

QuickTime
for Java
Wiliam Stewart
Manager, Software Architect
QuickTime for Java

QuickTime
• A multimedia “engine”

and data format—Movie
• Cross-platform C API
• Support for a wide variety

of media formats

Java
• An object-oriented language
• A cross-platform run-time (Java VM)
• A cross-platform execution model
• Security model for

downloadable execution

QuickTime for Java
• Combines the benefits of

both technologies
• QuickTime provides graphics,

sound and media capabilities
• Java provides a cross-platform application

framework and execution model

Runtime Requirements
• QuickTime 3 or better
• Java 1.1 (or better) compliant VM

• Mac OS Macintosh Runtime
for Java (MRJ) 2.1

• Win32 Java Runtime Environment (JRE)

What Is It?
• A set of Java classes that represent

most of the QuickTime API
• A framework that provides services

to developers:
• Java integration

• Spaces and Controllers

• Animation services

QuickTime Applets
• Requires the use of an appropriate

Java VM
• Win32:

• Required to use Java Plug-in from Sun

• Mac OS:
• Use MRJ Plug-in with Netscape,

MRJ with Internet Explorer

Demo
QuickTime Streaming Applet

Creating the Movie
• Any QuickTime content can be presented :

myQTCanvas = new QTCanvas ();
add (myQTCanvas);
QTDrawable drawer =
 QTFactory.makeDrawable (myURL);
myQTCanvas.setClient (drawer, true);

Capabilities
• For presentation of QuickTime
• For using QuickTime to create

and edit movies
• Capturing media using QuickTime

capabilities
• Used for movie authoring, applets,

image processing and music tools

Presentation
• Provides a runtime environment for the

presentation of QuickTime content
• Allows applets to provide more complex

interactions with QuickTime movies

Demo
Movie Presentation
and Callbacks

QT VR Callbacks (1)
• Installing Callbacks to interact with nodes:

Track vrTrack = myMovie.getQTVRTrack (1);
QTVRInstance vr =

new QTVRInstance (vrTrack, myMC);

vr.setEnteringNodeProc (new EnteringNode(), 0);
vr.setLeavingNodeProc (new LeavingNode(), 0);
vr.setMouseOverHotSpotProc (new HotSpot(), 0);

QT VR Callbacks (2)
• Installing Callbacks to interact with hot spots:

class EnteringNode implements
QTVREnteringNode {

 public int execute (QTVRInstance vr, int nodeID) {
 //… do enter node actions
 return 0;
 }
}

Spaces and Controllers
• Provides an architecture that uses

services of QuickTime
• A runtime presentation of both

groups of QuickTime objects and
an animation engine

QTDisplaySpace
• Spaces that are concentrated in the

presentation of media
• DirectGroup

• Allows groups of QuickTime objects
to be presented and controlled

• Compositor
• An animation and compositing service

Demo
Composited Effects

Constructing a Space
• Members of a space present their data

myGroup.addMember (myJavaText);

• Controllers of a space control members
myController = new SWController

(myResponder, true);

myGroup.addController (myController);

Animation
• QuickTime Sprites and SpriteWorlds

• Provides a powerful
compositing capability

• QuickTime TimeBases
• Provides the capability to

construct animations

Demo
DraggingSprites

Model-View-Controller
•Separate the model (data) from its

presentation and control aspects
• Allows multiple views of the same data

• Separates presentation from control

• Data-hiding, abstraction and code reuse

• Improve both generality and
maintainability of classes

MVC Diagram

Custom Controllers
• Applications can define customised

controllers for interacting with Movies
• Several examples in the QuickTime

for Java SDK

Demo
KeyController

KeyController
• Add controller same as preceding
• Controller will be “wired-up” to Java

event model by the Space
• Application just defines the actions:
public void keyPressed (KeyEvent e) {
 switch (e.getKeyCode()) {
 case KeyEvent.VK_UP:

player.setTime (player.getDuration());
...

DynaMap
John Burkey

DynaMap (1)
• Uses public-domain data bases as

the source of the map
• Generates pixel data based on this

terrain data
• QuickTime services used for

rendering terrain
• Provides multiple views of same

model data

DynaMap (2)
• QuickTime also used for UI elements
• Use of controllers to drag UI elements
• Enables applications a simple but powerful

API to build complex UI

Demo
DynaMap

Map Spaces
DirectGroup

Map-> Compositor

Slider ->
Compositor

Controls -> Compositor

Button -> Sprite

TimeLine -> QTImageDrawerMapView ->
Compositor

Events ->
Compositor

Q&A
http://www.apple.com/quicktime/qtjava/

Book:
QuickTime for Java
Developer’s Reference

JavaOne Gold Sponsors

Think different.™


