© 1992-1995 Apple Computer Inc. Apple, the Apple logo, AppleTalk, Macintosh, and MPW are
trademarks of Apple Computer, Inc., registered in the United States and other countries. Finder and
System 7 are trademarks of Apple Computer, Inc. OS/2 is a registered trademark of International

Business Machines Corporation. Windows is a trademark of Microsoft Corporation. UNIX is a registered

@@@5 %%@5@@@ ﬁﬂw trademark of UNIX System Laboratories, Inc.
Client Developer Note

PRELIMINARY
Revision 1.1b14
11/18/96

Apple Computer, Inc., thanks X/Open Company Limited for permission to include excerpts from its X/Open CAE

Abstract:
This document describes the application programming interfaces of the
Open Transport endpoint and mapper libraries, which lets Macintosh
developers write transport-independent network applications.

Specification: X/Open Transport Interface (XT1) (Document Reference XO/CAE/92/600 or C192 ISBN 1-872630-29-4)

throughout this manual.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page ii
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Contents

Contents

ADOUL THIS DOCUMIENT ...ttt bbbt ettt
Related DOCUMENTScuuiiiiitiieiiets s bbbt
Revision History
Format of Function Descriptions

INtroduction t0 OPEN TFANSPOIT.......c.cviviiiiriiriee bbbttt 1
TransPOrt INAEPENAENCEc.cvuiiiiiiiieieieieieieiet et 1
TranSPOrt TFANSPAIENCYcouuiiiiiiiiiiiiisiesie s
Transaction PrOtOCOISc.oviiiciiiiiiii s
Operating ENVIFONIMENTcoiiiiiieis bbb
Client Programming Interfaces
Open Transport and INtErrUPt ROUTINEScooviiiiiieiiiecees e 3

Getting Started ...
Determining if Open Transport is installed

Using Open Transport From Stand-Alone COOE...........cociriiiieniiese e 4
Using Open Transport From ApPPlICAtiONS............cocciiiii s 4
Using Open Transport From C CHENTScooieiiiiiiecse s 5
Using Open Transport From C++ CHENEScooiiiiiriece e 5

About Providers ...
Specifying provider services

SPECIHTYING POITS ... 6
MOAES OF OPEFALION ... 9
BIOCKING -ttt h bbb bbbttt 9
ACKSENTS ..o 9

Setting the Mode of Operation.

SetSynchronous
SetAsynchronous
I1sSynchronous
Controlling Operations on a Provider .
OTCIOSEPIOVIAET ...ttt
SetBlocking..
SetNonBlocking
ISNONBIOCKING .t
ACKSENGAS ...
DONEACKSENGS ...
IsAckingSends ...
TransferOwnership

ADOUL ENAPOINES ...ttt bbbt 30

Contents

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page iii
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Endpoint States

Connectionless Endpoints
Connection-Oriented Endpoints..
g for Asynchronous Events
Using Asynchronous Mode
Handling Events for endpoints

Po

Open Transport Data Structures
TNetbuf Structure .
OTData Structure
TEndpointinfo Structure
Opening and Closing Endpoints

OTOpenEndpoint
OTAsyncOpenEndpoint
Binding and Unbinding

Bind

Getting Information About an Endpoint
GetEndpointinfo
GetEndpointState
LLOOK bbbttt
GetProtAddress
ResolveAddress

Sync

Allocating Structures .

Alloc
Free

Managing Options

OVEIVIBW ...ttt
POTTADITITY ...

Option Format ...
Option Negotiation
Multiple Options and Options Levels
Illegal Options...
Initiating an Option Negotiation
Responding to a Negotiation Proposal
Retrieving Information About Options
Privileged and Read-Only Options
Option Management of a Transport Endpoint
The Option value T_UNSPEC.
The info Argument

Summary ..

OptionManagement
Using Connectionless Datagrams

SNAUDALA ...ttt ettt bbbttt en s
ROVUDEIT ...ttt ettt s e s st
ROVUDALA ...ttt n st

Using Connections ...
Initiating a connection

Contents

Waiting fOr @ CONMNECTIONoviiiiii bbb 94
Tearing DOWN @ CONNECTIONcviiiiiiiiii bbb 95
CONNECT ..ot bbb 99
RCVCONNECTooviiciiici s 101
LISTEM ... 103
OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page iv

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Address Mapping.

RecvDisconnect
SndOrderlyDisconnect
RcvOrderlyDisconnect ..

Processing Transactions ...
Initiating @ Transaction REQUESTcco.ieiiiiiiiiiiiie s
Responding to a Transaction REQUEST...........cco i

Connectionless TranNSACTIONScccoviiiiiiii s
SNAUREGUEST ..ot
ROVUREBQUEST ...t s
SNAUREPIY ...
ROVUREPIY bbbttt
CANCEIURBQUESL ...ttt ettt
CancelUReply

Connection-Oriented Transactions
SndRequest
RcvRequest
SndReply ...
ROVREPIY .t
CANCEIREQUEST ...t
CANCEIREPIY ..o

OTOpenMapper. .
OTASYNCOPENMAEPPET ...ttt 152
REGISTEIINAITIE ...t 153
DEIETENGIME ... bbbttt 155
DEIETENGITIE ...t 156
LOOKUPINGIMIE ... bbbttt 157

UBIIEY FUNCTIONS ..o 159

INIEOPENTIANSPOIT ..ot 159
ClOSEOPENTIANSPONT ... 160
OTCreateCoNfIGUIAtIONc.euiuiiiiiieiiirieiseir e 160
OTCIONECONTIGUIALION ...ttt 161
OTDEStrOYCONFIGUIALIONvviiiieiieiei e 162
OTCreateOptions....
OTCreateOptionString
OTEnterInterrupt
OTLeavelnterrupt
OTIAIE oot
OTDelay
OTGetIndexedPort .
OTFindPort ..

OTFindPortByRef
OTCreatePortRef ..
OTGetDeVice TYPEFIrOMPOITRESc.oiiiii s
OTGetBUSTYPEFITOMPOITRET ...t
OTGEtSIOtFrOMPOITRES ..o
OTCreateSYSIEMTASKcviviiiiiiieieiiieiiiie e

Contents

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page v

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

OTDestroySystemTask.
OTScheduleSystemTask
OTCancelSystemTask
OTCanMakeSyncCal

OTCreateDeferredTask

OTDEStrOYDEfErredTaSK.coevevreeiiesiriee b
OTSCheduleDeferredTasK.........ccviiriiiie s

Native functions .
OTYieldPortRequest

Client callbacks

Advanced Topics...

NO-COPY RECEIVES......coviiiiiiiieiicie sttt
AUTOPUSKI ..o

APPENIX A - SAMPIE COUE ...
ApPPeNdiX B - ENAPOINT STALEScccuviiieiiieiiiiieiieisieis s

Appendix C - Event Codes.

Contents

APPENAIX D = RESUIE COUERS ...t bbbt 205
Appendix E - Open Transport and XT ... 209
FUNCEION INBIMES ..o 209
EXEENSIONS 1O XTT ..o 213
DALA SEIUCTUIES ...ttt bbb 214
RESUIT COUES ... s 214
TNUOEX e 217
OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page vi

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

About this Document

About This Document

This document describes the application (client) programming interface of the Open Transport Library.
Because the document is intended for all Open Transport client developers, it does not provide protocol-

specific information.

Related Documents

Apple Shared Library Manager Developer’s Guide. This manual is part of the Apple Shared Library
Manager distribution.

X/0pen Developer’s Specification (1990), Revised XTI (X/Open Transport Interface), ISBN# 1-

872630-05-7.

Addendum to Revised XTI (X/Open Transport Interface), August 1991.
Inside AppleTalk®, Second Edition, Gursharan S. Sidhu, et. al., Addison-Wesley Publishing, Inc.

Revision History

01/18/96 Added a paragraph on KOTLooKErr errors to the Rcv function
08/11/95 Updated to reflect revision 1.1b1 of OpenTransport
01714795 Updated to 1.0a3
10/10/94 Revision 1.0d18/Updated document.
09/16/94 Revision 1.0d16(numbering change to match up with builds)
Updated document.
07/18/94 Revision 1.0d13(numbering change to match up with builds)
Revise entire document to reflect revised client interface.
06/08/94 Revision 1.0d12(numbering change to match up with builds)
Revise entire document to reflect revised client interface.
02714794 Revision 1.0d8 (numbering change to match up with builds)
Revise entire document to reflect revised client interface.
11/15/93 Revision 2.0
Revise entire document to reflect revised client interface.
Delete reference to non-client entities and concepts.
Delete references to obsolete client concepts, routines, and data structures.
Delete references to planned functionality.
Add new information, and supplement existing information.
Reorganize and reformat entire document.
Change name to “Open Transport”.
8/13/91 Revision 1.0, second Draft
First distribution.
OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page vii

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

About This Document

Format of Function Descriptions

Descriptions of Open Transport functions have the following format:

FUNCTION

C INTERFACE

C++ INTERFACE

DESCRIPTION

VALID STATES

The name of the function, and a brief description.
The C interface to the function.
The C++ interface to the function.

A full description of what the function does. For functions having

parameters, the description includes a table that describes which

parameters are inputs and outputs to the function. Here is a key to the

entries in the table:

X The parameter value is meaningful.

(x) The content of the memory pointed to by the x pointer is
meaningful.

? The parameter value is meaningful, but the parameter is optional.

(?) The content of the memory pointed to by the ? pointer is optional.

/ The parameter is meaningless.

= The parameter after the call keeps the same value as before the call.

A list of the states that an endpoint is allowed to be in when this function
is called. Refer to Appendix B for a list and descriptions of valid
endpoint states.

RESULT CODES A list of result codes that the function can return. Refer to Appendix D
for a list and descriptions of Open Transport result codes.
SEE ALSO A list of related functions, if any.
OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page viii

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Introduction to Open Transport

Introduction to Open Transport

Open Transport is a set of low-overhead interfaces that will become the standard interfaces for Macintosh
networking and communications. By using the Open Transport interfaces, applications (called clients) can
operate in a transport-independent manner. (In Open Transport, the term transport refers to any protocol
that moves, or tranports, data.) The Open Transport client interfaces are a superset of the XTI interface
from X/Open , a consortium of UNIX vendors. XTI is a superset of TLI, a UNIX standard interface.

Using the Open Transport client interface does not, by itself, ensure transport independence. Some
applications are tightly coupled with a particular protocol. (For example, the current implementation of
AppleShare on Macintosh computers is tightly coupled to the AppleTalk ASP protocol.) These
applications often make use of particular protocol features not available in other protocols. The Open
Transport Library lets such applications use all the features provided by a particular protocol through
options or private interfaces. The penalty for using such protocol-specific features is, of course, that such
applications are not transport independent.

The Open Transport Library uses the same option management scheme as the XTI interface, for which
X/0pen has already defined the options of TCP/IP, OSI, NetBIOS, and other network systems. This
ensures that, even if an application is tied to a specific protocol, the application will be transportable
across other implementations of the protocol, because the options have been standardized.

The rest of this introduction describes the main features of Open Transport.

Transport Independence

One of the goals of Open Transport is to separate the evolution of AppleTalk services from the evolution
of AppleTalk transport protocols. This is the keystone of Apple’s approach toward “open systems.”
Clients can use transport protocol families other than AppleTalk yet still have access to AppleTalk’s
superior desktop services, such as file sharing and printing. Within this framework, the main goal of
Open Transport is to enable the creation of transport-independent client/server and peer-to-peer
applications. For example, it should be possible to add a new networking transport protocol, such as OSI
transport, and have file sharing operate over it without modification.

Transport Transparency

Transport transparency is similar to transport independence but goes further toward separating an
application from the transport below it. Transport-independent interfaces allow applications to use
similar transports interchangeably, but the application is still responsible for telling the system which
protocol stack is going to be used. Transport transparency implies that the application does not choose
the protocol to be used.

The X/Open XTI interface uses a text string to name the desired protocol stack. An application using the
XTI interface is responsible for providing the text string. Open Transport provides the same mechanism.
Thus, the Open Transport interface cannot, alone, provide transport transparency, because an application
must supply this information. However, when combined with a Chooser/Browser and/or address book,
an application can become completely transport-transparent. When an entity is selected using a
Chooser/Browser or address book, information is returned that an application just turns around and
gives to the Open Transport interface. This information allows the Open Transport Library to choose or
build the correct protocol stack, and the information may contain configuration settings for
communicating with the selected entity.

In summary, the Open Transport Library provides transport independence. When combined with a
Chooser/Browser and/or address book, it will provide transport transparency.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 1
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Introduction to Open Transport

Transaction Protocols

A transaction protocol is one in which a request is issued, and a response to that request is received. Most
AppleTalk services (such as AppleShare, printing, and many third-party products) are based one or both
of Apple’s transaction protocols (ATP and ASP). X/Open’s XTI interface, however, makes no provision
for transaction protocols. For this reason, Open Transport extends XTI by adding transaction protocols.
The additional functions and data structures are implemented in the same style as all of the other
functions, so that the transaction extensions do not appear to be “tacked on.”

Operating Environment

The Open Transport Library is designed to be an appropriate interface for any underlying operating
system. It does not depend on multitasking for its operation or interface, but it can take advantage of
multitasking in an environment that provides it. The framework provided by the Open Transport Library
for use by protocol implementations is designed to be independent of the underlying operating system.
The first release of the Open Transport Library works in both 68000-family (68030 and 68040 CPU)
Macintosh and PowerPC Macintosh environment s.

Client Programming Interfaces

The Open Transport Library has three related client programming interfaces: XTI-style, preferred C, and
preferred C++.

- XTl-style interface. The C-language XTI calls, plus some Open Transport extensions, form
a group of functions referred to in this document as the “XTI-style” interfaces. These are
not the preferred interfaces on the Macintosh because of the way they handle errors—
through the use of a global variable. The names of these functions start with “t _": for
example, t _bi nd andt _accept . These functions are provided solely to ease porting of

existing XTI client code.

- C functions with Macintosh conventions for names and error handling. For each XTI-
style function, there is a corresponding preferred-C function These functions are referred to

in this document as the “Preferred C” interfaces. These functions have names like OTBi nd
and OTAccept .

- A C++ class (TEndpoi nt) and its member functions. These functions are referred to in
this document as the “Preferred C++” interface. For each preferred-C routine, there is a
corresponding member function of the TEndpoi nt class with the same name.

The preferred-C and preferred-C++ interfaces have different error codes than XTI does. XTI error codes
are small positive integers, but such values would be inconsistent with the rest of the Macintosh Toolbox.
For the Open Transport preferred interfaces, there are a set of constants defined that map one-to-one with
the XTI error constants.

IMPORTANT: This document refers to Open Transport functions by their preferred-C++
names, except where differentiating between C and C++ or between XTI and Open
Transport.

Finally, XTI defines several structures, pointers to which are used as parameters to the XTI functions.
Examples of these structures aret _net buf ,t _i nfo,t_bi nd,and t _cal | . The Open Transport
preferred interfaces use structures with more Macintosh-like names such as TNet buf , TEndpoi nt | nf o,
TBi nd, and TCal | . In general, these structures are identical to their XTI counterparts.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 2
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Introduction to Open Transport

Open Transport and Interrupt Routines

Open Transport also defines many support routines that clients can use to deal with the communications
environments. These are described in the Utility routine section toward the end of this document.

The Open Transport APl is intended to provide high-performance communications services to client
applications. In keeping with this goal, Open Transport functions may never be called at
nterrupt time. This includes any interrupt routine from an external device, VBL tasks, or Time
Manager. Open Transport functions may only be called at primary task time (also called "System Task"
time, or at Deferred Task time (also called Secondary Interrupt level) scheduled by using either the Open
Transport function OTScheduleDeferredTask, or by using the system _DTlInstall trap.

In order to support calling at primary interrupt time, Open Transport would have to be able to turn
interrupts on and off to protect critical resources. On PowerPC machines, this requires a costly mixed-
mode switch. Open Transport provides the functions OTCreateDeferredTask, OTScheduleDeferredTask,
and OTDestroyDeferredTask to make it very easy for clients to defer their operations to deferred task
time without using confusing paramater blocks. Please use them.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 3
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Getting Started

Getting Started

This section describes the main steps you must follow to create an Open Transport client in C or C++.

IMPORTANT: On Macintosh computers, the Open Transport libraries are implemented using the Apple
Shared Library Manager. Thus, Open Transport clients are also clients of the Shared Library Manager,
and must obey the rules of its environment. (Refer to the Apple Shared Library Manager Developer’s Guide
for more information.)

Determining if Open Transport is installed

There are two ways to determine if Open Transport is present. The firstisto call | ni t OQpenTransport.
If it returns an error, Open Transport is not present or cannot be loaded. The second is to use the

Gest al t function. The selector for Open Transport is ‘otan’. If Gest al t returns no error and the

r esponse parameter returned is non-zero, Open Transport is installed.

Using Open Transport From Stand-Alone Code

If your client is a stand-alone code segment or code fragments, it must perform the following steps before
calling any Open Transport functions for the first time:

1. Include the Open Transport client header file, OpenTr ansport . h.

2. Establish an A5 world. One possible way of doing this is described in the Apple Shared Library
Manager Developer’s Guide. For code fragments, the global world is already established for you,
and this step is not necessary.

3. Call the routine I ni t OpenTr ansport Be sure to have linked with OpenTransportExtn.o (for
68K) or OpenTransportExtnPPC.o (for PowerPC). If it returns an error, Open Transport is not
available. If you are also using the Apple Shared Library Manager, then you should make the
I ni t Li braryManager call prior to calling | ni t OpenTr ansport .

pascal C8Status |nitQpenTransport ()

After performing these steps, a standalone-code client must check that it is in its own A5 world each time
it calls an Open Transport function. Finally, before exiting, a stand-alone client must call the routine

Cl oseOpenTr ansport . If you are also using the Apple Shared Library Manager, you should call

Cl eanuplLi br ar yManager after calling Cl oseOpenTr ansport.

Using Open Transport From Applications

If your client is an application, not a stand-alone code segment or code fragment library, it must perform
these steps to use the Open Transport Library:

1. Include the Open Transport client header file, OpenTr ansport . h.
2. Call the routine | ni t OpenTr ansport before calling the Open Transport Library for the first
time. Be sure to hav elinked with OpenTransportApp.o (for 68K) or OpenTransportAppPPC.o

(for PowerPC). If you are also using the Apple Shared Library Manager, then you should make
the | ni t Li br ar yManager call prior to calling | ni t OQpenTr ansport.

3. (optional) Call the routine O oseQpenTr ansport before exiting.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 4
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Getting Started

Unlike stand-alone code segments, applications do not need to explicitly establish an A5 world before
calling the Open Transport Library nor reset their A5 world before each call to an Open Transport
function - the Macintosh runtime takes care of that.

Using Open Transport From C Clients

Although most Open Transport functions operate the same way, whether called from C or C++, the
names of equivalent Open Transport calls differ slightly between the two languages. The difference is
that, in C, Open Transport function names have the prefix “OT”. For example, calling OTBi nd from C is
the equivalent of calling Bi nd from C++. Except where differentiating between the two languages, this
document omits the “OT” prefix when referring to Open Transport functions.

Using Open Transport From C++ Clients

An unfortunate fact of life is that different compiler vendors handle C++ dispatching differently. The
C++ objects for Open Transport (and the Apple Shared Library Manager) conform to the MPW CFront
"SingleObject" dispatching convention for 68K Macintosh, and to the MPW PPCC dispatching convention
for PowerPC. Every attempt will be made to make the header files and C++ interfaces usable by other
compilers (for instance, we force pascal or _cdecl calling conventions on all of the methods of the classes
to allow Symantec C++ to use our classes. The intent of the Open Transport team is to support SOM
(IBM's System Object Model) when it becomes available.

About Providers

To understand how Open Transport clients work, you must first understand providers. This section
describes what providers are.

A provider is a software entity that provides some kind of data-oriented service. That service might be
implementing a networking protocol, encrypting data, filtering data, or some other data-oriented
services. Providers are implemented by modules which can be layered to provide an arbitrarily complex
service for clients. For example, an encryption module can be placed above the AppleTalk Data Stream
Protocol (ADSP), which is placed above an Ethernet module. This combination would provide a
networking stream of data that was secure from "snooping" on the network.

A client interfaces with a provider by means of a handle called an Pr ovi der Ref (for C++ users, this is
the class TPr ovi der). Conceptually, a Provi der Ref is similar to a file handle or a driver reference
number. It provides the association between the function called by the client and the specific provider
which is to act on that function.

All providers support a basic amount of functionality. This includes functions to make the provider
synchronous or asynchronous, setting the blocking behavior, install and remove notification routines,
send IOCTL commands, cancel outstanding synchronous calls, and close.

Open Transport supplies several different types of providers. A provider called a mapper (referenced by
a Mapper Ref) provides name-to-address translation services. A provider called an endpoint (referenced
by an Endpoi nt Ref) provides a service to create connections and move data from one machine to
another. Each of these additional providers support the basic functionality, and in addition, support an
additional set of functions that are unique to the type of provider.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 5
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Getting Started

It is important to realize that references to other types of providers (e.g. Endpoi nt Ref) can be used in
any function that requires a Pr ovi der Ref as a parameter. For instance, the function OTl oct | (which
allows protocol-specific commands to be sent to the communications provider) requires a Pr ovi der Ref
as it's first parameter. It is perfectly valid to pass an Endpoi nt Ref to this function (The converse is not
true, however. If a function requires an Endpoi nt Ref , never pass it a Pr ovi der Ref . This may cause a
crash!)

Specifying provider services

Clients invoke provider services by using an open routine to first obtain a reference to the desired
provider. This document describes two of these: OTOpenEndpoi nt and OTOQpenMapper . Protocol
families may provide other services, with each of these other services having their own unique open
routines.

All open routines take a pointer to an OTConf i gur at i on structure as a parameter. This structure is not
defined by the Open Transport header files. The only way to create one is to call

OTCr eat eConfi gur ati on (see the Utility functions section), passing it a string describing the provider
service desired.

In its simplest form, this string is just the name of a protocol (e.g. "ddp", “tcp", or "dnr"). Open Transport
will use default rules to supply the rest of the information (which data link to use, for instance). In its full
form, this string can be a comma-separated list of provider names, with option values specified by
enclosing them in parenthesis after the name of the module to which they apply. For instance,

“nbp, ddp, I t| kB"
describes an NBP provider layered above a DDP provider layered on Printer port LocalTalk, and
"adsp, ddp(Checksun¥1l), enet"

describes an ADSP provider layered above a DDP provider (with checksumming turned on) layered
above the default ethernet card.

Open Transport will attempt to use default rules to complete specifications that are incomplete. For
instance, the specification "adsp,enet” is incomplete, since ADSP cannot run layered directly on top of
ethernet. Open Transport understands this, and automatically puts the DDP layer between ADSP and
ethernet.

The various names of providers are provided as constants in the appropriate header files for the protocol
families.

Specifying ports

Open Transport provides a standard naming scheme for describing various hardware ports on a system.
Every port on the machine is described by the information in an OTPortRecord structure:

/1 values for the flnfoFl ags field of OTPortRecord

enum
{
kOTPort | sDLPI = 0x00000001,
kOTPort | sTPI = 0x00000002,
kOTPor t | sNot Shar eabl e = 0x00002000,
kOTPort | sSyst enRegi st er ed = 0x00004000,
kOTPort|sPrivate = 0x00008000,
kOTPort | sAl i as = 0x80000000
OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 6

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Getting Started

b
/1 values for the fPortFlags field of OrPortRecord
enum
{
kOTPort | sActi ve = 0x00000001,
kOTPort | sD sabl ed = 0x00000002,
kOTPort | sd osed = 0x00000004
b
struct OTPortRecord
{
OrPor t Ref f Ref;
U nt 32 f Port Fl ags;
U nt 32 f I nf oFl ag
unt32 f Capabi | i
size_t f NumChi | dPort s;
OrTPor t Ref * fChildPorts;
char f Por t Narre[kMaxPr ovi der NaneSi ze] ;
char f Modul eNane[kMaxModul eNaneSi ze] ;
char fSl ot D kMaxSl ot | DSi ze] ;
char f Resour cel nf o[kMaxResour cel nf oS ze] ;
char f Reserved[164] ;
Iy
fRef is a 32-bit value that is unique to this port.
fPortFlags are operational flags associated with the port. They describe the current status of
the port.
fInfoFlags are configuration flags associated with the port.

fCapabilities are the capability flags for the device. These indicate what kind of framing the
port can handle, or enumerate other types of capabilities by using bits in the flag.
The meaning of the bits is specific to the device type of the port.

fNumChildPorts This is the number of devices that are configured directly below this
device. Typically, this number is 0 or 1. For instance, a "'modem" device
normally has a serial port device directly below it.

fChildPorts This is an array of ports containing the number of entries specific by the
fNumChildPorts field.

fPortName is a zero-terminated string that is unique to this port. This name may be used by
OTCreateConfiguration to specify this port uniquely.

fModuleName is the name of the provider module that Open Transport loads. This is not
normally relevant to Open Transport clients.

fSlotID is a 0-terminated string. It contains a string describing the slot that the port
resides in. For many devices, this string is empty, indicating that it is up to the
application to determine how to identify the slot. In the current implementation
of OpenTransport, only PCI devices have a non-empty string in this field.

fResourcelnfo is a O-terminated string that describes a shared library that can handle
configuration things for the device. The full description of this field is being
worked out, and will be described in a separate document.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 7
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Getting Started
The header file OpenTransport.h defines a number of utility functions for creating and extracting
information from OTPortRef values (See the Utility Functions section later in this document for a
description of these functions).

The header file OpenTptLinks.h contains a list of the current valid device types:

enum

{
kOTADEVDevi ce =1, /* An Atal k ADEV */
kOTMDEVDevi ce =2, /* A TCP/ I P MDEV */
kOTLocal Tal kDevi ce =3, /* Local Tal k */
kOTI RTal kDevi ce = 4, /* | RTal k */
kOTTokenR ngDevi ce =5, /* Token R ng */
kOTI SDN\Devi ce =6, /* 1 SDN */
kOTATMDevi ce =17, /* ATM */
kOTSMDSDevi ce =8, /* SMDS */
kOTSeri al Devi ce =09, /* Serial */
kOTEt her net Devi ce =10, /* Et her net */
kOTSLI PDevi ce =11, /* SLI P Pseudo- devi ce */
kOTPPPDevi ce =12, /* PPP Pseudo- devi ce */
kOTMbdenDevi ce =13, /* Mbdem Pseudo- Devi ce */
kOTFast Et her net Devi ce = 14, /* 100 MB Et her net */
kOTFDDI Devi ce = 15, /* FDDI */
kOTATMLANEDevVi ce = 16, /* ATM LAN enul ati on */
kOTATMVBNAPDevi ce =17 /* ATM SNAP emul ati on */

Y

New device types should not be arbitrarily added. Please contact Apple Computer to obtain a new,
unique device type (Use the OPENTPT e-mail address mentioned on the first page of this document).

With this information, a client can create OTPortRefs for many of the common hardware devices. For
instance

OTPort Ref ref = OTOr eat ePort Ref (kOTNuBus, kOTEt her net Devi ce, 10, 0);

defines the OTPortRef for an Ethernet card in slot 10 of the NuBus. Note that slot numbers are physical;
that is, they are the slot number returned by the SlotManager and NOT the slot number that are seen in
various network configuration applications. For cards in a PCI bus, it is not possible, a priori, to create a
port ref that corresponds to a know card, so applications will need to iterate through the port registry to
find appropriate PCI ports.

Each port on a machine has three different names associated with it: the device name, the port name, and
the module name.

The device name for a port is associated with the device type of the port. All ports on a machine that are
the same device type have the same device name.. These names are defined in the header files
OpenTptAppleTalk.h (for LocalTalk), OpenTptSerial.h (for serial), and OpenTptLinks.h (for all the rest).

All ports on the machine also have a unique port name. This name uniquely identifies the port without
using any location information. For instance, "ItIkA" is the unique identifier given to LocalTalk on the
serial port, and "ItIkB" is the unique identifier given to LocalTalk on the modem port. This name must
always be used in the path string for OTCr eat eConf i gur at i on to uniquely identify a port.

The last name associated with a port is the module name. For Open Transport clients, this name is not
necessary to know. It is needed by Open Transport to know which provider module to load when the

port is specified, and is supplied to clients for informational purposes.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 8
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Getting Started

Open Transport allows clients to use just a device name to specify a port. In this case, Open Transport
will use the FIRST device of that type that is registered and available. For most devices, this means the
motherboard device if it exists. Otherwise, it is the first slotted device that was registered.

Open Transport provides functions to iterate through all of the ports on the machine, and determine what
type of port they are (ethernet, serial, etc.), and what their names are by returning the OTPortRecord
information. See the Utility function section near the end of this document for functions which can be
used to find out information about ports.

Modes of Operation

Open Transport providers can operate in either of two modes: synchronous or asynchronous. The mode
of a provider affects when calls to certain provider functions return to the calling client.

When a client calls a provider function in a synchronous mode, control does not return to the client until
the function has been completed. In contrast, when a client calls a provider function in asynchronous
mode , control returns to the client immediately. Later, when the function is complete, an event is sent to
notify the client (NOTE: Be aware that it is possible for the notification event to be received by the client
BEFORE the asynchronous function call returns to the caller).

By default, Open Transport providers operate in whatever mode they were opened in (i.e. if the provider
was opened synchronously, the provider defaults to synchronous mode, otherwise it defaults to
asynchronous mode). A client can, however, change the provider's mode of operation. All subsequent
provider calls operate in the new mode.

Blocking

Blocking is he second attribute that a client can apply to a provider to govern how the client interacts with
the provider. In order for a provider to service a client request, the provider may be able to deal with the
request immediately, or it may have to queue the request up and deal with it later. When the provider is
in non-blocking mode, if the request needs to be queued to be dealt with later, a KEAGAINETT is returned
to the caller. This allows the client the flexibility to reissue the command again later. The non-blocking
mode is more important to synchronous-mode clients, but it also can affect asynchronous-mode clients.

Blocking also affects how flow control is handled for endpoints on synchronous calls. In blocking mode,
a send request will wait for flow control to lift, then complete the send. In non-blocking mode, if flow
control is on, a kKOTFlowErr or a number indicating only a partial send will be returned to the client (a
T_GODATA or T_GOEXDATA event will be sent to the client when flow control lifts).

When a provider is created, Open Transport defaults to non-blocking mode for all endpoints. After that,
the client has complete control over both the blockingZnon-blocking and synchronous/asynchronous
behavior of the provider.

AckSends

Open Transport provides a mode for sending data called "AckSends". In this mode, Open Transport does
not necessarily copy the data to be transmitted. Instead, the client is notified when the memory is no
longer being used by the provider viaa T_MEMORYRELEASED event.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 9
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Getting Started

Provider Events

In Open Transport, as in XTI, providers communicate with clients by issuing events. Open Transport
includes a set of XTI-defined asynchronous events that signal occurrences such as the arrival of data. But
XTI does not define how clients handle these events; rather, event handling is operating-system-
dependent. For this reason, Open Transport provides its own mechanism for handling events. Also,
because Open Transport is a superset of XTI, it defines additional asynchronous events. Open Transport
further extends XTI by defining completion events, which inform a client when an asynchronous
operation is finished. The names of completion events end in “COMPLETE”—for example,
T_BINDCOMPLETE.

To handle asynchronous events and completion events, an Open Transport client must provide a single
event-handling routine that the provider can call when events occur. Optionally, the client can also
continuously poll the provider for asynchronous events. (Clients cannot poll providers for completion
events.) In general, the preferred method for handling all Open Transport events is to provide an event-
handling routine. For more information about handling events, refer to the section “Handling Events.”

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 10
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Getting Started

Provider Functions

This section describes the provider functions that clients can call. The descriptions are grouped by task,
and each group is preceded by a brief introduction. The functions are described using their Open
Transport preferred-C++ names. Appendix E lists the corresponding XTI-style names.

Result codes

Most Open Transport functions return an OSStatus value that indicates whether the operation succeeded
or failed.

For synchronous function calls, the result code indicates whether the operation succeeded or failed. If
kOTNoEr r or is returned, the operation succeeded. If some other value is returned, the operation failed.
The value will indicate the cause of failure.

For asynchronous function calls, if the result code is KOTNoEr r or , then the operation was successfully
started. When it completes, your notification function will be called with an event code to indicate which
operation completed and a result code indicating whether the operation was successful or failed. If an
asynchronous function call returns a different value, then the operation has failed before it was started,
and your notification function will not be called.

In the function descriptions which follow, an attempt is made to enumerate the result codes returned by
each function. However, the list may not be complete, and a client should never assume that other result
codes will not be returned. In general, if you receive a result code you do not understand, your code
should assume the worst.

Also, the error code KEBADFET r is returned if the Pr ovi der Ref supplied to the function call is incorrect.
This fact is ignored in the descriptions (i.e. some function calls indicate that they return no error. This is
true if the supplied Pr ovi der Ref is valid).

Every function in Open Transport can return the following result codes that are not enumerated in the
function lists:

kOTBadSyncErr A synchronous call was attempted at interrupt or deferred task
level, or an Open Transport call was made at primary interrupt
time. NOTE: Open Transport cannot always detect these
conditions, so your code should not rely on getting this error if it
calls Open Transport at the wrong time. If this situation is
undetected by Open Transport, the machine could crash.

k ENOVEMET r There is not enough available memory to complete the request.

k ENCSRET r There are not enough system resources to complete the request.
Typically, this means that there are no more STREAMS messages
available.

KEAGAI NEr r An endpoint or mapper is in non-blocking mode, and Open

Transport would have to block to complete the request. This is
also referred to as the KEWOULDBLOCKEr r i n the
documentation (they are the same error code).

kOTPr ot ocol Err An unspecified protocol error occurred. This is usually fatal.
Normal recovery is to close the provider.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 11
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Getting Started

k EBADFET r This error can only be returned by the C interfaces. It indicates
that the Pr ovi der Ref supplied to the function was not a valid
reference.

kOTClientNotlInittedErr The client has not called InitOpenTransport.

kOTSt at eChangeEr r This error normally only occurs when an asynchronous function

is executed. Itis very similar to a kOTQut St at eEr r, but instead
of indicating that the endpoint is in the wrong state, it indicates
that either the state is in the process of changing, or that some
function on the endpoint is currently being executed that is
incompatible with the requested function. For example, this
could occur if a SndUDat a function is called, and before it is
completed, an Unbind is issued from a deferred task routine. It
is not correct to return a kOTQut St at eEr r, since the endpoint is
in the correct state to do an Unbi nd. However, until the
SndUDat a is complete, Open Transport cannot issue the Unbi nd
call.

Handling Events

This section describes how an Open Transport client can handle provider events. For a list and
description of the events that Open Transport defines, refer to Appendix C.

Note: In addition to the general events defined by Open Transport, some providers issue additional
protocol-dependent events. These events are described in the documentation for each provider. Transport
independent clients, however, should ignore such events. Likewise, all clients should ignore any event
that they do not recognize.

Using Notifier Routines

When using the Open Transport Library, the preferred way to handle events is to install a notifier routine.
A natifier routine (a “notifier,” for short) is a callback routine. The Open Transport Library uses it to call
back into a client, notifying the client that an event has occurred. Notifier routines are written by a client
and installed on a provider after it is opened. They are also used in asynchronous Open routines.

A notifier function is a ‘C’ style function with the following prototype:

pascal void NotifierRoutine(void* contextPtr, OTEvent Code code,
OTResul t result, void* cookie);

To install a natifier routine on an endpoint, a client calls the function OTI nst al | Not i fi er; to remove
the notifier, the client calls OTRenpveNot i f i er . Both of these functions are described in the sections that
follow.

A notifier function is of type voi d and has the following parameters:

context Ptr The value of this voi d* pointer is specified by the client when the notifier is
installed. Typically, the client will use this parameter to recover some kind of
context information. It could be a Pr ovi der Ref , or a pointer to a data structure
that the client set up (typically, this data structure has the Pr ovi der Ref in it
somewhere).

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 12
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Getting Started

code This is the event code; it identifies what kind of event occurred. The event codes
are defined in the header file OpenTr ansport . h.

resul t This parameter has no meaning for most asynchronous events. For the
completion events, it contains the result code of the completed function.

cooki e This parameter has different meanings depending upon the event code. For all of
the standard XTI events and some of the Open Transport event extensions, this
pointer has no meaning. Appendix C shows all of the Open Transport events and
the meaning of the cookie parameter for each event.

There is a “C” typedef for a pointer to a notification routine, OTNot i f yPr ocPt r, that looks like:

typedef pascal void (*OINotifyProcPtr)(void* contextPtr, OTEventCode code,
OTResul t, voi d* cooki e);

On 68000-family Macintosh computers, restoring the A5 world in a notification routine is not necessary; it
is done automatically. The value of A5 is saved when the client calls the function | nst al | Not i fi er
(described later in this section) and is restored every time the notification routine is called. If your
development environment uses some other register for context, then your client must save and restore
this context.

Note: A notification routine may be called at deferred-task time, and it may be called reentrantly. On
Macintosh computers running System 7, a notification routine has all the same restrictions as any other
interrupt-level callbacks, such as VBLs, Time Manager tasks, and Device Manager completion routines.
An attempt is made in Open Transport to queue calls to a client’s notification routine to prevent
reentrancy and keep the processor stack from growing, but this behavior is not guaranteed. Clients
should be prepared and write their notification routine defensively.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 13
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Getting Started

InstalINotifier

FUNCTION

Instal | Notifier Give a provider a notification routine to use for notifying a client

of events.
C INTERFACE

COSSt at us OTl nstal I Notifier(ProviderRef ref, OTINotifyProcPtr* proc,
voi d* contextPtr);

C++ INTERFACE

OSSt at us TProvider::InstallNotifier(OINotifyProcPtr* proc, void*
contextPtr);

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /
proc X /
contextPtr X /
notifier (C++only) X /

Instal | Notifier givesa provider a notification routine for passing events from the provider
back to the client.

In C, the r ef parameter must refer to a valid provider. In C++, I nstal | Noti fi er isa member
function of the TPr ovi der class, so no explicit provider reference is required.

The pr oc parameter is a pointer to a notification routine. This routine must be a “C” routine. If
you are programming in C++, do not take the address of a member function of a class and pass
that as the notification routine, unless that routine is declared static.

The typedef for the pr oc function pointer is:

typedef void (*OTNotifyProcPtr)(void* ref, OTEventCode event, OTResult err, void*
cooki e) ;
The cont ext Pt r parameter is not interpreted by the Open Transport Library; rather, it is saved
internally and passed as the first parameter to the notification routine.

When an event occurs, the client’s notification routine is called, and the same pointer passed to
Instal | Notifier ispassed tothe notification routine as the first parameter. The client
typically will use this to hold some kind of context. The provider will not reference the data at
ref nor modify it.

The cooki e parameter that is passed to the notification routine has a meaning that depends
upon the event code. For many event codes, cooki e has no meaning. For completion events such
as T_REPLYCOMPLETE, where a client can have multiple outstanding occurrences of the same
type of call, cooki e is used to help the client determine which particular call completed. The
meaning of cooki e in each context is described in each affected call’s description of
asynchronous operation.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 14
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Getting Started

If you try to install a notifier on a provider that has one already, | nst al | Noti fi er returns the
error code kOTAccessEr r. To remove a notification routine from a provider, call the
RernoveNot i fi er function.

RESULT CODES

kOTAccessErr

SEE ALSO

Get Noti fier,RenoveNotifier

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 15

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Getting Started

RemoveNotifier

FUNCTION

RenoveNoti fier Remove the notifier from a provider.

C INTERFACE
voi d OTRenoveNot i fier(Provi derRef ref);
C++ INTERFACE
voi d TProvi der:: RemoveNotifier();
DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /

RermoveNot i fi er removes the notification routine currently installed on the specified endpoint.
If no notifier is installed, this function does nothing.

The parameter r ef specifies the endpoint whose notification routine is to be removed.
RESULT CODES

none

SEE ALSO
CetNotifier, Install Notifier

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 16
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Getting Started

Setting the Mode of Operation

At creation, providers operate in the mode they were created in (i.e. If the provider was opened
synchronously, it will be in synchronous mode. If it was opened asynchronously, it will be in
asynchronous mode). Clients can find out the current mode of a provider and set it by using the routines
described in this section.

SetSynchronous

FUNCTION

Set Synchr onous Place a provider into synchronous mode.

C INTERFACE
CSSt at us OTSet Synchr onous(Provi der Ref ref);

C++ INTERFACE
OSSt at us TProvi der:: Set Synchronous();

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /

Set Synchr onous sets the operational mode of the provider to synchronous. To find out
whether an endpoint is synchronous, use the function | sSynchr onous.

_i:m call can be made at any time and will always succeed.

RESULT CODES
_Zo:m

SEE ALSO

I sNonBl ocki ng, Set Bl ocki ng, SetNonBl ocki ng, SetAsynchronous,
I sSynchronous, QOpenEndpoi nt, AsyncOpenEndpoi nt, OCpenMapper,
AsyncOpenMapper

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 17
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Getting Started

SetAsynchronous

FUNCTION

Set Asynchr onous Place a provider into asynchronous mode.

C INTERFACE
COSSt at us OTSet Asynchronous(Provi der Ref ref);

C++ INTERFACE
OSSt at us TProvi der: : Set Asynchronous();

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /

Set Asynchr onous sets the operational mode of the endpoint to asynchronous. To find out
whether an endpoint is asynchronous, use the function | sSynchr onous.

_.ﬁ:_m call can be made at any time and will always succeed.
RESULT CODES
_ None

SEE ALSO

I sNonBl ocki ng, Set Bl ocki ng, SetNonBl ocking, SetSynchronous,
I sSynchronous, OpenEndpoi nt, AsyncQpenEndpoi nt, OpenMapper,
AsyncQOpenMapper

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 18
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Getting Started

IsSynchronous

FUNCTION

I sSynchr onous Determine if a provider is in the synchronous mode of operation.

C INTERFACE
Bool ean OTl sSynchr onous(Provi der Ref ref);

C++ INTERFACE

Bool ean TProvi der::1sSynchronous();
DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /

I sSynchr onous returns true if the endpoint is in synchronous mode, or returns false if it is in
asynchronous mode.

RESULT CODES
None

SEE ALSO

I sNonBl ocki ng, Set Bl ocki ng, Set NonBl ocki ng, SetAsynchronous,
Set Synchr onous, OpenEndpoi nt, AsyncOpenEndpoi nt, COpenMapper,
AsyncOpenMapper

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 19
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Endpoints

Controlling Operations on a Provider

This section describes provider functions which can be used by clients to control operations on providers.

OTCloseProvider

FUNCTION

Cl oseProvi der Close and delete a provider when it is no longer needed.

C INTERFACE
OSst at us OTCl oseProvi der (Provi der Ref ref);

C++ INTERFACE
_Ommﬁ at us TProvider::C ose();

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /

Cl oseProvi der closes a provider when it is no longer needed. The Cl osePr ovi der call is
always synchronous to the caller, but asynchronous in operation. When the call returns, if no
error occurred the ProviderRef is no longer valid and should not be used.

Cl oseProvi der may be called at any time (except at primary interrupt level, of course).
However, if there are outstanding asynchronous calls, they will never complete, so be prepared
for this. Any outstanding synchronous call will be completed with a result code of
kOTCanceledErr.

The blocking/non-blocking status of the provider also governs what happens when the provider
is closed. In non-blocking mode, closing the provider will flush all outgoing commands in the
stream, and immediately close the provider. In blocking-mode, the stream will be given up to 15
seconds per module to allow outgoing commands and data to be processed, then the stream will
be closed. However, as far as the caller is concerned, the provider is closed immediately.

RESULT CODES
None

SEE ALSO

OpenEndpoi nt, AsyncOpenEndpoi nt, OpenMapper, AsyncOpenMapper, AckSends,
Set Bl ocki ng, Set NonBl ocki ng

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 20
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Endpoints
SetBlocking
FUNCTION
Set Bl ocki ng Block (wait) for completion of outstanding 170 requests on a
provider.
C INTERFACE

COSSt at us OTSet Bl ocki ng(Provi der Ref ref);

C++ INTERFACE
OSSt at us TProvi der: : Set Bl ocki ng();

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /

Set Bl ocki ng governs how 1/0 requests proceed over the specified provider.

After a client calls Set Bl ocki ng, input requests on the specified provider do not complete
unless they are satisfied. For example, if the client issues a Connect request in blocking mode,
the Connect complete even if there is contention for resources. However, in non-blocking
mode, if there is contention for a STREAMS resource, the command will complete with a
KEAGAINETrT, and the command needs to be reissued again later when there is no contention.
For example, if the client issues an asynchronous IOCTL command that is not yet complete, and
then issues a Connect command, there will be contention for the stream head, since the stream
head is locked until the IOCTL command completes. In blocking mode, the Connect command
will be queued to run when the IOCTL completes. In non-blocking mode, the Connect will fail
with a KEAGAINErr.

However, commands that read data from the endpoint (like Rcv, RcvUDat a, etc.) will only block
waiting for data in synchronous/blocking mode. All other modes will return a kOTNoDataErr
error if no data is available, or a KOTEAGAINETr if the command cannot be completed without
blocking.

The blocking/non-blocking status of the provider also governs what happens when the provider
is closed. In non-blocking mode, closing the provider will flush all outgoing commands in the

stream, and immediately close the provider. In blocking-mode, the stream will be given up to 15
seconds per module to allow outgoing commands to be processed, then the stream will be closed.

At creation, all providers are set by default to non-blocking mode.

This call will always succeed.

RESULT CODES
None

SEE ALSO

Set NonBl ocki ng, |sNonBl ocki ng, Set Synchronous, Set Asynchronous
I sSynchronous, OpenEndpoi nt, AsyncOpenEndpoi nt, OCpenMapper,
AsyncOpenMapper, C oseProvider

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 21
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Endpoints

SetNonBlocking

FUNCTION

Set NonBl ocki ng Do not block (wait) for completion of outstanding 1/0 requests

on a provider.

C INTERFACE
COSSt at us OTSet NonBl ocki ng(Provi der Ref ref);

C++ INTERFACE
OSSt at us TProvi der: : Set NonBl ocki ng();

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /

Like Set Bl ocki ng, Set NonBI ocki ng governs how I/0 requests proceed over the specified
provider. See the description for Set Bl ocki ng for details.

At creation, all providers are set by default to non-blocking mode.

This call will always succeed.

RESULT CODES
None

SEE ALSO

Set Bl ocki ng, |sNonBl ocki ng, Set Synchronous, SetAsynchronous
I sSynchronous, OpenEndpoi nt, AsyncQpenEndpoi nt, OpenMapper,
AsyncOpenMapper

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 22
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Endpoints

IsNonBlocking

FUNCTION

I sNonBlI ocki ng Return the current blocking status of a provider.

C INTERFACE
Bool ean OTl sNonBI ocki ng(Provi der Ref ref);
C++ INTERFACE
Bool ean TProvi der:: 1 sNonBl ocking();
DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /

I sNonBl ocki ng returns true if the specified provider is non-blocking, or returns false if the
provider is blocking.

RESULT CODES
none

SEE ALSO

Set NonBl ocki ng, Set Bl ocki ng, Set Synchronous, SetAsynchronous
I sSynchronous, QpenEndpoi nt, AsyncOpenEndpoi nt, OpenMapper,
AsyncOpenMapper

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 23
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Endpoints

AckSends

FUNCTION
AckSends If the provider is no longer referencing the client’s data, notify
the client each time a Send operation is completed on the
provider.
C INTERFACE

GOSSt at us OTAckSends(Provi der Ref ref);

C++ INTERFACE
OSSt at us TProvi der: : AckSends() ;

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /

If AckSends completes successfully, the client’s event handler is called each time an operation

that sends data is completed on the specified provider. AckSends provides a way for the client
to request that Open Transport not copy the client data, and provides for an acknowledgment to
be delivered to the client via the notification routine when the provider is finished with the data.

The client will receive a T_MEMORYRELEASED event in the notification routine. The cooki e
parameter will point to the buffer that was sent and the r esul t parameter will be set to its
length. Until the T_MEMORYRELEASED event is received, the client should refrain from changing
the contents of the buffer, or the results will be unpredictable.

NOTE: AckSends will return akGTAccessEr r if a notifier is not installed on the provider. It
will return a kOTStateChangeErr if a write-type operation is currently outstanding on the
provider (Snd, SndUData, SndUReply, SndURequest, SndReply, or SndRequest).

In addition, using AckSends makes it dangerous to close a provider until all outstanding calls on
the provider are completed. Otherwise, the application might quit, leaving Open Transport
using memory that is no longer valid, with unpredictable results.

The endpoint functions that initiate Send operations are Snd, SndRequest , SndRepl vy,
SndURequest , SndURepl y, SndUDat a, and, if the call has associated data, Connect and
Accept .

By default, the Open Transport Library does not acknowledge the completion of Send operations.

WARNING: Do NOT wait for a T_MEMORYRELEASED event from a previous Send operation to
trigger more sends. When a T_MEMORYRELEASED event occurs depends on how the underlying
provider is implemented. It may hold on to memory until the next send occurs, or have some
other functionality which causes it to delay releasing memory.

RESULT CODES
kOTSt at eChangeEr r

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 24
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

SEE ALSO
Dont AckSends, |sAcki ngSends, C oseProvi der

Endpoints

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

page 25

Endpoints

DontAckSends

FUNCTION

Dont AckSends Do not notify the client when function calls that send data are

completed on this provider.

C INTERFACE

COSSt at us OTDont AckSends(Provi der Ref ref);

C++ INTERFACE

OSSt at us TProvi der: : Dont AckSends() ;
DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /

If Dont AckSends completes successfully, the client’s notification routine is no longer called
when Send operations are completed on the specified endpoint. Instead, when the client calls a
function that sends client data, the Open Transport Library copies the data into internal buffers,
and the function returns immediately to the client. Thus, the client can immediately reuse the
data area without affecting the Send operation, even if it is still in progress.

The endpoint functions that send data are Snd, SndRequest , SndRepl y, SndURequest ,
SndURepl y, SndUDat a;and,onlyif the call-has-associated data, Connect -and- Accept .

NOTE: DontAckSends will return a kOTStateChangeErr if a write-type operation is currently
outstanding on the provider (Snd, SndUData, SndUReply, SndURequest, SndReply, or
SndRequest).

By default, the Open Transport Library does not acknowledge the completion of Send operations.

RESULT CODES
kOTSt at eChangeEr r

SEE ALSO
AckSends, | sAcki ngSends

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 26
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Endpoints

IsAckingSends

FUNCTION

I sAcki ngSends Return the current status of acking sends.

C INTERFACE
Bool ean OTl sAcki ngSends(Provi der Ref ref);
C++ INTERFACE
Bool ean TProvi der:: I sAcki ngSends();
DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /

I sAcki ngSends returns true if the specified provider is acking sends, or returns false if the
provider is not acking Sends.

RESULT CODES
none

SEE ALSO
AckSends, Dont AckSends

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 27
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Endpoints
FUNCTION
loctl Send a provider-specific command.
C INTERFACE
OTResul t OTl oct| (ProviderRef ref, U nt32 cnmd, void* data);
C++ INTERFACE
OTResul t TProvider::loctl (U nt32 cnd, void* data);
DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /
cnmd X /
dat a X (?)
The l oct | function allows commands to be sent to a provider that are provider specific. The

cnd and dat a parameters are documented with the provider that implements the commands. In
some cases the dat a parameter is interpreted as a pointer, and sometimes it is just interpreted as
a bit pattern.

In all cases, the return value of the | oct | function (or the r esul t parameter of a

kSt ream oct | Event , which is what you receive if the loctl is executed asynchronously) is zero
or a positive number if no error occurred, and is one of the negative result codes if an error
occurred.

RESULT CODES
Return codes are provider and cnd parameter specific

SEE ALSO

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 28
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Endpoints

CancelSynchronousCalls

FUNCTION
Cancel SynchronousCal | s Cancel any pending synchronous call on a provider.

C INTERFACE
_meﬁ at us OTCancel SynchronousCal | s(Provi der Ref ref, OSStatus err);

C++ INTERFACE
_me.ﬁ at us TProvi der:: Cancel SynchronousCal | s(OSStatus err);

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /
err / X

Cancel SynchronousCal | s cancels, or breaks out of, a synchronous call. The error code
returned to the synchronous caller will be the "er r " value supplied (typically
kOTCancel edEr r). A client will typically issue this call as the result of some timer process.
However, be aware that making this call may cause a provider to be unusable. Typically, once
this call is made, the only thing you can do with the provider is close it.

RESULT CODES

no specific result codes

SEE ALSO
Set Synchr onous, |sSynchronous

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 29
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Endpoints

TransferOwnership

FUNCTION

Tr ansf er Owner shi p Transfer the ownership of a provider to the current Open

Transport client.

C INTERFACE

Provi der Ref OTTr ansf er Provi der Oaner shi p(Provi der Ref ref, OSStatus*
errPtr);

C++ INTERFACE
_3 ovi der Ref TProvi der:: Transf er Omner shi p(OSSt at us* errPtr);

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /
errpPtr X (Xx)

Tr ansf er Oaner shi p transfers the ownership of a provider from whoever created the provider
to the current Open Transport client.

It is necessary to use this call whenever some other entity (typically a shared library) opened an
endpoint on behalf of the client. This is especially important if the entity that opened the
endpoint is in a different architecture (PowerPC native vs. 68K emulated) than the client that will
be using the provider.

Under Open Transport, a provider allocates a small amount of memory (currently 4 bytes) from
the client for the endpoint. In addition, Open Transport automatically cleans up behind clients
that call Cl oseQpenTransport. Ifashared library creates a provider on your behalf, and that
shared library subsequently unloads while you are still using the provider, two bad things
happen. The memory for the provider is no longer valid, and the provider is closed out from
underneath you. Using the Tr ansf er Oaner shi p API, ownership is changed to the calling
client. This means a new "ProviderRef" will be allocated in the calling client's memory pool, and
the provider will be marked as belonging to the calling client.

As long as the entity that created the provider remains loaded, and is in the same architecture as
the client using the provider, no damage will be done by not making this call. However, if the
provider was created under a different architecture than the client using the provider, attempting
to close the provider will cause a crash. It is vital that if you do not use the TransferOwnership
API the provider be closed under the same architecture that opened the provider. In addition,
when installing a notifier into the provider, Open Transport always assumes that the

OTNot i f yProcPt r is in the same architecture as the call is being made, so after transferring
ownership, you may want to remove any notifier that is installed and install your own, unless
your architecture is such that a cross-architecture notifier is what you want.

RESULT CODES
k ENOVEMET r

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 30
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Endpoints

About Endpoints

The next concept to understand is the endpoint. This section describes what endpoints are, explains how
they are created, and lists the kinds of endpoints.

An endpoint is a type of provider which specifies the communication path between a transport user (the
client) and a specific transport provider. A transport provider is the actual code that provides the service
of moving data. All requests to the transport provider must pass through an endpoint. A single endpoint
can support only one established transport connection at a time; however, one transport provider may
have several endpoints as clients.

A client creates an endpoint by calling the function OTOpenEndpoi nt , which returns an identifier to the
newly created endpoint (called an Endpoi nt Ref). The client uses this identifier when making function
calls to the endpoint. For example, a client must pass the identifier as the first parameter to any XTI-
compatible functions of the Open Transport Library, thereby specifying which endpoint is to service the
function call. When finished with an endpoint, a client calls the OTCl osePr ovi der function, which
destroys the endpoint and releases any associated system resources, such as memory.

Endpoint Types

The XTI specification defines two kinds of data-stream endpoints:
- Connectionless datagram
- Connection-oriented stream

Open Transport supports these two kinds of data-stream endpoints; it also extends XTI by adding two
kinds of transaction endpoints:

- Connectionless transaction
- Connection-oriented transaction

A connectionless-datagram endpoint provides datagram service. The UDP protocol of TCP/IP and the
AppleTalk DDP protocol are examples of connectionless-datagram protocols.

A connection-oriented stream endpoint provides data transfer between two particular endpoints. A
connection must be established between the endpoints before data transfer can take place. The TCP and
AppleTalk ADSP protocols are connection-oriented streams. Each of these protocols is running over a
connectionless datagram (TCP runs on top of IP; ADSP runs on top of DDP). Serial connections and
modem connections are also connection-oriented streams. Note that a protocol such as PPP (Point-to-
Point Protocol), which is a connectionless datagram, normally runs on top of serial connection, which is a
connection-oriented stream.

A transaction protocol matches incoming responses with their corresponding requests. An example of a
connectionless transaction protocol is the ATP protocol in AppleTalk; the AppleTalk ASP protocol is an
example of a connection-oriented transaction protocol.

Both connection-oriented stream endpoints and connection-oriented transaction endpoints have a variant
that supports an orderly connection tear-down feature called orderly release.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 31
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Endpoints

Endpoint States

All Open Transport endpoints maintain a current state, which can be determined by the endpoint’s client.
Many Open Transport functions may be issued only when the endpoint is in a certain state. For example,
is not legal to send data on a connection-oriented endpoint unless there is an active connection. If a
function call is issued when the endpoint state is not appropriate, an error will result

(kOTQut St at eErr).

The following table lists and briefly describes the endpoint states. For more information about these
states, refer to Appendix B.

State Meaning

T_UNINIT This endpoint has been closed and destroyed - probably by the
computer going into sleep mode.

T_UNBND This endpoint is initialized, but has not yet been bound to a local
protocol address.

T_IDLE This endpoint has been bound to a local protocol address and is
ready for use. If itis a connectionless endpoint, then data may
be sent and received. Connection-oriented endpoints may now
issue OTConnect or OTLi st en requests.

T_INCON This connection-oriented endpoint has received a connection
request, but the client has not yet accepted or rejected the
request.

T_DATAXFER This connection-oriented endpoint has a connection established;

the endpoint can now send and receive data.

T_OUTCON The client has initiated a connection request on a connection-
oriented endpoint, and the connection has not yet been
established.

T_INREL This connection-oriented endpoint has received an incoming

request for an orderly disconnect, but the client has not yet
acknowledged the release.

T_OUTREL The client has initiated an orderly disconnect, but the remote
endpoint has not yet acknowledged the request.

The successful completion of some Open Transport functions causes an endpoint to change state. Also,
asynchronous events can cause the endpoint to change state. Because certain functions are valid only for
certain states, the order in which a client is allowed to make function calls is restricted. For more
information, refer to the sections “Connectionless Endpoints” and “Connection-Oriented Endpoints.”

Table 1-1 shows each of the Open Transport functions that can cause an endpoint’s state to change. The
center column shows the state following successful completion of the function, and the right column
shows the state if the function is completed with an error. (For descriptions of these functions, refer to the
section “Endpoint Functions.”)

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 32
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Endpoints
Table 1-1. Open Transport functions that can change an endpoint’s state
Function Prior State No Error If Error

OpenEndpoint N/A T_UNBND N/A
CloseProvider Any T_UNINIT N/A
Bind T_UNBND T_IDLE T_UNBND
Unbind T_DATAXFER, T_UNBND Prior State

T_IDLE
Connect T IDLE T OUTCON T IDLE
SndOrderlyDisconnect T_DATAXFER T_OUTREL T_DATAXFER
SndOrderlyDisconnect T_INREL T_IDLE T_INREL
RcvOrderlyDisconnect T_DATA_FER T_INREL T_DATAXFER
RcvOrderlyDisconnect T_OUTREL T_IDLE T_OUTREL
SndDisconnect T_OUTCON, T_IDLE Prior State

T_INCON,

T_DATAXFER,

T_OUTREL, T_INREL
RcvConnect T_OUTCON T_DATAXFER T_IDLE
Accept T_INCON T DATAXFER T_IDLE or T_INCON

Table 1-2 shows each of the Open Transport asynchronous events that can cause an endpoint’s state to
change. (For more information about these events, refer to Appendix C.)

Table 1-2. Open Transport asynchronous events that can change an endpoint’s state

Event New State
T_LISTEN T_INCON
T_CONNECT T_DATAXFER
T_PASSCON T_DATAXFER
T_DISCONNECT T_IDLE
T_ORDREL T_INREL

Connectionless Endpoints

Endpoints are either connectionless or connection-oriented. This section gives an overview of how a client
uses a connectionless endpoint. The information in this section applies to both kinds of connectionless
endpoints: connectionless datagram and connectionless transaction.

When a client creates an endpoint, by calling OTOpenEndpoi nt , the endpoint is inthe state T_UNBND.
The client must then use the Bi nd function to assign a local protocol address to the endpoint. A client can
let the endpoint assign the protocol address, or the client can request a specific protocol address. Only one
connectionless endpoint can be bound to a single protocol address.

After binding, the endpoint’s state changes to T_IDLE. The endpoint can then receive any incoming unit
data or unit requests. The client can read incoming data or requests by calling the function RcvUDat a or
RcvURequest , depending on the type of endpoint (connectionless datagram or connectionless
transaction, respectively). The client can send data or requests by calling the function SndUDat a or
SndURequest .

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 33
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Endpoints

To return the endpoint to the T_UNBND state, the client uses the Unbi nd function. Unbi nd causes all
protocol activity on the endpoint to stop. The client can then bind the endpoint again and reuse it, or can
destroy it by calling the Gl osePr ovi der function.

OpenEndpoint CloseEndpoint

Bind Unbind

SndUfata @comm

Simplified State Diagram for a Connectionless Endpoint

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 34
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Endpoints

Connection-Oriented Endpoints

This section gives an overview of how a client uses a connection-oriented endpoint. The information in
this section applies to both kinds of connection-oriented endpoints: connection-oriented stream and
connection-oriented transaction.

When a client creates an endpoint, by calling OpenEndpoi nt, the endpoint is inthe state T_UNBND. The
client must then use the Bi nd function to assign a local protocol address to the endpoint. A client can let
the endpoint assign the protocol address, or the client can request a specific protocol address.

The client must use the Bi nd function to assign a local protocol address to the endpoint. For example, in
the case of an AppleTalk ADSP endpoint, binding means assigning a DDP socket number to the endpoint.
For all endpoints, a client may allow the endpoint to assign the protocol address, or the client may ask for
a specific protocol address. For connection-oriented endpoints, it is possible for several endpoints to be
bound to the same protocol address. However, only one of these endpoints may be designated to receive
incoming connection requests. Because connections can be accepted on a different endpoint from the one
that received the connection request, it is possible to have many open sessions (on different endpoints)
sharing the same protocol address.

After binding, the endpoint’s state changes to T_IDLE. The endpoint is then ready to receive any
incoming connection requests, or to initiating an outgoing connection request.

The following figure shows the progression of states for a connection-oriented endpoint and shows the
functions that cause the endpoint to change its state. For more information about how connection-
oriented endpoints work, refer to the section “Using Connections.”

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 35
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Endpoints

OpenEndpoint CloseEndpoint

RevDi wno:,:mg
I
I
|
” Sndpisconnect
I
I
I

Simplified State Diagram for a Connection-Oriented Endpoint

Polling for Asynchronous Events

Clients can poll endpoints for asynchronous events but not for completion events. The client can read the
most important pending asynchronous event by calling the function OTLook. The event is cleared
automatically as the client performs some function call that consumes the event. For example, the
T_LISTEN event that signals an incoming connection request is cleared when the client executes the
Listen() function. The T_GODATA and T_GOEXDATA events are cleared by the OTLook function. For
more information, refer to the description of the Look function.

Using Asynchronous Mode

Open Transport clients must call most networking and communications functions asynchronously,
because the Macintosh Operating System has no built-in threads facility. Although clients can call some of
these functions synchronously, doing so generally results in a poor user experience, as the user’s system
can do nothing else while a call is in progress.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 36
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Endpoints

A client can make Open Transport calls asynchronously by first putting the endpoint into asynchronous
mode with the Set Asynchr onous function. In asynchronous mode, many functions return before
performing their task, and send an event to the client when the function has completed. Some of the
functions are inherently synchronous and have no corresponding completion event. For example, the

Get Endpoi nt St at e function always returns the current endpoint state right away. If a function behaves
differently in asynchronous mode, that behavior is described in the description of the function.

A client that uses an endpoint in asynchronous mode must be prepared for the notifier to be called
signaling a function completion before the function actually returns to the client. For example, a client
could make an OTSndURepl y to send a reply using an endpoint in asynchronous mode, and the client’s
notification routine may be called with the T_REPLYCOVMPLETE event even before the OTSndURepl y
function returns.

A function that is asynchronous can return an error immediately, or it can return an error to the
notification function. However, only certain errors will be returned immediately. These are:

kOTStateChangeErr The requested command cannot be executed because an incompatible
command is still outstanding.

kOTOutStateErr The requested command cannot be executed because the endpoint is not
in the correct state for the command.

KENOMEMETrr There is not enough memory available to begin command execution.

KEINVALErr The arguments to the command were invalid.

kOTLooKErr An event has occurred which requires that it be dealt with before your

command is executed. Use the OTLook function to determine which
event occurred.

kOTBadAddressErr An address parameter to the function was invalid.

kOTBadOptionErr An option parameter to the function was invalid.
kOTBadDataErr A data parameter to the function was invalid.
kOTBadFlagErr The OTFlags parameter to the function was invalid.

kOTBadSequenceErr The sequence parameter to the function was invalid.
kOTNoDataErr The command requests incoming data and none is available.

kOTBadQLenErr A Listen call was made on an endpoint that was bound with a glen
parameter of zero.

kOTNotSupportedErr The endpoint does not support the function call that was made.

kOTFlowErr The command requested data to be sent, but the endpoint is currently
flow-controlled and cannot send data.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 37
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Endpoints

Here is a list of the Open Transport functions that operate differently in synchronous and asynchronous
mode. Next to the name of each such function is the event issued when the function is completed:

Opt i onManagenent T_OPTIONMGMTCOMPLETE

Bi nd T_BINDCOMPLETE

Unbi nd T_UNBINDCOMPLETE
Accept T_ACCEPTCOMPLETE
sndRequest T_REQUESTCOMPLETE
sndRepl y T_REPLYCOMPLETE
sndURequest T_REQUESTCOMPLETE
sndURepl y T_REPLYCOMPLETE

Di sconnect T_DISCONNECTCOMPLETE

Cet Pr ot Addr ess T_GETPROTADDRCOMPLETE

Resol veAddr ess T_RESOLVEADDRCOMPLETE

Note: Open Transport asynchronous functions operate differently from the way that Macintosh device
driver asynchronous functions do. Macintosh device drivers almost always return “no error” for function
calls made asynchronously, and all result codes are passed to the completion routine. (The _Cont r ol
trap on the Macintosh returns an immediate error in asynchronous mode only if there is an invalid
control code in the parameter block or the driver refNum is invalid.) All Open Transport asynchronous
functions return a result code.

Multiple Outstanding Asynchronous Calls

For many of the Open Transport functions, it is possible to have several concurrent outstanding instances
of a call. For example, a client can issue several OTResol veAddr ess calls on the asynchronous endpoint
in a row. Similarly, a client can have several OTSndURequest calls pending on the same transaction
oriented endpoint.

When Open Transport calls the client notification routine to tell the client that a function has completed,
the cooki e parameter to the natification routine is used to help distinguish which instance of a call
completed. For example, the OTResol veAddr ess function takes a pointer to a TCal | structure
containing the address to resolve and a pointer to a TCal | to hold the resolved address. When the
OTResol veAddr ess function completes, the address of the second TCal | is passed in the cooki e
parameter to the notification routine along with a T_RESOLVEADDRCOMPLETE event code. The
meaning of the cooki e is described in the event code section of this document.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 38
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Endpoints

Handling Events for endpoints

Event handling for endpoints is the same as that described for providers. There is one cautionary note to
be aware of when dealing with the T_DATA, T_EXDATA, and T_REQUEST events. These events are
used by the Open Transport Library to signal the arrival of incoming data or an incoming transaction
request. For efficiency, Open Transport notifies the client only once that incoming data has arrived. To
read all the data, the client must repeatedly issue the consuming Open Transport function (Rcv,

RcvUDat a, RcvRequest , or RevURequest) until the function returns with a kOTNoDat aEr r error. The
client does not have to issue these calls in the notification routine itself, but until the client makes the
consuming calls and receives a kOTNoDat aEr r error, another T_DATA, T_EXDATA, or T_REQUEST
event will not be issued. A client should also be prepared for being notified that data is available, but then
receiving a kOTNoDat aEr r error when trying to read the data.

One exception to this rule occurs when dealing with transaction protocols. When the client gets a
T_REPLY event, OTRcvUReply is called until a kOTNoDataErr is returned. If this is deferred from the
notification function to the foreground, the following sequence can occur: While the client is busy
reading replies in the foreground, a request arrives. This will cause a T_REQUEST event to be generated.
If the foreground client was calling OTRcvUReply at this point in time, a KOTLookErr will be generated
rather than a kOTNoDataErr. In this case (and the converse case for T_REQUEST events), another
T_REPLY event will be generated when a new reply arrives.

If we look at this operationally, the transport provider has a queue of data/commands to deliver to the
client. If the queue is empty when the data/command arrives, a notification is delivered to the client. If
the queue is not empty, then no notification is delivered to the client at the time the data/command is
queued. Instead, whenever the client reads the data/command at the head of the queue, Open Transport
peeks at the next element of the queue, if it exists. If this next element of the queue is of the same type as
what was at the head of the queue, no event is generated. If there is a difference, a new event is delivered
to the client. This new event is typically delivered to the client just prior to returning from the function
which removed the head element of the queue.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 39
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Open Transport Data Structures

Open Transport Data Structures

This section describes the general data structures and typedefs used by Open Transport clients. Routine-
specific structures are covered in the descriptions of the routines that use them.

Open Transport uses many typedefs to distinguish the different values used in it's routines. This first list
are typedefs that are used solely for parameter passing. The use of these typedefs is to account for
differences in the way that "C" compilers pass parameters:

uchar_p Used when passing an unsigned char parameter.
ushort_p Used when passing an unsigned short parameter.
short_p Used when passing a short parameter.

char_p Used when passing a char parameter

boolean_p Used when passing a Boolean parameter.

These typedefs are all set to an equivalent data type that is 4 bytes long.

The next set of typedefs are used to give better information about the parameter than just the size and
signed/unsigned characteristics of the value:

OTRelease An internal typedef used by Open Transport

OTTimeout A timeout value, specified in milliseconds.

OTBand A "band" number for use when using the "raw" Streams APIls
OTSequence A sequence value used for matching transactions and connection requests.
OTNamelD An ID returned by a mapper that uniquely identifies a registered name
OTReason A reason code returned from the OTRcvDisconnect function

OTQLen A glen value passed to the OTBind function

OTClient A value that uniquely identifies an Open Transport client

OTClientName A typedef for the name of an Open Transport client

OTOpenFlags A value for the flags passed to the various Open Transport "open" routines

OTUnixErr A positive error code corresponding to one of the Unix error codes

OTXTIErr A positive error code corresponding to one of the XTI error codes

OSStatus A negative error code. An OSStatus never has a signed value larger than 0.
OTResult A value that holds either a result code or an error code. If the value is negative,

an error occurred and the value is the error code. If the value is 0 or positive,
no error occured and the value's interpretation depends on the function that
was called.

OTAddressType A value describing an address type used in Open Transport functions which
require a protocol address

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 41
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Open Transport Data Structures

OTStructType A value describing the various structures used by Open Transport, used by the
OTAlloc procedure.

OTFlags A value describing the flags used for sending and receiving data
OTEventCode A value that indicates an Open Transport event.
OTNotifyProcPtr A typedef for the Open Transport standard "notifier" or call-back procedure

OTXTILevel A value that indicates the XTI level number of a protocol, used in
OTOptionManagement calls

OTXTIName A value that indicates the name of a protocol option, used in
OTOptionManagement calls.

OTPortRef A value that holds a unique identifier for an Open Transport port/driver

OTProcessProcPtr A typedef for a call-back procedure for the Open Transport scheduling
functions.

OTTimeStamp A value that holds an Open Transport time value.
Open Transport clients use several general data structures:

TNet buf Refers to variable-length fields such as a protocol address, protocol
options, or data. (XTI defines an identical structure, net buf .)

OTData A structure used to pass non-contiguous data to Open Transport
functions

TEndpoi nt I nfo Contains information about an endpoint such as its maximum data

size, maximum protocol-address length, and type of service provided.

TNetbuf Structure

The C definition of a TNet buf structure is:

struct TNet buf
{

U nt 32 nmaxl en;
unt32 len;
U nt 8* buf;

Iy
The meaning of the fields in a TNet buf structure is as follows:

max| en The maximum size of the buffer. The client sets this field before passing the
TNet buf to an Open Transport function, if the endpoint will return information
in the buffer. If the endpoint has more information to return than fits in the
TNet buf , a kOTBuf f er Over f | owEr r error is usually returned.

I en The amount of valid data in the buffer. In Open Transport functions where the
client passes data to the endpoint, the client is responsible for setting this field.
(The max! en field is usually ignored in this case.) In Open Transport functions
that fill a TNet buf supplied by the user, the endpoint sets this field in the
TNet buf to indicate how many bytes of data were actually returned.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 42
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Open Transport Data Structures
buf A pointer to the actual data buffer.
IMPORTANT: TNet buf is just a data structure that refers to a data buffer; the
TNet buf does not actually cont ai n the data. The client is responsible for

ensuring that the buf field points to a data area.

The following diagram shows a TNet buf structure and the data area it to which it refers.

TNetbuf User Data
maxien
len
o —
Active Data Unused

space

A TNet buf structure

OTData Structure

The OTDat a structure may be used to send non-contiguous data to certain Open Transport functions. It
is only supported in the functions Snd, ShdUData, SndURequest, SndUReply, SndRequest, and
SndReply.

WARNING: This is an Apple extension, and using it will cause your program not to work if ported to
other XTI/STREAMS environments.

The structure is used by Snd by passing a pointer to the OTDat a as the buffer parameter, and using the
constant kNet buf Dat al sOTDat a as the length. All other functions pass the OTDat a as the buf field of
a TNet buf , setting the | en field to kNet buf Dat al sOTDat a. This is only valid for the data TNet buf .
Address and option TNet buf s are not allowed to use OTDat a structures.

The C definition of an OTDat a structure is:

struct OrData

{
OrDat a* f Next ;
voi d* f Dat a;
size_t fLen;
Iy
The meaning of the fields in an OTDat a structure is as follows:
f Next A pointer to the next OTData in the list. NULL for the last element in the list of
data.
f Dat a A pointer to the actual data for this fragment.
fLen The number of bytes in this fragment.
OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 43

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Open Transport Data Structures

TEndpointinfo Structure

The TEndpoi nt I nf o structure contains information about an endpoint. The declaration is:

struct TEndpoi nt | nfo

{
Sl nt 32 addr;
S nt 32 options;
Sint 32 t sdu;
Sl nt 32 et sdu;
SInt 32 connect ;
Sl nt 32 di scon;
U nt 32 servtype;
U nt 32 flags;

Iy

The meaning of the fields in TEndpoi nt | nf o is as follows:

addr A value greater than zero indicates the maximum size of a protocol
address. A value of T_INVALID indicates that the endpoint does not
provide the client access to the address.

options A value greater than zero indicates the maximum number of bytes needed
to hold the protocol-specific options supported by the endpoint. A value of
T_INVALID indicates that the endpoint does not support client-settable
options.

tsdu The value in this field has one of two meanings, depending upon the type
of endpoint that is being interrogated. For streams (both connectionless
and connection-oriented), this field has the following meaning:

A value greater than zero indicates the maximum size of a transport
service data unit (TSDU). A value of zero indicates that the endpoint does
not support the concept of TSDU, although it does support the sending of a
data stream with no logical boundaries preserved across a connection. A
value of T_INFINITE specifies that there is no limit to the size of a TSDU.
A value of T_INVALID indicates that the endpoint does not support
normal data.

For transactions (both connectionless and connection-oriented), this field
has the following meaning:

This field must be greater than zero; it indicates the maximum size of a
response supported by the endpoint.

et sdu The value in this field has one of two meanings, depending upon the type
of endpoint that is being interrogated. For streams (both connectionless
and connection-oriented), this field has the following meaning:

A value greater than zero indicates the maximum size of an expedited
transport service data unit (ETSDU). A value of zero indicates that the
endpoint does not support the concept of ETSDU, although it does support
the sending of a data stream with no logical boundaries preserved across a
connection. A value of T_INFINITE specifies that there is no limit to the
size of an ETSDU. A value of T_INVALID indicates that the endpoint does
not support expedited data.

Note: The semantics of expedited data may be different for different kinds
of endpoints.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 44
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Open Transport Data Structures

For transactions (both connectionless and connection-oriented), this field
has the following meaning:

This field must be greater than zero; it indicates the maximum size of a
request supported by the endpoint.

connect A value greater than zero indicates the maximum amount of data (in bytes)
that may be associated with connection establishment functions. A value of
T_INVALID indicates that the endpoint does not allow data to be sent with
connection establishment.

di scon A value greater than zero indicates the maximum amount of data that may
be associated with the SndDi sconnect and RcvDi sconnect functions.
A value of T_INVALID indicates that the endpoint does not allow data to
be sent with the abortive release functions.

servtype This field specifies the service type provided by the endpoint.

T_COTS indicates that the endpoint supports connection-oriented service
but does not support orderly release, which is optional.

T_COTS_ORD indicates that the endpoint supports a connection-oriented
service with the optional orderly release.

T_CLTS indicates that the endpoint supports a connectionless service. For
this service, the et sdu, connect, and di scon fields will all be
T_INVALID.

T_TRANS indicates that the endpoint supports a connection-oriented
transaction service, but does not support orderly release, which is optional.

T_TRANS_ORD indicates that the endpoint supports a connection-
oriented transaction service with optional orderly release.

T_TRANS_CLT indicates that the endpoint supports a connectionless
transaction service.

flags This is a bit field used to specify other information about the endpoint. If
the T_SENDZERO bit is set in f | ags, this indicates that the underlying
transport provider supports the sending of zero-length TSDUs.

Clients use the sizes provided in this structure to determine how large any required buffers must
be to hold each piece of information. A client should never make assumptions about the size of
data structures just because the client knows which endpoint it is using.

Opening and Closing Endpoints

Before calling any other endpoint functions, a client must first create the endpoint by calling the function
OTOpenEndpoi nt . This function takes one parameter, an OTConfiguration structure, which can be
created using a smple ASCII string that gives the name of the endpoint. Based on this OTConfiguration
structure, the Open Transport Library creates the endpoint. Typically, creating an endpoint will require
that the Open Transport Library make some assumptions. For example, opening an endpoint using the
value OTCreateConfiguration(“ADSP”) will cause an ADSP endpoint to be created. But an ADSP
endpoint, by itself, is of no use; it requires a complete underlying protocol stack. The implementation for
opening most endpoints will contain heuristics to use some default configurations. In this case, the ADSP
implementation of opening an endpoint creates a DDP module running over the user’s default AppleTalk
port.

When finished using an endpoint, a client must call the OTCl osePr ovi der function, which tears down
the endpoint along with any lower-layer protocols associated with it.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 45
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Opening and Closing Endpoints

OTOpenEndpoi nt is described on the following pages.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 46
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Opening and Closing Endpoints

OTOpenEndpoint

FUNCTION
OpenEndpoi nt Create an endpoint.

C INTERFACE

Endpoi nt Ref OTQpenEndpoi nt (OTConfi guration* config, OTOpenFl ags ofl ag,
TEndpoi nt I nf o* info, OSStatus* err)

C++ INTERFACE
None. (C++ clients should use the C interface to this function.)

DESCRIPTION

Parameters Before After

Call Call
config X /
of l ag X /
i nf o- >addr / X
i nf o- >opti ons / X
i nf o->tsdu / X
i nf o->et sdu / X
i nf o- >connect / X
i nf 0- >di scon / X
i nf o- >servtype / X
i nfo->flags / X
err / X

OTOpenEndpoi nt creates an endpoint based on the supplied information, and returns a value
by which the created endpoint can be identified when calling other endpoint functions.

The endpoint will be opened in synchronous, non-blocking mode.

The conf i g parameter is a pointer to an OTConfiguration structure. The client cannot create one
of these structures manually, but instead must use the function OTCreateConfiguration:

pascal OTConfi guration* OTCreateConfiguration(char* path);

This function takes a string parameter (typically the endpoint name), creates an
OTConf i gur at i on structure and returns a pointer to it to the client. The client should pass this
pointer to OTOpenEndpoi nt . The OTOpenEndpoi nt function will destroy the structure. An
example of calling OTOQpenEndpoi nt using this function is shown below:

TEndpoi nt i nfo;

CBStatus err;

Endpoi nt Ref ep = OTpenEndpoi nt (OTOr eat eConfi guration(“ddp”), 0, & nfo, &err);
The parameter of | ag is not currently used and should be set to zero.

OTOpenEndpoi nt also returns several default characteristics of the endpointin the i nf o
parameter, which is of type TEndpoi nt | nf 0. Clients use the sizes provided in this structure to
determine how large any required buffers must be to hold each piece of information. A client
should never make assumptions about the size of data structures just because the client knows
which endpoint it is using. If the i nf o parameter is NULL, OTOpenEndpoi nt returns no protocol
information.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 47
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Opening and Closing Endpoints

Warning: The OTOpenEndpoi nt function destroys the OTConfiguration returned by
OTCreateConfiguration. Never attempt to use the same configuration to open multiple
endpoints. You can use the OTCl oneConf i gur at i on function to clone the configuration for
this purpose.

The output parameter er r points to a result code.

RESULT CODES
kOTBadFI agEr r
kOTBadNaneEr r
kOTCancel edErr

SEE ALSO

OTAsyncQpenEndpoi nt, OTCl oseProvi der, OTCreateConfiguration,
Ord oneConfiguration

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 48
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Opening and Closing Endpoints

AsyncOpenEndpoint

FUNCTION

AsyncOpenEndpoi nt Create an endpoint asynchronously.

C INTERFACE

COSSt at us OTAsyncOpenEndpoi nt (OrConfi gurati on* config, OTOpenFl ags
of l ag, TEndpoi ntInfo* info, OTNotifyProcPtr proc, void*
contextPtr)

C++ INTERFACE
None. (C++ clients should use the C interface to this function.)

DESCRIPTION

Parameters Before After

Call Call
config X /
of |l ag X /
i nf o- >addr / X
i nf o- >opti ons / X
i nf o->tsdu / X
i nf o->et sdu / X
i nf o- >connect / X
i nf 0- >di scon / X
i nf o- >servtype / X
i nfo->flags / X
proc X /
contextPtr X /

OTAsyncQpenEndpoi nt creates an endpoint asynchronously, based on the supplied
information. If this function returns an error immediately, then the notification function will not
be called. If kKOTNoEr r or is returned, then the notification function will be called with the results
of the open.

The confi g, of | ag, and i nf o parameters have the same meaning as for OTOpenEndpoi nt .

When the open is complete, your notification function will be called with the event parameter
set to T_OPENCOVPLETE. The r esul t parameter will either be KOTNoEr r or if the open was
successful, or will return a result code describing the error. If the open was successful, the
cooki e is the Endpoi nt Ref for the endpoint that was opened.

The endpoint will be opened in asynchronous, non-blocking mode, and will already have a
notification routine installed, which is the same notification routine used for the open. If you
want a different notifier installed, use OTRenpveNot i fi er to remove the current one, and use
OTl nstal | Notifier toinstall a new one.

Warning: The OTAsyncOpenEndpoi nt function destroys the OTConf i gur at i on returned by
OTCr eat eConf i gurati on. Never attempt to use the same configuration to open multiple
endpoints. You can use the OTCl oneConf i gur at i on function to clone the configuration for
this purpose.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 49
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Opening and Closing Endpoints

RESULT CODES
kOTBadFI agEr r
kOTBadNaneEr r
kOTCancel edErr

SEE ALSO
OpenEndpoi nt, C oseProvider, OTCreateConfiguration, OTC oneConfiguration

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 50
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Binding and Unbinding

Binding and Unbinding Endpoints

Before an endpoint can be used, it must be bound to a protocol address. Binding assigns a local address to
the endpoint. The client can request to bind to a particular address, or the client can let the endpoint pick

its own address.

No data transfer can take place on an endpoint until it is bound. Once a connectionless endpoint is bound,
it will be able to receive incoming data, and a client may send data through the endpoint. For connection-
oriented endpoints, the endpoint is ready to receive incoming connection requests or make outgoing

connection requests.

An endpoint can be bound and unbound multiple times without closing the endpoint in between.

OpenTransport Client Developer Note, Rev 1.1b14

1/18/96 page 51

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Binding and Unbinding Endpoints

Bind

FUNCTION
Bi nd Bind an address to an endpoint.

C INTERFACE
COSSt at us OTBi nd(Endpoi nt Ref ref, TBind* req, TBind* ret);

C++ INTERFACE
OSSt at us TEndpoi nt:: Bi nd(TBi nd* req, TBind* ret);

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /
req- >addr . max| en / /
req- >addr. | en X >= 0 /
req- >addr . buf (x) /
reqg- >ql en x >= 0 /
ret->addr. maxl en X /
ret->addr.len / X
ret - >addr . buf ? (?)
ret->qglen / X >=0

Bi nd associates a local protocol address with the endpoint specified by the parameter r ef . Most
endpoint functions complete successfully only if the endpoint you specify is currently bound. For
instance, a connectionless endpoint can send and receive data only if the endpoint is bound.
Similarly, a connection-oriented endpoint can enqueue incoming connect indications, and its
client can initiate a connection, only if the endpoint is bound.

The parameter r eq is a TBi nd structure, which has the following fields:

struct TNetbuf addr;

OrQLen gl en;
The parameter r eq is used to request the address given in the r eq. addr field of the TBi nd
structure. Some endpoints treat the requested address as a suggestion or hint; the actual address
that they bind to an endpoint may differ from the requested address. When the Bi nd function
returns, the TBi nd structure to which the r et parameter points contains the address actually
bound to the endpoint. The r et - >addr . | en field will contain the length of the address. If the
ret - >addr . max| en field indicates the TNet buf is not large enough to contain the address, an
error (kOTBuf f er Over f | owEr r) will result.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 52
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Binding and Unbinding Endpoints

The gl en field has meaning only when initializing a connection-oriented service. It specifies the
number of outstanding connect indications that the endpoint should support. A outstanding
connect indication is one that has been passed to the client but which has been neither accepted
(via Accept) nor rejected (via SndDi sconnect). A value of gl en greater than zero is
meaningful only when Bi nd is issued by a passive client that expects other clients to connect to it.
The value of gl en will be negotiated by the endpoint and may be changed if the endpoint cannot
support the specified number of outstanding connection indications. For connection-oriented
endpoints, this value of gl en will not be negotiated to zero from a requested value greater than
zero. When the Bi nd call returns, the negotiated value is stored in the gl en field of the TBi nd
structure specified by the r et parameter.

The r et parameter may be NULL if the client does not care what address the endpoint is bound to
(or will use the OTGet Pr ot Addr ess function to find out) and does not care about the negotiated
value of gl en.

If the requested address is not available, an error will result (kOTAddr essBusyErr). If no
address is specified in the r eq parameter (r eq- >addr . | en is zero or r eq is NULL), the endpoint
will assign an address. If the r eq parameter is NULL, the value for r eq- >ql en is assumed to be
zero. If the endpoint could not allocate an address, the function will fail with the

kOTNoAddr essErr error.

Itis valid to set both r eq and r et to NULL for the same call.

A client must not bind multiple protocol address to a single endpoint. (However, some
connection-oriented endpoints let a client bind multiple endpoints to a single protocol address.)
If a client binds more than one endpoint to the same protocol address, only one endpoint can be
used to listen for connection indications for that address. In other words, only one Bi nd for a
given protocol address may specify a gl en greater than zero.

If a client attempts to bind a protocol address to another endpoint using a gl en greater than zero,
Bi nd will return the kOTAddr essBusyEr r error. When a client accepts a connection on the
endpoint that is being used as the listening endpoint, the bound protocol address is busy for the
duration of the connection, until an OTUnbi nd or OTC osePr ovi der call is issued. No other
endpoints may be bound for listening on that same protocol address while the initial endpoint is
active (either in the T_IDLE or T_DATAXFER states). This will prevent more than one endpoint
bound to the same protocol address from accepting connect indications.

If the endpoint is connectionless, only one endpoint may be associated with a protocol address. If
a client attempts to bind a second endpoint to an already bound protocol address, Bi nd will
return the kOTAddr essBusyErr error.

If the endpoint is in synchronous mode, the function will not return until the bind is complete.

If the endpoint is in asynchronous mode, a notification routine has been installed, and the Bi nd
function returns KOTNoEr r or, a T_BI NDCOVPLETE event will be issued when the bind
completes. The result parameter will be KOTNoEr r or if the bind completed successfully.
Otherwise, it will contain a result code describing the reason that the bind failed. The cooki e
parameter passed to the notification routine holds the r et parameter.

If a notification routine has not been installed, the only way to determine that the bind has
completed is to poll the Get Endpoi nt St at e function. This function will return a

kOTSt at eChangeEr r until the bind completes. When the bind completes, the state will either
be T_UNBND if the bind failed, or T_I DLE if it succeeded. If the bind failed, there is no
mechanism for determining the result code that it failed with.

Note:_In asynchronous mode, the T_BINDCOMPLETE event may be issued before the Bi nd
function returns a KOTNoEr r or result code.

An asynchronous Bi nd still in progress may be canceled by issuing the Unbi nd function.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 53

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Binding and Unbinding Endpoints

CAUTION: An endpoint may not allow an explicit binding of more than one endpoint to the

same protocol address, although it allows more than one connection to be accepted for the same

protocol address. To ensure portability, do not bind endpoints that are used as responding

endpoints in a call to Accept , if the responding address is to be the same as the called address.
VALID STATES

T_UNBND

RESULT CODES
kOTAccessErr
kOTAddr essBusyErr
kOTBadAddr essErr
kOTBuUf f er Over f | owEr r
kOTCancel edErr
kOTNoAddr essErr

SEE ALSO
Unbi nd, Get Endpoi ntState

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 54
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Binding and Unbinding Endpoints

Unbind

FUNCTION
Unbi nd Return an endpoint to the unbound state.

C INTERFACE
COSSt at us OTUnbi nd(Endpoi nt Ref ref);

C++ INTERFACE
OSSt at us TEndpoi nt : : Unbi nd() ;

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /

Unbi nd disables an endpoint previously bound by the Bi nd function. On completion of this call,
no further data or events destined for this endpoint will be accepted. An endpoint which is
disabled with the Unbi nd function can be enabled later by calling the Bi nd function.

If the endpoint is in synchronous mode, the function will wait until the unbind is completed.

If the endpoint is in asynchronous mode, a notification routine has been installed, and the

Unbi nd function returns KOTNoEr r or , a T_UNBI NDCOVPLETE event will be issued when the
unbind completes. The result parameter will be KOTNoEr r or if the unbind completed
successfully. Otherwise, it will contain a result code describing the reason that the unbind failed
(most often it is a kOTLooKErr on connectionless endpoints, usually indicating that more data has
arrived. Unfortunately, XTI defines that an Unbind will only succeed when there is no data
available. The only recourse is to either read the data and try again, or close the endpoint). The
cooki e parameter passed to the natification routine has no meaning, and will be zero.

If a notification routine has not been installed, the only way to determine that the unbind has
completed is to poll the Get Endpoi nt St at e function. This function will return a

kOTSt at eChangeEr r until the unbind completes. When the unbind completes, the state will
either be T_I DLE if the unbind failed, or T_UNBND if it succeeded. If the unbind failed, there is
no mechanism for determining the result code that it failed with.

Note: In asynchronous mode, it is possible for the endpoint to issue the T_UNBINDCOMPLETE
event before the Unbi nd function returns the KOTNoEr r or result to the client.

VALID STATES
T_IDLE

RESULT CODES
kOTBadRef er enceEr r
kOTBadSyncErr
kOTLooKEr r
kOTQut St at eEr r

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 55
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

SEE ALSO

Bi nd, Get Endpoi nt State

Binding and Unbinding Endpoints

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

page 56

Endpoint information

Getting Information About an Endpoint

This section describes the functions that clients can use to get information about a particular endpoint.

GetEndpointinfo

FUNCTION
Get Endpoi ntInfo Return information about an endpoint.

C INTERFACE

OSSt at us OTGet Endpoi nt | nf o(Endpoi nt Ref ref, TEndpoi ntlnfo* info);
C++ INTERFACE

COSSt at us TEndpoi nt : : Get Endpoi nt | nf o(TEndpoi nt | nf o* i nfo);

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /
i nf o- >addr / X
i nfo->options / X
i nfo->tsdu / X
i nf o- >et sdu / X
i nf o- >connect / X
i nf o- >di scon / X
i nf o- >servtype / X
i nf o->fl ags / X

Cet Endpoi nt | nf o gets information about the specified endpoint. It returns this information in
the parameter i nf o, which is of type TEndpoi nt | nf o.

If the i nf o pointer argument to Get Endpoi nt | nf o is passed as a NULL pointer,
Get Endpoi nt | nf o returns no protocol information.

If the endpoint is in asynchronous mode, a notification routine has been installed, and the

Get Endpoi nt | nf o function returns KOTNoEr r or , a T_GETI NFOCOVMPLETE event will be issued
when the function completes. The result parameter will be KOTNoEr r or if the function
completed successfully. Otherwise, it will contain a result code describing the reason that the
function failed. The cooki e parameter passed to the notification routine to indicate completion
contains the value of the i nf o parameter that was passed to the original function call.

If a notification routine has not been installed, it is not possible to determine when this command
is completed.

VALID STATES
All

RESULT CODES

no specific result codes

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 57
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

SEE ALSO
GetEndpointState, Sync

Endpoint information

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

page 58

Endpoint information

GetEndpointState

FUNCTION

Cet Endpoi nt St at e Return the current XTI state of an endpoint.

C INTERFACE
OTResul t OTGet Endpoi nt St at e(Endpoi nt Ref ref);

C++ INTERFACE
OTResul t TEndpoi nt: : Get Endpoi nt State();

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /

On successful completion, Get Endpoi nt St at e returns an integer value of zero or greater,
indicating the XTI state of the specified endpoint. (Endpoint states are listed and described in
Appendix B.) The only error returned by this function is kOTSt at eChangeEr r, which indicates
that the state of the endpoint is currently changing.

VALID STATES

All

RESULT CODES
kOTSt at eChangeEr r

SEE ALSO
OpenEndpoi nt, Get Endpoi ntlnfo, Sync

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 59
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Endpoint information

Look

FUNCTION

Look Return current event flags for an endpoint.
C INTERFACE
OTResul t OTLook(Endpoi nt Ref ref);

C++ INTERFACE
OTResul t TEndpoi nt: : Look();

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /

On successful completion, Look returns an integer value of zero or greater, indicating the most
important event pending on the specified endpoint. The only error returned is the
kOTSt at eChangeErr .

Clients can use Look to poll for asynchronous events such as incoming data or a connection
request.

Some functions return the kOTLookEr r result code, indicating that the client should make the
Look function call to determine why the original function aborted.

If successful, Look returns one of the event codes described in Appendix C (but not any of the
event codes whose name ends in COVPLETE).

VALID STATES
All

RESULT CODES
kOTSt at eChangeEr r

SEE ALSO
Instal | Notifier

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 60
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Endpoint information Endpoint information

If a notification routine has not been installed, it is not possible to determine when this command
is completed.

GetProtAddress

VALID STATES

All
FUNCTION
) - o RESULT CODES
Cet Pr ot Addr ess Get the address to which the specified endpoint is bound. If the
endpoint is connection-oriented and currently connected, also kOTBuf f er Over f I owErr
get the address to which it is connected. SEE ALSO
C INTERFACE Bind, Connect, Accept
OSSt at us OTGet Pr ot Addr ess(Endpoi nt Ref ref, TBi nd* boundAddr, TBi nd*

peer Addr) ;

C++ INTERFACE
OSSt at us TEndpoi nt : : Get Pr ot Addr ess(TBi nd* boundAddr, TBi nd*

peer Addr) ;
DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /
boundAddr - >addr . max!| en X /
boundAddr - >addr . | en / X
boundAddr - >addr . buf ? (?)
boundAddr - >qgl en / /
peer Addr - >addr . max| en X /
peer Addr - >addr . | en / X
peer Addr - >addr . buf ? (?)
peer Addr - >gl en / /

Get Pr ot Addr ess gets the local and remote protocol addresses currently associated with the
endpoint. The client is responsible for initializing the TNet buf structures in the TBi nd structure
with buffers large enough to hold the addresses. (To find the length of the address, call the

Get Endpoi nt | nf o function.)

The TBi nd structure has the following members:

struct TNetbuf addr;

OrQLen gl en;
The local address of the endpoint is returned in the boundAddr structure unless the endpoint is
in the T_UNBND state. In the T_UNBND state, the boundAddr - >addr . | en field will be set to
zero.

The remote address that the endpoint is connected to will be returned in the peer Addr structure.
If the endpoint is not currently in the T_DATAXFER state or is not a connection-oriented
endpoint, the peer Addr - >addr . | en field will be set to zero. The peer Addr pointer in the

Get Pr ot Addr ess function may be NULL.

If the endpoint is in asynchronous mode, a notification routine has been installed, and the

Get Pr ot Addr ess function returns kOTNoEr r or , a T_GETPROTADDRCOVPLETE event will be
issued when the function completes. The result parameter will be kOTNoEr r or if the function
completed successfully. Otherwise, it will contain a result code describing the reason that the
function failed. The cooki e parameter passed to the notification routine to indicate completion
contains the peer Addr, unless the peer Addr is NULL. If the peer Addr is NULL, the cooki e
contains the boundAddr .

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 61 OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 62
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Endpoint information

ResolveAddress

FUNCTION

Resol veAddr ess Resolve a protocol address.

C INTERFACE

COSSt at us OTResol veAddr ess(Endpoi nt Ref ref, TBind* req, TBind* ret,
OTTi meout tineout);

C++ INTERFACE

OSSt at us TEndpoi nt: : Resol veAddr ess(TBi nd* req, TBind* ret, OTTi neout

DESCRIPTION

timeout);
Parameters Before After
Call Call
ref (Conly) X /
req- >addr . max| en / /
req- >addr. | en X /
req- >addr . buf (x) /
reg- >ql en / /
ret->addr. maxl en X /
ret->addr.len / X
ret->addr . buf ? (?_
ret->qglen / /
ti meout X /

Resol veAddr ess gets the lowest-layer protocol address that corresponds to the specified
protocol address, within its protocol family. For example, Resol veAddr ess might convert a
higher-layer address like "mynetwork.com" into a lower-layer address like "33.77".

The TBi nd structure has the following members:

struct TNet buf addr;

OrQLen gl en;
If the endpoint is in asynchronous mode, a notification routine has been installed, and the
Resol veAddr ess function returns kOTNoEr r or , a T_RESOLVEADDRCOVPLETE event will be
issued when the function completes. The result parameter will be KOTNoEr r or if the function
completed successfully. Otherwise, it will contain a result code describing the reason that the
function failed. The cooki e parameter passed to the notification routine to indicate completion
contains the r et parameter that was passed to the Resol veAddr ess call.

The timeout parameter indicates the maximum time in milliseconds that you want to wait for
address resolution to occur. This parameter is advisory only, and not all protocols will honor it.

VALID STATES

All except T_UNINIT

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 63

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

RESULT CODES
kOTBuUf f er Over f | owEr r
kOTNot Suppor t edEr r
kOTQut St at eErr
kOTSt at eChangeEr r
kOTBadAddr essErr

SEE ALSO
None

Endpoint information

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

page 64

Endpoint information

Sync

FUNCTION

Sync Insures that the transport provider and client are synchronized
as to state and endpoint information.

C INTERFACE

OTResul t OTSync(Endpoi nt Ref ref);

C++ INTERFACE

OTResul t TEndpoi nt:: Sync();

DESCRIPTION

Parameters Before After
Call Call
ref (Conly) X /

On successful completion, Sync returns an integer value of zero or greater, corresponding to
current information about the endpoint. On error, Sync returns a negative integer corresponding
to a result code.

If the endpoint is in asynchronous mode, a notification routine has been installed, and the Sync
function returns KOTNoEr r or , a T_SYNCCOVPLETE event will be issued when the function
completes. The result parameter will be kKOTNoEr r or if the function completed successfully.
Otherwise, it will contain a result code describing the reason that the function failed. The
cooki e parameter passed to the notification routine to indicate completion has no meaning.

If a notification routine has not been installed, it is not possible to determine when this command
is completed.

It should not be necessary to call this function for Open Transport. It is provided for backward
compatibility with the XTI interfaces.

VALID STATES

All

RESULT CODES

no specific result codes

SEE ALSO

None

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 65

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Allocating Endpoint structures

Allocating Structures

Many of the structures passed as parameters to various endpoint functions contain one or more TNet buf
structures. Before a client can call these endpoint functions, the buf and max!| en fields of the TNet buf
must be initialized with a pointer to a buffer area and its length. The length of the buffer will differ for
different endpoints. Thus, the client must allocate a buffer big enough to hold the desired data, but not so
large that memory is needlessly wasted.

By using the Get Endpoi nt | nf o function, a client can determine the required length of buffers. The
client can then allocate the buffers and initialize the data structures with pointers to the buffers and their
sizes.

Two helper functions make this process easier—Al | oc , which allocates a specified structure, and Fr ee,
which deallocates, or “frees,” it. The kind of structure to be allocated or freed is passed as a parameter to
the functions.

IMPORTANT: Al | oc and Fr ee are provided for compatibility with XTI. In general, clients should not
allocate and free structures on every call, because doing so will degrade client performance. Instead, if
structures are to be passed as parameters to endpoint functions, clients can declare the structures just as
they would any other variables or data structures. This is especially important for data transfer functions.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 66
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Allocating Endpoint structures

Alloc

FUNCTION
Al 'l oc Allocate a desired XTI data structure.
C INTERFACE
voi d* OTAl | oc(Endpoi nt Ref ref, OTStructType struct Type, U nt32

fields, OSStatus* err);
C++ INTERFACE

voi d* TEndpoint:: Al l oc(OTStruct Type struct Type, U nt32 fields,
OSSt at us* err = NULL);
DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /
struct Type X /
fields X /
err ? (?)

Al | oc allocates one of several data structures for use in subsequent calls. If successful, a pointer
to the desired structure is returned. The type of structure that is allocated depends upon the

st ruct Type parameter. The fields parameter indicates which substructures inside the requested
structure should also be allocated.

For example, a client that wants to get the protocol address of the endpoint must use the

Get Pr ot Addr ess function. In order to make the call, the client must pass in a TBi nd structure
whose addr . buf field points to a buffer large enough to hold the endpoint’s protocol address.
The client must use Get Endpoi nt | nf o to find out how large an address field is required,
allocate the memory, and then init e the addr . buf and addr . max| en fields in the TBi nd
structure before making the call.

The Al | oc function handles this work automatically; the client can just make the call:

TBi nd* boundAddr = Alloc(T_BIND, T_ADDR);

Table 1-3 shows the structures that can be allocated and the corresponding value to use in the
st ruct Type parameter.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 67
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Allocating Endpoint structures

Table 1-3. Valid Values for the st r uct Type parameter of Al | oc and Fr ee

struct TBi nd T_BIND

struct TOpt Mynt T_OPTMGMT
struct TCal | T_CALL

struct TDi scon T_DIS

struct TUni t Dat a T_UNITDATA
struct TUDErr T_UDERROR
struct TEndpoi ntlnfo T_INFO

struct TReply T_REPLYDATA
struct TRequest T_REQUESTDATA
struct TUni t Request T_UNITREQUEST
struct TUni t Reply T_UNITREPLY

Each structure, except TEndpoi nt | nf o, contains at least one field of type struct TNet buf . For
each field of this type, the client may specify that the buffer for that field should be allocated also.
The length of the buffer allocated will be at least as large as the appropriate size returned in the
Get Endpoi nt | nf o function. The f i el ds parameter is a bitwise-OR of the following constants
and specifies which buffers to allocate:

T_ADDR The addr field of the TBi nd, TCal | , TUDErr,
TUni t Request, TUni t Dat a, or TUni t Dat a structures.
T_OPT The opt field of the TOpt Mynt , TCal |, TUDEr r ,

TRequest, TRepl y, TUni t Request, TUni t Repl y, or
TUni t Dat a structures.

T_UDATA The udat a field of the TCal |, TDi scon, TUni t Dat a,
TRequest, TRepl y, TUni t Request, or TUni t Repl y
structures. The value of the udata.max| en field depends
upon the kind of structure being allocated.

be allocated.

T_ALL All relevant fields of the desired structure wi

For each TNet buf allocated, the max| en field of the TNet buf will be set to the length of the
buffer allocated, and the | en field of the TNet buf will be set to zero. Irrelevant or unknown
values passed in the f i el ds parameter are ignored.

The length of any allocated fields will be appropriate only for this endpoint. Clients should not
use the structure pointer that is returned by this function in calls to any other endpoint.

Any TNet buf structures in the requested structure that are not allocated will have their max!| en,
| en, and buf fields all set to zero.

Any field which has an infinite size defined by the TEndpoi nt | nf o will not be allocated.

VALID STATES

All

RESULT CODES

kOTSt ruct ur eTypeEr r
kOTNot Support edEr r

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 68

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Allocating Endpoint structures

SEE ALSO
Free, GetEndpointlnfo
OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 69

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Free

FUNCTION

Allocating Endpoint structures

Free Fr ee a structure previously allocated with the Al | oc function.

C INTERFACE

COSSt at us OTFree(voi d* ptr, OTStruct Type structType);

C++ INTERFACE
OSSt at us TEndpoi nt:: Free(voi d* ptr,

DESCRIPTION

OTStruct Type struct Type);

Parameters

ptr
struct Type

Before After
Call Call
X /

X /

Fr ee frees the memory a client has allocated using the Al | oc function. The client must pass in
the structure type in the st r uct Type parameter and a pointer to the structure in the pt r field.

(For the valid values of the st r uct Type parameter,

see the description of the Al | oc function.)

The client is responsible for passing the st r uct Type parameter that exactly matches the type of

structure being freed. The client may not change the

allocated structure before calling the Fr ee function.
VALID STATES

All

RESULT CODES
kOTSt ruct ureTypeErr
kOTNot Support edErr
SEE ALSO
None

buf field in any of the TNet buf fields of the

OpenTransport Client Developer Note, Rev 1.1b14

1/18/96 page 70

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Managing Options

Managing Options

Applications can be written that never deal with any
options. Skipping this whole section the first time
through is recommended. The most important thing to
remember about options is that the use of options is
completely optional. All endpoints have default values
for options.

This section describes the framework for the use of options. This framework is obligatory for all
endpoints. The specific options that are legal for use with a specific endpoint are described in the docu-
mentation for each specific endpoint. General options are specified in the function description for the
Opt i onManagenent call.

Overview

Not all transports are interchangeable, and clients that want to make use of particular feature sets of an
endpoint need to have a way to access these features.

The X/Open XTI interface addresses this requirement with a process called opt i on nanagenent . Open
Transport supports the same mechanism through the Opt i onManagenent function that allows the client
of an endpoint to negotiate options, check for existence of certain options, retrieve the default options,
and retrieve the current options.

The format of options is specified, but the value is not. XTI has defined the value of options for many
protocols in the ISO and TCP/IP protocol families. Apple and AT&T have defined options for some
protocols in the AppleTalk family. The formats of these options can be found in the individual documents
for the protocol families.

Free-form options and options specific to the particular kind of endpoint seem to defy one of the goals of
Open Transport: that a client can interchangeably use endpoints that provide a similar type of service.
There are two features of Open Transport that reduce the size of this problem: default options and
configuration. All endpoints have default options that are “good enough” for most uses, so a client need
not specify options when making endpoint function calls that take an option parameter.

There will be situations where use of the Opt i onManagenent call is unavoidable, but in many cases
correct design of endpoint layers can hide these calls from the application that is the ultimate user of
lower endpoint.

There are two general categories of options: those that are association-related and those that are not.
Association-related options are intimately related to the particular transport connection or datagram
transmission. If a calling client specifies such an option, some ancillary information is passed along to the
destination endpoint in most cases. The interpretation and further processing of this information are
protocol-dependent. For example, in an ISO connection-oriented communication, the calling client may
specify quality-of-service parameters on connection establishment. These are processed and possibly
lowered by the called endpoint, then passed along to the called (remote) client, who may degrade them
again, and finally returned to the calling client.

Options that are not association-related do not contain information destined for the remote transport
user. Some have purely local relevance: an option that enables debugging for example. Others influence
the transmission. For example, the option for an IP endpoint that sets the time-to-live field. Local options
are negotiated solely between the client and endpoint.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 71
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Managing Options

The distinction between these two categories of options is visible in the Open Transport interfaces
through the following relationship: On output, the functions Li st en, RevUDat a, and RcvURequest
return association-related options only. The functions RcvConnect and RcvUDEr r may return options of
both categories. On input, options of both categories may be specified to the Accept , SndUDat a, and
SndURequest functions. The functions Connect and Opt i onManagenent can process and return both
categories of options.

Portability

An applications programmer who writes Open Transport programs faces two portability aspects:
- Portability across different protocol families
- Portability across different system platforms

Options are intrinsically coupled with a particular protocol or protocol family. Making explicit use of
them degrades portability across protocol families.

Different system platforms may offer different option support for the same protocols due to different
implementations. The lists of common options described in the Opt i onManagenent function and the
protocol-specific options described elsewhere are maximal sets but do not necessarily reflect common
implementation practice. Different system platforms will implement subsets that suit their needs. Making
careless use of options endangers portability across different system platforms.

Every implementation of a protocol endpoint can be used with the default values of options. This means
applications can be written that do not care about options at all.

An application program that processes options retrieved from an Open Transport function should discard

options it does not recognize in order to lessen its dependence on different system platforms and future
expansion of protocol options and vice versa.

Option Format
Options are passed to or from an endpoint via an opt parameter of type struct TNet buf . Each option in
the buffer pointed to by opt . buf is of the form st ruct TOpt i on, possibly followed by an option

value.

Several options can be concatenated, but each option must start on a long-word boundary:

first option second option
< > <
fen _ Tevel _ :mBm_ mmEm— vaue.. [.. |
opt.buf alignment characters

The | evel field of an option identifies the XTI level (see Get XTI Level) of the endpoint, the name field
identifies the option, and the | en field contains the total length of the option (including the four long-
words and the value fields.). The st at us field is used to indicate the success or failure of an option
negotiation (See the Opt i onManagenent function for a description). All four of these fields are unsigned
longs.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 72
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Managing Options

Option Negotiation

The discussion below describes the general rules governing the passing and retrieving of options and the
error conditions that can occur. Unless explicitly restricted, these rules apply to all functions that allow
the exchange of options.

Multiple Options and Options Levels

When multiple options are specified in an option buffer on input, different rules apply to the levels that
may be specified, depending upon the function call. Multiple options specified on input to the

Opt i onManagenent function must address the same option level. Options specified on input to
Connect, Accept, SndUData, and SndURequest can address different levels.

Illegal Options

Only legal options may be negotiated; illegal options cause failure. An option is illegal if the following
appli

- The length specified in the TOption.| en exceeds the remaining size of the option buffer
(counted from the beginning of the option).

- The option value is illegal. The legal values are defined for each option. (See the
documentation specific to the particular endpoint.)

If an illegal option is passed to an endpoint, the following will happen:
- A call to Opt i onManagenent will fail with kOTBadOpt i onErr .

- Accept or Connect will fail with either kOTBadOpt i onEr r, or the connection
establishment aborts, depending upon the implementation and the time the illegal option is
detected. If the connection aborts, a T_DISCONNECT event occurs, and a synchronous call
to Connect fails with kOTLookEr r . It depends upon timing and implementation
conditions whether an Accept can still succeed or whether it fails with kOTLookEr r .

- A call to SndUDat a either fails with kOTBadOpt i onEr r or it successfully returns, but a
T_UDERR event occurs to indicate that the datagram was sent.

If the client passes multiple options in one call and one of them is illegal, the call fails as described above.
However, it is possible that some or all of the submitted legal options were successfully negotiated. The
client can check the current status by calling the Opt i onManagenent function with the T_CURRENT
action flag set.

Specifying an option level unknown to an endpoint does not cause failure in calls to Connect , Accept ,
SndUDat a, or SndURequest ; the option is ignored. The function Opt i onManagenent will fail with
kOTBadOpt i onEr r if passed an unknown option level.

Specifying an option name that is unknown to or not supported by the endpoint selected by the option
level does not cause failure. The option is discarded in calls to Connect , Accept , SndUDat a, or
SndURequest . The function Opt i onManagenent returns T_NOTSUPPORT in the | evel field of the
option.

Initiating an Option Negotiation

A client initiates an option negotiation when calling Connect , SndUDat a, SndURequest , or
Opt i onManagenent with the action flag T_NEGOTIATE set.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 73
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Managing Options

The negotiation rules for these functions depend on whether an option request is an absolute requirement
or not. This is explicitly defined for each option (see documentation for each specific endpoint kind). For
example, in the case of an 1ISO endpoint, the option that requests use of expedited data is not an absolute
requirement, but the option that requests protection could be an absolute requirement.

If the proposed option is an absolute requirement, three outcomes are possible:

- The negotiated option value is the same as the proposed one. When the result of the
negotiation is retrieved, the st at us field in the TOption structure is set to T_SUCCESS.

- The negotiation is rejected if the option is supported, but the proposed value cannot be
negotiated. This leads the following:

— Opt i onManagenent successfully returns, but the returned option has its st at us field
setto T_FAILURE.

— Any attempt to establish a connection aborts; a T_DISCONNECT event occurs, and a
synchronous call to Connect fails with KOTLooKEr r .

— SndUDat a fails with kOTLookEr r or successfully returns, but a T_UDERR event occurs
to indicate that the datagram was not sent.

If multiple options are submitted in one call, and one of them is rejected, the endpoint
behaves as described above. Although the connection establishment, the datagram
transmission, or the transaction request fails, options successfully negotiated before some
option was rejected retain their negotiated values. There is no undo mechanism.

The function Opt i onManagenent attempts to negotiate each option. The st at us fields of
the returned options indicate success (T_SUCCESS) or failure (T_FAILURE).

- If the endpoint does not support the option at all, Opt i onManagenent reports
T_NOTSUPPORT in the st at us field. The Connect, SndUDat a, and SndURequest
functions ignore the option.

If the proposed option value is not an absolute requirement, two outcomes are possible:

- The negotiated value is of equal or lesser quality than the proposed one (that is, a delay
may become longer).

When the result of the negotiation is retrieved, the st at us field in TOption is set to
T_SUCCESS if the negotiated value equals the proposed one, or T_PARTSUCCESS
otherwise.

- If the endpoint does not support the option at all, Opt i onManagenent reports
T_NOTSUPPORT in the st at us field. The functions Connect , SndUDat a, and
SndURequest ignore the option.

Unsupported options do not cause functions to fail or a connection to abort, since different
implementations possibly implement different subsets of options. Future enhancements might add
additional options that are unknown to earlier implementations of an endpoint. The decision whether or
not the missing support of an option is acceptable is left to the client.

The endpoint does not check for multiple occurrences of the same option, possibly with different values.
It simply processes the options one after another. However, the client should not make any assumption
about the order of processing in case this changes in the future.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 74
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Managing Options

Not all options are independent of one another. A requested option value might conflict with the value of
another option that was specified in the same call or is currently effective. These conflicts may not be
detected at once, but later they might lead to unpredictable results. If detected at negotiation time, these
conflicts are resolved within the rules stated above. The outcomes may be quite different and depend
upon whether absolute or non absolute requests are involved in the conflict.

Conflicts are usually detected at the time a connection is established or a datagram is sent. If the options
are negotiated with Opt i onManagenent , conflicts are usually not detected at this time, since
independent processing of the requested options must allow for temporal inconsistencies.

When called, the functions Connect, SndUDat a, and SndURequest initiate a negotiation of all
association-related options according to the rules of this section. Options not explicitly specified in the
function calls are taken from a (logical) internal option buffer containing default values, configured
values, or values of a previous negotiation.

Responding to a Negotiation Proposal

In connection-oriented communication, some protocols give the peer transport client the opportunity to
negotiate characteristics of the connection to be established. These characteristics are association-related
options. With the connect indication, the called client receives (via a Li st en function) a proposal about
the option values that should be effective for this connection. The called user can accept this proposal or
weaken it by choosing values of lower quality. The called client can, of course, refuse the connection
establishment altogether.

For connection-oriented endpoints, the called user responds to a negotiation proposal via Accept . If the
called endpoint client tries to negotiate an option of higher quality than proposed, the outcome depends
on the protocol to which that option applies. Some protocols may reject the option, some protocols take
other appropriate action described in protocol-specific documentation. If an option is rejected, the
following error occurs:

The connection fails; a T_DISCONNECT event occurs. It depends on timing and
implementation conditions whether the Accept call still succeeds or fails with a
kOTLooKETr r result.

If multiple options are submitted with Accept and one of them is rejected, the connection fails as
described above. Options that could be successfully negotiated before the erroneous option was detected
retain their negotiated value. There is no undo mechanism.

The response options can either be specified with the Accept call, or can be preset by the responding
endpoint (not the listening endpoint!) in an Opt i onManagenent call (with the T_NEGOTIATE action
flag) prior to Accept . Note that the response to a negotiation proposal is activated when Accept is

called. An Opt i onManagenent call with erroneous option values as described above will succeed; the
connection aborts at the time the Accept is called.

The connection also fails if the selected option values lead to contradictions.

The function Accept does not check for multiple specifications of the same option. Unsupported options
are ignored.

Retrieving Information About Options

This section describes how a client can retrieve information about options. To be explicit, a client must be
able to

- know the result of a negotiation (i.e. at the end of a connection establishment)

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 75
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Managing Options
- know the proposed option values under negotiation (during connection establishment)
- retrieve option values sent by the remote client for notification only
- check option values currently effective for the transport endpoint

So that the client can perform these operations, the Connect, Listen, Opti onManagenent,
RcvConnect, RcvUData, RcvUDErr,and RcvURequest functions take an output parameter opt of
type struct TNet buf . The client must specify a buffer address where the options will be written to in
opt . buf , and opt . max| en must contain the buffer’s size. The client may set opt . max| en to zero to
indicate that no options are to be retrieved.

Which options are returned depends upon the function call:
Connect (synchronous) and RcvConnect

The function returns the values of all association-related options that were received with
the connection response and the negotiated values of those non-association-related options
that had been specified on input. However, options specified on input to the Connect call
that are not supported, or refer to an unknown option level are discarded and not returned
on output.

The st at us field of each option returned with Connect or RcvConnect indicates if the
proposed value (T_SUCCESS) or a degraded value (T_PARTSUCCESS) has been
negotiated. The st at us field of received ancillary information that is not subject to
negotiation is always set to T_SUCCESS.

Li sten

The received association-related options are related to the incoming connection (identified
by the sequence number), not to the listening endpoint. (However, the option values
currently effective for the listening endpoint can affect the values retrieved by Li st en,
since the endpoint might be involved in the negotiation process, too). Thus, if the same
options are specified in a call to Opt i onManagenent with the action flag set to
T_CURRENT, Opt i onManagenent will usually not return the same values.

The number of received options may be variable for subsequent connection indications,
since many association-related options are transmitted only on explicit demand by the
calling client. It is even possible that no options at all are returned.

RcvUDat a

The received association-related options are related to the incoming datagram, not to the
endpoint. Thus, if the same options are specified in a call to Opt i onManagenent with the
action field set to T_CURRENT, Opt i onManagenent will usually not return the same
values.

The number of options received may vary from call to call.
The st at us field is irrelevant.
RcvUDET r

The returned options are related to the options input at the previous SndUDat a call that
produced the error. Which options are returned and which values they have depend on the
specific error condition.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 76
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Managing Options
The st at us field is irrelevant.
Opt i onManagenent

This call can process and return both categories of options. It acts on options related to the
endpoint, not on options related to a connect indication or an incoming datagram.

Privileged and Read-Only Options

Privileged options or option values are those that may be requested by privileged clients only. The
meaning of privileged is implementation-defined.

Read-only options serve for information purposes only. The client may be allowed to read the option
value but not to change it. For example, to select the value of a protocol timer or the maximum length of a
protocol data unit may be too subtle to leave to the client, though the knowledge about this value may be
of some interest. An option might be read-only for all clients or solely for non-privileged clients. A
privileged option might be inaccessible or read-only for non-privileged users.

An option might be negotiable in some XTI states and read-only in other XTI states. For example, the ISO
quality-of-service options are negotiable in the T_IDLE and T_INCON states, and read-only in all other
states (except T_UNINIT).

If a client requests negotiation of a read-only option, or a non-privileged client requests illegal access to a
privileged option, the following outcomes are possible:

- Opt i onManagenent successfully returns, but the returned option has its st at us field set
to T_NOTSUPPORT if a privileged option was requested illegally, and T_READONLY if
the modification of a read-only option was requested.

- If negotiation of a read-only option is requested, Accept or Connect fail with
kOTAccessEr r, or the connection establishment aborts, and a T_DISCONNECT event
occurs. If the connection aborts, a synchronous call to Connect will fail with kOTLookErr .
If a privileged option is illegally requested, the option is quietly ignored.(A non-privileged
client shall not be able to select an option which is privileged or unsupported.) It depends
on timing and implementation conditions whether an Accept call still succeeds or fails
with kOTLooKErr .

- If negotiation of a read-only option is requested, SndUDat a may return KOTLookEr r or
successfully return, but a T_UDERR event occurs to indicate that the datagram was not
sent. If a privileged option is illegally requested, the option is quietly ignored. (A non-
privileged client will not be able to select an option that is privileged or unsupported.)

If multiple options are submitted to Connect, Accept, SndUDat a, or SndURequest , and a read-only
option is rejected, the connection or the transmission fails as described. Options that could be successfully
negotiated before the erroneous option was discovered retain their negotiated values. There is no undo
mechanism.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 77
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Managing Options

Option Management of a Transport Endpoint
This section describes how option management works during the lifetime of a transport endpoint.

Each transport endpoint is (logically) associated with an internal option buffer. When a transport
endpoint is created, this buffer is filled with a system default value for each supported option. Depending
upon the option, the default may be “Option Enabled” or “Option Disabled” or denote a time span, etc.
These default settings are appropriate for most uses. Whenever an option value is modified in the course
of an option negotiation, the modified value is written to this buffer and overwrites the previous one. At
any time, the buffer contains all option values that are currently effective for this endpoint.

The current value of an option can be retrieved at any time by calling Opt i onManagenent with the
T_CURRENT action flag set. Calling Opt i onManagenent with the T_DEFAULT action flag set yields the
system default for the specified option.

A transport client can negotiate new option values by calling Opt i onManagenent with the
T_NEGOTIATE action flag set. The negotiation follows the rules in a previous section, “Option
Negotiation”.

Some options may be modified only in specific XTI states and are read-only in other XTI states. Many
association-related options, for example, may not be changed in the state T_DATAXFER, and an attempt
to do so will fail. The legal states for each option are specified in the documentation for the option.

Association-related options take effect at the time a connection is established or a datagram is
transmitted. This is the case if they contain information that is transmitted across the network or they
determine specific transmission characteristics. If such an option is modified by a call to

Opt i onManagenent , the endpoint checks whether the option is supported and negotiates a value
according to its current knowledge. This value is written to the internal option buffer. The final
negotiation takes place if the connection is established or the datagram is transmitted. This can resultin a
degradation of the option value or even in a negotiation failure. The negotiated values are written to the
internal option buffer.

Some options may be changed in the state T_DATAXFER, for example those specifying buffer sizes. Such
changes might affect the transmission characteristics and lead to unexpected side effects, such as data loss
if a buffer size was shortened.

The endpoint client can explicitly specify both categories of options on input when calling Connect ,
Accept, SndUData, or SndURequest . The options are first locally negotiated option-by-option, and
the resulting values written to the internal option buffer. The modified option buffer is then used if a
further negotiation step across a connection is required. The newly negotiated values are then written to
the internal option buffer.

At any stage, a negotiation failure can lead to an abort of the transmission. If a transmission aborts, the
option buffer will preserve the content it had at the time the failure occurred. Options that could be
negotiated just before the error occurred are retained in the option buffer whether or not the function call
fails or succeeds.

It is up to the endpoint user to decide which options to specify on input when calling Connect ,

Accept, SndUData, or SndURequest . The client need not pass options at all by setting the | en field
of the functions input opt parameter to zero. The current content of the internal option buffer is then
used for negotiation.

The negotiation procedure for options at the time a Connect, Accept, SndUData, or
SndURequest function is made is the same as described in earlier sections whether the options are
explicitly specified or are implicitly taken from the internal option buffer.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 78
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Managing Options

The transport client must not make assumptions about the order in which options are processed during
negotiation.

A value in the option buffer is modified only as a result of successful negotiation of this option. It is not
changed by a connection release. There is no history mechanism that would restore the buffer state
existing prior to the connection establishment or the datagram transmission. The transport client must be
aware that a connection establishment or datagram transmission may change the internal option buffer,
even if each option was originally initialized to its default value.

The Option value T_UNSPEC

Some options may not have a fully specified value all the time. When an option does not have a value, it
gets the value T_UNSPEC in the st at us field.

An endpoint may also return the value T_UNSPEC if it cannot currently access the option value. This
may happen, for example, in the state T_UNBND in systems where the protocol stack resides on a
separate host. An endpoint will never return T_UNSPEC if the option is not supported at all.

If T_UNSPEC is a legal value for a specific option, it may be used by the client on input, too. It is used to
indicate that it is left up to the endpoint to choose an appropriate value. This is especially useful in
complex options such as 1SO throughput where the option value has an internal structure. The endpoint
client may leave some fields unspecified by selecting this value. If the client proposes T_UNSPEC, the
endpoint is free to select an appropriate value. This might be the default value, some other explicit value,
or T_UNSPEC.

The documentation for each option will specify whether or not T_UNSPEC is a legal value for negotiation
purposes.

The i nf o Argument

The functions QpenEndpoi nt, AsyncOpenEndpoi nt, and Get Endpoi nt | nf o return values
representing characteristics of the transport endpoint in their info parameter. The value of

i nf o- >opti ons isused in he Al | oc function to allocate storage for an option buffer to be used in a
endpoint function call. The value is sufficient for all uses.

In general, i nf o- >opt i ons also includes the size of privileged options, even if these are not read-only
for non-privileged users. Alternatively, an implementation can choose to return different values in
i nf o- >opti ons for privileged and non-privileged users.

The valuesin i nf o- >et sdu, info->tsdu, info->connect,andi nfo->di scon possibly diminish

as soon as the T_DATAXFER state is entered. Calling Opt i onManagenent does not influence these
values.

Summary
- The value of an option is defined by a header struct TOption, followed by an option value.

- On input, several options can be specified in an input opt parameter. Each option must
begin on a long-word boundary.

- An endpoint is (logically) associated with an internal option buffer, where the currently
effective value are stored. Each successful negotiation of an option modifies this buffer,
regardless of whether the call initiating the negotiations succeeds or fails.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 79
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Managing Options

- When calling Connect, Accept, SndUData, and SndURequest, the client can
choose to use the current options by setting the | en field of the input opt parameter to
zero.

- If a connection is accepted with the Accept function, the explicitly specified option values
together with the currently effective options of the endpoint accepting the connection
matter. But, only in the case where the Accept function is instructed to accept the
connection on an endpoint different from the one that received the connection request.

- The options returned by RcvUDETr r are those negotiated with the outgoing datagram that
produced the error. If the error occurred during the option negotiation, the returned option
might represent some mixture of partly negotiated and not-yet-negotiated options.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 80
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Managing Options

OptionManagement

FUNCTION
Opt i onManagenent Manage options for an endpoint.
C INTERFACE
COSSt at us OTOpt i onManagenent (Endpoi nt Ref ref, TOptMgnt* req, TOpt Mgnt *

ret);

C++ INTERFACE
OSSt at us TEndpoi nt

: Opti onManagenent (TOpt Mgt * req, TOptMgnt* ret);

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /
reg- >opt . maxl en / /
reqg->opt.|en x >= 0 /
reg- >opt . buf (x) /
reqg- >fl ags x >= 0 /
ret->opt. maxl en X /
ret->opt.len / X
ret->opt . buf ? (?)
ret->fl ags / X >= 0

Opt i onManagenent allows a client to retrieve, verify, or negotiate protocol options with the
endpoint. Ther eq and r et parameters point to TOpt Mynt structures containing these members:
struct TNetbuf opt;
OTFl ags fl ags;
The opt field identifies the protocol options, and the f | ags field is used to specify the action to
take with the options.

The f | ags field of the r eq parameter is used to request a specific action of the endpoint, and the
opt field is used to pass the value of the options to the endpoint.

Each option in the options buffer is of the form struct TOption possibly followed by an option
value. (See the earlier section “Option Formats”.)

The |l evel field in each struct TOption identifies the XTI level of the transport provider. The
nane field identifies the option within the level, and | en contains the total length of the option
(that is, the length of the TOption structure plus the length of the option value). If

Opt i onManagenent is called with the action T_NEGOTIATE set, the status field of the returned
options contains information about the success or failure of a negotiation.

Each option in the input or output option buffer must start on a long-word boundary. A macro
defined in the QpenTr anspor t . h header file, OPT_NEXTHDR(pbuf, buflen, poption) can
be used by the client for this purpose. The parameter pbuf denotes a pointer to an option buffer,
opt . buf , and buf | en is its length. The parameter popt i on points to the current option in the
option buffer. OPT_NEXTHDR returns a pointer to the position of the next option or returns a null
pointer if the option buffer is exhausted. The macro is helpful for both reading and writing.

If the client specifies several options on input, all options must address the same | evel .

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 81
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Managing Options

If any option in the options buffer does not indication the same | evel as the first option, or the
level specified is unsupported, then the Opt i onManagenent request will fail with

kOTBadOpt i onEr r. If the error is detected, some options have possibly been successfully
negotiated. The client can check the current status by calling Opt i onManagenent with the

T_CURRENT option flag set.

The f | ags field of the TOpt Mynt structure pointed to by the r eq parameter must specify one of

the following actions:
T_NEGOTIATE

T_CHECK

This action enables the client to negotiate the values of the
options with the endpoint. The endpoint will evaluate the
requested options, negotiate the values, and return the
resulting values in the TOpt Mynt structure pointed to by the
r et parameter. The st at us field of each returned option is
set to indicate the result of the negotiation. The value is
T_SUCCESS if the proposed value was negotiated,
T_PARTSUCCESS if a degraded value was negotiated,
T_FAILURE if the negotiation failed (according to the
negotiation rules), T_NOTSUPPORT if the transport
provider does not support this option or illegally requests
negotiation of a privileged option, and T_READONLY if
modification of a read-only option was requested. If the

st at us is T_SUCCESS, T_FAILURE, T_NOTSUPPORT, or
T_READONLY, the returned option value is the same as the
one requested on input.

On return, the overall result of the negotiation is returned in
ret - >f 1 ags. This field contains the worst single result; the
rating from worst to best is: T_NOTSUPPORT,
T_READONLY, T_FAILURE, T_PARTSUCCESS,
T_SUCCESS.

For each level, the option T_ALLOPT (see below) can be
requested on input. No value is given with this option; only
the TOption part is specified. This input requests to
negotiate all supported options of this level to their default
values. The result is returned option by option in

ret - >opt. buf. (Note that depending on the state of the
transport endpoint, not all requests to negotiate the default
value may be successful.)

This action enables the client to verify whether the options
specified in the r eq TOpt Mgnt structure are supported by
the endpoint.

If an option is specified with no option value (it consists only
of a TOption structure), the option is returned with its status
field set to T_SUCCESS if it is supported, T_NOTSUPPORT
if it is not supported or needs additional client privileges,
and T_READONLY if it is read-only (in the current XTI
state). No option value is returned.

If an option is specified with an option value, the status field
of the returned option has the same value as if the user had
tried to negotiate this value with T_NEGOTIATE. If the
status is T_SUCCESS, T_FAILURE, T_NOTSUPPORT, or
T_READONLY, the returned option value is the same as the
one requested on input.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 82
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Managing Options

The overall result of the option checks is returned in

ret - >f | ags. This field contains the single worst result of
the option checks; the rating is the same as for the
T_NEGOTIATE action flag.

Note that no negotiation takes place. All currently effective
options remain unchanged.

T_DEFAULT This action enables a client to retrieve the default options
supported by the endpoint. The client specifies the options of
interest in r eq- >opt . buf . The option values are irrelevant
and will be ignored; it is sufficient to specify the TOption
part of an option only. The default values are then returned
inret->opt. buf.

The status field returned is T_NOTSUPPORT if the protocol
level does not support this option, or the client illegally
requested a privileged option, T_READONLY if the option is
read-only, and T_SUCCESS in all other cases. The overall
result of the request is returned in ret- >flags. This field
contains the single worst result; the rating is the same as for
the T_NEGOTIATE flag.

For each level, the option T_ALLOPT can be requested on
input. All supported options of this level with their default
values are returned. In this case, r et - >opt . max| en, must
be given at least the value in i nf o- >opt i ons. (See

Get Endpoi nt | nf o) before the call.

T_CURRENT This action enables a client to retrieve the currently active
options. The client specifies the options of interest in
reg- >opt . buf . The option values are irrelevant and wi
ignored; it is sufficient to specify the TOption part of an
option only. The current values are then returned in
ret->opt. buf.

The status field returned is T_NOTSUPPORT if the protocol
level does not support this option, or the client illegally
requested a privileged option, T_READONLY if the option is
read-only, and T_SUCCESS in all other cases. The overall
result of the request is returned in ret- >flags. This field
contains the single worst result; the rating is the same as for
the T_NEGOTIATE flag.

For each level, the option T_ALLOPT can be requested on
input. All supported options of this level with their current
values are returned. In this case, r et - >opt . max| en, must
be given at least the value ini nf o- >opt i ons. (See

Get Endpoi nt | nf o) before the call.

The option T_ALLOPT can be used only with the Opt i onManagenent call, and even then, only
with the actions T_NEGOTIATE, T_DEFAULT, and T_CURRENT. It can be used with any
supported level and addresses all supported options of this level. The option has no value; it
consists of a TOption only. Since in a Opt i onManagenent call, only options of one level may be
addressed, this option should not be requested together with other options. The function returns
as soon as this option is processed.

be

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 83

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Managing Options

Other options are processed in the order they appear in the input option buffer. If an option is
multiply input, it depends on the implementation whether it is multiply output or whether it is
returned only once.

Endpoints may not be able to provide an interface capable of supporting the T_NEGOTIATE
and/or the T_CHECK actions. In this case the kOTNot Suppor t edEr r error is returned.

For an endpoint in synchronous mode, the endpoint will return results of the option management
in the TOpt Mynt structure pointed to by the r eq parameter.

If the endpoint is in asynchronous mode, a natification routine has been installed, and the
Opti onManagenent functi on returns kOTNoErr or, a T_OPTI ONMGMITCOMPLETE event wi
be issued when the function completes. The result parameter will be KOTNoEr r or if the function
completed successfully. Otherwise, it contain a result code describing the reason that the
function failed. The cooki e parameter passed to the notification routine to indicate completion
contains the value of the ret parameter that was passed to the original function call.

If a notification routine has not been installed, it is not possible to determine when this command
is completed.

While an Opt i onManagenent call is outstanding, any other functions that are called for the
same endpoint will return with a kOTSt at eChangeEr r result code.

Note: In asynchronous mode, the T_OPTIONMGMTCOMPLETE event may be issued before the
Opt i onManagenent function returns to the client.

XTI-LEVEL OPTIONS

XTI-level options are not specific to a particular endpoint. An XTI implementation supports none,
all, or any subset of the options defined below. An implementation may restrict the use of any of
these options by offering them only in the privileged or read-only mode.

The options below are not association-related. They may be negotiated in all XTI states. The
protocol level for all of these options is XTI_GENERIC.

option name type of option legal meaning
value option value
XTI_DEBUG array of unsigned longs see text enable debugging
XTI_LINGER struct linger see text linger on close if data
present

XTI_RCVBUF unsigned long size in bytes receive buffer size
XTI_RCVLOWAT unsigned long size in bytes rcv low-water mark

XTI_SNDBUF unsigned long size in bytes send buffer size
XTI_SNDLOWAT unsigned long size in bytes send low-water mark

A request for XTI_DEBUG is an absolute requirement. A request to activate XTI_LINGER is an
absolute requirement; the timeout value to this option is not. XTI_RCVBUF, XTI_RCVLOWAT,
XTI_SNDBUF, XTI_SNDLOWAT are not absolute requirements.

XTI_DEBUG This option enables debugging. The values of this option are
implementation defined. Debugging is disabled if the option is specified
with no value.

XTI_LINGER This option is used to linger the execution of a Cl osePr ovi der if data
is still queued in the send buffer. The option value specifies the linger
period. If Cl oseProvi der is issued, and the send buffer is not empty,
the endpoint attempts to send the pending data within the linger period
before closing the endpoint. Data still pending after the linger period has
elapsed is discarded.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 84

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

XTI_RCVBUF

XTI_RCVLOWAT

XTI_SDNBUF

XTI_SNDLOWAT

Managing Options

Cl oseProvi der will immediately return and the endpoint holds the
connection open for at most the linger period.

The option value consists of a t_linger structure:
struct t_linger

{ long | _onoff; // switch option on/off
. long | _linger; /1 linger period in seconds
The legal values for the I_onoff field are:
T_NO switch the option off
T_YES activate option
The value of | _onof f is an absolute requirement.

The | _l'i nger field determines the linger period in seconds. The client
can request the default value by setting the field to T_UNSPEC. The
default timeout values depend upon the endpoint (It is often
T_INFINITE.) Legal values for this field are T_UNSPEC, T_INFINITE,
and all non-negative numbers.

The | _I'i nger field is not an absolute requirement. An implementation
may place upper and lower limits to this value. Requests that fall short of
the lower limit are negotiated to the lower |

Note that this option does not linger the execution of SndDi sconnect .

This option is used to adjust the internal buffer size allocated for the
receive buffer. The buffer size may be increased for high-volume
connections, or decreased to limit the possible backlog of incoming data.

This request is not an absolute requirement. An implementation may
place upper and lower limits to this value. Requests that fall short of the
lower limit are negotiated to the lower limit.

Legal values are all positive numbers.

This option is used to set a low-water mark in the receive buffer. The
option value gives the minimal number of bytes that must have
accumulated in the receive buffer before they become visible to the client.
If and when the amount of accumulated received data exceeds the low-
water mark, a T_DATA event is issued. The client may then read the data
with Rcv or RevUDat a.

This request is not an absolute requirement. An implementation may
place upper and lower limits to this value. Requests that fall short of the
lower limit are negotiated to the lower limit.

Legal values are all positive numbers.

This option is used to adjust the internal buffer size allocated for the send
buffer.

This request is not an absolute requirement. An implementation may
place upper and lower limits to this value. Requests that fall short of the
lower limit are negotiated to the lower limit.

Legal values are all positive numbers.

This option is used to set a low-water mark in the send buffer. The
option value gives the minimal number of bytes that must have
accumulated in the send buffer before they are sent.

OpenTransport Client Developer Note, Rev 1.1b14

1/18/96 page 85

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

VALID STATES
All

RESULT CODES
kOTAccessErr
kOTBadFI| agEr r
kOTBadOpt i onErr
kOTCancel edErr
kOTNot Support edEr r

SEE ALSO

Managing Options

This request is not an absolute requirement. An implementation may
place upper and lower limits to this value. Requests that fall short of the
lower limit are negotiated to the lower

Legal values are all positive numbers.

OTCr eat eOpt i ons, OTCr eat eOpti onStri ng, Accept ,Al | oc,Connect ,Get Endpoi nt | nf o,
Li st en, OpenEndpoi nt, RevConnect

OpenTransport Client Developer Note, Rev 1.1b14

1/18/96 page 86

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connectionless Datagrams

Using Connectionless Datagrams

The functions in this section apply only to connectionless datagram endpoints. A connectionless
datagram endpoint usually provides a datagram service. Protocols such as DDP, IP, PPP, 802.2 Type 1,
802.3, etc., are connectionless endpoints.

The SndUDat a function is used to send data on a connectionless datagram. Each SndUDat a function call
requires the protocol address of the destination of the datagram.

Some endpoint implementations do not detect an error in the attempt to send a datagram until after the
SndUDat a function has already returned successfully. In this case, the endpoint will issue a T_UDERR
event and the client can determine the particular error by issuing the RcvUDEr r function.

The RcvUDat a function is used to read incoming datagrams. Each datagram read will have a remote
protocol address (the source) associated with it.

Both the RcvUDat a and SndUDat a functions are supported only when the endpoint is bound and in the
T_IDLE state.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 87
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connectionless Datagrams

SndUData

FUNCTION
SndUDat a Send a data unit.
C INTERFACE
COSSt at us OTSndUDat a(Endpoi nt Ref ref, TUnitData* udata);

C++ INTERFACE
OSSt at us TEndpoi nt: : SndUDat a(TUni t Dat a* udat a) ;

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /
udat a- >addr . max| en / /
udat a- >addr. | en X >= 0 /
udat a- >addr . buf (x) /
udat a- >opt . max| en / /
udat a- >opt . | en x >= 0 /
udat a- >opt . buf (?) /
udat a- >udat a. max| en / /
udat a- >udat a. | en X /
udat a- >udat a. buf (Xx) /

SndUDat a is used on connectionless datagram endpoints to send a data unit. The udat a
parameter points to a TUni t Dat a structure containing the following fields:

struct TNet buf addr;

struct TNetbuf opt;

struct TNetbuf udat a;
The addr field specifies the protocol address of the destination, opt identifies any endpoint-
specific options that the client wants to use for this request, and udat a specifies the client data to
be sent. The client may choose not to specify protocol options by setting the | en field inside the
opt TNet buf to zero.

The udat a member of the udat a parameter contains the data to be sent. If the
udat a- >udat a. | en field is zero, and sending of zero data bytes is not supported by the
endpoint, the kOTBadDat aEr r error will be generated.

If the amount of data in udata exceeds the current TSDU size, a kOTBadDat aEr r error will be
generated.

A client may send non-contiguous data by setting the udat a- >udat a. buf pointer to point to an
OTDat a structure, and setting the udata->udata.len value to kNet buf Dat al sOTDat a

It is not possible for all endpoints to detect the conditions that result in the kOTBadAddr essEr r
or kOTBadOpt i onErr errors. The existence of these errors is signaled by a T_UDERR event, and
the client can read them by making the RcvUDEr r function call.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 88
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connectionless Datagrams

The client may negotiate the XTI_SNDLOWAT option with an endpoint using the

Opt i onManagenent function. This option value gives the minimal number of bytes that must
have accumulated in the endpoint’s send buffer before they are sent. Not all endpoints support
the XTI_RCVLOWAT option.

If the endpoint is in non-blocking or asynchronous mode, the SndUDat a function will return a
kOTFloweErr if flow control restrictions prevent the data from being accepted by the transport
provider at the time the function is issued. After this error occurs, a T_GODATA event will be
issued when the flow control restrictions are lifted. This error will never be returned if the
endpoint is in blocking mode.

The behavior of SndUData is summarized in the table below.

_w<:n\w_00x_:@ kOTFI owEr r never returned
Returns when flow control lifts

_w<:o\203.m_0o§:m kOTFI owEr r may be returned
Returns to caller immediately

_>m<:o\m_00x_:@ kOTFIl owEr r may be returned
Returns to caller immediately

_>m<:n\Zo:.m_00x3m kOTFI owEr r may be returned
Returns to caller immediately

VALID STATES
T_IDLE

RESULT CODES
kOTAccessErr
kOTBadAddr essErr
kOTBadOpt i onEr r
kOTCancel edErr
kOTFIl owEr r
kOTLooKEr r
kOTNot Support edErr
kOTQut St at eErr

SEE ALSO
AckSends, Dont AckSends, RcvUDEr r

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 89
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

FUNCTION
RcvUDEr r

C INTERFACE
OSSt at us

C++ INTERFACE
OSSt at us

DESCRIPTION

Connectionless Datagrams

RcvUDErr

Read the error result from a previous call to the SndUDat a
function.

OTRcvUDETr r (Endpoi nt Ref ref, TUDErr* uderr);

TEndpoi nt:: RevUDErr (TUDErr* uderr);

Parameters Before After
Call Call
ref (Conly) X /
uder r - >addr . max| en X /
uderr->addr. | en / X
uder r - >addr . buf ? (?)
uderr - >opt . max| en X /
uderr->opt.len / X
uder r - >opt . buf ? (?)
uderr->error / X

RcvUDET r is used with connectionless datagram endpoints to receive an error result on a

previously sent data u

, and should be issued only after the endpoint has detected a unit data

error and has issued the T_UDERR event.

The client passes a pointer to a TUDEr r structure containing the following members:

struct TNet buf addr;
struct TNet buf opt;
SInt32 error;

Before calling RcvUDET r, you must set the max| en fields of addr and opt , to indicate the
maximum size of each buffer. If the size of a result exceeds that of one of these buffers, RcvUDEr r
returns the result code kOTBuf f er Over f | owEr r . The error indication, however, is nonetheless

cleared.

When RcvUDET r returns, the udat a- >addr structure specifies the destination protocol address
of the erroneous data unit, the udat a- >opt structure identifies protocol-specific options that
were associated with the data unit, and udat a- >er r or specifies a protocol-dependent result

code.

If the client does not care to identify the data unit that produced the error, the uder r parameter
may be set to NULL, and RcvUDEr r will clear the error indication without reporting any
information to the client.

VALID STATES
T_IDLE

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 90

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

RESULT CODES
kOTBuUf f er Over f | owEr r
kOTNot Support edEr r
k OTNoUDET r Er r
kOTQut St at eErr

SEE ALSO
SndUDat a, RcvUDat a

Connectionless Datagrams

OpenTransport Client Developer Note, Rev 1.1b14
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

page 91

Connectionless Datagrams

RcvUData

FUNCTION
RcvUDat a Read a data unit.
C INTERFACE
COSSt at us OTRcvUDat a(Endpoi nt Ref ref, TUnitData* udata, OTFl ags*

flags);
C++ INTERFACE
OSSt at us TEndpoi nt:: RevUDat a(TUni t Dat a* udata, OTFl ags* fl ags);

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /
udat a- >addr . max| en X /
udat a- >addr. | en / X
udat a- >addr . buf ? (?)
udat a- >opt . max| en X /
udat a- >opt . | en / X
udat a- >opt . buf ? (?)
udat a- >udat a. max| en X /
udat a- >udat a. | en / X
udat a- >udat a. buf ? (?)
flags / X

RcvUDat a is used by a connectionless datagram client to receive a data unit. The client passes a
pointer to a TUni t Dat a structure parameter, udat a, to hold information associated with the
received data unit, and f | ags is set on return to indicate that the complete data unit was not
received. The TUni t Dat a structure has the following members:

struct TNet buf addr;

struct TNetbuf opt;

struct TNetbuf udat a;
The max| en fields of addr, udata and opt must be set before calling this function. The
max!| en field of the addr and opt indicates the maximum size of each buffer.

On return from this call, addr contains the remote protocol address of the data unit, opt contains
protocol-specific options that were associated with the data unit, and udat a contains the user
data that was received.

If the endpoint is in synchronous blocking mode, the endpoint will wait for data if none is
currently available. Generally, this method of operation is discouraged as it may lead to a ‘hang’
if no data ever becomes available. If the client is doing other operations in synchronous mode, it
should call Set NonBl ocki ng before calling RcvUDat a, to prevent the RcvUDat a call from
waiting indefinitely.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 92
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connectionless Datagrams

If the endpoint is in asynchronous mode or is not blocking, the function will fail with the
kOTNoDat aEr r result if no data is available. If a notification routine has not been installed on the
endpoint, a client may poll for the arrival of a data unit by calling Look and checking for the
T_DATA event flag. Or, if the client has installed a notification routine on the endpoint, a
T_DATA event will be passed to the notification routine (See | nst al | Not i fi er). Additionally,
once a client gets the T_DATA event, it should not expect to get another T_DATA event until
making the RcvUDat a call returns either a kOTNoDat aEr r or or kOTLookErr error.

Clients should be prepared for a T_DATA event and then a kOTNoDat aEr r error when a
RcvUDat a call is made. This seems unusual, but may occur as endpoints reclaim unread data in
low memory conditions (for unreliable endpoints, only).

If the buffer defined in the udat a field of the TUni t Dat a structure is not large enough to hold
the current data unit, the buffer will be filled and T_MORE will be setin f | ags on return to
indicate that another RcvUDat a call should be made to retrieve the rest of the data unit.
Subsequent calls to RcvUDat a will return zero for the length of the address and options until the
full data unit has been received.

VALID STATES

T_IDLE

RESULT CODES
kOTBuf f er Over f | owEr r
kOTCancel edErr
kOTLooKEr r
kOTNoDat aEr r
kOTNot Support edErr
kOTQut St at eErr

SEE ALSO
Set Asynchr onous, Set Bl ocki ng, Set NonBIl ocki ng, Set Synchr onous, SndUDat a

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 93
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connections

Using Connections

The section that follow describe how a client uses the Open Transport calls to establish a connection
between two endpoints. This section only applies to connection-oriented endpoints. A client can either
actively initiate a connection, or it can passively wait for an endpoint to receive an incoming connection
request. Additionally, a client can wait for incoming connection requests on one endpoint and accept the
connection on a different endpoint.

Initiating a connection

Before initiating a connection on an endpoint, the client must first bind the endpoint with the Bi nd
function. The client then uses the Connect function to initiate the connection. The parameters to the
connect call include the address of the remote connection end, any data to send along with the connection
request (if the particular protocol the endpoint implements allows it), and any connection options that the
client wants to specify.

Synchronous Mode

If the endpoint is in synchronous mode, the connect function will not return until the connection has
either been established, or the connection attempt has failed. If the connection succeeds, the function will
return zero.

If the connection does not succeed, the function returns kOTLookEr r . There will be a T_DISCONNECT
event pending, and the event can be cleared by issuing the RevDi sconnect function.

The sequence below shows the order of events for a successful connection opening.

Local Remote

Client makes a Connect call.

Remote end accepts the connection
request.

Client’s Connect call returns with no
error.

If remote end rejects the connection request, or the connection request fails in some other way, this is the
sequence of events, for all synchronous endpoints:

Local Remote

Client makes a Connect call.

Remote end rejects or ignores the
connection request.

Client’s Connect call returns with
kOTLooKEr r

Client issues RcvDi sconnect call.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 94
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connections

Asynchronous Mode

If the endpoint is in asynchronous mode, the connect function will return a result code of
kOTNoDat aErr .

When the connection is successfully established or the connection attempt fails, the Open Transport
Library will call the client’s notification routine with a T_CONNECT event and pass the same value that
the client passed in the Connect call’sr cvCal | parameter as the cooki e parameter .

If the connection attempt fails, then there is also a pending T_DISCONNECT event, and the client must
call RevDi sconnect to clear this event.

The sequence below shows the order of events for a successful connection opening.
Local Remote

Client makes a Connect call. It returns
with KOTNoDat aErr .

Remote end accepts the connection
request.

Client’s notification routine is called
with a T_CONNECT event. The result
code passed into the notification routine
will be kOTNoEr r or .

The client calls RevConnect . The
endpoint will change state to
T_DATAXFER.
If remote end rejects the connection request, this is the sequence of events:
Local Remote

Client makes a Connect call. It returns
with KOTNoEr r or .

Remote end rejects the connection
request, or the request fails.

Client’s notification routine is called
with a T_DISCONNECT event

The client calls RevDi sconnect .

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 95
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connections
If some other error occurs, this will be the sequence of events:
Local Remote

Client makes a Connect call. It returns
with KOTNoEr r or .

Client's notification routine is called
with a T_CONNECT event with an error
in the result code.

Waiting for a Connection

The client prepares an endpoint for handling incoming connection requests by specifying a non-zero,
positive value for the gl en field of the TBi nd structure passed into the Bi nd function. This causes the
endpoint to start listening for incoming connection requests.

When a connection request arrives, the Open Transport Library will issue a T_LISTEN event to the
client’s natification routine to indicate that an incoming connection request has arrived. The client must
issue the Li st en function to retrieve the information associated with the connection request. This
information includes the remote address, any options associated with the request, any data associated
with the request, and a sequence number. The client must store this sequence number until the client has
accepted or rejected the request.

The client can either reject the incoming connection request by calling the SndDi sconnect function, or
the client can accept the incoming connection by calling the Accept function. In both cases, the client
must pass the sequence number returned from the Li st en function to indicate which connection
indication should be rejected or accepted.

If the gl en field in the TBi nd structure the client passed in the Bi nd function as the r eqAdd parameter is
greater than one, and the gl en field in the TBi nd structure passed as the r et Addr parameter and filled
in by the Bi nd function is greater than one, then the endpoint may handle simultaneous incoming
connection requests. The sequence number returned by Li st en is used to distinguish between them.

The sequence of events for accepting an incoming connection in synchronous mode is shown below.
Local Remote

Client makes a Bi nd call with a gl en
greater than zero.

Remote end uses Connect to send a
connection request.

The client’s natifier is called with a
T_LISTEN event.

Client makes a Li st en call.

Client makes an Accept call to accept
the request, or SndDi sconnect to
reject it.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 96
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connections

Remote end’s Connect function returns
to the caller. If the connection was
rejected, then the remote end will also
issue a RevDi sconnect to clear the
T_DISCONNECT event.

The sequence of events for accepting an incoming connection in asynchronous mode is shown below.

Local Remote

Client makes a Bi nd call witha gl en
greater than zero. The local end is now
ready to receive incoming connection
requests.

Remote end uses Connect to send a
connection request.

The client’s notifier is called with a
T_LISTEN event.

Client makes a Li st en call. (Listens are
never asynchronous.)

Client makes an Accept call to accept
the request, or SndDi sconnect to
reject it.

Remote end’s notification routine is
called with T_CONNECT to indicate the
Connect call has completed. If the
connection was rejected, then the remote
end will also issue a RevDi sconnect to
clear the T_DISCONNECT event.

The client’s notification routine is called
with either T_ACCEPTCOMPLETE or
T_DISCONNECTCOMPLETE.

Tearing Down a Connection

There are two ways of tearing down a connection. All connection-oriented endpoints support an abortive
disconnect, and some connection-oriented endpoints may support an orderly disconnect.

In an abortive disconnect, the connection is torn down when the client makes the SndDi sconnect
function. This kind of disconnect can be a problem since data being sent is typically buffered locally
before being sent. If a client makes a Snd call followed by a SndDi sconnect call, the client can not be
sure that the data was actually sent without agreeing upon some kind of handshake mechanism with its
remote partner.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 97
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connections

Some protocols, such as TCP, support an over-the-wire handshake when tearing down a connection. With
these kinds of protocols, a client can make a SndOr der | yDi sconnect calltoi
teardown of the connection. The underlying protocol perform the end-to-end
notify the client (with a T_ORDREL event) when all buffered data has been sent (in both directions) and
the connection has been torn down.

Most connection-oriented stream protocol definitions do not contain an over-the-wire mechanism for
orderly disconnect (NetBIOS, ADSP, ISO TP4). However, these protocol implementations my still support
the SndOr der | yDi sconnect call. In these cases, the orderly disconnect is implemented locally. When a
client issues a SndOr der | yDi sconnect , the underlying protocol will ensure that all buffered data has
been sent (and acknowledged if the protocol supports it). Only at this point, does the protocol actually
tear down the connection and notify the client (with a T_ORDREL event).

Abortive Disconnect

The sequence of events for an abortive disconnect is shown below:

Local Remote

Client issues SndDi sconnect

Client receives a T_DISCONNECT
event. Client makes a RcvDi sconnect
call and the endpoint state goes to
T_IDLE.

Client’s notification routine is called
with a T_DISCONNECTCOMPLETE
event. (asynchronous mode only)
Note: It is possible that a client may issue a SndDi sconnect just as its remote partner is also tearing

down the connection. One of the clients may receive a KOTLoOKEr r result code from the
SndDi sconnect call, in which case it should issue a RcvDi sconnect call to clear the event.

Orderly Disconnect

The sequence of events for an abortive disconnect is shown below for protocols (like TCP) that support
over-the-wire orderly disconnects.

Local Remote

Client issues
SndOr der | yDi sconnect . Endpoint
state goes to T_OUTREL.

Client receives a T_ORDREL event.
Client may continue to send and receive

data.
Client may continue to receive data if
more arrives, but client may not send
any more data.
OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 98

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connections

Client receives unread data, and then
client acknowledges the T_ORDREL
event by making the

RcvOr der | yDi sconnect call. The
endpoint goes to the T_INREL state. The
client may still send data.

Client continues to read data if remote
end continues to send.

The client issues the

SndOr der | yDi sconnect call. At this
point, the endpoint state goes to
T_IDLE.

the connection is broken at this point

Client receives a T_ORDREL event.
Client may neither receive nor send
more data. Client issues a

RcvOrder | yDi sconnect to clear the
event, and the endpoint state goes to
T_IDLE.

The sequence of events for an abortive disconnect is shown below for protocols that do not support over-
the-wire orderly disconnects (NetBIOS, ADSP, ISO TP4) but do implement orderly disconnects locally.

Local Remote

Client issues

SndOr der | yDi sconnect . The
underlying protocol sends all buffered
data and then tears down the
connection.

the connection is broken at this point

Client receives a T_ORDREL event.
Client may continue to receive any
locally buffered, unread data.

Client may continue to receive data (any
unread data that was locally buffered
before the client issued the

SndOr der | yDi sconnect), but may
not send more data.

Client receives unread data, and then
client acknowledges the T_ORDREL
event by making the

RcvOr der | yDi sconnect call. The
endpoint goes to the T_INREL state.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 99
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

The client issues the

SndOr der | yDi sconnect call. At this
point, the endpoint state goes to
T_IDLE.

Client receives a T_ORDREL event.
Client may neither receive nor send
more data. Client issues a

RcvOr der | yDi sconnect to clear the
event, and the endpoint state goes to
T_IDLE.

The sections that follow describe the functions for creating and tearing down connections between
connection-oriented endpoints.

Connections

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 100
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connections

Connect

FUNCTION
Connect Initiate a connection.

C INTERFACE
COSSt at us OTConnect (Endpoi nt Ref ref, TCall* sndCall, TCall* rcvCall)

C++ INTERFACE
OSSt at us TEndpoi nt:: Connect (TCal | * sndCall, TCall* rcvCall)

DESCRIPTION

Parameters Before After
Call Call

ref (Conly) X
sndCal | - >addr . max| en X
->addr.len /
- >addr . buf
->opt . maxl en
->opt.len

- >opt . buf

- >udat a. max| en
->udata. len

- >udat a. buf

—
x
<

- >addr . max| en
->addr.len

- >addr . buf
->opt . max| en
->opt.len

- >opt . buf

- >udat a. max| en
->udata. |l en

—
—

—
~

—~
~OX SOX SUOX N — e~~~

-~

2
=}
Q.
T
v
%2
[
Qo
<
[)
=1
o
[v]
— —~
TS TSX 0 T X \)\X\dx\éxx

Connect lets a client of an connection-oriented endpoint request a connection to the specified
remote endpoint This function can be issued only in the T_IDLE state. The sndCal | and
recycl e parameters point to TCal | structures, which contain the following members:

struct TNetbuf addr;

struct TNetbuf opt;

struct TNetbuf udata;

OTSequence sequence;
The sndCal | parameter specifies information needed by the endpoint to establish a connection.
ThercvCal | parameter will be filled in with information associated with the newly established
connection (synchronous mode only). In asynchronous mode, the r cvCal | parameter is ignored.

The sndCal | - >addr member specifies the protocol address of the remote endpoint.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 101
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connections

The sndCal | - >opt member provides any protocol-specific options that the client may want to
specify (See the “Option Negotiation™ section). The client may choose not to negotiate protocol
options by setting the sndCal | - >opt . | en field to zero.

The sndCal | - >udat a member contains any optional user data that may be passed to the remote
endpoint during connection establishment.

The sndCal | - >udat a. buf field points to a buffer containing the data, whose length is
sndCal | - >udat a. | en.

The client may not send more data than the endpoint allows. This information is returned in the
connect field of a TEndpoi nt | nf o structure filled out by the QpenEndpoi nt or

Get Endpoi nt | nf o functions. If the sndCall- >udat a. | en field is zero, no data will be sent to
the remote endpoint.

The sndCal | - >sequence member has no meaning for this function.

If the endpoint is in synchronous mode, the Connect call will wait for the connection to be
established before returning, and the addr, opt, and udat a fields of the TCal | structure
pointed to by r cvCal | will be updated with values associated with the connection. When a
synchronous Connect call is interrupted because of an asynchronous event, such as a rejected
connection, the state of the endpoint is set to T_OUTCON, allowing a client to call RcvConnect
to wait for the connect to complete. Call RevDi sconnect to read the result of a rejected
connection request.

In asynchronous mode, the Connect function will return after initiating the connection request
before the connect function has completed. The kOTNoDat aEr r error is returned to indicate the
connect is in progress. The client will receive a T_CONNECT event when the connect operation
completes successfully, and must issue the RcvConnect function to read the connection
parameters that would have been returned in the r cvCal | structure if the Connect call had
been issued in synchronous mode.

If the Connect function returns a result other than kOTNoDat aEr r, then the connection attempt
has not been initiated and no events will be received.

When a connection is rejected, the client receives a T_DISCONNECT event. Then client must then
call RevDi sconnect to clear the error.

VALID STATES

T_IDLE

RESULT CODES

kOTAccessErr

kOTAddr essBusyErr
kOTBadAddr essErr
kOTBadDat aEr r
kOTBadOpt i onErr
kOTBuf f er Over f | owEr r
kOTCancel edEr r
kOTLookEr r

kOTNot Support edEr r
kOTQut St at eErr

SEE ALSO

None

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 102

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connections

RcvConnect

FUNCTION
RcvConnect Read the status of an outstanding or completed asynchronous
call to the function Connect .
C INTERFACE

COSSt at us OTRcvConnect (Endpoi nt Ref ref, TCall* ca

C++ INTERFACE
OSSt at us TEndpoi nt:: RevConnect (TCal | * cal l);

DESCRIPTION
Parameters Before After
Call Call
(Conly) X /
- >addr . max| en X /
->addr.len / X
- >addr . buf ? (?)
- >opt . maxl en X /
->opt.len / X
- >opt . buf ? (?)
- >udat a. max| en X /
->udata.l en / X
- >udat a. buf ? (?)
- >sequence / /

RcvConnect is used by a client of a connection-oriented endpoint to read the status of a
previously issued Connect . The Connect call may still be pending in which case

kOTNoDat aEr r is returned. The cal | parameter pointsto a TCal | structure, which is filled in
by the endpoint with information describing the established connection. The TCal | structure has
the following members:

struct TNet buf addr;
struct TNetbuf opt;

struct TNet buf udat a;
OTSequence sequence;

The addr member returns the protocol address of the endpoint that accepted the connection
request. Note that this may not be the same address that received the connection request. The
addr . max! en field must be initialized by the client with a value large enough to hold the
address before making the call.

The opt member is filled in with protocol-specific parameters associated with the established
connection. The opt . max| en field must be initialized by the client before the call with a value
large enough to hold the options.

The udat a member is filled in with data associated with the connection request.
The udat a. buf field points to a client-supplied buffer of size udat a. max!| en to hold the data.

The sequence member has no meaning for this function.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 103
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connections

The cal | parameter may be NULL, in which case no information is returned to the client by
RcvConnect .

If the endpoint is synchronous and blocking, RcvConnect will wait for the connection to be
accepted or rejected. A kOTNoEr r or result code will indicate that the connection was accepted,
and a kOTLookEr r result code will indicate that the connection was rejected (The client will need
to call Look to verify that a T_DI SCON event is the reason for the kOTLookEr r, and then call
RcvDi sconnect to clear the event indication.

Otherwise, RcvConnect will return with a kOTNoDat aEr r if the connection attempt has not yet
completed.

VALID STATES
T_OUTCON

RESULT CODES
kOTCancel edErr
kOTNot Suppor t edEr r
kOTQut St at eEr r
kOTNoDat aEr r
kOTBuf f er Over f | owEr r

SEE ALSO
Connect

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 104
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Listen

FUNCTION

Connections

Connections

If the endpoint is in asynchronous mode or is not blocking, Li st en will return any pending
connection request, or it will return kOTNoDat aEr r if there are no pending connection requests.

VALID STATES
T_IDLE, T_INCON

RESULT CODES

Li sten Li st en for an incoming connection request.

C INTERFACE

COSSt at us OTLi st en(Endpoi nt Ref ref, TCall* call);

C++ INTERFACE

OSSt at us TEndpoi nt::Listen(TCall* call);

DESCRIPTION

Parameters Before After
Call Call
(Conly) X /
- >addr . max| en X /
->addr. |l en / X
- >addr . buf ? (?)
- >opt . maxl en X /
->opt.len / X
- >opt . buf ? (?)
- >udat a. max| en X /
->udata.len / X
- >udat a. buf ? (?)
- >sequence / X

Li st en is used by a client of a connection-oriented endpoint to listen for an incoming connection
request. The cal | parameter points to a TCal | structure which is filled in by the endpoint with
information describing the connection indication. The TCal | structure has the following
members:

struct TNetbuf addr;

struct TNetbuf opt;

struct TNetbuf udata;

OTSequence sequence;
The addr member returns the protocol address of the calling endpoint. This address is in a
format usable in future calls to Connect or Accept . The addr . maxl| en field must be initialized
by the client before the call with a value large enough to hold the address.

The opt member is filled in with protocol-specific parameters associated with the connection
request. The opt . max| en field must be initialized by the client before the call with a value large
enough to hold the options.

The udat a member is filled in with data associated with the connection request.
The udat a. buf field points to a client-supplied buffer of size udat a. max!| en to hold the data.

The sequence member is filled in with a value that uniquely identifies the connect indication.
Because connection indications are uniquely identified, a client can listen for multiple connect
indications before responding to any of them.

If the endpoint is in synchronous mode and is blocking, Li st en will not return until a
connection indication has been received.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 105

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

kOTBadQLenEr r
kOTCancel edErr
kOTLookEr r
kOTNoDat aEr r
kOTNot Support edErr
kOTQut St at eErr

kOTQFul | Err
SEE ALSO
None
OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 106

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connections

Accept

FUNCTION

Accept Accept an incoming connection request.
C INTERFACE

COSSt at us OTAccept (Endpoi nt Ref ref, EndpointRef resRef, TCall* call);
C++ INTERFACE

OSSt at us TEndpoi nt: : Accept (Endpoi nt Ref resRef, TCall* call);

DESCRIPTION

Parameters Before After

Call Call
ref (Conly) X /
cal | - >addr. max| en / /
call->addr. | en X /
cal | - >addr . buf (?) /
cal | - >opt. maxl en / /
call->opt.len X /
cal | - >opt . buf (?) /
cal | - >udat a. maxl| en / /
call->udata.len X /
cal | - >udat a. buf (?) /
cal | - >sequence X /

Accept is used by a client to accept a connection request. The client can either accept the
connection on the same endpoint that received the connection request, or the client can specify
another endpoint that should accept the connection. The call parameter points to a TCal |
structure containing the following members:

struct TNetbuf addr;

struct TNetbuf opt;

struct TNetbuf udata;

OTSequence sequence;
The addr member contains the protocol address of the calling endpoint. The client need not
specify an address by setting the addr . | en field to zero. If an address is provided, it may be
optionally checked by the endpoint.

The opt member indicates any protocol-specific parameters associated with the connection. The
values of parameters specified by opt and the syntax of those are protocol-specific. See the
section on option negotiation for further discussion. If the user does not indicate any protocol-
specific options (by setting opt . | en to zero), it is assumed that the connection is to be accepted
unconditionally. The endpoint may choose options other than the defaults to ensure that the
connection is accepted successfully.

The udat a member contains any user data to be returned to the calling endpoint. The amount of
user data must not exceed the limits supported by the endpoint as returned in the connect field
of the TEndpoi nt | nf o structure filled out on a call to OpenEndpoi nt or Get Endpoi nt | nf o.

The data to be sent is pointed to by udat a. buf, and the number of bytes is specified by
udata. | en.

Connections

The sequence member is the value returned by Li st en that uniquely associates the response
with a previously received connect indication.

If a client accepts a connection on the same endpoint that received the connection indication, the
client must have responded to all previous connect indications received on the endpoint via the
Accept or SndDi sconnect functions. Otherwise, the Accept function will fail with the result
code kOTI ndQut Err.

If a different endpoint is specified, then the client may or may not choose to bind the endpoint
before the Accept call is issued. If the endpoint is not bound before the Accept call, then the
transport provider will automatically bind it to the same protocol address the endpoint that
received the connection request was bound to. If the client chooses to bind the endpoint, it must
be bound to a protocol address with a gl en of zero and must be in the T_IDLE state before the
Accept call is made. The endpoint that ends up with the open connection will receive a
T_PASSCON event to indicate that a connection is open.

The call to Accept will fail with KOTLookEr r if there are indications (T_DI SCONNECT or
T_LI STEN) waiting to be received.

WARNING: Calling Accept on an endpoint that was bound with a glen greater than 1 can
result in a kOTLookEr r being returned because another T_LI STENevent has arrived.
Unfortunately, XTI specifies that the Accept cannot be acted on until a Li st en has been issued
to receive this new connection request. This effectively means that you need to keep an array of
outstanding connection requests. If you are acting on T_LI STENevents in your notifier, then you
need to be able to handle having "ql en" outstanding connection requests, issuing an Accept ,
and getting a T_LI STEN event before the Accept returns to you.

If the endpoint is in asynchronous mode the Accept function will return immediately. A result
code of KOTNoEr r or indicates that the Accept has begun and the client will be notified when it
is complete.

The endpoint that issued the accept will receive a T_ACCEPTCOMPLETE event. The endpoint
receiving the connection will receive a T_PASSCON event. In the case where these two
endpoints are the same, the endpoint will receive both events. The cookie parameter for the
T_ACCEPTCOMPLETE event is the EndpointRef of the endpoint that issued the accept. The
cookie paramter for the T_PASSCON event is the EndpointRef of the endpoint that received the
connection.

If the Accept fails, the connection indication is still outstanding, and still needs to be dealt with

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 107
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

(probably by issuing a SndDi sconnect).

If a notification routine is not installed, the client can poll the accepting endpoint, waiting for the
state to change to T_DATAXFER

Note: In asynchronous mode, it is possible for the endpoint to issue the T_ACCEPTCOMPLETE
event before the Accept function returns the kOTNoEr r or result to the client.

VALID STATES

ref (C)orthis: (C++) T_INCON
resRef T_IDLE or T_UNBND

RESULT CODES

kOTBadAddr essErr
kOTBadDat aEr r
kOTBadOpt i onEr r
kOTBadRef er enceErr
kOTBadSequenceEr r

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 108

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

kOTCancel edErr

kOTIl ndQut Er r
kOTLookEr r

kOTNot Support edEr r
kOTQut St at eErr

kOTPr ovi der M snmat chEr r
k EPROTCET r

SEE ALSO
SndDi sconnect , Li sten

Connections

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

page 109

Connections

SndDisconnect

FUNCTION
SndDi sconnect Tear down an open connection or refuse an incoming connection
request.
C INTERFACE

COSSt at us OrsSndDi sconnect (Endpoi nt Ref ref, TCall* call);

C++ INTERFACE
OSSt at us TEndpoi nt: : SndDi sconnect (TCal | * call);

DESCRIPTION

Parameters Before After

Call Call
ref (Conly) X /
cal | - >addr . max| en / /
cal | ->addr.|en / /
cal | - >addr . buf / /
cal | - >opt. max| en / /
call->opt.len / /
cal | - >opt . buf / /
cal | - >udat a. maxl en / /
call->udata.len X /
cal | - >udat a. buf (?) /
cal | - >sequence ? /

SndDi sconnect initiates an abortive release on an already established connection, or rejects a
connection request. The cal | parameter points to a TCal | structure, which contains the
following members:

struct TNet buf addr;

struct TNetbuf opt;

struct TNetbuf udat a;

OTSequence sequence;
The values in this structure have different semantics depending upon the context of the call to
SndDi sconnect . When rejecting a connection request, cal | must be non-NULL and contain a
valid value for sequence to uniquely identify the rejected connect indication to the endpoint.
The sequence field is meaningful only if the connection is in the T_INCON state. The addr and
opt fields of cal | are ignored. In all other cases, cal | need only be used when data is being
sent with the disconnect request. The addr , opt , and sequence fields of the TCal | structure are
ignored. If the client does not wish to send data to the remote client, the value of cal | may be a
null pointer.

The udat a member specifies the client data to be sent to the remote client. The amount of user
data must not exceed the limits supported by the endpoint, as returned in the di scon field of the
TEndpoi nt | nf o structure filled out by the OQpenEndpoi nt or Get Endpoi nt | nf o functions.
The data to be sent is pointed to by udat a. buf , and the number of bytes is specified by

udat a. | en.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 110
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connections

If the endpoint is in asynchronous mode the SndDi sconnect function will return immediately.
A result code of KOTNoEr r or indicates that the SndDi sconnect has begun and the ¢
be notified when it is complete.

When the disconnect has been completed and a notification routine has been installed (See
Instal I Notifier), aT_DISCONNECTCOMPLETE event will be issued.

If a notification routine has not been installed, it is not possible to determine when the
SndDi sconnect function is complete.

The cooki e parameter passed to the notification routine to indicate completion is the cal |
parameter.
VALID STATES
T_DATAXFER, T_OUTCON, T_OUTREL, T_INREL (and T_INCON, when two or more
incoming connection requests are outstanding)
RESULT CODES
kOTBadDat aEr r
kOTBadSequenceEr r
kOTCancel edErr
kOTLooKEr r
kOTNot Support edErr
kOTQut St at eErr

SEE ALSO
None

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 111
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connections

RcvDisconnect

FUNCTION

RcvDi sconnect Identify the cause of a disconnect, and acknowledge the

corresponding disconnect event.

C INTERFACE
COSSt at us OTRcvDi sconnect (Endpoi nt Ref ref, TDi scon* discon);

C++ INTERFACE
OSSt at us TEndpoi nt: : RevDi sconnect (TDi scon* di scon);

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /

di scon- >udat a. mex| en X /

di scon->udat a. |l en / X

di scon- >udat a. buf ? (?)

di scon- >reason / X
/

di scon- >sequence ?

RcvDi sconnect identifies the reason that a connection that was torn down or that a connection
request failed or was rejected. RevDi sconnect clears the corresponding disconnect event, and
retrieves any user data sent with the disconnect. The client passes a pointer to a TDi scon
structure, in which the endpoint returns the reason for the disconnect and returns any data sent
with the disconnect. The TDi scon structure has the following members:

struct TNet buf udat a;

OTReason reason;

OTSequence sequence;
The r eason field specifies the reason for the disconnect through a protocol-dependent reason
code.

The udat a field is filled in with any user data that was sent with the disconnect. The udat a. buf
field points to a client-supplied buffer of size udat a. max| en to hold the request.

The sequence field may identify an outstanding connection indication with which the
disconnect is associated. The sequence field is meaningful only when RcvDi sconnect is
issued by a passive endpoint client that has issued one or more Li st en functions and is
processing the resulting connect indications. If a disconnect indication occurs, sequence can be
used to identify which of the outstanding connection indications is associated with the
disconnect.

If a client does not care if there is incoming data and does not need to know the value of r eason
or sequence, the di scon parameter may be a NULL pointer. In this case, any user data
associated with the disconnect will be discarded. However, if a client has retrieved more than one
outstanding connect indication (via Li st en), and the di scon parameter is NULL, the user will be
unable to identify with which connect indication the disconnect is associated.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 112
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connections

RcvDi sconnect behaves exactly the same in all operational modes of an endpoint. If there is no
disconnect pending, kOTNoDi sconnect Er r will be return. If there is, either KOTNoEr r or or
kOTBuf f er Over f | owEr r will be returned.

VALID STATES
T_DATAXFER, T_OUTCON, T_OUTREL, T_INREL, T_INCON (when number of outstanding
incoming connection requests > 1)
RESULT CODES
kOTNoDi sconnect Err
kOTNot Support edEr r
kOTCQut St at eEr r
kOTBuf f er Over f | owEr r

SEE ALSO
None

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 113
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connections

SndOrderlyDisconnect

FUNCTION
SndOr der | yDi sconnect Initiate an orderly tear-down of a connection.

C INTERFACE
COSSt at us OrSndOr der | yDi sconnect (Endpoi nt Ref ref);

C++ INTERFACE
OSSt at us TEndpoi nt:: SndOrderl yDi sconnect () ;

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /

SndOr der | yDi sconnect initiates an orderly release of a connection and indicates to the
endpoint that the client has no more data to send. After calling SndOr der | yDi sconnect , the
client must not send any more data over the connection. However, the client may continue to
receive data if an orderly release indication has not been received.

This function is an optional service of the endpoint; it is supported only if the endpoint returned
T_COTS_ORD or T_TRANS_ORD in the ser vt ype field of the TEndpoi nt | nf o structure filled
out by the OpenEndpoi nt or Get Endpoi nt | nf o functions.

SndOr der | yDi sconnect behaves exactly the same in all operational modes of an endpoint.

The return value will be KOTNoEr r or if the function succeeded, and an error result if it did not.
VALID STATES

T_DATAXFER, T_INREL

RESULT CODES
kOTLookEr r
kOTNot Suppor t edEr r
kOTQut St at eEr r
SEE ALSO
None

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 114
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connections

RcvOrderlyDisconnect

FUNCTION
RcvOr der | yDi sconnect Acknowledge an incoming request for an orderly connection
tear-down.
C INTERFACE

COSSt at us OTRcvOr der | yDi sconnect (Endpoi nt Ref ref);

C++ INTERFACE
OSSt at us TEndpoi nt:: RevOrderl yDi sconnect () ;

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /

RcvOr der | yDi sconnect acknowledges receipt of an orderly release indication. After receiving
this indication, the user must not attempt to receive more data; any subsequent calls to Rcv
return the result code kOTCQut St at eEr r . The user can, however, continue sending data over the
connection, if SndOr der | yDi sconnect has not yet been called by the client. This function is an
optional service of the endpoint and is supported only if the endpoint returned T_COTS_ORD or
T_TRANS_ORD in the ser vt ype field of the TEndpoi nt | nf o structure filled out by the
OpenEndpoi nt or Get Endpoi nt I nf o functions.

RcvOr der | yDi sconnect behaves exactly the same in all operational modes of an endpoint. If
there is no disconnect pending, KOTNoRel easeEr r will be return. If there is, either
kOTNoEr r or or kOTBuf f er Over f | owEr r will be returned.

VALID STATES

T_DATAXFER, T_OUTREL

RESULT CODES
kOTLooKEr r
kOTNoRel easeErr
kOTNot Support edEr r
kOTCQut St at eEr r

SEE ALSO
None

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 115
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connections

Using Connection-Oriented Streams

Open Transport supports connection-oriented stream endpoints. There are two Open Transport functions
specific to this type of endpoint—Snd and Rcv.

A client uses the Snd function to send data to the remote endpoint and uses Rcv to receive data from the
remote endpoint. Some endpoints support expedited data in addition to normal data. However, protocol
endpoints that support expedited data usually handle the data in significantly different ways depending
upon the particular protocol being implemented. In general, clients should not use expedited data as this
will lead to non-transport-independent code.

Some endpoints support the concept of logical separators in the data stream that will be passed from one
endpoint to another. These logical separators break the stream up into Transport Service Data Units
(TSDU) Some endpoints have a maximum size TSDU that may be supported, while other endpoints have
no size limit. A client uses the Get Endpoi nt | nf o function to find out what the TSDU size is for both
normal and expedited data (the ETSDU). The values can be found in the t sdu and et sdu fields of the
TEndpoi nt | nf o structure. A value of 0 indicates that no logical separator is supported, a value of -1
indicates that there is no maximum size to a TSDU, a positive number indicates the maximum size of a
TSDU, and -2 indicates that normal (or expedited in the case of et sdu) data is not supported by the
endpoint.

Note: Some endpoints that support TSDUs have a variable maximum size limit. A client should be aware
that the values for t sdu and et sdu that are returned when the endpoint is opened (with

OTOpenEndpoi nt) may be different if queried again using Get Endpoi nt I nf o after a connection has
been opened because the endpoints may have negotiated different values during the connection-
establishment process.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 116
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connections

Snd

FUNCTION

Snd Send data on a connection-oriented stream.

C INTERFACE

OTResul t OrsSnd(Endpoi nt Ref ref, void* buf, size_t nbytes, OIFl ags
flags);

C++ INTERFACE

OTResul t TEndpoi nt:: Snd(voi d* buf, size_t nbytes, OTFlags fl ags);

DESCRIPTION

Parameters Before After

Call Call
ref (Conly) X /
buf (x) /
nbyt es X /
fl ags X /

Snd is used by the client of a connection-oriented stream protocol to send either normal or
expedited data. On successful completion, Snd returns an integer value of zero or greater,
indicating the number of bytes sent. On error, Snd returns a negative integer corresponding to a
result code.

To specify the data to be sent, the client passes a pointer to data and a length. The client may
specify any optional flags in the f | ags parameter:

T_EXPEDITED If set, the data will be sent as expedited data (if supported by
the endpoint)

T_MORE If set, this indicates that the transport service data unit
(TSDU) or expedited transport service data unit, ETSDU) is
being sent with multiple Snd calls. Each Snd with the
T_MORE flag set indicates that another Snd will follow with
more data for the current TSDU.

The end of the TSDU (or ETSDU) is identified with a Snd
call with the T_MORE flag not set. Use of T_MORE allows
the client to break up large logical data units without losing
the boundaries of those units at the other end of the
connection. The flag implies nothing about how the data is
packaged for transfer below the endpoint. If the endpoint
does not support the concept of TSDU as indicated in the
info field of a TEndpoi nt | nf o structure filled out by either
the OpenEndpoi nt or Get Endpoi nt | nf o functions, the
T_MORE flag is not meaningful and will be ignored if set.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 117

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connections

The sending of a zero length fragment of a TSDU or ETSDU
is permitted only where this is used to indicate the end of a
TSDU or ETSDU, that is when the T_MORE flag is not set.
Some endpoints forbid the zero length TSDUs and ETSDUSs.
In this case a kOTBadDat aEr r error will result.

If the endpoint is in non-blocking or asynchronous mode, it is possible that only part of the data
will actually be accepted by the transport provider. In this case, OTSnd will return a value that is
less than the value of the nbytes parameter, or the error kOTFlowErr if no bytes at all were sent.
After this error occurs, a T_GODATA event will be issued when the flow control restrictions are
lifted. This error will never be returned if the endpoint is in blocking mode.

If an asynchronous event, such as a disconnect event, occurs which interrupts the Snd function, it
will return with the KOTLooKErr result.

The behavior of Snd is summarized in the table below.

_wv\:n\m_o%m:@ kOTFI owEr r never returned
Returns when flow control lifts

_w<:n\203.m_00§3m kOTFI owEr r may be returned
Returns to caller immediately

_>m<:o\m_0n§3@ kOTFI owEr r may be returned
Returns to caller immediately

_>m<3o\203.m_00§3@ kOTFI owEr r may be returned
Returns to caller immediately

The client may negotiate the XTI_SNDLOWAT option with an endpoint using the

Opt i onManagenent function. This option value gives the minimal number of bytes that must
have accumulated in the endpoint’s send buffer before they are sent. Not all endpoints support
the XTI_RCVLOWAT option.

If the function fails with the result code kOTBadDat aEr r, one of the following conditions
occurred:

= Asingle send was attempted specifying a TSDU(ETSDU) or fragment TSDU(ETSDU) greater
than that specified by the current values for TSDU or ETSDU for this endpoint.

= Asend of a zero-byte TSDU(ETSDU) or zero byte fragment of a TSDU(ETSDU) is not
supported by this endpoint.

= Multiple sends were attempted, resulting in a TSDU(ETSDU) larger than that specified by
the current values of TSDU or ETSDU for this endpoint.

VALID STATES
T_DATAXFER, T_INREL

RESULT CODES
kOTBadDat aEr r

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 118
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

kOTBadFIl agEr r
kOTCancel edErr
kOTFI owEr r
kOTLooKEr r

kOTNot Support edErr
kOTQut St at eErr

SEE ALSO
AckSends, Get Endpoi nt I nf o, Rev

Connections

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

page 119

Connections

Rcv

FUNCTION
Rev Read data on a connection-oriented stream.
C INTERFACE
OTResul t OTRcv(Endpoi nt Ref ref, void* buf, size_t nbytes, OTFl ags*

flags);
C++ INTERFACE
OTResul t TEndpoi nt:: Rev(voi d* buf, size_t nbytes, OTFl ags* flags);

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /
buf X (x)
nbyt es X /
flags X (x)

Rev receives either normal or expedited data. On successful completion, Rcv returns an integer
value of zero or greater, indicating the number of bytes received. On error, Rcv returns a negative
integer corresponding to a result code.

The client must specify an area in memory to which the data should be copied.

On return, if T_MORE is set in the flags, this indicates that there is more data, and the current
transport service data unit (TSDU) or expedited transport service data unit (ETSDU) must be
received in multiple Rev calls. In asynchronous mode, T_MORE may be set on return even when
the number of bytes received is less than the size of the receive buffer specified. Each Rcv with
the T_MORE flag set indicates that another Rcv must follow to get more data for the current
TSDU. The end of the TSDU is identified by the return of a Rcv call with the T_MORE flag not
set. If the endpoint does not support the concept of a TSDU, the T_MORE flag is not meaningful
and should be ignored. If the client requests more than zero bytes on the call to Rcv, then the
function will return zero only if the end of a TSDU is being returned to the client.

On return, the data is expedited data if T_EXPEDITED is set in flags. If the number of bytes of
expedited data exceeds the number of bytes requested in r eqCount , the T_EXPEDITED and
T_MORE flags will both be set. Subsequent calls to Rcv to will return the remaining ETSDU.

Note: If the client is in the middle of reading normal data TSDU, and then a Rcv returns
expedited data, the next Rcv that returns without the T_EXPEDITED flag will return normal data
at the place it was interrupted. It is the responsibility of the client to remember their place in the
normal data stream when interrupted by expedited data.

The r eqCount parameter is filled in with the actual number of bytes read.

If the client has installed a notification routine , the T_DATA or T_EXDATA events will be issued
when there is data available. If no notification routine is installed, the client may poll for these
events by repeatedly calling the Look function.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 120
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connections

If the endpoint is in synchronous mode and is blocking, the endpoint will wait for data if none is
currently available. Generally, this method of operation is discouraged as it may lead to a ‘hang’
if no data ever becomes available. If the client is doing other operations in synchronous mode, it
should put the endpoint in non-blocking mode before making the Recv call.

If the endpoint is in asynchronous mode or is not blocking, the function will fail with the
kOTNoDat aEr r result if no data is available. Once a client gets the T_DATA event, it should
continue in a loop making the RcvUDat a call until a kOTNoDat aEr r error is returned.

Clients should be prepared for a T_DATA event and then a kOTNoDat aEr r error when a Rcv
call is made. This seems unusual, but it can occur if you are calling Rcv in the foreground when a
T_DATA event comes in.

One other situation that is worth noting is that a Rcv can get a kOTLookErr error returned from
the call. Itis VERY important that you actually do the OTLook. If you are in a flow-control
situation on the send side, and a T_GODATA or T_GOEXDATA event occurs that you do not
clear in your notifier (by calling OTLook or by actually sending some data), then if you do not do
the OTLook in response to a kKOTLooKErr error from a Rev call, you will hang waiting for events.
Until the T_GODATA or T_GOEXDATA are cleared, Open Transport cannot send you another
T_DATA event (or any other event other than a T_DISCONNECT, for that matter).

The client may negotiate the XTI_RCVLOWAT option with an endpoint using the

Opt i onManagenent function. This option value gives the minimal number of bytes that must
have accumulated in the endpoint’s receive buffer before a T_DATA event is issued. Not all
endpoints support the XTI_RCVLOWAT option.

VALID STATES
T_DATAXFER, T_OUTREL

RESULT CODES
kOTCancel edErr
kOTLooKEr r
kOTNoDat aEr r
kOTNot Support edEr r
kOTQut St at eErr

SEE ALSO
Look, Set Asynchr onous, Set Bl ocki ng, Snd

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 121
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Transactions

Processing Transactions

This section describes how a client uses the Open Transport transaction protocol calls to transfer data
between two endpoints. A client can either actively initiate a transaction request, or it can passively wait
for an endpoint to receive an incoming transaction request. Each transaction is assigned a unique
sequence number to identify it for issuing/receiving the reply. There can be any number of transactions
outstanding at the same time.

Initiating a Transaction Request

In order to initiate a transaction request on an endpoint, the client must first bind the endpoint with the
Bi nd function.

The client uses the SndURequest function to initiate a transaction. The parameters to the call include the
address of the remote end, any data to send along with the transaction request (if the particular protocol
the endpoint implements allows it), and any options that the client wants to specify.

Transactions come in two types: acknowledged and unacknowledged. The default is unacknowledged.
Set the T_ACKNOWLEDGED bit in the OTFlags parameter of the SndURequest to get acknowledged
transactions. From the client's perspective the only difference between the two is that when a reply is
sent to an incoming acknowledged request, the SndUReply function does not complete until the reply is
acknowledged. In this case, KOTNoError will be returned if the reply was acknowledged, and
KETIMEDOUTETrr will be returned if the transaction protocol timed out waiting for acknowledgment.
For unacknowledged transactions, the SndUReply function completes immediately.

There is no difference between issuing requests and receiving responses in synchronous or asynchronous
modes.

The sequence below shows the order of events for a successful transaction request.

Local Remote

Client makes a SndURequest call,
which returns immediately with no
error.

The remote client’s notification routine
is called with a T_REQUEST event.

Remote end issues a RcvURequest ,
formulates a response, issues a
SndURepl y with the requested data
(and sequence # identifier)

Client receives a T_REPLY event and
issues RcvURepl y to receive the reply.
kOTNoEr r or is returned and the

TUni t Repl y structure contains the
reply information.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 122
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Transactions

If remote end rejects the transaction request, or the request fails in some other way, this is the sequence of
events:

Local Remote

Client makes a SndURequest call,
which returns immediately with no
error.

The remote client’s notification routine
is called with a T_REQUEST event.

Remote end rejects the transaction
request.

retry the request to
protocol specification.

Client receives a T_REPLY event and
issues RcvURepl y to receive the reply.
A KETI MEDOUTET r is returned, and the
TUni t Repl y structure contains no
useful information other than the
sequence number of the corresponding
SndURequest.

Responding to a Transaction Request

In order to respond to a transaction request on an endpoint, the client must first bind the endpoint with
the Bi nd function.

Synchronous clients in blocking mode may issue a RevURequest call to wait for an incoming request.

Clients will receive a T_REQUEST event notification when a transaction request arrives (unless a
RcvURequest call is in progress by a synchronous, blocking client). The client must issue the
RcvURequest function to retrieve the information associated with the transaction request. This
information includes the remote address, any options associated with the request, any data associated
with the request, and a sequence number.

The client can either reject the incoming transaction request by calling Cancel URepl y, or the client can
accept the incoming transaction request, formulate an appropriate response, and reply by calling the
SndURepl y function and passing the sequence number returned from the RcvURequest function to
indicate which transaction request the reply is for.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 123
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Synchronous/Blocking Response

Transactions

The sequence of events for handling an incoming transaction request in synchronous mode is shown

below
Local Remote
Client makes a Bi nd call.
Client makes a RevURequest call.
Remote end uses SndURequest to send
a transaction request.
RcvURequest returns to client with
request info and sequence #.
Client makes an SndURepl y call to
respond to the request. If this was an
acknowledged request, the SndUReply
will complete with either KOTNoError if
the reply was acknowledged, or
KETIMEDOUTET r if it was not.
Remote end’s notification routine is
called with T_REPLY to indicate that
reply data is available. RcvURepl y is
called to receive the reply data.
OpenTransport Client Developer Note, Rev 1.1b14 1718796 page 124

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Transactions

Asynchronous Response

The sequence of events for accepting an incoming transaction request in asynchronous mode is shown
below

Local Remote

Client makes a Bi nd call. The local end
is now ready to receive incoming
transaction requests.

Remote end uses SndURequest to send
a transaction request.

The client’s notification routine is called
with a T_REQUEST event.

Client makes a RcvURequest call to
obtain request info and sequence #.

Client makes an SndURepl y call to
respond to the request.

Remote end’s notification routine is
called with T_REPLY to indicate the
SndURequest call has completed.

The client’s notification routine is called
with T_REPLYCOMPLETE and the
cookie containing the sequence value
generated by the client for the
corresponding request. The result code
will be either KOTNoError if the reply
was acknowledged, or
KETIMEDOUTET r if it was not

Connectionless Transactions

Open Transport supports connectionless transaction endpoints. The Open Transport functions specific to
this type of endpoint are SndURequest , RevURequest , SndURepl y, and RcvUReply.

SndURequest is used by a client to initiate a transaction; the SndURequest function must have a
unique (among all currently outstanding outgoing requests) non-zero sequence number value filled out
in the TUnitReply structure. The sequence number is required, since multiple requests may be
outstanding at any time, and replies may not arrive in the order that the requests were issued. The
RcvURepl y function is used to read incoming replies. Since incoming replies do not necessarily arrive in
the same order as the requests were sent, it is necessary to be prepared to receive a reply to any
outstanding requests. One method for dealing with this is to call RevURepl y with no data buffer. This

ill result in the sequence number being stored in the TUni t Repl y structure, and the T_MORE flag being
set in the OTFI ags parameter (unless an error occurred). Once a reply has been partially received with
the T_MORE flag being set, it is guaranteed that subsequent calls to RevURepl y will read from the same
reply, until the function returns with the T_MORE flag cleared.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 125
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Transactions

The endpoint that is the destination of a transaction request reads the request using the RcvURequest
function. A sequence number is returned along with the request data; the responding client must return
this sequence number along with the response data when making the SndURepl y function so that the
endpoint can determine which request the client is responding to. This sequence number is required
because one endpoint (depending upon the implementation) may have more than one concurrent
transaction outstanding at any given time. A responding client need not respond to requests in the order
received.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 126
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Transactions

SndURequest

FUNCTION
SndURequest Send a unit request.
C INTERFACE
COSSt at us OTsndURequest (Endpoi nt Ref ref, TUnitRequest* req, OTFl ags

reqFl ags) ;
C++ INTERFACE
OSSt at us TEndpoi nt

: SndURequest (TUni t Request * req, OTFl ags regFl ags);

DESCRIPTION

Parameters Before After

Call Call
ref (Conly) X /
req- >addr . max| en / /
req- >addr. | en x >= 0 /
req- >addr . buf (x) /
reqg- >opt . maxl en / /
req->opt. | en x >= 0 /
req- >opt . buf (?) /
req- >udat a. max| en / /
reg->udata. l en x >= 0 /
reqg- >udat a. buf (x) /
req- >sequence X /
regFl ags X /

SndURequest is used by the client of a connectionless transaction endpoint to send a unit
request to another endpoint. The client passes a TUni t Request structure and reqFlags that
contain the remote address, the request data, any options, and flags.

The TUni t Request structure has the following members:

struct TNet buf addr;

struct TNet buf opt;

struct TNet buf udat a;

QOrSequence sequence;
The addr member contains the protocol address of the destination of the request. The addr . | en
field holds the length of the protocol address.

The opt member contains any protocol-specific options for the request. The opt . | en field holds
the length of the options, or zero if there are none.

The udat a member contains the request data. The udat a. | en field specifies the length of the
request. This value must not exceed the one returned in the et su field of the TEndpoi nt | nf o
structure filled in by QpenEndpoi nt or Get Endpoi nt | nf o.

A client may send non-contiguous data by setting the req->udata.buf pointer to point to an
OTData structure, and setting the reg->udata.len value to kNetbufDatalsOTData

The sequence field should be set to a non-zero value that will uniquely identify this request from
all other outstanding requests on the endpoint.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 127
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Transactions

The only defined flag for SndURequest are the T_ACKNOW.EDGED and T_MORE flags. The
T_MORE flag indicates that more request data will be sent in a subsequent SndURequest cal
The T_ACKNOW.EDGED flag indicates that the request is required to be acknowledged. This flag
may not be honored by all transaction protocols.

If the endpoint is in non-blocking or asynchronous mode, the SndURequest function will return
a kOTFloweErr if flow control restrictions prevent the data from being accepted by the transport
provider at the time the function is issued. After this error occurs, a T_GODATA event will be
issued when the flow control restrictions are lifted. This error will never be returned if the
endpoint is in blocking mode.

The behavior of SndURequest is summarized in the table below.

Sync/Blocking kOTFl owEr r never returned

Returns when flow control lifts
and the request data has been
sent to the protocol.

Sync/Non-Blocking kOTFI owEr r may be returned

Returns if flow control
restrictions are in effect or the
request data has been sent to the
protocol.

_>m<:o\m_0n§:@ kOTFI owEr r may be returned

Returns to caller immediately

_>m<3o\Zo:.m_0o§3m kOTFI owEr r may be returned

Returns to caller immediately

VALID STATES
T_IDLE

RESULT CODES
kOTBadAddr essErr
kOTBadF| agEr r
kOTBadOpt i onErr
kOTCancel edErr
kOTFI owEr r
kOTLooKEr r
kOTNot Support edEr r
kOTCQut St at eEr r

SEE ALSO
RcvURequest, RcvUReply

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 128
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Transactions

RcvURequest

FUNCTION
RcvURequest Read an incoming unit request.
C INTERFACE
COSSt at us OTRcvURequest (Endpoi nt Ref ref, TUnitRequest* req, OTFl ags*

flags);
C++ INTERFACE
OSSt at us TEndpoi nt

: RcvURequest (TUni t Request * req, OTFl ags* flags);

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /
req- >addr . max| en X /
req- >addr. | en / X
req- >addr . buf ? (?)
reqg- >opt . maxl en X /
req->opt. | en / X
req- >opt . buf ? (?)
req- >udat a. max| en X /
reg->udata. l en / X
reqg- >udat a. buf ? (?)
req- >sequence / X
fl ags / X

RcvURequest is used by a client of a connectionless transaction endpoint to read a unit request.
nt supplies a TUni t Request structure that will be filled out with the protocol address of
the originator of the request, any options associated with the request, the request data, and a
sequence number to be passed back to the endpoint when a client makes a reply.

If the endpoint is in synchronous mode and is blocking, this function will wait for a request to
arrive. If the endpoint is in asynchronous mode or is not blocking, the function will return any
unread requests and the kOTNoDat aEr r result if there are no unread requests.

The endpoint will generate a T_REQUEST event when a request arrives. The client may poll for
the arrival of a request by making the Look function or repeatedly calling this function for as
long as the kOTNoDat aEr r result is returned. If the client has a notification routine installed on
the endpoint, the event will be sent to the no ation routine .

The TUni t Request structure has the following members:

struct TNetbuf addr;
struct TNetbuf opt;

struct TNetbuf udata;
OTSequence sequence;

The addr member will be filled in with the protocol address of the originator of the request. The

addr . max!| en field must be large enough to hold the protocol address or a
kOTBuf f er Over f | owEr r error will result and the incoming request will be dropped.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 129
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Transactions

The opt member contains any protocol-specific options for the request. The opt . max| en field
must be large enough to hold the options.

The udat a member will be filled in with the request data.

The udat a. buf field points to a client-supplied buffer of size udat a. maxl| en; this buffer holds
the reply. To hold the largest possible reply, the udat a. maxl| en field should be set to a value
equal to that of the t sdu field in the TEndpoi nt I nf o structure filled in by OQpenEndpoi nt or
Get Endpoi nt | nf o.

The sequence member will be filled out with the endpoint-assigned sequence number for the
transaction. This sequence number must be passed by the client to the SndURepl y function when
sending the transaction reply, or to the Cancel URepl y function to cancel the transaction.

The f | ags parameter will be filled in with the T_MORE flag if the client-supplied buffer is not
large enough to hold the entire request. The client must reissue the RcvURequest function to
retrieve the rest of the request. The addr and options fields will be ignored on these subsequent
calls to RevURequest .

The f | ags parameter may also contain the T_ACKNON_EDGED bit if the request has been
identified as an acknowledged request rather than an unacknowledged request. This bit will only
be set on the first call to RevURequest .

In addition, the flags parameter may also contain the T_PARTI ALDATA bit. In this case, the
request data being received is only partial, and there is more coming, but it has not yet arrived.
The difference between T_MORE and T_PARTI ALDATA is that the T_MORE indicates that there is
more data, and the next call to RevURequest will read that data, while the T_PARTIALDATA flag
does not have that guarantee. Like the T_ACKNOWLEDGED bit, the T_PARTIALDATA bit will
only be set on the first call to RevURequest.

VALID STATES

T_IDLE

RESULT CODES
kOTBadRef er enceEr r
kOrBadSyncErr
kOTCancel edErr
kOTLookEr r
kOTNoDat aEr r
kOTNot Support edEr r
kOTQut St at eEr r

SEE ALSO
SndURequest , SndURepl y, RcvUReply

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 130
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Transactions

SndUReply

FUNCTION
SndURepl y Send a unit reply.
C INTERFACE
COSSt at us OTSndURep! y(Endpoi nt Ref ref, TUnitReply* reply, OIFl ags

flags);

C++ INTERFACE
OSSt at us TEndpoi nt

: SndURepl y(TUni t Repl y* reply, OTFl ags flags);

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /
repl y->opt. maxl en / /
reply->opt.len X /
repl y- >opt . buf (x) /
repl y- >udat a. max| en / /
reply->udata. |l en X /
repl y- >udat a. buf (x) /
repl y- >sequence X /
fl ags X /

SndURepl y is used by the client of a connectionless transaction endpoint to send a reply in
response to an incoming request. The client passes a TUni t Repl y structure containing the
following members:

struct TNet buf udat a;

struct TNet buf opt

OTSequence sequence;
The udat a TNet buf contains the reply data. The reply data is pointed to by the udat a. buf
field.
A client may send non-contiguous data by setting the reply->udata.buf pointer to point to an
OTData structure, and setting the reply->udata.len value to kNetbufDatalsOTData

The opt TNet buf contains any options that apply to the reply.

The client must pass the sequence number returned by the RcvURequest function in the
sequence parameter.

The client does not need to specify the remote address; the endpoint uses the sequence to match
the reply against a pending request, so the endpoint knows where to send the response.

The behavior of SndUReply is summarized in the table below.

kOTFI owEr r never returned

Returns when flow control lifts
and the reply has been
acknowledged or timed out(if
the matching request was an
acknowledged request)

Sync/Blocking

Sync/Non-Blocking kOTFI owEr r may be returned

Returns to caller immediately
for unacknowledged requests,
and when the reply has been
acknowledged or timed out for
acknowledged requests.

kOTFIl owEr r may be returned
Returns to caller immediately

A T_REPLYCOWVPLETE event is
sent to the notification routine
when the reply is acknowledged
or timed out.

kOTFI owEr r may be returned
Returns to caller immediately

A T_REPLYCOVPLETE event is
sent to the notification routine
when the reply is acknowledged
or timed out.

Async/Blocking

Async/Non-Blocking

If the reply was not successfully sent (i.e. timed out - only for acknowledged requests), the
resul t parameter will be set to KETIMEDOUTETrr. For unacknowledged requests, a

T_REPLYCOMPLETE event will s

Transactions

be generated for asynchronous clients so that the logic is
the same for replying to both acknowledged and unacknowledged requests.

The cooki e parameter passed to the notification routine to indicate completion will be set to the
the sequence value generated by the client for the corresponding request. (In cases where
T_MORE is used to send the reply in multiple "chunks", the first TUni t Repl y* is used).

VALID STATES
T_IDLE

RESULT CODES
kOTBadFIl agEr r
kOTBadSequenceEr r
kOTCancel edErr
kOTLookEr r
kOTNot Support edEr r
kOTQut St at eErr

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96

page 132

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 131
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

SEE ALSO
RcvURequest

Transactions

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

page 133

Transactions

RcvUReply

FUNCTION
RcvURepl y Receive a unit reply.
C INTERFACE
COSSt at us OTRcvURepl y(Endpoi nt Ref ref, TuUnitReply* reply, OIFl ags*

repl yFl ags) ;

C++ INTERFACE
OSSt at us TEndpoi nt:: RevURepl y(TUni t Repl y* reply, OTFI ags*

repl yFl ags) ;
DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /
repl y- >opt. maxl en X /
reply->opt.len / X
repl y- >opt . buf X (x)
repl y- >udat a. max| en X /
reply->udata. | en / X
repl y- >udat a. buf X (x)
repl y- >sequence / X
repl yFl ags X (Xx)

RcvURepl y is used by the client of a connectionless transaction endpoint to receive a reply
generated by a call to SndURequest . The client passes a TUni t Repl y structure containing the
following members:

struct TNetbuf udat a;

struct TNetbuf opt

OTSequence sequence;
The udat a TNet buf contains the buffer for the reply data. The reply data will be pointed to by
the udat a. buf field.

The opt TNet buf contains any options that apply to the reply.
The sequence field will be filled in with the sequence number of the matching SndURequest.

The f | ags parameter will be filled in with the T_MORE bit set if the RevUReply call did not read
all of the reply data.

Since it is not possible to know ahead of time which request the incoming reply will match, the
client must be prepared to receive a reply to any outstanding request. One way to deal with this
is to first call RevUReply with a zero value in reply->udata.maxlen. This will return the sequence
number and the option information, as well as setting the T_MORE flag (unless an error occurred
- then there is no data to read). Once the matching request and the appropriate reply buffer have
been found, a second RcvURepl y may be issued to read the actual reply data. On these second
and subsequent reads, the r epl y- >opt . | en field will be set to 0. It is guaranteed that once a
reply has been partially read and set the T_MORE flag, subsequent calls to RcvUReply will read
from that same reply until all the data has been read.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 134
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Transactions

In addition, the f | ags parameter may also contain the T_PARTI ALDATAbit. In this case, the
reply data being received is only partial, and there is more coming, but it has not yet arrived.
The difference between T_MORE and T_PARTI ALDATA is that the T_MORE indicates that there is
more data, and the next call to RevUReply will read that data, while the T_PARTIALDATA flag
does not have that guarantee. The T_PARTIALDATA bit will only be set on the first call to
RcvUReply.

Clients in asynchronous mode will receive a T_REPLY event to indicate that incoming reply data
is available. Once this occurs, RcvURepl y should be called repeatedly to read data until it
returns a KOTNoDat aEr r . Otherwise, no future T_REPLY events will be received.

If a transaction has timed out awaiting reply data, the RcvUReply function will return a
KETIMEDOUTETT, and the r epl y- >sequence field will indicate which request timed out.

VALID STATES

T_IDLE

RESULT CODES

kOTBadSequenceEr r
kOTCancel edErr
kOTLoOKEr r
kOTNoDat aEr r

KETI MEDOUTET r

SEE ALSO

SndURequest

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 135

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Transactions

CancelURequest

FUNCTION
Cancel URequest Cancel an outstanding SndURequest.

C INTERFACE
COSSt at us OTCancel URequest (Endpoi nt Ref ref, OTSequence seq);

C++ INTERFACE
OSSt at us TEndpoi nt : : Cancel URequest (OTSequence seq);

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /
seq X

Cancel URequest is used by the client of a connectionless transaction endpoint to cancel an
outstanding outgoing request function (a call to SndURequest). Calling this function tells the
protocol that this transaction is no longer of interest, and allows it to free up any memory
associated with this transaction There is no acknowledgment from this function. If the sequence
number indicated is not a valid sequence number, then nothing will be done.

It is the responsi
request.

ty of the client to destroy any data structures associated with the canceled

If the value of the seq parameter is set to zero, then ALL outstanding SndURequest functions
will be canceled.

Be sure to call Cancel URepl y if you are canceling an incoming request. This is necessary
because the OTSequence value of incoming requests are generated by the protocol, while the
OrSequence value of outgoing requests are generated by the client, and they may overlap.

VALID STATES
T_IDLE

RESULT CODES
k ENOSRET r

SEE ALSO
Cancel URepl y

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 136
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Transactions

CancelUReply

FUNCTION

Cancel URepl y Cancel an outstanding RcvURequest.

C INTERFACE

COSSt at us OTCancel URepl y(Endpoi nt Ref ref, OISequence seq);

C++ INTERFACE

OSSt at us TEndpoi nt: : Cancel URepl y(OTSequence seq);

DESCRIPTION

Parameters Before After
Call Call
ref (Conly) X /
seq X

Cancel URepl y is used by the client of a connectionless transaction endpoint to cancel an
outstanding incoming request (received by RcvURequest). Calling this function tells the protocol
that this transaction is no longer of interest, and allows it to free up any memory associated with
this transaction. There is no acknowledgment from this function. If the sequence number
indicated is not a valid sequence number, then nothing will be done.

It is the responsi
request.

ty of the client to destroy any data structures associated with the canceled

If the value of the seq parameter is set to zero, then ALL outstanding incoming requests will be
canceled.

Be sure to call Cancel URequest if you are canceling an outgoing request. This is necessary
because the OTSequence value of incoming requests are generated by the protocol, while the
QOrSequence value of outgoing requests are generated by the client, and they may overlap.

VALID STATES

T_IDLE

RESULT CODES

k ENCSRET r

SEE ALSO

Cancel URequest

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 137

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connection-Oriented Transactions

Connection-Oriented Transactions

Open Transport supports connection-oriented transaction endpoints. The functions specific to this type of

endpoint are SndRequest , RcvRequest , SndRepl y, and Cancel Request .

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96

page 139

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connection-Oriented Transactions

SndRequest

FUNCTION
SndRequest Send a request.
C INTERFACE
COSSt at us OrsndRequest (Endpoi nt Ref ref, TRequest* req, OTFl ags

reqFl ags);
C++ INTERFACE
OSSt at us TEndpoi nt : : SndRequest (TRequest* req, OTFl ags reqFl ags);

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /
req- >dat a. maxl| en / /
req->data.len X /
req- >dat a. buf (x) /
req- >opt . maxl en / /
req->opt.|en x >= 0 /
req- >opt . buf (x) /
req- >sequence X /
r egFl ags X /

SndRequest is used by the client of a connection-oriented transaction endpoint to send a request
to an endpoint on the other end of the connection. The client passes a TRequest structure and
reqFl ags parameter that contain the request data, options, and flags.

The TRequest structure has the following members:
struct TNet buf dat a;

struct TNet buf opts
OTSequence sequence;

The dat a member contains the request data. If the dat a. | en field is non-negative, the
dat a. buf field contains a pointer to the request data.

A client may send non-contiguous data by setting the req->udata.buf pointer to point to an
OTData structure, and setting the reg->udata.len value to kNetbufDatalsOTData

The sequence field should be set to a non-zero value that will uniquely identify this request
from all other oustanding requests on the endpoint.

The only defined flag for SndRequest is the T_MORE flags. The T_MORE flag indicates that more
request data will be sent in a subsequent SndRequest cal

If the endpoint is in non-blocking or asynchronous mode, the SndRequest function will return a
KkOTFloweErr if flow control restrictions prevent the data from being accepted by the transport
provider at the time the function is issued. After this error occurs, a T_GODATA event will be
issued when the flow control restrictions are lifted. This error will never be returned if the
endpoint is in blocking mode.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 140
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

The behavior of SndRequest is summarized in the table below.

_m<:o\m_00§:u

_w<:n\203.m_00x_:@

Async/Blocking

Async/Non-Blocking

VALID STATES

T_DATAXFER, T_INREL

RESULT CODES

kOTBadFI agEr r

kOTBuf f er Over f | owEr r
kOTCancel edErr

kOTFIl owEr r
kOTLooKEr r

kOTNot Support edErr
kOTQut St at eErr

kOTFI owEr r never returned

Returns when flow control lifts
and the reply has been received.

kOTFI owEr r may be returned

Returns if flow control
restrictions are in effect or when
the reply has been received.

kOTFI owEr r may be returned
Returns to caller immediately

T_REPLY events may be sent to
the notification routine as reply
data becomes available

kOTFIl owEr r may be returned
Returns to caller immediately

T_REPLY events may be sent to
the notification routine as reply
data becomes available

Connection-Oriented Transactions

SEE ALSO
RcvRequest, SndReply, RcvReply
OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 141

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connection-Oriented Transactions

RcvRequest

FUNCTION
RcvRequest Read an incoming request.
C INTERFACE
COSSt at us OTRcvRequest (Endpoi nt Ref ref, TRequest* req, OTFl ags*

flags);
C++ INTERFACE

OSSt at us TEndpoi nt: : RevRequest (TRequest* req, OTFl ags* fl ags);
DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /
req- >dat a. maxl| en X /
req->data.len / X
req- >dat a. buf (?) (x)
req- >opt . maxl en X /
req->opt.|en / X
req- >opt . buf ? (?)
req- >sequence / X
flags / X

RcvRequest is used by a client of a connection-oriented transaction endpoint to read an
incoming request. The client supplies a TRequest structure that will be filled out with the
request data, options, and a sequence number to be passed back to the endpoint when a client
makes a reply.

If the endpoint is in synchronous mode and is blocking, this function will wait for a request to
arrive. If the endpoint is in asynchronous mode or is not blocking, the function will return any
unread requests and the kOTNoDat aEr r result if there are no unread requests.

The endpoint will generate a T_REQUEST event when a request arrives. The client may poll for
the arrival of a request by making the Look function or repeatedly calling this function for as
long as the kOTNoDat aEr r result is returned. If the client has a notification routine installed on
the endpoint, the event will be sent to the notification routine .

The TRequest structure has the following members:

struct TNet buf data;

struct TNetbuf opt;

OTSequence sequence;
The dat a member will be filled in with the request data. The dat a. buf field pointstoac
supplied buffer of size dat a. max!| en to hold the request.

nt-

The sequence member will be filled out with the endpoint-assigned sequence number for the
transaction. This sequence number must be passed by the client to the SndRepl y function when
sending the transaction reply.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 142
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connection-Oriented Transactions

The f | ags parameter will be filled in with the T_MORE flag if the client-supplied buffer is not
large enough to hold the entire request. The client must reissue the RcvRequest function to
retrieve the rest of the request. The options field will be ignored on these calls to RcvRequest .

In addition, the flags parameter may also contain the T_PARTI ALDATA bit. In this case, the
request data being received is only partial, and there is more coming, but it has not yet arrived.
The difference between T_MORE and T_PARTI ALDATA is that the T_MORE indicates that there is
more data, and the next call to RcvRequest will read that data, while the T_PARTIALDATA flag
does not have that guarantee. The T_PARTIALDATA bit will only be set on the first call to
RcvRequest. All subsequent calls to RcvRequest are guaranteed to continue reading the partial
data in question until the RcvRequest returns without the T_MORE flag set.

VALID STATES
T_DATAXFER, T_OUTREL

RESULT CODES
kOTBuf f er Over f | owEr r
kOTCancel edErr
kOTLoOKEr r
kOTNoDat aEr r
kOTNot Support edEr r
kOTQut St at eErr

SEE ALSO
SndRequest

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 143
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

FUNCTION
SndRepl y

C INTERFACE
OSSt at us

C++ INTERFACE
OSSt at us

DESCRIPTION

Connection-Oriented Transactions
SndReply

Send a reply.
OrsndRepl y(Endpoi nt Ref ref, TReply* reply, OIFl ags flags);

TEndpoi nt:: SndRepl y(TRepl y* reply, OTFl ags fl ags);

Parameters Before After

Call Call
ref (Conly) X /
repl y- >dat a. max| en / /
reply->data.l en X /
repl y- >dat a. buf (x) /
repl y->opt. maxl en / /
reply->opt.len X /
repl y- >opt . buf (x) /
repl y- >sequence X /
flags X /

SndRepl y is used by the client of a connection-oriented transaction endpoint to send a reply in
response to an incoming request. The client passes a TRepl y structure containing the following

members:

struct TNet buf data;
struct TNetbuf opt;
OTSequence sequence;

The dat a TNet buf contains the reply data. The reply data is pointed to by the udat a. buf field.

A client may send non-contiguous data by setting the reply->data.buf pointer to point to an
OTData structure, and setting the reply->data.len value to kNetbufDatalsOTData

The opt TNet buf contains any options that apply to the reply.

The client must pass the sequence number returned by the RcvRequest function in the
sequence parameter.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 144

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

The behavior of SndReply is summarized in the table below.

kOTFI owEr r never returned

Returns when flow control lifts
and the reply has been
successfully sent or timed out.

Sync/Blocking

Sync/Non-Blocking kOTFI owEr r may be returned

Returns if flow control
restrictions are in effect or when
the reply has been successfully
sent or timed out.

kOTFl owEr r may be returned
Returns to caller immediately

A T_REPLYCOVPLETE event is
sent to the notification routine

when the reply is successfully

sent or timed out.

kOTFI owEr r may be returned
Returns to caller immediately

A T_REPLYCOWPLETE event is
sent to the notification routine

when the reply is successfully

sent or timed out.

Async/Blocking

Async/Non-Blocking

Connection-Oriented Transactions

If the reply was not successfully sent (i.e. timed out - only for acknowledged requests), the
resul t parameter will be set to KETIMEDOUTET rr. For unacknowledged requests, a

T_REPLYCOMPLETE event will s

be generated for asynchronous clients so that the logic is

the same for replying to both acknowledged and unacknowledged requests.

The cooki e parameter passed to the notification routine to indicate completion will be set to the
repl y parameter of the original request (In cases where T_MORE is used to send the reply in

multiple "chunks", the first TRepl y* is used).

VALID STATES
T_DATAXFER, T_OUTREL

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96

page 145

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

RESULT CODES
kOTBadFI agEr r
kOTBadRef er enceEr r
kOTBadSequenceEr r
kOTBadSyncErr
kOTCancel edErr
kOTLookEr r
kOTNot Support edEr r
kOTCQut St at eEr r

SEE ALSO
None

Connection-Oriented Transactions

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96

page 146

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connection-Oriented Transactions Connection-Oriented Transactions

In addition, the f | ags parameter may also contain the T_PARTI ALDATAbit. In this case, the
reply data being received is only partial, and there is more coming, but it has not yet arrived.
EO/\EQ U —< The difference between T_MORE and T_PARTI ALDATA is that the T_MORE indicates that there is

more data, and the next call to RcvReply will read that data, while the T_PARTIALDATA flag
does not have that guarantee. The T_PARTIALDATA bit will only be set on the first call to

FUNCTION RevReply.
Clients in asynchronous mode will receive a T_REPLY event to indicate that incoming reply data

RecvRepl Receive a reply. ; - ; o
bt i Py is available. Once this occurs, RcvRepl y should be called repeatedly to read data until it returns
C INTERFACE a kOTNoDat aEr r. Otherwise, no future T_REPLY events will be received.
OSSt at us OTRcvRepl y(Endpoi nt Ref ref, TReply* reply, OTFl ags* If a transaction has timed out awaiting reply data, the RcvReply function will return a
repl yFl ags) ; KETIMEDOUTETT, and the r epl y- >sequence field will indicate which request timed out.
C++ INTERFACE VALID STATES
GOSst at us TEndpoi nt: : RevRepl y(TRepl y* reply, OTFl ags* repl yFl ags); T_IDLE
DESCRIPTION RESULT CODES
Parameters Before After kOTBadSequenceEr r
Call Call KOTCa | edE
ncel edErr
ref (Conly) X /
repl y->opt . max!| en X / kOTLookEr r
reply->opt.|en / X kOTNoDat aEr r
repl y- >opt . buf X (x)
repl y- >udat a. max| en X / SEE ALSO
reply->udata. |l en / X
repl y- >udat a. buf X (x) SndURequest
repl y- >sequence X X
replyFlags X (x)

RcvRepl y is used by the client of a connection-oriented transaction endpoint to receive a reply
generated by a call to SndRequest . The client passes a TRepl y structure containing the
following members:

struct TNet buf udat a;

struct TNetbuf opt

OTSequence sequence;
The udat a TNet buf contains the buffer for the reply data. The reply data will be pointed to by
the udat a. buf field.

The opt TNet buf contains any options that apply to the reply.
The sequence field will be filled in with the sequence number of the matching SndRequest.

The f | ags parameter will be filled in with the T_MORE bit set if the RcvReply call did not read all
of the reply data.

Since it is not possible to know ahead of time which request the incoming reply will match, the
client must be prepared to receive a reply to any outstanding request. One way to deal with this
is to first call RevReply with a zero value in reply->udata.maxlen. This will return the sequence
number and the option information, as well as setting the T_MORE flag (unless an error occurred
- then there is no data to read). Once the matching request and the appropriate reply buffer have
been found, a second RcvRepl y may be issued to read the actual reply data. On these second
and subsequent reads, the r epl y- >opt . | en field will be set to 0. It is guaranteed that once a
reply has been partially read and set the T_MORE flag, subsequent calls to RcvReply will read
from that same reply until all the data has been read.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 147 OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 148
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connection-Oriented Transactions

CancelRequest

FUNCTION

Cancel Request Cancel an outstanding SndRequest.

C INTERFACE
COSSt at us OTCancel Request (Endpoi nt Ref ref, OTSequence seq);

C++ INTERFACE
OSSt at us TEndpoi nt : : Cancel Request (OTSequence seq);

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /
seq X

Cancel Request is used by the client of a connection-oriented transaction endpoint to cancel an
outstanding outgoing request function (a call to SndRequest). Calling this function tells the
protocol that this transaction is no longer of interest, and allows it to free up any memory
associated with this transaction There is no acknowledgment from this function. If the sequence
number indicated is not a valid sequence number, then nothing will be done.

It is the responsi
request.

ty of the client to destroy any data structures associated with the canceled

If the value of the seq parameter is set to zero, then ALL outstanding SndRequest functions wi
be canceled.

Be sure to call Cancel Repl y if you are canceling an incoming request. This is necessary because
the OTSequence value of incoming requests are generated by the protocol, while the
QOrSequence value of outgoing requests are generated by the client, and they may overlap.

VALID STATES
T_DATAXFER

RESULT CODES
k ENCSRET r

SEE ALSO
Cancel Repl y

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 149
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Connection-Oriented Transactions

CancelReply

FUNCTION
Cancel Repl y Cancel an outstanding RcvRequest.

C INTERFACE
COSSt at us OTCancel Repl y(Endpoi nt Ref ref, OrISequence seq);

C++ INTERFACE
OSSt at us TEndpoi nt : : Cancel Repl y(Ol'Sequence seq);

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /
seq X

Cancel Repl y is used by the client of a connection-oriented transaction endpoint to cancel an
outstanding incoming request (received by RcvRequest). Calling this function tells the protocol
that this transaction is no longer of interest, and allows it to free up any memory associated with
this transaction. There is no acknowledgment from this function. If the sequence number
indicated is not a valid sequence number, then nothing will be done.

It is the responsi
request.

ty of the client to destroy any data structures associated with the canceled

If the value of the seq parameter is set to zero, then ALL outstanding incoming requests will be
canceled.

Be sure to call Cancel Request if you are canceling an outgoing request. This is necessary
because the OTSequence value of incoming requests are generated by the protocol, while the
OrSequence value of outgoing requests are generated by the client, and they may overlap.

VALID STATES
T_DATAXFER

RESULT CODES
k ENCSRET r

SEE ALSO
Cancel Request

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 150
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Address Mapping

Address Mapping

Another type of Open Transport provider described in this document is called a mapper. A mapper is
used to handle mapping names to protocol addresses. A client may create multiple mapper objects if
desired.

With a mapper, a client can browse the network using the LookupNane function to browse for all
protocol addresses associated with a particular name or name pattern. A client can register a name on the
network and make it visible to other network devices by using the Regi st er Nare function. This
registered name can be removed using the mapper’s RenoveNane function. The Conf i r mNane function
is used to efficiently verify that a particular name to protocol address mapping is valid.

Not all protocol families can support all of the functions available to the mapper, but most will support
the LookupNane and Conf i r miName functions (described below).

Mappers support the same functionality supplied to all providers.

As with all Open Transport providers, there are functions to create the mapper, OpenMapper and
AsyncQOpenMapper , and a function to destroy the mapper, Cl osePr ovi der . A mapper can be used in
either synchronous or asynchronous mode and uses a notification routine to handle client callbacks for
completion events. Unlike an endpoint, a mapper does not have any notification events that it sends to
the client’s notification routine. It has only completion events.

There are no functions available to cancel outstanding asynchronous mapper functions. The only way to
cancel outstanding asynchronous mapper functions is to close the mapper (call OTCl osePr ovi der with
the MapperRef value).

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 151
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Address Mapping

OTOpenMapper

FUNCTION
QpenMapper Create a mapper.

C INTERFACE

Mapper Ref OTOpenMapper (OTConfi gurati on* config, OTOpenFl ags ofl ag,
OSSt at us* err)

C++ INTERFACE
None. (C++ clients should use the C interface to this function.)

DESCRIPTION
Parameters Before After
Call Call
config X /
of | ag X /
err / X

OTrOpenMapper creates a mapper based on the supplied information, and returns a value by
which the created mapper can be identified when calling other mapper functions.

The mapper will be opened in synchronous, non-blocking mode.

The conf i g parameter is a pointer to an OTConfiguration structure. The client should not create
one of these structures, but rather use the function OTCreateConfiguration:

pascal OTConfiguration* OTCreateConfiguration(char* path);

This function takes a string parameter which describes the desired provider layering (see the
section on provider layering) and creates an OTConf i gur at i on structure, returning a pointer to
it to the client. The client should pass this pointer to OpenMapper . The OTCpenMapper function
will destroy the structure. An example of calling QpenMapper using this function is shown
below:

CsStatus err;

Mapper Ref ep = OTCpenMapper (OTQOr eat eConfi guration(“nbp”), 0, &err);
The name string passed to the OTCreateConfiguration function is dependent upon which
protocol family the client wishes to create a mapper for. The name string to be used to create a
mapper for a particular protocol family will be given in the Open Transport documentation for
that particular protocol family.

The parameter of | ag is not currently used and should be set to zero.

The output parameter er r points to a result code.

RESULT CODES
Kk ENCENTET r
KENXI CEr r
k ENOVEMET r

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 152
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

SEE ALSO

AsyncOpenMapper, C oseProvider

Address Mapping

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

page 153

Address Mapping

OTAsyncOpenMapper

FUNCTION
AsyncQOpenMapper Create a mapper.
C INTERFACE
COSSt at us OTAsyncOpenMapper (OTConf i gurati on* config, OTOpenFl ags

oflag, OTNotifyProcPtr proc, void* contextPtr)

C++ INTERFACE
None. (C++ clients should use the C interface to this function.)

DESCRIPTION
Parameters Before After
Call Call
config X /
of | ag X /
proc X /
contextPtr X /

OTAsyncQpenMapper creates a mapper asynchronously, based on the supplied information. If
this function returns an error immediately, then the notification function will not be called. If
kOTNoEr r or is returned, then the notification function will be called with the results of the open.

The confi g and of | ag parameters have the same meaning as for OTOpenMapper .

When the open is complete, your notification function will be called with the code parameter set
to T_OPENCOWPLETE. Ther esul t parameter will either be KOTNoEr r or if the open was
successful, or will return a result code describing the error. If the open was successful, the cookie
is the Mapper Ref for the mapper that was opened.

The mapper will be opened in asynchronous, non-blocking mode, and will already have a
notification routine installed, which is the same notification routine used for the open. If you
want a different notifier installed, use RemoveNotifier to remove the current one, and use
InstallNotifier to install a new one.

Warning: The OTAsyncOpenMapper function destroys the OTConfiguration returned by

OTCreateConfiguration. Never attempt to use the same configuration to open multiple mappers.

You can use the OTCl oneConf i gur at i on function to clone the configuration for this purpose.
RESULT CODES

kENCENTET r

KENXI CEr r

k ENOVEMET r

SEE ALSO
OTrpenMapper, OTC oseProvi der

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 154
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Address Mapping

RegisterName

FUNCTION
Regi st er Nane Register a name on the network.

C INTERFACE

COSSt at us OTRegi st er Nane(Mapper Ref ref, TRegi sterRequest* request,
TRegi st er Repl y* reply);

C++ INTERFACE
CSSt at us TMapper

: Regi st er Nane(TRegi st er Request* req, TRegi sterRepl y*

reply);
DESCRIPTION

Parameters Before After

Call Call
ref (Conly) X /
reg- >nane. maxl en / /
reg- >nane. | en X /
reg- >nane. buf (x) /
req- >addr . max| en / /
req->addr. | en X /
r eg- >addr . buf (Xx) /
reg- >fl ags X /
repl y- >addr. maxl en X /
reply->addr.|en / X
repl y- >addr . buf / (x)
reply->naneid / X

Regi st er Nane makes a name visible on the network to other network devices. Not all protocol
families support dynamic name registration (such as TCP/IP), although this function may be still
be implemented as a local function.

Note that most protocol implementations under Open Transport allow a client to specify a name
in the call to the endpoint function Bi nd. This also causes the protocol to register a name on the
network. This is a simpler technique and is preferable over having the client create and use a
mapper object, especially where the name is associated with a server or service related to the
created endpoint.

The r eq- >nane field is a TNet buf that references the network name that is to be registered. The
reqg- >addr field isa TNet buf structure that references the protocol address with which the
name should be associated. The r eq- >addr parameter may have a length of 0, and the
underlying protocol will perform some default action. The format of the names and protocol
addresses are specific to the underlying protocol, and their formats are described in the Open
Transport documentation for that particular protocol family.

Ther eq- >f | ags field is used to control registration, where appropriate. Normally, this field is
set to 0 for default registration behavior. For some protocols (e.g. the Netware naming service), a
value may be set in this field. See the documentation for the naming service you are using to
determine how to use this field.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 155
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Address Mapping

If the mapper is in asynchronous mode, Regi st er Nare returns immediately. Later, when the
function completes execution, a T_REGNAMECOVPLETE event is issued. The cooki e parameter to
the notification routine has a value equal to that of the name parameter passed to the

Regi st er Nane call.

If the r epl y parameter is non-NULL, when the registration completes, the r epl y- >nanei d
field will be set to a unique identifier for the registered name. This identifier can later be used to
delete the name. This technique is more convenient than saving the name away somewhere so
that it can be deleted later. If the r epl y- >addr . max!| en field is large enough, the address
actually registered will be returned. If this field is set to 0, then the address will not be filled in,
and a KOTNoEr r or result will be returned. If this field is not set to 0, then a

kOTBuf f er Over f | owEr r will be returned if it is not large enough.

If the name was already registered, a kOTAddr essBusyEr r error is returned, and no
information will be returned in the reply parameter.

RESULT CODES
kOTBadNameEr r
kOTAddr BusyEr r
kOTNot Support edErr
kOTBuf f er Over f | owEr r

SEE ALSO
LookupName, ConfirmName, DeleteName

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 156
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Address Mapping

DeleteName

FUNCTION
Del et eNane Remove a previously registered name

C INTERFACE
COSSt at us OTDel et eNanme(Mapper Ref ref, TNetbuf* nane);

C++ INTERFACE
OSSt at us TMapper : : Del et eNanme(TNet buf * nane) ;

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /
nane- >nax| en / /
nane- >addr. | en X /
nane- >buf ? (?)

Del et eNane removes a name that was previously register. Not all protocol families support
dynamic name registration and deletion (such as TCP/IP), although this function may be s
implemented as a local function.

be

The name parameter is a pointer to a TNetbuf that references the network name that is to be
removed. The format of the names and protocol addresses are specific to the underlying
protocol, and their formats are described in the Open Transport documentation for that particular
protocol family.

If the mapper is in asynchronous mode, Del et eNane returns immediately. Later, when the
function completes execution, a T_DELNAMECOVPLETE event is issued. The cooki e parameter to
the notification routine has a value equal to that of the name parameter passed to the

Del et eNarre call.

If the name was not found, a kOTNoAddr essEr r is returned.

RESULT CODES
kOTBadNaneEr r
kOTCancel edErr
kOTNoAddr essErr
kOTNot Support edEr r

SEE ALSO
RegisterName

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 157
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Address Mapping

DeleteName

FUNCTION
Del et eNane Remove a previously registered name

C INTERFACE
COSSt at us OTDel et eNanmeBy| D(Mapper Ref ref, OINanel D id);

C++ INTERFACE
OSSt at us TMapper : : Del et eName(OTNanel D i d) ;

DESCRIPTION
Parameters Before After
Call Call
ref (Conly) X /
id X /

Del et eNare removes a name that was previously register. Not all protocol families support
dynamic name registration and deletion (such as TCP/IP), although this function may be still be
implemented as a local function.

The i d parameter is the OTNamel D value that was returned when the name was registered.

If the mapper is in asynchronous mode, Del et eNane returns immediately. Later, when the
function completes execution, a T_DELNAMECOVPLETE event is issued. The cooki e parameter to
the notification routine has a value equal to that of the i d parameter passed to the Del et eNane
call.

If the name was not found, a KOTNoAddr essEr r is returned.

RESULT CODES
kOTBadNaneEr r
kOTCancel edErr
kOTNoAddr essErr
kOTNot Support edErr

SEE ALSO
RegisterName

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 158
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Address Mapping

LookupName

FUNCTION
LookupNane Lookup a name or name pattern on the network

C INTERFACE

COSSt at us OTLookupNarne(Mapper Ref ref, TLookupRequest* req,
TLookupRepl y* reply);

C++ INTERFACE
OSSt at us TMapper : : LookupName(TLookupRequest * req, TLookupRepl y*

reply);
DESCRIPTION

Parameters Before After

Call Call
ref (Conly) X /
reg- >nane. maxl en / /
reg- >nane. | en X /
reg- >nane. buf (x) /
req- >addr . max| en / /
req->addr. | en X /
req- >addr . buf (x) /
req- >maxcnt X /
reqg- >ti meout X /
repl y- >nanes. max| en X /
repl y->nanes. | en / X
repl y- >nanes. buf (?) (x)
repl y- >r spcount / X

LookupNane is used to find all protocol addresses that correspond to a particular name or name
pattern.

The r eq- >maxcnt parameter gives the maximum number of names that should be returned. If a
client is expecting a specific number of replies for a particular name being looked up (usually
one), then the client can get faster execution of the name lookup by specifying the expected
number of replies.

Thereq- >ti meout parameter gives the approximate amount of time, in milliseconds that the
lookup should attempt to find the requested number of names.

The r eq parameter is a pointer to a structure that supplies the information for the lookup
request. The r eg- >nane TNetbuf supplies the network name that is to be looked up. Some
protocol families support ‘wild-cards’ or pattern matching in this name.

The r eq- >addr TNetbuf references the protocol address where the name(s) is(are) expected.
This parameter is normally supplied with a length of 0, and the underlying protocol will search
the default locations (where default depends upon the protocol family). However, if a client
wants to look for a name(s) on a particular device, its protocol address can be specified. This
MAY provide less network traffic.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 159
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Address Mapping

The client passes a pointer to TLookupRepl y structure in the r epl y parameter containing the
following members:

struct TNet buf nares;

unsi gned | ong rspcount;
The udat a TNet buf should be initialized referencing a buffer area large enough to hold all of
the expected replies (although see the note below if using the mapper in asynchronous mode.)
Upon completion of the function, the | en field of the udata TNet buf will hold the total length of
all the names found, and the r spcount field will contain the number of names that were found.
Because there may be multiple names of varying lengths returned, each name returned is in the
following format:

unsi gned short addr Len; /* length of address which follows */
unsi gned short nanelLen; /* length of name which fol |l ows */
unsi gned char addr[]; /* address */

unsi gned char nare[]; /* nanme, with pad-byte to quad boundary */

Additionally, each name is aligned in the buffer so that the total length of the name (including 4
bytes for the two length fields) is a multiple of four bytes long. A client that is looking through
the replies must account for this padding. For example,

len = ((short*)ptr)[0] + ((short*)ptr)[1];

ptr += (len + 3) & ~3;
The format of the names and protocol addresses are specific to the underlying protocol, and their
formats are described in the Open Transport documentation for that particular protocol family.

If the mapper is in asynchronous mode, LookupNane returns . Later, when the function
completes execution, a T_LKUPNAMECOVPLETE event is issued. The cooki e parameter to the
notification routine has a value equal to that of the r epl y parameter passed to the LookupNane
call.

Note: In asynchronous mode, this function operates slightly different than other endpoint and
mapper functions. In addition to the standard completion event, there is a T_LKUPNAMVERESULT
issued every time an additional name is added to the clients reply buffer. The client may choose
to ignore this event, or the client may copy the reply from the reply buffer and set the r epl y-
>udat a. | en field or the r epl y- >r spcount back to zero (but this may only be done inside the
notification routine or results will be unpredictable). Using this feature, a client can avoid having
to create a buffer large enough to hold all of the replies and reference itin the r epl y- >udat a
TNet buf . When dispatching the last name, the client may receive both a T_LKUPNAVERESULT
and a T_LKUPNAMECOVPLETE, or may just receive a T_LKUPNAMVECOVPLETE. If either the

repl y->udat a. | en or the r epl y- >r spcount field is set back to zero, Open Transport will
automatically set the other field to zero as well.

RESULT CODES
kOTBadNaneEr r
kOTNoDat aEr r
kOTBuf f er Over f | owEr r
kOTNot Support edEr r

SEE ALSO
DeleteName, ConfirmName

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 160
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

Utility functions

This section describes the utility functions available to clients of Open Transport. Several of these
functions have already been referenced, like OTCr eat eConf i gur ati on.

InitOpenTransport

FUNCTION

I ni t OpenTr ansport Initialize the Open Transport library

C INTERFACE
OSSt at us I ni t OpenTransport ()

DESCRIPTION

I ni t OpenTransport must be called before your application or code resource can make Open
Transport calls (see the Getting Started section for details). Make sure that you link with the
appropriate library for your usage - applications must link with a different Open Transport
ibrary than code resource. (In case you're wondering, this is so that Open Transport can
determine where to get memory on your behalf, and how to watch for your death).

This function returns an error code if Open Transport could not be i lized.
SEE ALSO
Cl oseQpenTr ansport
OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 161

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

CloseOpenTransport

FUNCTION

Cl oseQpenTransport Inform Open Transport that it will no longer be used.

C INTERFACE
voi d Cl oseOpenTransport ()
DESCRIPTION

Cl oseQpenTr ansport is called when the application or code resource will no longer use Open
Transport functions. It is not necessary for applications to make this call, but it is required that
stand-alone code resources do before they unload from memory.

An application can call O oseQpenTr ansport at any time. This potentially allows Open
Transport to unload from memory until it is needed again. A subsequent call to
I ni t OpenTr ansport will reload Open Transport.

SEE ALSO
I ni t OpenTransport

OTCreateConfiguration

FUNCTION
OTCr eat eConfi guration Create an OTConfiguration structure for opening a provider

C INTERFACE
OrConfiguration* OTCreateConfiguration(const char* path)

DESCRIPTION
Parameters Before After
Call Call
path X /

OTCr eat eConf i gur ati on takes a string which describes the provider desired (see the section
on Specifying Provider layering) and returns a pointer to an OTConf i gur at i on structure that
can be used to open a provider.

Because this function is often called inline with the open call , it does not return an error. Instead,
it returns a NULL if there is not enough memory to create the OTConf i gur at i on structure, and
it returns an ((OTConf i gur at i on*)-1L) if the path that was passed to it was not parseable. The
open routines check for these values, and return the appropriate error code.

SEE ALSO
Ord oneConfiguration, OTDestroyConfiguration

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 162
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

OTCloneConfiguration

FUNCTION
Ord oneConfiguration Create a copy of an OTConfiguration structure
C INTERFACE
OTConfiguration* OTC oneConfiguration(OTConfiguration* cfig)

DESCRIPTION
Parameters Before After
Call Call
cfig X /

Ord oneConfi gurati on returns a copy of the OTConf i gur at i on passed in as a parameter. If
the OTConfiguration* supplied is NULL or -1L, the same value will be returned.

SEE ALSO
OTCr eat eConfiguration, OTDestroyConfiguration

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 163
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

OTDestroyConfiguration

FUNCTION
OTDest royConfigurati on Destroy an OTConfiguration structure

C INTERFACE
voi d OTDest royConfi gurati on(OTConfi guration* cfig)
DESCRIPTION
Parameters Before After
Call Call
cfig X /

OTDest royConf i gur at i on destroys the OTConf i gur at i on passed in as a parameter and
release all memory it has allocated.

It is rarely necessary to use this function because using an OTConf i gur at i on to open a provider
destroys the OTConf i gur at i on. However, there may be cases where an OTConf i gur ati on is

created and never used. In this case, OTDest r oyConf i gur at i on should be called to free up the
memory associated with the OTConf i gur ati on.

SEE ALSO
Ord oneConfiguration, OICreateConfiguration

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 164
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

OTCreateOptions

FUNCTION

OTCr eat eOpti ons Create a TNet buf for Opti onManagenent calls from a string

specifying the options and values.

C INTERFACE

COSSt at us OTCr eat eOpt i ons(const char* endpt Nane, char** strPtr,
TNet buf * buf)

DESCRIPTION

Parameters Before After

Call Call

endpt Nare X X

strpPtr (x) (?)

buf - >l en X X

buf - >max| en X X

buf - >buf X (x)

OTCr eat eOpt i ons creates a TNet buf suitable for use by calls that specify opti ons.

The endpt Nane parameter specifies the name of the endpoint for which the options are
destined.

The st r Pt r parameter points to a pointer containing the option string information. If an error
occurs, st r Pt r will be updated to point to the position in the string where the error occurred.

The buf parameter must point to a TNet buf which has enough room to hold the requested
options. Typically, the buf - >I en value is set to zero. If it is not, the option information will be
appended to the TNetbuf beginning at the offset specified by buf - >| en. The buf - >I en value
will be updated to reflect the new length when the function returns.

Not all endpoints support this functionality. If not, a kOTNot Suppor t edEr r will be returned.

char* str = "BaudRate = 9650 DataBits = 8 Parity = 0 StopBits = 10";
unt8 buffer[512];

TOpt Myt cnd;

cnd.opt.len = 0O;

cnd. opt . maxl en = si zeof (buffer);

cnd. opt. buf = buffer;

cnd. fl ags = T_NEGQOTI ATE;

err = OTCreate(ptions("serial A", &str, &cnd. opt)

The names for options are described in the documents for the specific providers. Value for
options come in 3 basic flavors: numeric, string, and byte arrays.

The format for numeric options is:
an optional "' for negative numbers
a leading '$' or "0x" for hexadecimal numbers,
followed by the digits comprising the number

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 165
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

The format for string options is:
a delimiter character - the first non-blank character after the "=" is the delimiter.
the characters comprising the string
the delimiter character repeated.

The format for byte array options is:
a leading "$" or "Ox"
a sequence of hex digits with no intervening spaces or tabs. There must be an even
number of digits.

RESULT CODES

kOTNot Support edErr

kOTBuf f er Over f | owEr r

kOTBadOpt i onErr

SEE ALSO
OrCreat eOpti onStri ng, Opti onManagenent

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 166
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

OTCreateOptionString

FUNCTION

OTCreateOptionString Create a string from a TOption structure.

C INTERFACE
COSSt at us OTCr eat eOpti onString(const char* endpt Nane, TOption**
optPtr, void* bufEnd, char* string, size_t stringSize)
DESCRIPTION
Parameters Before After
Call Call
endpt Nare X /
optPtr (x) (x)
buf End X /
string X (x)
stringSi ze X /

OTCr eat eOpt i onSt ri ng attempts to return a string corresponding to the option or options
stored at *opt Pt r .

The endpt Nanme parameter specifies the name of the endpoint that the options are for.
The bufEnd parameter is a pointer to the byte of memory past the last option.

The stringandstringSi ze parameters describe the character buffer where the string will be

stored.
Tt Myt cnd;
unt8 buf fer[512] ;
char string[256];

Il

/1 Read the current settings

11

cnd. opt.len = sizeof (TQption);

cnd. opt . maxl en = si zeof (buffer);

cnd. opt. buf = buffer;
((TOption*)buffer)->len = sizeof (TOption);
((TQption*)buffer)->l evel = COM SER AL;
((TOption*) buffer)->name = T_ALLCPT;
((TOption*)buffer)->status = 0;

cmd. flags = T_CURRENT;

Opt i onManagenent (t heEndpt, &nd, &cnd);
11

/1 Convert the returned options back into a string
11
TQption* opts = (TOption*)cnd. opt . buf;

err = OTOreateQotionString("serial A", &pts, cnd.opt.buf + cnd.opt.|en,
string, sizeof(string));
printf("Options = \"%\ string);
OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 167

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

RESULT CODES
kOTNot Support edEr r
kOTBuf f er Over f | owEr r
kOTBadOpt i onEr r

SEE ALSO
OTCr eat eConfi guration, OTDestroyConfiguration

Utility functions

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

page 168

Utility functions

OTEnterInterrupt

FUNCTION
OTEnt er I nt er rupt Inform Open Transport that the caller is inside an interrupt
routine
C INTERFACE
voi d OTEnt er I nterrupt ()
DESCRIPTION

OTEnt er | nt er rupt informs Open Transport that it is at primary interrupt time. This allows
Open Transport to more intelligently schedule network activity. A client must make this call
whenever it is going to call Open Transport routines from primary interrupt time (e.g. from a
VBL or Time Manager task, etc.)

OTLeavel nt er rupt must be called before the client returns from the interrupt routine.

NOTE: On 68K Macintoshes, your A5 world must be set correctly before making this call (i.e. the
same value it had when | ni t OpenTr ansport was called).

{
OTEnterInterrupt();
DoM/Thi ng(nyPar ns)
OTLeavel nterrupt();

SEE ALSO
OTLeavel nt errupt

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 169
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

OTLeavelnterrupt

FUNCTION
OTLeavel nt errupt Inform Open Transport that the caller is leaving an interrupt
routine
C INTERFACE
voi d OTLeavel nterrupt ()
DESCRIPTION

OTLeavel nt errupt informs Open Transport that the caller will no longer be using Open
Transport from within an interrupt routine (see OTEnt er | nt er r upt on the previous page). A
client should never make the OTEnt er | nt er r upt call without the matching

OTLeavel nt errupt call.

NOTE: On 68K Macintoshes, your A5 world must be set correctly before making this call (i.e. the
same value it had when | ni t OpenTr ansport was called).

SEE ALSO
OTEnt er I nt errupt

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 170
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

OTlIdle

FUNCTION

aridl e A routine to call when there is nothing else to do

C INTERFACE
voi d orl dl e()

DESCRIPTION

QT dl e is a function that a client can call while it is waiting for asynchronous provider
operations to complete. It is not necessary for the correct operation of Open Transport to call this
function.

OTl dl e may not be called at primary interrupt time. OTIdle will NOT call SystemTask ,
WaitNextEvent, or GetNextEvent.

SEE ALSO
OTDel ay

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 171
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

OTDelay

FUNCTION
OTDel ay Delay for a specified number of seconds
C INTERFACE
voi d OTDel ay(Ul nt 32 seconds)
DESCRIPTION
Parameters Before After
Call Call
seconds X /

Utility functions

OTDel ay will delay for the number of seconds specified in the seconds parameter. While the

delay is occurring, it will continuously call OTI dl e.

OTDel ay should only be called from within an application at SystemTask time, and there is no

known reason for calling it. Itis provided for compati
(sl eep is #defined to be the OTDel ay function).

SEE ALSO
Oridl e

lity with the UNIX s| eep function

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

page 172

Utility functions

OTGetIndexedPort

FUNCTION
OTGet | ndexedPor t Return information on the n'th hardware port available to Open
Transport
C INTERFACE
Bool ean OTCet | ndexedPor t (OTPort Record* record, size_t index)
DESCRIPTION
Parameters Before After
Call Call
record X (x)
i ndex X /

OTCet | ndexedPor t is used to iterate through the hardware ports available to Open Transport.
Repeated calls to OTGet | ndexedPort with increnenting index nunbers (starting
wi t h 0) will return information on each of the available hardware ports in turn. The function
return false if the index value is outside the range of available ports.

The r ecor d parameter will be
true.

ed in with the port information if OTGet | ndexedPor t returns

See the section on ports for information on the OTPor t Recor d structure.

SEE ALSO

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 173
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

OTFindPort

FUNCTION
OTFi ndPor t Find information about a port given the name of the port
C INTERFACE
Bool ean OTFi ndPor t (OTPor t Record* record, const char* portNane)
DESCRIPTION
Parameters Before After
Call Call
record X (x)
port Nane (Xx) /

OTFi ndPor t returns information into the r ecor d parameter about the port named in
port Nane.

This function returns f al se if a port with the specified name does not exist.

if (OTFi ndPort(recordBuf, "serial A'))
{

}

/1 Do something with record information

SEE ALSO
OTFi ndPor t By Ref

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 174
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

OTFindPortByRef

FUNCTION

_9._n_ ndPor t By Ref Find information about a port given the OTPortRef value.

C INTERFACE
moo ean OTFi ndPor t ByRef (OTPor t Recor d* record, OTPortRef ref)
DESCRIPTION
Parameters Before After
Call Call
record X (x)
ref X /

OTFi ndPor t ByRef returns information into the r ecor d parameter about the port OTPor t Ref
isref.

..:m function returns false if a port matching the specifications does not exist.

OTPort Ref ref = OTOreat ePort Ref (kOTMot her boar dBus, kOTSeri al Devi ce, 0, 10);
if (OTFi ndPortByRef (recordBuf, ref,))

{
/1 Do something with record information
}
See the section on Ports for more information about OTPor t Ref s and device names.
SEE ALSO
OTFi ndPor t
OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 175

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

OTCreatePortRef

FUNCTION

OTCr eat ePor t Ref Create an OTPortRef, given knowledge about the port.

C INTERFACE

OTPor t Ref OTCr eat ePort Ref (Ul nt 8 busType, U nt16 devType, U nt16 slot,
Ul nt 16 ot her)

DESCRIPTION
Parameters Before After
Call Call
busType X /
devType X /
sl ot X /
ot her X /

OTCr eat ePor t Ref creates an OTPor t Ref that can be used for the various port-finding utilities
of Open Transport. An OTPor t Ref contains the 4 pieces of information stored in an opaque 32-
bit format. Manipulation of OTPor t Ref values should only be done with the utility functions
provided by Open Transport.

Currently defined bus types are:

enum

{
kOTUnknownBusPort =
kOTMot her boar dBus =
kOTNuBus =
kOTPCl Bus =
kOTGeoPor t =
kOTPCMCI ABus =

arwWNRO

b

These definitions can be found in the OpenTransport.h header file.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 176
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Currently defined device types are:

enum

{
kOTADEVDevi ce =1, /* An Atal k ADEV */
kOTMDEVDevi ce =2, /* A TCP/I P MDEV */
kOTLocal Tal kDevi ce =3, /* Local Tal k */
kOTI RTal kDevi ce = 4, /* | RTal k */
kOTTokenR ngDevi ce =5, /* Token R ng */
kOTI SDN\Devi ce = 6, /* 1 SDN */
kOTATMDevi ce =7, /* ATM */
kOTSMDSDevi ce =8, /* SMDS */
kOTSeri al Devi ce =09, /* Serial */
kOTEt her net Devi ce = 10, /* Et her net */
kOTSLI PDevi ce =11, /* SLI P Pseudo- devi ce */
kOTPPPDevi ce = 12, /* PPP Pseudo- devi ce */
kOTMbdenDevi ce =13, /* Mbdem Pseudo- Devi ce */
kOTFast Et her net Devi ce = 14, /* 100 MB Et her net */
kOTFDDI Devi ce = 15, /* FDDI */
KkOTATMLANEDeVi ce = 16, /* ATM LAN enul ati on */
kOTATMVBNAPDevi ce =17 /* ATM SNAP enul ati on */

b

These definitions can be found in the OpenTptLinks.h header file.

Utility functions

The slot parameter typically defines the slot location of the device, while the other parameter
typically disambiguates between multiple hardware ports within that slot, if necessary.

SEE ALSO

OTGet Devi ceTypeFr onPor t Ref, OTGet BusTypeFr onPor t Ref ,
OTCGet Sl ot Fr onPor t Ref

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 177

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

OTGetDeviceTypeFromPortRef

FUNCTION
OTGet Devi ceTypeFr onPor t Ref Extracts the device type from an OTPortRef.
C INTERFACE
Ul nt 16 OTGet Devi ceTypeFr onPor t Ref (OTPor t Ref ref)
DESCRIPTION
Parameters Before After
Call Call
ref X /

This function extracts the device type information fromthe OTPort Ref
and returns the val ue.

SEE ALSO
OTGet BusTypeFronPor t Ref, OTGet Sl ot FronPort Ref, OTCr eat ePor t Ref

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 178
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

OTGetBusTypeFromPortRef

FUNCTION
OTGet BusTypeFr onPor t Ref Extracts the bus type from an OTPortRef.

C INTERFACE
Ul nt 16 OTGet BusTypeFr onPor t Ref (OTPort Ref ref)
DESCRIPTION
Parameters Before After
Call Call
ref X /

This function extracts the bus type information fromthe OTPortRef and
returns the val ue.

SEE ALSO
OTGet Devi ceTypeFronPort Ref, OTGet Sl ot FronPort Ref, OTCr eat ePor t Ref

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 179
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

OTGetSlotFromPortRef

FUNCTION
OTGet Sl ot Fr onPor t Ref Extracts the slot information from an OTPortRef.
C INTERFACE
Ul nt 16 OTGet Devi ceTypeFronPor t Ref (OTPort Ref ref, U nt16* otherPtr)
DESCRIPTION
Parameters Before After
Call Call
r ef X /
ot herPtr X (x)

This function extracts the slot information fromthe OTPortRef. Itreturns
the value of the slot number stored in the OTPor t Ref , and if ot her Pt r is not NULL, it store the
"other" information at the value pointed to by ot her Pt r .

SEE ALSO
OTGet BusTypeFr onPort Ref, OTGet Devi ceTypeFronPort Ref, OTCreat ePort Ref

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 180
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

OTCreateSystemTask

FUNCTION
OTCr eat eSyst enilfask Create a reference that will allow a function to be run at the next
SystemTask.
C INTERFACE
__ ong OTCr eat eSyst enTask(OTProcessProcPtr proc, void* contextlnfo)
DESCRIPTION
Parameters Before After
Call Call
proc X /
contextlnfo X /

OTCr eat eSyst enilask creates a reference that can be used to schedule the function pointed to
by pr oc to be called at the next SystemTask. When scheduled (see OTScheduleSystemTask), the
function will be called back at the next SystemTask and will be passed the cont ext I nfo asa
parameter. For 68K clients only, at the time of the callback, the A5 global world will be set to the
A5 global world at the time that OTCr eat eSyst enilfask was called. The typedef for the
OTProcessProcPtr function is:

typedef pascal void (*OTIProcessProcPtr)(void* contextlnfo);

The return value of the function is a reference that should be used when ca
OTSchedul eSyst enilask or OTDest r oy Syst enirask. If the return value is zero, then there is
not enough memory to allocate the necessary data.

SEE ALSO
OTDest r oySyst enifask, OTSchedul eSyst enffask, OTCancel Syst enTask

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 181
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

OTDestroySystemTask

FUNCTION
OTDest r oySyst enirask Destroy a SystemTask object created with the
OTCreateSystemTask function
C INTERFACE
voi d OTDest r oySyst enffask(| ong st Cooki e)
DESCRIPTION
Parameters Before After
Call Call
stCookie X /

OTDest r oySyst enifask makes a reference returned by OTCr eat eSyst enfTask invalid, and
frees any resources associated with the OTCr eat eSyst enTask call. This call should be made
when it is no longer necessary to schedule the function. It can be made at any time.

SEE ALSO
OTCr eat eSyst enifask, OTSchedul eSyst enTask, OTCancel Syst enfTask

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 182
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

OTScheduleSystemTask

FUNCTION
OrSchedul eSyst enilfask Schedule a function to be called at SystemTask time
C INTERFACE
Bool ean OTSchedul eSyst enifask(| ong st Cooki e)
DESCRIPTION
Parameters Before After
Call Call
st Cooki e X /

OrSchedul eSyst enirask will schedule the function associated with the st Cooki e

par anet er (this value was returned by OTCr eat eSyst enTTask) for running at the next
SystemTask time. This call can be made at any time. This function returns true if the function
was schedule, false if not. If the function was not schedule, and the st Cooki e parameter is
valid, then this indicates that the function is already scheduled to run.

SEE ALSO
OTCr eat eSyst enifask, OTDest r oySyst enifask, OTCancel Syst enTask

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 183
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

OTCancelSystemTask

FUNCTION
OTlCancel Syst enilfask Cancel a function that is scheduled to be called at SystemTask
time
C INTERFACE
Bool ean OTCancel Syst enTask(| ong st Cooki e)
DESCRIPTION
Parameters Before After
Call Call
st Cooki e X /

OrCancel Syst enirask will cancel a function that was scheduled to run at System Task time by
calling OTSchedul eSyst enifask. The function returns true if the scheduling was able to be
canceled. If the function returns false, then either the function was not scheduled or it is too late
to cancel.

SEE ALSO
OTCr eat eSyst enifask, OTDest r oySyst enffask, OTSchedul eSyst enTask

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 184
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

OTCanMakeSyncCall

FUNCTION
OTrCanMakeSyncCal | Determine whether synchronous calls to Open Transport are
allowed
_o INTERFACE
moo ean OTCanMakeSyncCal | ()
__Ummom_v._._oz

OTCanMakeSyncCal | will return true if you can make a synchronous call to Open Transport. A

false will be returned if a synchronous call will fail. This call will not function properly if you

make the call from inside of an interrupt routine, and you haven't called OTEnt er | nt er r upt .
_mmm ALSO

OTCr eat eSyst enifask, OTDest r oySyst enifask, OTSchedul eSyst enTask

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 185
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

OTCreateDeferredTask

FUNCTION
OTCr eat eDef er r edTask Create a reference that will allow a function to be run at the next
Deferred task time.
C INTERFACE
| ong OTCr eat eDef erredTask(OTProcessProcPtr proc, void*
cont ext | nf o)
DESCRIPTION
Parameters Before After
Call Call
proc X /
contextlnfo X /

OTCr eat eDef er r edTask creates a reference that can be used to schedule the function pointed
to by pr oc to be called at the next Deferred Task time When scheduled (see

OTSchedul eDef er r edTask), the function will be called back at the appropriate time and will
be passed the cont ext | nf o as a parameter. For 68K only, at the time of the callback, the A5
global world will be set to the A5 global world at the time that OTCr eat eDef er r edTask was
called. The typedef for the OTPr ocessPr ocPt r function is:

typedef void (*OTProcessProcPtr)(voi d* contextlnfo);
The return value of the function is a reference that should be used when calling
OrSchedul eDef er r edTask or OTDest r oyDef er r edTask. If the return value is zero, then
there is not enough memory to allocate the necessary data.
SEE ALSO
OrDest r oyDef erredTask, OTSchedul eSyst enffask

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 186
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

OTDestroyDeferredTask

FUNCTION

OTDest r oyDef er r edTask Destroy a deferred task object created with the
OTCreateDeferredTask function

C INTERFACE
voi d OTDest r oyDef erredTask(| ong dt Cooki e)
DESCRIPTION
Parameters Before After
Call Call
dtCookie X /

OTDest r oyDef er r edTask makes a reference returned by OTCr eat eDef er r edTask invalid,
and frees any resources associated with the OTCr eat eDef er r edTask call. This call should be
made when it is no longer necessary to schedule the function. It can be made at any time.

SEE ALSO
OTCr eat eDef erredTask, OTSchedul eDef erredTask

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 187
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Utility functions

OTScheduleDeferredTask

FUNCTION
OrSchedul eDef erredTask Schedule a function to be called at deferred task time

C INTERFACE
Bool ean OTSchedul eDef err edTask(| ong dt Cooki e)
DESCRIPTION
Parameters Before After
Call Call
dt Cooki e X /

OrSchedul eDef er r edTask will schedule the function associated with the dt Cooki e

par anet er (this value was returned by OTCr eat eDef er r edTask) for running at the next
Deferred Task time. This call can be made at any time. This function returns true if the function
was schedule, false if not. If the function was not schedule, and the dt Cooki e parameter is
valid, then this indicates that the function is already scheduled to run.

This function is intended to be used by interrupt service routines to schedule deferred task
processing independently of the underlying deferred task mechanism.

SEE ALSO
OTCr eat eDef erredTask, OTDest royDef erredTask

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 188
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Native functions

Native functions

This section describes some Open Transport functions that are only available to native clients. They have
no mixed-mode glue associated with them, so your application or extension must be built FAT in order to
use these APIs on a Power Macintosh machine.

OTYieldPortRequest

FUNCTION

_Oj: el dPor t Request Ask all users of a port to yield the port

_0 INTERFACE

me.ﬁm:_m 9.<_m_Q_uol_umncmmivﬂoiamﬂmﬂEoigmfOjuo:mm*qu
OrcientList* buffer, size_t bufferSize)

DESCRIPTION
Parameters Before After
Call Call
provi der X /
ref X /
buf f er (?) (Xx)
buf f er Si ze X /

OTYi el dPor t Request is used to request the use of a port (normally, a serial port or modem)
from whoever is currently using the port. If the function returns an error, then something went
wrong and the request could not be completed. This could be because of lack of resources, or the
d does not support the request. If KEBUSYEr r is returned, the buffer parameter will
t of all of the clients that rejected the request. The bufferSize parameter is the size of
the buf f er parameter (including the f NunCl i ent s field). The buffer is a list of concatenated
pascal strings enumerating the name of each client that rejected the request (normally only one).

struct OrdientList

{
size_t fNundients;
unt8 fBuffer[4];

N

In the case where you want to be extremely rude and grab the port anyway, pass NULL for the
buffer pointer. In this case, if the function returns KOTNoError, then the port has been yielded,
and you can grab it. Note that normally a port will only yield in this manner if it's current client
is passively listening - the port will not be grabbed if a connection is in progress.

The supplied ProviderRef must be a provider (normally an endpoint) that is open on the
requested port. You may not use this provider while the OTYi el dPor t Request call isi
progress.

This call may only be made at System Task time (OTCanMakeSyncCall returns true).

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 189
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Native functions

Once the yield port request returns KOTNoError (or KENOENTETT - see below), you may attempt
to use the port (normally, this is by binding with a glen <> 0 ,or by connecting. If you need to
cancel the yield request, call OTYi el dPor t Request with a buffer of (void*)-1L. If you do not do
one of these three things, the port will automatically unyield in about 10 seconds.

ERRORS
kOTBadSyncErr Called at non-system-task time

kOTBadReferenceErr Either the provider does not use the requested OTPortRef, or the
requested OTPortRef does not exist.

kOTNotSupportedErr The requested port does not support yielding.

KENOMEMErr Not enough memory to complete the request
KEBUSYErr A client "nak"d the request to yield
KENXIOErr The underlying provider will not yield, probably because the current

client is already connected.

KENOENTErr The underlying provider does not currently have a client, so doing an
OTYieldPortRequest was unnecessary.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 190
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Appendix A - Sample Code

Client callbacks

Open Transport provides several ways for clients to get notification when significant events occur in the
Open Transport system. The first is through the notifiers that are installed on providers. Several events
may be passed to your notifier that are not "standard" events. These are:

kOTProviderlsDisconnected

Your provider was a listener (bound with glen <> 0), and it has been
disconnected (is no longer listening). This currently only happens with serial
ports, but could also happen with other connection-oriented drivers that have
characteristics similar to serial ports. You will get a kOTProviderlsReconnected
message when the cause of the disconnection is relieved (see the section on the
OTYieldPortRequest function).

kOTProviderlsReconnected
Your provider has been reconnected. Your provider is once again listening.
kOTProviderWillClose

Your provider will be closed as soon as you return from the notifier. This
callback is always done at System Task time (OTCanMakeSyncCall will return
true). You may set your provider into synchronous mode and make a few last
calls to prepare for being closed. Once you return from the natifier, any calls
made using the provider except OTCloseProvider will fail with a
kOTOutStateErr.

kOTProviderlsClosed

Your provider has been closed. The reason for being closed can be found in the
OTResult value passed to your notifier. The reasons typically are
kOTPortHasDiedErr, kOTPortWasEjectedErr, or kOTPortLostConnectionErr.
Any calls other than OTCloseProvider will fail with a kOTOutStateErr.

The second type of callback that Open Transport supplies is general client notification. In order to receive
these notifications, you must call the OTRegisterAsClient function:

GBSt at us OTRegi ster Asd i ent (OTA i ent Nane name, OTNoti fyProcPtr proc)

This function supplies Open Transport with your name ("nane" is currently a char* parameter - a zero-
terminated "C" string. It should be read from a resource in order to allow the name to be
internationalized). The pr oc parameter is a pointer to a notification procedure that will be called
whenever significant events occur in the Open Transport system.

When you no longer want to receive notification, you can call OTUnr egi st er Asd i ent :
CSStatus OTlnregi ster AsAient ()

Calling this function is optional, since either calling CloseOpenTransport or just exiting your application
will automatically unregister you as a client.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 191
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Appendix A - Sample Code
The events you may currently receive are:
kOTPortDisabled

A port has gone offline. The OTResul t parameter will give the specific reason, if
known, and the cooki e parameter is the OTPor t Ref of the port that went
offline. A port going offline also often results in providers getting

kOTPr ovi der | sCl osed events. There is no guarantee in Open Transport as to
which of these events will be received first.

kOTPortEnabled

A port which had previously been disabled is now enabled. The cooki e
parameter is the OTPor t Ref of the port that is now enabled.

kOTNewPortRegistered

A new port has been registered with Open transport. The cooki e parameter is
the OTPor t Ref of the new port.

kOTClosePortRequest

You currently are using a provider that is using a port that some other
application wants to use. The OTResult parameter is the reason for the request
(normally KOTNoError or kOTUserRequestedErr), and the cookie parameter is a
pointer to an OTPortCloseStruct:

struct OrPortd oseStruct

{
OrPor t Ref f Port Ref ;
Provi der Ref f ThePr ovi der;
CBSt at us f DenyReason;
Ord i entNane fRequestor;
N

The f Por t Ref field describes the port that is asking to be closed. The

f ThePr ovi der field tells you the provider that is currently using the port. The
f Request or field is the name of the requesting application or system service. If
you will yield the port, you need do nothing. If you won't yield the port, you
must fill in the fDenyReason field with a non-zero value that may specify the
reason (normally, KOTUserRequestedErr is used). This callback is always done
at SystemTask time, so you may put up a dialog to the user or take other action
as appropriate. Currently, this callback is only used for serial ports, but it is
applicable to any hardware device which cannot shared the port with multiple
clients. If you are willing to yield the port, and you are currently actively
connected (as opposed to listening in the T_IDLE state with a glen <> 0), you
must issue a synchronous OTSndDi sconnect in order to yield the port.

Your provider will receive a kOTPor t | sDi sconnect ed event if the port is
grabbed away from you. When the "grabber" is done, it will receive a
kOTPor t | sReconnect ed event.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 192
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Appendix A - Sample Code

Advanced Topics

This section describes some topics for the more advanced clients of Open Transport.

No-Copy Receives

Open Transport provides support for receives without copying the data. When using this feature of Open
Transport, you should be aware that using no-copy receives can adversely affect the performance of the
Open Transport system if it is not done correctly.

The OTBuf f er data structure is the structure returned by no-copy receives. If you are familiar with
STREAMS nbl k_t data structures, you can see that this structure is just a slight modification of the
bl k_t structure.

struct OTBuf fer

{
voi d* f Li nk; /1 b_next & b_prev
voi d* f Li nk2;
OrBuf f er * f Next ; /1 b_cont
U nt 8* fDat a; Il b_rptr
size_t fLen; 11 b_wptr
voi d* f Save; /1 b_dat ap
unt8 f Band; /1 b_band
unt8 f Type; /1 b_padl
unt8 f Pad1;
unt8 f Fl ags; /1 b_flag
e
fLink A link field, unused
fLink2 Another link field, unused
fNext A pointer to the next OTBuffer in the chain
fData A pointer to the data belonging to this OTBuffer
fLen The length of data pointed to by fData
fSave A reserved field
fBand A byte corresponding to the "band" of the data.
fType A byte describing the “type" of the data (normally M_DATA, M_PROTO, or
M_PCPROTO)
fPadl An unused byte
fFlags The flags associated with the data (MSGMARK, MSGDELIM)

By tracing the chain of fNext pointers, all of the data associated with the message can be accessed. Under
NO CIRCUMSTANCES WRITE TO THIS DATA STRUCTURE. It is read-only. If you write to it, it is
quite possible that you will crash the system. Under Copland, if you write to it, you will get an access
fault which will kill your application.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 193
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Appendix A - Sample Code

Because this structure is read-only, Open Transport provides a few utilities to allow data to be read from

this structure.

struct OTBufferlnfo

{

OrBuf f er * fBuffer;
size_t fOfset;
unt8 f Pad;

Iy

typedef struct OTBufferlnfo OrBufferlnfo;

#define OTlnitBufferlnfo(infoPtr, theBuffer) \
(infoPtr)->fBuffer = theBuffer; \
(infoPtr)->f Pad = theBuffer->fPadl; \
(infoPtr)->f O fset =0

extern "C" Boolean OTReadBuffer(OTBufferInfo* info, void* buf, size_t* len);
extern "C" size_t OTBufferDataSize(OTBuffer* bfr)
extern "C" void OTReleaseBuffer(OTBuffer* bfr)

The OTBuf f er | nf o structure keeps track of where you last left off in a buffer. This allows you to read
pieces of the data into multiple buffers, keeping track of where you left off.

OTReadBuf f er reads *| en bytes from the OTBuf f er description stored ini nf o into the buffer buf . It
returns true if the read request completely exhausted the bytes in the buffer, and it returns false if there
are more bytes in the buffer to be read. In all cases, *| en is updated with the actual number of bytes
copied.

OTBuf f er Dat aSi ze returns the number of data bytes in the OTBuf f er (including bytes in the f Next
chain).

OTRel easeBuf f er returns the buffer to the system when you are done with

Depending on the API being used, a no-copy receive is requested by using the constant
kOTNet buf Dat al sOTBuf f er St ar .

enum

{
Iy

kOTNet buf Dat al sOTBuf ferStar = (size_t)-3

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 194
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Appendix A - Sample Code

A few examples follow:

{
OrBuf fer* nyBuffer;
OTResul t result = Rev(nyEndpoint, &tyBuffer, kOTNet buf Datal sOTBufferStar);
}
{
OTBuf f er * nyBuf f er;
TUni t Data dat a;
OTFl ags flags;
dat a. addr . buf = &addr Buf ;
dat a. addr . max| en = si zeof (addrBuf) ;
dat a. opt . max| en =0;
dat a. udat a. buf = (U nt8*)&yBuffer;
dat a. udat a. max| en = kOTNet buf Dat al sOTBuf f er Star;
OrfStatus status = OTRcvUDat a(&data, & | ags)
}

Once you have copied the data out of the OTBuffer, you should call OTReleaseBuffer to return it to Open
Transport.

WARNING: In many cases, for performance reasons, drivers will pass up their actual DMA buffers. If
this is the case, when you do a no-copy receive, you are getting the actual DMA buffers from the driver.
If you hold on to the buffer for too long, you may begin to starve the driver for DMA buffers, which will
adversely affect the performance of the system. It is very important that if you are doing a no-copy
receive, you hold onto the buffer for as short a time as possible. If it is necessary to hold on to the buffer
for any length of time, overall performance will be better if you make a copy of the data and return the
buffer to the system.

Autopush

Open Transport provides support for the autopush feature of STREAMS. Under SVR4.2, autopush
information is base on device major numbers. On systems which allow dynamic loading of modules, this
does not make sense. It would require that devices be loaded before autopush information could be
configured. So, instead of using major numbers, Open Transport uses the device name, even though this
does not match the SVR4.2 implementation.

Autopush is implemented by talking to the system administration STREAMS module, named "sad". All
configuration is done by means of IOCTL command to the "sad" module. The following are the pertinent
structures:

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 195
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Appendix A - Sample Code

#defi ne kSADMbdul eNarre "sad"

enum

{
kOTAut opushMax= 8,
| _SAD SAP = MQCC OMMCC SAD, 1), /* Set autopush information */
| _SAD GAP = MQCC OMMCC SAD, 2), /* Get autopush information */
| _SAD WL = MQCC_OMMCC SAD, 3) /* Validate a list of nodules */

Iy

/* | _LIST structures */
struct str_list

{
int sl _nnods; /* nunber of nodules in sl_nodlist array */
struct str_nlist* sl _nodl i st;
Iy
struct str_niist
{
char | _name[FMNAMESZ + 1] ;
b
struct OTAutopushinfo /* loctl structure used for SAD SAP and SAD GAP commands */
{
unsigned int sap_cnd;
char sap_devi ce_nane[kMaxModul eNaneSi ze] ;
| ong sap_ni nor;
I ong sap_| ast ni nor;
| ong sap_npush;
char sap_| i st [kOTAut opushMax] [kMaxModul eNaneSi ze] ;
b
typedef struct OTAutopushlnfo OTAut opushl nf o;
*
* Command val ues for sap_cmd
*
/
enum
{ , _ . .
kSAP_ONE =1, /* Configure a single mnor device */
kSAP_RANCE =2, /* Configure a range of mnor devices */
kSAP_ALL =3, /* Configure all mnor devices */
kSAP_CLEAR =4 /* dear autopush infornation */
1

Autopush information is set, retrieved and cleared by using sending IOCTLs to the "sad" driver. These
I0CTLs may be either I_STR IOCTLs or “transparent” IOCTLs. In order to set or get autopush
information, you must allocate an OTAutopushlinfo structure.

To set autopush information about a module, set the sap_cnd field to one of the command values
specificed above, set up the sap_ni nor and sap_| ast mi nor numbers (if applicable) , and set the
sap_devi ce_nane field to a "C"-style string containing the name of the device about which autopush
information is desired. Fill in the sap_npush field with the number of modules to autopush, and then fill
in the sap_list with the names of the modules to autopush. Then execute code that looks like the
following:

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 196
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Appendix A - Sample Code

struct strioctl stri;

i.ic_cnd = | _SAD SAP;

c_dp = &nyOTAut opushl nf oSt ruct ure;

ic_len = si zeof (OTAut opushl nf o) ;

Lic_timout = -1;

err = OfStreanmoctl (nyStreanRef, |_STR (void*)&stri);

or

err = OfStreantoct!l (nyStreanRef, |_SAD SAP, (void*)&stri);

This will set the autopush information for the module. Use kSAP_ALL to configure all minor numbers of
adevice. This is normally the value that will be used to configure autopush. For specialty usage, you can
use kSAP_ONE to configure a single minor number (specified in the sap_ni nor field) or kSAP_RANGE to
configure a range of minor numbers (specified with the lower value in the sap_nmi nor field and the
higher value in the sap_| ast m nor field). The kSAP_CLEARcommand can be used to clear a previous
autopush. Set sap_minor to 0 to clear all autopush information for a module. Otherwise, you can clear a
single range or minor number by specifying sap_mi nor and sap_| ast mi nor value. The

sap_l ast mi nor field can be set to -1 to clear the range set that started with sap_mi nor . Note that you
cannot clear ranges that overlap with ranges that were set by two individual k SAP_RANGE commands
(you'll get a KEEXI STErr).

KENODEVErr the module specified is not configured for autopush.
KENOSTRErr the module specified does not exist in the system

KEINVALErr the command specified is not recognized by "sad"

KERANGEErr the minor number range specified was invalid, or the range is not

configured for autopush (when clearing a range).

KEEXISTErr an attempt was made to configure or clear a minor number or minor
number range that overlaps an existing range of minor numbers

You can use the I_SAD_GAP command to obtain the autopush information about a module. Fill out the
OTAutopushlinfo structure for the module and minor number(s) desired, along with the appropriate
command code (KSAP_ALL, kSAP_RANGE, or kSAP_ONE). and you will get back the OTAutopushinfo
structure that was used to set that particular autopush. For instance, if you ask for a single minor
number, and it was programmed as part of a range, you will get back the kSAP_RANGE or kSAP_ALL.
information that was used to set the autopush information

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 197
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Appendix A - Sample Code

Ownership of Providers

Open Transport attempts to "death watch" providers (including endpoints, mappers, and services
providers). If a client dies or quits without closing all it's outstanding providers, Open Transport
attempts to "clean up" and close them on behalf of the client. This leads to an interesting problem. Every
shared library, code resource, or application that creates an endpoint, or uses one of the endpoint
functions that allocate memory on behalf of the client (list follows) must be a client of Open Transport
(having called InitOpenTransport). For ASLM shared libraries and applications, Open Transport can
deathwatch the library or application easily. For CFM shared libraries, the client MUST call
CloseOpenTransport before terminating (this can be done by making CloseOpenTransport the
termination procedure for the CFM library) Since Open Transport keeps track of the owner of all
providers, and closes them when the owner terminates, some provision must be made for transfering the
ownership of a provider. The function OTTransferProviderOwnership is intended for that purpose. You
pass it a ProviderRef that you wish to obtain ownership of, and it will return a new ProviderRef that
belongs to you. The old ProviderRef is then obsolete and should not be used:

pascal Provi der Ref OITransf er Provi der Oaner shi p(Provi der Ref ol dRef, OTdient ol dOaner,
GBSt at us* errPtr);

You can use the OTWhoAm function to obtain the OTCl i ent value. In order to transfer the ownership of

the endpoint, the prior owner will need to give you it's OTCl i ent value through some API.

|pascal OTAient OTWioAM (void);

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 198
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Appendix A - Sample Code

Appendix A - Sample Code

For an examples of Open Transport clients, see the disk “Open Transport Samples” in the Open Transport

software distribution.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96

page 199

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Appendix B - Endpoint States

Appendix B - Endpoint States

This appendix lists and describes the endpoint states that are visible to Open Transport clients. It also
provides tables showing which Open Transport routines change the state of endpoints.

Table B-1. Open Transport Endpoint States
State Decimal value Meaning

T_DATAXFER 5 This connection-oriented endpoint has a connection
established; the endpoint can now send and receive data.

T_IDLE 2 The endpoint has been bound to a local protocol
address. For non-connection-oriented endpoints, it is
ready for use. For connection-oriented endpoints, the
endpoint is ready to receive incoming connection
requests, or for the client to initiate a connection.

T_INCON 4 The connection-oriented endpoint has received a
connection request, and the client has not yet accepted
(using the Accept function) or rejected (using the
SndDi sconnect function) the connection request.

T_INREL 7 The connection-oriented endpoint has received an
incoming request for an orderly disconnect, and the
client has not yet acknowledged the release (using the
RcvOr der | yDi sconnect function). The client may
continue to send data on this endpoint, until
acknowledging the release, but may no longer read
incoming data. Not all endpoints support orderly
disconnects.

T_OUTCON 3 The client has used the Connect function to initiate a
connection request on a connection-oriented endpoint,
and the connection has not yet been established.

T_OUTREL 6 The client has initiated an orderly disconnect (using the
SndOr der | yDi sconnect function), which the remote
endpoint has not yet acknowledged. The client may
continue to read data from the connection, but may not
send any more data. Not all endpoints support orderly
disconnects.

T_UNBND 1 The endpoint is initialized, but has not yet been bound
to a local protocol address.

T_UNINIT 0 The endpoint is uninitialized. This value is returned
whenever the system has closed an endpoint, but the
client has not (For instance, when a Macintosh goes to
sleep, most client providers are closed. Clients are
notified with a kOTPr ovi der W | Cl ose event, and if
they don't close the provider, the system will do it for
them).

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 201
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Appendix C - Event Codes

Appendix C - Event Codes

This appendix describes the codes that the Open Transport Library can send to a client’s notification
routine. For more information about what your client should do when its notification routine receives a

particular event code, refer to the section Event Handling.

Table C-1. Open Transport Event Codes

Event code Hexadecimal value
T_ACCEPTCOMPLETE $20000003
T_BINDCOMPLETE $20000001
T_CONNECT $2

T_DATA $4
T_DELNAMECOMPLETE $2000000E
T_DISCONNECT $10

Meaning

An Accept function has completed. The
cooki e parameter is a pointer to the
receiving endpoint for the endpoint that
issued the Accept function. If the receiving
endpoint is different than the one that
issued the Accept function, it will receive a
NULL in the cooki e parameter.

A Bi nd function has completed, and the
cookie parameter is the retAddr parameter
of the Bi nd call.

An incoming connect response to a client
initiated connection has been received. Use
RcvConnect to receive it. The cookie
parameter to the notification routine is the
sndCall parameter of the client passed to the
Connect call.

Incoming data has arrived. Use Rcv or
RcvUDat a to receive it. Another T_DATA
event will not be generating until Rcv or
RcvUData has been called and returns a
kOTNoDataErr error.

A Del et eName function has completed.
The cookie parameter is either the
OTNanel D (For OTDel et eNaneBy! D) or it
is the TNet buf pointer that contained the
name to delete (for OTDel et eNane).

A connection has been torn down. Also used
to indicate a client initiated connect has been
denied by the remote endpoint. Use
RcvDi sconnect to clear the event. The
cookie parameter to the notifier is NULL for a
T_DISCONNECT event that indicates an
established connection has been torn down.
If the T_DISCONNECT event indicates a
rejected connection request, then the cookie
parameter to the notification routine is the
same as the sndCall parameter that the client
passed to the Connect call.

T_DISCONNECTCOMPLETE $20000005

T_EXDATA $8

T_GETINFOCOMPLETE $2000000A
T_GETPROTADDRCOMPLETE $20000008
T_GODATA $100
T_GOEXDATA $200
T_LISTEN $1
T_LKUPNAMECOMPLETE $2000000F
T_LKUPNAMERESULT $20000010
T_MEMORYRELEASED $2000000C

OpenTransport Client Developer Note, Rev 1.1b14

1/18/96 page 203

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Appendix C - Event Codes

A SndDi sconnect function has completed,
the cookie parameter is the call parameter of
SndDi sconnect

Incoming expedited data has arrived. Use
Rcv to receive it. Another T_EXDATA event
will not be generating until Rcv has been
called and returned either a KOTNoDataErr
error, or returned normal (non-expedited)
data.

A Get Endpoi nt | nfo function has
completed, and the cookie parameter to the
notification routine is the info parameter of
Get Endpoi ntI nfo

A Get Prot Addr ess function has
completed, and the cooki e parameter to
the notifier is the peer Addr parameter that
the client passed into the Get Pr ot Addr ess
call. If the client passed NULL as the
peer Addr parameter, then the client’s
boundAddr parameter is passed as the
cooki e.

Flow control restrictions have been lifted

Flow control restrictions on the expedited
data channel have been lifted.

An incoming connection request has
arrived. Call Li st en to receive it.

A LookupName function has completed.
The cooki e parameter is the
TLookupRepl y pointer passed in the
LookupNarre call.

A LookupNane function has found a name
and is returning it, but the lookup is not
completed yet. The cooki e parameter is the
TLookupRepl y pointer passed in the
LookupNane call.

This event is only used when a client has
issued the AckSends function to an endpoint
and the endpoint is asynchronous. The
event occurs when any sending function has
completed and is done using the client
memory. The cookie parameter is the buf
parameter of Snd or the appropriate ".buf"
parameter of the structure used to

OpenTransport Client Developer Note, Rev 1.1b14

1/18/96 page 204

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

T_OPENCOMPLETE

T_OPTMGMTCOMPLETE

T_ORDREL

T_REGNAMECOMPLETE

T_REPLY

T_REPLYCOMPLETE

T_REQUEST

T_RESET

$20000007

$20000006

$80

$2000000D

$0800

$20000004

$400

$2000

Appendix C - Event Codes

send data, and theresult parameter
is the length of that buffer (or the number of
bytes that were sent from that buffer in the
case of a send that was incomplete due to
flow control).

An asynchronous open call is
conpl et e. The cooki e paraneter
will be set to the appropriate

ProviderRef if no error occurred.

An OptionManagement function has
completed, and the cooki e parameter to
the notification routine is the r et parameter
that the client passed to the
Opt i onManagenent function. If the client
specified NULL as the r et parameter, then
the client’s r eq parameter is passed as the
cooki e.

The remote client has called
SndOrderl yDi sconnect ; your client
should now call RevOr der | yDi sconnect .

An Regi st er Nane function has completed.
The cookie parameter is the
TRegi st er Repl y* parameter, unless it
was NULL. Then it is the
TRegi st er Request * parameter.

An incoming response to an outstanding
request has been received. Use the
RcvUReply or RevReply function to read the
reply. Another T_REPLY event will not be
generating until RcvReply or RcvUReply
has been called and returns a
kOTNoDataErr error.

A SndURepl y or SndRepl y function has
completed, and the cookie parameter is the
sequence number of the original request.

An incoming request has been received. Use
RcvRequest or RcvURequest to receive it.
Another T_REQUEST event will not be
generating until RcvRequest or
RcvURequest has been called and returns a
kOTNoDataErr error.

A connection-oriented endpoint has
received a reset from the remote end and
has flushed all unread and unsent data. This
only occurs for some types of endpoints, and

T_RESOLVEADDRCOMPLETE $20000009
T_UDERR $40
T_UNBINDCOMPLETE $20000002

Appendix C - Event Codes

generally leaves the endpoint in an
unknown state.

A Resol veAddr ess function has
completed, and the cookie parameter is the
retAddr parameter of Resol veAddr ess

An SndUDat a function has failed after
previously completing with no error.

An Unbi nd function has completed. The
cooki e parameter is NULL.

OpenTransport Client Developer Note, Rev 1.1b14
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

1/18/96 page 205

OpenTransport Client Developer Note, Rev 1.1b14

1/18/96 page 206

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Appendix D - Result Codes

Appendix D - Result Codes

This appendix describes the result codes that Open Transport preferred-C routines return. For
information about what your client should do when a particular function returns a particular code, refer
to the description of that function. For information about XTI result codes, refer to the X/Open Transport

Interface specification.

Table D-1. Open Transport Preferred Result Codes corresponding to XTI result codes

Result code
kOTAccessErr

kOTAddr essBusyErr

kOTBadAddr essErr

kOTBadDat aEr r

kOTBadFI agEr r
kOTBadNaneEr r
kOTBadOpt i onEr r

kOTBadQLenEr r

kOTBadRef er enceErr

kOTBadSequenceEr r

kOTBadSyncEr r
kOTBuf f er Over f | owEr r

kOTCancel edEr r

Value
-3152

-3172

-3150

-3159

-3165
-3170
-3151

-3171

-3153

-3156

-3179
-3160

-3180

Meaning

The user does not have permission to negotiate the
specified address or options.

The requested address is in use, or this endpoint
does not support multiple connections with the
same local and remote addresses. This result code
indicates that a connection already exists. As a
return value for a Bi nd call, it may also indicate that
no dynamic addresses are available for protocols or
configuration methods that allow dynamic
addressing.

The specified protocol address was in an incorrect
format or contained illegal information.

The amount of client data specified was not within
the bounds allowed by the endpoint.

An invalid flag was specified.
The endpoint name is invalid.

The specified protocol options were in an incorrect
format or contained illegal information.

The argument gl en when the endpoint was bound
with Bi nd was zero.

The specified Endpoi nt Ref or TEndpoi nt * does
not refer to a valid endpoint.

An invalid sequence number was specified, or a
NULL cal | pointer was specified when rejecting a
connection request.

A call to Sync was made at non-SystemTask time.

The number of bytes allocated to hold a result is
greater than zero, but not sufficient to store the
result.

An outstanding call was canceled.

OpenTransport Client Developer Note, Rev 1.1b14

1/18/96 page 207

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Appendix D - Result Codes

Table D-1 (cont'). Open Transport Preferred Result Codes

kOTFI owEr r

kOTI ndQut Er r

kOTLooKEr r
kOTNoAddr essEr r
kOTNoDat aEr r
kOTNoEr r or

kOTNoDi sconnect Err
kOTNoRel easeErr

kOTSt ruct ur eTypeErr

kOTNot Support edEr r
kOTNoUDET r Er r

kOTQut St at eEr r
kOTPr ovi der M snmat chEr r

kOTQFul | Err

kOTPr ot ocol Err

-3161

-3173

-3158

-3154

-3162

0000

-3163
-3166

-3169

-3167
-3164

-3155
-3174

-3177

-3178

The endpoint is in asynchronous mode, but the flow
control mechanism prevents the endpoint from
accepting any data at this time.

There are outstanding connection indications on the
endpoint. All other connection indications must be
handled either by rejecting them with
SndDi sconnect, or by accepting them with
Accept .

An asynchronous event has occurred on this
endpoint.

The endpoint could not allocate an address, or an
address was required and not supplied by the client.

This endpoint is in non-blocking mode, but no data
is currently available. It is also returned by
LookupName when no names are found.

The function completed execution without error.
No disconnect indication is available.

No orderly release indication currently exists on this
endpoint.

An unsupported structure type was passed in the
st ruct Type field. This error is also returned when
the struct Type field is inconsistent with the
endpoint type.

This action is not supported by this endpoint.

No unit data error indication currently exists on this
endpoint.

The function was issued in the wrong sequence.

The endpoint that is to accept the connection is not
the same kind of endpoint as this one.

The maximum number of outstanding indications
has been reached for the endpoint.

An unspecified protocol error occurred.

OpenTransport Client Developer Note, Rev 1.1b14

1/18/96 page 208

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Appendix D - Result Codes

Table D-1 (cont'). Open Transport Preferred Result Codes

kOTResAddr essErr -3176
kOTResQ.enEr r -3175
kOTSt at eChangeEr r -3168

The address to which this endpoint is bound differs
from that of the endpoint that received the
connection request; thus, this endpoint cannot accept
this connection request.

When this endpoint was bound (see Bi nd), the gl en
parameter was greater than zero. But to accept a
connection on an alternate end-point, such as this
one, the endpoint must be bound with a gl en
parameter equal to zero.

The endpoint is undergoing a transient state change.
This error is returned when a function call is made
while an endpoint is in the process of changing
states. The client should wait for an event indicating
the endpoint has finished changing state and call the
function again. (Note that the equivalent state-
change error code, TSTATECHNG is not described in
the 1992 X/Open XTI specification.) This error is
also returned if you attempt to use an “incompatible”
function while another operation is still ongoing
(e.g. calling SndUData while an OptionManagement
call is still outstanding).

Appendix D - Result Codes

Table D-2 Open Transport Preferred Result Codes corresponding to UNIX result codes

Result code Value
kENOENTET r -3201
KENI CEr r -3204
Kk ENXI OEr r -3205
kENOVEMET r -3211
k EBUSYET r -3215
KEI NVALEr r -3221
k EWOUL DBL OCKET r -3234
kETI MEDOUTEr r -3259
k ENCSRET r -3271

Meaning

This error literally means "no such file or directory".
In XTI (and Open Transport) it is returned when an
attempt is made to open an endpoint or mapper that
does not exist in the system.

An 170 error occurred.

27?7.

Open Transport cannot allocate enough memory to
meet your request.

The device you are trying to access is busy and could
not complete your request.

777?

In order to complete the operation the request, Open

Transport would have to block, and the endpoint is
in non-blocking mode.

The requested operation timed out.

Open Transport cannot allocate enough system
resources (usually STREAMS messages) to meet
your request.

OpenTransport Client Developer Note, Rev 1.1b14

1/18/96 page 209

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

OpenTransport Client Developer Note, Rev 1.1b14

1/18/96 page 210

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Appendix E - TIl and XTI

Appendix E - Open Transport and XTI

This appendix describes how Open Transport differs from XTI. Also, it describes which entities in the
preferred-C interface of Open Transport corresponds to which XTI entities, and vice versa.

CAUTION: The preferred-C interface of Open Transport is based on XTI but is not identical with it. As a
result, some elements have no XTI counterparts, and those that have counterparts are not necessarily
identical with them. For definitive information about XTI, refer to the X/Open Transport Interface

Function Names

Table E-1. XTI-to-Open Transport Function Cross-Reference

XTI Function
t_accept
t_alloc
t_bind

t_cl ose

t _connect
t_error
t_free

t _get prot addr
t_getinfo

t_getstate

Open Transport Function
Accept

Al l oc

Bi nd

Cl oseProvi der

Connect

Free
Get Pr ot Addr ess
Get Endpoi ntl nfo

Get Endpoi nt St at e

Appendix E - TIl and XTI

Table E-1. XTI-to-Open Transport Function Cross-Reference (cont')

XTI Function Open Transport Function
t_rcvdis RcvDi sconnect
t_rcvrel RcvOr der | yDi sconnect
t_rcvudata RcvUDat a

t_rcvuderr Rcv UDETr r

t_snd Snd

t_snddi s SndDi sconnect
t_sndrel SndOr der | yDi sconnect
t _sndudat a SndUDat a

t_strerror —
t_sync Sync

t _unbi nd Unbi nd

Table E-2 describes shows which names in the Open Transport preferred-C interface correspond to which
names in the XTI-style interface.

Table E-2. Open Transport-to-XTI Function Cross-Reference

t_listen Li sten

t_l ook Look

t_open OpenEndpoi nt

t _opt mgnt Opt i onManagenent

t_rcv Rcv

t _rcvconnect RcvConnect

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 211

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Open Transport Function XTI Function

Accept t _accept

AckSends —

Al oc t_alloc

Bi nd t _bind

Cl oseProvi der t_cl ose

Connect t _connect

Dont AckSends —

Free t_free

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 212

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Table E-2. Open Transport-to-XT| Function Cross-Reference (cont')

Open Transport Function
Get Endpoi ntlnfo
Cet Pr ot Addr ess
Get Not i fier

Get Endpoi nt St at e
Instal | Notifier

I sNonBl ocki ng

I sSynchr onous

Li sten

Look

OpenEndpoi nt

Opt i onManagenent
Rev

RcvConnect

RcvDi sconnect
RcvOr der | yDi sconnect
RcvRequest
RcvUDat a

Recv UDEr r
RcvURequest
RenoveNoti fi er
Resol veAddr ess
Set Asynchr onous
Set Bl ocki ng

Set NonBI ocki ng

Set Synchr onous

XTI Function
t_getinfo

t _get pr ot addr

t_getstate

sten

t _l ook
t_open

t _opt ngnt
t_rcv
t_rcvconnect

t_rcvdis

t_rcvrel

t_rcvudat a

t_rcvuderr

Appendix E - TIl and XTI

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

page 213

Table E-2. Open Transport-to-XTI Function Cross-Reference (cont')

Appendix E - TIl and XTI

Open Transport Function XTI Function
Snd t_snd

SndDi sconnect t_snddi s
SndOr der | yDi sconnect t_sndrel
SndRepl y —
SndRequest —

SndUDat a t _sndudat a
SndURepl y —
SndURequest —

Sync t_sync

Unbi nd t _unbi nd
OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 214

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Extensions to XTI

Appendix E - TIl and XTI

Table E-3 lists the Open Transport routines that are not part of XTI. Although this document refers to
these routines by their Open Transport preferred-C names, client can also call these routines by the XTI-

style the names listed in the table.

Table E-3. Open Transport Functions not found in XTI

Open Transport Preferred-C Name
AckSends

Dont AckSends

Get Pr ot Addr ess
Instal | Notifier

1 sNonBl ocki ng

I sSynchronous

RcvRequest

RevURequest

RenoveNot i fier

Resol veAddr ess

XTI-Style Name

t_get prot addr
t_installnotifier
t_i snonbl ocki ng
t_i ssynchronous
t_rcvrequest
t_rcvurequest
t_renovenotifier

t_resol veaddr

Set Asynchr onous t_asynchronous

Set Synchr onous t_synchronous

SndRepl y t_sndreply

SndRequest t_sndrequest

SndURepl y t_sndureply

SndURequest t_sndurequest

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 215

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Appendix E - TIl and XTI

Data Structures

Many of the Open Transport functions take pointers to data structures as parameters. The table below
shows the standard XTI data structure names and the corresponding preferred interface structure names.

Table E-4. XTI-to-Open Transport Data Structure Cross-Reference

XTI Name Open Transport Name
int fd Endpoi nt Ref fd
t_info TEndpoi nt I nfo
t _net buf TNet buf

t _bind TBi nd

t _discon TDi scon

t_call TCal |
t_unitdata TUni t Dat a

t _uderr TUDET r

t _opt mgnt TOpt Mynt
Result Codes

When an XTI style function fails, it returns -1 to indicate an error has occurred, and the error is stored in a
global variable t_errno. If the value of the error is TSYSERR, then the actual error can be found in the
global variable errno. The XTI error numbers are small positive integers.

When an Open Transport preferred function fails, the error code is returned as the result of the function.
No global variables are used and all errors are negative numbers.

XTI error codes are small positive numbers with defined constants for each that look like TBADADDR or
TFLOW. The Open Transport error codes are negative numbers for consistency with the Macintosh
Toolbox, and they have names like kOTBadAddr essEr r and kOTFI owEr r . There is a corresponding
Open Transport error code for every XTI error code.

Table E-5 shows the mapping of XTI error names onto Open Transport error names.

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 216
Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Appendix E - TIl and XTI

Table E-5. XTI-to-Open Transport Result Code Cross-Reference

XTI Result Code

Open Transport Result Code

TACCES kOTAccessErr
TADDRBUSY kOTAddr essBusyErr
TBADADDR kOTBadAddr essErr
TBADDATA kOTBadDat aEr r
TBADF kOrBadRef er enceEr r
TBADFLAG kOrBadFl agEr r
TBADNAVE kOrBadNameEr r
TBADOPT kOTBadOpt i onEr r
TBADQLEN kOTBadQLenEr r
TBADSEQ kOTBadSequenceEr r
TBADSYNC kOTBadSyncErr
TBUFOVFLW kOTBuf f er Over f | owEr r
TCANCELED kOTCancel edErr
TFLOW kOTFIl owEr r

TI NDOUT kOTI ndQut Er r
TLOOK kOTLookEr r

TNOADDR kOTNoAddr essErr
TNODATA kOTNoDat aEr r

TNODI S kOTNoDi sconnect Err
TNOREL kOTNoRel easeEr r
TNOSTRUCTYPE kOTSt ruct ur eTypeErr
TNOTSUPPORT kOTNot Support edEr r
TNOUDERR kOTNoUDET r Er r
TOUTSTATE kOTQut St at eErr
TPROTO —

TPROVM SVATCH

kOTPr ovi der M smat chEr r

OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 217

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

TQFULL kOTQFul | Err
TRESADDR kOTResAddr essErr
TRESQLEN kOTResQLenErr
TSTATECHNG kOTSt at eChangeEr r
TSYSERR -

Appendix E - TIl and XTI

OpenTransport Client Developer Note, Rev 1.1b14

1718796

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

page 218

Index

abortive disconnect 95
absolute requirement 72
Accept 105
AckSends 9, 24
address book 1
ADSP 96
Alloc 65
asynchronous events 10
Asynchronous mode 35
Bind 50
Blocking 9
CancelReply 148
CancelRequest 147
CancelSynchronousCalls 28
CancelUReply 135
CancelURequest 134
Chooser/Browser 1
CleanupLibraryManager 4
CloseOpenTransport 4, 160
completion events 10
Connect 99
Data structures 39
Datagram
connectionless 30
DeleteName 155, 156
device name 8
device types 8
DontAckSends 25
Endpoint 30, 45, 47, 55
ETSDU 42, 114
Event handling 12, 38
Events 10
expedited data 114
Figure
State Diagram 33, 35
TNetbuf 41
Free 68
Gestalt 4
GetEndpointInfo 55
GetEndpointState 57
GetProtAddress 59
Getting Started 4
Index 217
InitLibraryManager 4
InitOpenTransport 4, 159
InstallNotifier 14
loctl 27
IsAckingSends 26
IsNonBlocking 23

Listen 103

Look 58

LookupName 157

mapper 150, 152

Mode of operation 17
Modes of operation 9
module name 8

NetBIOS 96

notifier 14

notifier routine 12

Notifiers 12
OptionManagement 69, 79
orderly disconnect 95
orderly release 30
OTAsyncOpenEndpoint 47
OTAsyncOpenMapper 152
OTBuffer 191
OTBufferDataSize 192
OTBufferInfo 192
OTCancelSystemTask 182
OTCanMakeSyncCall 183
OTCloneConfiguration 161
OTCloseProvider 20
OTConfiguration 6, 160, 161,
162

OTCreateConfiguration 160
OTCreateDeferredTask 184
OTCreateOptions 163
OTCreateOptionString 165
OTCreatePortRef 174
OTCreateSystemTask 179
OTData 40

OTData Structure 41
OTDelay 170
OTDeleteNameByID 156
OTDestroyConfiguration 162
OTDestroyDeferredTask 185
OTDestroySystemTask 180
OTEnterInterrupt 167
OTFindPort 172
OTFindPortByRef 173
OTGetBusTypeFromPortRef
177
OTGetDeviceTypeFromPortR
ef 176

OTGetIndexedPort 171
OTGetSlotFromPortRef 178
OTldle 169
OTlInitBufferinfo 192

Index

OTOpenMapper 150

OTPortRecord 6, 171

OTReadBuffer 192

OTReleaseBuffer 192

OTScheduleDeferredTask 186

OTScheduleSystemTask 181

OTYieldPortRequest 187

port name 8

Preferred C 2

Preferred C++ 2

provider 20

Providers 5

Rcv 118

RcvConnect 101

RcvDisconnect 110

RcvOrderlyDisconnect 113

RcvReply 145

RcvRequest 140

RcvUData 90

RcvUDETrT 88

RcvUReply 132

RcvURequest 127

RegisterName 153

RemoveNotifier 16

ResolveAddress 61

SetAsynchronous 18

SetBlocking 21

SetNonBlocking 22

SetSynchronous 17

Setting 17

Snd 115

SndDisconnect 95, 108

SndOrderlyDisconnect 112

SndReply 142

SndRequest 138

SndUData 86

SndUReply 129

SndURequest 125

Specifying ports 6

Specifying provider services

6

States 31, 57

Stream
connection-oriented 30

Sync 63

TCP 96

TEndpointinfo 40, 42

TEndpointinfo Structure 42

TNetbuf 40

IsSynchronous 19 OTLeavelnterrupt 168 TNetbuf Structure 40
kOTNetbufDatalsOTBufferSt OTNotifyProcPtr 13 TOTNotifier 12

ar 192 OTOpenEndpoint 45 TP4 96
OpenTransport Client Developer Note, Rev 1.1b14 1/18/96 page 219

Copyright © 1992-1996 Apple Computer, Inc. All rights reserved

Transaction
connection-oriented 30,
137
connectionless 30

Transaction Protocols 2

TransferOwnership 29

transport provider 30

Transport Service Data Units

114

Transport Transparency 1

TSDU 42, 114

TSYSERR 214

T_ACCEPTCOMPLETE 106

T_DISCONNECT 96

T_DISCONNECTCOMPLET

E 96

T_MEMORYRELEASED 9

T_ORDREL 96

Unbind 53

XTI1

XTl-style 2

Index

