
Copyright © 1995 Apple Computer Inc. Apple Need To Know Confidential
Draft

Device Manager Family
Design Document

Macintosh System Software
Apple Computer, Inc.

Draft Device Manager Family Design

Apple Need To Know Confidential i i

 TABLE OF CONTENTS

1. RELATED DOCUMENTS . 1 1

2. SUMMARY . 2 2

3. VISION . 3 3

4 . D E S I G N G O A L S . 4 4

5 . O V E R V I E W . 5 5

6 . DEVICE MANAGER COMPATIBILITY. 7 7

6.1. THE SYSTEM-7 DEVICE MANAGER ... 7 7
6.1.1. The System-7 Device Manager API... 7 7
6.1.2. The System-7 Device Manager Data Structures.. 8 8

6.2. COMPATIBILITY IN THE BLUE WORLD .. 11 11
6.2.1. “Thunking” the Correct Data Context.. 12 12
6.2.2. Handling Synchronous Wait.. 14 14
6.2.3. Compatibility Assertions.. 15 15

6.3. COMPATIBILITY ISSUES WITH “HIDDEN” POINTERS .. 15 15
6.4. IOCOMMANDISCOMPLETE AND THE DSL... 16 16
6.5. COHERENCY AND THE SYSTEM-7 UNIT TABLE... 18 18

6.5.1. System-7 ‘DRVR’ Unit Table Update Methods... 18 18
6.5.2. The ‘ndrv’ Driver Unit Table Updates.. 19 19
6.5.3. ‘ndrv’s Installed by Family Experts... 19 19
6.5.4. Unit Table Updates Using Alias Reference Numbers... 19 19
6.5.5. Request Flows.. 20 20

6.6. THE NATIVE DRIVER INTERFACE... 20 20
6.6.1. Generic Drivers Imports & Exports.. 20 20
6.6.2. Concurrent Drivers.. 21 21
6.6.3. Generic Driver Restrictions... 22 22
6.6.4. Installing a Native Device Driver.. 22 22

6.7. THE DRIVER LOADER LIBRARY ... 22 22
6.7.1. The Driver Loader Library API for the Device Manager... 23 23

6.8. PROVIDING ACCESS TO OTHER FAMILIES THROUGH THE SYSTEM-7 DEVICE MANAGER API......... 24 24
6.8.1. A Transitional Interface.. 25 25

7 . R E Q U E S T O R . 26 26

7. THE DEVICE MANAGER ACTIVATION MODEL . 27 27

7.1. ACTIVATION MODEL OVERVIEW .. 27 27
7.2. RELIABILITY, AVAILABILITY AND SERVICEABILITY (RAS)... 28 28
7.3. THE DEVICE MANAGER FAMILY API... 29 29
7.4. DEVICE MANAGER FLOWS... 29 29
7.5. PSEUDO-CODE IMPLEMENTATION ... 34 34

Draft Device Manager Family Design

Apple Need To Know Confidential 1 i

1. RELATED DOCUMENTS

1. Next Generation MacOS I/O Architecture, 3rd Draft (really), Holly Knight, Wayne
Meretsky, Alan Mimms, Carl Sutton

2. Inside Macintosh - Devices, Addison-Wesley, 1994
3. Inside Macintosh - Designing PCI Cards and Drivers for Power Macintosh Computers,

Interim Draft, February 10, Apple Computer, 1995
4. Copland Ngaio Device Manager, Alan Mimms, 03/23/95
5. NuKernel ERS, March 25, 1995, David Harrison, Bill Kinkaid, Jeff Robins, Tom

Saulpaugh

Device Manager Family Design Draft

 2 ii Apple Need To Know Confidential

2. SUMMARY

 This Document outlines the design proposal for the Device Manager for the Copland
release of the MacOS. It adheres to the architectural guidelines described by the Next
Generation MacOS I/O Architecture document.

 The orientation of this design has two facets, namely compatibility with the two
existing Device Manager implementations and the provision of a new implementation
which is in line with the Copland I/O architecture and provides an environment which
will service native drivers.

 The Copland Device Manager supports both a subset of existing ‘DRVR’s that adhere
to the compatibility assertions described in this document, and ‘ndrv’ drivers that
have been written according to the guidelines described in Designing PCI Cards and
Drivers for Power Macintosh Computers . The Copland Device Manager offers both a
migration path for existing device drivers and a home for device drivers that do not
have their own Copland I/O family.

Draft Device Manager Family Design

Apple Need To Know Confidential 3 i

3. VISION

 The goal of the Copland Device Manager is to provide some level of compatibility with
the existing device drivers, both the System 7 style ‘DRVR’s and the PCI Power
Macintosh native ‘ndrv’s, while providing a new Copland “family style”
environment within which native device drivers can be implemented in the Copland
world.

 The key aspect of this design is separation of function into layers that provide the
necessary level of support. Function that can be provided locally, is provided locally;
function that can be provided in user mode, is provided in user mode. The layers exist
in domains and kernel messages and queues are used to communicate between the
domains. The Device Manager APIs provide the interface between these domains. The
domain implementation is hidden from the Device Manager clients via the Device
Manager APIs.

 Most drivers that provide their services through the Device Manager API as
documented in the “Device Manager” chapter of Inside Macintosh: Devices (i.e.
‘DRVR’s) and that do not touch real hardware and that do not require that they be
operating in kernel mode are supported.1 Drivers written according to the rules for
drivers of family type ‘ndrv’ described in Designing PCI Cards and Drivers for
Power Macintosh Computers are supported in Copland as plug-ins to the Device
Manager family.

 The Copland Device Manager offers both a migration path and a home for device
drivers that do not have their own Copland I/O family.

1 ‘DRVR’s that do their own internal queueing and dispatching will be required to make some changes in
order to work within the Copland emulation environment. ‘DRVR’s that insert themselves into the page
fault path, disk drivers for example, will not work because they require kernel mode execution. See the
System-7 Device Manager section for further discussion of these restrictions.

Device Manager Family Design Draft

 4 ii Apple Need To Know Confidential

4. DESIGN GOALS

 The following list describes the design goals for the Device Manager:

1. Provide compatibility for pre-Copland device drivers written to the System 7 model
(Inside Macintosh - Devices) that do not “touch” real hardware and that observe the
other restrictictions described for DRVRs in a Copland environment2.

2. Provide compatibility for pre-Copland device drivers written to the Marconi model
(Inside Macintosh - Designing PCI Cards and Drivers for Power Macintosh
Computers).

3. Provide a design that will guarantee the correct data context for those ‘DRVR’ drivers
that allow the Device Manager to perform the request queuing and dispatching and
which make use of asynchronous callback routines.

4. Provide reasonable performance for a variety of I/O styles.
5. Provide a design that’s simple to implement using the Copland infrastructure to provide

its services.
6. Provide a scaleable design.
7. Provide a design that provides the best overall system performance and parallelism;

avoid the use of mechanisms that serialize the entire machine (e.g. secondary interrupts)
wherever possible.

8. Provide a Power PC native implementation for the Device Manager.
9. Isolate the “plug-in” from task knowledge.
10. Provide compatible3 Family Programming Interfaces (FPIs) and Plug-in Programming

Interfaces.
11. Provide the Reliability and Availability aspects of RAS4.

2 See the section on “Compatibility Assertions” later in this document.
3 APIs compatible with the current Device Manager APIs will be provided since the Device Manager is in
itself a compatibility mechanism that is expected to go away in subsequent releases of the OS.
4 Many of the Servicability functions for Copland are still being defined. These will be integrated when
available; e.g. the logging facility.

Draft Device Manager Family Design

Apple Need To Know Confidential 5 i

5. OVERVIEW

 The general structure of the Device Manager is shown below in Figure 8-1. It illustrates
that there are three distinct parts to the Device Manager itself, one that operates in user
mode in the Blue World and provides System 7 compatibility, another that provides the
interface to the Device Manager Family Server from user-mode programs, and third,
the Device Manager Family Server which operates in the kernel space.

Native Task

Maxwell
Device Manager

API

Native Task

Maxwell
Device Manager

API

Maxwell Device Manager
FPI Library

Device
Loader
Library

(DLL)

Kernel Mode/Space
User Mode/Space

Device Manager
Family Server

System 7
Device Manager

API

“Blue World” Task

Maxwell
Device Manager

API

• • •

Device Manager
Family

System 7 Compatible
Device Manager

Native Task

Maxwell
Device Manager

API

‘DRVR’

Plug-in Interface

Device
Loader
Library

(DLL)

‘ndrv’
Plug-in

‘ndrv’
Plug-in

‘ndrv’
Plug-in

Plugin Task Plugin TaskPlugin Task

Figure 8.1 General View Device Manager I/O Family

 Each of these provides a programming interface as does the Device Manager Family.
[The APIs have been seperated from the libraries in the picture in order to indicate that
the libraries provide functions in addition to the direct support of the API requests.] The
“Blue World” applications communicate to the upper half of the Device Manager using
the System 7 Device Manager API (i.e. that documented in Inside Macintosh: Device

Device Manager Family Design Draft

 6 ii Apple Need To Know Confidential

Manager). This component of the Device Manager operates in user mode and either
directly drives compatible System 7 ‘DRVR’s in the “Blue” space or talks to the Device
Manager Family Server using the Device Manager FPI Library calls. This compatibility
layer converts old function calls to new ones. There is a performance penalty to be
incurred using this path to a native driver.

 Native applications use the Device Manager FPI calls directly to communicate to the
Device Manager Family Server. The FPI calls result in kernel messages to the Device
Manager Family Server which operates in kernel space.

 The Device Loader Library (DLL) is used by the Device Manager and other Families to
locate, match, install and remove native drivers. There are currently a number of DLL
calls that refer to the Unit Table. These calls will be subsumed and implemented by the
Device Manager5. See the DLL section for more information.

 While the Device Manager has its own activation model and set of services, it is not
tuned to the needs of any one particular type of driver. Although it’s APIs may be more
restrictive than APIs designed specifically for some particular device, the Device
Manager offers both a migration path for drivers that have been converted to run native
on Copland but have not provided their own families, and a home to those devices that
do not require or cannot justify their own family implementation.

 The Device Manager family offers a compromise. As a result, the Device Manager
plug-ins are likely to be quite different from one another rather than having monolithic
characteristics like a video family might for example.

5 The entry points will still be exported by the DLL but the Device Manager will actually implement the
functions and the DLL will call it.

Draft Device Manager Family Design

Apple Need To Know Confidential 7 i

6. DEVICE MANAGER COMPATIBILITY

 The Device Manager provides services for generic drivers, that is, drivers written to the
specifications in Inside Macintosh: Devices (‘DRVR’s) with the restrictions discussed
below. Drivers written to the specifications in Designing PCI Cards and Drivers for
Power Macintosh Computers (‘ndrv’s) are also supported.

 The Device Manager provides three different external programming interfaces:

1. The System-7 Device Manager API.
2. The Device Manager Family Programming Interface (FPI).
3. The Device Manager Family Plugin Programming Interface.

 The System-7 Device Manager API is compatible with that defined in Inside Macintosh:
Devices in the Device Manager chapter. The Plugin Programming API is the API
described in Designing PCI Cards and Drivers for Power Macintosh Computers in the
Writing Native Drivers section. The Device Manager Family API is a new API used by
both the System-7 API and native applications to communicate with the Device
Manager Family Server. It is not a compatibility API.

6.1. THE SYSTEM-7 DEVICE MANAGER

 The System-7 Device Manager support is compatible with that defined in Inside
Macintosh: Devices in the Device Manager chapter. These “older” style operations are
only supported for 68k code running in emulation mode in the “Blue” world. The
following sections describe the externals of that interface which are supported by the
Copland Device Manager.

 This driver interface, (not the API), is only supported from within the “Blue” world
and only for device drivers of type ‘DRVR’ that are compatible. Such device drivers
are not plug-ins; they run in user mode outside the Copland I/O system and can exist
only within a world which supports full ToolBox and WaitNextEvent access (i.e.
the “Blue” world). Any drivers which require execution in kernel mode (because they
touch real hardware, are in the page-fault path, &etc) will not work in this environment
and will need to be converted to an ‘ndrv’ or other type of native driver. In addition,
‘DRVR’s which perform their own queuing and dispatching will need to provide their
own version of “thunk” support (described in a later section of this document).

 Examples of drivers that fit in the supported category include:

• RAM disks
• desk accessories
• print drivers
• the Open Transport backwardly compatible protocol modules

6 .1 .1 . THE S YSTEM-7 DEVICE MANAGER API

 The System-7 Device Manager API is shown in Table 9-1 below which lists the System
7 high-level, low-level and Driver routines that are supported. Both the “High Level”
and “Low Level” APIs will provide an access path to both System 7 style ‘DRVR’s
and native ‘ndrv’s.

Device Manager Family Design Draft

 8 ii Apple Need To Know Confidential

 High-Level Low Level Driver Routines

 OpenDriver PBOpen Open
 CloseDriver PBClose Close

 FSRead PBRead Prime

 FSWrite PBWrite Prime

 Control PBControl Control

 Status PBStatus Status

 KillIO PBKillIO Control

 Table 9-1 System-7 Device Manager I/O functions and Driver Routines

 The prototypes are documented in Inside Macintosh: Devices and have not changed:

 pascal OSErr OpenDriver (ConstStr255Param name, short *drvrRefNum);
 pascal OSErr CloseDriver (short refNum);
 pascal OSErr FSRead (short refNum, long *count, void *buffPtr);
 pascal OSErr FSWrite (short refNum, long *count,const void *buffPtr);
 pascal OSErr Control (short refNum, short csCode,
 const void *csParamPtr);
 pascal OSErr Status (short refNum,short csCode,void *csParamPtr);
 pascal OSErr KillIO (short refNum);

 pascal OSErr PBOpen (ParmBlkPtr paramBlock, Boolean async);
 pascal OSErr PBClose (ParmBlkPtr paramBlock,Boolean async);
 pascal OSErr PBRead(ParmBlkPtr paramBlock,Boolean async);
 pascal OSErr PBWrite(ParmBlkPtr paramBlock,Boolean async);
 pascal OSErr PBControl (ParmBlkPtr paramBlock, Boolean async);
 pascal OSErr PBStatus (ParmBlkPtr paramBlock, Boolean async);
 pascal OSErr PBKillIO (ParmBlkPtr paramBlock, Boolean async);

 pascal DCtlHandle GetDCtlEntry (short refNum);
 pascal OSErr DriverInstall (DRVRHeaderPtr drvrPtr, short refNum);
 pascal OSErr DriverInstallReserveMem (DRVRHeaderPtr drvrPtr,
 short refNum);
 pascal OSErr DriverRemove (short refNum);

 The DrvrInstall() call is no longer supported (it never worked correctly);
DrvrRemove has been renamed DriverRemove and will be changed to a
DriverRemove call via a macro.

6 .1 .2 . THE S YSTEM-7 DEVICE MANAGER DATA S TRUCTURES

 The Device Manager maintains a data structure called a device control entry (DCE) for
each open driver. Each open driver may be referred to by a single DCE or by many
DCEs. Amongst other information, the DCE contains a handle or pointer to the device
driver code and a pointer to the I/O queue. The AuxDCE supersedes the original
DCtlEntry data type and provides additional fields for the slot manager.

 typedef struct AuxDCE
 {

Draft Device Manager Family Design

Apple Need To Know Confidential 9 i

 Ptr dCtlDriver; // ptr/handle to driver
 short dCtlFlags; // flags: ability/state of driver
 QHdr dCtlQHdr; // I/O queue header
 long dCtlPosition; // current rd/write byte posn
 Handle dCtlStorage; // driver global data ptr (if req’d)
 short dCtlRefNum; // driver reference number
 long dCtlCurTicks; // for internal use only
 WindowPtr dCtlWindow; // -> driver’s window (DAs)
 short dCtlDelay; // ticks between periodic actions
 short dCtlEMask; // DA event mask
 short dCtlMenu; // DA menu ID
 Sint8 dCtlSlot; // slot number for a slot device
 Sint8 dCtlSlotId; // sResource directory ID
 long dCtlDevBase; // slot device base address
 Ptr dCtlOwner; // Reserved - must be 0
 Sint8 dCtlExtDev; // slot device external device ID
 Sint8 fillByte; // Reserved
 UInt32 dCtlNodeID;
 };

 The Unit Table is used to organize and keep track of DCEs. It is an array of handles
that point to the DCEs of installed device drivers. The location of the DCE in the Unit
Table is called the driver’s unit number. If the handle at a given number is nil, no
DCE is installed in that position.

 When a device driver is opened, the Device Manager returns a driver reference number
for the driver which is the one’s complement of the unit number (~unit number).

 Two global variables are used in conjunction with this scheme. UTableBase points to
the Unit Table while UnitNtryCnt describes the size of the table (i.e. the number of
entries in the table). The first 48 entries (entry number 0 through 47 / reference number
-1 through -48) are reserved by Apple. The remaining items are documented as
available for slot devices and other drivers.

 The Device Manager maintains an I/O queue for each open device driver. It is rooted in
the drivers DCE. The I/O queue element at the head of the queue is the one currently
being processed. The other elements on the queue (if any) are the “pending” I/O
requests - those that the Device Manager has received but not yet passed on to the
driver.

 The Device Manager supports three types of I/O requests: asynchronous, synchronous
and immediate. (The terms synchronous and asynchronous as used by the System 7
Device Manager refer to how the Device Manager queues I/O requests. How a device
driver processes a request, synchronously or asynchronously, depends on the design
of the driver. When making a synchronous request to a device driver, the Device
Manager waits for the driver to complete the request regardless of whether the driver
handles the request synchronously or asynchronously.)

• asynchronous requests: the Device Manager places the request at the end of the
driver request queue, call the driver to process the request if it is not busy, and returns
control to the application. The application can then continue its processing as it wishes.
The Device Manager provides mechanisms to determine when the driver has completed
the request.

Device Manager Family Design Draft

 10 ii Apple Need To Know Confidential

• synchronous requests: the Device Manager places the request at the end of the
driver request queue and waits until all requests in the queue, including this one, have
been completed by the driver before returning control to the application.

• immediate request: the Device Manager sends immediate requests directly to the
device driver, bypassing the queue, and returns control back to the application when the
request is complete.

 UnitNtryCnt}
UTableBase

Unit Table

Master Pointer Master Pointer

Device Control Entry

Device Driver
Handle/Pointer

I/O Queue
Pointer

Device Driver

Queue Link Queue Link Queue Link

Queue Element Queue Element Queue Element

Figure 9-1 System 7 Device Manager Data Structures

 The parameter blocks used by the System 7 Device Manager API are IOParam and
CntrlParam as shown below. IOParam is used by PBOpen, PBClose, PBRead
and PBWrite while CntlParam is used by PBControl, PBStatus and
PBKillIO.

 The ioResult field is used to communicate the success or failure of the request to the
application. For synchronous requests, the value of ioResult is set when the Device
Manager returns to the application. For asynchronous requests, the value of
ioResult is set to ioInProgress (1) when the request is queued by the Device
Manager and is set to the actual result when the driver indicates that it has completed the
request (noErr (0) if successful or a negative value if the request failed).

 Asynchronous callers can also provide a pointer to a completion routine in the
ioCompletion field of the parameter block which the Device Manager will call when
the driver indicates that the requested operation is complete.

Draft Device Manager Family Design

Apple Need To Know Confidential 11 i

 struct IOParam
 {
 QElemPtr qLink; // -> next queue entry
 short qType; // queue type
 short ioTrap; // routine trap
 Ptr ioCmdAddr; // function ptr
 IOCompletionUPP ioCompletion; // -> completion routine
 OSErr ioResult; // result code
 StringPtr ioNamePtr; // -> driver name
 short ioVRefNum; // vol ref/drive number
 short ioRefNum; // driver reference number
 SInt8 ioVersNum; // not used by Device Manager
 SInt8 ioPermssn; // read/write permission
 Ptr ioMisc; // not used by Device Manager
 Ptr ioBuffer; // -> data buffer
 long ioReqCount; // # of bytes requested
 long ioActCount; // actual # of bytes completed
 short ioPosMode; // positioning mode
 long ioPosOffset; // positioning offset
 };

 struct CntrlParam
 {
 QElemPtr qLink; // -> next queue entry
 short qType; // queue type
 short ioTrap; // routine trap
 Ptr ioCmdAddr; // function ptr
 IOCompletionUPP ioCompletion; // -> completion routine
 OSErr ioResult; // result code
 StringPtr ioNamePtr; // -> driver name
 short ioVRefNum; // vol ref/drive number
 short ioCRefNum; // driver reference number
 short csCode; // control/status request type
 short csParam[11]; // control/status information
 };

6.2. COMPATIBILITY IN THE BLUE WORLD

 The Copland “Blue” address space provides some new compatibility challenges for the
Device Manager. Each process in the “Blue” address space has its own emulator data
context. When the Device Manager receives a request from a client, it is operating in the
context of that client. However, there are two conditions under which the Device
Manager can get control in an arbitrary context:

1. When the driver returns control through IODone after completing an asynchronous
request. The ioCompletion routine must be run by the Device Manager at this point
in time. The context in which the I/O completed may not be the same context that
originally made the request.

2. For synchronous I/O completion, the old Device Manager implementation used
busy waiting to await the completion of a synchronous request. This is not an
acceptable solution in the Copland world.

Device Manager Family Design Draft

 12 ii Apple Need To Know Confidential

3. When the Device Manager has completed IODone processing for the current
request, it looks to see if any pending requests are enqueued for this driver. If there
are, it begins processing the next request. The context for this request is not
necessarily the same as that for the previous request (i.e. different “Blue” processes
may have queued requests for this driver). Note that the queued request can be
either synchronous or asynchronous at this point (although if it’s synchronous, it
will be the last one on the queue).

6 .2 .1 . “THUNKING”6 THE CORRECT DATA CONTEXT

 Problems 1 and 3 above can be corrected by introducing a function into the execution
path that guarantees that the correct data context (i.e. TOC) will be associated with the
current execution just by calling the function. This “thunk” then just calls through to the
code that was called in the old execution path. When the thunk returns, the previous
TOC is restored; no context related work should be done under this TOC.

 In order to have access to the appropriate function/TOC when it is required, at the time
the request is queued a ThunkTableEntry is allocated from a table that is maintained
in globally accessible and system owned memory by the Device Manager (the
thunkTable). For all requests, the key by which the table entry can be found later
is the IOParam/CntrlParam parameter block address. This must be unique as long
as the request is outstanding7. In addition, in order to solve problem 3 above, a
ProcPtr to the thunk routine to call the driver when dispatching a new request is also
stored (this causes the compiler and linker to conspire to point the code at glue code
which will cause the correct TOC to be loaded when the routine is called). The
remaining information stored in the table entries varies depending on whether the
request is synchronous or asynchronous.

 For asynchronous requests, the ioCompletion routine specified by the caller in the
IOParam/CntrlParam parameter block is also stored. The ioCompletion routine
pointer is then replaced by a pointer to a UPP for the I/O completion thunk. For
synchronous calls, the Device Manager still substitutes its own I/O completion routine.
The callers ioCompletion specification is ignored and forced to zero before returning in
the synchronous case. Figute 9.2 illustrates this process when the Device Manager
receives a non-immediate I/O request. (The two numbered dark circles represent the
two mixed-mode switches that occur here, one when the application calls the Device
Manager and a second when the Device Manager returns to the application; the Device
Manager is native code.)

6 Alan Mimms first “coined” the term “thunk” with reference to the mechanism being used by the Device
Manager to switch execution into the correct data context. The term “thunk” is traditionally used by
compiler writers to describe a routine that calculates and returns the address of an actual parameter
corresponding to a formal parameter called by name. Our thunk causes the address of the correct TOC
context to be associated with a particular execution of a function. The term was originally coined by P. Z.
Ingerman in Thunks, CACM, Jan 1961.
7 The Device Manager could check for this uniqueness when it queues the new request, but there are too
many other ways for the programmer to potentially misuse the parameter block while it is queued. It is not
wothwhile to perform such a check given the overhead and the potential for other for programmer errors
which cannot be detected early.

Draft Device Manager Family Design

Apple Need To Know Confidential 13 i

Device
Manager

IOPB
Thunk Table

dispatch
Thunk

IOCompletion
Proc

ioCompletion
Thunk

DCE
I/O Queue

∂ ∑

Figure 9.2 Processing Synchronous/Asynchronous I/O Requests

 When the [next] entry enqueued to the dCtlQHdr queue in the DCE is to be
dispatched, the Device Manager calls the dispatch thunk stored in the thunk table for
that parameter block. This causes the correct data context to be loaded for that request.

DCE
I/O Queue

Device
Manager

DRVR dispatch

Thunk
Call DRVR

¿¡¬√

ƒ ± ∆
∑

∂

Thunk Table

IOPB

Figure 9.3 Thunking the Dispatch Queue

 Figure 9.3 illustrates this. (The transparent circled numbers represent the call sequence;
the dark numbered circles represent the mixed-mode switches.) The queue entry is sent
to the DRVR via the dispatch thunk (which was created when the request was originally
queued). This causes a mixed-mode switch. When the DRVR returns to the Device
Manager through the thunk, it causes another mixed-mode switch.

Device Manager Family Design Draft

 14 ii Apple Need To Know Confidential

Device
Manager

DRVR

ioCompletion

Thunk

IOCompletion
Proc

¡
¿

±
ƒ

¬√

∂

∑∏
π

jIODone

Thunk Table

IOPB

Figure 9.4 Thunking an I/O Completion

 The DRVR indicates that it has completed an I/O request by calling back to the Device
Manager through jIODone as shown in Figure 9.4. The IODone vector points to the
native Device Manager code. This causes the first mixed-mode switch. The Device
Manager then calls the ioCompletion thunk which it created when it queued the request
(this is the one pointed to by the I/O parameter block that is being completed). This
causes the correct data context (TOC) to be loaded. The thunk then calls the “real”
ioCompletion routine (saved in the thunk table entry) if any. This causes the second
mixed-mode switch. The user-specified ioCompletion routine eventually returns to
the thunk (causing the third mixed-mode switch) which in turn returns to the Device
Manager. The Device Manager then examines the DCE queue. If it’s empty, the Device
Manager returns to the DRVR causing a fourth mixed-mode switch. If it is not empty,
the process continues as shown in Figure 9.3 with the next I/O request to be processed.

 Drivers that perform their own queueing and do not call through IODone (i.e. they
perform their own IODone processing) must still call the I/O completion routine
specified by the parameter block. The ioCompletion thunking will function
properly in this case as well. Such drivers will be responsible for their own dispatch
thunking however.

 The operation and further use of the table for synchronous requests is discussed in the
next section.

6 .2 .2 . HANDLING S YNCHRONOUS WAIT

 In order to avoid busy waiting, the Device Manager uses Event Flags and
WaitForEvents to cause the requester’s thread to wait until the request is signaled
complete by the driver. The event mask and event group ID are saved in the thunk table
entry associated with the current parameter block. In order to wake the thread, an
ioCompletion routine is specified in the parameter block by the Device Manager
before the driver is called so that the Device Manager is assured of getting control back
when the I/O is completed. (As a side effect, this I/O completion thunk ensures that the
Device Manager code will always run in the correct data context for the request
regardless of the context in which the driver returns control to us.) The synchronous
I/O completion routine performs a SetEvents on the event flag being waited on by
the main thread and everything eventually unfolds as it should.

Draft Device Manager Family Design

Apple Need To Know Confidential 15 i

6 .2 .3 . COMPATIBILITY ASSERTIONS

 The following is a list of assertions that define the level of compatibility provided by
this implementation of the Device Manager.

• DRVRs that provide their own queueing and dispatching must also provide their own
dispatch thunking.

• DRVRs that insert themselves in the page fault path are not supported.

• DRVRs that require kernel mode for any reason are not supported.

• DRVRs must either call the device manager back via jIODone or call the I/O
completion routine directly irrespective of whether the request is synchronous or
asynchronous.

• Client specified I/O completion routines are not supported except for those requests that
can be and are issued asynchronously; i.e. the device manager will ignore any
completion routine specified in the parameter block for either an immediate or a
synchronous request.

• Busy waiting on the I/O parameter block by the application is not supported; the
application must use an I/O completion routine to find out about the completion of
asynchronous requests.

• The Device Manager does not support patches to the jSyncWait vector and does not
run any routine specified there.

• The client application cannot free, reuse or otherwise modify the I/O parameter block
used to make a Device Manager requests until the Device Manager has indicated that it
has finished processing the request.

 Data

6.3. COMPATIBILITY ISSUES WITH “HIDDEN” POINTERS

 Currently some users of the System-7 Device Manager API provide themselves with
data pointers to client data and/or callback pointers to private routines inside the control
block passed to the driver on control and/or status calls. This may also occur for non-
Blue clients of ndrvs.The data areas are no longer available to native drivers when
they execute because their context is that of the kernel rather than the client. In addition,
client callback routines have the same problems as Device Manager callback routines
do: they must be “thunked” in order to ensure execution in the correct data context.
However, since the Device Manager knows nothing about these pointers, it can do
nothing to assist to client.

 The solution is to allow a third party to register interest in a particular driver and insert
itself in the Device Manager processing path for all requests. The filter proc receives
control both when the original request is queued by the Device Manager and again
when the ioCompletion thunk is called but before the asynchronous completion routine
is called. The specified callback routine is responsible for doing the “right thing”.

Device Manager Family Design Draft

 16 ii Apple Need To Know Confidential

 OSStatus
 RegisterDriverFilterProc (DriverRefNum refNum,
 CFragConnectionID fragConnID);
 OSStatus
 UnRegisterDriverFilterProc (DriverRefNum refNum,
 CFragConnectionID fragConnID);

 typedef enum DMFilterCallType
 {
 DMFilterBegin,
 DMFilterComplete
 } DMFilterCallType;

 The filter proc is defined as:

 OSStatus
 DMDriverFilterProc (DriverRefNum refNum,
 DMFilterCallType callType);
 ParmBlkPtr paramBlock);

 The registered code fragment will be loaded into the kernel context by the Device
Manager. It must export the DMDriverFilterProc entry point8.

 Since this facility needs to be available to both Blue and non-Blue clients of ‘ndrv’s, the
function must be implemented in the server side of the Device Manager. In order to
allow access to data areas in the current address space, the filter will need to be called
from the accept function when a request is sent. This means that the filter function must
be native PPC code and will run in supervisor mode which will allow it to perform any
data mapping or copying that is required and to save away any other information that is
required. On the return trip, the code will run in user mode.

 This requires changes, but not to the driver or the client and the software could be
provided by anyone to do this job.

6.4. IOCOMMANDISCOMPLETE AND THE DSL

 The IOCommandIsComplete call has been implemented in the Driver Services
Library (DSL). This net effect of this is that all existing ndrv’s link with the DSL in
order to service the Device Manager specific I/O request completion. This means that
clients like the Video Family that want to continue using existing ndrv’s written to
handle video will break when the ndrv’s call IOCommandIsComplete since the
code has no context to know which family to call back (and assumes that this is a
Device Manager I/O completion).

 The IOCommandIsComplete call is defined as follows:

 OSErr
 IOCommandIsComplete (IOCommandID theID, // completing command
 OSErr theResult); // status for IOPB

8 The exact details of this are still being worked out and the interfaces are not shown in the implementation
sections which follow. This section needs further investigation and definition.

Draft Device Manager Family Design

Apple Need To Know Confidential 17 i

 The ID passed back by IOCommandIsComplete is the value originally passed in to
DoDriverIO both via the IOCommandID parameter and in the ioCmdAddr field of the
IOPB.

 The DoDriverIO call is defined as follows:

 OSErr
 DoDriverIO (AddressSpaceID spaceID,
 IOCommandID ID,
 IOCommandContents contents,
 IOCommandCode command,
 IOCommandKind kind);

 In order to fix this problem in such a way that existing ndrv’s (especially those that
exist on video boards) do not have to be changed, a new call to a new DSL routine will
be required by any family which wants to use ndrv’s (and the defined interface)
including the Device Manager. The rationale is that since the ID returned by the driver is
the only context available to IOCommandIsComplete, it must be used to associate
the call with the originator. This is accomplished by the originator “registering” each
request to the driver DoDriverIO entry point first with the RegisterDoDriverIO
call and using the ID that it returns as the ID specified in the DoDriverIO call.

 The RegisterDoDriverIO call is defined as follows:

 OSErr
 RegisterDoDriverIO (IOCommandID *ID,
 DriverEntryPointPtr returnAddr);

 ID specifies the ID to be used on the associated
 DoDriverIO call.

 returnAddr specifies the return address to the family code
 to be called from IOCommandIsComplete. The specified
 address will be called as a function defined exactly
 like the IOCommandIsComplete function definition.

 The family function that calls RegisterDoDriverIO is required to save any
information that it needs to in order to associate the ID returned by
RegisterDoDriverIO with the I/O request. It must also place the ID in the
ioCmdAddr field of the IOPB and save the previous contents if required.

 Figure 9.5 illustrates the revised call sequence. First the new call to
RegisterDoDriverIO is made specifying the return address at which the family
code is to be called when IOCommandIsComplete is called back by the driver for
this request. RegisterDoDriverIO creates a new unique id and hashs the
information about the id and the return address into its internal hash table and returns
the id to be used when the DoDriverIO call is made. DoDriverIO is then called to
request that the driver perform the I/O requests specified in the parameter block. When
the driver has completed the non-immediate request, it calls the DSL function
IOCommandIsComplete which then looks up the id in its hash table and calls back

Device Manager Family Design Draft

 18 ii Apple Need To Know Confidential

the family code at the specified address exactly as if it were the
IOCommandIsComplete function.

Family Code

id/retAddr

DSL

‘ndrv’
Plug-in

∑

call RegisterDoDriverIO (*id, returnAddr)

∏

π

∫

œ

(Returns id)

hash table

call DoDriverIO (id, …)
call IOCommandIsComplete (id, …)

call (*retAddr) (id, …)

Figure 9.5 RegisterDoDriverIO, DoDriverIO and IOCommandIsComplete
Call Flows

6.5. COHERENCY AND THE SYSTEM-7 UNIT TABLE

 The Unit Table as described for the System-7 world is required for compatibility.
However, it is not the same information that is required by the Copland
implementation. Therefore two different representations of “a table that references
drivers” exist, one for each implementation. Since native device drivers must be
available to clients in the “Blue” world, the “Blue” world Unit Table must be kept in
synch with the native Device Manager plug-in table (see the Native Activation Model
data structures section) so that a Unit Table reference number can be used to access a
driver in the kernel space..9

6 .5 .1 . S YSTEM-7 ‘DRVR’ U NIT TABLE U PDATE METHODS

 There are currently two ways that the System-7 Unit Table is updated when installing
‘DRVR’ drivers. This information is documented in Inside Macintosh: Devices. The
first is through the driver install and remove routines provided by the API10:

9 It is assumed throughout that ‘DRVR’s will not be accessible outside of the Blue address space..
10 DRVRInstall and DRVRRemove have been replaced by DriverInstall and DriverRemove
respectively.

Draft Device Manager Family Design

Apple Need To Know Confidential 19 i

 pascal OSErr DriverInstall (DRVRHeaderPtr drvrPtr, short refNum);
 pascal OSErr DriverInstallReserveMem (DRVRHeaderPtr drvrPtr,
 short refNum);
 pascal OSErr DriverRemove (short refNum);

 These provide a contained means of capturing table updates. Unfortunately, there are

several drivers/applications around which do not use the provided API to update the
Unit Table but do it directly themselves by scanning the table for a free entry and
storing a DCE handle in it or simply clearing an entry already in use. This makes using
a common reference number between the two spaces very difficult.

6 .5 .2 . THE ‘ndrv’ DRIVER U NIT TABLE U PDATES

 The Driver Loader Library (DLL) has 12 routines defined in its API that reference or
update the System-7 Unit Table (see the Driver Loader Library section below). This
interface is documented in Inside Macintosh - Designing PCI Cards and Drivers for
Power Macintosh Computers. These routines also provide a contained means of
updating the Unit Table. However, as explained in the Driver Loader Library section,
the Device Manager will have to provide a new user-mode library implementation to
allow the updates to be made in both the System-7 Unit Table in “Blue” space and the
new plug-in table in kernel space. The updates need to be coordinated as explained
above.

6 .5 .3 . ‘ndrv’S INSTALLED BY FAMILY EXPERTS

 As it “discovers” them, the Device Manager Family Expert will install new ‘ndrv’s
into the Device Manager plugin table. The plugin table is not visible to the “Blue” world
so all updates must be announced to the Device Manager running in user-mode in the
Blue address space making native drivers available to applications running there. In
many ways this is the reverse of 9.4.2 above.

6 .5 .4 . U NIT TABLE U PDATES U SING ALIAS REFERENCE N UMBERS

 In order to allow each environment (i.e. Device Manager Server and “Blue” world
Device Manager) to update their tables independently, the “Blue” world implementation
will use “alias” driver reference numbers when referencing an ‘ndrv’. This requires
explicit communication between the two worlds whenever any of the ‘ndrv’ updates
described above occur.

 When the “Blue” world Device Manager installs a new driver, if it was a ‘DRVR’, the
Unit Table update can proceed and no notification must take place for the Device
Manager Server since it will never need to reference a ‘DRVR’. (Direct Unit Table
updates by System-7 applications code will only be supported for ‘DRVR’s and no
special support needs to be supplied for such actions.)

 If it is an ‘ndrv’ being installed, the Unit Table entry and its associated data
structures must be allocated and a “private” call must be made to notify the Device
Manager Family Server that it needs to install the new ‘ndrv’. This request is
synchronous and returns an indication of success. Upon success, a driver reference
number to be used by the FPI (i.e., the alias) is also returned. The System-7 Device
Manager will then save the Device Manager Server device reference number away (in
the AuxDCE since it is not really be used by a driver), and use the “alias” whenever it

Device Manager Family Design Draft

 20 ii Apple Need To Know Confidential

makes requests of the FPI, reporting its device reference number whenever
communicating with the System-7 API client. If the Device Manager Server fails the
request, so does the System-7 Device Manager interface (and it removes its Unit Table
updates). When an ‘ndrv’ is deleted from the Unit Table by a client, an analogous
operation takes place.

 [Describe API here.]

 An update by Device Manager Server must be communicated to the System-7 API
Library. This requires that the Library register interest during initialization. When an
‘ndrv’ is added or deleted from the Device Manager Server’s Plug-in Table (and it is
not as a result of an operation described above), the System-7 Library will be notified
to update its Unit Table by scheduling a cooperative interrupt to run. An ID is
associated with the driver refnum to guarantee that reassignment of the Plugin Table
entry by the Device Manager Family Server before the cooperative interrupt is run to
delete the corresponding Unit Table entry does not cause a subsequent request to be
made to an incorrect plugin.

 [Describe API here.]

6 .5 .5 . REQUEST FLOWS

 The following sections describe the request flows for the two installations described
above.

6 .5 .5 .1 . ‘ndrv’ Installed by a Blue World Client

 [include flows diagram here]

6 .5 .5 .2 . ‘ndrv’ Installed by the Family Expert

 [include flows diagram here]

6.6. THE NATIVE DRIVER INTERFACE

 Native drivers that follow the rules and use the interfaces described in Designing PCI
Cards and Drivers for Power Macintosh Computers: Writing Native Drivers are
supported by the Device manager and are called “generic device drivers”. All native
drivers are PowerPC native code in Code Fragment Manager (CFM) container format
and must run without access to the ToolBox. For generic drivers on PowerPC
platforms, the Device Manager has changed to support PowerPC driver code and to
allow drivers to operate concurrently. Generic drivers have a family type of ‘ndrv’.

6 .6 .1 . GENERIC DRIVERS IMPORTS & EXPORTS

 Native drivers must use CFM’s import and export library mechanisms to share code
and/or data. The following exports and imports are defined for generic native drivers.

Draft Device Manager Family Design

Apple Need To Know Confidential 21 i

6 .6 .1 .1 . Native Driver Data Exports

 All native drivers must export a single data symbol that characterizes the driver’s
functionality and origin: TheDriverDescription. Driver description information
helps match drivers and devices. It also lets the Device Manager pick the best driver
among multiple candidates.

 struct DriverDescription
 {
 OSType driverDescSignature; // Signature field
 DriverDescVersion driverDescVersion; // Version of this data
 DriverType driverType; // Type of Driver
 DriverOSRuntime driverOSRuntimeInfo; // OS Runtime Requirements
 DriverOSService driverServices; // Driver supported API
 };

6 .6 .1 .2 . Native Driver Code Exports

 Native device drivers export a single code entry point, DoDriverIO, that handles all
Device Manager operations. The device driver can determine which I/O action to
perform based on the command code (Initialize, Finalize, Open,
Close, Read, Write, Control, Status, KillIO, Replace, or
Superseded) and command kind (Synchronous, Asynchronous, or
Immediate).

 OSErr DoDriverIO (AddressSpaceID spaceID, // address space ID
 IOCommandID commandID, // command ID
 IOCommandContents contents, // cmd specific pb
 IOCommandCode code, // open/close/etc.
 IOCommandKind kind); // synch/asynch/immed

6 .6 .1 .3 . Native Driver Imports

 Native drivers will import their services from the Driver Services Library (DSL) and the
Driver Loader Library (DLL). The Driver Loader automatically links the DSL to each
generic driver at load time. New ‘ndrv’s may also link with other native family
libraries.

 Besides these libraries, the Device Manager exports a new routine called
IOCommandIsComplete. It is the native driver equivalent of IODone. The
difference is that while IODone implicitly acts on the head of the Device Manager queue
for this driver, the request that is to be completed is specified explicitly to
IOCommandIsComplete.

 OSStatus IOCommandIsComplete (CommandID command, // command ID
 OSStatus results); // value for IOPB

6 .6 .2 . CONCURRENT DRIVERS

 ‘DRVR’s were defined by the Device Manager to handle only one request at a time.
While multiple requests could be pending for a particular driver, the Device Manager
only passed the next request to driver when the driver had completed processing the

Device Manager Family Design Draft

 22 ii Apple Need To Know Confidential

previous request11 . Native device drivers can now indicate that they are concurrent (i.e.
capable of handling more than one request at a time) by setting the
kDriverIsConcurrent flag in the driverRuntime flags in its
DriverDescription.

 The driver must use the IOCommandIsComplete service of the Device Manager to
indicate it has completed a particular request. The returned status value is used by the
Device Manager to update the result field of the IOPB. The driver should not
modify result directly as this will be ignored by the Device Manager.

6 .6 .3 . GENERIC DRIVER RESTRICTIONS

 Aside from those differences described above, the rules for generic drivers have
changed from those for ‘DRVR’s. The following highlight some of the differences:

• A native drive doesn’t have access to its DCE in the Unit Table; in fact, the Unit Table
per se does not exist in the context within which the native driver executes.

• Initialize, Finalize, Open, Close, KillIO, Replace and Superseded
are always immediate commands.

• All native drivers must accept and respond to all command codes; however, an error
indicating that the command is not supported may be returned.

• Initialize and Finalize are the first and last commands a native driver receives.
Open and Close commands connect the driver independently of initialization and
finalization.

• CFM will perform CFM initialization and termination calls to the driver when the driver
is loaded and unloaded. The CFM initialization call precedes the driver being initialized
by the Device Manager.

• Native drivers must be reentrant to the extent that they may be reentered with another
request during any call from the driver to IOCommandIsComplete.

6 .6 .4 . INSTALLING A N ATIVE DEVICE DRIVER

 The boot code will be responsible for finding and installing the initial set of drivers.
The Driver Loader Library (DLL) and the family expert will conspire to dynamically
select, load, install and remove drivers once the system is up.

6.7. THE DRIVER LOADER LIBRARY

 The Driver Loader library (DLL) provides some routines that work with all families and
some that work specifically with the Device Manager family. These routines install,
remove and replace entries in the Unit Table.

11 Some DRVRs have used various workarounds (like doing their own queueing and dispatching) to allow
them to process more than one request simultaneously. This causes these same DRVRs some compatibility
problems in the current environment. Native drivers can now do this in a sanctioned manner.

Draft Device Manager Family Design

Apple Need To Know Confidential 23 i

 The Unit Table per se no longer exists in the Copland kernel environment; it exists in
the System-7 compatible “Blue” world. ‘ndrv’s have been cautioned not to depend
on it and to only refer to it and the information it contains through the defined DLL
calls. These calls use a DriverRefNum and/or a UnitNumber to refer to the unit
table entries. While the use of UnitNumbers will have little meaning in the new
environment, the DriverRefNum interface will be used to reference a new native
table entry. To remain compatibility with the existing ‘ndrv’s, the refnum returned
will be the ones complement of the actual index value as is the case for previous
implementations.

 The Device Manager will reimplement the routines listed below for Copland. The
externals of these routines will remain the same as is currently defined, but the
implementation will be changed to reflect the changes discussed in the section on Unit
Table maintenance. There will also be a need for both a user mode callable set of
routines for those applications that install ‘ndrv’s or use ‘ndrv’ information from
the Blue address space or native user-mode applications in their own Copland-savvy
address space, and a supervisor mode set of routines which are callable from the Device
Manager Family Expert.

 These entry points will be exported by the Device Manager and called by the DLL
implementation (for compatibility) which will re-export them12 .

6 .7 .1 . THE DRIVER LOADER LIBRARY API FOR THE DEVICE MANAGER

 The following are the functions provided by the DLL will be updated to implement the
new method of updating and maintaining the Device Unit Table coherency with the
“Blue” world.

 OSErr InstallDriverFromFragment (CFragConnectionID fragmentConnID,
 RegEntryIDPtr device,
 UnitNumber beginningUnit,
 UnitNumber endingUnit,
 DriverRefNum refNum);

 OSErr InstallDriverFromFile (FSSpecPtr fragmentSpec,
 RegEntryIDPtr device,
 UnitNumber beginningUnit,
 UnitNumber endingUnit,
 DriverRefNum refNum);

 OSErr InstallDriverFromMemory (Ptr memory,
 long length,
 ConstStr63Param fragName,
 RegEntryIDPtr device,
 UnitNumber beginningUnit,
 UnitNumber endingUnit,
 DriverRefNum refNum);

 OSErr InstallDriverFromDisk (Ptr theDriverName,
 RegEntryIDPtr theDevice,
 UnitNumber theBeginningUnit,

12 The supervisor mode library API will have some different function parameters based on the recent
interfaces thrash. The updated interface definitions will be included when this thrash is done.

Device Manager Family Design Draft

 24 ii Apple Need To Know Confidential

 UnitNumber theEndingUnit,
 DriverRefNum refNum);

 OSErr InstallDriverForDevice (RegEntryIDPtr device,
 UnitNumber beginningUnit,
 UnitNumber endingUnit,
 DriverRefNum refNum);

 OSErr GetDriverInformation (DriverRefNum refNum,
 UnitNumber unitNum,
 DriverFlags flags,
 DriverOpenCount *count,
 StringPtr name,
 RegEntryID device,
 CFragHFSLocator driverLoadLocation,
 CFragConnectionID fragmentConnID,
 DriverEntryPointPtr *fragmentMain,
 DriverDescriptionn *driverDesc);

 OSErr OpenInstalledDriver (DriverRefNum refNum,
 Sint8 ioPermission);

 OSErr RenameDriver (DriverRefNum refNum,
 StringPtr newDriverName);

 OSErr RemoveDriver (DriverRefNum refNum,
 Boolean immediate);

 OSErr ReplaceDriverWithFragment (DriverRefNum refNum,
 CFragConnectionID fragmentConnID);

 OSErr LookupDrivers (UnitNumber beginningUnit,
 UnitNumber endingUnit,
 Boolean emptyUnits,
 ItemCount returnedRefNums,
 DriverRefNum refNum);

 UnitNumber HighestUnitNumber (void);

6.8. PROVIDING ACCESS TO OTHER FAMILIES THROUGH THE
SYSTEM-7 DEVICE MANAGER API

 There are some clients (i.e. existing applications) of the “classic” Device Manager
interface that may in the future require the services of new drivers which have their own
family. Rather than having to convert the applications, the other family servers could

Draft Device Manager Family Design

Apple Need To Know Confidential 25 i

plug themselves in at the same level as ‘DRVR’s do, redirecting the I/O requests to the
appropriate family server.

6 .8 .1 . A TRANSITIONAL INTERFACE

 Since the only clients of the System-7 Device Manager interface are those that live in the
“Blue” world, the Device Manager can provide a transitional environment for these
other families by having them take an active role in the process. Such a family would
install a “shim” ‘DRVR’ which would be called by the Device Manager as for any other
‘DRVR’ with some exceptions as noted below. [The implementation assumes that there
is currently sufficient information within the parameter blocks to drive the new family
since there are no changes to the Device Manager parameter blocks to support this
feature.]

 Essentially any family that wants to support such an interface installs a “shim” driver in
the System-7 Unit Table using the new DriverInstallShim interface. The Device
Manager then knows these as “shims” and treats them specially allowing them to be
concurrent (as it does for native drivers). When a client requests one of these shim
drivers, the shim is called immediately with all requests. The shim driver is responsible
for interpreting the information in the parameter block and acting accordingly. The shim
driver is responsible for implementing the appropriate interface to the target family
activation model. This frees the Device Manager from having to special case for certain
implementations and provides a means to support other non-Apple implementations that
require the same functionality.

 The API calls added are:

 pascal OSErr DriverInstallShim (DRVRHeaderPtr drvrPtr,
 short *refNum);

 drvrPtr A pointer to a device driver header
 refNum A pointer to where the driver reference number is stored if the shim
 is successfully installed (OSErr == noErr)

 The DriverInstallShim function does exactly the same job as the

DriverInstall but also marks the driver as a shim in the dCtlFlags so that the
Device Manager knows to treat it as concurrent.

 pascal OSErr DriverRemoveShim (short refNum);

 refNum The driver reference number

 The DriverRemoveShim function does exactly the same job as the

DriverRemove but does not release the driver resource.

 Because the driver is treated as concurrent, it will have to notify the Device Manager
about which request is being completed and about the success of failure of that request.
The Device Manager exports an entry point modelled on the
IOCommandIsComplete interface for this purpose.

 OSErr // results from DM
 IOShimCommandIsComplete (ParmBlkPtr thePB, // -> parameter block
 OSErr results); // value for IOPB

Device Manager Family Design Draft

 26 ii Apple Need To Know Confidential

 thePB is a pointer to the parameter block that represents the completed
 request
 results is the success or failure indication to be returned to the original

7. REQUESTOR

Draft Device Manager Family Design

Apple Need To Know Confidential 27 i

THE DEVICE MANAGER ACTIVATION MODEL

 The Copland Device Manager uses the task-per-plugin activation model. This model is
a compromise; it is used because the processing of I/O requests can vary widely among
the plug-ins. The plug-in however, is insulated from microkernel tasking mechanisms
and from synchronization issues that result from system resource contention and
multiple client requests to a single plug-in. Both a user mode and a kernel mode FPI
library are provided.

7.1. ACTIVATION MODEL OVERVIEW

 The Copland Device Manager FPI server is an accept function that presents data to an
event-based loop. The FPI server receives requests from calling clients and passes
those requests to the family plug-ins. The FPI server is responsible for making the data
associated with the request available to the family which in turn makes it available to the
plug-in that services the request.

Kernel Mode/Space

User Mode/Space

Device Manager
Family Server

Device Manager
Family

Maxwell
Device Manager

FPI Library

Maxwell
Device Manager

API

generic
driver

Plugin Task

Figure 10.1 Copland Native Device Manager Activation Model

 The family creates one task for each family plug-in. The tasks act as wrappers for the
plug-ins - all tasking knowledge is located in the family code.

Device Manager Family Design Draft

 28 ii Apple Need To Know Confidential

 When the plug-in receives a service request, via its DoDriverIO entry point, the task
calls the plug-ins entry point, waits for the plug-ins’ response, and then responds to the
service request. The plug-in performs the work to actually service the request.

 Device Manager family generic drivers can either be concurrent or nonconcurrent;
Device Manager clients can make either synchronous or asynchronous requests.

 The Device Manager FPI server knows that nonconcurrent drivers cannot handle
multiple requests concurrently. It provides a mechanism to queue client requests. No
subsequent requests are made of the plug-ins’ task until it signals completion of the
previous request by calling the IOCommandIsComplete function provided by the
Device Manager Family Library context.

 For concurrent drivers, all queuing and state information describing an I/O request is
contained within the plug-in code and data and within any queued requests. The FPI
library forwards all requests to the FPI server regardless of the status of the outstanding
I/O requests.

 The FPI library makes sure that both synchronous and asynchronous clients see
appropriate behavior. When a client calls a family function asynchronously, the FPI
library sends an asynchronous kernel message to the FPI server and returns to the
caller.

 When the client makes a synchronous request, the FPI library sends a synchronous
kernel message which blocks the requesting client. The plug-in task continues to run
within its’ own task context permitting other clients to make requests of this plug-in
concurrent with the processing of other synchronous requests. When the FPI server
replies to the message, the client is unblocked and able to continue.

 The FPI server queues the incoming request to the target plugin queue. The per-plugin
task code manages concurrent and nonconcurrent drivers appropriately. It sends all
requests to the driver; if the diver is nonconcurrent, the plugin code then waits on an
event which will be set when the driver returns with the I/O completion message. When
the plug-in signals that the I/O operation is complete, the FPI server replies to the
original message. When the Device Manager FPI receives the reply, it either returns to
the synchronous client thus unblocking it, or calls the asynchronous client’s I/O
completion routine. When it finishes processing a message, the per-plugin task then
loops back to process the kernel queue that is fed by the Device Manager Server and
IOCommandIsComplete.

7.2. RELIABILITY, AVAILABILITY AND SERVICEABILITY (RAS)

 The Device Manager provides recovery and persistence by making use of the kernel
notify for task termination, a special “henchtask” to process terminations and exception
handlers. The exception handlers, at a minimum, will prevent system failure. However,
when possible it will reflect data access and other client related errors back to the client
as a failure indication on the appropriate request. After cleaning up, the exception
handler will then longjmp to the beginning of the tasks’ processing loop. Failure during
the exception handler processing or recursive failure will cause the task to be
terminated. The henchtask will then attempt a task restart.

 By monitoring task termination, tasks that terminate unexpectedly (i.e. the Family
Server task or plugin tasks) will be restarted automatically (i.e. will be reloaded and
reinitialized) thus providing additional availability and will be impervious to corruption

Draft Device Manager Family Design

Apple Need To Know Confidential 29 i

of task context data. Faults will be isolated to individual plugins or to the Device
Manager but will not affect the entire system. Methods will to be put in place to prevent
recursive failure and in some cases a complete failure of the Device Manager family
might occur, but the entire machine will not be affected (although, if Device Manager
work is what the user needs done, that’s not much consolation). [More work is needed
to determine what information is required by the “henchtask”in order to perform proper
cleanup and restart.]

 Serviceability requires that individual failures will be logged so that failures can be
diagnosed off-line. This information will include as much environmental data as is
relevant to the failure; software error records will be logged for all unexpected
conditions and failures. [A discussion of the use of the Kernel logging facility needs to
be integrated into this section.]

7.3. THE DEVICE MANAGER FAMILY API

 The Device Manager Family API is much like the family-to-plugin API. The Device
Manager FPI Library exports the DoDeviceManagerIO entry point which will be
used by the System-7 API Library code and Copland native applications to receive the
parameters that will be passed to the accept routine. The single entry point is modeled
after the DoDriverIO call.

 OSStatus
 DoDeviceManagerIO (IOCommandID commandID, // command ID
 IOCommandContents contents, // cmd specific pb
 IOCommandCode code, // open/close/etc.
 IOCommandKind kind); // synch/asynch/immed

7.4. DEVICE MANAGER FLOWS

 The following flows describe the process that takes place for the three different kinds of
request - immediate, synchronous and asynchronous. Immediate requests are handled
synchronously and immediately from the requestor through to the driver. Synchronous
and asynchronous requests are only differentaited at the Send interface and control the
state of the requesting task while a request is outstanding. he server and plugin tasks
treat synchronous and asynchronous requests the same (except for running the
ioCompletion routines). The differentiation for concurrent and nonconcurrent drivers is
not shown in these flows. It is explained in the text along with the synchronous and
asynchronous flows however. The flows are shown for Blue task clients, but are the
same for native Copland-savvy tasks except for running the ioCompletion routine for
asynchronous requests. This is discussed below also. (The dark numbered circles are
the sequence of events in the flow diagrams.)

 Immediate requests cause a synchronous Send to be done by the FPI Library. The
accept function running in the context of the client task sees this request and calls the
plugin directly (via the DoDriverIO entry point). It uses the information from the
parameter block contained in the DMServerMessage along with other information it has
about the plugin to construct the parameters for the call. The plugin (driver) completes
the request and returns to the accept function which in turn returns to the message

Device Manager Family Design Draft

 30 ii Apple Need To Know Confidential

system which completes the Send. This unblocks the FPI Library code which then
returns to the application.

Kernel Mode/Space

User Mode/Space

System 7
Device Manager

API

“Blue World” Task

System 7 Compatible
Device Manager

Maxwell
Device Manager

FPI Library

Maxwell
Device Manager

API

code

pb

DMServerMessage

‘ndrv’
Plug-in

Accept
Function

∑

(call DoDriverIO) (return)

∏ π

∫

œ

Synchronous
Send

Figure 10.2 Immediate Device Manager Request Flow

 A synchronous request causes the FPI Library to issue a synchronous Send to the
Device Manager Server port. The accept function sees this request and builds a
DMServerQElement which it enqueues on kernel queue being waited on by the plugin
task for this plugin. The plugin task wakes on the queue and calls the plugin with the
request using its DoDriverIO entry point. If this is a nonconcurrent driver, after the
driver returns, the plugin task code waits on an event flag in order to serialize requests
to the driver. When the driver completes the request, it calls the

Draft Device Manager Family Design

Apple Need To Know Confidential 31 i

IOCommandIsComplete entry point in the Plugin task. This function enqueues the
response DMServerQElement to the plugin tasks kernel queue. If this was a
nonconcurrent driver, the event flag that the plugin task is waiting on is also set
allowing the plugin task to return to the WaitOnQueue at the beginning of its processing
loop and receive the next work request. When it processes the response from the
plugin, it does a ReplyToMessage allowing the FPI Library code to wake up and return
to the application requestor with the results.

Kernel Mode/Space

User Mode/Space

System 7
Device Manager

API

“Blue World” Task

System 7 Compatible
Device Manager

Synchronous
Send

Maxwell
Device Manager

FPI Library

Maxwell
Device Manager

API

code

pb

DMServerMessage

‘ndrv’
Plug-in

Accept
Function

∑

(call DoDriverIO)

∏

π

∫

œ

DMServerQElement

code

pb

mcb

EventGroupID

EventGroupMask
WaitOnQueue

(wait)

PerPlugin Task

IOCommandIsComplete

NotifyKernelQueue

ReplyToMessage

º —

“

”

Figure 10.3 Synchronous Device Manager Request Flow

 An asynchronous request causes the FPI Library to issue an asynchronous send which
causes the accept function to run and enqueue a DMServerQElement for the

Device Manager Family Design Draft

 32 ii Apple Need To Know Confidential

PerPluginTask. It then returns to the message system which returns to the application
and allows it to continue (the dark numbered circles represent this sequence). The
plugin task awakens on the kernel queue and processes the request by sending it to the
plugin for processing. The process is the same as for a synchronous request from this
point until after the ReplyToMessage is done at ∞. For asynchronous requests that
specify an ioCompletion routine, for Blue clients a cooperative interrupt is run to allow
the ioCompletion routine to be thunked in the data context of the requesting Blue task.
For native tasks, a software interrupt is used to run the ioCompletion routine.

Draft Device Manager Family Design

Apple Need To Know Confidential 33 i

Kernel Mode/Space

User Mode/Space

System 7
Device Manager

API

“Blue World” Task

System 7 Compatible
Device Manager

Asynchronous
Send

Maxwell
Device Manager

FPI Library

Maxwell
Device Manager

API

code

pb

DMServerMessage

‘ndrv’
Plug-in

Accept
Function

∑

(call DoDriverIO)

∏

π

∫

¿

DMServerQElement

code

pb

mcb

EventGroupID

EventGroupMask
WaitOnQueue

PerPlugin Task

IOCommandIsComplete

NotifyKernelQueue

ReplyToMessage

≠
¬ √

ƒ

≈

ioCompletion

∆

Figure 10.4 Asynchronous Device Manager Request Flow

Device Manager Family Design Draft

 34 ii Apple Need To Know Confidential

7.5. PSEUDO-CODE IMPLEMENTATION

 The following is c-like pseudo code outlining the Device Manager Server
implementation. This code does not show any of the private FPI calls. It demonstrates
the main logic. It is not meant to describe all the details of the implementation, but
rather to describe the flavor of the implementation structure and flow. The psuedo-code
here also shows a static fixed-size plugin table. This will be dynamic in the actual
implementation.

•

