
 MACRO TUTOR
By Gordon McComb

About Macro Tutor
Macro Tutor is a short and concise introduction to WordPerfect 5.1 macros. The

material in this document is drawn from the book WordPerfect 5.1 Macros and
Templates, by Gordon McComb (published by Bantam Computer Books).

This document is copyright 1990, by Gordon McComb. Macro Tutor is not not
distributed as Shareware; you don't need to worry about paying a registration fee just to
read it. However, the document is copyrighted, and cannot be sold (other than for a
nominal distribution charge) or included in a commercial product without the express
written consent of the author.

More About WordPerfect 5.1 Macros and Templates
WordPerfect 5.1 Macros and Templates, published by Bantam Computer Books,

is a compendium of ideas, tricks, and shortcuts for using WordPerfect's macro feature.
The book contains 400 ready-to-run macros and other files, including a complete letter
writing system with 88 pre-written business letters. All macros and support files are
provided on two diskettes bundled with the book. WordPerfect 5.1 Macros and
Templates is written for the intermediate to advanced WordPerfect user, but does not
require previous knowledge of the macro language.

WordPerfect 5.1 Macros and Templates is divided into 21 chapters and three
appendices. Macro Tutor is an adaptation of portions of the first four chapters.

PART ONE -- MACRO BASICS
Chapter 1 -- Macro Primer
Chapter 2 -- Adding Power to Macros
Chapter 3 -- Editing Macros
Chapter 4 -- Learning the Macro Programming Language
Chapter 5 -- Making More of Macros
Chapter 6 -- Enhancing Keyboard Recorded Macros
Chapter 7 -- Creating Keyboard Layouts
Chapter 8 -- Merging With WordPerfect
Chapter 9 -- Creating Menu Systems

PART TWO -- MACRO APPLICATIONS
Chapter 10 -- Letters, Memos, and Correspondence
Chapter 11 -- Law Practice
Chapter 12 -- Desktop Publishing
Chapter 13 -- Invoices, Statements, and Receipts
Chapter 14 -- Mailing Labels and Envelopes
Chapter 15 -- Resumes
Chapter 16 -- Document Preparation
Chapter 17 -- Macro Potpourri

PART THREE -- GOING FURTHER WITH MACROS
Chapter 18 -- Macro Strategies
Chapter 19 -- For Pros Only: Advanced Techniques
Chapter 20 -- Macro Debugging

PART FOUR -- THE LETTER MAKER MACRO SYSTEM
Chapter 22 -- Using Letter Maker

Appendix A -- How to Use the Applications Disk
Appendix B -- Disk Contents
Appendix C -- Macro Codes

WordPerfect 5.1 Macros and Templates, by Gordon McComb, is available at
most book and software stores, including B. Dalton, Waldenbooks, Software Etc., and
Egghead Software. The book can also be ordered directly from the author, for $39.95
postpaid (California residents please add 6.75% sales tax). Send check or money order
to:

 Gordon McComb
 2642 Hope St.
 Oceanside, CA 92056

 CHAPTER 1
MACRO PRIMER

Imagine turning on a tape recorder in your computer to memorize everything you
do on the keyboard. Press a series of keys to save a document on your hard disk, for
example, and the computer remembers each key you pressed. Play back the
recording, and the computer mimics your actions. That's the idea behind WordPerfect
macros -- memorizing your keystrokes and playing them back at the touch of a button.
Of course, macros go way beyond this simple definition. You will learn all about
macros, and the various functions they can perform, throughout the course of this book.

For the sake of simplicity, WordPerfect macros can be divided into two
categories:
 . Keyboard recorded, where the keys you press are recorded in a special macro
file. You play back the file and WordPerfect repeats the original recording.
 . Programmed, where you use a programming language to instruct WordPerfect
on what to do.

In this chapter, you'll learn what keyboard recorded macros are and how they
are used. This chapter serves as an introduction only; more advanced macros
techniques are covered in the following chapters.

WHEN TO USE MACROS
You can use macros for a wide variety of tasks. The way you use macros will

depend on your application, and how often you do the same types of jobs. In any case,
macros are used to simplify WordPerfect and cut down on the amount of typing you do.
You can define a macro to perform any task you would normally perform with
WordPerfect, but you should reserve macros for only those chores that you do on a
fairly regular basis.

As a rule of thumb, you don't need the macro if it isn't used more once or twice a
week (assuming you sit behind the computer every day). Unless the series of
keystrokes is very long and involved, you're better off manually tapping it out on the
keyboard. Some exceptions to this "rule" apply, however, particularly if WordPerfect is
used by persons with little or no computer training.

Using macros falls into four distinct categories:
 . To automate command key sequences.
 . To memorize passages of commonly used text.
 . To simplify a series of formatting instructions.
 . To program WordPerfect for use by others.

Let's take a closer look at each category and examine the special relationship
each has with WordPerfect macros.

To Automate Command Key Sequences
WordPerfect employs a complex structure of menus, commands and options

using the computer's function keys. Some of the commands, such as underlining,
document saving, and spelling, provide only one or two options and their simplicity

does not require macros.
Other commands, however, have several layers of menus and using them

requires you to choose the functions you want from a list that appears on the screen. If
you find yourself choosing the same commands and options time and time again, you
can automate the process by recording the keys as a macro.

To Memorize Passages Of Commonly Used Text
One common use of WordPerfect macros is memorizing passages of text for

later playback. Instead of tapping out "WordPerfect" each time you write it, you record
it as a macro and recall it at touch of a key. You can do the same thing with other text
entries, including your name and address, telephone number, company name, and
common phrases such as "Sincerely," "I look forward to your prompt reply" and "You
just won $10,000 in our 'Welcome to the Neighborhood' sweepstakes!"

The length of the passage of text is unlimited -- although very long text blocks
are better saved as a merge document. You can use macros to store "boilerplate" text
for use in contracts, legal briefs, reply letters, and other documents. Instead of typing
commonly used words and phrases, you record the text as a macro and insert them in
your documents at any point you desire. Boilerplating allows you to customize your
documents while saving time and effort.

An often overlooked advantaged of using macros to store frequently used text is
that, because the characters are stored on disk in the exact form that you typed them,
your accuracy and spelling improves. It's easy to overlook typographical errors in the
return address, salutation, or closing of a letter. And imagine how embarrassing it is to
end your letter "Sincereky, Rogerr Smth," instead of the proper "Sincerely, Roger
Smith." Of course, the spelling checker built inside WordPerfect may catch some or all
of these errors, but you may forget to check the letter before mailing it out. Perhaps a
more serious error is entering the wrong return address, social security number, or
phone number, items that the spelling checker does not review.

To Simplify a Series Of Formatting Instructions
WordPerfect's default format settings are useful for routine letter writing, but for

more advanced documents you need to alter the format characteristics. Every element
of appearance of WordPerfect documents is controlled by one or more of the
computer's function keys. To change the margins, for example, you press:
 . [Shift]-[F8]
 . Option 2
 . Option 7

You then enter the desired right and left margins. Depending on the margin
settings you want, this operation requires a minimum of 10 keystrokes (including
pressing the [Enter] key to accept the changes and return from the menus).

Granted, the keystrokes necessary to change the margin settings are not overly
complicated, so if you modify the margins only occasionally, you can continue to plunk
away manually at the keyboard. But if you find yourself frequently switching between
common margin settings, you'll save a great deal of time by encoding the changes as a
set of macros. With standard margin settings stored as a macro, you can reduce the

number of keystrokes to two -- the [Alt] key and a single letter.
Some document types require you to constantly change the margins. If you are

writing movie scripts, for example, you need different margin and tab settings for dialog
and action sections. In the typical one hour TV script, you may change margins two or
three hundred times. That equates to two or three thousand keystrokes that never
appear in your script, and aren't likely to help win you that Emmy award. By recording
the various margins as macros, you can quickly recall the proper settings by pressing
just a few keys.

To Program WordPerfect For Use By Others
Not everyone is a whiz at WordPerfect. If others in your office use WordPerfect,

and they have little or no experience with it, you can program the software with macros
to make it easier to use. A good example is creating and printing a mailing list.
Normally, this requires fairly in-depth knowledge of WordPerfect. But by creative use of
macros, you can program the software to prompt the user for the desired information
and nearly automate the entire process.

Even if you or others in your office are familiar with Wordperfect, macros can be
used to simplify complicated tasks, particularly those that you may not often do. The
macro stores all of the commands needed to complete a procedure, so you don't have
to remember which buttons to press.

BASIC STEPS
There are five basic steps to defining a macro.

 . Step 1: Press [Ctrl]-[F10] to begin the macro definition.
 . Step 2: Name the macro in any of the following ways explained in the section
below.
 . Step 3: Describe the macro. Enter a line of text to describe the macro (up to 39
characters). The comment is visible only when editing the macro. The prompt Define
Macro now appears on the screen.
 . Step 4: Define the actual macro by entering the keystrokes you want recorded.
While defining the macro, the prompt Macro Def flashes on the screen.
 . Step 5: Press [Ctrl]-[F10] once more to complete the macro definition.

While defining a macro, WordPerfect will execute your commands. This helps
you better follow the course of the macro, but you may also inadvertently change your
document in way you don't want. You can create macros without disturbing current
work by switching to Doc 2 (press the Switch key). After you complete the macro,
switch back to the main document or close Doc 2 (press Exit, N, N.)

TYPES OF MACROS
WordPerfect creates four types of macros:

 . Alt-key macros
 . Named macros
 . Remapped-key macros
 . Temporary macros

Alt-key Macro
WordPerfect can store up to 26 Alt-key macro definitions -- one for each letter

key. They are termed Alt-key macros because of the way they are recalled: you press
the [Alt] key and a letter key.

To define an Alt-key macro:
Key Sequence What it Does

1. [Ctrl]-[F10] Starts macro recording.
2. [Alt]-{key} Names macro with Alt-key combination (such as

[Alt]-A or [Alt]-F).
3. {description} Describes the macro.

[Enter]
4. {macro steps} Defines the steps of the macro (enter

keystrokes to be recorded here).
5. [Ctrl]-[F10] Stops macro recording; saves macro file on current

default disk.

To replay an Alt-key macro, press the [Alt] key and the desired letter key
simultaneously. For example, if you recorded a macro that changes the right margin
from 74 to 55 as [Alt]-M, depress the [Alt] and M keys together.

Alt-key macros are stored on disk and can be accessed any time, even during
subsequent sessions with WordPerfect, regardless of the document you are editing
(with some word processors, macros are tied to the current document). Alt-key macro
files can be copied, deleted, and manipulated like any other WordPerfect file.

WordPerfect automatically names the Alt-key macro file for you. You can easily
identify Alt-key macro files by their name and .WPM extension (macros made with
version 4.2 of WordPerfect, which cannot be used in version 5.1 without conversion,
have the extension .MAC). The name is always "ALT" plus a single letter key.

Examples:
ALTA.WPM -- for the [Alt] and A key combination.
ALTD.WPM -- for the [Alt] and D key combination.

Named Macro
The Alt-key macros are the easiest to use because you can replay them by

pressing just two keys (the [Alt] key and a letter key). You should record the most
common procedures as Alt-key macros. But any serious WordPerfect user will quickly
run out of Alt-key combinations. As an alternative, you can save macros under a name
you provide. Once saved, you recall the macro by pressing [Alt]-[F10], the Macro key,
then entering the name of the macro you want.

To define a named macro:
Key Sequence What it Does

1. [Ctrl]-[F10] Starts macro recording.

2. {name} Names macro using any name
[Enter] with two to eight characters.

3. {description} Describes macro.

[Enter]

4. {macro steps} Defines the steps of the macro (enter
keystrokes to be recorded here).

5. [Ctrl]-[F10] Stops macro recording; saves macro file on disk.

To replay a named macro:
Key Sequence What it Does

1. [Alt]-[F10] Execute play back macro command.
2. {name} Defines name of macro to use.
3. [Enter] Initiates macro playback.

As with Alt-letter macros, named macro files can be identified by their .WPM
extension.

Examples:
SALUTE.WPM -- for a salutation macro for use at the start of letters.
LET-HEAD.WPM -- for a letterhead macro.
MERGE.WPM -- for a merge print macro.

Macro naming conventions are the same as with DOS files. Macro names may
contain from one to eight characters. You may use any combination of letters or
numbers in the file name as well as most symbols except the following:
 . Any control character, including Escape and Delete.
 . A space.
 . The characters ^ + = / \ [] " ; : ? * < > |
 . A period (WordPerfect automatically adds the period and WPM file extension;
you don't need to do it yourself.

Remapped-key Macros
WordPerfect allows you to reassign (or "remap") nearly every key on the

keyboard. For example, you can change the standard "QWERTY" keyboard layout to
the Dvorak layout by re-identifying the alphabet keys. The re-assigned keys may
include multiple keystrokes. For instance, the [Shift]-[F7] key, which normally calls up
the print menu, might be re-mapped to call up the Print menu, select the Draft Quality
option, then print the entire document. In this way, the remapped keys behave like
macros. In fact, you edit and program the keys the same way as you do macros.

Keyboard remapping uses the keyboard layout option in the Setup menu. The
exact procedure for key remapping, which is an advanced topic, is detailed in Chapter
7.

Temporary Macro
Not all macros need to be stored for future use. You may have occasion to

create a temporary macro that you use for the current writing and editing session only.
The advantage of a temporary macro is that you won't clutter up your disks with a
macro you may create and use only on one special occasion.

WordPerfect 4.2 allowed you to make up to 27 temporary macros, but version
5.1 permits only one. Temporary macros are assembled in nearly the same manner as
permanent Alt-key macros. To define a temporary macro:

Key Sequence What it Does
1. [Ctrl]-[F10] Starts macro recording.

2. [Enter] Creates temporary macro.
3. {macro steps} Defines the steps of the macro (enter keystrokes to

be recorded here).
4. [Ctrl]-[F10] Stops macro recording; saves macro file on disk.

To play back the temporary macro:
Key Sequence What it Does

1. [Alt]-[F10] Invoke play back macro command.
2. [Enter] Defines name of macro to use.

While the [Enter]-key macro is technically "temporary," WordPerfect records it
on the disk as WP{WP}.WPM.

FINDING MACROS ON THE DISK
Macros can be on any disk and any directory. However, if the macro file is not

on the current (or "default") drive and directory, WordPerfect will not be able to find it.
The easiest to access a macro stored on a disk or directory other than the current one
is to explicitly provide the drive and/or the directory.

Examples:
 . C:macros\dblspace -- Finds the macro DBLSPACE.WPM (for double space) in
the macros directory on drive C:.
 . A:dblspace -- Finds the macro DBLSAPCE.WPM on drive A:.
 . macros\format\dblspace -- Finds the macro DBLSPACE.WPM on the current
drive in the macros and format subdirectories.

You may omit the drive and directory if you have told WordPerfect where to look
for the macro files. The Location of Files option in the Setup menu allows you to
identify a regular repository for your macros files. As you become a proficient user of
macros, you will want to take advantage of this feature. It will make storing and finding
macros much easier if you keep them on a separate disk or in a subdirectory.

You can still keep some macros in the main WordPerfect disk and/or directory
(the one that contains the WP.EXE file). If WordPerfect can't find the macro it needs in
the spot specified in the Location of Files option, it checks back in the WP.EXE
directory.

If you are not sure how to create subdirectories, consult your DOS manual or
look it up in any book on MS-DOS. In addition, WordPerfect will create subdirectories
for you if you define one after selecting List key and pressing the = sign. Enter the
name of the new subdirectory, then answer Y to the prompt.

ERASING, REDEFINING, AND EDITING MACROS

You can create, editor, or replace macros using the Macro Define ([Ctrl]-[F10])
key. If you choose a name for a macro that already exists, you are given four choices.
 . Cancel macro definition. To cancel the new definition, press the Cancel key
([F1]).
 . Erase the previous macro and start over. To Replace the previous macro, press
R or 1.
 . Edit the existing macro. To Edit the macro, press E or 2.
 . Edit the macro description. To edit the description, press D or 3.

If you choose to replace the existing macro, WordPerfect double checks your
choice with a Yes/No prompt. Answer carefully. Choosing Yes will forever erase your
previous macro. If you don't need an Alt-key or named macro any more, you can
erase it from your disks using either DOS or WordPerfect, in the normal manner.

Macro editing is an advanced topic and is discussed in future chapters.

CANCELING A MACRO
You may cancel a macro in execution at any time by pressing Cancel. If that

doesn't work, try pressing the [Ctrl]-[Break] keys. WordPerfect macros have the ability
to "cancel" the Cancel key, rendering it inoperative, but the [Ctrl]-[Cancel] key will
normally halt any macro, no matter how it was programmed.

Note that most macros are replayed very fast, and that a series of even 100
keystrokes may take only a moment to replay. You won't have to press the Cancel key
before the macro finishes. Rather, canceling a macro is handy when the macro has
been slowed down or when you want to exit from a loop in a programmed macro.

You may cancel a macro that you are defining by pressing the Macro Define
key. That ends the macro but it also saves what you've done so far on the disk. If you
don't want the macro, delete it from the disk or create a new macro using the same
name (see the section above on Erasing And Redefining Macros).

(c) 1990, by Gordon McComb. From WordPerfect 5.1 Macros and Templates, published
by Bantam Computer Books.

 CHAPTER 2
LEARNING ADVANCED MACROS

There are a number of advanced macro features that are helpful in everyday
applications of WordPerfect. These advanced features are part of WordPerfect, and
are documented in the WordPerfect manual, but they are worth reiterating here. Many
more advanced macro features are covered later in this book and a good number of
these are not documented in the WordPerfect manual. These special features are tips
and tricks that stretch the macro feature to provide new and unusual functions.

PAUSING MACROS FOR USER INPUT
Macros can be paused anywhere during playback and instructed to await direct

keyboard entry. Pausing is helpful when you want to automate a process but still need
to provide variable information. You can used paused macros, for example, to
generated invoices. The macro creates the general form of the invoice, while pausing
to allow you to enter data.

Another example is automating a standard form letter. One method of creating
form letters is to use the merge print feature of WordPerfect. The merging process is
time consuming if you mail out only a few letters. Another approach is to create a
macro where standard (boilerplate) text is inserted for you. The computer stops at
certain spots in the letter to allow you to enter specific information, such as the current
date, the name of the addressee, the salutation, and so forth. Each pause ends when
you press Enter.

Follow these steps to add a pause during a macro:
Key Sequence What it Does

1. [Ctrl]-[F10] Begins a new macro definition.
2. {name} Names the macro.

[Enter]
3. {description} Describes the macro.

[Enter]
4. {macro steps} Defines the steps for the first portion of the macro.

5. [Ctrl]-[Page Up] Indicates that you want to add a

1 pause.
6. [Return] Enters a pause.
7. {macro steps} Defines the steps for the remainder of the macro.
7. [Ctrl]-[F10] Completes macro definition.

Though the steps outlined above show one pause between two "macro steps"
segments, you can insert as many pauses as you like during the macro. Simply repeat
steps 5 and 6 for each new pause. When you press the [Ctrl]-[Page Up] key during
macro definition.

To use the paused macro, replay it as usual. When the pause is encountered,
the macro halts and awaits text from the keyboard. Type the text and when finished,
press [Enter]. The macro will continue and either end, or pause at the next stop.
Always remember to press the [Enter] key when you are finished typing the text from

the keyboard. This signals to WordPerfect that you are done with the entry and the
macro continues.

IMPORTANT NOTE: While WordPerfect provides a "Macro Def" signal
(in the lower-left corner of the screen) when you are defining a macro, it offers
no such indicator when replaying a macro. You have no way of knowing if a
macro is currently running. Adding pauses to a macro has the affect of
momentarily freezing the macro and preventing it from continuing with the rest
of the steps. But the macro is still active. If you're not sure whether a macro is
still running, press the Macro Define ([Ctrl]-[F10]) key. If nothing happens, a
macro is still in progress (when paused, you cannot define another macro).
Future chapters will discuss other instances when a macro may appear to have
stopped when in fact it's still running, and ways to provide your own "macro-in-
progress" indicator.

Hands-On Pausing
Let's create a simple memo header using the pause feature. The memo will

stop several times to allow you to enter the current date, the subject, and other
pertinent information.

Key Sequence What it Does
1. [Ctrl]-[F10] Starts macro definition.
2. memo Names the macro "memo."

[Enter]
3. Memo header Describes the memo.

[Enter]
4. Date: Types Date:.
5. [Ctrl]-[Page Up] Pauses for Date: input.

1 [Enter]
6. [Enter] [Enter] One blank line.
7. Subject: Types Subject:.
8. [Ctrl]-[Page Up] Pauses for Subject: input. 1

[Enter]
9. [Enter] [Enter] One blank line.
10. To: Types To:.
11. [Ctrl]-[Page Up] Pauses for To: input.

1 [Enter]
12. [Enter] [Enter] One blank line.
13. From: Types From:.
11. [Ctrl]-[Page Up] Pauses for From: input.

1 [Enter]
12. [Enter] [Enter] Two blank lines.

[Enter]
13. [Ctrl]-[F10] Ends macro definition.

When you replay the macro, it will write the Date:, Subject:, To, and From: fields,
allowing you time to manually enter in the specific information. Press the [Enter] key

each time you finish with a line.

HIDING DISPLAY DURING MACRO EXECUTION
Normally, WordPerfect starts each macro with the display turned off. With the

display off, commands and menus aren't shown during macro execution, and the macro
works much faster. However, the screen may remain blank if the macro pauses at a
menu. If your macro will pause at a menu, you must turn the display on before actually
reaching the menu. A good place to turn the display back on is immediately before
selecting a WordPerfect function, such as Help of Format.

Key Sequence What it Does
1. [Ctrl]-[F10] Begins a new macro definition.
2. {name} Names the macro. [Enter]

3. {description} Describes the macro.
[Enter]
4. {macro steps} Defines the steps for the macro.
5. [Ctrl]-[Page Up] Indicates that you want to 2

 control the display.
6. Y Turns the display on.

....
Rest of macro

The display option can be turned on and off at any point within the macro. Press
[Ctrl]-[Page Up], then 2 to access the Display menu. Press N to turn the display off
and Y to turn the display on.

IMPORTANT NOTE: The [Ctrl]-[Page Up] key is multi-purpose, and
behaves differently depending on the activity of WordPerfect. You can select the
Display and Pause options (plus two others that will be covered in later
chapters) only when defining a macro from the keyboard. Chapter 3 outlines the
many uses of the [Ctrl]-[Page up] key.

AUTOMATICALLY EXECUTING OTHER MACROS
Some operations, like changing between single and double space, require only

one macro. More advanced operations, such as preparing a mailing list from a data
document, filling out an invoice, or creating a table of contents, may require two or
more macros, or else one large programmed macro. When using separate macros,
you invoke each one in turn to complete the task. You can execute these macros
manually -- starting each one with the [Alt]-[F10] key, or include commands within one
macro to automatically run another.

How can using separate macros be beneficial over stuffing everything in one
large macro? One reason is for simplicity. Separate macros are easier to create and
edit, especially for the beginning "macroist."

And, separate macros can be run either as a complete set, or independently.
For example, you could create one macro that changes the margins, resets the tabs,
and generates a header and footer. Or you could create several macros that each

have a separate function. In the example,

 . MACRO1 changes the margins.
 . MACRO2 resets the tabs.
 . MACRO73 generates a header and footer.

Used this way, individual macros allow you a great deal of flexibility. You use
only those macros that you need for a particular task. If you need to generate a header
and footer, use just the header/footer macro. If you need to change the margins and
tabs, use the margin and tabs macros. Of course, you need to replay each macro
separately. That means more keystrokes for you as you recall all the macros in the set.
And, separate macros tend to clutter up your disk. With so many macros to keep track
of, you may forget which macro does what function.

Chaining
Macros can start other macros. This is called chaining. With chaining, you can

automatically step from one macro to the next. You start the first macro (the root)
yourself. When the root macro finishes, it automatically calls up a second, or sub,
macro. When that macro finishes, yet another one can be automatically started. You
can continue these macro "links" to make a chain as long as you like.

Chaining relieves you of manually starting each macro in the set. But use
chaining with caution. Macros refer to other macros in the chain by name, and if you
delete a macro or alter its name, the chain will be broken. Keep a record of your macro
chains to help you from inadvertently disturbing the links.

Follow these steps to make a macro chain. This example assumes you are
creating a chained macro with two links; one called MACRO-A and the other called
MACRO-B. For the sake of simplicity, we'll assume that MACRO-B already exists.

Key Sequence What it Does
1. [Ctrl]-[F10] Begins a new macro definition.
2. MACRO-A Names the new macro MACRO-A.
 [Enter]
3. Macro-A Describes the macro as Macro-

[Enter] A.
4. {macro steps} Defines the steps for MACRO-A.
5. [Alt]-[F10] Starts sequence for MACRO-B chain.
6. MACRO-B Indicates MACRO-B for chain.

[Enter]
7. [Ctrl]-[F10] Completes macro definition.

 . Steps 1 through 4 define the macro for MACRO-A.
 . Steps 5 and 6 start MACRO-B.
 . Step 7 completes the macro definition and returns you to editing mode.

Note that MACRO-B is not actually replayed while you are creating MACRO-A.
That prevents the keystrokes from MACRO-B from being included as part of MACRO-
A. When you start MACRO-A, MACRO-B is automatically run. You can also start

MACRO-B normally, without using MACRO-A.

Creating A Macro Linker
Another way to chain separate macros into a set is to use a separate macro

"linker." The linker is a "bare-bones" macro that does nothing but call other macros. It
does this by the use of nesting a procedure whereby WordPerfect starts one macro but
before it has ended, branches off to another macro. When the second macro finishes,
WordPerfect returns to the first macro. You can write the linker using WordPerfect's
macro language, but if the macro is not too complex, you can create it directly from the
keyboard.

First, build the branch macros that you want to use; that is, create the macros
that you will be nesting to. Let's say that you are creating a macro set that includes
three branches:

1. Set margins to 1.5" on both sides.
2. Remove all tabs but one at the 3" mark.
3. Turn justification off and line numbering on.

Give each macro an Alt-letter name; nesting won't work otherwise (you can build
nested macros without using Alt-letter macros, but it requires the use of the macro
programming language). For our example, let's name these macros Alt-A, Alt- B, and
Alt-C. Now create the linker macro, the one that will branch off to each of the three
others in turn. Define the macro by pressing the [Alt]-A, [Alt]-B, and [Alt]-C keys in
turn.

Hands-On Macro Nesting
So much for theory; now for practice. You can experiment with a simple macro

linker by creating these four macros.
For Alt-A:
1. [Ctrl]-[F10] Starts macro definition.
2. [Alt]-A Names the macro Alt-A
3. Macro A Describes the macro.

[Enter]
4. This is Macro A Text for macro. [Enter]
7. [Ctrl]-[F10] Ends macro definition.

Repeat the same procedure for making the Alt-B and Alt-C macros, but change
the names, description, and definition as required. When the the Alt-letter macros are
finished, create the linker.

Key Sequence What it Does
1. [Ctrl]-[F10] Starts macro definition.
2. Linker Names the macro ("Linker" in
[Enter] this example.
3. Linker macro A,B,C Describes the macro. [Enter]
4. [Alt]-A Nests in macro Alt-A.
5. [Alt]-B Nests in macro Alt-B.

6. [Alt]-C Nests in macro Alt-C.
7. [Ctrl]-[F10] Ends macro definition.

When you run the linker macro, it branches off to each Alt- letter macro in turn.
The screen should read:

This is Macro A
This is Macro B
This is Macro C

Repeating Macros
You may repeat a macro as many times as you like using the [Esc] key. Before

executing the macro, use the [Esc] key to indicate the number of times you want the
macro repeated. For example, to repeat a macro named BOX five times, type the
following:

Key Sequence What it Does
1. [Esc] Initiates repeat.
2. 5 Sets repeat to five times.
3. [Alt]-[F10] Invoke play back macro command.
4. BOX Indicates macro to run.
5. [Enter] Accepts the entry; macro is repeated five times.

Repeating Chains
Repeating chain macros use WordPerfect's search feature to automatically

repeat a certain number of times. Repeating chain macros have an advantage over
[Esc] key macros in that they will continue to work until the search results in a *not
found* message. You don't have to manually calculate the number of times to repeat
the macro.

Repeating chains use one macro that chains back to itself. Follow this
procedure to create a repeating chain.

1. Begin defining the macro.
2. Enter the keystrokes and include a search of some type.
3. Call the macro from within itself.
4. End the macro.

Though repeating chains can be useful, most of their applications can be
duplicated using WordPerfect's Replace command. The exception is when you must
make a change that can't be entered into the replace string. For example, say that you
need to reformat a document that's been imported from another word processor. The
file has five empty spaces at the beginning of each paragraph instead of tabs. What's
worse is that the document lacks soft returns. It's a fairly long document and you don't
want to hunt out each hard return in the middle of a paragraph and remove it. After
exchanging the empty spaces for tabs, create this macro.

Key Sequence What it Does
1. [Ctrl]-[F10] Starts macro definition.
2. softconv Names macro softconv.

[Enter]
3. Convert to soft Defines macro.

returns [Enter]
3. [F2] Calls up search.
4. [Tab] Inserts [Tab] code in search string.
5. [F2] Starts search.
6. [Alt]-[F4] Turns block on.
7. [F2] [Tab] [F2] Searches for next [Tab].
8. [Left] [Left] Moves cursor back three spaces

[Left] (past [Tab] and [HRt] codes.
9. [Alt]-[F2] Calls us replace; no confirm. n
10. [Enter] Inserts [HRt] code in search string.
11. [Alt]-[F2]· Starts replace for selected block

[Alt]-[F2]
12. [Alt]-[F10] Chains back to "softconv"
softconv [Enter] macro.
13. [Ctrl]-[F10] Ends macro definition.

 . Steps 1 through 3 creates and defines the macro.
 . Steps 3 through 5 searches for the [Tab] code at the beginning of each
paragraph.
 . Step 6 turns the block function on.
 . Steps 7 and 8 search for the next [Tab] code (at the beginning of the following
paragraph). The macro then steps back three spaces to end the block selection
immediately before the last hard return code in the preceding paragraph (easier done
that said!).
 . Steps 9, 10, and 11 replaces the hard return codes with a space (WordPerfect
automatically inserts soft returns).
 . Step 12 repeats the softconv macro -- effectively looping the macro back on
itself.

To use the macro, position the cursor at the beginning of the document and start
the softconv macro. The macro will repeat itself until it finds no more [Tab] codes, at
which time the "*not found*" message is displayed and the macro ends.

The *not found* message indicates to WordPerfect that a type of error has
occurred. In turn, WordPerfect halts macro execution, in case there is something
seriously wrong. Repeating chain macros are a good example of how to take
advantage of the error fail-safe feature built into WordPerfect. But you may have an
occasion someday to construct a macro that ignores error conditions, or even does
some specific action when an error occurs. Wordperfect 5.1 permits both.

Conditional Chains
WordPerfect 4.2 provided a method of creating semi- intelligent macros by the

use of "conditional chains." The technique takes advantage of the way the program's
search feature works.

WordPerfect 5.1 does not allow you to construct conditional chains in the same

manner, requiring instead that you write a conditional macro using programming
statements, as described in Chapter 4. If you have version 4.2 conditional macros,
you'll need to rewrite them in order to perform the same function in version 5.1.

(c) 1990, by Gordon McComb. From WordPerfect 5.1 Macros and Templates, published
by Bantam Computer Books.

 CHAPTER 3
EDITING MACROS

If you don't like the way a macro works after you create it, don't start over -- edit
it. WordPerfect 5.1 has its own built- in editor where you can modify any macro. You
can even create macros from scratch using the editor.

You'll learn the basics of editing macros in this chapter. You'll also discover how
to reassign nearly any key on your computer to another function and how to create
chained and nested macro while using the macro editor. The techniques you
encounter in this chapter are used in the remainder of this book, and form the
backbone of WordPerfect power macros.

ACCESSING THE MACRO EDITOR
The macro editor can be access in two ways:

1. Edit an existing macro. Press [Ctrl]-[F10]. Type the name of the macro,
and press [Enter]. Press E at the prompt to edit the macro.

2. Create a new macro from scratch. Press [Home], then press [Ctrl]-[F10].
Type the name of the new macro, and press [Enter]. Provide a description (optional).

The macro editing window now appears. The contents of the macro is shown in
the box. If you're editing a "dummy" macro (macro defined without any keystrokes),
you'll see just a {DISPLAY OFF} code in the macro editor. If you're editing a macro that
you've defined with keystrokes, you'll see all the keys you pressed.

To leave the editing window, press the [F7] to Exit. Upon exiting, the macro is
automatically saved. If you want to leave the macro editor without saving any changes:

Key Sequence What it Does
1. [F1] Chooses Cancel key.
2. Y Answers Y, you do want to leave the editor without

saving changes.

Macros that you've previously recorded appear with all the keystrokes you
entered. Codes shown in boldface and in braces represent WordPerfect function or
editing keys, such as {Screen} or {Bold}. In the editor, these function and editing
codes are considered one character. You enter the codes by pressing the relevant
key, and delete the entire code by pressing the [Backspace] or [Delete] key once.
Alphabetic, numeric, and symbol keys appear in the macro editor window as single,
unbolded characters.

Moving Within the Macro Editor
You move the cursor around within the macro editor box the same way as you

do within WordPerfect's main document screen. The following table provides a quick
run-down of the cursor movement keys, and what they do.

Table -- Cursor Movement Within Macro Editor
To Press

Move to the beginning of the macro [Home], [Home], [Up]
Move to the end of the macro [Home], [Home], [Down]
Move to the top top of the box [Home], [Up]
Move to the bottom of the box [Home], [Down]
Move down one screen-full at a time [Page Down]
Move up one screen-full at a time [Page Up]
Move to beginning of current line [Home], [Left]
Move to end of current line [End] or [Home], [Right]
Move right one word [Ctrl]-[Right]
Move left one word [Ctrl]-[Left]

The [Up], [Down], [Right], and [Left] cursor keys function as usual.

Note that some of the standard WordPerfect cursor movements keys are not
active within the macro editor. These are:
 . Escape -- to move the cursor x number of spaces, lines, or whatever.
 . Goto -- to go to a different page.

Using Function and Editing Keys
While working inside the macro editor, the standard editing keys -- such as

[Backspace] and [Delete] -- function as they normally do in WordPerfect. The next
table lists the editing keys you can use with the macro editor, and what they do.

Table -- Function and Editing Keys in Macro Editor
To Press
Delete one character/code to left of cursor [Backspace]
Delete one character/code at the cursor [Delete]
Delete all chars/codes to the end of line [Ctrl]-[End]
Delete word at cursor [Ctrl]-[Backspace]

Standard WordPerfect editing keys you can't use in the macro editor are:
 . Delete to End of Page -- to delete all characters and codes from the cursor to
the end of the macro document or screen.
 . Home, Backspace -- to delete all characters of the current word to the left of the
cursor.
 . Home, Delete -- to delete all characters of the current word to the right of the
cursor.

Inserting Editing Keys as Codes
If you want to place the definitions -- or codes -- of editing and cursor movement

keys in the macro, do one of the following:
 . Press [Ctrl]-V, then immediately press the editing key you want included in the
macro. After that, the editing keys revert to their normal operation. Example: [Ctrl]-V
[Left] places a {Left} code in the macro.
 . Press [Ctrl]-[F10] to turn editing off. Now, every key you press is included in the
macro. Press [Ctrl]-[F10] once more to turn editing back on.

You use the [Ctrl]-V or [Ctrl]-[F10] keys to turn editing on and off for additional
keys, as well. The following table lists those keys that must be used with either [Ctrl]-V
or [Ctrl]-[F10] so the appropriate code can be entered into the editor.

Table -- Keys that Need [Ctrl]-V to Add Key Code
Function Key
Cancel [F1]
Exit [F7]
Tab [Tab]
Enter [Enter]
Right cursor [Right]
Left cursor [Left]
Up cursor [Up]
Down cursor [Down]
Home [Home]
Typeover [Insert]
Delete [Delete]
Backspace [Backspace]
Page Up [Page Up]
Page Down [Page Down]
Screen Up - (on keypad)
Screen Down + (on keypad)
End [End]
Delete to end-of-line [Ctrl]-[End]
Delete Word [Ctrl]-[Backspace]
Word Right [Ctrl]-[Right]
Word Left [Ctrl]-[Left]
Escape [Esc]
Macro Commands [Ctrl]-[Page Up]
Help [F3]

The [Ctrl]-V sequence is used for entering two other types of macro codes, as
well. These are:
 . Numbered variables, such as {VAR x} (where "x" is a number from 0 to 9).
 . Nested Alt-key macros, such as {ALTx} (where "x" is a letter from A to Z).

The function of these codes is explained in Chapter 4, "Learning the Macro
Programming Language."

Tip: If you press a key and WordPerfect responds differently, a modified
keyboard layout may be currently in use. A keyboard layout redefines one or
more of the keys on the keyboard. You might switch the functions of the Help
and Cancel keys, for example, or modify the [Backspace] key so that it behaves
differently than standard WordPerfect operation. In these instances, pressing a
key may have a wildly different effect than you're expecting. If you think a

keyboard layout is is the cause of your troubles, at the WordPerfect main editing
screen choose the Setup key ([Shift]-[F1]), and note the entry beside the
Keyboard Layout option. The currently active keyboard layout, if any, will be
shown. You can quickly cancel any layout that's currently active by pressing
[Ctrl]-6.

Programming Codes
The macros you edit will most likely begin with a {DISPLAY OFF} code. If, when

you defined the macro from the keyboard, you've turned the display off or on using the
technique described in Chapter 2, "Adding Power to Macros," you may see additional
{DISPLAY ON} and {DISPLAY OFF} codes. Too, pauses that you entered during
macro definition will appear as {PAUSE}.

Codes that appear in all upper-case and within braces are WordPerfect's
programming commands. {DISPLAY ON}, {DISPLAY OFF}, and {PAUSE} are just
three of among 56 commands you can insert into a WordPerfect macro. While we'll
discuss the macro programming language in detail in subsequent chapters, you should
know how these commands are added from within the macro editing window.

To insert a macro command, press the [Ctrl]-[Page Up] keys. A pop-up window
appears over the macro editor box. You then use the cursor keys to select the
command you want to insert, and press the [Enter] key when you're done.

Formatting the Macro Code
Note that pressing the [Tab] key tabs a line of macro code over approximately

five spaces (two spaces at the beginning of the line), and that pressing the [Enter] key
ends a line. The visual effect of these keys in the macro editing box does not relate to
the operation of the macro. Adding four or five blank lines between segments of macro
code does not produce four or five blank lines when the macro is executed.

You can "format" your macros for readability by adding Tabs and Enters as
desired. The macro is now easier to read because you've separated its functions into
logical units. When this macro is executed, the Tabs and Enters will not be included in
the document.

Tip: Get into the habit of formatting your macros, especially if you plan to
edit them or add additional program codes (as explained in Chapter 4). Develop
a consistent style for macro formatting. Although adding Tabs and Enters for
formatting purposes does increase the size of the macro by a small degree, the
visual appeal and easy-of- use are well worth it.

To add [Tab] and [Enter] codes that are applied to the document during
execution, enter them explicitly by first pressing either [Ctrl]-V or [Ctrl]-[F10]. When
this macro is run, the Tabs and Enters will be included in the document.

Adding Comments to Macros
A technique often used by programmers is adding explanations or comments

within their programmed code. You can do the same with WordPerfect macros. These
comments don't execute when the macro is run, but they appear in the macro editor as

a means to help you describe the workings of the macro, or to help you remember how
you constructed a given macro.

To add a comment, press the [Ctrl]-[Page Up] key. If it isn't already, highlight
the {;} Comment code, and press [Enter]. This inserts the {;} comment code in the
macro. Write your comment, up to any length, and end it with a tilde (~) character. The
tilde marks the end of the comment, and tells WordPerfect it that everything after this
mark is to be executed.

Tip: You may wish to include comments when you are defining a macro
from the keyboard. You do so using the same basic techniques as turning the
display off and on or adding a pause, except that you choose the Comment
option to insert a comment. Write the comment and press the [Enter] key when
you're done.

Macro Editor Features
Other than adding and deleting pieces of macro code, the editor is very crude

and lacks copy and paste editing features. The macro editor does not allow you to
copy a segment of code from one part of the box and paste it into another. If you find
you need to move a segment of code to another area of the macro, make a note of it
and manually retype it. Double check that you have re-entered the code exactly as the
original, then erase the original.

These capabilities are provided by EDitor 3.0, available separately from
WordPerfect Corp. The ED program, which is included in the WordPerfect Office
package, lets you edit macros created by all WordPerfect Corp. products.

You can, however, include the text characters of a [Alt]-key macro by running
the macro during editing. For example, suppose you are editing a macro for preparing
a boilerplate customer reply letter. You have a large paragraph that you don't want to
retype. Position the cursor in the editing box where you want the text to appear, then
press [Alt] and the appropriate letter. The [Alt]-key macro executes, as normal, and its
text is entered into the new customer reply macro.

Note that this technique only works with [Alt]-key macros. If the macro you want
to use isn't an [Alt]-key macro, you can easily convert it simply by renaming it. You can
use DOS or WordPerfect's List Files feature to rename a macro file.

IMPORTANT: WordPerfect will act "dead" if you try to load the contents of
an [Alt]-key macro when that macro starts with a {DISPLAY OFF} code
(WordPerfect automatically adds this code to all new macros it creates, but
never adds the {DISPLAY ON} code at the end). You need to edit the [Alt]-key
macro before you use it and remove the {DISPLAY OFF} code. If you forget to
do this, press [F1] to cancel the operation and WordPerfect will come back to
life.

UNDERSTANDING THE [Ctrl]-[Page Up] KEY
The [Ctrl]-[Page Up] key is multi-faceted, and performs many duties, depending

on what you're doing with WordPerfect at the time. There are four uses of [Ctrl]-[Page
Up], some of which we have already covered.

1. From the WordPerfect document editing screen: pressing [Ctrl]-[Page

Up] allows you to assign values to variables. Variables are temporary holders of
information (such as text or numbers) that you can retrieve later or use in a macro.
Variables are detailed more fully in future chapters.

2. When defining a macro: pressing [Ctrl]-[Page Up] lets you add a
comment, add a pause, assign a value to a variable, or turn the display off and on.

3. When in the macro editor: pressing [Ctrl]-[Page Up] accesses the macro
programming commands.

4. When in the macro editor: pressing [Ctrl]-V, then [Ctrl]-[Page Up] inserts
a special {Macro Commands} code in the macro. This code has special use when
working with variables or when creating macros that actually write other macros.

MACRO EDITOR CODES
The macro editing window displays the meaning of the WordPerfect's function

and editing keys as codes. Most codes are self-explanatory, but if you find a code that
is new to you, look it up in the table that follows.

Table -- Macro Editor Codes and Corresponding Keys
Code Press Comments
{-} Alt-- Alt and minus key
{ } Special access; see Chapter 19 {^\}

Ctrl-\
{^_} Special access; see Chapter 19
{^A} Ctrl-A
{^B} Ctrl-B
{^C} Ctrl-C
{^D} Ctrl-D
{^E} Ctrl-E
{^F} Ctrl-F
{^G} Ctrl-G
{^M} Ctrl-M
{^N} Ctrl-N
{^O} Ctrl-O
{^P} Ctrl-P
{^Q} Ctrl-Q
{^R} Ctrl-R
{^S} Ctrl-S
{^T} Ctrl-T
{^U} Ctrl-U
{^V} Ctrl-V, Ctrl-V
{^]} Ctrl-]
{Alt-Home} Alt-Home
{Backspace} Ctrl-V, Backspace
{Block Copy} *Ctrl-Ins From macro command list
{Block Move} *Ctrl-Del From macro command list
{Block Append} From macro command list {Block}

Alt-F4

{Bold} F6
{Cancel} Ctrl-V, F1
{Center} Shift-F6
{Columns/Tables} Alt-F7
{Compose} Special access; see Chapter 19
{Date/Outline} Shift-F5
{Del Word (Row)} Special access; see Chapter 19
{Del to EOP} Ctrl-V, Ctrl-Page Down (Also Ctrl-L)
{Del to EOL} Ctrl-V, Ctrl-End (Also Ctrl-V, Ctrl-K)
{Delete Word} Ctrl-V, Ctrl-Backspace
{Delete} Ctrl-V, Delete
{Down} Ctrl-V, Down (Also Ctrl-Z)
{End Field} F9
{End} Ctrl-V, End
{Enter} Ctrl-V, Enter (Also Ctrl-V, Ctrl-J)
{Escape} Ctrl-V, Esc (Also Ctrl-V, Ctrl-[)
{Exit} Ctrl-V, F7
{Flush Right} Alt-F6
{Font} Ctrl-F8
{Footnote} Ctrl-F7
{Format} Shift-F8
{Goto} Ctrl-V, Ctrl-Home
{Graphics} Alt-F9
{Hard Page} Ctrl-Enter
{Help} F3
{Home-Home-Left} Special access; see Chapter 19
{Home} Ctrl-H
{Indent} F4
{Invalid} Special access; see Chapter 19
{Item Left} *Alt-Left From macro commands list
{Item Right} *Alt-Right From macro commands list
{Item Up} *Alt-Up From macro commands list
{Item Down} *Alt-Down From macro commands lis
{Keyboard} Special access; see Chapter 19
{L/R Indent} Shift-F4
{Left Margin Rel} Shift-Tab
{Left Search} Shift-F2
{Left} Ctrl-V, Left (Also Ctrl-Y)
{List Files} F5
{Macro Define} Ctrl-V, Ctrl-F10 Code not active
{Macro} Alt-F10
{Mark Text} Alt-F5
{Menu Bar} Alt-= Alt and equals key
{Merge Codes} Shift-F9
{Merge/Sort} Ctrl-F9
{Move} Ctrl-F4

{Page Down} Ctrl-V, Page Down
{Page Up} Ctrl-V, Page Up
{Para Up} *Ctrl-Up From macro commands list
{Para Down} *Ctrl-Down From macro commands list
{Print} Shift-F7
{Replace} Alt-F2
{Retrieve} Shift-F10
{Reveal Codes} Alt-F3
{Right} Ctrl-V, Right (Also Ctrl-X)
{Save} F10
{Screen Down} Ctrl-V, Screen Down
{Screen Up} Ctrl-V, Screen Up
{Screen} Ctrl-F3
{Search} F2
{Setup} Shift-F1
{Shell} Ctrl-F1
{SHy} Ctrl-- Ctrl and minus key
{Spell} Ctrl-F2
{Style} Alt-F8
{Switch} Shift-F3
{Tab Align} Ctrl-F6
{Tab} Ctrl-V, Tab (Also Ctrl-V, Ctrl-I)
{Text In/Out} Ctrl-F5
{Thesaurus} Alt-F1
{Typeover} Ctrl-V, Insert
{Underline} F8
{Up} Ctrl-V, Up (Also Ctrl-W)
{Word Left} Ctrl-V, Ctrl-Left
{Word Right} Ctrl-V, Ctrl-Right

Additional Codes
Code Meaning
{COMMAND} Macro command code (from commands list)
{ALT x} Nested Alt-key macro
{VAR x} Numbered variable
{KEY MACRO X} Nested keyboard macro

Note: the "x" in the above codes represent a letter or number, and that
{COMMAND} is representative of the commands in the macro commands list.

EDITING THE MACRO DESCRIPTION
The one-line description provides a quick-reference to the purpose of the macro.

You don't have to describe the macro if you don't want to when you first create the
macro, and you always have the chance to edit the description later.

Key Sequence What it Does
1. [Ctrl]-[F10] Starts macro definition.

2. {name} Enters the name of the
[Enter] existing macro.
3. 3 or D Chooses the edit Description option.

You may now edit the description as you like. The editing keys function as they
normally do in WordPerfect. With the cursor positioned at the first character, typing
anything erases the entire line. Press the [Enter] key when you are done.

(c) 1990, by Gordon McComb. From WordPerfect 5.1 Macros and Templates, published
by Bantam Computer Books.

 CHAPTER 4
 LEARNING THE MACRO PROGRAMMING LANGUAGE

Being able to record a series of keystrokes for later recall is power enough, but
WordPerfect's macro feature also includes a method of programming your macros so
that they behave like stand- alone applications.

With just a little bit of ingenuity, you can create macros that create, from scratch,
a complete invoice for services or products, an electronic while-you-were-out telephone
note pad, a note pad, mini calculator, a self-testing and scoring quiz game, a text
adventure game, and much, much more. In short, there is almost no limit to what you
an do with WordPerfect's macro programming language.

This chapter explains how how to access the programming feature and the
meaning of the various programming commands or instructions. This chapter does not
delve too deeply in actually employing the various programming commands in real
macros -- the rest of the book is devoted to that. If you are serious about macro
programming, be sure to also read Part Three of this book. The chapters in this section
provide additional insights on applying the macro programming language, as well as
how to avoid its frustrating pitfalls.

THINKING LIKE A PROGRAMMER
Although you don't need any previous training or experience at computer

programming to master WordPerfect's programming language, it does help. At the very
least, you should learn how to think like a programmer.

It is not the intent of this book to teach programming principles; that would
require far too much space. However, you can gain a good grasp of programming
fundamentals by concentrating on 10 main areas of macro design:
 . Flow Control
 . Routines
 . Subroutines
 . Variables
 . Expressions
 . Strings
 . Conditional Statements
 . Branching
 . Looping
 . Entering Data
 . Outputting Data

Let's take a closer look at each.

Going With the Flow
Simple, one-function macros can be created without a blueprint or flow chart but

you should give extra thought and consideration to macros that are more complex in
nature. You may find it helpful to draw a programming flow chart that includes the
basic steps of the macro. In each box is a complete step; arrows connect the boxes to
indicate the progress of steps throughout the macro. Flow charts are particularly handy

when creating chained and nested macros, or macros that consists of many self-
contained routines, because the drawing helps you visualize the function and flow of
each macro.

While you are planning the macro, note the steps required to create it. On a
scrap document, go through the motions of executing the macro -- but don't record it
just yet. On a piece of paper, note the commands and menu options you choose to
complete the task. Don't forget the [Enter] key, as well as all other keys you must
press to make the macro work properly. Be sure to note each time you press it. When
you think you have the procedure mapped out, define the macro and record it.

If you make a mistake, you can either cancel the recording by pressing [Ctrl]-
[F10] again or edit out the errors later. Small mistakes usually make no difference, but
you'll want to get into the habit of cleaning up your macros once you have created
them.

After defining the macro, try it out to make sure it works the way you originally
planned. If you spot a mistake, double- check the steps you took and redefine the
macro.

The Benefit of Routines
One of the first things a programmer does when he or she starts on a project is

to map out the individual segments, or routines, that make up the software. Even the
longest, most complex program -- and this includes macros -- consist of little more
than bite-size routines. The macro progresses from one routine to the next in an
orderly and logical fashion.

What's a routine? A routine is any self-contained segment of code that performs
a basic action. In the context of macros, a routine can be a single command or
character of text, or it can take up the majority of a mammoth 20K macro. Suppose
your macro resets the active printer, formats the document to legal size, and prints it.
The macro can be divided into three distinct routines:
 . Routine 1: Reset the active printer.
 . Routine 2: Format the document to legal size.
 . Routine 3: Print the document.

While there's no need to physically separate these routines within a macro, or
even create separate macros and chain to each one in turn (although this can be done,
as explained in Chapter 2), it helps to think of the macro as being composed of these
more basic parts. If the macro doesn't work properly, you can more easily analyze the
problem if you can narrow it down to a specific segment of the code. For example, if
the macro is resetting the active printer and printing the document, but not properly
formatting the document to legal size, you can readily trace the problem to the number
2 routine.

Many macros simply start at the beginning and advance one step at a time to
the end, taking each instruction in turn and acting upon it. This is the approach of our
example macro just cited.

But some WordPerfect macros jump around. They may start with routine 1, but
then jump to routine 3, back to 1, then move on to 2. Jumping around within the macro
pays off when you need to re-use a routine two or more times. Instead of repeating the

steps of the routine each time, you can simply direct the macro to repeat the same
routine.

Here's another benefit of working with discrete routines. Depending on the
application of the macro, it may behave one way when used with a particular type of
document, and behave in a totally different way with another document. This concept
may take some time to get used to, but it lends a great deal of power and flexibility to
your macros. Instead of your macros conforming to a strict procedure, they are free to
interact and adapt with your documents. In other words, your macros are "intelligent,"
automatically adapting to the situation and document at hand.

WordPerfect macros don't use line numbers, as found on some other
programming languages, such as BASIC. You identify routines by name, or label.
When you instruct WordPerfect to jump from one routine to another, you tell it which
label to go to. Of course, if your macro is designed to go from beginning to end
without stopping, you don't need labels, but it's still a good idea to think of the
construction of the macro as discrete routines.

Subroutines
Subroutines are similar to routines, but are specifically designed to be used by

the macro as a sub-component. Most often, subroutines are activated only when
certain criteria exists -- an error occurs or a search fails, for instance. These are
routines that the macro branches off to temporarily, in order to accomplish some task
or to wait until a certain condition is met. When the subroutine ends, the macro jumps
back to where it left off.

Like a routine, a subroutine consists of a label (so the macro can find it), but it
also has a return identifier. The return marks the end of the subroutine, and instructs
the macro to go back to where it first left off.

Variables
A variable is a special holding tank for information, sort of a placeholder.

WordPerfect has three types of variables, numbered, named, and internal.
Numbered variables, a hold-over from version 5.0 of WordPerfect, are identified

by a single-digit number, from 0 to 9. You can access these numbered variables at any
spot within WordPerfect by pressing a number with the [Alt] key. For instance,
suppose you've previously assigned the text

Hello there

to variable 4. Press [Alt]-4 and WordPerfect types "Hello there" at the cursor.
You'll have plenty of cause to use variables in more sophisticated programmed

macros, but you can also use the feature to create up to 10 more temporary macros (in
addition to the one that you can create with the [Enter] key). The limitations of
variables is that they can contain numbers and text only, making them best suited for
adding boilerplate text. Unless you use more sophisticated programming, you can't
code them with commands, cursor movements, or other keyboard functions.

WordPerfect macros also support named variables. These are variables you
assign within the macro editor, and are used to "remember" a piece of vital information

so that it can be used elsewhere in the macro, or even in another macro.
Internal variables are variables generated by WordPerfect and reflect certain

operating characteristics or states. For example, one internal variable keeps track of
the current page number; another contains the absolute position of the cursor on the
page.

Expressions
The term expressions, as used in WordPerfect macros, is a programmer's word

that means pretty much what it means to the rest of the world. You'll be seeing the
word many times throughout this book, so it's a good idea to learn how it relates to
macro programming.

An expression is a procedure a WordPerfect macro must follow to complete a
task you've given it. Sometimes the expression is a simple variable -- "take the
contents of this variable and apply it to that command." Often times, the expression is
a little more complex, like take the number already in a variable, and add another one
to it.

When you ask a WordPerfect macro to perform some type of calculation or
thinking process, you're asking it to evaluate the expression. For example, if the
expression reads "1+1," then the macro must first evaluate it (add one and one to make
two) before proceeding.

Some more advanced macro expressions may appear exotic, but you'll have
plenty of chance to use them. The most common is the evaluating if a statement is
TRUE or FALSE (the words TRUE or FALSE are capitalized, to show you we're dealing
with logical functions). Here's a good example of a TRUE/FALSE expression that must
be evaluated by the macro:

IF variable 1 = 10 THEN QUIT

In reading the expression (which isn't in acceptable macro notation, by the way,
but it's close), it reads "IF the contents of variable 1 is equal to 10, then stop." Before
proceeding with the remainder of the macro, WordPerfect must pause, take a peek
inside variable 1, and apply it to the logical equation. If the result is TRUE, then the
macro ends. If it's FALSE (variable 1 has a number other than 10), then something
else happens.

Strings
A common term in programming circles is the string. A string is simply a

sequence of alphabet or number keys. In the context of macros, strings are used in
variables. Once stored in a variable, the string can be acted upon by the macro.

For example, if the string is a number, you can multiply it with another number or
the numeric contents of another variable. If the string is text, you can compare it with
another string to see if the two are the same. The concept of comparing string comes
in handy when designing interactive macros. The advanced macros in Part Two of this
book rely heavily on comparing strings.

Conditional Statements

You've already learned that macros can be constructed so that they perform
certain routines in one instance, and other routines in another. The macro is
responding to specific conditions, set either by the user, by the document, by
information in the document, or by some other variable.

A conditional statement is a fork in the road with a choice of two directions to
take, depending on the response to a simple true/false question. WordPerfect macros
provide many ways to create conditional statements, but they all have one thing in
common: to activate a certain routine (or path of routines) depending on external data.

Here's an example of a conditional statement. "If it's cold outside, I'll wear my
jacket. Otherwise, I'll leave the jacket at home." The statement can be broken down
into three segments:
 . The condition to be met (if it's cold).
 . The result if the condition is TRUE (wear the jacket).
 . The result if the condition is FALSE (leave the jacket at home).

Obviously, this isn't the kind of conditional statement you'll write with
WordPerfect macros. But you may design a conditional statement that starts one
macro depending on one type of user input, or another macro depending on other
types of user input.

All conditional statements have a condition that must be met, and a specified
action if the condition is TRUE or FALSE. Not all conditional statements specify an
action for both a TRUE or FALSE, but most do.

Branching
Akin to the conditional statement is the branch, where the macro has two or

more paths to take depending on external criteria. A good example of a branch is a
menu selection. Here, you have four choices:
 . Edit a Document.
 . Print a Document.
 . Format a Document.
 . Quit WordPerfect

Each of these choices is a branch. Each branch specifies one or more unique
routines in the macro. The Edit a Document branch, for example, will not use the same
routines as Print a Document, Format a Document, or Quit WordPerfect.

Looping
A loop is a routine that is repeating two or more times. A typical loop is a

"keyboard scan" where the macro constantly checks the keys you press. If you press
the key the loop routine is looking for, the macro breaks out of the loop and continues
on with some other routines. If the key isn't the one that the loop is looking for, the
routine is restarted again.

Loops are really specialized versions of conditional statements. Instead of
stopping to provide a choice of two directions, the macro is designed to continue the
loop until a certain condition is met. WordPerfect macros contain many sophisticated
ways to construct loops. You'll find loops helpful in tackling the most demanding macro

assignments.

Entering Data
The basic WordPerfect macro is merely a recording of a series of keystrokes.

But you can also program macros to stop and wait for user input. Once the user has
entered the data, the macro uses the information -- be it text, a number, or a single
keypress -- to complete its task.

You might pause a macro to allow the user to enter her name, the current date,
or some other variable information. Your macro may then use that information to create
a mailing label, or to date a series of database entries. Input data can be entered
directly into the document, or can be temporarily stored in a variable. The macro can
then sample the contents of the variable, and use it in a conditional statement, a
branch, or a loop -- or even save it for use later on.

Outputting Data
WordPerfect macros output data in two basic ways:

 . Characters entered into the document. The macro "types" text for you, as when
creating a form letter using boilerplate text recorded previously in a macro.
 . Replay of function and editing keys. The macro actuates one or more of
WordPerfect's function and editing keys, thereby automatically controlling its operating.
The macro may reset tabs and margins for example, using the options under the
Format key.

ACCESSING MACRO COMMANDS
The commands in WordPerfect's macro programming language is available

while in the macro editing window. To access the programming statements while
editing a macro, press [Ctrl]-[Page Up]. A pop-up menu appears over the editing box.
Use the up and down arrow keys to scroll through the contents of the programming
menu. You can quickly shuttle to a particular statement by typing the first couple of
characters in its name.

Each statement, such as {DISPLAY ON} and {CHAIN}, is enclosed in brackets.
Some statements are followed by one or more arguments. These arguments tell
WordPerfect what to do with the statement. For example, the {CHAIN} statement is
followed by a macro file name argument. To complete the statement in an actual
macro, you'd enter:

{CHAIN}filename~

WordPerfect uses tilde character as a delimiter. The program knows that the
argument is done when it reaches the tilde, and that it should expect text or another
programming code to follow.

To enter a programming command (otherwise known as a statement; we'll use
the two words interchangeably throughout the book) in the macro editing box, select it
and press [Enter]. Note that the text for the argument is not included, only the
command itself, and that the command is shown in bold.

You may exit the pop-up menu without making a selection by pressing the [Esc]

key. If you press [Ctrl]-[Page Up] or [Esc] again, WordPerfect reselects the macro
command that you last used. This allows you to quickly enter a series of the same
statements in the macro editing box.

MACRO COMMAND TYPES
It's helpful to categorize WordPerfect's macro commands into discrete types.

For consistency, we'll retain the categorization that WordPerfect uses in its
documentation (and we've added one of our own).

There are nine categories of macro commands:
 . User interface
 . Flow control
 . Macro and subroutine termination
 . External condition handling
 . Macro execution
 . Macro execution control
 . Variables
 . Programming aids
 . Special Purpose

Note that some commands serve double duty. For example, the {DISPLAY
OFF} command is found in both the macro execution control and programming aides
categories.

User Interface Commands
The user interface commands allow input from the user and/or display a

message on the screen. The user interface commands are:
{BELL} -- Sounds a short warning tone.
{CHAR} -- Allows for single character user input.
{INPUT} -- Allows for multiple character user input.
{LOOK} -- Samples the key you just pressed.
{PAUSE} -- Pauses macro execution and allows for keyboard entry.
{PROMPT} -- Displays a message on the screen.
{STATUS PROMPT} -- Displays a semi-permanent message on the

screen.
{TEXT} -- Allows for multiple character user input.

Flow Control Commands
Flow control commands redirect macro execution depending on external criteria

(such as user input). The flow control commands are:
{BREAK} -- Prematurely terminates a conditional statement, loop, or
macro.
{CALL} -- Calls a subroutine.
{CASE} -- Establishes one or more branches.
{CASE CALL} -- Establishes one or more branches, with each branch
executed as a subroutine.
{CHAIN} -- Executes another macro.

{ELSE} -- Establishes a FALSE condition for an IF statement. {END FOR}
-- Ends a FOR and FOR EACH loop.

{END IF} -- Ends an IF statement.
{END WHILE} -- Ends a WHILE loop.
{FOR} -- Establishes a self-contained "counter" loop.
{FOR EACH} -- Applies one or more commands or routines to a single
variable.
{GO} -- Jumps to a labeled routine.
{IF} -- Establishes an IF conditional statement and what

happens when the statement is TRUE.
{IF EXISTS} -- Checks if a variable is empty (doesn't exist).
{LABEL} -- Names a routine.
{NEST} -- Temporarily executes another macro, then returns to the
original macro.
{NEXT} -- Increments the counter in a FOR, FOR EACH, and WHILE loop.
{ON CANCEL} -- Provides an alternative response in case the macro is
canceled.
{ON ERROR} -- Provides an alternative response in case an error occurs
during macro execution.
{ON NOT FOUND} -- Provides an alternative response in case a search fails
during macro execution.
{QUIT} -- Stops the macro.
{RESTART} -- Stops all macro execution at the end of a nested macro.
{RETURN} -- Returns from a nested macro or a subroutine.
{RETURN CANCEL} -- Generates a "cancel condition."
{RETURN ERROR} -- Generates an "error condition."
{RETURN NOT FOUND} -- Generates a "not found condition."
{SHELL MACRO} -- Starts a shell macro.
{WHILE} -- Runs a self-repeating loop until a condition is met.

Macro and Subroutine Termination Commands
The macro and subroutine termination commands end macro execution, or

break out of subroutines and continues with the rest of the macro. The macro and
subroutine termination commands are:

{BREAK} -- Prematurely terminates a conditional statement or
macro.

{QUIT} -- Stops the macro.
{RESTART} -- Stops all macro execution at the end of a nested macro.
{RETURN} -- Returns from a nested macro or a subroutine.
{RETURN CANCEL} -- Generates a "cancel condition."
{RETURN ERROR} -- Generates an "error condition."
{RETURN NOT FOUND} -- Generates a "not found condition"

External Condition Handling Commands
The external condition handling commands specify how a condition that occurs

outside the macro is handled. In the case of the RETURN commands, they generate

or create the condition. The external condition handling commands are:
{CANCEL OFF} -- Disables the Cancel key.
{CANCEL ON} -- Enables the Cancel key.
{ON CANCEL} -- Provides an alternative response in case the macro is
canceled.
{ON ERROR} -- Provides an alternative response in case an error occurs
during macro execution.
{ON NOT FOUND} -- Provides an alternative response in case a search fails
during macro execution.
{RETURN CANCEL} -- Generates a "cancel condition."
{RETURN ERROR} -- Generates an "error condition."
{RETURN NOT FOUND} -- Generates a "not found condition."

Macro Execution Commands
The macro execution commands run a macro.
{CHAIN} -- Starts a new macro.
{NEST} -- Temporarily executes another macro, then returns to the
original macro.
{SHELL MACRO} -- Starts a Shell macro.

Macro Execution Control Commands
Macro execution commands affect the operation of macros by either controlling

the display, macro execution speed, or delay until the next command is executed. The
macro execution control commands are:

{DISPLAY OFF} -- Turns the display off.
{DISPLAY ON} -- Turns the display on.
{MENU OFF} -- Turns menu display off.
{MENU ON} -- Turns menu display on.
{SPEED} -- Slows down macro execution.
{WAIT} -- Waits a predetermined time before continuing.

Variable Commands
The variable commands assign values to variables or determines some

characteristic or state of a variable. The variable commands are:
{ASSIGN} -- Assigns a value to variable.
{CHAR} -- Displays a message on the screen and assigns the next
keypress to a variable.
{IF EXISTS} -- Checks if a variable is empty.
{LEN} -- Counts the number of characters in a variable.
{LOOK} -- Assigns the next keypress to a variable.
{MID} -- Captures a sub-string of a variable.
{SYSTEM} -- Contains any of several internal WordPerfect variables.
{TEXT} -- Displays a message on the screen and assigns one or more
keypresses to a variable.
{VARIABLE} -- Displays the contents of variable.

Programming Aid Commands
Programming aid commands help make programming and "debugging" macros

easier. The programming aid commands are:
{;} -- Provides non-executing comment within the macro.
{BELL} -- Sounds a short tone (audible feedback).
{SPEED} -- Slows down macro execution.
{STEP OFF} -- Disables {STEP OFF}.
{STEP ON} -- Executes one character or command at a time.

Special Purpose Commands
Some WordPerfect Macro commands defy easy categorization. These extend

the usefulness of the macro language and are most often used with other commands,
like {ASSIGN} or {IF}.

{KTON} -- Translate a key (alphabetic, numeric, symbol, or WordPerfect
function) to its numbered equivalent.
{NTOK} -- Translates a number to its key equivalent.
{ORIGINAL KEY} -- Echos the last key pressed.
{STATE} -- Indicates one or more current operating states of WordPerfect.

Additional Macro Codes
Some useful macro codes are not found in the macro command list. These are:
{ALTx} -- Starts an Alt-key macro ("x" is a letter of the alphabet).
{KEY MACRO x} -- Runs a keyboard layout macro. The "x" is a number
corresponding a key macro in the currently active keyboard layout.
{VAR x} -- Displays the contents of a variable. The "x" is a number from 0 to
9.

FOR BASIC PROGRAMMERS: COMPARING WORDPERFECT COMMANDS
If you're familiar with BASIC you'll find many of WordPerfect's macro commands

are similar in function and syntax. A comparison of the functions may help you to
understand how WordPerfect macro commands work.

Macro Command BASIC Keyword or Code
{;} REM
{ASSIGN} LET
{BELL} BEEP
{BREAK} EXIT, EXIT FOR
{CALL} CALL, GOSUB
{CANCEL OFF} KEY OFF ([F1] key only)
{CANCEL ON} KEY ON ([F1] key only)
{CASE} SELECT CASE, ON...GOTO
{CASE CALL} ON...GOSUB
{CHAIN} CHAIN, RUN
{CHAR} INPUT (single character), INKEY$
{DISPLAY OFF} CLS
{ELSE} ELSE
{END FOR} EXIT

{END IF} END IF
{END WHILE} WEND
{FOR} FOR
{GO} GOTO
{IF} IF (THEN implied)
{IF EXISTS} IF var=""
{KTON} STR$
{LABEL} LABEL:, LineNumber
{LEN} LEN
{LOOK} INKEY$
{MID} MID$
{NEST} RUN
{NEXT} NEXT
{NTOK} CHR$
{ON CANCEL} ON KEY (3B) (ON Cancel key event trap)
{ON ERROR} ON ERROR
{PAUSE} INPUT (no message)
{QUIT} STOP
{RETURN} RETURN
{RETURN ERROR} ERROR
{STATE} PEEK (specific internal variables only)
{STEP OFF} TROFF
{STEP ON} TRON
{SYSTEM} ENVIRON$, PEEK (specific internal

variables only)
{TEXT} INPUT (multiple character)
{WAIT} WHILE
{WHILE} WAIT

ADDITIONAL MACRO CODES
The commands list in the pop-up macro editor window includes several other

items that aren't really true "commands." These items, for moving the cursor to the
next or previous paragraph, or to move the cursor within columns and tables, are
duplicated with [Ctrl] and [Alt] keyboard equivalents. But these equivalents only work
with enhanced keyboards (such as the 101- key keyboards found on the IBM PS/2 and
similar models). If your keyboard can't generate these codes you can still access them
in the macro editor.
 . {Para Up} -- Moves the cursor to the preceding paragraph. Same as pressing
[Ctrl]-[Up].
 . {Para Down} -- Moves the cursor to the next paragraph. Same as pressing
[Ctrl]-[Down].
 . {Item Left} -- Moves the cursor to the column or table cell to the left. Same as
pressing [Alt]-[Left].
 . {Item Right} -- Moves the cursor to the column or table cell to the right. Same as
pressing [Alt]-[Right].
 . {Item Up} -- Moves the cursor to the column or table cell above. Same as

pressing [Alt]-[Up].
 . {Item Down} -- Moves the cursor to the column or table cell below. Same as
pressing [Alt]-[Down].

Common keyboard codes found in macros are {Enter}, {Tab}, {ALTx}, and {VAR
x}. These are not found in the pop-up commands list, but are entered directly from the
keyboard. Here's what they do and how to enter them:

{Enter}
 The {Enter} code within the macro indicates you want a hard return in the macro, or
else want to simulate pressing the [Enter] key while in a menu, list, etc. Normally,
pressing the [Enter] key inserts a blank line only. To include the {Enter} code in a
macro, press [Ctrl]-V first, then press [Enter].

{Tab}
The {Tab} key code within the macro indicates you want to tab some text to the

next tab stop. Normally, pressing the [Tab] key inserts a empty spaces in a line, and is
most often used to "format" the macro code for readability. To include the {Tab} code
in a macro, press [Ctrl]-V first, then press [Tab].

{ALTx}
The {ALT x} code ("x" is a letter of the alphabet) commands the macro to nest to

an [Alt]-key macro. The {ALTx} code is the same as:
{NEST} altx~

when the {ALTx} code is not at the end of the macro.
{CHAIN} altx~

when the {ALTx} code is at the end of the macro.

To enter the {ALTx} code, first press [Ctrl]-V, then press the [Alt] key and a
letter key. For example, to enter {ALTZ}, press [Ctrl]-V, [Alt]-Z.

{VAR x}
The {VAR x} code ("x" is a number from 0 to 9} indicates a numbered variable.

You'll use the {VAR x} code to print the contents of a variable in a document, to assign
one variable to another, and for many other tasks.

To enter the {VAR x} code, first press [Ctrl]-V, then press the [Alt] key and a
number key (use the numbers along the top of the keyboard, not the ones in the
numeric keypad). For example, to enter {VAR 1}, press [Ctrl]-V, [Alt]-1.

(c) 1990, by Gordon McComb. From WordPerfect 5.1 Macros and Templates, published
by Bantam Computer Books.

