
PCI Bus Binding to

IEEE 1275-1994
Standard for Boot (Initialization,

Configuration) Firmware

Revision 1.5
DRAFT

20 March, 1995

Prepared by the Open Firmware Task Force of the PCI Alliance

DRAFT Revision 1.5 PCI Bus Binding to Open Firmware

1

Foreword by the Chairman of the IEEE 1275 Working Group1
(This foreword is not a part of the Specification.)2

Introduction3

Firmware is the ROM-based software that controls a computer between the time it is turned on and the time the4
primary operating system takes control of the machine. Firmware's responsibilities include testing and5
initializing the hardware, determining the hardware configuration, loading (or booting) the operating system, and6
providing interactive debugging facilities in case of faulty hardware or software.7

Historical Perspective8

Historically, firmware designs have been proprietary and often specific to a particular bus or instruction set9
architecture (ISA). This need not be the case. Firmware can be designed to be machine-independent and easily10
portable to different hardware. There is a strong analogy with operating systems in this respect. Prior to the11
advent of the portable UNIX operating system in the mid-seventies, the prevailing wisdom was that operating12
systems must be heavily tuned to a particular computer system design and thus effectively proprietary to the13
vendor of that system.14

The IEEE 1275-1994 Standard for Boot (Initialization, Configuration), Core Requirements and Practices (referred15
to in the remainder of this document as Open Firmware) specification is based on Sun Microsystem's OpenBoot16
firmware. The OpenBoot design effort began in 1988, when Sun was building computers based on three different17
processor families, thus OpenBoot was designed from the outset to be ISA-independent (independent of the18
Instruction Set Architecture). The first version of OpenBoot was introduced on Sun's SPARCstation 119
computers. Based on experience with those machines, OpenBoot version 2 was developed, and was first shipped20
on SPARCstation 2 computers. This standard is based on OpenBoot version 2.21

Purpose and Features of the Open Firmware Specification22

Open Firmware has the following features:23

Mechanism for loading and executing programs (such as operating systems) from disks, tapes, network24
interfaces, and other devices.25

ISA-independent method for identifying devices "plugged-in" to expansion buses, and for providing firmware26
and diagnostics drivers for these devices.27

An extensible and programmable command language based on the Forth programming language.28

Methods for managing user-configurable options stored in non-volatile memory.29

A "call back" interface allowing other programs to make use of Open Firmware services.30

Debugging tools for hardware, firmware, firmware drivers, and system software.31

Purpose of this Bus Binding32

This document specifies the application of Open Firmware to the PCI Local Bus, including PCI-specific33
requirements and practices for address format, interrupts, probing, and related properties and methods.34

The core requirements and practices specified by Open Firmware must be augmented by system-specific35
requirements to form a complete specification for the firmware for a particular system. This document establishes36
such additional requirements pertaining to PCI.37

PCI Bus Binding to Open Firmware DRAFT Revision 1.5

2

Task Group Members1

The following individuals were members of the Task Group that produced this document:2

Ron Hochsprung, Apple Computer, Inc.3

Mitch Bradley, FirmWorks (Chair, IEEE P1275 Working Group)4

David Kahn, Sun Microsystems, Inc. (Vice Chair, IEEE P1275 Working Group)5

6

TRADEMARKS7

Sun Microsystems is a registered trademark of Sun Microsystems, Inc. in the United States and other8
countries.9

OpenBoot is a trademark of Sun Microsystems, Inc.10

UNIX is a registered trademark of UNIX System Laboratories, Inc.11

SPARC is a registered trademark of SPARC International, Inc. Products bearing the SPARC trademark are12
based on an architecture developed by Sun Microsystems, Inc.13

SPARCstation is a trademark of SPARC International, Inc., licensed exclusively to Sun Microsystems, Inc.14

All other products or services mentioned in this document are identified by the trademarks, service marks, or15
product names as designated by the companies who market those products. Inquiries concerning such trademarks16
should be made directly to those companies.17

18

Revision History19

Revision 0.1 Oct. 7, 1993 First revision distributed outside of task group (the number 0.1 did20
not appear on the cover).21

Revision 0.2 Oct. 28, 1993 Changed the designator for 64-bit memory space from "M" to "x".22
Changed the parts of the specification related to PCI to PCI bridges23
to reflect the 0.4 bridge architecture spec.24

Revision 1.0 April 14, 1994 Changed references from P1275 to Open Firmware. Changed size25
of fields for I/O address representations to reflect PCI architecture.26

Revision 1.1 June 28, 1994 Added 't'-bit for aliasing, and discussion of "hard-decode" cases.27

Revision 1.2 August 7, 1994 Added note about DD encoding. Added new standard properties for28
those of draft Rev 2.1 PCI spec. Deleted enabling of Memory space29
at post-probe. Added driver encapsulation description.30

Revision 1.3 September 27, 1994 Changed generated name for Subsystem, if present. Added rule for31
I/O assignment. Added discussion of PCI-PCI bridge probing.32

Revision 1.4 December 16, 1994 Added Expansion ROM address assignment, 't' bit for "below 133
MB".34

Revision 1.5 March 20, 1995 Added Legacy devices section, "clock-frequencey" property, clarified35
address assignment, added 't' bit for relocatable I/O space.36

DRAFT Revision 1.5 PCI Bus Binding to Open Firmware

3

 Overview and References1

This specification describes the application of Open Firmware to computer systems that use the PCI Local bus2
as defined in PCI Local Bus Specification, Revision 2.0, April 30, 1993 and PCI to PCI Bridge Architecture3
Specification, Revision 1.0 April 5, 1994 and is to be used in conjunction with those documents.4

Note: this version applies to Revisision 2.1 which is currently undergoing review.5

 Definitions of Terms6

bus controller: a hardware device that implements a PCI bus.7

hard decode: a decoding which is not based upon a base register, but, rather, is fixed.8

PCI device: a hardware device that connects to or "plugs in" to a PCI bus PCI function: one of a number of9
logically-independent parts of a PCI device. Many PCI devices have only one function per device; in such cases,10
the terms "PCI function" and "PCI device" can be used interchangeably.11

PCI to PCI bridge: a hardware device that is, from an electrical standpoint, a single PCI function on one12
PCI bus (the "parent" bus) and the bus controller of a secondary PCI bus (the "child" bus).13

PCI domain: a group of PCI buses connected together in a tree topology by PCI to PCI bridges.14

relocatable region: a range of PCI address space whose base address is established by a single base address register.15

Master PCI bus: within a PCI domain, the PCI bus that forms the root of the tree structure.16

bus node: an Open Firmware device node that represents a bus controller. In cases where a node represents the17
interface, or "bridge", between one bus and another, the node is both a bus node relative to the bus it controls,18
and a child node of its parent bus. Note that an Open Firmware device node is not in itself a physical hardware19
device; rather, it is a software abstraction that describes a hardware device.20

child node: an Open Firmware device node that represents a PCI function. Such a node can correspond to21
either a device that is "hardwired" to a planar PCI bus, or to an "add in" expansion card that is plugged into a22
standard PCI Expansion Connector.23

 Bus Characteristics24

Address Spaces25

PCI has several address spaces (Memory, I/O, Configuration), with different addressing characteristics.26

Memory Space27

Memory Space is the primary address space of PCI; it corresponds to traditional memory and "memory-mapped"28
I/O. PCI allows for a full 64-bit address range in Memory Space; however, most devices will not require a full29
64-bit range. In order to provide compatibility between devices designed for 64-bit addressing and those for 32-30
bit addressing, the 32-bit address space appears as the first 4 GB region of the 64-bit space; i.e., 64-bit addresses31
with the 32 most-significant bits equal to 0 are used to access 32-bit devices. 64-bit initiators are required to use32
the 32-bit address protocol for any 64-bit address in which the upper 32 bits are all 0.33

The PCI specification requires that all of a device's relocatable resources must be mappable in Memory Space,34
i.e. it is not permissible for a resource to be mappable only in I/O Space (described below).35

The regions of Memory Space to which a PCI device responds are assigned dynamically during system36
initialization, by setting device base address registers in Configuration Space (see below). The size of each such37
region must be a power of two, and the assigned base address must be aligned on a boundary equal to the size of38
the region.39

And encoding of the base address registers for Memory Space allow a resource to require address allocation within40
the first 1 MB. This requirement is reflected in the "reg" property entry for that base register by having the41
't' bit set.42

PCI Bus Binding to Open Firmware DRAFT Revision 1.5

4

Memory Space addressing is "flat" across a PCI domain, in that addresses are not transformed as they cross PCI1
to PCI bridges. The flat address space is not necessarily limited to a single PCI domain; the PCI design attempts2
to make it possible to have a flat address across multiple PCI domains that are peers of one another on a higher-3
level host address bus.4

An early revision of the PCI specification admitted the possibility that some devices might respond to fixed5
(non-relocatable) address ranges. The current revision permits this behavior for VGA and IDE devices, but it is6
possible that some other devices still behave that way. The current specification allows devices to respond to7
fixed addresses after a system reset, but provides a standard way to disable such response, which devices are8
required to implement.9

I/O Space10

I/O Space is similar to Memory Space, except that it is intended as to be used with the special "I/O access"11
instructions that some processors have. As with Memory Space, I/O Space addresses are assigned dynamically12
during system initialization, and the addressing is "flat" across a PCI domain.13

R e l o c a t a b l e I / O S p a c e s h a l l be a l located a t addresses of the form14
aaaa.aaaa.aaaa.aaaa.aaaa.aa00.aaaa.aaaa. This guarantees that relocatable I/O addresses will not conflict15
with hard-decoded address that have non-zero bits in AD[9…8]. Because PCI-PCI bridges restrict I/O address16
space to 16 bits, relocatable I/O Space across PCI-PCI bridges s h a l l be of the form17
0000.0000.0000.0000.aaaa.aa00.aaaa.aaaa.18

Note: although the PCI specification allows 32-bit I/O Space addresses, many of the processors that have special19
I/O access instructions present only a 16-bit I/O address. However, Open Firmware allows for the specification20
of the full 32-bit range.21

PCI also allows devices to have I/O base address registers that implement only the low-order 16 bits. I.e., the22
upper 16 bits are assumed to be 0. When probing, after writing all 1s, the data read back will have the high-order23
16 bits equal to 0, while the low-order 16 bits will reflect the address space requirement. Address space for such a24
base register must be allocated within the first 64 KB of I/O Space. This requirement is reflected in the "reg"25
property for that base register by having the 't'-bit set. This is interpretation of the 't'-bit for I/O Space is26
distinquished from the "alias" case by having the 'n'-bit equal to 0 in its "reg" entry; the corresponding27
"assigned-addresses" entry shall have the 't'-bit equal to 0.28

Hard-decoded Spaces29

PCI allows devices to "hard-decode" Memory and I/O addresses; i.e., the addresses are not subject to relocation30
via a base register. These address ranges are represented by having the non-relocatable bit ('n') set in their31
corresponding "reg" and "assigned-addresses" properties, where the base-register field of the32
phys.hi is 0.33

Furthermore, such devices are allowed to "alias" their hard-decoded I/O addresses by ignoring all but the lower 1034
bits of an I/O address. To conserve "reg" property space, a bit (the 't'-bit, for ten-bit) is included in the35
encoding of hard-decoded (non-relocatable, 'n'-bit = 1) I/O address "reg" and "assigned-36
addresses" entries to indicated that the address range includes all such aliases.37

Configuration Space38

Configuration Space is used primarily during device initialization. Each device contains a set of Configuration39
Registers which are used to identify and configure the device. Configuration Cycles access a device's40
Configuration Registers, including the "address base registers" which must be initialized before the device will41
respond to Memory and I/O Space accesses.42

In contrast to Memory and I/O Space addressing, Configuration Space addressing is effectively "geographical", in43
that the Configuration Space address of a particular device is determined by its physical location on a PCI bus44
(i.e. the slot in which it is installed), or more generally, its physical location within a "tree" of interconnected45
PCI to PCI bridges.46

DRAFT Revision 1.5 PCI Bus Binding to Open Firmware

5

The method for generating Configuration Cycles is system-dependent. In some systems, special registers are1
used to generate Configuration Space cycles. In other systems, Configuration Space might be memory-mapped2
as a region within a large physical address space. In particular, the hardware method for specifying the Bus3
Number and Device Number is system-dependent. Bus Number and Device Number are described below as4
though they are binary-encoded fields within an address; in practice, that is not necessarily true at the hardware5
level. However, the representation described below is adequate as an internal software representation, because it6
is capable of representing the entire possible space of PCI Configuration Space addresses.7

A Configuration Space address consists of several fields:8

Bus Number: 8 bits.9

Each PCI bus within a PCI domain is assigned a unique identifying number, known as the "bus number". The10
assignments occur during system initialization, when the bus controllers for the PCI buses within the PCI11
domain are located. The bus number for a particular bus is written into a register in that bus's bus controller.12

During a Configuration Cycle, each bus controller compares the bus number field of the address to its assigned13
bus number. If they match, the bus controller selects one of the devices on its PCI bus, according to the value14
of the Device Number field. Otherwise, the bus controller either forwards the configuration cycle to its15
subordinate PCI to PCI bridges (if the bus number is for one of its subordinate bridges) or ignores the cycle.16

Device Number: 5 bits17

During a Configuration Cycle, the bus controller selected by the bus number field decodes the Device Number18
field, activating the single corresponding "IDSEL" device select line to enable one of the PCI devices on that19
bus. For PCI buses with plug-in slots, the Device Number field effectively selects a particular slot. Electrical20
limitations restrict the number of devices on an individual PCI bus to fewer than the 32 that could otherwise be21
selected by this 5-bit field.22

Some PCI bus controllers use the same physical wires for the IDSEL lines and higher-numbered address lines,23
thus, on the bus that is selected by the bus number field, the Device Number does not appear on the address bus24
in its 5-bit binary-encoded form. Rather, the 5-bit field is decoded to a "one of n" select that asserts exactly one25
upper address line. This fact does not affect the logical representation of the Device Number as a 5-bit binary-26
encoded field.27

Note: the decoding mechanism (e.g., the address bit selected) from the Device Number is system dependent.28
Furthermore, the implementation of the Open Firmware config-xx words can "hide" this detail. However,29
it is recommended that an Open Firmware implementation choose a numbering which is meaningful to the user.30

Function Number: 3 bits31

Each PCI device can have from one to eight logically-independent functions, each with its own independent set of32
configuration registers. A PCI device that is selected during a Configuration Cycle decodes the Function Number33
field to select the appropriate set of configuration registers for that function. The assignment of Function34
Numbers to particular functions is a hard-wired characteristic of the individual PCI device. For a PCI device with35
only one function, the Function Number must be zero.36

Register Number: 8 bits37

The register number field, decoded by the PCI device, selects a particular register within the set of configuration38
registers corresponding to the selected function. The layout (locations and meanings of particular bits) of the39
first few configuration registers (i.e. those with small register numbers) is specified by the PCI standard; other40
configuration registers are device-specific. The standard configuration registers perform such functions as41
assigning Memory Space and I/O Space base addresses for the device's addressable regions.42

In many PCI hardware implementations, Configuration Space does not appear as a direct subset of the system's43
physical address space; instead, Configuration Space accesses are performed by a sequence of reads or writes to44
special system registers.45

PCI Bus Binding to Open Firmware DRAFT Revision 1.5

6

"Address-less" Cycles1

In addition to these address spaces, PCI has two types of transactions in which the address bus is not used.2
Special Cycles (writes) are "broadcast" cycles in which the data conveys all of the information. Interrupt3
Acknowledge Cycles (reads) are intended to support interrupt control hardware associated with PCI devices. The4
PCI specification does not specify the details of such interrupt control hardware.5

Low-order Address Bits6

The address characteristics described above do not take into account the way that the PCI bus uses the least-7
significant two address bits. In general, at the hardware level, the PCI bus uses the two low address bits8
(AD[1::0]) not to identify the particular byte to be accessed, but instead to convey additional information about9
the data transfer, such as the type of address incrementing for burst transfers. The bytes are selected with "byte10
enable" signals.11

That hardware subtlety is irrelevant for the purposes of this specification; within the Open Firmware domain,12
addresses identify individual 8-bit, 16-bit, and 32-bit registers or memory locations in the usual way. Within13
this document, "address" refers to that software view of an address, which in the case of the two lower address bits14
is not necessarily the same as what is on the PCI address wires.15

 Address Formats and Representations16

 Physical Address Formats17

 Numerical Representation18

(The Numerical Representation of an address is the format that Open Firmware uses for storing an address within19
a property value and on the stack, as an argument to a package method.) The numerical representation of a PCI20
address consists of three cells, encoded as follows. For this purpose, the least-significant 32 bits of a cell is21
used; if the cell size is larger than 32 bits, any additional high-order bits are zero. Bit# 0 refers to the least-22
significant bit.23

 Bit#: 33222222 22221111 11111100 0000000024
 10987654 32109876 54321098 7654321025

phys.hi cell: npt000ss bbbbbbbb dddddfff rrrrrrrr26
phys.mid cell: hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh27
phys.lo cell: llllllll llllllll llllllll llllllll28

where:29

n is 0 if the address is relocatable, 1 otherwise30
p is 1 if the addressable region is "prefetchable", 0 otherwise31
t is 1 if the address is aliased (for non-relocatable I/O), below 1 MB (for Memory),32

or below 64 KB (for relocatable I/O).33
ss is the space code, denoting the address space34
bbbbbbbb is the 8-bit Bus Number35
ddddd is the 5-bit Device Number36
fff is the 3-bit Function Number37
rrrrrrrr is the 8-bit Register Number38
hh..hh is a 32-bit unsigned number39
ll..ll is a 32-bit unsigned number40

When the hh..hh and ll..ll fields are concatenated to form a larger number, hh..hh is the most41
significant portion and ll..ll is the least significant portion.42

The 'p' bit reflects the state of the "P" bit in the corresponding hardware Base Address register.43

DRAFT Revision 1.5 PCI Bus Binding to Open Firmware

7

Encoding of type code "ss":1

00 denotes Configuration Space, in which case:2
n must be zero3
p must be zero4
t must be zero5
bbbbbbbb,ddddd,fff,rrrrrrrrr is the Configuration Space address6
hh..hh,ll..ll must be zero7

8
01 denotes I/O Space, in which case:9

p must be zero10
t is set if 10-bit aliasing is present (for non-relocatable),11

or below 64 KB required (for relocatable).12
bbbbbbbb,ddddd,fff,rrrrrrrr identifies the region's Base Address Register13

rrrrrrrr can be 0x10, 0x14, 0x18, 0x1c, 0x20 or 0x24 (for relocatable)14
rrrrrrrr is 0x00 for non-relocatable15

hh..hh must be zero16
 If n is 0: ll..ll is the 32-bit offset from the start of the relocatable region of I/O17

Space18
 If n is 1: ll..ll is the 32-bit I/O Space address19

20
10 denotes 32-bit-address Memory Space, in which case:21

p may be either 0 or 122
t is set if an address below 1 MB is required23
bbbbbbbb,ddddd,fff,rrrrrrrr identifies the relocatable region's Base Address Register24

rrrrrrrr can be 0x10, 0x14, 0x18, 0x1c, 0x20, 0x24, 0x30 (relocatable)25
rrrrrrrr is 0x00 for non-relocatable26

hh..hh must be zero27
 If n is 0: ll..ll is the 32-bit offset from the start of the relocatable region of 32-bit address Memory Space28
 If n is 1: ll..ll is the 32-bit Memory Space address29

30
11 denotes 64-bit-address Memory Space, in which case:31

p may be either 0 or 132
t must be 033
bbbbbbbb,ddddd,fff,rrrrrrrr identifies the first register of the relocatable region's Base Address 34

Register pair. rrrrrrrr can be 0x10, 0x14, 0x18, 0x1c, or 0x2035
 If n is 0: hh..hh,ll..ll is the 64-bit offset from the start of the relocatable region of 64-bit36

address Memory Space to the start of the subregion37
 If n is 1: hh..hh,ll..ll is the 64-bit Memory Space address38

Note: Although the bit format of the phys.hi cell is generally consistent with the bit format of a particular kind39
of hardware mechanism for Configuration Space access that is recommended by the PCI standard, the use of that40
format does not imply that the hardware must use the same format. The numerical representation specified herein41
contains the information needed to select a particular hardware device, specifying the format by which that42
information is communicated among elements of Open Firmware firmware and client programs. A driver for a43
particular PCI bus hardware implementation is free to extract that information and reformat as necessary for the44
hardware.45

Note: Although the PCI Local Bus Specification defines both prefetchable and non-prefetchable 64-bit-address46
Memory Space, the PCI to PCI Bridge Architecture Specification does not specify a standard means of47
supporting non-prefetchable 64-bit-address Memory Space across PCI to PCI bridges.48

 Text Representation49

The text representation of a PCI address is one of the following forms:50

DD51
DD,F52
[n]i[t]DD,F,RR,NNNNNNNN53

PCI Bus Binding to Open Firmware DRAFT Revision 1.5

8

[n]m[t][p]DD,F,RR,NNNNNNNN1
[n]x[p]DD,F,RR,NNNNNNNNNNNNNNNN2

where:3
DD is an ASCII hexadecimal number in the range 0..1F4
F is an ASCII numeral in the range 0..75
RR is an ASCII hexadecimal number in the range 0..FF6
NNNNNNNN is an ASCII hexadecimal number in the range 0..FFFFFFFF7
NNNNNNNNNNNNNNNN is an ASCII hexadecimal number in the range 0..FFFFFFFFFFFFFFFF8

[n] is the letter 'n', whose presence is optional9
[t] is the letter 't', whose presence is optional10
[p] is the letter 'p', whose presence is optional11
i is the letter 'i'12
m is the letter 'm'13
x is the letter 'x'14
, is the character ',' (comma)15

The correspondence between the text representations and numerical representation is as follows:16

DD17

corresponds to a Configuration Space address with the numerical value:18
ss is 0019
bbbbbbbb is the parent's bus number20
ddddd is the binary encoding of DD21
fff is zero22
rrrrrrrr is zero23
hh..hh is zero24
ll..ll is zero25

DD,F26

corresponds to a Configuration Space address with the numerical value:27
ss is 0028
bbbbbbbb is the parent's bus number29
ddddd is the binary encoding of DD30
fff is the binary encoding of F31
rrrrrrrr is zero32
hh..hh is zero33
ll..ll is zero34

DRAFT Revision 1.5 PCI Bus Binding to Open Firmware

9

[n]i[t]DD,F,RR,NNNNNNNN1

corresponds to a relocatable (if 'n' is not present) or a non-relocatable (if 'n' is present) 32-bit I/O2
Space address with the numerical value. If 't' is present, only the low-order 10 bits of an I/O3
address range is indicated; aliases are assumed to for all high-order bits. The numerical value is:4

ss is 015
bbbbbbbb is the parent's bus number6
ddddd is the binary encoding of DD7
fff is the binary encoding of F8
rrrrrrrr is the binary encoding of RR9
hh..hh is zero10
ll..ll is the binary encoding of NNNNNNNN11

[n]m[t][p]DD,F,RR,NNNNNNNN12

corresponds to a relocatable (if 'n' is not present) or a non-relocatable (if 'n' is present) 32-bit13
Memory Space address. If 't' is present, the address is within the first 1 MB of memory address14
space. The the numerical value is:15

ss is 1016
bbbbbbbb is the parent's bus number17
ddddd is the binary encoding of DD18
fff is the binary encoding of F19
rrrrrrrr is the binary encoding of RR20
hh..hh is zero21
ll..ll is the binary encoding of NNNNNNNN22

[n]x[p]DD,F,RR,NNNNNNNNNNNNNNNN23

corresponds to a relocatable (if 'n' is not present) or a non-relocatable (if 'n' is present) 64-bit24
Memory Space address with the numerical value:25

ss is 1026
bbbbbbbb is the parent's bus number27
ddddd is the binary encoding of DD28
fff is the binary encoding of F29
rrrrrrrr is the binary encoding of RR30
hh..hh,ll..ll is the binary encoding of NNNNNNNNNNNNNNNN31

Conversion of hexadecimal numbers from text representation to numeric representation shall be case-insensitive,32
and leading zeros shall be permitted but not required.33

Conversion from numeric representation to text representation shall use the lower case forms of the hexadecimal34
digits in the range a..f, suppressing leading zeroes, and the DD form shall be used for Configuration Space35
addresses where fff is zero.36

 Unit Address Representation37

As required by this specification's definition of the "reg" property, a function's "unit-number" (i.e. the first38
component of its "reg" value) is the Configuration Space address of the function's configuration registers.39
Since the "unit-number" is the address that appears in an Open Firmware 'device path', it follows that only the40
DD and DD,FF forms of the text representation can appear in a 'device path'.41

Note: Since the predominant use of the text representation is within 'device paths', text representations of I/O42
and Memory Space addresses are rarely seen by casual users.43

Note: The bus number does not appear in the text representation. If the bus number were present, then the44
pathname of a particular device would depend on the particular assignment of bus numbers to bus controllers, so45
the pathname could change if PCI to PCI bridges were added or removed from other slots. (It is generally46
undesirable for the pathname of a particular device to depend on the presence or absence of other devices that are47
not its ancestors in the device tree.) The combination of a device node's position in the device tree, its Device48

PCI Bus Binding to Open Firmware DRAFT Revision 1.5

10

Number and its Function Number uniquely select an individual function based on physical characteristics of the1
system, so the function's pathname does not change unless the device is physically moved.2

Note: The bus number appears in the numerical representation because that makes it easier to implement3
Configuration Space access methods. The decode-unit method automatically inserts the bus number in4
the numerical representation; it can do so because each bus node knows the bus number of the bus it represents.5

Open Firmware implications:6

Since some processors cannot generate I/O cycles directly, I/O Space accesses must be done with the register7
access words (e.g., rb@, rw!).8

It is recommended that a range of virtual addresses be set aside for use by map-in to I/O Space devices so that9
the register access words can determine when an I/O cycle needs to be generated.10

Since Configuration Space often does not appear as a subset of the system's physical address space, this firmware11
specification provides bus-specific methods to access Configuration Space. Likewise, it provides methods for12
Special Cycles and Interrupt Acknowledge Cycles.13

 Bus-specific Configuration Variables14

An Open Firmware-compliant User Interface on a system with a single built-in PCI bus may implement15
the following PCI-specific Configuration Variable.16

pci-probe-list (-- list-str list-len) N17
Holds list of slots to probe with probe-pci .18

A configuration variable containing a string, formatted as described in the following section, indicating the set of19
slots that will be probed when probe-pci is executed. The maximum length shall be sufficient to contain a20
string listing all of the PCI bus's implemented slots.21
Configuration Variable Type: string22
Default value: a system-dependent value that includes all available slots, in numerically-ascending order.23
Note: pci-probe-list is intended for the common case of a system with a single built-in PCI bus. On24
systems with multiple PCI buses, fine-grained control over the probe order can be achieved by repeated execution25
of the probe-self method within individual bus nodes. In any case, the ability to control the probe order is26
primarily intended as a convenience when debugging faulty expansion cards. Normally, the default probe order (all27
available slots) is used.28

 Format of a Probe List29

A PCI probe list is a text string consisting of a series of lower-case hexadecimal numbers separated by commas.30
Each number is in the range 0..1f, corresponding to the slot with the same Device Number. For a given PCI31
bus implementation, only the numbers corresponding to existing slots are valid.32

The first number in the series specifies the first slot to be probed, and so on.33

 FCode Evaluation Semantics34

See the description of probe-pci for the precise specification of the FCode evaluation semantics.35

 Bus Nodes36

Note: A PCI to PCI bridge is a parent of one PCI bus and a child of another. Consequently, a device node37
representing a PCI bridge is both a Bus Node and a Child Node, with both sets of properties and methods.38

 Properties39

 Open Firmware-defined Properties for Bus Nodes40

The following standard properties, as defined in Open Firmware, have special meanings or interpretations for PCI.41

DRAFT Revision 1.5 PCI Bus Binding to Open Firmware

11

"device_type" S1
Standard prop-name to specify the implemented interface. prop-encoded-array: a string encoded with encode-2
string .3
The meaning of this property is as defined in Open Firmware. A Standard Package conforming to this specification4
and corresponding to a device that implements a PCI bus shall implement this property with the string value5
"pci".67

"#address-cells" S8
Standard prop-name to define the number of cells necessary to represent a physical address.9
prop-encoded-array: Integer constant 3, encoded with encode-int.10
The value of "#address-cells" for PCI Bus Nodes is 3.1112

"#size-cells" S13
Standard prop-name to define the number of cells necessary to represent the length of a physical address range.14
prop-encoded-array: Integer constant 2, encoded as with encode-int.15
The value of "#size-cells" for PCI Bus Nodes is 2, reflecting PCI's 64-bit address space.1617

"reg" S18
Standard prop-name to define the package's unit-address.19
For nodes representing PCI to PCI bridges, the "reg" property is as defined for PCI Child Nodes. The value20
denotes the Configuration Space address of the bridge's configuration registers.21
For bridges from some other bus to PCI bus, the "reg" property is as defined for that other bus.2223

 Bus-specific Properties for Bus Nodes24

"clock-frequency" S25
prop-name, denotes frequency of PCI clock.26
prop-encoded-array: An integer, encoded as with encode-int, that represents the clock frequency, in hertz, of27
the PCI bus for which this node is the parent.2829

"bus-range" S30
prop-name, denotes range of bus numbers controlled by this PCI bus.31
prop-encoded-array: Two integers, each encoded as with encode-int, the first representing the bus number of32
the PCI bus implemented by the bus controller represented by this node (the secondary bus number in PCI to PCI33
bridge nomenclature), and the second representing the largest bus number of any PCI bus in the portion of the PCI34
domain that is subordinate to this node (the subordinate bus number in PCI to PCI bridge nomenclature).35

"slot-names" S36
prop-name, describes external labeling of add-in slots.37
prop-encoded-array: An integer, encoded as with encode-int, followed by a list of strings, each encoded as38
with encode-string.39
The integer portion of the property value is a bitmask of available slots; for each add-in slot on the bus, the bit40
corresponding to that slot's Device Number is set. The least-significant bit corresponds to Device Number 0, the41
next bit corresponds to Device Number 1, etc. The number of following strings is the same as the number of slots;42
the first string gives the label that is printed on the chassis for the slot with the smallest Device Number, and so43
on.4445

 Methods46

 Open Firmware-defined Methods for Bus Nodes47

A Standard Package implementing the "pci" device type shall implement the following standard methods as48
defined in Open Firmware, with the physical address representations as specified in section 2.1 of this standard,49
and with additional PCI-specific semantics:50
open (-- okay?) Prepare this device for subsequent use51
close (--) Close this previously-open device52
map-in (phys.low phys.mid phys.hi size -- virt) Map the specified subregion.53

PCI to PCI bridges pass through addresses unchanged. Consequently, a PCI to PCI bridge node's implementation of54
map-in typically just forwards the request to its parent.55
For a master PCI bus node in "probe state", if the physical address is relocatable, the map-in method shall assign56
a base address and set the appropriate base address register to that address. Such "probe state" assignments are57
temporary and are not necessarily valid after the corresponding map-out.58

PCI Bus Binding to Open Firmware DRAFT Revision 1.5

12

map-out (virt size --) Destroy mapping from previous map-in1
PCI to PCI bridges pass through addresses unchanged. Consequently, a PCI to PCI bridge node's implementation of2
map-out typically just forwards the request to its parent.3
For a master PCI bus node in "probe state", if the physical address is relocatable and there are no other active4
mappings within the relocatable region containing that address, the map-out method shall unassign the base5
address of the region, freeing the corresponding range of PCI address space for later re-use. A Standard FCode6
program shall unmap (as with map-out) all base addresses that it mapped and shall siable memory or I/O space7
access in the Command Register.8

dma-alloc (size -- virt) Allocate a memory region for later use9
dma-free (virt size --) Free memory allocated with dma-alloc10
dma-map-in (.. virt size cacheable? -- devaddr) Convert virtual address to device bus DMA address.11
dma-map-out (virt devaddr size --) Free DMA mapping set up with dma-map-in12
dma-sync (virt devaddr size --) Synchronize (flush) DMA memory caches13
probe-self (arg-str arg-len reg-str reg-len fcode-str fcode-len --) Interpret FCode, as a child of this node14
decode-unit (addr len -- phys.lo phys.mid phys.hi) Convert text representation of address to numerical representation15
encode-unit (phys.lo phys.mid phys.hi -- addr len) Convert numerical representation of address to text representation16

Note: The PCI bus is little-endian; i.e. a byte address whose least-significant two bits are both zero uses the bus17
byte lane containing the least-significant portion of a 32-bit quantity. Typically, a bridge from a big-endian bus18
to a PCI bus will swap the byte lanes so that the order of a sequence of bytes is preserved when that sequence is19
transferred across the bridge. As a result, the hardware changes the position of bytes within a 32-bit quantity that20
is viewed as a 32-bit unit, rather than as a sequence of individually-addressed bytes. In order to properly21
implement the semantics of the Open Firmware register access words (e.g. rl!), the device node for such byte-22
swapping bridges must substitute versions of those words that "undo" the hardware byte-swapping.23

 Bus-specific Methods for Bus Nodes24

Configuration Access Words25

The methods described below have execution semantics similar (especially with respect to write-buffer flushing,26
atomicity, etc.) to those of the register access words (e.g., rb@ , rw!); in most implementations, these27
methods will be implemented via the register access words.28

The data type 'config-addr' refers to the 'phys.hi' cell of the numerical representation of a Configuration Space29
address. The 'config-addr' shall be aligned to the data type of the access.30

config-l@ (config-addr -- data)31
Performs a 32-bit Configuration Read.32

33

config-l! (data config-addr --)34
Performs a 32-bit Configuration Write.35

36

config-w@ (config-addr -- data)37
Performs a 16-bit Configuration Read.38

39

config-w! (data config-addr --)40
Performs a 16-bit Configuration Write.41

42

config-b@ (config-addr -- data)43
Performs an 8-bit Configuration Read.44

45

config-b! (data config-addr --)46
Performs an 8-bit Configuration Write.47

assign-package-addresses (phandle --)48
Assigns addresses (i.e., creates "assigned-addresses" property) for the child node denoted by phandle.49

50

Address-less Access Words51

intr-ack (--)52
Performs a PCI Interrupt Acknowledge Cycle.53

54

DRAFT Revision 1.5 PCI Bus Binding to Open Firmware

13

special-! (data bus# --)1
Performs a PCI Special Cycle on the indicated bus#.2

Note: Standard PCI to PCI bridges provide a mechanism for converting Configuration Cycles with particular3
addresses to Special Cycles. Consequently, for a PCI to PCI bridge, the likely implementation of special-!4
involves invoking the parent node's config-l! method.56

 Child Nodes7

Note: A PCI to PCI bridge is a parent of one PCI bus and a child of another. Consequently, a device node8
representing a PCI bridge is both a Bus Node and a Child Node, with both sets of properties and methods.9

 Properties10

 Open Firmware-defined Properties for Child Nodes11

The following properties, as defined in Open Firmware, have special meanings or interpretations for PCI.12

"reg" S13
Standard prop-name, defines device's addressable regions.14
prop-encoded-array: Arbitrary number of (phys-addr size) pairs.15
phys-addr is (phys.lo phys.mid phys.hi), encoded as with encode-phys. size is a pair of integers, each encoded16
as with encode-int .17
The first integer denotes the most-significant 32 bits of the 64-bit region size, and the second integer denotes the18
least significant 32 bits thereof.19
This property is mandatory for PCI Child Nodes, as defined by Open Firmware. The property value consists of a20
sequence of (phys-addr, size) pairs. In the first such pair, the phys-addr component shall be the Configuration21
Space address of the beginning of the function's set of configuration registers (i.e. the rrrrrrrr field is zero) and the22
size component shall be zero. Each additional (phys-addr, size) pair shall specify the address of an addressable23
region of Memory Space or I/O Space associated with the function.24
In the event that a function has an addressable region that can be accessed relative to more than one Base Address25
Register (for example, in Memory Space relative to one Base Register, and in I/O Space relative to another), only26
the primary access path (typically, the one in Memory Space) shall be listed in the "reg" property, and the27
secondary access path shall be listed in the "alternate-reg" property.2829

"interrupts" S30
prop-name, the presence of which indicates that the function represented by this node is connected to a PCI31
expansion connector's interrupt line.32
prop-encoded-array: Integer, encoded as with encode-int. The integer represents the interrupt line to which33
this function's interrupt is connected; INTA=1, INTB=2, INTC=3, INTD=4. This value is determined from the34
contents of the device's Configuration Interrupt Pin Register.3536

 Bus-specific Properties for Child Nodes37

Standard Packages corresponding to devices that are children of a PCI bus shall implement the following38
properties, if applicable.39

40

"alternate-reg" S41
prop-name, defines alternate access paths for addressable regions.42
prop-encoded-array: Arbitrary number of (phys-addr size) pairs.43
phys-addr is (phys.lo phys.mid phys.hi), encoded as with encode-phys. size is a pair of integers, each44
encoded as with encode-int .45
The first integer denotes the most-significant 32 bits of the 64-bit region size, and the second integer denotes the46
least significant 32 bits thereof.47
This property describes alternative access paths for the addressable regions described by the "reg" property.48
Typically, an alternative access path exists when a particular part of a device can be accessed either in Memory49
Space or in I/O Space, with a separate Base Address register for each of the two access paths. The primary access50
paths are described by the "reg" property, and the secondary access paths, if any, are described by the51
"alternate-reg" property.52
If the function has no alternative access paths, the device node shall have no "alternate-reg" property. If53
the device has alternative access paths, each entry (i.e. each phys-addr size pair) of its value represents the54
secondary access path for the addressable region whose primary access path is in the corresponding entry of the55
"reg" property value. If the number of "alternate-reg" entries exceeds the number of "reg" property56
entries, the additional entries denote addressable regions that are not represented by "reg" property entries, and57

PCI Bus Binding to Open Firmware DRAFT Revision 1.5

14

are thus not intended to be used in normal operation; such regions might, for example, be used for diagnostic1
functions. If the number of "alternate-reg" entries is less than the number of "reg" entries, the regions2
described by the extra "reg" entries do not have alternative access paths. An "alternate-reg" entry3
whose phys.hi component is zero indicates that the corresponding region does not have an alternative access path;4
such an entry can be used as a "place holder" to preserve the positions of later entries relative to the corresponding5
"reg" entries. The first "alternate-reg" entry, corresponding to the "reg" entry describing the6
function's Configuration Space registers, shall have a phys.hi component of zero.78

"fcode-rom-offset" S9
prop-name, denotes offset of FCode image within the device's Expansion ROM.10
prop-encode-arrray: one integer, encoded as with encode-int.11
This property indicates the offset of the PCI Expansion ROM image within the device's Expansion ROM in which12
the FCode image was found; i.e., the offset of the 0xAA55 signature of that image's PCI Expansion ROM Header.13
This value shall be generated before the FCode is evaluated. Note that the absence of this property indicates that14
no FCode exists for this device node.1516

"assigned-addresses" S17
prop-name, denotes assigned physical addresses18
prop-encoded-array: Zero to six (phys-addr size) pairs.19
phys-addr is (phys.lo phys.mid phys.hi), encoded as with encode-phys. size is a pair of integers, each encoded20
as with encode-int .21
The first integer denotes the most-significant 32 bits of the 64-bit region size, and the second integer denotes the22
least significant 32 bits thereof.23
Each entry (i.e. each phys-addr size pair) in this property value corresponds to either one or two (in the case 64-24
bit-address Memory Space) of the function's Configuration Space base address registers. The entry indicates the25
physical address that has been assigned to that base address register, and the size in bytes of the assigned region.26
The size shall be a power of two (since the structure of PCI Base Address registers forces the decoding granularity to27
powers of two). The 'n' bit of each phys-addr shall be set to 1, indicating that the address is absolute (within the28
PCI domain's address space), not relative to the start of a relocatable region. The type code shall not be '00'29
(Configuration Space). The 'bbbbbbbb,ddddd,fff,rrrrrrrr' field indicates the base register to which the30
entry applies, and the 'hh..hh,ll..ll' field contains the assigned address.31
If addresses have not yet been assigned to the function's relocatable regions, this property shall be absent.32
The values reported in "assigned-addresses" represent the physical addresses that have been assigned. If33
Open Firmware can not assign address space for a resource (e.g., the address space has been exhausted), that34
resourcs will not have an entry in the "assigned-addresses" property. If no resources were assigned35
address space, the "assigned-addresses" property shall have a prop-encoded-array of zero length.36
Note: There is no implied correspondence between the order of entries in the "reg" property value and order of37
entries in the "assigned-addresses" property value. The correspondence between the "reg" entries and38
"assigned-addresses" entries is determined by matching the fields denoting the Base Address register.3940

"power-consumption" S41
prop-name, describes function's power requirements42
prop-encoded-array: list of integers, encoded as with encode-int, describing the device's maximum power43
consumption in microwatts, categorized by the various power rails and the device's power-management state44
(standby or fully-on). The ints are encoded in the following order:45

unspecified standby, unspecified full-on, +5V standby, +5V full-on, +3.3V standby, +3.3V full-on, I/O pwr46
standby, I/O pwr full-on, reserved standby, reserved full-on47

The "unspecified" entries indicate that the power division among the various rails is unknown. The "unspecified"48
entries shall be zero if any of the other entries are non-zero. The "unspecified" entries are provided so that the49
"power-consumption" property can be created for devices without FCode, from the information on the50
PRSNT1# and PRSNT2# connector pins.51
If the number of ints in the encoded property value is less than ten, the power consumption is zero for the cases52
corresponding to the missing entries. For example, if there are four ints, they correspond to the two "unspecified"53
and the two "+5" numbers, and the others are zero.5455

Standard PCI Configuration Properties56

The following properties are created during the probing process, after the device node has been created, but before57
evaluating the device's FCode (if any). They represent the values of standard PCI configuration registers. This58
information is likely to be useful for Client and User interfaces.59

Unless specified otherwise, each of the following properties has a prop-encoded-array whose value is an integer60
taken directly from the corresponding hardware register, encoded as with encode-int.61
"vendor-id" S62
"device-id" S63
"revision-id" S64
"class-code" S65

DRAFT Revision 1.5 PCI Bus Binding to Open Firmware

15

"interrupts" S1
This property shall be present if the Interrupt Pin register is non-zero, and shall be absent otherwise.2

"min-grant" S3
"max-latency" S4
"devsel-speed" S5
"fast-back-to-back" S6

prop-encoded-array: <none>7
This property shall be present if the "Fast Back-to-Back" bit (bit 7) in the function's Status Register is set, and8
shall be absent otherwise.9

"subsystem-id"10
This property shall be present if the "Subsystem ID" register is non-zero, and shall be absent otherwise.11

"subsystem-vendor-id"12
This property shall be present if the "Subsystem Vendor ID" register is non-zero, and shall be absent otherwise.13

"66mhz-capable"14
prop-encoded-array: <none>15
This property shall be present if the "66 MHz Capable" bit (bit 6) in the function's Status Register is set, and shall16
be absent otherwise.17

"udf-supported"18
prop-encoded-array: <none>19
This property shall be present if the "UDF Supported" bit (bit 5) in the function's Status Register is set, and shall20
be absent otherwise.21

2223

 Methods24

 Bus-specific User Interface Commands25

An Open Firmware-compliant User Interface on a system with PCI should implement the following PCI-specific26
user interface commands.27

probe-pci (--)28
Interprets FCode for all built-in PCI slots in numerical order.29
Enter "probe state", thus affecting subsequent behavior of the map-in and map-out methods.30
Scan all slots in numerical order. For each slot, read the header type field in the configuration register set for31
function number 0. If the header type field indicates a PCI-PCI bridge, perform the function described in the32
Probing PCI-PCI bridges section. If the header type field indicates a multi-function device, perform the following33
sequence for each of the functions that are present (as determined by the presence of a non-FFFFh value in the34
Vendor ID field of the function's Configuration Space header). Otherwise, perform the following sequence for the35
card's function number 0. The first attempted access to each function shall use lpeek, because in some systems36
an attempted access to a non-existent device might result in a processor exception (e.g. a "bus error").37
Note: Although some PCI implementations will not generate processor exceptions for aborted cycles, that is not38
an inherent limitation of PCI itself, but instead an implementation choice that is appropriate for some system39
architectures. A PCI host bridge knows if it terminated a cycle with a master abort. Since the PC system40
architecture lacks the notion of a bus error, PC to PCI host bridges cannot report a bus error to the PC, so they have41
to complete the cycle and return all ones to the x86 processor. However, in a non-PC system, the PCI host bridge42
could terminate the processor cycle with a bus error. Open Firmware peek and poke can behave in their normal43
way; if the processor can get a bus error, peek and poke can report it. If not, peek and poke will never say they44
got a bus error, they will just return whatever data the cycle yielded. This is not a problem, because the probing45
process involves doing a peek and also looking at the data to see if it is right.46
Create the following properties from the information given in the configuration space header.47

"vendor-id"48
"device-id"49
"revision-id"50
"class-code"51
"interrupts"52
"min-grant" (Unless Header Type is 01h)53
"max-latency" (Unless Header Type is 01h)54
"devsel-speed"55
"fast-back-to-back"56
"subsystem-id"57
"subsystem-vendor-id"58
"66mhz-capable"59

PCI Bus Binding to Open Firmware DRAFT Revision 1.5

16

"udf-supported"1
Note: The feasibility of automatically creating the above properties depends on the ability to recognize the2
configuration header format. At present, there are two such formats - the base format defined by the PCI Local3
Bus Specification and the PCI to PCI bridge format defined by the PCI to PCI Bridge Architecture4
Specification. Those two formats are almost, but not entirely, consistent with respect to the fields defined5
above (in particular, the max-latency and min-grant fields have a different meaning in the bridge header6
format). If additional formats are defined in the future, then it is possible that firmware written before those7
formats are defined will not be able to recognize them. The question arises: Should the firmware assume that,8
with respect to the above fields, new formats are consistent with the existing ones, creating the properties9
without regard to header type, or should the firmware do nothing if it sees an unrecognized header type. The10
latter is, in some sense, safer, but it also precludes forwards compatibility, which is a serious deficiency.11

Then determine whether or not the function has a expansion ROM image containing an FCode Program.12
Note: The location of the Expansion ROM Base Address Register differs between the two currently-defined13
header types. Where will it be in future header types? Furthermore, the details of Expansion ROMs on PCI to14
PCI bridges are not specified by the current revision of the PCI to PCI bridge spec.15

If the function has an FCode Program, evaluate the FCode Program as follows:16
Copy the FCode program from expansion ROM into a temporary buffer in RAM and evaluate it as with byte-17
load. (The temporary RAM buffer may be deallocated afterwards.) Set the "fcode-rom-offset"18
property to the offset of the ROM image at which the FCode was found.19
When the FCode Program begins execution, my-address and my-space together return the20
Configuration Space address of the device's configuration register set.21

Note: Since the phys.mid and phys.lo components of Configuration Spaces addresses must be zero, my-22
address returns a pair of zeros; the interesting phys.hi information, which is necessary for accessing23
the configuration registers via the config-xx methods, is returned by my-space.24

The FCode Program is responsible for creating the "name" and "reg" properties.25
If the function does not have an FCode Program:26

Create the following properties from information in the device's Configuration Space registers:27
"reg" Create entries for all active configuration base address registers, including the Expansion ROM base28

register, with size components describing the total size of the region mapped by each register.29
(Without FCode, it is not necessarily possible to determine whether or not there are multiple base30
address registers mapping the same resource, so it is not possible to create an "alternate-31
reg" property.)32
Note: the number of active base address registers depends in part on the header type configuration33
field; in particular, header types 0x01and 0x81, denoting the standard PCI to PCI bridge header34
format, have at most two base address registers, whereas header types 0x00 and 0x80have up to35
seven base address registers (including the Expansion ROM's).36

"name" Construct a name of the form pciVVVV,DDDD. If the Subsystem ID field in the37
configuration registers for this device is non-zero, VVVV,DDDD shall be the Subsystem Vendor ID38
and Subsystem ID respectively; otherwise VVVV,DDDD shall be the value of the Vendor ID and39
Device ID fields. VVVV and DDDD are ASCII hexadecimal numbers, lower case, without leading40
zeros.41

Create the "power-consumption" property from the state of the PRSNT1# and PRSNT2# connector, if42
possible.43

Disable fixed-address response by clearing the Command Register.44
After all slots have been so probed, exit "probe state", assign base addresses (by allocating the address space and45
setting the base address register) for each distinct base address register (or register pair) listed in any child's46
"reg" property, and create "assigned-addresses" properties describing those assignments in the47
corresponding child device nodes.48
On each PCI bus within the domain, set the Latency Timer registers for each master to values appropriate for the49
other devices on that bus, according to the values of the other device's MIN_GNT and MAX_LAT registers.50

DRAFT Revision 1.5 PCI Bus Binding to Open Firmware

17

On each PCI bus within the domain, if all target devices on that bus have "fast back-to-back" capability, set the1
"fast back-to-back" enable bits in the Command registers of master devices.2

make-properties (--)3
Create the default PCI properties (as described above for probe-pci) for the current instance.4
This user interface word is intended to be used for debugging FCode within the context of begin-package …5
end-package. This word should be exectuted before evaluating the FCode for the node.6

assign-addresses7
Assign addresses for the current instance.8
This user interface word is intended to be used for debugging Fcode within the context of begin-package …9
end-pacakge. Executing this word causes addresses to be assigned to this node (based on the current "reg"10
property value), creating an "assigned-addresses" property replecting those addresses. This word should11
be executed after evaluating the FCode for the node.12

Probing PCI-PCI bridges13

The recursive algorithm described in this section allows bus number and address assignment to be done in a14
single depth-first manner. Bus numbers are assigned on the way down the PCI bus heirarchy and addresses are15
assigned to on the way back up. Another algorithm may be used.16

Note: while this is a simple algorithm (e.g., it does not require a "global" address allocation pass), it does not17
provide the most optimal system-wide address assignment.18

If the function is a standard PCI-PCI bridge (as indicated by the class code and the header type fields), set the19
bridge's Primary Bus # register to the bus number of the parent bus, assign the next bus number to that bridge,20
setting its Secondary Bus # register to that number, set the bridge's Subordinate Bus # register to 0xFF, and21
recursively scan the slots of that bridge's subordinate bus.22

When that recursive scanning process returns, set the bridge's Subordinate Bus # register to the largest bus23
number assigned during the recursive scan. At this point, bus numbers have been assigned to all subordinate24
buses, and addresses have been assigned for all devices on the subordnate buses, for this bridge within the PCI25
domain. Then, assign addresses to all devices on the Secondary Bus and set the Memory Base, Memory Limit,26
I/O Base and I/O Limit registers of the bridge to their appropriate values and enable Memory and I/O27
transactions. Due to the mapping characteristics of PCI-PCI bridges, the ranges of Memory addresses for28
subordinate devices shall be aligned to 1 MB boundaries, and the ranges of I/O addresses shall be aligned to 4 KB29
boundaries.30

Legacy devices31

"Legacy" VGA and IDE devices that are implemented on PCI will typically have the same "hard-decoded"32
addresses as they did on ISA. Such devices that have FCode can use explicit indication of their address33
requirements as described above. However, for cards that have no FCode image, Open Firmware shall assume the34
standard address ranges and shall create the "reg" property with these ranges, in addition to any relocatable35
regions that have base registers.36

For VGA devices (class-code = 0x000100 or 0x030000), the address ranges are:37
0x3B0-0x3BB (I/O, aliased; t=1)38
0x3C0-0x3DF (I/O, aliased; t=1)39
0xA0000-0xBFFFF (Memory, below 1MB, t=1)40

For IDE devices (class-code = 0x010100), the address ranges are:41
0x1F0-0x1F7 Primary Command Block (I/O)42
0x3F6 Primary Control Block (I/O)43
0x170-0x17F Secondary Command Block (I/O)44
0x376 Secondary Control Block (I/O)45

46

47

PCI Bus Binding to Open Firmware DRAFT Revision 1.5

18

 ROM Image Format for FCode:1

Offset from start2
of ROM Image Data3

00h - 01h ROM signature field of ROM Header (PCI spec 6.3.1.1)4

02h - 03h Pointer to FCode program. This is a 16-bit field that is the offset from the start5
of the ROM image and points to the FCode Program. The field is in little-endian6
format. (This field is within the "Reserved for processor-unique data" field of the7
ROM Header.)8

04h - 17h Reserved (remainder of "Reserved for processor-unique data" field of the ROM9
Header).10

18h - 19h "Pointer to PCI Data Structure" field of ROM Header.11

1Ah - FFFFh PCI Data Structure (PCI spec 6.3.1.2) with "Code Type" = 112

38h - FFFFh The PCI Data Structure (PCI spec 6.3.1.2), Vital Product Data, and FCode13
Program can each begin anywhere within this range, in any order. The "Code14
Type" field of the PCI Data Structure shall have the value "1".15

The FCode Program is as described in Open Firmware; its size is given by the16
standard Open Firmware FCode Program header. FCode bytes shall appear at17
consecutive byte addresses.18

Encapsulated Drivers19

This section describes a mechanism which allows the encapsulation of run-time drivers within the standard Open20
Firmware expansion ROM.21

The FCode contained within a PCI card's expansion ROM provides for Open Firmware drivers for the device. To22
enhance the "plug-and-play" of cards in common system platforms, it is desirable to be able to include run-time23
drivers within this expansion ROM, thus eliminating the extra step of installing drivers onto the OS boot24
device.25

The information about run-time drivers is encoded as additional standard properties within the device tree. These26
properties are created by the FCode probe code of the plug-in card, and are used by the OS to locate and load the27
appropriate driver. Two new properties are defined; they differ as to how the location of the run-time driver is28
defined.29

"driver,…" format30
This property, encoded as with encode-bytes, contains the run-time driver.31

This format is used when the run-time driver is contained within the FCode image, itself. The value of the32
property is the encapsulated driver; the prop-addr,prop-len reported by the various "get-property" FCodes33
and/or getprop Client interface call represent the location and size of the driver within the device tree's data34
space. I.e., decode-bytes could be used to copy the driver into the desired run-time location.35

"driver-reg,…" format36
This property, encoded as with the "reg" standard property , contains a relative pointer to the run-time driver.37

This format is used when the driver is not directly contained within the FCode image, but rather, is located in38
some other portion of the Expansion ROM. The value is encoded in a "reg" format, where the address is39
relative to the expansion ROM's base address. This format conserves device tree (and, FCode) space, but requires40
the OS to perform the actions of mapping in the Expansion ROM, using the information supplied by this41
property and the "assigned-addresses" for the Expansion ROM, and copying the driver, itself.42

Note: the "fcode-rom-offset" property facilitates the generation of this property within the context of43
the FCode's image. The driver can be located relative to the ROM image that contains the FCode (but, does not44
have to be within the FCode, itself) without regard to the location of that ROM image relative to others within45
the same Expansion ROM. I.e., "self-relocating" images containing encapsualted drivers can be created that can46
be concatentated with other images without altering any data within an image (except, of course, for the Indicator47
to properly indicate the last image).48

DRAFT Revision 1.5 PCI Bus Binding to Open Firmware

19

Naming conventions1

The complete property name for these encapsulated drivers is chosen to allow multiple drivers to co-exist within2
the expansion ROM. An OS will locate its desired driver by an exact match of its property name among any3
such "driver," ("driver-reg,") properties contained within the device tree for this device. The formats4
of the complete names are:5

"driver,OS-vendor,OS-type,Instruction-set"6
"driver-reg,OS-vendor,OS-type,Instruction-set"7

The OS-vendor component is as defined for device-names; i.e., organizational unique identifier (e.g., stock8
symbol). The OS-type & Instruction-set components are defined by the OS-vendor. An example would be:9

"driver-reg,AAPL,MacOS,PowerPC"10

11

12

13

