* Typically we | oad nodul es this way so there are no surprises.
* This insures that the nodule, and all other shared libraries
* that it depends on, are in nmenmory when we load. It insures
* that the module will not be | oaded on a 68000 nachi ne, and that
*if it is a68Knodule, it will not be | oaded when running emul at ed
* on a Power Macintosh.
*/
flags = noSeglhl oad, forceDeps, !nt68000, !enul ated;
*

* Oeate the name of the library. W use this format,
* but you can use anything that you want

*
_m\ = kOTLi braryPrefix kM/Mdul eNane "," kM/Version;
\H Set up the version nunber of the library
<m\qm_ on = kMVersi on;
\H Al ways use nenory = | ocal .
:m\:cJ\ = | ocal ;

IR
Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 15

Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module Development

*
* Change the name of this function set by substituting the real name
* of your nodule for "M/NMdul e"

*/
FunctionSet Mdul e_M/Nodul e
{
*
* The ID for your modul e MUST | ook |ike the follow ng:
*/
id = kOTModul ePrefix kM/Mdul eName “," kM \Ver si on;
\.k
* The function set for your nodul e can export many functions.
* However, you nust export GetOTlnstalllnfo
* (or GetQOrIxxxxxlnstalllnfo) by nane.
* |f you want an initialization function, it nust al so be
* exported by the name InitStreanidul e (or InitxxxxStreamvbdul e),
* and will be called the first tine your nodul e i s | oaded.
*
* |f you also need a termination function, export a function
* call ed TerminateStreanMdul e (or Term nat exxxxStreanibdul e),
* and it will be called before Qpen Transport unloads your nodul e.
*
* NOTE: Don't nake these "static" functions in your file, or
* ASLM can't export them For C++ clients, nmake sure
* that they are declared extern "C'.
*/
exports = extern Get OTM/Modul el nstal | I nfo,
extern | nitStreanibdul e,
ext ern Ter i nat eSt r eanmvbdul e;
b

If you are exporting more than one module from an ASLM library, create additional
FunctionSet declarations (making sure the name following the work FunctionSet is
unique) for each module that is exported. In addition, you need to have named your
exports with the "xxxxx" version of the names, since you have to link your modules
together, and each entry point needs a unique name for each module.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 16
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module Development

Building Modules with CFM

Building modules with CFM is simple. Create a CFM shared library and export the
functions you need to support. The ONLY requirement is that the name of your CFM
library MUST be "OTModI$MyModule", where "MyModule" is replaced by the name of
your module that is in the streanmtab (it's in the st_rdinit->qgi _m nfo-
>m _i dnanre field).

If you export more than one module from the shared library, you must create a 'cfrg'
resource that gives your library more than one name for the same library:
resource 'cfrg (0) {
{ /* array nenberArray: 2 elenents */

/% [1] */
kPower PC,
kFul I Li b,
kNoVer si onNum
kNoVer si onNum
kDef aul t St ackSi ze,
kNoAppSubFol der,
kil sLi b,
kOnD skFl at ,
kZer oOf f set ,
kWhol eFork,
" OrMod! $My/Mbdul e,
/* [2] */
kPower PC,
kFul I Li b,
kNoVer si onNum
kNoVer si onNum
kDef aul t St ackSi ze,
kNoAppSubFol der,
kil sLi b,
kOnD skFl at
kZer oOf f set
kWhol eFork,
" OTvodl $M/Dxi ver ",

Iy

In addition, when exporting multiple modules from the same library, they will all
shared the same static data instance. However, registered port drivers will have
separate data instances from all of the other modules, even if the
kOTModGlobalContext flag is set in the i nstal | _i nf o.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 17
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Working with Port Drivers

Working with Port Drivers

Open Transport maintains a registry of all port drivers in the system. This registry is
accessed through a number of functions, including OTGet | ndexedPor t , OTFi ndPor t,
and OTFi ndPort ByRef . If your driver is a hardware driver, it should be registered
with Open Transport. If it is not registered with Open Transport, there are several
issues that will arise. The first is that your driver will not know which hardware device
it is supposed to be controlling. Even if your driver only controls a single known
hardware device, if it is not in the port registry, it will not be visible to Control Panels
and configuration applications for use by the various protocols in the system, including
AppleTalk and TCP/IP.

As a registered port driver, your driver will be able to use the OTFi ndPor t ByDev API
to discover what hardware device it is supposed to control when it is instantiated. In
addition, depending on the cont ext Pt r that was stored when the driver was
registered, additional information may be available to the driver.

Open Transport treats each entry in the port registry as though it were a unique and
separate streams driver. Unless the kOTModGlobalContext bit is set or ASLM is being
used, an instantiation of a port is given a separate static data area from all other
instantiations of the same stream driver in use by other ports.

While this feature is valuable for hardware device driver writers, it is potentially useful
for protocol writers as well. For instance, the Apple implementation of the DDP
protocol registers a private "pseudo-port" in the port registry for each different driver
that DDP is instantiated on. This gives a separate instantiation of DDP over each driver,
allowing DDP to multihome easily. These pseudo-ports are registered and unregistered
on an as-needed basis, and have the kOTPor t | sPri vat e bit set so that Control Panels,
etc. are not tempted to display them as legitimate ports.

AppleTalk creates the stream by registering the port, and then opening the stream
using the port name returned in the fPortName field of the OTPortRecord. It then links
the appropriate driver underneath the DDP stream. From that point on, until the port is
unregistered, opening a DDP stream using that port name will result in opening a clone
of this DDP stream (as opposed to DDP over some other hardware device).

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 18
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Working with Port Drivers

APIs for Port Drivers

Open Transport has several APIs for dealing with port drivers. They are described in
the following sections.

OTRegisterPort

Open Transport provides a function, OTRegi st er Por t , to allow port drivers to be
registered with Open Transport. This function makes the port visible to clients through
the various port APIs defined in OpenTransport.h. It also allows a STREAMS driver to
be instantiated multiple times for different hardware devices.

enum
{
kMaxModul eNaneLengt h = 31,
kMaxModul eNarreSi ze = kMaxModul eNaneLength + 1,
kMaxPr ovi der NameLengt h = kMaxMbdul eNaneLength + 4,
kMaxPr ovi der NareSi ze = kMaxProvi der NameLength + 1,
kMaxSl ot | DLengt h =17,
kMaxSl ot | DS ze =8,
kMaxResour cel nf oLengt h = 31,
kMaxResour cel nf oS ze =32
b
\.k
* Values for the flnfoFl ags field of OTPortRecord
*
/
enum
{
kOrPort | sDLPI = 0x00000001,
kOrPort | sTPI = 0x00000002,
kOTPor t CanYi el d = 0x00000004,
kOTPor t | sSyst enRegi st er ed = 0x00004000,
kOTPort | sPrivate = 0x00008000,
kOTPort | sAl i as = 0x80000000
Iy
struct OrPort Record
{
OrPor t Ref f Ref;
U nt 32 f Port Fl ags;
U nt 32 f I nf oFl ags;
U nt 32 f Capabi li ti es;
size_t f NumChi | dPort s;
OTPor t Ref * f Chil dPorts;
char f Por t Narre[kMaxPr ovi der NaneSi ze] ;
char f Modul eNane[kMaxModul eNaneSi ze] ;
char fSl ot D kMaxSl ot | DSi ze] ;
char f Resour cel nf o[kMaxResour cel nf 0Si ze] ;
char f Reserved[164] ;

N

CBSt at us OTRegi st er Port (OTPort Record* portlnfo, void* contextPtr);

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 19
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Working with Port Drivers

A port is registered by filling out the OTPor t Recor d, and passing it, along with a
cont ext Pt r to the OTRegi st er Port function. If you need persistent memory for the
contextPtr, use the OTAl | ocPort Memand OTFr eePor t Memfunctions to allocate and
free the memory.

The cont ext Ptr that is registered is the value that is passed to the
I ni t St reanVbdul e function when the port driver is loaded. It may also be retrieved
by the driver by making the call OTFi ndPor t ByDev and retrieving the value from the
TPor t Recor d.

fRef This field must be filled in with the OTPortRef of the port.
OTPortRefs must be unique in the system. If another port is
already registered with the same OTPortRef, Open Transport will
assume that this port is an alias for the real port. This is especially
convenient for registering "default" ports (e.g., "ItIkB", and "ItIk" are
both registered to the same OTPortRef on most machines, but on
PowerBooks, quite often "Itlk" is registered to the "ItIkA"
OTPortRef, since there is no PortB LocalTalk. This allows clients to
use "ItlIk" and get whatever the default LocalTalk port is). When
registering "pseudo-ports", it is permissible to use
OTCr eat ePor t Ref (0, kOTPseudoDevice, 0, 0), and Open
Transport will assign a unique OTPortRef to the device (the value
will be in this same field when the OTRegi st er Port function
returns).

fPortFlags Unused - setto 0

fInfoFlags Set the appropriate bits. kOTPortIsDLPI and kOTPortIsTPI
describe the upper interface to the driver.
kOTPortlsSystemRegistered is only set if Open Transport registered
the port from information in the System Registry (so you shouldn't
set this bit if you're registering your own port). kOTPortlsPrivate is
normally set when registering "pseudo-ports". It is informational,
to tell Control Panels and other control programs that they should
not display the port. kOTPortlsAlias is used internally by Open
Transport, and should not be set when making the OTRegisterPort
call. kOTPort CanYi el d should be set if you support the
| _YI ELDPORT and | _PROVI DERTYPE IOCTL messages (if you are a
serial port or some other device type that cannot demultiplex
incoming data, you should support these messages and set this bit.
See the section on IOCTL support for a description of these IOCTL
messages).

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 20
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Working with Port Drivers

fCapabilities ~ fCapabilities is a bitmap that is defined on a device-by-device basis.
Typically, they define framing options for a protocol or device. If
you do not use zero for the framing flags, then you MUST support
the I_OTSetFramingType IOCTL, which will pass you a 32-bit
value with a single bit set, indicating the framing option desired. If
this IOCTL call is made, then your DLPI driver should fill in the
dl_mac_type field of a dl_info_ack_t with a value consistent with
the requested framing type.

For instance, ethernet supports four framing options:

kOTFr am ngEt her net = 0x01
kOTFr am ngEt hernet| PX = 0x02
kOTFr am ng8023 = 0x04
kOTFr am ng8022 = 0x08

Most Ethernet drivers support all but KOTFr am ng8023 (typically,
Ethernet drivers support kOTFr am ng8022, which indicates that
they can handle full SAP/SNAP demultiplexing, whereas
kOTFr am ng8023 indicates that they will deliver all 802.3 frames
to a single client). If a client requests kOTFr am ng8022 using the
I0CTL, then DL_CSMACD should be returned in the dl _rmac_t ype
field. If a client requests kOTFram ngEt hernet or
kOTFr am ngEt her net | PX, then DL_ETHER should be returned
instead. NOTE: Currently, Open Transport does not support the
kOTFraming8023 framing type, so Ethernet drivers must handle
full SAP/SNAP demultiplexing and Test/XID frames in order to
work properly with AppleTalk and TCP/IP.

fNumcChildPorts
This field contains the number of "child" ports that this port uses.
See the description of the fChildPorts field for more information.

fChildPorts This field is a pointer to an array of OTPortRefs that are "child"
ports for the port being registered. "Child" ports occur when one
port driver depends on another. Typically, a port has 0 or 1 child
port. Some examples of "child" ports would be: 1) a modem device
almost always has a "child" port that is a serial device; 2) A pseudo-
port (like ddp0, ddp1, etc..) almost always has a "child" port that is
either another pseudo-port, or is a real hardware device.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 21
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Working with Port Drivers

fPortName This field contains the name of the port. Typically, just leave the
first byte of this field set to "\0', and Open Transport will make up a
unique port name. However, feel free to supply the name you
want your port to be known by (but if another port is already
registered with that name, an error will occur and your port will
not be registered). This name is the name that is used to open
endpoints and streams with. If the OTRegisterPort call succeeds,
this field will be filled in with the port name that was assigned.

fModuleName
This field contains the name of the stream module (Of course,
stream modules which use OTRegisterPort are really stream
drivers). This should be the "MyModule" part of the shared library
ID "OTModI$MyModule", which should also be the name of the
module stored in the streamtab (st _rdinit->qgi _m nfo-
>m _i dnane field).

fSlotID This field is a 0-terminated string that contains a slot identifier. If
this string is a null-string, Control Panels will use the information
from the OTPortRef to attempt to create a slot identifier string.

fResourcelnfo

This field is a O-terminated string that contains an identifier that
will allow Open Transport to access auxiliary information about
your driver (Open Transport creates shared library ids from this
string to be able to find these extra shared libraries). This string
should either be unique to your driver, or should be set to a null
string. See the section on Port Driver Configuration Info for more
detail.

fReserved This field should be set to all zeros.

Note: OTRegisterPort is available as both a kernel and a client API. If the contextPtr is
actually a pointer to memory, under Copland it must have been allocated with
PoolAllocateGlobal if you are using the client APl and wish the stream module to be
able to address the memory. Also, OTRegisterPort copies all of the information in the
OTPortRecord, so the OTPortRecord may be allocated on the stack

OTUnregisterPort

OTUnregisterPort allows a client to unregister a port by name. Unregistering by name
is necessary because it is allowed to register an OTPortRef by several names, creating
alias records. The "cont ext Ptr Ptr" parameter will return the value of the
cont ext Pt r that was used when registering. Unregistering a port is normally a
permanent affair. If it is possible that the port will be back on-line (as with PCMCIA
Ethernet cards), it is better to use the OTChangePortState API, since while the port was
unregistered, another port may have grabbed the name that was being used.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 22
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Working with Port Drivers
CBStatus OTUnregi sterPort (const char* portName, void** contextPtrPtr);

Note: OTUnregisterPort is available as both a kernel and a client API.
OTChangePortState

OTChangePortState allows you to change the state of a port without unregistering it.
You can disable a port, which causes all streams using the port to be closed down, and
causes KENXIOErr errors for anyone attempting to open the port while it is disabled.
You can enable the port, which will cause the port to be reenabled. For devices that
come and go (hot-docking and PCMCIA cards are examples), it is much better to use
OTChangePortState than to Register and Unregister the port, since there is no chance of
the port's name being taken in this case.

Typically, the "why" parameter is kOTPor t HasDi edEr r, kOTPor t VASEj ect edErr,
kOTPor t Lost Connect i on, or kOTUser Request edEr r. All Open Transport clients
are notified when this call is made, and the "why" parameter is one of the pieces of
information given to the clients.

enum

{
kOTD sabl ePort
kOTA osePor t
kOTEnabl ePor t

1

2,

3
b

GBSt at us OTChangePort Stat e(OTPort Ref ref, U nt32 theChange, C8Status why);

OTGetIndexedPort

OTGet | ndexedPort returns the TPor t Recor d* corresponding to the i ndex parameter
(index = 0.....n). A NULL is returned if the index is too high. This APl is only valid in
the kernel (There is a separate and different API for the client). NOTE: This API returns
the actual port record used by OpenTransport. Do NOT change any information in the
TPortRecord.

TPort Recor d* OTGet | ndexedPort (si ze_t index);
OTFindPort

OTFi ndPort returns the TPor t Recor d* that has the requested por t Nanme. This API is
only valid in the kernel (There is a separate and different API for the client). NOTE:
This API returns the actual port record used by OpenTransport. Do NOT change any
information in the TPortRecord.

TPort Record* OTFi ndPort (const char* portNane);
OTFindPortByRef

OTFi ndPor t ByRef returns the TPort Recor d* corresponding to the specified
OTPor t Ref . This APl is only valid in the kernel (There is a separate and different API
for the client). NOTE: This API returns the actual port record used by OpenTransport.
Do NOT change any information in the TPortRecord.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 23
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Working with Port Drivers
TPor t Recor d* OTFi ndPor t ByRef (OTPor t Ref)
OTFindPortByDev

OTFi ndPor t ByDev returns the TPor t Recor d* corresponding to the dev_t specified.
Only the major number of the dev_t is used to find the port. This API is only valid in
the kernel. NOTE: This API returns the actual port record used by OpenTransport. Do
NOT change any information in the TPortRecord.

TPor t Recor d* OTFi ndPor t ByDev(dev_t dev)

This function can be used in your module's open routine to obtain the TPortRecord
related to your port. From this record, you can retrieve the "cont ext Pt r " that was
stored when the port was registered, as well as other useful information:

struct TPort Record

{

OTLink fLink;

char* fPortName;
char* fModuleName;
char* fResourcelnfo;
char* fSlotID;

struct TPortRecord* fAlias;

size_t fNumChildren;
OTPortRef* fChildPorts;
Uint32 fPortFlags;
UInt32 fInfoFlags;
UInt32 fCapabilities;
OTPortRef fRef;

struct streamtab* fStreamtab;
void* fContext;

void* fExtra;

b

This function returns the actual TPor t Recor d used by the system, so don't modify it.
The only really useful fields are the f Ref field, which contains the OTPortRef for your
module, and the f Cont ext field, which contains the "cooki e" that was saved for the
driver when the port was registered. For systems using the Native driver architecture,
this "cooki e" will be a pointer to a structure whose first element is the RegEnt r y| Dfor
the driver (i.e. the "cookie" can be interpreted as a RegEnt ryl DPt r).

This function is most useful to drivers that handle multiple hardware devices. By using
the f Ref or f Cont ext value, the driver can determine which hardware device the
Open call is referring to. WARNING: This function may not be called at interrupt time.

Do not be confused by the similarity between the TPort Record and the
OTPort Record. An OTPor t Recor d is a copy of the TPortRecord specially formatted
for client needs. The TPort Recor d is the structure that Open Transport actually keeps
in the port registry to keep track of information on registered ports. Only stream
modules and kernel infrastructure have access to the actual TPor t Recor d.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 24
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Registering Port Drivers

Registering Port Drivers

Since it is necessary to have port drivers registered early in the boot process so that the
protocol suites can be up and running at boot time, and there are very few mechanisms
on the Macintosh for running early in the boot process, Open Transport provides an
automated way to run your code to register your port drivers. These code modules are
called "port scanners".

Open Transport provides a few default port scanners. On Macintosh systems, Open
Transport will automatically register LocalTalk and serial ports on SCCA and SCCB, as
well as any serial ports that are registered in the Communications Toolbox Resource
Manager. On Nubus system, it will also automatically register all .ENET, .TOKN, and
.FDDI drivers (Open Transport has a DLPI "shim" to interface to these various drivers).
On PCI machines with the System Registry, Open Transport automatically registers all
Open Transport drivers that are present in the System Registry (see the "Designing PCI
Cards and Driver for Power Macintosh Computers" for more information on this
feature).

All other drivers must supply a port scanner to register the driver. The port scanner
must currently be built as an ASLM library, because CFM does not provide a
mechanism for finding a related group of shared libraries, like scanners.

You port scanner will export a function called OTScanPor t s by hame from an ASLM
function set with an InterfacelD of either kOTPortScannerinterfacelD or
kOTPseudoPortScannerinterfacelD (more on these two in a moment). A sample .exp
file for the ASLM build is:

Registering Port Drivers

\.x
Sanple .exp file for creating an ASLM
shared library to export an Qpen Transport
port scanner.

*/

#i ncl ude " QpenTpt Modul e. h"
#define My/Scanner Nane "nyScanner "

Li brary
{
\.x
* 1) Segnents won't be | oaded or unl oaded.
* 2) W want any libraries we depend on to be
* forced to load prior to us | oading.
* 3) W don't run on 68000 processors

flags = noSeglhl oad, forceDeps, !nt68000;

H This id can be anything you want

_m\ = KOTLi braryPrefix M/Scanner Nang;

\H Put the appropriate version nunber here.
<m\qm_ on = 1.0;

nmenory = client;

Iy

FunctionSet M/Scanner Functi onSet
{
\,»
* You nust use this Interfacel D
*/
Interfacel D = kOTPor t Scanner | nt er f acel D,
*
* Your 1D can be anything as long as it starts
* with kOTPort Scanner Prefi x.
id = kOTPort Scanner Prefi x MyScanner Nane “, 1. 0";

* You can export other functions, but you nust
* have "extern OTScanPorts" sonmewhere in the list.
*
/
exports = extern OTScanPorts;
Iy
It is also possible to combine your driver and port scanner into a single ASLM shared
library. ASLM allows multiple FunctionSets to be exported from the same library, so
you can export your driver entry points as one function set, and your scanner as
another.

The OTScanPor t s function is a C function with the following prototype:
voi d OrScanPort s(voi d)

When the OTScanPor t s function is called, the scanner should search for the hardware
and drivers that it is responsible for, and call the OTRegisterPort to register each
hardware device and associate it with a driver (see the description for OTRegisterPort
earlier in this document for more information).

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 25
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 26
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Registering Port Drivers

For some devices, it is necessary to have all of the hardware ports available in the port
registery before registering themselves. Examples of this are the ATMSNAP (ATM
Classical IP) or ATMLANE (ATM LAN emulation) drivers. These drivers are software
drivers that talk to ATM hardware drivers. Without these two drivers, AppleTalk or
TCP/IP would be unable to use ATM. These drivers provide a translation function that
allow AppleTalk or TCP/IP to believe that they are operating on a Local Area Network
instead of over a point-to-point link. These drivers need to be registered as ports so that
they show up in the appropriate Control Panels, and also so that they can have separate
instances for each ATM hardware device present.

The problem, of course, is that if they have to register as a driver for each of the
hardware devices that they support, some of the devices might be missed, since the
order of running port scanners is unspecified. To alleviate this problem, you can use
the kOTPseudoPort Scanner | nt er f acel D constant. All port scanners with this
interfacelD are guaranteed to run after all the port scanners with the
kOTPort Scanner | nt er f acel Dhave run.

PCI Drivers and the Name Registry

On machines with with the Native driver architecture, Open Transport provides the
scanner to read the Name Registry, and driver writers only need to know how to set up
their driver so that they can be found by it.

In order for your driver to be automatically located and installed by the Open Transport
expert, you must first define and export a Dri ver Descri pti on structure as part of
your driver so that your driver is added to the System Registry.

For Open Transport, the fields of this structure must be filled out as described below:
driver DescSi gnat ure

Must contain the value kTheDescri pti onSi gnat ur e.
dri ver DescVersi on

Must contain the value kl ni ti al Dri ver Descri ptor.

driver Type. cl assCode

__u___ in with the appropriate standard PCl-specified driver family (class) code.

_Q: ver Type. nanel nf oSt r

Fill in with the name of the driver. This MUST be filled in with exactly the same
name as the module name pointed to by the st r eant ab structure of the driver
(in the qi _m nf o- >m _i dnane field). WARNING: the name of the driver may
not end in a digit.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 27
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Registering Port Drivers

However, in order to allow your driver to also be used by the "standard" Native
Driver architecture, you may place a leading "." character in this field. Open
Transport will ignore the leading "." (i.e. your st r eant ab module name field

should not have the "." in the name).
_Q: ver Type. ver si on

Fill in with the version number of the driver (not the version number of the
device, which is in the dri ver DescVer si on. r evi si onl Dfield).

_D: ver OSRunt i el nf o. dri ver Runti ne
..:_m field must have the bit kdri ver | sUnder Expert Cont r ol set.

_D: ver GBRunt i nel nf o. dri ver Nane

This field should contain one of the device names found in OpenTpt Li nks. h.
These include kEnet Name, kTokenRi ngName, kFDDI Name, and so on.
Remember that this field is a pascal string, and the equates are for C strings, so
you must use code such as "\ p" kEnet Nane to get the desired effect.

This value is stored in the f Resour cel nf o field of your registered port entry. If
you want to override the text or icons for your driver in the system control
panels, you can put another value in this field (see the next section on
Configuration Info for detauls of how to use this field).

_D: ver GSRunt i nel nf o. dri ver DescReser ved] 8]
..:mmm are reserved fields and should be initialized to 0.
_D: ver GSSer vi ce. servi ce[x] . servi ceCat egory

At least one of your service categories must be filled in with the category
kSer vi ceCat egor yopent ransport .

__u: ver OSServi ce. servi ce[x] . servi ceType

The service type field is a bit field that tells Open Transport about your device.

xxxxxddd dddddddd ffffffff xxxxxxTD

where "d" is the device type for Open Transport,

the lower two bits are whether the driver is TPl or DLPI,
and the "f" bits are framng flags, specifying the framng
options that the driver supports (which is |ink-specific).
Al other bits should be 0

The macro OTPCI Servi ceType(devType, framngBits, isTPl, isDLPI)
should be used to create this field. The list of device types available are found in
OpenTptLinks.h. The list of interface bits are either defined there as well, or in
link-specific header files (such as OpenTptSerial.h).

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 28
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Registering Port Drivers

Dri ver OSSer vi ce. servi ce[x] . servi ceVer si on

This field specifies the version of the Open Transport API that your driver
supports. It is in the standard NumVersion format (the format of a 4-byte 'vers'
resource) Currently, this version should be filled in with the constant
kOTDri ver APl Ver si on.

Registering Port Drivers

Port Driver Configuration Info

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 29
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Once your port driver is registered with the system, you may want control panels and
other programs which display port information to be able to get port information for
you ports, such as icons and name strings.

When the driver was registered, an fResourcelnfo field was supplied. Open Transport
will create a library name from this field by prepending the constant
kPortConfigLibPrefix to it (see OpenTptConfig.h in the Open Transport Protocol
Developer SDK).

NOTE: For developers of PCI drivers, the value from the
DriverOSRuntimelnfo.driverName field is moved into the fResourcelnfo field
(minus any leading "." in the name). In the original documentation, it said that
this field should contain one of the device names found in OpenTptLinks.h. This
is not required. The field can be 0-length (although if it is 0-length, your driver
will not be compatible with 1.0.x version of Open Transport). If you want to be
compatible with Open Transport 1.0.x, but don't have a configuration library for
your driver, just continue putting the generic device name in this field.

Clients who want to get configuration information from your driver can use the API
calls in OpenTptConfig.h:

voi d OTGet User Por t NaneFr onPor t Ref (OTPort Ref ref, Str255 friendl yName)

This function calls the configuration library of the port specified, and returns a
name in the f ri endl yNare field. If the f ri endl yNane field returns a 0-length
string, then the port does not provide the functionality.

Bool ean OTGet Port | conFr onPor t Ref (OTPort Ref, OTResour ceLocat or* i conLocat i on)

This function calls the configuration library of the port specified, and returns a
true if the port supplied an iconLocation. If the function returns true,
iconLocation can be used to look for the usual icon-type resources in the
specified FSSpec with the specified resource ID.

typedef struct

{
FSSpec fFile
unt16 fReslD

} OrIResour celocat or;

In order for your driver to benefit from these API calls, you must export the function the
following functions from a shared library (either ASLM or CFM - Open Transport will
find either one):

voi d OTGet User Por t Name(OTPor t Recor d* port, bool ean_p includeS ot, bool ean_p i ncl ude
Port, Str255 nane);

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 30
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Registering Port Drivers

This function should return a pascal string that is the name of the port. If
i ncl udSl ot is true, you should also include information about the slot location.
Ifi ncl udePort is true, you should also include information about which port if
your hardware device supports multiple ports.

Bool ean OTCet Port | con(OTPort Record* port, OTResourcelocator* |ocation)

This function should return an FSSpec and a resource number in the structure
pointed to by | ocat i on. Clients can use this to open the file with the icons and
read them. Return false if no icons are available for the specified port.

Of course, you only need to export those functions that you care about. Currently, the
Open Transport control panels do not need icons for the port, but that may change in
the future.

Module and Driver Operation

Module and Driver Operation

Once your module or driver is installed in a stream and opened, it is ready for action.
From that point on, the driver will respond to messages according to the interface
specification(s) (TPI or DLPI) that it supports.

Drivers have one additional proviso that they must observe. If they are running as a
primary interrupt, they must call the OTEnterInterrupt function prior to making any
Open Transport calls, and must call OTLeavelnterrupt prior to exiting their current
interrupt level, and after they have made their final call to any Open Transport routines.

voi d OTEnterlnterrupt(void);
voi d OTLeavel nterrupt (void);

It is strongly suggested that for timing services and secondary interrupt services that the
appropriate Open Transport functions be used, since they will adapt to the underlying
system. In addition, the Open Transport secondary interrupt services do not have the
restrictions present that some of the equivalent system services have, since any memory
allocations needed are handled up front, keeping this function from failing at
inconvenient times.

Interrupt-Safe functions

Open Transport provides many STREAMS services for module and driver writers.
However, not all of these services may be used at interrupt time.

The following STREAMS functions may be safely called at interrupt time:

allocb adjmsg copyb copymsg dupb
dupmsg esballoc freeb freemsg linkb
msgdsize msgpullup pullupmsg putq rmvb
testb unlinkb datamsg OTHERQ RD

WR bzero bcopy bcmp unlinkb
genable

Note in particular that the canput function and its variants are not allowed to be called
at interrupt time. In addition, put g may only be called to place an nbl k on the lower
stream queue. The most common use for this is to put incoming packets onto the lower
stream queue, and then handle the data in the read service routine. Using the genabl e
function is a convenient way of scheduling yourself time outside of your interrupt. The
service procedure of the specified queue will be called back at non-interrupt time,
allowing you to process your incoming data. Of course, you can also use
OTSchedul eDef err edTask for this purpose.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 31
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 32
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module and Driver Operation

The following Open Transport functions may be safely called at interrupt time:

OTCreateDeferredTask OTDestroyDeferredTask OTScheduleDeferredTask
OTGetClockTimelnSecs OTGetTimeStamp OTSubtractTimeStamps
OTTimeStamplInMilliseconds OTTimeStamplnMicroseconds OTElapsedMilliseconds
OTElapsedMicroseconds cmn_err OTAllocMsg
OTAllocMem OTFreeMem mi_timer_alloc
mi_timer_free mi_timer mi_timer_cancel

In addition, all of the functions described under "Atomic Services" below may be called
at interrupt time.

Secondary Interrupt Services

There are three functions associated with Open Transport's secondary interrupt
services.

typedef void (*OTProcessProcPtr)(voi d* contextlnfo);
This typedef defines the deferred task callback function.
| ong OTCr eat eDef erredTask(OTProcessProcPtr proc, |ong contextlnfo)

This function creates a "cookie" (the returned long value) that can be used at a later
time to schedule the function "pr oc". At the time that "pr oc" is invoked, it will be
passed the same contextl| nf o parameter that was passed to the
OTCr eat eDef er r edTask procedure.

voi d OTSchedul eDef erredTask(| ong dt Cooki e);

This function is used to schedule the deferred procedure corresponding to the
dt Cooki e value. It may be called multiple times prior to the deferred procedure
actually being executed, but the deferred procedure will only be run once. Once the
deferred procedure has run, subsequent calls to OTSchedul eDef er r edTask will cause
it to be scheduled to run again.

voi d OTDestroyDef erredTask(| ong dt Cooki e);

This function is used to destroy any resources associated with the deferred procedure.
It should be called when you no longer require the deferred procedure.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 33
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module and Driver Operation

Timer Services

Open Transport supplies robust timer services that are synchronized with the
STREAMS environment. Timer services are supported by using special STREAMS
messages. The function mi _ti mer _al | oc is used to create one of these special
STREAMS messages:

mbl k_t* m _tinmer_alloc(queue_t* targetQueue, size_ t size);

Calling this function will create a STREAMS timer message of the requested size, that is
targeted to the specified STREAMS queue.

void m _timer(nmblk_t* tinerMg, unsigned long mlliSeconds);

This function will schedule the ti mer Msg (which must be created using
m _timer_all oc) to be placed on the target STREAMS queue at the specified future
time.

void m _tinmer_cancel (nbk_t* tinmerMsg)

This function will cancel an outstanding timer message. The ti mer Msg will not be
destroyed, but will no longer be delivered to the target queue. It may be rescheduled by
usingm _ti mer ata later time.

void m _tiner_free(nbl k_t* tinerMsg)

This function cancels and frees the specified timer message (remember,
m _ti mer _cancel does not free the message).

Bool ean m _tiner_valid(nbl k_t* tinmerMsg)

Timer messages enter the target queue as M_PCSIG messages. Whenever a queue that
can receive a timer message receives an M_PCSIG message, it should call
mi_timer_valid, passing the M_PCSIG message as a parameter. If the function returns
true, then the timer message is valid and should be processed. If the function returns
false, then the timer message was either deleted or canceled. In this case, the correct
course of action is to ignore the message (i.e. DON'T free it). WARNING: This function
may not be called at interrupt time, and it may not be called twice on the same timer.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 34
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module and Driver Operation

Atomic Services

Open Transport supplies some atomic services to help reduce the need to disable and
enable interrupts.

The first set of services allow atomically setting, clearing and testing of a single bit in a
byte. The first parameter is always a pointer to a single byte, and the second is always a
bit number from 0 to 7. The functions always return the previous value of the bit. Bit
zero (0) always corresponds to a mask of 0x01, and bit seven (7) always corresponds to a
mask of 0x80.

Bool ean OTAtonmi cSetBit (U nt8* theByte, size_t theBitNo)
Bool ean OTAtomi cCl earBit (U nt8* theByte, size_t theBitNo)
Bool ean OTAtomi cTestBit (U nt8* theByte, size_t theBitNo)

The second set of services allow atomically adding (or subtracting by using a negative
number) from a 32, 16, or 8 bit variable. The return value is the new value of the
variable (at least what is was when the atomic add was done). Note that an SInt32 is
always used as the first parameter. This is to properly handle different 68K "C"
compiler calling conventions. Only the first 8 or 16 bits will be used for the 8 or 16 bit
atomic add calls.

SInt32 OTAtomicAdd32(SInt32, SInt32* varToBeAddedTo)
SIntl6 OTAtomicAdd16(SInt32, SInt16* varToBeAddedTo)
SInt8 OTAtomicAdd8(SInt32, SInt8* varToBeAddedTo)

The third service is a general compare and swap. It insures that the value at wher e still
contains the value oVal , and if so, the value nVal is substituted. If the compare and
swap succeeds, the function returns true. Otherwise false is returned.

Bool ean OTConpar eAndSwapPt r (voi d* oVal, voi d* nVal, void** where)
Bool ean OrConpar eAndSwap32(Ul nt 32 oVal, U nt32* nVal, U nt32** where)
Bool ean OrConpar eAndSwapl6(Ul nt 16 oVal, U nt16* nVal, U nt16** where)
Bool ean OrConpar eAndSwap8(U nt 8 oVal, Ul nt8* nVal, Ul nt8** where)

Module and Driver Operation

The fourth set of services is an atomic LIFO list. OTLI FOEnqueue and OTLI FODequeue
are self-explanatory. OTLI FOSt eal Li st allows you to remove all of the elements from
the LIFO list atomically, so that the elements in the list can be iterated at your leisure by
traditional means. OTLI FORever selLi st is for those of us who find that LIFO lists are
next-to-useless in networking. Once the OTLI FOSt eal Li st function has been
executed, the result can be passed to OTLI FORever selLi st to flip the list into a FIFO
configuration. Be aware that OTLI FORever seLi st is NOT atomic.

struct OTLi nk
{

I

struct OTLI FO

{
| voi d* f Head;

I
voi d OTLI FCEnqueue(OTLI FO* 1ist, OTLi nk* toAdd)

voi d* f Next;

OTLi nk* OTLI FODequeue(OTLI FO* 1i st)
OTLi nk* OTLI FOSt eal Li st (OTLI FO* |ist)
OTLi nk* OTRever seLi st (OTLi nk* firstlnList)

The last set of services is for enqueueing and dequeueing from a LIFO list. It is used
internally in the STREAMS implementation, so we exported it so that you can use it if it
proves useful. If you look at the OTLIFO implementation, it assumes that the structures
being linked have their links pointing at the next link, and so on. Unfortunately,
STREAMS messages (nbl k_t structures) are not linked this way internally (the b_cont
field does not point to the b_cont field of the next message block, but instead points to
the actual message block itself). These two functions allow creating a LIFO list where
the head pointer of the list points to the actual object, but the "next" pointer in the object
is at some arbitrary offset in the object .

voi d* OTEnqueue(voi d** |ist, void* newli stHead, size_t offsetOf NextPtr);

voi d* OTDequeue(voi d** theList, size_t offsetO NextPtr)

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 35
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 36
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module and Driver Operation

Power services

For those devices which can change their power usage, the following assumptions are
made:

1) The call to Val i dat eHar dwar e will set the device to either low power or
power off, as appropriate for the device. This is only applicable to drivers
using the Native driver architecture.

2) ThecalltolnitStreamvbdul e will set the device to the power level
appropriate to normal operations.

3) Thecall to Ter mi nat eSt r eamvbdul e will set the device to either low
power or power off, as appropriate for the device.

In addition, devices which can change their power usage should support the
| _OTSet Power Level IOCTL message.

The following describes the four-byte selectors that can be passed in the IOCTL
message, and what the return value should be in the IOCTL ack message:

'psup’ Return a value of 1 if the card supports power control, 0 if it does not.

'ptog’ Return a value of 1 if the card supports switch between high and low
power after initialization, 0 if it does not.

'psta’ Return a value of 1 if the card is in high power mode

'Pmx5’ Returns the card's maximum power consumption in microwatts from the

5 Volt supply while in high-power mode

'Pmn5’ Returns the cards maximum power consumption in microwatts from the 5
Volt supply while in low power mode.

'Ppmx3’ Returns the card's maximum power consumption in microwatts from the
3.3 Volt supply while in high-power mode

'pmn3' Returns the cards maximum power consumption in microwatts from the
3.3 Volt supply while in low power mode.

'splo’ Set the card into low power mode. Return a value of 0 if completed
successfully, an OSStatus code if not.

'sphi' Set the card into high power mode. Return a value of 0 if completed
successfully, an OSStatus code if not.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 37
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module and Driver Operation

Open and Close support Code

Open Transport provides functions for performing several of the common actions
required by essentially all module open and close procedures.

These routines rely on a global variable declared by the module which serves as the
head of the list of all module instances. The typical C declaration is:

static char* gMdul eLi st Head;

The address of this variable is an argument passed to the various routines. The routines
assume this variable is NULL before the first call to m _open_comm that this list is
manipulated only by the module declaring the list head, and only by the functions
described in this section.

mi_close_comm

This function must be used in a module's close procedure if m _open_commwas used in
the open procedure. It frees the structures allocated by mi _open_conmmand removes
the current instance from the linked list of the module's instances.

int m_close_comr{char** |ist_head, queue_t* q);

list_head Address of the global variable that is the module instance list head
passed to m _open_comm

q The queue argument passed to the close procedure, i.e., this
module instances' read-side queue.

This function always returns 0.

Notes:
1) Each m _open_comm needs a matching m _cl ose_conm(or
m _cl ose_detached). Using one without the other has
unpredictable results.
2) If this was the last instance of this module, list_head will be NULL
after m _cl ose_conmreturns.
Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 38

Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module and Driver Operation

mi_close_detached and mi_detach

These functions permit a module to preserve its instance data structure after the
associated queue has been closed (deallocated). Typically, the module is a protocol
module which must complete an orderly termination of a remote connection, even
though the stream it's in is about to be closed.

voi d m _detach(queue_t* g, char* ptr)
voi d ni _cl ose_det ached(char** |ist_head, char* ptr)

list_head Address of the global variable that is the module instance list head
passed to m _open_comm

ptr Pointer to the instance data (g_ptr field) that needs to be kept after
the queue is closed.

q The queue argument passed to the close procedure, i.e., this
module instance's read-side queue.

Notes:

1) m _det ach is called from a module to disassociate the instance
data from the queue and to remove the module from the global list
of open modules. This is normally done from the module close
procedure.

2) m _cl ose_det ached is called to release the instance data and
perform other internal cleanup. Note that m _cl ose_det ached
must be called; it is not sufficient simply to call f r eeb to release
the instance data.

3) Your Ter m nat eSt r eamvbdul e entry point will not be called until
all detached modules have had m _cl ose_det ached called.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 39
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module and Driver Operation
mi_open_comm

This function performs a number of common initialization actions which are part of
most module open procedures.

int m_open_comm{char** |ist_head, size_t size, queue_t* g, dev_t* devp, int flag,
int sflag, cred_t* credp);

list_head Address of the global variable that is the module instance list head.
This variable must be initialized to NULL at compile or load time,
and then never changed directly, only by passing it as an argument
to mi_open_comm functions.

size The number of bytes to allocate for the queue's instance data

q The queue argument passed to the open procedure, i.e., this
module instance's read-side queue.

devp Pointer to the device number. For clone opens, the device number
is returned; for non-clone opens, the device is passed in. This value
was passed to you in your open procedure.

flag Flag from the open system call. This flag is passed to you in your
open procedure.

sflag 0 for a normal device open; CLONEOPEN for a clone open of a
device, MODOPEN for a module open. This flag is passed to you
in your open procedure.

credp Pointer to the credentials structure for the process issuing the open.
This parameter is passed to you in your open procedure. The credp
pointer is not currently used in Open Transport, but it may be at
some time. This parameter describes the privileges of the client that
is opening the stream. If you just pass the value to m _open_conmm
the right things will happen even if Open Transport starts using the
parameter in the future.

This function returns 0 on success. It returns ENXIO on failure.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 40
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module and Driver Operation
Notes:

1) The last five arguments are the same as the arguments to the open
procedure itself.

2) nm _open_conmassumes that list_head is NULL if this is the first
open instance of this module.

3) n _open_conmassigns a minor device number to the new stream.
if sflag is 0, the minor number specified by the *devp argument is
used. Otherwise, for MODOPEN and CLONEOPEN, a unique
minor number >= 10 is assigned (Device numbers 0 through 9 are
reserved for the module writer as special access codes).

If a given minor number is requested, and another stream already
has it open, then an ENXIO error will be returned.

4) The instance data is allocated to be size bytes (plus an amount for
internal structures. Each queue's g_ptr field is set to point to this
same structure; the internal fields are "hidden" from the module,
being located at negative offsets from gq- >q_ptr.

5) If a module requires separate instance data for the read an write
gueues, it must do this indirectly by allocating its own instance
data, and storing a pointer to each in the shared instance data.

6) A module cannot simply call freeb or OTFr eeMemon the instance
data created by m _open_comm m _cl ose_commor
m _cl ose_det ached must be used to free the instance data and
remove the queue from the list of module instances.

7) The device number of the stream is stored into *devp. For
MODOPEN, the original value of *devp is ignored and left
unchanged.

mi_next_ptr
This function is used to traverse the linked list of open module instances.
char* m _next_ptr(char* ptr)

ptr Pointer to the instance data (q_pt r) field for which the "next"
instance is desired.

This function returns a pointer to the instance data of the next module instance in the
linked list. It returns NULL if ptr is from the last instance in the list.

If the instance data is of type xx_t, the global list head variable is xx_list_head, and xxp
is of type xx_t*, then list traversal using this function takes the form:

for (xxp = (xx_t*)xx_list_head; xxp !'= NULL; xxp = (xx_t*)m _next_ptr((char*)xxp))

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 41
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module and Driver Operation

mi_open_detached

This function creates an instance data structure and chains it into the list of module
instances, without requiring an existing stream or module instance (queue) with which
to associate the instance data.

It is normally called by modules which need to access a module's instance data before
an actual stream has been created. Later, when the module's open routine is called, this
floating instance can be used as the new queue's instance data (m _open_conmwould
not be called in this case; the module's open routine would need to locate the floating
instance using its own mechanisms).

char* nm _open_det ached(char** |ist_head, size_t size, dev_t* devp)

This function returns a pointer to the newly created module instance data, or NULL if
memory is not available.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 42
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module and Driver Operation

mi_bufcall
This function provides a reliable wrapper for the standard STREAMS buf cal | function.
voi d ni_bufcal | (queue_t* q, size_t size, int pri)
q The queue to enable when memory is available
size Number of bytes needed (as passed to the failed allocb call)
pri (unused)
Notes:

1) This function may only be used when m _open_comm and
m _cl ose_conmare being used in the module open and close
procedures.

2) m _bufcal |l fixes two problems that exist with the standard
buf cal | function:

1) bufcal I has no provision to ensure that the stream which
makes the call has not closed. If the bufcall callback function is
genabl e, which is often the case, the resulting callback will
attempt to reference a nonexistent queue. m _buf cal | ensures
that the queue is still valid before performing the callback to
genabl e.

2) The buf cal | call itself may fail because of lack of resources.
When m _buf cal | detects such a failure, it sets a timer and tries
again when the timer fires. This process is repeated until the
buf cal | succeeds.

3) m _buf cal |l uses the module instance list maintained by
m _open_conmand nmi _cl ose_commto determine if the stream is
still open before attempting the callback. The standard buf cal |
function is used to schedule the callback; the ultimate callback
function is always genabl e on the queue passed to m _buf cal | .
The module writer is responsible for setting appropriate flags in the
gueue's instance data, so that the service routine will be able to
determine that it has been called as part of a bufcall callback, if
necessary.

Module and Driver Operation

IOCTL Support functions

The mi_copy facility is a collection of functions which simplifies ioctl processing. These
functions arose because of the need to process both I_STR and TRANSPARENT ioctl
forms of the same command. These function permit both type of ioctl to be processed
with the same logic. In this section, we focus on how the mi_copy facility is used.

To use the mi_copy facility, a module's write-side put procedure calls mi_copyin in
response to an M_IOCTL message. mi_copyin will then perform the necessary
processing depending upon the type of the ioctl. As a result of this processing,
regardless of the original ioctl type, an M_IOCDATA message will be passed to the
module's write-side put procedure.

When an M_IOCDATA message arrives in the write-side put procedure, the module
must call mi_copy_state to determine which message is arriving. mi_copy_state returns
a value which may be used in a switch statement whose case labels are defined by the
macro MI_COPY_CASE. The sample below shows a simplified example from a typical
module put procedure:

nbl k_t* npl;

swi tch (np->b_dat ap->db_type) {
case M DATA

case MICCTL:
/* Set copyin_size = 1st buffer size per ioc_cnmd */
m _copyi n(q, np, NULL, copyin_size);
return 0;
case M| CCDATA:
switch (m _copy_state(qg, np, &mpl)) {
case -1:
return O;
case M_QCPY_CASE(M _COCPY_IN, 1):
/'l process copied-in data in npl
np2 = m _copyout _al loc(q, np, uaddr, ubuflen);

/1 fill innp2 with data to copy out to uaddr
n _copyout (g, np); /1 npis correct here
return O;

case M _QOCPY_CASE(M _CCPY_QJT, 1):
m _copyout (g, np); /1 Copy out the netbuf

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 43
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

return O;
case M_OCPY_CASE(M _QCPY QUT, 2):
m _copy_done(q, np, 0); /1 Al done
return O;
}
Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 44

Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module and Driver Operation

Each M_IOCDATA message has assciated with it a "direction” and a state. The state isa
simple count of the number of M_IOCDATA messages already processed in the
direction indicated ("in" or "out"). For example, MI_COPY_CASE(MI_COPY_IN, 1)
corrseponds to the first message being copied in. If this is an I_STR ioctl, this is the data
buffer from the original M_IOCTL; If a TRANSPARENT ioctl, this is the data from an
M_COPYIN request. The module needn't care (and can't really tell at this point) which
type of ioctl was issued. Again referring to the previous example, it knows that after
calling mi_copy_state, the message pointed at by mp is the M_IOCTL being processed,
and mpl is the data buffer.

In a more complex case, there may be multiple buffers to copy in. This is done by
calling mi_copyin and adding additional MI_COPY_IN cases to the mi_copy_state
switch.

For each buffer to be copied out, mi_copyout_alloc is called to allocate the buffer before
calling mi_copyout to copy contents of the buffer. If more than one copy out operation
is needed, mi_copy_state and MI_COPY_CASE are used to control what is copied. The
example shows two buffers being copied out: a netbuf structure and the buffer it points
to.

Additional details are provided in the prototype descriptions which follow.
mi_copyin
This function is called to copy data from a user buffer into the kernel.

voi d m _copyi n(queue_t* q, nblk_t* np, char* uaddr, size_t len);

q The queue argument to the current write-side put procedure from
which mi_copyin is being called.

mp The M_IOCTL or M_IOCDATA message being processed. This
message must not be modified by the module except by calling
mi_copy routines.

uaddr The user-space buffer address from which data will be copied. This
argument must be NULL when mi_copyin is called for the original
M_IOCTL message; mi_copyin determines the buffer address from
the M_IOCTL message. For subsequent calls for M_IOCDATA
messages, this address must be extracted from data structures
being passed in by the ioctl itself, e.g., buffer addresses from a
netbuf structure.

len The number of bytes to copy-in

This function may be called multiple times to copy-in multiple user buffers. mp is
always the message passed to the put procedure.

Module and Driver Operation

mi_copyout

This function is called to copy data to a user buffer. Data to be copied out must be
stored in message blocks allocated by mi_copyout_alloc.

voi d m _copyout (queue_t* g, nblk_t* np);

q The queue argument to the current write-side put procedure from
which mi_copyout is being called.

mp The M_IOCTL or M_IOCDATA message being processed. This
message must not be modified by the module except by calling
mi_copy routines.

mi_copyout_alloc must be used to allocate the message block into which the data to be
copied-out will be placed. Note, however, that the message pointer returned from
mi_copyout_alloc is not passed as an argument.

mi_copyout_alloc

This function allocates and returns a pointer to a buffer to be copied out by mi_copyout.
nbl k_t* m _copyout_al | oc(queue_t* g, nblk_t* np, char* uaddr, size_t len);

q The queue argument to the current write-side put procedure from
which mi_copyout_alloc is being called.

mp The M_IOCTL or M_IOCDATA message being processed. This
message must not be modified by the module except by calling
mi_copy rou;tines.

uaddr The user-space buffer address to which data will be copied.
len The number of bytes to copy-out.

The return value is a pointer to a message block of size len, into which the caller can
place whatever data is to e copied out. NULL is returned if memory cannot be
allocated.

Notes:

1) If multiple copy-out operations and buffers are required, they must
be allocated in order from last out to first out. That is, the last
buffer allocated will be the first copied out.

2) You may allocate all copy out buffers at one time, or you may
alternate mi_copyout and mi_copyout_alloc calls

3) Note that mp is the message pointer passed to a subsequent
mi_copyout function call, but the caller puts the data to be copied
out into mpl. Internally, mp points to the first message block in a
chain of mi_copyout_alloc'd message blocks.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 45
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 46
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module and Driver Operation

4) Do not free or otherwise manipulate the mblk fields of the message
returned by mi_copyout_alloc.

MI_COPY_CASE

This macro returns a constant which can be used as a case label for a switch statement
that switches on the return value of mi_copy_state.

#define M _QOPY_CASE(dir, count)

dir Direction of current operation. Sepcified as one of the two symbolic
constants MI_COPY_IN or MI_COPY_OUT.

count The number of copy operation s already completed, or
equivalently, the number of the current M_IOCDATA message
being processed.

mi_copy_done

This function is called to complete an ioctl which copies nothing out, or as the last case
after multiple copy outs.

voi d m _copy_done(queue_t* g, nblk_t* np, int err);

q The queue argument to the current write-side put procedure from
which mi_copy_done is being called

mp The M_IOCTL or M_IOCDATA message being processed. This
message must not be modified by the module except by calling
mi_copy routines.

err The ioctl return value to set into the ioc_error field of the iocblk
structure
Notes:
1) If necessary, call m _copy_done to complete the ioctl. This step is

only required after the last copy-out of a transparent ioctl or for
either type of ioctl when nothing is being copied out to the caller

2) If the ioctl neither copies in nor out any data, only m _copy_done
and optionally m _copy_set _rval are required.

3) Your code must provide for calling m _copy_done for any
M_IOCDATA message that it doesn't expect.

Module and Driver Operation

mi_copy_set_rval

If the ioctl has a non-zero return value, that return value must be set by this function
before the final call to mi_copyout or mi_copy_done. This function must be called
before the last mi_copyout or mi_copy_done call. If the ioctl neither copies in nor out
any data, only mi_copy_done and optionally mi_copy_set_rval are required.

void m _copy_set_rval (nblk_t* np, int rval);
mi_copy_state

This function returns the current internal state and optionally the next message block to
process. The values match those returned by the MI_COPY_CASE macro

int m_copy_state(queue_t* g, nblk_t* np, nblk_t* npp);

q The queue argument to the current write-side put procedure from
which mi_copyxxx is being called

mp The M_IOCTL message being processed

mpp Pointer to mblk_t pointer, into which the pointer to the just-copied

data is placed.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 47
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 48
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module and Driver Operation

TPI Support functions

The functions in this section isolate the construction of TPl messages. The functions
handle the details of allocating and formatting messages.

Arguments to all the functions follow the same pattern. "ACK" functions accept a
pointer to the TPl message being ACK's. Message which permit data to be appended
through the b_cont field are passed a trailer_mp argument which is the message
block(s) to append. Other arguments correspond to field in the TPl message being
created. The following table summarizes:

mp Functions which return an acknowledgement, some form of
T_xxx_ACK message, are passed the message to be ACK'd in this
argument.

IMPORTANT: The message pointed at by this argument is either
reused or freed by the function. Therefore it must not be referenced
by the calling code after the function returns.

trailer_mp If the TPl message supports optional data in attached M_DATA
message blocks, the optional data is passed to the function in this
argument.

Other All other arguments are values to be copied into the corresponding
field of the TPl message.

Arguments not following this pattern are described in the individual function
descriptions which follow. On success each function returns a pointer to the completed
message; on memory allocation failure, it returns NULL.

mi_tpi_ack_alloc
nbl k_t* m _tpi_ack_alloc(nbl k_t* np, size_t size, long type)

size Length of ACK message to allocate, typically specified as
sizeof(struct T_xxx_ack).

type The PRIM_type of the ACK message being allocated.
This function fills in only the primitive type; the caller must fill in all other fields.
mi_tpi_err_ack_alloc
nbl k_t* mi_tpi_err_ack_alloc(nblk_t* np, int tlierr, int unixerr)
This function creates a T_ERROR_ACK for the TPl message contained in mp.
mi_tpi_ok_ack_alloc
bl k_t* mi_tpi_ok_ack_all oc(nbl k_t* np)

This function creates a T_OK_ACK for the TPI messaged contained in mp.

Module and Driver Operation

Other TPI prototypes
These are the prototypes for functions whose workings should be obvious:

nbl k_t* m _tpi_conn_con(nbl k_t* trailer_np, char* src, size_t srcLength, char* opt,
size_t optlLength);

nbl k_t* m _tpi_conn_ind(nbl k_t* trailer_np, char* src, size_t srcLength, char* opt,
size_t optLength, int seqgnunj;

nbl k_t* m _tpi _conn_req(nbl k_t* trailer_np, char* dest, size_t destLength, char* opt,
si ze_t optLength);

nbl k_t* m _tpi_discon_ind(nbl k_t* trailer_np, int reason, int segnunj;
nbl k_t* m _tpi_discon_req(nblk_t* trailer_np, int seqnun);

nbl k_t* m _tpi_info_req(void);

nbl k_t* m _tpi_ordrel _ind(void);

nbl k_t* m _tpi_ordrel _req(void);

nbl k_t* m _tpi _uderror_ind(char* dest, size_t destlLength, char* opt, size_t optLength,
int error)

nbl k_t* m _tpi_unitdata_ind(nbl k_t* trailer_np, char* src, size_t srclLength,
char* opt, size_t optlLength);

nbl k_t* m _tpi_unitdata_req(nbl k_t* trailer_np, char* src, size_t srclLength,
char* opt, size_t optLength);

For these next four functions, the t ype parameter is reserved and should be set to 0.
nbl k_t* m _tpi _data_ind(nblk_t* trailer_np, int flags, int type);
nbl k_t* m _tpi _data_req(nblk_t* trailer_np, int flags, int type);
nbl k_t* m _tpi _exdata_ind(nbl k_t* trailer_np, int flags, int type);

nbl k_t* m _tpi_exdata req(nblk_t* trailer_np, int flags, int type);

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 49
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 50
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module and Driver Operation

Synchronization support

The mps_become_writer function is provided to support modules which have
SQLVL_QUEUE or SQLVL_QUEUEPAIR set. At some time during operation, it may
become necessary to access a resource that is shared between all instances of the
module. This access must be coordinated so that an instance updating the resource
does not collide with an instance reading the resource (ARP tables are one such
example). In order to support this, Open Transport supplied the nps_beconme_wri ter
function:

typedef void (*OTWiterProcPtr)(queue_t*, nblk_t*);

voi d nps_becone_witer(queue_t* q, nblk_t* np, OTWiterProcPtr proc);

This function will lock out all instances of the module owning the queue "g" (and any
"writer buddies” specified in the install_info), and when that is done, call back the
function specified by the OTWriterProcPtr. For the duration of the call, the function has
sole access to the variables of the module.

IOCTL Messages

This section describes some IOCTL message that Open Transport has defined that you
might want to consider supporting.

These first two IOCTLs are part of Open Transport's arbitration mechanism for ports
that cannot demultiplex incoming data (like serial ports). In order to support these
IOCTLs, your driver must be written with a few things in mind:

1) It should allow any client to open a STREAMS, whether or not
there is already a client using the driver.

2) It should classify STREAMS in one of 3 states - nonused, listening,
or connected. The "connected" state implies that a connection is in
progress and data is actively being transferred, while "listening"
implies that the streamis waiting for an incoming connection
request. Only one stream may be in a state other than nonused.

Module and Driver Operation

The following IOCTL message complete the support for the arbitration mechanism for
non-shareable ports:

I_OTYieldPort This IOCTL is only issued by Open Transport. It passes a 4-
byte value that is either a 0 or a 1. A "1" tells your driver that
it should place the current "listening" client in a backup
position (if there is one), and accept the next Bind or Connect
as the new active client. The driver should return an ENXIO
error if the current client is in the "connected" state, and an
ENOENT error if there is no current client. Otherwise, a 0
value should be returned. A T_event _i nd message should
be sent to the current "listening" client with an EVENT_code
of kOTPr ovi der | sDi sconnect edand an EVENT_cookie of
NULL (see tihdr.h for a definition of the T_event_ind
message). When the new active client unbinds (if glen <> 0)
or disconnects (if glen == 0), the previous listening client
should be restored as the listener and a T_event _i nd
message should be sent to the client with an EVENT_code of
kOTPr ovi der | sReconnect ed and an EVENT_cooki e of
NULL. This IOCTL is required to be supported by those
drivers that have set the kOTPor t CanYi el d bit in the
install _flags. Itshould be supported by all devices
which cannot demultiplex incoming data to multiple clients
(like serial ports).

A "0" value indicates that the yield was canceled, and you
should restore the previous client to ownership of the port.

In any case, after receiving a yield request, your driver
should set about a 10 second timer. If no one else grabs
ownership of the port in that time, ownership should
automatically revert to the previous client. Remember, you
should always send the kOTProvi der| sReconnect ed
event indication whenever you revert back to the previous
client.

This IOCTL should be accepted on any queue on the port,
since Open Transport will use a provider supplied by the
client that is requesting the yield.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 51
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 52
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module and Driver Operation

The next set of IOCTL messages can be supported by any stream module or driver if it
make's sense to support it:

I_OTGetMiscellaneousEvent

This IOCTL tells a driver or protocol that the client is interested in
any miscellaneous events (using the T_event_ind message defined
by Open Transport) that the protocol or driver wishes to send up.
AppleTalk uses this IOCTL and the T_event_ind messages to
inform clients when routers go up and down, as well as other kind
of incidental messages. The value accompanying the IOCTL data
should be a 4-byte value that is 0, 1, or -1. Any other value is an
error. A value of 0 requests that miscellaneous events no longer be
delivered. A value of 1 requests that miscellaneous events be
delivered. A value of -1 does not change the mode, and is just used
where the client wants to read the current state.. The return value
of the IOCTL should be a 0 or a 1 reflecting the current or new state
of miscellaneous event delivery. If you don't support the IOCTL,
pass it on or NAK it, as appropriate.

I_OTSetFramingType

This IOCTL is used by registered port drivers that have specified a
set of capability bits in the fCapabilities field of the OTPortRecord.
The only time this IOCTL is needed is if the information in a
DL_INFO_REQ or T_INFO_REQ message is different depending on
what capability (most often used to specify a framing type) is used.
For instance, Ethernet can return a dl _nac_t ype of DL_CSMACD or
DL_ETHER depending on the type of framing chosen. Since the
TCP/IP stack determines whether it should use straight ethernet
headers or 802.2 headers based on the dl_mac_type returned from a
DL_INFO_REQ, the code that creates a TCP/IP stack opens the
Ethernet driver and sends an |I_OTSetFramingType IOCTL to tell
the Ethernet driver which value to put in the dI_mac_type field (it
specifies the bit kOTFraming8022 to get DL_CSMACD, and
kOTFramingEthernet to get DL_ETHER. The return value of this
IOCTL is the current "capability” in effect, (or 0, if no "capability" is
in effect.). See the Open Tpt Ethernet Dev. Note for more
information on this IOCTL and it's use.

The value accompanying the IOCTL data should be a 4-byte value
that is either a single bit, or a -1. -1 is used to read the current
"capability" that is in effect, and any other single-bit value is a
request to set the corresponding "capability".

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 53
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module and Driver Operation

I_OTSetRawMode

This IOCTL tells a driver or protocol not to strip headers, but to
supply all of the data to the next layer up. The value accompanying
the IOCTL data should be a 4-byte value that is 0, 1, or -1. Any
other value is an error. A value of 0 requests that "raw" mode be
turned off. A value of 1 requests that "raw" mode be turned on. A
value of -1 does not change the mode, and is just used where the
client wants to read the value. The return value of the IOCTL
should be a 0 or a 1 reflecting the current or new state of "raw"
mode. If you don't support the IOCTL, pass it on or NAK it, as
appropriate.

I_OTNotifyAllClients

This IOCTL requests a module or driver to send a T_event_ind
message to all of it's clients. This IOCTL is sent as an I_STR
IOCTL, with 12 bytes of data corresponding to the structure:

struct ONOxI Notifylnfo

{
Orevent Code f Code;
voi d* f Cooki e;
U nt 32 fNoti fyType;

enum

kOTNot i fyAl | Modul es = 0, kOTNoti fyl nt er est edvodul es = 1,
kOTNot i f yCont r ol Modul es = 2
I

The fNotifyType field tells the module which group of modules
should be notified.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 54
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Performance Hints

Appendix A- Performance hints

1

2)

3)
4)

5)

6)

7)

8)

9)

Don't keep resetting timers for high-frequency events. Let your timer
free-run and modify your timeout algorithms accordingly.

Support and use FastPath if at all possible to avoid the allocation of
M_PROTOs.

Keep your receive path and transmit path as short as possible.

Handle your own flow control. This is easily done by always handling
data in a "put” routine, setting your queues high and low water marks to
31 and 16 respectively. To flow control, do a put g of a 32-byte message
onto your queue. To lift flow control, do a r mvq on your flow control
message.

If you are a TPl module or driver, support the XTIl _SNDBUF,
XTI _RCVBUF, XTI _SNDLOWAT, and XTI _RCVLOWAT options. Use the
XTI _SNDBUF and XTI _SNDLOWAT to set the stream-head high and low
water marks, as well as to regulate your own send window. Use the
XT1 _RCVBUF option to set your lower queue's high water mark and the
XTI _RCVLOWAT option to set your lower queue's low water mark.

For drivers that can selectively disable their own interrupts, spend as
long as you can in your interrupt service routine. This includes allocating
mblks for messages, finding the lower queues to put them on, and then
doing a put g on the correct lower queues. Then check your hardware or
transmit queue again. Maybe more message have arrived or DMA
buffers have freed up, allowing you to do more processing without
taking another interrupt.

Use large packet sizes, if possible. The larger the packet size, the higher
the throughput. The time it takes to transmit a single packet is all the
time there is to go up and down the stack once if you want to saturate the
link.

10 MB - 600 byte packet = 480 uSec
100MB - 600 byte packet = 48 uSec
100MB - 1500 byte packet = 120 pSec
100MB - 8192 byte packet = 655 pSec

When writing client applications and test programs, for best
performance, modify the default buffer sizes. The defaults are set for a
compromise between speed and memory usage.

Avoid mixed-mode switches like the plague in your send and receive
paths. Each mixed-mode switch costs 25-40 pSec.

10)

11)

12)

13)

14)

15)

Performance Hints

Don't use BCOPY/ bcopy for small copies that are of known size. Do the
copy inline.

Code any operations that have to be done on every byte in the data in
assembly language.

If you run out of memory, and aren't in a position to "toss" the data, be
sure to disable the appropriate queue until memory becomes available.
You don't want to keep making the situation worse. Better yet, use the
mi_open_comm and mi_bufcall facility to handle it all automatically for
you.

If you have your own DMA buffers for incoming data, and aren't
restricted by a ring-type architecture where you can't use free buffers that
aren't contiguous in the ring, consider using esbal | oc for about 1/2
your DMA buffers. If the client is a high-speed client, you may get them
back before you have to begin copying mblks. This also helps reduce
footprint, by avoiding the duplication of data.

As a client, use AckSends and no-copy receives to read the data off of the
streamhead. Of course, on no-copy receives it is crucial that you do
something with the data quickly and release the buffer if you want
maximum throughput.

Open Transport needs to define a way to appropriately lock down mblks
for DMA. Possibilities: 1) A new "allocbDMA" call that keeps a separate
set of mblks that are already locked down (downside is footprint); 2) A
LockMblk and UnlockMblk set of APIs; 3) An Open Transport memory
allocator for DMA-able memory that can be called at interrupt time,
making it feasible to do esballocs on the data. 4) Any suggestions?

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 55

Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 56

Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Random Notes/Warnings

Appendix B - Random Notes/Warnings

1

2)

3)

4)

The SVR4.2 STREAMS guide states that modules may sleep in their Open
and d ose routines (for the MacOS, this means making synchronous 170
calls). In the Open Transport version of STREAMS, this is not true due to
the nature of the Macintosh Operating System. Open and Close routines
may not make synchronous calls. Use the | ni t St r eamvbdul e and
Ter mi nat eSt r eamvbdul eare always called at System Task time. You
need to structure your module or driver so that any synchronous
operations or calls to the Macintosh toolbox are done in these routines.
Remember that for port drivers, these entry points will be called for any
instance of your driver that is being instantiated or destroyed, whether or
not your shared library is being unloaded.

Drivers for hardware that can be ejected or removed (e.g. PCMCIA cards),
should call

OTChangePor t St at e(nyPor t Ref, kOTPor t D sabl ed, kOTPort Ej ect ed)

so that Open Transport can close down all of the providers that are using
the port, and notify clients that the port has gone away. If the card is
reinserted, call

OTChangePor t St at e(nyPort Ref , kOTPor t Enabl ed, kOTNoEr r or)
to notify all clients that the port is back on-line.

Drivers that sit atop connection-oriented links (e.g. PPP sitting atop a
modem device), should also call OTChangePort St at e if they receive a
T_DISCONNECT from the modem device. In the O ose() routine of their
driver, or in response to a final Unbi nd() call, they should reenable
themselves. This allows the upper-level protocols to know that the link
has died,. Steps can then be taking to unbind or close all providers using
the link, and then bringing the link back up, presumably causing an
attempt to reestablish the connect(e.g. redial the phone).

Drivers that use OTChangePor t St at e still need to protect themselves
from being used. This can be done by using the M_ERROR message to send
an error up to the streamhead, or it can be done by local state and dealing
with the fact that the link below has disconnected on a message-by-
message basis. (If you use M_ERROR, remember to send another
M_ERROR message to clear the error when you are again open for
business!)

Open Tpt Driver Note, Rev 1.1b14 01/18/96 page 57

Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Index

arbitration 51

ASLM 6

bufcall 43

CFM 6

Close 57

DLPI 5

DriverDescription 27
GetOTlInstallinfo 7

Index 58

InitStreamModule 11, 37, 57
install_flags 9

install_info 7
|_OTGetMiscellaneousEvent 53
I_OTNotifyAlIClients 54
|_OTSetFramingType 53
I_OTSetPowerLevel 37
|_OTSetRawMode 54
I_OTYieldPort 52
kOTPortCanYield 52
kOTPortScannerinterfacelD 25, 27
kOTProviderlsDisconnected 52
kOTProviderlsReconnected 52
kOTPseudoPortScannerinterfacelD 25, 27
memory allocations 12
mi_bufcall 43
mi_close_comm 38
mi_close_detached 39
mi_copyin 45

mi_copyout 46
mi_copyout_alloc 46
MI_COPY_CASE 47
mi_copy_done 47
mi_copy_set_rval 48
mi_copy_state 48
mi_detach 39

mi_next_ptr 41
mi_open_comm 40
mi_open_detached 42
mi_timer 34

mi_timer_alloc 34
mi_timer_cancel 34
mi_timer_free 34
mi_timer_valid 34
mi_tpi_ack_alloc 49
mi_tpi_conn_con 50
mi_tpi_conn_ind 50
mi_tpi_conn_req 50
mi_tpi_data_ind 50
mi_tpi_data_req 50
mi_tpi_discon_ind 50
mi_tpi_discon_req 50

mi_tpi_err_ack_alloc 49
mi_tpi_exdata_ind 50
mi_tpi_exdata_req 50
mi_tpi_info_req 50
mi_tpi_ok_ack_alloc 49
mi_tpi_ordrel_ind 50
mi_tpi_ordrel_req 50
mi_tpi_uderror_ind 50
mi_tpi_unitdata_ind 50
mi_tpi_unitdata_req 50
M_DATAS5

M_PCPROTO 5

M_PCSIG 34

M_PROTO 5

Open 57

OTAllocPortMem 20
OTAtomicAdd16 35
OTAtomicAdd32 35
OTAtomicAdd8 35
OTAtomicClearBit 35
OTAtomicSetBit 35
OTAtomicTestBit 35
OTChangePortState 57
OTCompareAndSwap16 35
OTCompareAndSwap32 35
OTCompareAndSwap8 35
OTCompareAndSwapPtr 35
OTCreateDeferredTask 33
OTDequeue 36
OTDestroyDeferredTask 33
OTEnqueue 36
OTEnterInterrupt 32
OTFindPortByDev 24
OTFreePortMem 20
OTLeavelnterrupt 32
OTLIFO 36
OTLIFODequeue 36
OTLIFOENqueue 36
OTLIFOStealList 36
OTLink 36

OTPortRecord 19
OTRegisterPort 19, 26
OTReverseList 36
OTScanPorts 25, 26
OTScheduleDeferredTask 33
PCMCIA 57

port scanners 25

sleep 57

streamtab 12
TerminateStreamModule 11, 37, 57
TPI5

TPortRecord 24
ValidateHardware 37

Index

Open Tpt Driver Note, Rev 1.1b14

01718796

Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

page 58

