i

Device Manager Family
Design Document

Macintosh System Software
Apple Computer, Inc.

Copyright © 1995 Apple Computer Inc. Apple Need To Know Confidential
Draft

Draft Device Manager Family Design

TABLE OF CONTENTS

1. RELATED DOCUMENT S oo et e e 13
2. SUM M A R Y i e e e 22
e VL S ON L e e 33
4. DE SI GN GO AL S 44
D OV E RV I E W L e et 55
6. DEVICE MANAGER COMPATIBILITY oo 7+
6.1. THE SYSTEM-7 DEVICE MANAGERctuitiiteit et e ettt e et e e e e et e e e e ea e an e e e e eeanns T+
6.1.1. The System-7 Device Manager APL........ccccoiiiiiiiiiiii 7+
6.1.2. The System-7 Device Manager Data SIrUCLUFES.........uuvuieiereiieieieieeeeeeee e ses s eeeeveeeeeeeeees 88
6.2. COMPATIBILITY IN THE BLUE WORLDtuiiitiiitie et e e e et e e e e s e e e ee e e et e e e e eae e eaannen 1141
6.2.1. “Thunking” the Correct Data CONLEXL.........cuuiiiiiiiiiiiiiiaee s 1242
6.2.2. Handling Synchronous Walit............couuuiiiiiiiiiiii e e e e eeees 1424
6.2.3. Compatibility ASSEITiONS........cciiiiiiiiiiiii e 1515
6.3. COMPATIBILITY ISSUESWITH “HIDDEN" POINTERSuuttutiiiieiieetaeeneeeieeaeeaneenaeenseenaeanaeannas 1515
6.4. IOCOMMANDISCOMPLETE AND THE D SL ...viiiiiiiiiii it e e e ae e 1616
6.5. COHERENCY AND THE SYSTEM-7 UNIT TABLE.....itiiiitiiet et e e e e e e enaaen 1818
6.5.1. System-7 ‘DRVR’ Unit Table Update Methods............oooooiiiiiieeis 1818
6.5.2. The ‘ndrv’ Driver Unit Table UPdates..........cooeiiiiiiiiiiiiiiiiai e 1919
6.5.3. ‘ndrv’s Installed by Family EXPErtS........cccouiiiiiiiiiiiiiieeee e 1919
6.5.4. Unit Table Updates Using Alias Reference NUMDErS..........cccvvviviieeeiiiiiciiieeec e 1949
B.5.5. REOUESE FIOWS. .. ciiiiiicieii et e e e e e e e et e e e e e e e et e e e eatn e e eatneeeees 2020
6.6. THE NATIVE DRIVER INTERFACE. ...ttt ettt e et e e e et e e e e e et e e et e e e e e e enannen 2020
6.6.1. Generic Drivers ImportS & EXPOITS...... ..o 2020
B.6.2. CONCUITENE DIIVEI S, ..u ittt e et e e e e e e e e e e e e et e e e et e e e et e e e st e eesnnaaees 2124
6.6.3. GENEriC Driver RESIIICHIONS.......ciiiiiiieiie e e e e e e e e e e eeeees 2222
6.6.4. Installing a Native DEeVICE DIIVENcouiiiiiiiiiiieiee et 2222
6.7. THE DRIVER LOADER LIBRARY ...tuitiiiiiteiit ettt ie et et et et ea et ea et eaetsae s eanetneanesneanennennns 2222
6.7.1. The Driver Loader Library API for the Device Managerccccveevvveeeieiiieeesiieeeesiiee e 2323
6.8. PROVIDING ACCESSTO OTHER FAMILIES THROUGH THE SYSTEM-7 DEVICE MANAGER API.......... 2424
6.8.1. ATransitional INtErface.........cooiiiiiiiiiiii e e 2525
7. REQUE ST O R e e 2626
7. THE DEVICE MANAGER ACTIVATION MODEL ...coviiiiii i 272+
7.1. ACTIVATION MODEL OVERVIEW .1uituitnitneiitieieteteeseteaetaesaetassetnsanetnssnetnsaetnssnesnesnesnennns 27124
7.2. RELIABILITY, AVAILABILITY AND SERVICEABILITY (RAS) ..ottt 2828
7.3. THE DEVICE MANAGER FAMILY APl ..o 2929
7.4, DEVICE MANAGER FLOWS. . .tuitiitiiitiii ettt e et e e e e e et e e e e e e e e et a e e aaanas 2929
7.5. PSEUDO-CODE IMPLEMENTATION ... cuttuttuette et aetaeat e et e et e et e et e et een e een e eaeeaeeaeenaeenaeenaeannas 3434

Apple Need To Know Confidential i

Draft Device Manager Family Design

1. RELATED DOCUMENTS

1. Next Generation MacOS /O Architecture, 3rd Draft (really), Holly Knight, Wayne
Meretsky, Alan Mimms, Carl Sutton

Inside Macintosh - Devices, Addison-Wesley, 1994

3. Inside Macintosh - Designing PCI Cards and Drivers for Power Macintosh Computers,
Interim Draft, February 10, Apple Computer, 1995

Copland Ngaio Device Manager, Alan Mimms, 03/23/95

NuKernel ERS, March 25, 1995, David Harrison, Bill Kinkaid, Jeff Robins, Tom
Saulpaugh

N

o s

Apple Need To Know Confidential Li

Device Manager Family Design Draft

2.

SUMMARY

This Document outlines the design proposal for the Device Manager for the Copland
release of the MacOS. It adheres to the architectural guidelines described by the Next
Generation MacOSI/O Architecture document.

The orientation of this design has two facets, namely compatibility with the two
existing Device Manager implementations and the provision of a new implementation
which isin line with the Copland I/O architecture and provides an environment which
will service native drivers.

The Copland Device Manager supports both a subset of existing * DRVR' sthat adhere
to the compatibility assertions described in this document, and ‘ ndr v’ drivers that
have been written according to the guidelines described in Designing PCI Cards and
Driversfor Power Macintosh Computers . The Copland Device Manager offers both a
migration path for existing device drivers and a home for device drivers that do not
have their own Copland 1/0 family.

Apple Need To Know Confidential

Draft Device Manager Family Design

3. VISION

The goal of the Copland Device Manager isto provide some level of compatibility with
the existing device drivers, both the System 7 style * DRVR s and the PCl Power
Macintosh native ‘ ndrv’s, while providing a new Copland “family style”
envilré)nment within which native device drivers can be implemented in the Copland
world.

The key aspect of this design is separation of function into layers that provide the
necessary level of support. Function that can be provided locally, is provided locally;
function that can be provided in user mode, is provided in user mode. The layers exist
in domains and kernel messages and queues are used to communicate between the
domains. The Device Manager APIs provide the interface between these domains. The
domain implementation is hidden from the Device Manager clients via the Device
Manager APIs.

Most drivers that provide their services through the Device Manager APl as
documented in the “Device Manager” chapter of Inside Macintosh: Devices (i.e.
‘ DRVR' s) and that do not touch real hardware and that do not require that they be
operating in kernel mode are supported.! Drivers written according to the rules for
drivers of family type ‘ ndr v’ described in Designing PCl Cards and Drivers for
Power Macintosh Computers are supported in Copland as plug-ins to the Device
Manager family.

The Copland Device Manager offers both a migration path and a home for device
driversthat do not have their own Copland 1/0 family.

1* DRVR' sthat do their own internal queueing and dispatching will be required to make some changesin
order to work within the Copland emulation environment. * DRVR' s that insert themselves into the page
fault path, disk drivers for example, will not work because they require kernel mode execution. See the
System-7 Device Manager section for further discussion of these restrictions.

Apple Need To Know Confidential

(o8]

Device Manager Family Design Draft

4,

DESsIGN GOALS

©

10.

11.

Thefollowing list describes the design goals for the Device Manager:

Provide compatibility for pre-Copland device drivers written to the System 7 model
(Inside Macintosh - Devices) that do not “touch” real hardware and that observe the
other restrictictions described for DRVRsin a Copland environment?.

Provide compatibility for pre-Copland device drivers written to the Marconi model
(Inside Macintosh - Designing PClI Cards and Drivers for Power Macintosh
Computers).

Provide adesign that will guarantee the correct data context for those * DRVR drivers
that allow the Device Manager to perform the request queuing and dispatching and
which make use of asynchronous callback routines.

Provide reasonable performance for avariety of 1/O styles.

Provide adesign that’s simple to implement using the Copland infrastructure to provide
its services.

Provide a scaleable design.

Provide a design that provides the best overall system performance and parallelism;
avoid the use of mechanisms that seriaize the entire machine (e.g. secondary interrupts)
wherever possible.

Provide a Power PC native implementation for the Device Manager.
|solate the “ plug-in” from task knowledge.

Provide compatible® Family Programming Interfaces (FPIs) and Plug-in Programming
Interfaces.

Provide the Reliability and Availability aspects of RAS'.

2 See the section on “ Compatibility Assertions’ later in this document.

3 APIs compatible with the current Device Manager APIswill be provided since the Device Manager isin
itself a compatibility mechanism that is expected to go away in subsequent rel eases of the OS.

4 Many of the Servicability functions for Copland are still being defined. These will be integrated when
available; e.g. the logging facility.

4ii

Apple Need To Know Confidential

Draft Device Manager Family Design

S.

OVERVIEW

The general structure of the Device Manager is shown below in Figure 8-1. It illustrates
that there are three distinct parts to the Device Manager itself, one that operatesin user
mode in the Blue World and provides System 7 compatibility, another that provides the
interface to the Device Manager Family Server from user-mode programs, and third,
the Device Manager Family Server which operatesin the kernel space.

“Blue World” Task Native Task { ,,,
@ Native Task
System 7 Native Task
Device Manager
API
System 7 Compatible
Device Manager ‘DRVR’
< —>
e Maxwell Loader
SE— DewceAl\P/IIanager S DeV|ceAlglanager oy
Maxwell Device Manager (BLL)
FPI Library 4>

User Mode/Space
Kernel Mode/Space

Device Manager
Family Server

Device Manager
Family >

Device
Loader
Library

(DLL)

Figure 8.1 General View Device Manager |/O Family

Each of these provides a programming interface as does the Device Manager Family.
[The APIs have been seperated from the libraries in the picture in order to indicate that
the libraries provide functions in addition to the direct support of the API requests.] The
“Blue World” applications communicate to the upper half of the Device Manager using
the System 7 Device Manager AP (i.e. that documented in Inside Macintosh: Device

Apple Need To Know Confidential

I

Device Manager Family Design Draft

Manager). This component of the Device Manager operates in user mode and either
directly drives compatible System 7 * DRVR sinthe “Blue” space or talksto the Device
Manager Family Server using the Device Manager FPI Library calls. This compatibility
layer converts old function calls to new ones. There is a performance penalty to be
incurred using this path to a native driver.

Native applications use the Device Manager FPI calls directly to communicate to the
Device Manager Family Server. The FPI calls result in kernel messages to the Device
Manager Family Server which operates in kernel space.

The Device Loader Library (DLL) isused by the Device Manager and other Familiesto
locate, match, install and remove native drivers. There are currently a number of DLL
callsthat refer to the Unit Table. These calls will be subsumed and implemented by the
Device Manager®. Seethe DLL section for more information.

While the Device Manager has its own activation model and set of services, it is not
tuned to the needs of any one particular type of driver. Although it’s APIs may be more
restrictive than APIs designed specificaly for some particular device, the Device
Manager offers both amigration path for drivers that have been converted to run native
on Copland but have not provided their own families, and a home to those devices that
do not require or cannot justify their own family implementation.

The Device Manager family offers a compromise. As aresult, the Device Manager
plug-ins are likely to be quite different from one ancther rather than having monolithic
characteristics like avideo family might for example.

5 The entry points will still be exported by the DLL but the Device Manager will actually implement the
functions and the DLL will call it.

6ii

Apple Need To Know Confidential

Draft Device Manager Family Design

6.

DeEViICE MANAGER COMPATIBILITY

W

The Device Manager provides services for generic drivers, that is, drivers written to the
specificationsin Inside Macintosh: Devices (* DRVR' s) with the restrictions discussed
below. Drivers written to the specifications in Designing PCI Cards and Drivers for
Power Macintosh Computers (* ndr v’ s) are also supported.

The Device Manager provides three different externa programming interfaces.

The System-7 Device Manager API.
The Device Manager Family Programming Interface (FP1).
The Device Manager Family Plugin Programming Interface.

The System-7 Device Manager API is compatible with that defined in Inside Macintosh:
Devicesin the Device Manager chapter. The Plugin Programming API is the API
described in Designing PCI Cards and Drivers for Power Macintosh Computers in the
Writing Native Drivers section. The Device Manager Family APl isanew API used by
both the System-7 APl and native applications to communicate with the Device
Manager Family Server. It isnot acompatibility API.

6.1. THE SYSTEM-7 DEVICE MANAGER

The System-7 Device Manager support is compatible with that defined in Inside
Macintosh: Devicesin the Device Manager chapter. These “older” style operations are
only supported for 68k code running in emulation mode in the “Blug’ world. The
following sections describe the externals of that interface which are supported by the
Copland Device Manager.

This driver interface, (not the API), is only supported from within the “Blue” world
and only for device drivers of type * DRVR that are compatible. Such device drivers
are not plug-ins; they run in user mode outside the Copland 1/O system and can exist
only within aworld which supports full ToolBox and Wi t Next Event access (i.e.
the “Blue” world). Any drivers which require execution in kernel mode (because they
touch real hardware, are in the page-fault path, & etc) will not work in this environment
and will need to be convertedtoan‘ ndr v’ or other type of native driver. In addition,
‘DRVR swhich perform their own queuing and dispatching will need to provide their
own version of “thunk” support (described in alater section of this document).

Examples of driversthat fit in the supported category include:

RAM disks

desk accessories

print drivers

the Open Transport backwardly compatible protocol modules

6.1.1.THE SysTEM-7 DEVICE MANAGER API

The System-7 Device Manager API isshown in Table 9-1 below which lists the System
7 high-level, low-level and Driver routines that are supported. Both the “High Level”
and “Low Level” APIswill provide an access path to both System 7 style * DRVR s
and native* ndrv’ s.

Apple Need To Know Confidential 7

Device Manager Family Design Draft

High-L evel Cow Level Driver Routines

QpenDri ver PBOpen Open

G oseDri ver PBd ose C ose

FSRead PBRead Prine

FSWite PBWite Prime

Contr ol PBCont r ol Contr ol

St at us PBSt at us St at us

KilllO PBKilI1O Cont rol

Table 9-1 System-7 Device Manager 1/0 functions and Driver Routines

The prototypes are documented in Inside Macintosh: Devices and have not changed:

pascal
pascal
pascal
pascal
pascal

pascal
pascal

pascal
pascal
pascal
pascal
pascal
pascal
pascal

pascal
pascal
pascal

pascal

OSErr OpenDriver (ConstStr255Param name, short *drvrRef Num;
OSErr C oseDriver (short refNum;
OSErr FSRead (short refNum long *count, void *buffPtr);
OSErr FSWite (short refNum |ong *count,const void *buffPtr);
OSErr Control (short refNum short csCode,

const void *csParanPtr);
OSErr Status (short refNum short csCode,void *csParanPtr);
OSErr KilllO (short refNum;

OSErr PBOpen (ParnBl kPtr paranBl ock, Bool ean async);
OSErr PBd ose (ParnBl kPtr paranBl ock, Bool ean async);
OSErr PBRead(Par nBl kPt r par anBl ock, Bool ean async);
OSErr PBWIite(ParnBl kPtr paranBl ock, Bool ean async);
OSErr PBControl (ParnBl kPtr paranBl ock, Bool ean async);
OSErr PBStatus (ParnBl kPtr paranBl ock, Bool ean async);
OSErr PBKill1O (ParnBl kPtr paranBl ock, Bool ean async);

DCt I Handl e GetDCt1 Entry (short refNunj;

OSErr Driverlnstall (DRVRHeaderPtr drvrPtr, short refNunj;

OSErr Driverlnstall ReserveMem (DRVRHeader Ptr drvrpPtr,
short refNum;

OSErr DriverRenove (short refNunj;

The Drvrinstal |l () cdl is no longer supported (it never worked correctly);
Drvr Renove has been renamed Driver Renove and will be changed to a
Dri ver Renove cal viaamacro.

6.1.2.THE SysTEM-7 DEVICE MANAGER DATA STRUCTURES

'®

The Device Manager maintains a data structure called a device control entry (DCE) for
each open driver. Each open driver may be referred to by a single DCE or by many
DCEs. Amongst other information, the DCE contains a handle or pointer to the device
driver code and a pointer to the I/O queue. The AuxDCE supersedes the origind
DC | Ent ry datatype and provides additional fields for the slot manager.

t ypedef struct AuxDCE

{

Apple Need To Know Confidential

Draft

Device Manager Family Design

Ptr dc | Driver; /1 ptr/handle to driver

short dc | Fl ags; /1 flags: ability/state of driver
QHdr dct | QHdr; /1 1/ 0 queue header

| ong dCt | Posi tion; /1 current rd/wite byte posn
Handl e dCt | St or age; /1 driver global data ptr (if req d)
short dCt | Ref Num /1 driver reference nunber

| ong dCt | Cur Ti cks; /1 for internal use only

W ndowPt r dCt | W ndow, /1l -> driver’s w ndow (DAs)

short dc | Del ay; /1 ticks between periodic actions
short dCt | EMask; /1 DA event mask

short dct | Menu; /1 DA menu ID

Sint8 dctl Sl ot; /1 slot number for a slot device
Sint8 dc 1 Slotld; /'l sResource directory ID

| ong dCt | DevBase; /1 slot device base address

Ptr dct | Omner; /!l Reserved - must be O

Sint8 dCt | Ext Dev; /1 slot device external device ID
Sint8 fill Byte; /'l Reserved

Ul nt 32 dCt | Nodel D;

The Unit Table is used to organize and keep track of DCEs. It is an array of handles
that point to the DCEs of installed device drivers. The location of the DCE in the Unit
Tableiscaled thedriver's unit number. If the handle at a given number is ni | , no
DCE isingtalled in that position.

When adevice driver is opened, the Device Manager returns a driver reference number
for the driver which is the one's complement of the unit number (~unit number).

Two global variables are used in conjunction with this scheme. UTabl eBase pointsto
the Unit Table while Uni t Nt r yCnt describes the size of the table (i.e. the number of
entriesin the table). The first 48 entries (entry number O through 47 / reference number
-1 through -48) are reserved by Apple. The remaining items are documented as
available for dot devices and other drivers.

The Device Manager maintains an 1/0 gqueue for each open device driver. It isrooted in
the drivers DCE. The 1/0 queue element at the head of the queue is the one currently
being processed. The other elements on the queue (if any) are the “pending” 1/0
requests - those that the Device Manager has received but not yet passed on to the
driver.

The Device Manager supports three types of 1/0 requests. asynchronous, synchronous
and immediate. (The terms synchronous and asynchronous as used by the System 7
Device Manager refer to how the Device Manager queues I/0 requests. How adevice
driver processes a request, synchronously or asynchronously, depends on the design
of the driver. When making a synchronous request to a device driver, the Device
Manager waits for the driver to complete the request regardless of whether the driver
handles the request synchronously or asynchronously.)

asynchronous requests: the Device Manager places the request at the end of the
driver request queue, call the driver to process the request if it is not busy, and returns
control to the application. The application can then continue its processing as it wishes.
The Device Manager provides mechanismsto determine when the driver has completed
the request.

Apple Need To Know Confidential

I©

Device Manager Family Design Draft

synchronous requests: the Device Manager places the request at the end of the
driver request queue and waits until all requests in the queue, including this one, have
been completed by the driver before returning control to the application.

immediate request: the Device Manager sends immediate requests directly to the
device driver, bypassing the queue, and returns control back to the application when the
request is complete.

Unit Table

UTableBase —p

UnitNtryCnt
Device Driver
Device Control Entry
Master Pointer _’ Device Driver _’ Master Pointer _>
Handle/Pointer >
Queue Element Queue Element Queue Element

I/go%:g?e ——p» Queue Link g Queue Link —ppp Queue Link

Figure 9-1 System 7 Device Manager Data Structures

The parameter blocks used by the System 7 Device Manager APl are | OPar amand
Cnt r | Par amas shown below. | OPar amis used by PBOpen, PBO ose, PBRead

and PBWite while Cntl Param is used by PBControl, PBStatus and
PBKi | Il Q.

Thei oResul t field isused to communicate the success or failure of the request to the
application. For synchronous requests, the value of i oResul t is set when the Device
Manager returns to the application. For asynchronous requests, the value of
i OResul t issettoi ol nProgress (1) when the request is queued by the Device
Manager and is set to the actual result when the driver indicates that it has completed the
request (noEr r (0) if successful or a negative value if the request failed).

Asynchronous callers can also provide a pointer to a completion routine in the

i oConpl et i on field of the parameter block which the Device Manager will cal when
the driver indicates that the requested operation is complete.

Apple Need To Know Confidential

Draft Device Manager Family Design

struct | OParam

{
CEl enPtr gLi nk; /1l -> next queue entry
short gType; /'l queue type
short i oTr ap; /1 routine trap
Ptr i oCndAddr ; /1 function ptr
| OConpl eti onUPP i oConpl eti on; /1 -> conpletion routine
OSEr r i oResul t; /1 result code
StringPtr i oNamePtr; /1l -> driver nane
short i oVRef Num /1 vol ref/drive nunber
short i oRef Num /1 driver reference nunber
SInt8 i oVer sNum /1 not used by Device Manager
SInt8 i oPer nssn; /1 read/write perm ssion
Ptr i oM sc; /1 not used by Device Manager
Ptr i oBuffer; /] -> data buffer
| ong i oReqCount ; /1 # of bytes requested
| ong i 0Act Count ; /1 actual # of bytes conpleted
short i oPosMbde; /1 positioning node
| ong i oPosO f set ; /1 positioning offset
1
struct Cntrl Param
{
CEl enPtr gLi nk; /1l -> next queue entry
short gType; /'l queue type
short i oTr ap; /1 routine trap
Ptr i oCndAddr ; /1 function ptr
| OConpl eti onUPP i oConpl eti on; /1 -> conpletion routine
OSEr r i oResul t; /1 result code
StringPtr i oNamePtr; /1l -> driver nane
short i oVRef Num /1 vol ref/drive nunber
short i oCRef Num /1 driver reference nunber
short csCode; /1 control/status request type
short csParanf 11] ; /1 control/status information
1

6.2. COMPATIBILITY INTHE BLUE WORLD

The Copland “Blue’ address space provides some new compatibility challenges for the
Device Manager. Each processin the “Blue’ address space has its own emulator data
context. When the Device Manager receives arequest from aclient, it isoperating in the
context of that client. However, there are two conditions under which the Device
Manager can get control in an arbitrary context:

1 When the driver returns control through |ODone after completing an asynchronous
request. The ioCompletion routine must be run by the Device Manager at this point
in time. The context in which the I/O completed may not be the same context that
originally made the request.

2. For synchronous I/0O completion, the old Device Manager implementation used
busy waiting to await the completion of a synchronous request. This is not an
acceptable solution in the Copland world.

Apple Need To Know Confidential 1

Device Manager Family Design Draft

3. When the Device Manager has completed IODone processing for the current
request, it looksto see if any pending requests are enqueued for thisdriver. If there
are, it begins processing the next request. The context for this request is not
necessarily the same as that for the previous request (i.e. different “Blue” processes
may have queued requests for this driver). Note that the queued request can be
either synchronous or asynchronous at this point (although if it’s synchronous, it
will be the last one on the queue).

6.2.1. “THUNKING” ® THE CORRECT DATA CONTEXT

Problems 1 and 3 above can be corrected by introducing a function into the execution
path that guarantees that the correct data context (i.e. TOC) will be associated with the
current execution just by calling the function. This*“thunk” then just calls through to the
code that was called in the old execution path. When the thunk returns, the previous
TOC isrestored; no context related work should be done under this TOC.

In order to have access to the appropriate function/TOC when it isrequired, at the time
the request is queued a ThunkTabl eEnt r y isalocated from atable that is maintained
in globally accessble and system owned memory by the Device Manager (the
t hunkTabl e) . For all requests, the key by which the table entry can be found later
isthel OPar aniCnt r | Par amparameter block address. This must be unique as long
asthe request is outstanding’. In addition, in order to solve problem 3 above, a
ProcPt r to the thunk routine to call the driver when dispatching a new request is aso
stored (this causes the compiler and linker to conspire to point the code at glue code
which will cause the correct TOC to be loaded when the routine is called). The
remaining information stored in the table entries varies depending on whether the
request is synchronous or asynchronous.

For asynchronous requests, the i oConpl et i on routine specified by the caller in the
| OPar amCnt r | Par amparameter block is aso stored. Thei oConpl et i on routine
pointer is then replaced by apointer to a UPP for the 1/0O completion thunk. For
synchronous calls, the Device Manager still substitutes its own 1/O completion routine.
The callersioCompletion specification isignored and forced to zero before returning in
the synchronous case. Figute 9.2 illustrates this process when the Device Manager
receives a non-immediate I/O request. (The two numbered dark circles represent the
two mixed-mode switches that occur here, one when the application calls the Device
Manager and a second when the Device Manager returns to the application; the Device
Manager is native code.)

5 Alan Mimms first “coined” the term “thunk” with reference to the mechanism being used by the Device
Manager to switch execution into the correct data context. The term “thunk” is traditionally used by
compiler writers to describe a routine that calculates and returns the address of an actual parameter
corresponding to a formal parameter called by name. Our thunk causes the address of the correct TOC
context to be associated with a particular execution of afunction. The term was originally coined by P. Z.
Ingerman in Thunks, CACM, Jan 1961.

" The Device Manager could check for this uniqueness when it queues the new request, but there are too
many other ways for the programmer to potentially misuse the parameter block whileit is queued. It is not
wothwhile to perform such a check given the overhead and the potential for other for programmer errors
which cannot be detected early.

12 Apple Need To Know Confidential

Draft Device Manager Family Design

Thunk Table

IOCompletion
Proc

DCE
I/0 Queue

Device
Manager

ioCompletion
Thunk

dispatch
Thunk

Figure 9.2 Processing Synchronous/Asynchronous |/O Requests

When the [next] entry enqueued to the dCt | QHdr queue in the DCE is to be
dispatched, the Device Manager calls the dispatch thunk stored in the thunk table for
that parameter block. This causes the correct data context to be |oaded for that request.

DCE
1/0 Queue

1
o)

Device
> Manager

dispatch

Call DRVR

Thunk Table

Figure 9.3 Thunking the Dispatch Queue

Figure 9.3 illustrates this. (The transparent circled numbers represent the call sequence;
the dark numbered circles represent the mixed-mode switches.) The queue entry is sent
to the DRVRVviathe dispatch thunk (which was created when the request was originally
gueued). This causes a mixed-mode switch. When the DRVRreturns to the Device
Manager through the thunk, it causes another mixed-mode switch.

Apple Need To Know Confidential 13i

Device Manager Family Design Draft

1‘[C I0PB

jlODone

Device
Manager

DRVR

o
= A | Thunk Table

IOCompletion ‘
Proc

Figure 9.4 Thunking an I/O Completion

*
P

The DRVRindicates that it has completed an 1/0 request by calling back to the Device
Manager through j | ODone as shown in Figure 9.4. The IODone vector pointsto the
native Device Manager code. This causes the first mixed-mode switch. The Device
Manager then calls the ioCompletion thunk which it created when it queued the request
(this is the one pointed to by the I/O parameter block that is being completed). This
causes the correct data context (TOC) to be loaded. The thunk then calls the “red”
i oConpl et i on routine (saved in the thunk table entry) if any. This causes the second
mixed-mode switch. The user-specified i oConpl et i on routine eventually returns to
the thunk (causing the third mixed-mode switch) which in turn returns to the Device
Manager. The Device Manager then examines the DCE queue. If it’s empty, the Device
Manager returns to the DRVR causing a fourth mixed-mode switch. If it is not empty,
the process continues as shown in Figure 9.3 with the next /O request to be processed.

Drivers that perform their own queueing and do not call through | GDone (i.e. they
perform their own 10Done processing) must still cal the 1/0O completion routine
specified by the parameter block. The i oConpl eti on thunking will function
properly in this case as well. Such drivers will be responsible for their own dispatch
thunking however.

The operation and further use of the table for synchronous requests is discussed in the
next section.

6.2.2.HANDLING SYNCHRONOUS WAIT

In order to avoid busy waiting, the Device Manager uses Event Flags and
Wi t For Event s to cause the requester’ s thread to wait until the request is signaled
complete by the driver. The event mask and event group ID are saved in the thunk table
entry associated with the current parameter block. In order to wake the thread, an
i oConpl et i on routine is specified in the parameter block by the Device Manager
before the driver is called so that the Device Manager is assured of getting control back
when the I/O is completed. (As aside effect, this /O completion thunk ensures that the
Device Manager code will always run in the correct data context for the request
regardless of the context in which the driver returns control to us.) The synchronous
I/O completion routine performs a Set Event s on the event flag being waited on by
the main thread and everything eventually unfolds asit should.

14 Apple Need To Know Confidential

Draft Device Manager Family Design

6.2.3.COMPATIBILITY ASSERTIONS

Thefollowing isalist of assertions that define the level of compatibility provided by
thisimplementation of the Device Manager.

DRVRs that provide their own queueing and dispatching must also provide their own
dispatch thunking.

DRVRs that insert themselvesin the page fault path are not supported.
DRVRs that require kernel mode for any reason are not supported.

DRVRs must either cal the device manager back via j | ODone or cal the 1/0
completion routine directly irrespective of whether the request is synchronous or
asynchronous.

Client specified 1/0 completion routines are not supported except for those requests that
can be and are issued asynchronoudly; i.e. the device manager will ignore any
completion routine specified in the parameter block for either an immediate or a
synchronous request.

Busy waiting on the I/O parameter block by the application is not supported; the
application must use an I/O completion routine to find out about the completion of
asynchronous requests.

The Device Manager does not support patchesto the] SyncWi t vector and does not
run any routine specified there.

The client application cannot free, reuse or otherwise modify the I/O parameter block
used to make a Device Manager requests until the Device Manager has indicated that it
has finished processing the request.

Dat a

6.3. COMPATIBILITY ISSUESWITH “HIDDEN" POINTERS

Currently some users of the System-7 Device Manager API provide themselves with
data pointersto client data and/or callback pointersto private routines inside the control
block passed to the driver on control and/or status calls. This may also occur for non-
Blue clients of ndr vs.The data areas are no longer available to native drivers when
they execute because their context is that of the kernel rather than the client. In addition,
client callback routines have the same problems as Device Manager callback routines
do: they must be “thunked” in order to ensure execution in the correct data context.
However, since the Device Manager knows nothing about these pointers, it can do
nothing to assist to client.

The solution isto alow athird party to register interest in a particular driver and insert
itself in the Device Manager processing path for all requests. The filter proc receives
control both when the original request is queued by the Device Manager and again
when the ioCompletion thunk is called but before the asynchronous completion routine
is called. The specified callback routine is responsible for doing the “right thing”.

Apple Need To Know Confidential 15i

Device Manager Family Design Draft

OSSt at us

Regi sterDriverFilterProc (DriverRef Num r ef Num
CFragConnectionl D fragConnl D);

OSSt at us

UnRegi sterDriverFilterProc (DriverRef Num r ef Num

CFragConnectionl D fragConnl D);

typedef enum DWVFi |l ter Cal | Type
{

DVFi | t er Begi n,

DVFi | t er Conpl et e
} DMFilterCall Type;

Thefilter proc is defined as:

CSSt at us

DVDxiverFilterProc (DriverRef Num ref Num
DVFi |l terCal | Type call Type);
Par Bl kPt r par anBl ock) ;

The registered code fragment will be loaded into the kernel context by the Device
Manager. It must export the DM DriverFilterProc entry point®.

Since thisfacility needs to be available to both Blue and non-Blue clients of ‘ndrv’s, the
function must be implemented in the server side of the Device Manager. In order to
allow accessto data areas in the current address space, the filter will need to be called
from the accept function when arequest is sent. This means that the filter function must
be native PPC code and will run in supervisor mode which will allow it to perform any
data mapping or copying that is required and to save away any other information that is
required. On the return trip, the code will run in user mode.

This requires changes, but not to the driver or the client and the software could be
provided by anyone to do thisjob.

6.4. |OCOMMANDISCOMPLETE AND THE DSL

The | CCommandl sConpl et e cal has been implemented in the Driver Services
Library (DSL). This net effect of thisisthat all existing ndr v’slink with the DSL in
order to service the Device Manager specific I/O request completion. This means that
clientslike the Video Family that want to continue using existing ndr v’ s written to
handle video will break when the ndr v’scall | OConmmandl sConpl et e since the
code has no context to know which family to call back (and assumes that thisis a
Device Manager 1/0 completion).

Thel CConmand| sConpl et e call isdefined asfollows:

OSEr r
| OConmmandl sConpl ete (I OCommandl D t hel D, /1 conpleting conmand
CSErr theResult); // status for |OPB

8 The exact details of this are still being worked out and the interfaces are not shown in the implementation
sections which follow. This section needs further investigation and definition.

16H Apple Need To Know Confidential

Draft Device Manager Family Design

The ID passed back by | OCommandl sConpl et e isthe value originally passed in to
DoDriverlO both viathe | CComrand| D parameter and in thei oOrdAddr field of the
|OPB.

TheDoDri ver | Ocall isdefined as follows:

CSErr

DoDri verl O (AddressSpacel D spacel D,
| OCCommandl D I D,
| CConmmandCont ents contents,
| CConmrandCode comand,
| OCommandKi nd ki nd) ;

In order to fix this problem in such away that existing ndrv’s (especially those that
exist on video boards) do not have to be changed, a new call to anew DSL routine will
be required by any family which wants to use ndrv’s (and the defined interface)
including the Device Manager. The rationale isthat since the ID returned by the driver is
the only context available to | CCommandl sConpl et e, it must be used to associate
the call with the originator. Thisis accomplished by the originator “registering” each
request to the driver DoDx i ver | Oentry point first with the Regi st er DoDr i ver | O
call and using thel Dthat it returnsasthe | D specified inthe DoDx i ver | Ocall.

TheRegi st er DoDri ver | Ocal isdefined asfollows:

CSEr r
Regi st er DoDri ver1 O (I OCommandl D *1 D,
Driver Ent ryPoi nt Ptr returnAddr);
I D specifies the IDto be used on the associ ated
DoDriverl O call.
r et ur nAddr specifies the return address to the fam |y code

to be called from | OConmandl sConpl ete. The specified
address will be called as a function defined exactly
i ke the | OConmandl sConpl ete function definition.

The family function that calls Regi st er DoDri verl O is required to save any
information that it needs to in order to associate the ID returned by
Regi st er DoDr i ver | O with the /O request. It must aso place the ID in the
i oOrdAddr field of the IOPB and save the previous contents if required.

Figure 9.5 illustrates the revised cadl sequence. First the new cdl to
Regi st er DoDr i ver | Ois made specifying the return address at which the family
code is to be called when | OCommandI sConpl et e is called back by the driver for
this request. Regi sterDoDriverl O crestes a new unique id and hashs the
information about the id and the return address into its internal hash table and returns
theid to be used whenthe DoDr i ver | O call ismade. DoDr i ver | Oisthen called to
request that the driver perform the I/0 requests specified in the parameter block. When
the driver has completed the non-immediate request, it calls the DSL function
| OCommandl sConpl et e which then looks up theid in its hash table and calls back

Apple Need To Know Confidential 17

Device Manager Family Design Draft

the family code a the specified address exactly as if it were the
| OConmandl sConpl et e function.

DSL Family Code

hash table
id/retAddr

call [RegisterDoDriverlO (*id, returnjAddr)

(Returns id)

P
call (*retAddr) (id, ...)

call IOCommandisCom _ _
call DoDriverlO (id, ...)

Figure 9.5 RegisterDoDriver1 O, DoDriverl O and IOCommandlsComplete
Call Flows

6.5. COHERENCY AND THE SYSTEM-7 UNIT TABLE

The Unit Table as described for the System-7 world is required for compatibility.
However, it is not the same information that is required by the Copland
implementation. Therefore two different representations of “a table that references
drivers’ exist, one for each implementation. Since native device drivers must be
availableto clientsin the “Blue” world, the “Blue” world Unit Table must be kept in
synch with the native Device Manager plug-in table (see the Native Activation Model
data structures section) so that a Unit Table reference number can be used to access a
driver in the kernel space..’

6.5.1.System-7 * DRVR' UNIT TABLE UPDATE METHODS

There are currently two ways that the System-7 Unit Table is updated when installing
‘ DRVR drivers. Thisinformation is documented in Inside Macintosh: Devices. The
first isthrough the driver install and remove routines provided by the API*:

9 It is assumed throughout that * DRVR' swill not be accessible outside of the Blue address space..
9 DRVRI nst al | and DRVRRenove have been replaced by Dri verlInstall and Dri ver Renove
respectively.

18H Apple Need To Know Confidential

Draft Device Manager Family Design

pascal OSErr Driverlnstall (DRVRHeaderPtr drvrPtr, short refNum;

pascal OSErr Driverlnstall ReserveMem (DRVRHeaderPtr drvrPtr,
short ref Num;

pascal OSErr DriverRenove (short refNum;

These provide a contained means of capturing table updates. Unfortunately, there are
several drivers/applications around which do not use the provided API to update the
Unit Table but do it directly themselves by scanning the table for a free entry and
storing aDCE handle in it or smply clearing an entry already in use. This makes using
a common reference number between the two spaces very difficult.

6.5.2.THE' ndr v’ DRIVER UNIT TABLE UPDATES

The Driver Loader Library (DLL) has 12 routines defined in its API that reference or
update the System-7 Unit Table (see the Driver Loader Library section below). This
interface is documented in Inside Macintosh - Designing PCI Cards and Drivers for
Power Macintosh Computers These routines also provide a contained means of
updating the Unit Table. However, as explained in the Driver Loader Library section,
the Device Manager will have to provide a new user-mode library implementation to
allow the updates to be made in both the System-7 Unit Tablein “Blue’ space and the
new plug-in table in kernel space. The updates need to be coordinated as explained
above.

6.5.3." Ndr v’ SINSTALLED BY FAMILY EXPERTS

Asit “discovers’ them, the Device Manager Family Expert will install new ‘ndrv’ s
into the Device Manager plugin table. The plugin table is not visible to the “Blue” world
so al updates must be announced to the Device Manager running in user-mode in the
Blue address space making native drivers available to applications running there. In
many waysthisisthe reverse of 9.4.2 above.

6.5.4.UNIT TABLE UPDATES USING ALIAS REFERENCE NUMBERS

In order to allow each environment (i.e. Device Manager Server and “Blue’ world
Device Manager) to update their tables independently, the “Blue’ world implementation
will use “aias’ driver reference numbers when referencing an * ndr v’ . Thisrequires
explicit communication between the two worlds whenever any of the ‘ndr v’ updates
described above occur.

When the “Blue” world Device Manager installs anew driver, if itwasa‘ DRVR , the
Unit Table update can proceed and no natification must take place for the Device
Manager Server since it will never need to reference a * DRVR . (Direct Unit Table
updates by System-7 applications code will only be supported for ‘DRVR s and no
specia support needs to be supplied for such actions.)

If itis an * ndrv’ being installed, the Unit Table entry and its associated data
structures must be allocated and a “ private” call must be made to notify the Device
Manager Family Server that it needs to install the new ‘ ndrv’ . This request is
synchronous and returns an indication of success. Upon success, a driver reference
number to be used by the FPI (i.e., the alias) is also returned. The System-7 Device
Manager will then save the Device Manager Server device reference number away (in
the Aux DCE sinceit isnot really be used by adriver), and use the “aias’ whenever it

Apple Need To Know Confidential 19i

Device Manager Family Design Draft

makes requests of the FPI, reporting its device reference number whenever
communicating with the System-7 API client. If the Device Manager Server failsthe
request, so does the System-7 Device Manager interface (and it removesits Unit Table
updates). When an ‘ndr v’ is deleted from the Unit Table by a client, an analogous
operation takes place.

[Describe API herel]

An update by Device Manager Server must be communicated to the System-7 AP
Library. Thisrequires that the Library register interest during initialization. When an
‘ndrv’ isadded or deleted from the Device Manager Server’s Plug-in Table (anditis
not as aresult of an operation described above), the System-7 Library will be notified
to update its Unit Table by scheduling a cooperative interrupt to run. An ID is
associated with the driver r ef numto guarantee that reassignment of the Plugin Table
entry by the Device Manager Family Server before the cooperative interrupt is run to
delete the corresponding Unit Table entry does not cause a subsequent request to be
made to an incorrect plugin.

[Describe API herel]

6.5.5. REQUEST FLows

The following sections describe the request flows for the two installations described
above.

6.5.5.1." ndr v’ Installed by a Blue World Client

[include flows diagram here]

6.5.5.2." ndr v’ Installed by the Family Expert
[include flows diagram here]

6.6. THE NATIVE DRIVER INTERFACE

Native drivers that follow the rules and use the interfaces described in Designing PCI
Cards and Drivers for Power Macintosh Computers. Wkiting Native Drivers are
supported by the Device manager and are called “generic device drivers’. All native
drivers are PowerPC native code in Code Fragment Manager (CFM) container format
and must run without access to the ToolBox. For generic drivers on PowerPC
platforms, the Device Manager has changed to support PowerPC driver code and to
allow driversto operate concurrently. Generic drivers have afamily typeof * ndrv’ .

6.6.1.GENERIC DRIVERS IMPORTS & EXPORTS

Native drivers must use CFM’ s import and export library mechanisms to share code
and/or data. The following exports and imports are defined for generic native drivers.

20H Apple Need To Know Confidential

Draft Device Manager Family Design

6.6.1.1.Native Driver Data Exports

All native drivers must export a single data symbol that characterizes the driver’s
functionality and origin: TheDr i ver Descri pti on. Driver description information
helps match drivers and devices. It aso lets the Device Manager pick the best driver
among multiple candidates.

struct DriverDescription

{
OSType driverDescSignature; // Signature field
DriverDescVersion driverDescVersion; /1 Version of this data
Driver Type driver Type; /1 Type of Driver
Driver OSRunti ne driverOSRuntinelnfo; // OS Runtine Requirenents
Driver CSServi ce driver Servi ces; /1 Driver supported API

1

6.6.1.2.Native Driver Code Exports

Native device drivers export asingle code entry point, DoDr i ver | O, that handles all
Device Manager operations. The device driver can determine which 1/O action to
perform based on the command code (Initialize, Finalize, Qoen,
G ose, Read, Wite, Control, Status, KilllOQ Replace, or
Super seded) and command kind (Synchronous, Asynchronous, or

| mredi at e).
OSErr DoDriverl O (AddressSpacel D spacel D, /! address space ID
| OConmandl D conmandl D, // comrand | D
| OCommandCont ents contents, // cmd specific pb
| OCommandCode code, /1 open/cl ose/etc.
| OCommandKi nd kind); /1 synch/ asynch/i mred

6.6.1.3.Native Driver | mports

Native driverswill import their services from the Driver Services Library (DSL) and the
Driver Loader Library (DLL). The Driver Loader automatically linksthe DSL to each
generic driver at load time. New ‘ ndrv’ smay also link with other native family
libraries.

Besides these libraries, the Device Manager exports a new routine caled
| CCommandl sConpl et e. It is the native driver equivalent of | CDone. The

differenceisthat while IODone implicitly acts on the head of the Device Manager queue
for this driver, the request that is to be completed is specified explicitly to

| OCommrandl sConpl et e.

GSst at us | OConmandl sConpl ete (Commandl D command, // comand I D
0SSt at us results); // value for |10OPB

6.6.2. CONCURRENT DRIVERS

‘ DRVR swere defined by the Device Manager to handle only one request at a time.
While multiple requests could be pending for a particular driver, the Device Manager
only passed the next request to driver when the driver had completed processing the

Apple Need To Know Confidential 21

Device Manager Family Design Draft

previous request'. Native device drivers can now indicate that they are concurrent (i.e.
capable of handling more than one request at a time) by setting the
kDriverlsConcurrent flag in the driverRuntine flags in its
DriverDescription.

The driver must use the | OCommandl sConpl et e service of the Device Manager to
indicate it has completed a particular request. The returned status value is used by the
Device Manager to update the resul t field of the | OPB. The driver should not
modify r esul t directly asthiswill beignored by the Device Manager.

6.6.3.GENERIC DRIVER RESTRICTIONS

Aside from those differences described above, the rules for generic drivers have
changed from those for * DRVR' s. The following highlight some of the differences:

A native drive doesn’'t have access to its DCE in the Unit Table; in fact, the Unit Table
per se does not exist in the context within which the native driver executes.

Initialize, Finalize, Open, dose, Killl O Repl ace and Super seded
are aways immediate commands.

All native drivers must accept and respond to all command codes; however, an error
indicating that the command is not supported may be returned.

InitializeandFi nali ze arethefirst and last commands a native driver receives.
Open and O ose commands connect the driver independently of initidization and
finalization.

CFM will perform CFM initialization and termination callsto the driver when the driver
isloaded and unloaded. The CFM initialization call precedes the driver being initialized
by the Device Manager.

Native drivers must be reentrant to the extent that they may be reentered with another
request during any call from the driver to | OCommandIl sConpl et e.

6.6.4.INSTALLING A NATIVE DEVICE DRIVER

The boot code will be responsible for finding and installing the initial set of drivers.
The Driver Loader Library (DLL) and the family expert will conspire to dynamically
select, load, install and remove drivers once the system is up.

6.7. THE DRIVERL OADER LIBRARY

The Driver Loader library (DLL) provides some routines that work with all families and
some that work specifically with the Device Manager family. These routines install,
remove and replace entriesin the Unit Table.

" Some DRV Rs have used various workarounds (like doing their own queueing and dispatching) to allow
them to process more than one request simultaneously. This causes these same DRV Rs some compatibility
problems in the current environment. Native drivers can now do this in a sanctioned manner.

22 Apple Need To Know Confidential

Draft Device Manager Family Design

The Unit Table per se no longer exists in the Copland kernel environment; it existsin
the System-7 compatible “Blue” world. * ndr v’ s have been cautioned not to depend
on it and to only refer to it and the information it contains through the defined DLL
calls. These callsusea Dr i ver Ref Numand/or a Uni t Nunber to refer to the unit
table entries. While the use of Uni t Nunber swill have little meaning in the new
environment, the Dri ver Ref Numinterface will be used to reference a new native
table entry. To remain compatibility with the existing ‘ndr v’ s, the refnum returned
will be the ones complement of the actual index value as is the case for previous
implementations.

The Device Manager will reimplement the routines listed below for Copland. The
externas of these routines will remain the same as is currently defined, but the
implementation will be changed to reflect the changes discussed in the section on Unit
Table maintenance. There will also be a need for both a user mode calable set of
routines for those applicationsthat install * ndrv’ s or use ‘ ndr v’ information from
the Blue address space or native user-mode applications in their own Copland-savvy
address space, and a supervisor mode set of routines which are callable from the Device
Manager Family Expert.

These entry points will be exported by the Device Manager and called by the DLL
implementation (for compatibility) which will re-export them*.

6.7.1.THE DRIVER LOADER LIBRARY APl FOR THE DEVICE MANAGER

The following are the functions provided by the DLL will be updated to implement the
new method of updating and maintaining the Device Unit Table coherency with the
“Blue’ world.

OSErr InstallDriverFronfFragnent (CFragConnectionlD fragment Connl D,
RegEntryl DPtr devi ce,
Uni t Nunber begi nni ngUni t,
Uni t Nunber endi ngUni t,
Driver Ref Num r ef Nunj ;

OSErr InstallDriverFronFile (FSSpecPtr fragnent Spec,
RegEntryl DPtr devi ce,
Uni t Nunber begi nni ngUni t,
Uni t Nunber endi ngUni t,
Driver Ref Num r ef Nunj ;

OSErr InstallDriverFronmvenory (Ptr menory,
[ong | ength,
Const St r63Par am f r agNane,
RegEntryl DPtr devi ce,
Uni t Nunber begi nni ngUni t,
Uni t Nunber endi ngUni t,
Driver Ref Num r ef Nunj ;

OSErr InstallDriverFronDi sk (Ptr theDriverNane,
RegEntryl DPtr theDevi ce,
Uni t Nunber t heBegi nni ngUni t,

2 The supervisor mode library APl will have some different function parameters based on the recent
interfaces thrash. The updated interface definitions will be included when this thrash is done.

Apple Need To Know Confidential 23

Device Manager Family Design Draft

Uni t Nunber theEndi ngUnit,
Driver Ref Num r ef Nunj ;

OSErr Install DriverForDevice (RegEntryl DPtr devi ce,
Uni t Nunber begi nni ngUni t,
Uni t Nunmber endi ngUni t,
Dri ver Ref Num r ef Nunj ;

OSErr GetDriverlnfornation (Driver Ref Num ref Num
Uni t Nunber uni t Num
DriverFl ags fl ags,
Driver QpenCount *count,
StringPtr nane,
RegEnt ryl D devi ce,
CFragHFSLocat or dri verLoadLocati on,
CFragConnecti onl D fragnment Connl D,
DriverEntryPoi ntPtr *fragment Main,
DriverDescriptionn *driverDesc);

CSErr Openlnstal |l edDri ver (Driver Ref Num ref Num
Sint8 i oPermssion);

OSErr RenaneDri ver (Driver Ref Num ref Num
StringPtr newDriverNane);

OSErr RenoveDri ver (Driver Ref Num ref Num
Bool ean i medi ate);

CSErr Repl aceDriverWthFragnent (Driver Ref Num ref Num
CFragConnecti onl D fragnent Connl D) ;

OSErr LookupDrivers (Uni t Nunber begi nni ngUni t,
Uni t Nunmber endi ngUni t,
Bool ean emptyUnits,
It emCount returnedRef Nuns,
Dri ver Ref Num r ef Nunj ;

Uni t Nunber Hi ghest Uni t Nunber (voi d);

6.8. PROVIDING ACCESS TO OTHER FAMILIES THROUGH THE
SYSTEM-7 DEVICE MANAGER API

There are some clients (i.e. existing applications) of the “classic” Device Manager
interface that may in the future require the services of new drivers which have their own
family. Rather than having to convert the applications, the other family servers could

24H Apple Need To Know Confidential

Draft Device Manager Family Design

plug themselvesin at the same level as* DRVR' s do, redirecting the I/O requests to the
appropriate family server.

6.8.1.A TRANSITIONAL INTERFACE

Since the only clients of the System-7 Device Manager interface are those that live in the
“Blue” world, the Device Manager can provide atransitional environment for these
other families by having them take an active role in the process. Such afamily would
install a“shim” ‘DRVR’ which would be called by the Device Manager asfor any other
‘DRVR’ with some exceptions as noted below. [The implementation assumes that there
is currently sufficient information within the parameter blocks to drive the new family
since there are no changes to the Device Manager parameter blocks to support this
feature.]

Essentialy any family that wants to support such an interface installsa“shim” driver in
the System-7 Unit Tableusing thenew Dr i ver | nst al | Shi minterface. The Device
Manager then knows these as “shims’ and treats them specially allowing them to be
concurrent (as it does for native drivers). When a client requests one of these shim
drivers, the shimis called immediately with all requests. The shim driver isresponsible
for interpreting the information in the parameter block and acting accordingly. The shim
driver isresponsible for implementing the appropriate interface to the target family
activation model. This frees the Device Manager from having to special case for certain
implementations and provides a means to support other non-A pple implementations that
require the same functionality.

The API cdls added are:

pascal OSErr Driverlnstall Shim (DRVRHeaderPtr drvrPtr,
short *ref Nunj;

drvrPtr A pointer to a device driver header
ref Num A pointer to where the driver reference number is stored if the shim
issuccessfully installed (OSEr r == noErr)

The Driverlnstall Shim function does exactly the same job as the
Driverlnstall butasomarksthedriver asashiminthe dCt | Fl ags so that the
Device Manager knowsto treat it as concurrent.

pascal OSErr DriverRenmoveShi m (short refNum;
ref Num The driver reference number

The DriverRenoveShi m function does exactly the same job as the
Dri ver Renpve but does not release the driver resource.

Because the driver istreated as concurrent, it will have to notify the Device Manager
about which request is being completed and about the success of failure of that request.
The Device Manager exports an entry point modeled on the
| OConmmandl sConpl et e interface for this purpose.

OSErr /1 results from DM
| Gshi nConmandl sConpl et e (ParnBl kPt r thePB, /1 -> paraneter block
OSErr results); // value for |10OPB

Apple Need To Know Confidential 25i

Device Manager Family Design Draft

t hePB isapointer to the parameter block that represents the completed
request
results isthe success or failure indication to be returned to the original
7. REQUESTOR

26H Apple Need To Know Confidential

Draft Device Manager Family Design

THE DEVICE MANAGER ACTIVATION MODEL

The Copland Device Manager uses the task-per-plugin activation model. Thismodel is
acompromise; it is used because the processing of 1/0 requests can vary widely among
the plug-ins. The plug-in however, isinsulated from microkernel tasking mechanisms
and from synchronization issues that result from system resource contention and

multiple client requests to a single plug-in. Both a user mode and a kernel mode FPI
library are provided.

7.1. ACTIVATION MODEL OVERVIEW

The Copland Device Manager FPI server is an accept function that presents data to an
event-based loop. The FPI server receives requests from caling clients and passes
those requests to the family plug-ins. The FPI server is responsible for making the data
associated with the request available to the family which in turn makesit available to the

plug-in that services the request.

Maxwell
Device Manager
API

Maxwell
Device Manager
FPI Library

User Mode/Space
Kernel Mode/Space

Device Manager
Family Server

Device Manager
Family

generic
driver
in Task

Figure 10.1 Copland Native Device Manager Activation Model

The family creates one task for each family plug-in. The tasks act as wrappers for the
plug-ins - al tasking knowledge is located in the family code.

Apple Need To Know Confidential 27

Device Manager Family Design Draft

When the plug-in receives a service request, viaits DoDr i ver | Oentry point, the task
callsthe plug-ins entry point, waits for the plug-ins' response, and then responds to the
service request. The plug-in performs the work to actually service the request.

Device Manager family generic drivers can either be concurrent or nonconcurrent;
Device Manager clients can make either synchronous or asynchronous requests.

The Device Manager FPI server knows that nonconcurrent drivers cannot handle
multiple requests concurrently. It provides a mechanism to queue client requests. No
subsequent requests are made of the plug-ins' task until it signals completion of the
previous request by calling the | CCommand| sConpl et e function provided by the
Device Manager Family Library context.

For concurrent drivers, all queuing and state information describing an 1/0O request is
contained within the plug-in code and data and within any queued requests. The FPI
library forwards all requeststo the FPI server regardless of the status of the outstanding
I/O requests.

The FPI library makes sure that both synchronous and asynchronous clients see
appropriate behavior. When a client calls a family function asynchronously, the FPI
library sends an asynchronous kernel message to the FPI server and returns to the
caler.

When the client makes a synchronous request, the FPI library sends a synchronous
kernel message which blocks the requesting client. The plug-in task continuesto run
within its'’ own task context permitting other clients to make requests of this plug-in
concurrent with the processing of other synchronous requests. When the FPI server
replies to the message, the client is unblocked and able to continue.

The FPI server queues the incoming request to the target plugin queue. The per-plugin
task code manages concurrent and nonconcurrent drivers appropriately. It sends all
requests to the driver; if the diver is nonconcurrent, the plugin code then waits on an
event which will be set when the driver returns with the I/O completion message. When
the plug-in signals that the I/O operation is complete, the FPI server replies to the
origina message. When the Device Manager FPI receivesthe reply, it either returnsto
the synchronous client thus unblocking it, or calls the asynchronous client's 1/0O
completion routine. When it finishes processing a message, the per-plugin task then
loops back to process the kernel queue that is fed by the Device Manager Server and

| OCommrandl sConpl et e.

7.2. RELIABILITY,AVAILABILITY AND SERVICEABILITY (RAYS)

The Device Manager provides recovery and persistence by making use of the kernel
notify for task termination, a special “henchtask” to process terminations and exception
handlers. The exception handlers, at aminimum, will prevent system failure. However,
when possible it will reflect data access and other client related errors back to the client
asafailureindication on the appropriate request. After cleaning up, the exception
handler will then longjmp to the beginning of the tasks processing loop. Failure during
the exception handler processing or recursive falure will cause the task to be
terminated. The henchtask will then attempt a task restart.

By monitoring task termination, tasks that terminate unexpectedly (i.e. the Family
Server task or plugin tasks) will be restarted automatically (i.e. will be reloaded and
reinitialized) thus providing additional availability and will be imperviousto corruption

Apple Need To Know Confidential

Draft Device Manager Family Design

of task context data. Faults will be isolated to individua plugins or to the Device
Manager but will not affect the entire system. Methods will to be put in place to prevent
recursive failure and in some cases a complete failure of the Device Manager family
might occur, but the entire machine will not be affected (although, if Device Manager
work iswhat the user needs done, that’ s not much consolation). [More work is needed
to determine what information isrequired by the “ henchtask” in order to perform proper
cleanup and restart.]

Serviceability requires that individual failures will be logged so that failures can be
diagnosed off-line. Thisinformation will include as much environmental data as is
relevant to the failure; software error records will be logged for al unexpected
conditions and failures. [A discussion of the use of the Kernel logging facility needs to
be integrated into this section.]

7.3. THE DEVICE MANAGER FAMILY API

The Device Manager Family API is much like the family-to-plugin API. The Device
Manager FPI Library exportsthe DoDevi ceManager | Oentry point which will be
used by the System-7 API Library code and Copland native applications to receive the
parameters that will be passed to the accept routine. The single entry point is modeled
after theDoDr i ver | Ocall.

OSSt at us
DoDevi ceManager | O (|1 OConmandl D commandl D, // command I D
| OCommandContents contents, // cnd specific pb
| OCommandCode code, /'l open/cl ose/etc.
| OCommandKi nd kind); /'l synch/ asynch/i nmed

74. DEVICE MANAGER FLOWS

The following flows describe the process that takes place for the three different kinds of
request - immediate, synchronous and asynchronous. |mmediate requests are handled
synchronously and immediately from the requestor through to the driver. Synchronous
and asynchronous requests are only differentaited at the Send interface and control the
state of the requesting task while arequest is outstanding. he server and plugin tasks
treat synchronous and asynchronous requests the same (except for running the
ioCompletion routines). The differentiation for concurrent and nonconcurrent driversis
not shown in these flows. It is explained in the text along with the synchronous and
asynchronous flows however. The flows are shown for Blue task clients, but are the
same for native Copland-savvy tasks except for running the ioCompletion routine for
asynchronous requests. Thisis discussed below also. (The dark numbered circles are
the sequence of eventsin the flow diagrams.)

Immediate requests cause a synchronous Send to be done by the FPI Library. The
accept function running in the context of the client task sees this request and calls the
plugin directly (via the DoDriverlO entry point). It uses the information from the
parameter block contained in the DM ServerM essage along with other information it has
about the plugin to construct the parameters for the call. The plugin (driver) completes
the request and returns to the accept function which in turn returnsto the message

Apple Need To Know Confidential 29i

Device Manager Family Design Draft

30H

system which completes the Send. This unblocks the FPI Library code which then
returns to the application.

“Blue World” Task

(05
System |7
Deyice Maager

API

Systenp 7 Compatible
Dev|ce Manager

S Maxwelll —
Deyice Manager

' API
Maxwell

Device Manager
FPI Library

o
a Synhchronous A
Send

Kernel Mode/Space

User Mode/Space

code

0

DMServerMess

Function

(call DoDriverlO)

O

(return)

P

Figure 10.2 Immediate Device Manager Request Flow

A synchronous request causes the FPI Library to issue a synchronous Send to the
Device Manager Server port. The accept function sees this request and builds a
DM ServerQElement which it enqueues on kernel queue being waited on by the plugin
task for this plugin. The plugin task wakes on the queue and calls the plugin with the
request using its DoDriverl O entry point. If thisis anonconcurrent driver, after the
driver returns, the plugin task code waits on an event flag in order to serialize requests
to the driver. When the driver completes the request, it calls the

Apple Need To Know Confidential

Draft Device Manager Family Design

|OCommandisComplete entry point in the Plugin task. This function enqueues the
response DM ServerQElement to the plugin tasks kernel queue. If this was a
nonconcurrent driver, the event flag that the plugin task is waiting on is also set
allowing the plugin task to return to the WaitOnQueue at the beginning of its processing
loop and receive the next work request. When it processes the response from the
plugin, it does a ReplyToMessage allowing the FPI Library code to wake up and return
to the application requestor with the results.

“Blue World” Task

S,

System 7
Deyice Managgr
API

Systerp 7 Compatiple
Device Managey

— Maxwell —
Deyice Managé¢r
[' API| -
Maxwell
Device Manager A
FPI Library
§ Sypchronous 8 A
Send (wait) Kernel Mode/Space
DMServe{Message P User Mode/Space
code "
pb

DMServerQElement
Accept Q
Funcgjon

code

mch

EventGrouplD
EventGroupMask

I0CommandIsCoriplete

PerPlugin Task

Figure 10.3 Synchronous Device Manager Request Flow

An asynchronous request causes the FPI Library to issue an asynchronous send which
causes the accept function to run and enqueue a DMServerQElement for the

Apple Need To Know Confidential 3l

Device Manager Family Design Draft

32

PerPluginTask. It then returns to the message system which returns to the application
and allows it to continue (the dark numbered circles represent this sequence). The
plugin task awakens on the kernel queue and processes the request by sending it to the
plugin for processing. The process is the same as for a synchronous request from this
point until after the ReplyToMessage is done at ¥ . For asynchronous requests that
specify an ioCompletion routine, for Blue clients a cooperative interrupt is run to alow
the ioCompl etion routine to be thunked in the data context of the requesting Blue task.
For native tasks, a software interrupt is used to run the ioCompletion routine.

Apple Need To Know Confidential

Draft

Device Manager Family Design

“Blue World” Task

ioCompletion

Bystem 70 A D

Deyice Mahager
API

Systenm 7 CoHpatible

Dev|ce Marjager

L Maxwi
Deyice Mahager
- v API]
Maxwell
Device Manager A
FPI Library

& Asypchronous |8 A

Send Kernel Mode/Space
DMServeliETRe p User Mode/Space
code
pb »
Accept DMServerQElement
Funcgtjon code

EventGrouplD
(call DoDriverlO) EventGroupMask

IOCommandIsComplet

PerPlugin Task

Figure 10.4 Asynchronous Device Manager Request Flow

Apple Need To Know Confidential 33

Device Manager Family Design Draft

7.5. PSEUDO-CODE IMPLEMENTATION

The following is c-like pseudo code outlining the Device Manager Server
implementation. This code does not show any of the private FPI calls. It demonstrates
the main logic. It is not meant to describe all the details of the implementation, but
rather to describe the flavor of the implementation structure and flow. The psuedo-code

here also shows a static fixed-size plugin table. Thiswill be dynamic in the actua
implementation.

34 Apple Need To Know Confidential

