INEFOAUCTION .ottt ettt b enessen
INStAllation ...
@ @@ 5 %%@5@@@ Q@\%Q ﬁu Getting mwm:ma with the Open Transport/TCP API

Opening TCP, UDP, and RawIP Endpoints...

Developer Nofte USING RAWIP oo

INTEINET AGAIESSES. ..ottt et st s beebe e e e saesre e

: Internet Address INformation.............ccoccoeiiiiiiiiicccccc e
Revision 1.1b14 :

1/18/96 Domain Name ReSOIVEr (DNR).......coviiiieieiienese e

IP Multicast
MacTCP Backward Compatibility
MDEV Backward Compatibility, SLIP and PPP.
KNOWN PrODIEMS ...t

CONFIGUIALION ..ottt
Manual ConfigUIatioN...........ccccoviiiiiiii s
DHCP Configurationcooovciiiiiiicirne e
DHCP Address Leases...
BOOTP Configuration.
RARP Configuration...

MaclP Server Configuration...........ccocooeeiiiniie it 12
HOSES FHlB ..ottt sttt be e saene e 12
Data STIUCTUIESecvveie ettt sttt e e e s beete e e e e e sreeneennesne s 14
BaSIC TYPEAETS ..o 14
InetAddress... .14
DNSAddress.. .14
DNSQueryinfo. .15
INEtHOSEINTO15
INEESYSINTO....oiiiicc s 16
INEtMAIIEXCRANGE ..o s 16
INELINEEIFACEINTO....c.oiviiiiciiccee e 16
TIPAAMUILICAST......cuiiiiiiciciecccteeete et 16
Function Descriptions.....

OTlInitlnetAddress.
OTInitDNSAddress. .
OTINEtSIIINGTOHOSE. ...
OTINEtHOSTTOSIIING. .. vttt
GetINterfaCeINTO........ceiiiic e
OTOpenlnternetServices..
Query

StringToAddress
AddressToName.
SYSINTO ot bbbttt
MAIIEXCNANGE.veviieieieeie ettt enan
LOOKUPINGIMIE. ...ttt

TCP Dev Note, Rev 1.1b14 1/18/96 page 1 TCP Dev Note, Rev 1.1b14 1/18/96 page 2
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved. Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Appendix A
Preferences fOrmat.........ccooviiiiiciccccec e 34

Appendix B
MDEVs table format.

Introduction

TCP Dev Note, Rev 1.1b14 1/18/96 page 3
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Open Transport TCP/IP is a replacement for MacTCP (currently at version 2.0.6). It is designed for use
within the Open Transport framework.

Open Transport provides the standard XTI interface (t_open(), t_bind(), etc.) as well as preferred C and
C++ versions which provide a superset of XTl. We recommend that developers consider using the
preferred versions of the interface in their default asynchronous mode because they are more efficient
on the Macintosh.

Installation

Open Transport/TCP is installed by the Open Transport installer. Using Easy Install, Open
Transport/TCP and MacTCP backwards compatibility are both installed. Open Transport /TCP and
MacTCP are mutually exclusive. The Open Transport/TCP installer will remove the MacTCP control
panel if it exists, so if you want to save it, make sure to move out of the system's control panels folder
before using the Open Transport installer to install TCP.

Using Custom Install, Open Transport/TCP can be installed without backwards compatibility. This
can save some memory if you will not be using any applications which need the old MacTCP interface.
However, even without backward compatibility, MacTCP and Open Transport/TCP cannot be run at the
same time.

Use the TCP/IP application in the control panel's folder to configure Open Transport/TCP. This is
detailed in a following section of this document.

Getting started with the Open Transport/TCP API.

Open Transport/TCP is programmed using the standard XTI interface. The same network API is used
for AppleTalk, TCP, and other networking protocols. Developers should be familiar with the
documentation from X/Open on XTI as well as the overall Open Transport documentation before
proceeding with the Open Transport/TCP API. Please pay special attention to appendix B of the XTI
manual, "Intern Protocol-specific Information". All of the information listed within Appendix B is
valid for Open Transport/TCP. This document will generally not reiterate information covered within
that documentation (e.g. usage of IP options).

To use Open Transport TCP/IP, include "OpenTptInternet.h" within your source, and link your program
with either "OpenTransport.0” and "OpenTptlnet.0" (for far model) or "OpenTransport.n.o" and
"OpenTptlnet.n.0" (for near model).

Opening TCP, UDP, and RawIP Endpoints

TCP, UDP and RawlIP are opened by doing an OTAsyncOpenEndpoint() or OTOpenEndpoint() and
passing in a configuration for TCP or UDP. See the sample programs for examples. Currently supported
protocols are TCP, UDP, and RawlIP. Constants for each protocol are defined in OpenTptinternet.h.
Use kTCPName for TCP, kUDPName for UDP, and kRawIPName for RawIP. Do not open the DNR
directly; use either the Internet Services interface or the Mapper interface instead.

TCP Dev Note, Rev 1.1b14 1/18/96 page 4
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Using RawlIP

RawIP behaves for the most part identically to UDP, as a connectionless datagram interface, but there
are a few unique caveats.

First, by default the RawlIP interface will send ICMP packets (protocol 1). To change the protocol
number being sent, use the option XTI_PROTOTYPE, defined in OpenTransport.h. The option is one
long word which includes the protocol number to be used by the RawlIP endpoint.

Second, when using RawIP, all RawlIP endpoints bound to a specific protocol will receive a copy of any
inbound packets destined for that protocol. For example, if several ping programs are using ICMP, each
will receive a copy of all inbound ICMP echo datagrams.

Finally, the data returned will include the full IP header, which is 20 bytes in length if no options are
present.

Internet Addresses

Fully qualified Internet addresses are 16 bytes in length and include an address type, a port number, and
an IP address. The structure is laid out identically to the address structure used on most UNIX systems
(e.g.. sockaddr_in). Supported address types are AF_INET (described here) and AF_DNS (described
in a following section; it identifies a host by name rather than by address). Some utilities are
provided (also detailed later in this document) which make address setup simpler for developers.

Internet Address Information

Information about the IP addresses of local interfaces can be obtained using the OTInetGetInterfacelnfo
call which is described in the Function Descriptions section. Note that there is no active interface or
IP address prior to running a TCP application unless the "Load only when needed" option is not checked
within the TCP/IP control panel (by default, TCP is set to "Load only when needed") . This is because
interface setup and server configuration of IP addresses is otherwise deferred until the interface is
actually used for the first time.

While XTI does provide another interface to obtain address information, the t_getprotaddr call, this
call doesn't behave the same way in Open Transport/TCP that it does in Open Transport/AppleTalk.
Because Open Transport/TCP is designed for multihoming (although this is not provided in the first
release) and IP is designed to allow any endpoint to use any and all IP interfaces on a system, endpoints
frequently bind to an IP address of 0, which indicates the client will accept packets from any valid
interface. However, a client which binds to IP address 0 and then does a t_getprotaddr call may be
surprised to find an address of 0 returned. t_getprotaddr does indeed return the valid IP address which
the client has bound to, but that address is 0.

Use the OTlInetGetInterfacelnfo call to learn about the IP addresses of all IP interfaces currently up on a
system. Then, if the client only wishes to receive packets for a single interface, bind to the IP address
for that interface. After doing this, the t_getprotaddr call will indeed return the correct IP address
which the client is bound to.

Domain Name Resolver (DNR)

The domain name resolver (DNR) has been implemented under Open Transport. The interface to the
DNR has been provided through the InternetServices interface, described later. An additional
interface to the DNR's name resolution capability has been provided through the Open Transport
Mapper Library's LookupName function, described later in this document. See the Open Transport
Client Developer Note for a description of the Mapper Library. Finally, the DNR's name resolution
capability may be accessed indirectly through use of a UDP endpoint's SndUData() call, a TCP
endpoint's Connect() call, or either's ResolveAddress() call.

Open Transport/TCP implements a caching stub name resolver. When the internet subsystem is loaded,
the DNR s initialized with the following:

= aprioritized list of search domains. These are explicitly configured in the TCP/IP control panel, but
others may be implicitly derived from the Default Domain and the Administrative Domain (see
references to the Administrative Domain under the Configuration section).
= aprioritized list of IP addresses for name servers which can be used. These may be downloaded from
a DHCP, BOOTP, or MaclP IPGATEWAY server, configured manually in the TCP/IP control panel,
or be obtained from the HOSTS file.
a (possibly empty) list of name-to-address mappings from the HOSTS file to be cached.
a (possibly empty) list of cname-to-name mappings from the HOSTS file to be cached.

When a client of the DNR requests a name-to-address mapping, the DNR checks for a "." at the end of
the name. If it exists, the name is assumed to be fully qualified (see rfcs 1034 and 1035 for an
explanation of the Domain Name System). Otherwise, if the name contains at least one "." internally,
it is considered to be provisionally fully qualified. Otherwise, the name is assume to be partially

qualified, and the DNR will begin a search for that name in the first of the configured search domains.

For each search domain, the configured name servers are contacted in the order specified. If the name is
resolved in the first search domain, that answer is returned. If an authoritative answer that the
name-does-not-exist is returned, the DNR begins the search in the next configured search domain. The
search continues through the domains, and if no match is found, the DNR will search the root domain i
it makes sense to do so. The DNR has an overall timeout of 2 minutes after which it will abandon its
search.

The DNR will make queries for any type and class via the OTInetQuery call. Simplified interfaces
are provided for the most commonly made queries: name-to-address (A), address-to-name (PTR),
system CPU and OS (HINFO), and mail exchange (MX) queries.

Currently, the DNR only caches name-to-address and cname-to-name mappings. Address-to-name
translations are not cached, nor are they resolved by checking previously cached name-to-address
translations. This is because doing so defeats some existing server load balancing schemes. In a future
release address-to-name translations will be cached separately from name-to-address translations.
Applications, such as web page servers, which may depend heavily on address-to-name translations
may perform better if they cache the results of address-to-name translations.

The DNR does not implement negative caching - it depends on the local full service resolver to provide
this facility. It always requests recursion, but it will follow up on references if recursion is not
available. It does not save name server references after a query is resolved. Further queries begin anew
at the configured name servers.

We recommend users of Open Transport/TCP avoid using a HOSTS file if a name server is available.
Frequently HOSTS files contain many names unused by the local host. This merely wastes memory in
the local cache. If a HOSTS file is used, making it as short as possible will conserve memory.

TCP Dev Note, Rev 1.1b14 1/18/96 page 5
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

TCP Dev Note, Rev 1.1b14 1/18/96 page 6
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

IP Multicast

Open Transport/TCP contains full support for IP Multicasting (level 2 as described in rfc 1112). IP
Multicast configuration is supported through OTOptionManagement() or the IP endpoint's
OptionManagement() method, both documented elsewhere.

To have IP join a multicast group, use the IP._ADD_MEMBERSHIP option, and pass in a
TIPAddMulticast structure as the option value. Set the TIPAddMulticasts's multicastGroupAddress
field to the group address you wish to join. Set the interfaceAddress field to the IP address of the
interface on which you wish to join the group (group membership is on a per-interface basis). Use
kOTAnylnetAddress for the default multicast interface's address.

Use the IP_MULTICAST_TTL to set the time-to-live value, which otherwise defaults to 1, for
outbound data. Pass the desired TTL value (in seconds) as the option value. By default IP will loop
back multicast datagrams to any member of the group on the sending machine.

The IP_MULTICAST_LOOP option may be use to turn off this feature (pass in a value of 0). Each of
these options is demonstrated in the samples OTMulticastPitch.cp and OTMulticastCatch.cp.

MacTCP Backward Compatibility

MacTCP backward compatibility is now installed by default. If you do not want an existing MacTCP
removed and replaced with Open Transport/TCP, make sure to do a custom install. The installer will
remove the MacTCP control panel if one exists, so you should save a copy outside of your system folder
before doing the installation.

If you are writing new applications, please use one of the Open Transport interfaces. The performance
will be better than using the backward compatible API, and because the compatibility module will be
loaded on demand, less memory will be used. Backward compatibility will be supported until most
applications use the new interface. After that, expect it to be removed.

MDEV Backward Compatibility, SLIP and PPP

We have no plans to provide general backward compatibility below IP, at the MDEV level. However,
we are supporting selected MDEVs in the first release of Open Transport TCP. Currently tested and
supported MDEVs include: FreePPP 1.0.4, MacPPP 2.1.4, InterPPP 1.2.9, InterPPP 11 1.0.7, MacSLIP
3.0.2, InterSLIP 1.0.1, VersaTerm SSLIP 1.1.4.

Known Problems

Check the Client ReadMe for a list of the currently known problems with Open Transport/TCP.

Introduction 8

Configuration

TCP Dev Note, Rev 1.1b14 1/18/96 page 7
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Open Transport /TCP is supported over Ethernet, 802.3, TokenRing, and AppleTalk (as MacIP). Itis
also supported over serial lines when using backward compatible MDEV support.

Open Transport/TCP is configured using the TCP/IP application which is in the System's Control
Panels folder. Configuration may be done manually, or via a BOOTP, DHCP, RARP, or MaclP server.
The steps to follow using each of these methods are detailed below.

By default, the TCP/IP application comes up in basic mode. Advanced or administration mode may be
entered via the Edit menu. These modes allow expert users ad nal choices as well as the a
augment information returned from a configuration server or to n gaps in the returned information.

The TCP/IP application may be used at any time to reconfigure the system. However TCP will not
notice the new configuration until it has unloaded from the system. In the current release, saving
configuration parameters by closing the TCP/IP application forces TCP to unload immediately,
breaking any existing connections. Otherwise, TCP will unload by default about 2 minutes after the last
application using TCP , RawIP or UDP has gone away.

Manual Configuration

To manually setup Open Transport/TCP, follow these steps:

(1) Select the interface to use, or pick "AppleTalk (MaclP)" to run over AppleTalk on the
interface selected in the AppleTalk control panel.

(2) If an Ethernet interface is selected, a check box will appear offering the use of 802.3
packet encapsulation. By default, Open Transport/TCP uses Ethernet rather than 802.3.

(3) Select "Manually" as the configuration method.

(4) Fill in the IP address in dot notation (e.g. 128.1.1.1).

in the search domain extensions to be used on name searches. For example, if a
domain name of "apple.com” is configured, a search for "sam" would initially search for
"sam.apple.com.” It is not always necessary to fill in these fields when configuring from a
BOOTP or DHCP server since a search domain may be returned along with the IP address.

In Advanced User mode only, you may configure an implicit domain search list . This is
used to allow implicit searches. For example, if | wish to search all of the subdomains
between "joesgroup.mktg.apple.com™ and "apple.com”, a search for the name "sam" would
first look for "sam.joesgroup.mktg.apple.com”, then for *sam.mktg.apple.com”, then for
"sam.apple.com.” Implicit searching will not be done unless the Starting domain name is a
subdomain of the Ending domain name (which corresponds to the domain of local
administration per RFC 1535).

(6) Fill in the subnet mask in dot notation. For example, on a class B net which uses 6 bits of
the host field for subnetting, the subnet mask should be entered as "255.255.252.0".

(7) Fill in the IP address(es) of one or more IP routers.

TCP Dev Note, Rev 1.1b14 1/18/96 page 8
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Introduction 9

(8) Fill in the IP address(es) of one or more Domain Name Servers.

(9) If a specific Hosts file is required, select it using the Hosts file button. For details about
the Hosts file, see the description which follows.

The TCP/IP application may be used at any time to reconfigure the system. However TCP will not
notice the new configuration until it has unloaded from the system. In the current release, saving
configuration parameters by closing the TCP/IP application forces TCP to unload immediately,
breaking any existing connections. Otherwise, TCP will unload by default about 2 minutes after the
last application using TCP , RawlP or UDP has gone away.

DHCP Configuration

To use a DHCP server to setup Open Transport/TCP, follow these steps:

(1) Select the interface to use, or pick "AppleTalk (MaclP)" to run over AppleTalk on the
interface selected in the AppleTalk control panel.

(2) If an Ethernet interface is selected, a check box will appear offering the use of 802.3
packet encapsulation. By default, Open Transport/TCP uses Ethernet rather than 802.3.

(3) Select "Using DHCP" as the configuration method.

(4) Fill in the search domain extensions to be used on name searches. For example, if a
domain name of "apple.com" is configured, a search for "sam" would initially search for
"sam.apple.com.” It is not always necessary to fill in these fields when configuring from a
BOOTP or DHCP server since a search domain may be returned along with the IP address.

In Advanced User mode only, you may configure an implicit domain search list . This is
used to allow implicit searches. For example, if | wish to search all of the subdomains
between "joesgroup.mktg.apple.com™ and "apple.com”, a search for the name "sam" would
first look for "sam.joesgroup.mktg.apple.com”, then for *sam.mktg.apple.com™, then for
‘'sam.apple.com.” Implicit searching will not be done unless the Starting domain name is a
subdomain of the Ending domain name (which corresponds to the domain of local
administration per RFC 1535).

(5) In Advanced User mode, a subnet mask may be entered but is not required. If a value is
entered, it will be used if no subnet mask is returned from the DHCP server. Otherwise,
any value entered is ignored.

(6) In Advanced User mode, the manually entered IP addresses of routers are attached to
the end of the possibly empty) list of IP routers returned by the DHCP server.

(7) In Advanced User mode, the manually entered IP addresses of Domain Name Servers
are attached to the end of the (possibly empty) list of Name Servers returned by the DHCP
server.

(8) If a specific Hosts file is required, select it using the Hosts file button. For details about
the Hosts file, see the description which follows.

TCP Dev Note, Rev 1.1b14 1/18/96 page 9
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Introductiorl0

DHCP Address Leases

DHCP provides a network administrator with the ability to configure a host's IP address either for an
unlimited or for a limited period of time. The limited lease period is under the network administrator's
control and is non-negotiable. Leases may, however, be renewed at the option of the configuring server.

Open Transport/TCP fully supports DHCP address leases. Should an interface's IP address lease expire,
the interface will be closed down. However, Open Transport/TCP will automatically attempt to renew
any address lease that reaches it's Renewal Interval, which defaults to half of the lease's lifetime,
but may be configured to a different interval by the configuring server. Renewal will be attempted
regardless of how many times the lease has already been renewed.

BOOTP Configuration

To use a BOOTP server to setup Open Transport/TCP, follow these steps:

(1) Select the interface to use, or pick "AppleTalk (MaclP)" to run over AppleTalk on the
interface selected in the AppleTalk control panel.

(2) If an Ethernet interface is selected, a check box will appear offering the use of 802.3
packet encapsulation. By default, Open Transport/TCP uses Ethernet rather than 802.3.

(3) Select "Using BOOTP " as the configuration method.

(4) Fill in the search domain extensions to be used on name searches. For example, if a
domain name of "apple.com” is configured, a search for "sam" would initially search for
"sam.apple.com.” It is not always necessary to fill in these fields when configuring from a
BOOTP or DHCP server since a search domain may be returned along with the IP address.

In Advanced User mode only, you may configure an implicit domain search list . This is
used to allow implicit searches. For example, if | wish to search all of the subdomains
between "joesgroup.mktg.apple.com™ and "apple.com”, a search for the name "sam" would
first look for "sam.joesgroup.mktg.apple.com”, then for *sam.mktg.apple.com”, then for
"sam.apple.com.” Implicit searching will not be done unless the Starting domain name is a
subdomain of the Ending domain name (which corresponds to the domain of local
administration per RFC 1535).

(5) In Advanced User mode, a subnet mask may be entered but is not required. If a value is
entered, it will be used if no subnet mask is returned from the BOOTP server. Otherwise,
any value entered is ignored.

(6) In Advanced User mode, the manually entered IP addresses of routers are attached to
the end of the (possibly empty) list of IP routers returned by the DHCP server.

(7) In Advanced User mode, the manually entered IP addresses of Domain Name Servers
are attached to the end of the (possibly empty) list of Name Servers returned by the DHCP
server.

(8) If a specific Hosts file is required, select it using the Hosts file button. For details about
the Hosts file, see the description which follows.

TCP Dev Note, Rev 1.1b14 1/18/96 page 10
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Introductioril

The TCP/IP application may be used at any time to reconfigure the system. However TCP will not
notice the new configuration until it has unloaded from the system. In the current release, saving
configuration parameters by closing the TCP/IP application forces TCP to unload immediately,
breaking any existing connections. Otherwise, TCP will unload by default about 2 minutes after the
last application using TCP , RawlP or UDP has gone away.

RARP Configuration

To use a RARP server to setup Open Transport/TCP, follow these steps:

(1) Select the interface to use, or pick "AppleTalk (MaclP)" to run over AppleTalk on the
interface selected in the AppleTalk control panel.

(2) If an Ethernet interface is selected, a check box will appear offering the use of 802.3
packet encapsulation. By default, Open Transport/TCP uses Ethernet rather than 802.3.

(3) Select "Using RARP " as the configuration method.

(4) Fill in the search domain extensions to be used on name searches. For example, if a
domain name of "apple.com" is configured, a search for "sam" would initially search for
"sam.apple.com.” It is not always necessary to fill in these fields when configuring from a
BOOTP or DHCP server since a search domain may be returned along with the IP address.

In Advanced User mode only, you may configure an implicit domain search list . This is
used to allow implicit searches. For example, if | wish to search all of the subdomains
between "joesgroup.mktg.apple.com® and *‘apple.com™, a search for the name *“sam™ would
first look for "sam.joesgroup.mktg.apple.com”, then for *'sam.mktg.apple.com”, then for
“sam.apple.com.” Implicit searching will not be done unless the Starting domain name is a
subdomain of the Ending domain name (which corresponds to the domain of local
administration per RFC 1535).

(5) n the subnet mask in dot notation. For example, using a class B net which uses 6 bits
of the host field used for subnetting, the subnet mask should be entered as "255.255.252.0".

(6) Fill in the IP address(es) of one or more IP routers.

(NF

n the IP address(es) of one or more Domain Name Servers.

(8) If a specific Hosts file is required, select it using the Hosts file button. For details about
the Hosts file, see the description which follows.

The TCP/IP application may be used at any time to reconfigure the system. However TCP will not
notice the new configuration until it has unloaded from the system. In the current release, saving
configuration parameters by closing the TCP/IP application forces TCP to unload immediately,
breaking any existing connections. Otherwise, TCP will unload by default about 2 minutes after the
last application using TCP , RawlIP or UDP has gone away.

TCP Dev Note, Rev 1.1b14 1/18/96 page 11
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Introductiori2

MaclP Server Configuration

To use a MaclP Server to setup Open Transport/TCP, follow these steps:

(1) Select "AppleTalk (MaclP)" as the interface to use. TCP will now run over AppleTalk
on the interface selected in the AppleTalk control panel.

(2) Select "Using MaclP Server" as the configuration method.

(3) Fill in the search domain extensions to be used on name searches. For example, if a
domain name of "apple.com" is configured, a search for "sam" would initially search for
"sam.apple.com.” It is not always necessary to fill in these fields when configuring from a
BOOTP or DHCP server since a search domain may be returned along with the IP address.

In Advanced User mode only, you may configure an implicit domain search list . This is
used to allow implicit searches. For example, if | wish to search all of the subdomains
between "joesgroup.mktg.apple.com™ and *apple.com™, a search for the name "sam"™ would
first look for "sam.joesgroup.mktg.apple.com”, then for *sam.mktg.apple.com", then for
"sam.apple.com.” Implicit searching will not be done unless the Starting domain name is a
subdomain of the Ending domain name (which corresponds to the domain of local
administration per RFC 1535).

(4) If a specific Hosts file is required, select it using the Hosts file button. For details about
the Hosts file, see the description which follows.

Hosts File

Open Transport/TCP supports a Hosts file that may be used to supplement and/or customize the Domain
Name Resolver's initial cache of information. The Hosts file is found in the System's Preferences
folder. In order to support MacTCP compatibility with some applications, Open Transport will also
look in the System folder if no Hosts file is found in the Preferences folder. This file is parsed when
Open Transport/TCP is initialized. As in MacTCP, the supported Hosts file features follow a subset of
the Domain Name System Master File Format (see RFC 1035 page 33).

Supported features include blank lines, comments (indicated by a semicolon), and data entry. Comments
may begin at any location in a line; they may follow data entry on the same line. A comment extends
from the semicolon to the end of the line. Data entry must follow the format:

<domain-name> <rr> [<comment>]

where <domain-name> is an absolute or Fully Qualified domain name (which, however, need not be
terminated by a dot, but must contain at least one dot internally) and where

<rr> = [<ttl>] [<class>] <type> <rdata> OR [<class>] [<tt|>] <type> <rdata>
The only class currently supported is IN (Internet Domain); ttl (time to live; indicates the record's
configured lifetime) is in seconds; and type can be A (host address), CNAME (canonical name of an
alias), or NS (name server). If ttl is not present the entry is assumed to have an infinite lifetime; this
may also be indicated by specifying a ttl of minus-one (-1).

$INCLUDE and $ORIGIN are not supported.

Examples of valid data entry lines including comments:

TCP Dev Note, Rev 1.1b14 1/18/96 page 12
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Introductiori3

apple.com A 130.43.2.2 ; address of host apple.com
foobar CNAME barfoo.apple.com ; canonical name for the host whose local alias is "foobar"
mitedu. 86400 NS achilles.mit.edu ; name server for mit.edu domain, entry has a one-week lifetime

Open Transport/TCP's Hosts file support is somewhat more stringent than that of MacTCP. MacTCP
permitted violation of the Fully Qualified requirement for <domain-name>, and this feature was often
used to avoid the necessity for entering CNAME records by associating an address directly with a non-
fully qualified name. For instance, this format:

charlie A 128.1.1.1

which was acceptable to the MacTCP DNR, is no longer permitted because of the use of domain search
lists in Open Transport/TCP (charlie could potentially exist in any or all of the configured domains). If
such a line exists in your hosts file, kOTBadNameError will be returned when the Hosts file is read. To
accomplish the same effect, use this format instead:

charlie CNAME myhost.mydomain.edu
myhost.mydomain.edu A 128.1.1.1

This associates the local alias "charlie” with the fully qualified domain name
"myhost.mydomain.edu” and resolves it to the address 128.1.1.1. Use of local aliases is limited to
CNAME entries; NS and A entries must use fully qualified domain names.

In general, use of the Hosts file is discouraged, as it often simply wastes memory by permanently
configuring data that may only rarely be accessed. It is also highly susceptible to misuse by users who
try to configure far too much information internally in order to avoid accessing DNS servers. Besides
tying up memory, this practice is exactly the reason that the Domain Name System was developed in
the first place - to eliminate the performance degradation caused by use of enormous hosts files.

Should a Hosts file be used, every effort should be made to keep it as small as possible and to only
include entries that will be accessed frequently.

TCP Dev Note, Rev 1.1b14 1/18/96 page 13
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Data Structures

Data Structures

This section details the data structures which are unique to Open Transport TCP/IP. These structures
are found in the include file OpenTptinternet.h. Typedefs commonly used are also mentioned, although
their use is not necessarily unique to Open Transport TCP/IP.

Basic Typedefs
enum
{
kMaxHost NameLen = 255
I
Type Is usually a...

Ulnt8 unsigned char
UlInt16 unsigned short
UlInt32 unsigned long
SInt32 signed long
OTAddressType Uintl6
InetPort Uintl6
InetHost Uint32
InetDomainName char[kMaxHostNameLen]

Note: In all cases, the maximum valid domain name length for fully qualified domain names,
kMaxHostNameLen, includes the trailing period ("."). Names not terminated with a period are
limited to 254 characters.

InetAddress

An InetAddress is a "fully qualified" address. It contains information about the address type (currently
AF_INET is the only supported address type), the port number, and the Host's IP address. This
structure is laid out identically to the common sockaddr_in structure used in BSD UNIX.

struct | net Address

{
OTAddr essType f Addr essType; /* AF_I NET */
I net Port fPort;
| net Host f Host ; /* the IP address */
Ul nt8 f Unused] 8] ; /* traditional */
b

typedef struct |netAddress |netAddress;

DNSAddress

A DNSAddress is a "fully qualified" address, but it is not fully resolved. It contains a name and a port
number in the format "xxx[:yy]" where "xxx" is a hostname, a partially qualified domain name, a fully
qualified domain name, or an Internet address in standard dot format, and "[:yy]" is and optional port
number. For example: "foo.apple.com”, "foo.apple.com:25", "17.202.99.99:25". Applications may use
the DNSAddress directly when calling Connect() for a TCP endpoint, or when calling SndUData() for
a UDP endpoint, or when calling ResolveAddress() with either TCP or UDP endpoints, and the name

TCP Dev Note, Rev 1.1b14 1/18/96 page 14
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Data Structures

will be automatically resolved by the DNR. Users may find this more convenient than invoking the
DNR directly when they only have name-to-address resolutions to perform.

struct DNSAddress

{
OTAddr essType f Addr essType; /* AF_DNS */
| net Donmai nNane f Nane;

I

typedef struct DNSAddress DNSAddress;

Because domain names are limited to 255 characters, the DNSAddress type can take a string of 255
bytes or less. A string in the form "apple.com:25" where the optional ":port number" is used is not a
proper domain name, but it will be accepted for convenience. However, if the combination of the
domain name and the optional port number exceeds 255 bytes, the client must provide a structure using
DNSAddress as a template which has sufficient space to contain the full string. The domain name
itself still cannot exceed 255 bytes in any case.

DNSQueryinfo

DNSQuerylInfo is used by the Domain Name Resolver to return answers to DNS queries made using the
OTlInetQuery Interface. Each answer returned for a particular name, query class, and query type is
returned in the following structure. The resourceData array will be at least 4 bytes long, but it is
usually longer. Its size is indicated by the returned resourceLen.

struct DNSQueryl nfo

{

Ul nt 16 qType;

Ul nt 16 qCl ass;

Ul nt 32 ttl;

| net Donmai nNane nane;

Ul nt 16 responseType;

Ul nt 16 resour celLen;

char resour ceDat af 4] ;
I

typedef struct DNSQueryl nfo DNSQueryl nfo;

InetHostInfo

InetHostInfo is used by the Domain Name Resolver to return basic information about a host. When
filled in by the DNR in response to a StringToAddress call, it contains the fully qualified name of the
host and up to ten IP addresses for that host. If only one IP address is found for a given hostname, that
IP address is returned in the first slot in the addrs array, and all other addresses are set to 0. For more
information, see the function description for the StringToAddress call.

enum
{

kMaxHost Addrs = 10,

kMaxHost NaneLen = 255
b
struct InetHostlnfo
{

| net Donai nNane nane;

I net Host addr s[kMaxHost Addr s] ;
}s

typedef InetHostlnfo InetHostlnfo;

TCP Dev Note, Rev 1.1b14 1/18/96 page 15
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Data Structures

InetSysinfo

InetSysiInfo is used by the DNR to return detailed system information about a host's CPU type and
operating system in response to a Sysinfo call. See the latest "Assigned Numbers" RFC for a list of the
possible CPU and OS strings. CPU and OS strings are limited to 40 characters, and will be returned as a
0 terminated C String. For more information, see the function description for the SysiInfo call.

enum { kMaxSysStringlLen = 40 };

struct |netSyslnfo
{
char cpuType[kMaxSysStri ngLen+1];
char osType[kMaxSysStringLen+1];
b
typedef InetSyslnfo InetSyslnfo;

InetMailExchange
InetMailExchange is used by the DNR to return mail exchange and preference information in response to
a MailExchange call. For more information, see the function description for the MailExchange call.

struct | netMil Exchange
{
Ul nt 16 pref erence;
I net Donai nNane exchange;
I
typedef | net Mail Exchange | net Mai | Exchange;

Inetinterfacelnfo
Inetinterfacelnfo is used by InternetServices to return Internet address information about the local host.
For more information, see the function description for the OTInetGetInterfacelnfo call.

struct Inetlnterfacelnfo

{ InetHost fAddress;
InetHost fNetmask;
InetHost fBroadcastAddr;
InetHost fDefaultGatewayAddr;
InetHost fDNSAddr;
Ulintl6 fVersion;
Uintl6 fPad;
InetHost fReserved[4];
InetDomainName fDomainName;

b

typedef Inetinterfacelnfo Inetlnterfacelnfo;

TIPAddMulticast

TIPAddMulticast is the OTOptionManagement option value to join an IP Multicast address group. For
more information , see the description of OTOptionManagement in the Open Transport Client
Developer's Note.

TCP Dev Note, Rev 1.1b14 1/18/96 page 16
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Data Structures

struct TIPAddMil ti cast
{
| net Host mul ti cast G oupAddr ess;
| net Host i nterfaceAddress;
}s
t ypedef TI PAddMul ti cast TI PAddMul ti cast;

TCP Dev Note, Rev 1.1b14 1/18/96 page 17
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Function Descriptions

Function Descriptions

All data structures are prefixed with Inet. Data structures are described in the previous section.

OTInitInetAddress

FUNCTION

OTlInitlnetAddress Initialize an InetAddress.

C INTERFACE
void OTInitInetAddress(InetAddress *inAddr, InetPort port, InetHost host);

C++ INTERFACE
None (C++ clients should use the C interface to this function).

DESCRIPTION

Parameters Before After
Call Call

port X
host

inAddr
inAddr->fAddressType
inAddr->fPort
inAddr->fHost
inAddr->fUnused

NN NN X X
N X X X X N\

OTInitlnetAddress simplifies setup of an InetAddress. Clients are not required to use this
function, but may find it convenient to do so. This call cannot block and it always completes
synchronously.

RESULT CODES
None

SEE ALSO
OTInitDNSAddress, OTInetStringToHost, OTInetHostToString

TCP Dev Note, Rev 1.1b14 1/18/96 page 18
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Function Descriptions

OTInitDNSAddress

FUNCTION
OTInitDNSAddress

C INTERFACE
void OTl ni t DNSAddr ess(DNSAddress *dnsAddr, char* dnsAddressString);

C++ INTERFACE

None (C++ clients should use the C interface to this function).

DESCRIPTION
Parameters Before After
Call Call
dnsAddressString X /
dnsAddr X X
dnsAddr->fAddressType / X
inAddr->fName / X

OTInitDNSAddress simplifies setup of a DNSAddress. Clients are not required to use this
function, but may find it convenient to do so. This call cannot block and it always completes
synchronously.

RESULT CODES
None

SEE ALSO
OTInitinetAddress, OTlInetStringToHost, OTInetHostToString

TCP Dev Note, Rev 1.1b14 1/18/96 page 19
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Function Descriptions

OTInetStringToHost

FUNCTION

OTlnetStringToHost Converts an IP address string from either dot notation or hex

notation to an InetHost.

C INTERFACE
OSErr OTlInetStringToHost(char* addrString, InetHost* host);

C++ INTERFACE

None (C++ clients should use the C interface to this function).

DESCRIPTION
Parameters Before After
Call Call
addrString (x) /
host / (x)

OTlInetStringToHost converts a string denoting an IP address into an InetHost. The string must
either represent an address in Internet dot notation (e.g. "12.13.14.15") or hex notation (e.g.
"0x0c0d0e0f").

Clients are not required to use this function, but may find it convenient to do so. This call cannot
block and it always completes synchronously. It does not invoke the Domain Name Resolver,
and it should not be confused with the StringToAddress call which translates a name string to
an IP address.

RESULT CODES
kNoError
kOTBadAddressErr

SEE ALSO
OTlInitinetAddress, OTInetHostToString

TCP Dev Note, Rev 1.1b14 1/18/96 page 20
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Function Descriptions

OTlInetHostToString

FUNCTION

OTInetHostToString Converts an InetHost into a string representing that IP Address

in Internet Dot notation.
C INTERFACE
void OTlInetHostToString(InetHost host, char* stringBuf);

C++ INTERFACE

None (C++ clients should use the C interface to this function).

DESCRIPTION
Parameters Before After
Call Call
host X /
stringBuf X (x)

OTlInetHostToString converts an InetHost into a C string containing a dot format representation
of the IP address. For example, the InetHost "0x10111213" would be converted to the string
"16.17.18.19".

Clients are not required to use this function, but may find it convenient to do so. This call cannot
block and it always completes synchronously. It does not invoke the Domain Name Resolver,
and it should not be confused with the AddressToName call which translates an IP address into
a Host name.

RESULT CODES

None

SEE ALSO
OTlInitlnetAddress, OTInetStringToHost

TCP Dev Note, Rev 1.1b14 1/18/96 page 21
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Function Descriptions

GetlInterfacelnfo

FUNCTION

GetlInterfacelnfo Returns Internet address information about the local host.

C INTERFACE
OSErr OTlInetGetInterfacelnfo(Inetinterfacelnfo* info, SInt32 index);

C++ INTERFACE

None. C++ clients should use the C Interface.
DESCRIPTION
Parameters Before After
Call Call
info X /
index X (x)

Takes an index into the host's array list of configured IP interfaces and, if possible, fills in the
Inetinterfacelnfo structure with the interface's Internet address, subnet mask, and broadcast
address. The IP addresses of a default gateway and a Domain Name Server will also be
returned if any are known, as will the host's Domain Name. An index of 0 (zero) returns
information about the first interface. The broadcast address may not always be available, but
may easily be determined from the Internet address and the subnet mask.

This call cannot block and it always completes synchronously.

Note that if Open Transport/TCP has not yet loaded, which is the case when no TCP
application is running and the "TCP always loaded" option is not picked within the control
panel, that no interfaces will be valid. By default, interfaces are not initialized until needed.

Also note that an application which binds to an IP address of 0 and subsequently does a
getprotaddr call will get back an IP address of 0. The only mechanism for determining the IP
address of running IP interfaces is through the Getlnterfacelnfo call.

RESULT CODES
kOTNoError Call completed successfully.
kOTNotFoundErr The requested interface does not exist.
KENOMEMErr Open Transport TCP memory depletion.
SEE ALSO
TCP Dev Note, Rev 1.1b14 1/18/96 page 22

Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Function Descriptions

OTOpenlinternetServices

FUNCTION
OTOpenlinternetServices Allows client to make use of provided Internet services, such as
the Domain Name Resolver.
C INTERFACE
InetSvcRef OTOpenlinternetServices(OTConfiguration* otc, OTOpenFlags flags, OSErr*
err);
OSErr AsyncOTOpenInternetServices(OTConfiguration* otc, OTOpenFlags flags,

OTNotifyProcPtr proc, void* contextPtr);
C++ INTERFACE
None. (C++ clients should use the C interface to this function).

DESCRIPTION

Opens the Internet Services library and returns an InetSvcRef which can be subsequently used to
access other routines (currently just the DNR routines). The flags parameter is currently ignored
and should be 0, and a default (DNR) OTConfiguration* will be built and used if otc is set to
kDef aul t | nt er net Servi cesPat h (defined in OpenTptinternet.h). When the application
completes or finishes using Internet services, calling CloseProvider frees the associated
resources.

If the library is opened using the OTOpeninternetServices call, it will work by default in
synchronous mode, blocking on calls until completion. If the library is opened using the
AsyncOTOpenlInternetServices call, it will work by default in asynchronous mode, returning
immediately. In this case, if no error is returned immediately, the result of the call will be
returned to the client's notifier.

For more information on the DNR, see the RFCs 1034 and 1035.

Alternately, clients may choose to use the transport independent Mapper interface to access
some of the DNR's fa es. The Mapper may be used to translate a host name to an IP
address, but it has no equivalent for the AddressToName, SysiInfo, or MailExchange calls. For
details on the Mapper, see the Open Transport Client Developer Note, and the function
description of the LookupName call which follows in this document. Note that
OTLookupName is the only Open Transport Mapper Library call supported by the DNR. Calls
to OTRegisterName and OTDeleteName will return KOTNotSupportedErr.

RESULT CODES
None. Returns the InetSvcRef.

SEE ALSO
CloseProvider (Open Transport Client Developer Note)

TCP Dev Note, Rev 1.1b14 1/18/96 page 23
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Function Descriptions

Query

FUNCTION
Query Returns information which the DNR can obtain based upon
DNS queries made using the given query class and type.
C INTERFACE
OSErr OTlInetQuery(InetSvcRef ref, char* name, UInt16 qClass, UIntl6 qType,

char* buf, size_t buflen, void** argv, size_t argvlen,
OTFlags flags);

C++ INTERFACE
OSErr TInternetServices::Query(char* name, UInt16 qClass, UInt16 qType,
char* buf, size_t buflen, void** argv, size_t argvlen,
OTFlags flags);

DESCRIPTION

Parameters Before After
Call Call

x

ref (C only)
name
qClass
qType

buf

buflen
argv
argvlen
flags

/
/
/
/
()
/
)
/
/

X 00X X X X X

OTInetQuery is the most general interface to the Domain Name Resolver (DNR). Using
OTlInetQuery, it is possible to ask the DNR to query Domain Name Servers for information
assoicated with any class and type.

Note that for several basic query types, using the simplied interfaces which follow (e.g.
StringToAddress) may be easier to program. The information obtained will be the same using
either call, although in some cases the simplified interfaces limit the maximum number of
answers which can be returned.

OTlInetQuery takes a character string (name) and two numeric identifiers (qClass and qType)
and returns any information associated with that name for the give class and type which can be
obtained from the configured name servers.

The flags field should be set to 0 so future enhancements to this interface will not break existing
applications.

TCP Dev Note, Rev 1.1b14 1/18/96 page 24
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Function Descriptions

The caller passes in a buffer (buf) and its length (buflen) where one or more answers can be
returned.

Argv and argvlen are optional parameters. If used, argv is the address of an empty pointer
array of length argvlen. If provided, OpenTransport uses this buffer to return pointers to the
location of individual answers written into buf. For example, if a query receives 3 answers, and
the caller passed in an arvlen of 5, argv[0] would be a pointer to the first answer in buf, argv[1] a
pointer to the second answer, argv[2] a pointer to the 3rd answer, and argv[3] would be null.
Whether argv and argvlen is used or not, the answers returned in buf remain the same.

If OTInetQuery is called synchronously, it will not return until the call completes.

If OTInetQuery called asynchronously, it will return immediately; the client's completion
notifier will be called with a T_DNRQUERYCOMPLETE event when the call completes.
Asynchronous mode is preferred. When using asynchronous mode, the client must not touch the
buf or argv structures prior to completion of the routine.

OTlInetQuery works with both known and unknown query classes and types. Using the Inet
query class and known query types, compressed answers are expanded prior to filling in the
return buffer. Answers which are resource records of unknown class and type are copied into the
return buffer unparsed. No expansion is done because it is assumed that DNS compression is not
used.

Currently, only answers of type PTR and CNAME (name-to-address translations) are cached by
OpenTransport. Also, OpenTransport does not currently use this cached information to resolve
address-to-name translations (because this defeats some existing server load balancing schemes
in operation today).

RESULT CODES

KOTNoError Call completed successfully.

kOTNoDataErr No data available - either timeout, or name exists but requested
information does not.

kOTBadNameErr Bad name - either name does not exist in domains examined, or bad
syntax.

KENOMEMErr Open Transport TCP memory depletion.

SEE ALSO

StringToAddress, AddressToName, Sysinfo, MailExchange

Function Descriptions

StringToAddress

FUNCTION
StringToAddress Returns information which the DNR can determine based on a
string which normally contains a host name.
C INTERFACE
OSErr OTlInetStringToAddress(InetSvcRef ref, char* string, InetHostInfo
*hinfo);
C++ INTERFACE
OSErr TInternetServices::StringToAddress(char* string, InetHostInfo *hinfo);
DESCRIPTION
Parameters Before After
Call Call
ref (C only) X /
string X /
hinfo X (x)

Uses the Domain Name Resolver (DNR) to take a character string which contains a host name,
a partially qualified domain name, a fully qualified domain name, or an Internet address in dot
format and, if possible, fill in the InetHostInfo structure with the host's canonical name and up
to ten associated IP addresses. If less than 10 addresses are found for a given host, additional
slots in the hinfo address array are filled with 0s. The caller must allocate the InetHostInfo
structure prior to the call.

If OTInetStringToAddress is called synchronously, it will not return until the call completes.

If OTlInetStringToAddressis called asynchronously, it will return immediately; the client's
completion notifier will be called with a T_DNRSTRINGTOADDRCOMPLETE event when
the call completes. Asynchronous mode is preferred. When using asynchronous mode, the client
should not touch the InetHostInfo structure prior to completion of the routine. The fourth
parameter passed to the client's completion notifier is a pointer to the InetHostInfo structure
that was resolved; this enables client software to determine which of multiple simultaneous
outstanding requests has been completed.

StringToAddress will not resolve an input character string in the form of a dot-notation Internet
address to its domain name; it will simply translate the address into InetHost format. Do not
use StringToAddress to resolve an address to its domain name; use instead AddressToName,
described below.

TCP Dev Note, Rev 1.1b14 1/18/96 page 25

Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

TCP Dev Note, Rev 1.1b14 1/18/96 page 26
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Function Descriptions

RESULT CODES
kOTNoError Call completed successfully.
kOTNoDataErr No data available - either timeout, or name exists but requested
information does not.
kOTBadNameErr Bad name - either name does not exist in domains examined, or bad
syntax.
KENOMEMErr Open Transport TCP memory depletion.
SEE ALSO

Query, AddressToName, Sysinfo, MailExchange

TCP Dev Note, Rev 1.1b14 1/18/96 page 27
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Function Descriptions

AddressToName

FUNCTION
AddressToName Tries to determine information about the host associated with
an IP address.
C INTERFACE
OSErr OTInetAddressToName(InetSvcRef ref, InetHost host, InetDomainName
name);
C++ INTERFACE
OSErr TInternetServices::AddressToName(InetHost host, InetDomainName name);
DESCRIPTION
Parameters Before After
Call Call
ref (C only) X /
host X /
name X (x)

Uses the DNR to try to determine the canonical domain name of the host associated with an IP
address. The caller must allocate the InetHostInfo structure prior to the call.

If OTInetAddressToName is called synchronously, it will not return until the call completes.

If OTInetAddressToName is called asynchronously, it will return immediately; the client's
completion notifier will be called with a T_DNRADDRTONAMECOMPLETE event when the
call completes. Asynchronous mode is preferred. When using asynchronous mode, the client
should not touch the InetHostInfo structure prior to completion of the routine. The fourth
parameter passed to the client's completion notifier is a pointer to the InetHostInfo structure
that was resolved; this enables client software to determine which of multiple simultaneous
outstanding requests has been completed.

OTlInetAddressToName does not currently support resolving addresses that are not subnetted to
octet boundaries. Use OTInetQuery instead.

Do not use AddressToName to resolve a host name or domain name to its Internet address; use
instead StringToAddress, described above.

Note, currently OpenTransport neither caches AddressToName translations nor resolves
AddressToName queries from cached answers from previous StringToAddress translations.
This is because doing so defeats some existing server load balancing schemes in operation today.
In the future, OpenTransport will cache AddressToName translations, but for now applications

TCP Dev Note, Rev 1.1b14 1/18/96 page 28
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Function Descriptions

which depend on this feature (e.g. Web page servers) should maintain their own cache for best

performance.

RESULT CODES
KOTNoError
kOTNoDataErr
kOTBadNameErr

KEINVALErr
KENOMEMErr

SEE ALSO

Call completed successfully.
No data available - timeout.

Bad address - either address does not exist in domains examined, or
bad syntax.

An address of invalid size was passed in.
Open Transport TCP memory depletion.

Query, StringToAddress, Sysinfo, MailExchange

TCP Dev Note, Rev 1.1b14

1/18/96 page 29

Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Function Descriptions

Sysinfo

FUNCTION

Syslnfo Returns details about the system whose name is being queried.
C INTERFACE

OSErr OTlInetSysInfo(InetSvcRef ref, char* queryName, InetSysinfo* sysinfo);

C++ INTERFACE

OSErr TInternetServices:SysInfo(char* queryName, InetSysinfo* sysinfo);
DESCRIPTION
Parameters Before After
Call Call
ref (C only) X /
queryName (x) /
sysinfo X (x)

Uses the DNR to attempt to find detailed information about a host's CPU and operating
system. The caller passes in a name and a pointer to an InetSysinfo structure it has allocated.

If OTlInetSysInfo is called synchronously, it will not return until the call completes.

If OTInetSyslInfo is called asynchronously, it will return immediately; the client's completion
notifier will be called with a T_DNRSYSINFOCOMPLETE event when the call completes.
Asynchronous mode is preferred. When using asynchronous mode, the client should not touch the
InetSysInfo structure prior to completion of the routine. The fourth parameter passed to the
client's completion notifier is a pointer to the InetSysinfo structure that was resolved; this
enables client software to determine which of multiple simultaneous outstanding requests has
been completed.

RESULT CODES
kOTNoError Call completed successfully.
kOTNoDataErr No data available - either timeout, or name exists but requested
information does not.
kOTBadNameErr Bad name - either name does not exist in domains examined, or bad
syntax.
KENOMEMErr Open Transport TCP memory depletion.
SEE ALSO

Query, AddressToName, Sysinfo, MailExchange

TCP Dev Note, Rev 1.1b14 1/18/96 page 30
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Function Descriptions

MailExchange

FUNCTION

C INTERFACE

MailExchange Returns mail exchange and preference information about the
system being queried.
OSErr OTInetMailExchange(InetSvcRef ref, char* queryName, UInt16* count,

InetMailExchange* mxinfo);

C++ INTERFACE

OSErr TInternetServices::MailExchange(char* queryName, UInt16* count,
InetMailExchange* mxinfo);

DESCRIPTION

Parameters Before After

Call Call
ref (C only) X /
queryName (x) /
mxinfo X (x)
count X (x)

Uses the DNR to attempt to obtain mail exchange and preference information associated with a
name. The client allocates a contiguous array of one or more InetMailExchange structures. A
pointer to the number of elements in this array and a pointer to the first element are passed in.
OTlInetMailExchange wi in as many of the InetMailExchange structures as it can, and will
set count to the number of structures it has filled in.

If OTInetMailExchange is called synchronously, it will not return until the call completes.

If OTInetMailExchange is called asynchronously, it will return immediately; the client's
completion notifier will be called with a T_DNRMAILEXCHANGECOMPLETE event when
the call completes. Asynchronous mode is preferred. When using asynchronous mode, the client
should not touch the InetMailExchange array prior to completion of the routine. The fourth
parameter passed to the client's completion notifier is a pointer to the first element of the
InetMailExchange array; this enables client software to determine which of multiple
simultaneous outstanding requests has been completed.

RESULT CODES

kOTNoError Call completed successfully.

kOTNoDataErr No data available - either timeout, or name exists but requested
information does not.

kOTBadNameErr Bad name - either name does not exist in domains examined, or bad
syntax.

KENOMEMETrr MacTCP memory depletion.

SEE ALSO

Query, StringToAddress, AddressToName, InetMailExchange

Function Descriptions

TCP Dev Note, Rev 1.1b14 1/18/96 page 31

Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

LookupName

FUNCTION
LookupName Provides an Open Transport Mapper Library interface to the
DNR's string-to-address resolution function.
C INTERFACE
OSErr OTLookupName(MapperRef ref, size_t maxcnt, TLookupRequest* request,

TLookupReply* reply);

C++ INTERFACE

OSErr TMapper::LookupName(size_t maxcnt, TLookupRequest* request,
TLookupReply* reply);

DESCRIPTION
Parameters Before After
Call Call
ref (C only) X /
maxcnt X /
request->udata.maxlen / /
request->udata.len X /
request->udata.buf (x) /
reply->udata.maxlen X /
reply->udata.len / X
reply->udata.buf (?) (x)
reply->rspcount / X

OTLookupName is used to map a name to an InetAddress. The name is a character string
whose format is xxx[:yy] where xxx is a hostname, a partially qualified domain name, a fully
qualified domain name, or an Internet address in standard Internet dot format, and the optional
yy is a TCP or UDP port number. OTLookupName returns an InetAddress, described earlier in
this document, in reply->udata.buf. This InetAddress may be used directly in all appropriate
Open Transport TCP calls requiring an InetAddress, such as Connect() and SndUData(). Should
no port be entered, the returned InetAddress will contain a port number of 0 (zero). Only a single
InetAddress is returned, regardless of how many addresses are known for a given name
(multihomed hosts).

If the name passed to OTLookupName is in the form of a dot format Internet address, the
InetAddress returned by OTLookupName will simply contain the hexadecimal values of that
address plus the input port number.

While the format of a TCP/IP "name" may appear similar to that used by AppleTalk, there
are distinct differences because the concepts do not map congruently from one to the other. The
AppleTalk format is xxx:yy@zzz, where xxx is an object, yy is its type, and zzz is the
AppleTalk zone where it's located. The Domain Name Service has no concept of "type" or

TCP Dev Note, Rev 1.1b14 1/18/96 page 32
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Function Descriptions

"zone", and the "objects" it deals with are primarily individual computers; hence, the object to
be resolved is the name of a computer. Substituting port number for "type" results in a
name/address format that conforms with standard Internet addressing practice: port 25 on
foo.apple.com is represented as foo.apple.com:25, or as 17.202.99.99:25. Using this format and
construction retains the AppleTalk Mapper look and feel while remaining true to Internet
addressing formats.

If OTLookupName is called synchronously, it will not return until the call completes. If it is
called asynchronously, it will return immediately and the client's notifier will be called when
the call completes. Asynchronous mode is preferred.

Please refer to the Open Transport Client Developer Note for specific details on how to open a
DNR Mapper endpoint and how to use it.

OTLookupName is the only Open Transport Mapper Library call supported by the DNR. Calls
to OTRegisterName and OTDeleteName will return kOTNotSupportedErr.

RESULT CODES

KOTNoError Call completed successfully.

kOTNoDataErr No data available - either timeout, or name exists but requested
information does not.

kOTBadNameErr Bad name - either name does not exist in domains examined, or bad
syntax.

KENOMEMErr MacTCP memory depletion.

kOTNotSupportedErr Unsupported call.

SEE ALSO

OpenMapper, CloseProvider (Open Transport Client Developer Note)

TCP Dev Note, Rev 1.1b14 1/18/96 page 33

Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Appendix A: Preferences format

Appendix A: Preferences format

WARNING:

The preference format is provided for debugging purposes only.

This format is not part of the supported features of Open Transport.

It will change in a future release of Open Transport.

Should you decide to rely on any information in this appendix, be prepared
to have to update your software when this format changes.

Configuration file format

The preferences file contains one or more configurations. A configuration is a set of
resources that share the same resource id (= 128).

The preferences file also contains some global information. Resource ids < 128 are

used to keep these global settings. For instance, the resource 'ccfg’ #1 indicates
currently active configuration.

Global information resource types

‘ccfg’ (id 1) indicates the currently active configuration
type 'ccfg' // always id 1
{
i nt eger; /'l Resource id of the current config (2128)
h

'wpos' (id 128) postion of the main window

type 'wpos' I/ always id 128

{
i nt eger; /1 window s top left corner
i nt eger; /1 gl obal coordinates

h

Configuration resources types

All resources using the same resource id (= 128) are part of the same configuration.

TCP Dev Note, Rev 1.1b14 1/18/96 page 34
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

‘cnam’

‘cvrs'

'dtyp’

'pwrd’

‘port’

‘prot’

Appendix A: Preferences format

the name of this resource indicates the name of the configuration

type ' cnam

{
/1 enpty resource
/'l the name of the resource is used as
/1 configuration nanme

}s

format version of this configuration. Alaways 1 for OT 1.0/1.1

type 'cvrs'

{
b

i nt eger; /'l always 1 for ot 1.0 and 1.1

OT device type of the selected port

type 'dtyp’
{

b

i nt eger; /1 OT device type for the selected port

password that protects access to the Administration mode for this
configuration

type 'pwd'
{

pstring; !/ password - "encrypted"

!/ enpty string neans not protected

}s

user readable name of the currently selected port

type 'port’
{

b

pstring;

OT name of the protocol used by this configuration

type 'prot’
{

TCP Dev Note, Rev 1.1b14

1/18/96 page 35
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

'ihst’

'irte’

"Titf

Appendix A: Preferences format

string; /1 "tcp" for TCP/IP, "ddp" for AppleTal k

index of primary interface (always 1 in OT 1.0/1.1) and implicit domains
search list definiti

type 'ihst'
{
byt e; Il primary interface index
/1 (always 1 for OT 1.0 / 1.1)
pstring; Il inplicit search list starting point
/1 (local domain nane),
pstring; /1 inplicit search list ending point

/1 (adm n donmin nane)

routing table (not used in OT 1.0 / 1.1)

type 'irte'

{
integer = $$Count Of (routeList); // nunber of routes
wi de array routelList

{
hex string[4]; // sub net mask
hex string[4]; // address of router to use
bool ean; /1l route local?
al i gn word;
bool ean; /1l route host?
al i gn word;
)

}

list of interface configurations (only one entry for OT 1.0)

type "iitf’
{

/1 nunmber of interfaces
/1 (1 for OT 1.0/1.1)

integer = $$Count Of (i nterfacesList);

wi de array interfacesList

{
byt e; /1 interface active flag
hex string[4]; // |P address
hex string[4]; // sub net nask
pstring; /1 Macl P server zone nane
/1 (if DDP is used as port)
pstring[35]; /1 interface OT style name
/1 (e.g. ENETO for built-in Ethernet)
pstring[31]; /1 nodul e name (e.g. ENETdrvr for Ethernet)
hex string[4]; // Framinig flags for the port (use 802.3)
I

TCP Dev Note, Rev 1.1b14

1/18/96 page 36
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

'idns'

'isdm’

'stng’

Appendix A: Preferences format

list of name server addresses

type 'idns'

{
i nteger = $$Count Of (nameServers); /Il # of search donmin nanes
wi de array searchDomai ns

{
I

hex string[4]; // nane server address

list of search domain names. These domains are searched after those in
the implicit search list (if any)

type 'isdm

{
i nteger = $$Count Of (searchDomains); // # of search donain names
wi de array searchDomai ns

{
}s

pstring; // domain name

}s

indicates in the corresponding item has been locked (true = locked, false =

unlocked) in the administration mode

type 'stng'
{
fill word; // usused
bool ean; /1 connect via |ock
al i gn word;
bool ean; /1 Appl eTal k (Macl P) configuration menu | ock
al i gn word;
bool ean; /'l Appl eTal k (Macl P) zone | ock
al i gn word;
bool ean; /1 1P address |ock
al i gn word;
bool ean; /1 dommin name | ock
align word;
bool ean; /1 subnet nmask |ock
align word;
bool ean; /1 routers list |ock
align word;
bool ean; /1 nane servers list |ock
align word;
bool ean; // admi n donmain | ock
align word;
bool ean; /'l search domains |ist |ock
align word;
fill word; // usused

TCP Dev Note, Rev 1.1b14 1/18/96 page 37

Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Appendix A: Preferences format

bool ean; /1 use 802.3 | ock

‘ulvl’ indicates the current user level
type "ulvl'
{
i nteger kBasichMde = 1,
kAdvancedMbde,
kAdmi ni st rati oMode;
'unld' indicates if the stack is active or inactive and it it is unloaded when not
used
type "unld'
{
integer kActiveLoadedOnDermand = 1,
kAct i veAl waysLoaded,
kl nactive;
I
TCP Dev Note, Rev 1.1b14 1/18/96 page 38

Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Applendix B: MDEVs table format

Appendix B: MDEVs table format

WARNING:

The MDEYV table format is provided for debugging purposes only.

This format is not part of the supported features of Open Transport.

It will change in a future release of Open Transport.

Should you decide to rely on any information in this appendix, be prepared
to have to update your software when this format changes.

MDEYV table format

MDEVs that are recognized by OpenTransport are described in the resource ‘'mdvm’
id #128 located inside the "Open Tpt Internet Library" file in the "Extensions"
folder.

Another copy of this table is present in the Open Transport installer script to allow
the installer to preserve the selected MDEV when converting the MacTCP
preferences.

This resource is a table that contains one entry per MDEV.

Each entry contains:
- the signature of the MDEV file
- the name to display in the "Connect via" popup menu

- its type (PPP, SLIP or other) used to display the appropriate "Configure"
popup menu

- a unique id used internally to identify the MDEV (this should be index of
the entry in the table)

- flags that indicate what the MDEV expects from MacTCP.

OpenTransport may not be able to support MDEVs that have requirements beyond
those supported through the flags.

To have your MDEYV recognized by Open Transport append an entry to the table and
make sure the id you use is not used by any other MDEYV in the table and that the
flags are correctly set.

TCP Dev Note, Rev 1.1b14 1/18/96 page 39
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Applendix B: MDEVs table format

type ' mdvni

{
integer = $$Count OfF (MDEVTabl el ten);
array MDEVTabl eltem

{

cstring[64]; /1 Nanme to display in the "Connect Via" popup.
/1 Usually the nane that was used in MacTCP

int; /1 *UN QUE* MDEV id.
/'l Use the index of the entry in the 'ndvm table

literal longint; // NDEV file creator

i nt eger /1 NDEV type. Used to display the configuration
/1 methods in the "Configure" popup
kTypeCt her, // NDEV is not SLIP nor PPP.
kTypeSLI P, /1 NDEV is SLIP
kTypePPP; /1 NDEV is PPP.

Bool ean /1 Controls |oading of the MDEV
nolLapl ni t At SysBoot, // MDEV doesn't need to be | oaded

/1 at boot time
needLapl ni t At SysBoot ;// MDEV needs to be | oaded at
/'l boot tine

Bool ean; /'l reserved

Bool ean; /'l reserved

Bool ean; /'l reserved

align word;

b
b
TCP Dev Note, Rev 1.1b14 1/18/96 page 40

Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

